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Necessary and Sufficient Conditions for
Existence of Decoupling Controllers

Ching-An Lin

Abstract—It is well known that if a linear time-invariant plant is free
from coincidences of poles and zeros in the right half-plane, then it can be
decoupled with internal stability under unity-feedback configuration. We
consider plants for which such coincidences do occur and give necessary
and sufficient conditions under which stabilizing decoupling controllers
exist. The conditions derived, based on transfer matrices and residues,
are simple and straightforward.

Index Terms—Decoupling controllers, multivariable systems.

I. INTRODUCTION

Necessary and sufficient conditions for the existence of decoupling
controllers, under unity-feedback configuration, have been studied
in [7] and, for the two-input/two-output case, in [5]. The approach
in [5] and [7] is to find conditions under which there exist open-
loop precompensators which decouple the plant while maintaining
stabilizability. Existence of such precompensators is equivalent to
the existence of stabilizing decoupling controllers.

It is well known that if the plant has no coincidence of pole and zero
in the right half-plane, then there exist controllers that stabilize and
decouple the system [6]. When a plant cannot be decoupled without
sacrificing closed-loop stability, it is precisely due to the coincidences
of unstable poles and zeros. Our approach is to look carefully on such
coincidences and see how their presence interferes with stability and
decoupling requirements. The conditions and derivations are simple
and straightforward.
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Fig. 1. Unity-feedback systemS(P; C).

The paper is organized as follows. Section II describes the system
under consideration. Section III derives the necessary and sufficient
conditions. Plants with simple pole-zero coincidences are considered
first, and proof of the general result, Theorem 3.2, is given in the
Appendix. Section IV is a brief conclusion.

II. NOTATIONS AND DEFINITIONS

C := the field of complex numbers.C
�

:= fs 2 CjRe(s) <

0g; C+ := fs 2 CjRe(s) � 0g. IR[s] := the ring of polynomials in
s with real coefficients;IR(s) := the field of rational functions ins
with real coefficients;IRp(s)(IRpo(s)) := the set of proper (strictly
proper, respectively) rational functions ins with real coefficients. For
H(s) 2 IR(s)n�n; Z[H] := the set of all zeros ofH in C; P[H] :=

the set of all poles ofH in C; Z+[H] := Z[H]\C+, andP+[H] :=

P[H]\ C+. A proper transfer matrixH(s) 2 IRp(s)
n�n is stable if

and only ifP[H] � C
�

. For f; g 2 IR[s]; deg (f) := degree off ,
the relative degree off=g 2 IR(s) is defined asdeg (f)�deg (g) and
f jg meansf dividesg, or equivalently,g = fh for someh 2 IR[s].
The relative degree ofv(s) = [v1(s) � � � vn(s)]

T 2 IR(s)n is defined
as the largest relative degree ofvi(s); 1 � i � n. Finally, we use
diag[hi] to denote then�n matrix withhi as itsith diagonal element.

III. PRELIMINARIES

Consider the unity-feedback systemS(P; C); shown in Fig. 1,
whereP 2 IRpo(s)

n�n is the plant,C 2 IRp(s)
n�n is the controller,

(u1; u2) is the input, and(y1; y2) is the output. We assume that
P is nonsingular so that the inverseP�1 2 IR(s)n�n exists. Let
u := [uT1 uT2 ]

T and y := [yT1 yT2 ]
T .

The closed-loop transfer matrix isHyu 2 IRp(s)
2n�2n and is

given by

Hyu =
Hy u Hy u

Hy u Hy u

=
C(I + PC)

�1 �CP (I + CP )�1

PC(I + PC)�1 P (I + CP )�1
: (1)

We say that the systemS(P; C) is (internally) stable andC is a
stabilizing controller forP if Hyu is stable; the system is decoupled
and C is a decoupling controller forP if C stabilizesP and the
input–output (I/O) map.1 Hy u is nonsingular and diagonal.

SinceP is strictly proper there is a one-to-one correspondence
between the controllerC and the transfer matrixHy u =: Q.
More precisely,Q = C(I + PC)�1 2 IRp(s)

n�n if and only if
C = Q(I�PQ)�1 2 IRp(s)

n�n [1]. In terms ofQ, the closed-loop
transfer matrix in (1) becomes

Hyu =
Q �QP

PQ (I � PQ)P
(2)

and, in particular, the I/O mapHy u = PQ.
1For convenience, we call the transfer matrixHy u the I/O map of the

feedback system.

0018–9286/97$10.00 1997 IEEE
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Stability ofS(P; C) requires the stability of the four block entries
of (2). The following result says that if the (block) diagonal entries
of (2) are stable, then the only unstable poles that may appear in the
off-diagonal entries are those that are both poles and (transmission)
zeros ofP .

Lemma 2.1: For the systemS(P; C) with Hyu given in (2), ifQ
and (I � PQ)P are stable, thenP+[PQ] � (P+[P ] \ Z+[P ]) and
P+[QP ] � (P+[P ] \ Z+[P ]).

Proof: The assertion follows easily by noting that the poles of
P�1 are the zeros ofP [1] and thatPQ = I � [(I � PQ)P ]P�1

andQP = I � P�1[(I � PQ)P ].
Comment: If there is no coincidence of poles and zeros inC+,

that is, if P+[P ] \ Z+[P ] = ;, then it suffices to checkQ and
(I � PQ)P for the stability ofS(P; C) [2].

IV. NECESSARY AND SUFFICIENT CONDITIONS

A sufficient condition for the existence of a decoupling controller
for the plantP is thatP has no coincidences of poles and zeros in
C+ [6]; however, the sufficient condition is not necessary [5], [7].
To find a necessary and sufficient condition we only need to consider
the cases where coincidences ofC+ pole–zero do occur. To simplify
derivations we consider first the case where theC+-coincidences are
all simple.

A. Simple Coincidences

Given the plantP 2 IRpo(s)
n�n with P�1 2 IR(s)n�n, write

P (s) =

M

j=1

Rj

s� �j
+ U(s)

and

P (s)�1 =

M

l=1

T l

s� �l
+ V (s) (3)

where�j 2 C+ are distinct,Rj ; T l 2 Cn�n; U(s) 2 IRpo(s)
n�n;

andV (s) 2 IR(s)n�n are analytic atf�jgMj=1; andP+[U ]\P+[V ] =
;. The plant hasM simple C+-coincidences atf�jgMj=1.

Consider the systemS(P; C) shown in Fig. 1. Suppose for some
stabilizing controllerC the resulting I/O mapHy u =: H is
diagonal, that is,C is a decoupling controller forP . Write H =
diag[hi] where hi 2 IRp(s) is stable. WithQ = C(I + PC)�1

we haveH = PQ. Internal stability of S(P; C) implies that
Q; (I � PQ)P and QP are all stable, in particular, they are all
analytic atf�jgMj=1.

Let us examine the consequences of these requirements. Since
Q = P�1H, Q is analytic atf�jgMj=1 if and only if

P
�1
H =

M

l=1

T l

s� �l
+ V (s) H(s)

is analytic atf�lgMl=1. SinceV andH are analytic atf�lgMl=1; Q is
analytic atf�lgMl=1 if and only if

T
l
H(�l) = 0; l = 1; � � � ; M: (4)

Let T l
i be theith columnof T l. SinceH is diagonal, (4) is equivalent

to

T
l
ihi(�l) = 0; l = 1; � � � ; M; i = 1; � � � ; n: (5)

Similarly, (I � PQ)P is analytic atf�jgMj=1 if and only if

H(�j)R
j = R

j
; j = 1; � � � ; M: (6)

Let Rj
i be theith row of Rj , and (6) becomes

hi(�j)R
j
i = R

j
i ; j = 1; � � � ; M; i = 1; � � � ; n: (7)

Conditions (5) and (7) together imply that

T
l
iR

l
i = 0n�n; l = 1; � � � ; M; i = 1; � � � ; n: (8)

Thus, for eachl and eachi, eitherT l
i is azero columnorRl

i is azero
row. Assume that bothQ and (I � PQ)P are analytic atf�jgMj=1
and write

QP =

M

l=1

T l

s� �l
+ V (s) H(s)

M

j=1

Rj

s� �j
+ U(s) :

SinceQ is analytic atf�jgMj=1, QP is analytic atf�jgMj=1 if and
only if the associated residues are zero. The residue associated with
the pole�j is

M

l=1; l 6=j

T l

s� �l
+ V (s) H(s)Rj

s=�

:

ThusQP is analytic atf�jgMj=1 if and only if

M

l=1; l6=j

T l

�j � �l
+ V (�j) R

j = 0 j = 1; � � � ; M (9)

where we have used (6).
We now show that thenecessary conditions(8) and (9) together are

also sufficient to guarantee the existence of a decoupling controller
for P . We do this by showing that if (8) and (9) hold, then it is
possible to choose aproper stable diagonalI/O mapH for which
the matricesQ := P�1H, (I � PQ)P , and QP are all proper
and stable, and thus the controllerC = P�1H(I � H)�1 is the
decoupling controller achieving the I/O mapH.

Let hi(s) = ~�i(s)=�i(s) and H(s) = diag[hi(s)], where
~�i(s); �i(s) 2 IR[s] and �i(s) is Hurwitz, i = 1; � � � ; n. Write
[2]

P =
Zij

Pij Pij+
(10)

whereZij ; Pij�; Pij+ 2 IR[s] are mutually coprime,Pij+ is monic,
Z[Pij+] � C+, andZ[Pij�] � C�; write

P
�1 =

Nij

Dij�Dij+

(11)

where Nij ; Dij�; Dij+ 2 IR[s] are mutually coprime,Dij+ is
monic,Z[Dij+] � C+, andZ[Dij�] � C�.

Let

Pi+ = the monic least common multiple offPij+g
n
j=1 (12)

and

Dj+ = the monic least common multiple offDij+g
n
i=1 (13)

and
j be the relative degree of thejth column ofP�1. SinceP 2

IRpo(s)
n�n; 
j > 0. Note that (8) implies that, fori = 1; � � � ; n;

the polynomialsDi+ and Pi+ are coprime. SinceQ = P�1H =
P�1 diag[ ~�j=�j ]; Q is proper and stable if and only if

Dj+j~�j and deg (�j)� deg (~�j) � 
j ; j = 1; � � � ; n:

Or equivalently

~�j = Dj+�j for some�j 2 IR[s]; j = 1; � � � ; n (14)

and

deg (�j)� deg (�j) � 
j + deg (Dj+); j = 1; � � � ; n:

(15)

With (14) and (15) satisfied,(I � PQ)P is stable if and only if

Pi+j(�i �Di+�i); i = 1; � � � ; n: (16)
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SinceDi+ andPi+ are coprime, there are�i(s) 2 IR[s] which are
Hurwitz and�i(s) 2 IR[s] such that (15) and (16) are satisfied [2].
We thus have shown that (8) implies the coprimeness ofPi+ and
Di+, which in turn makes possible the choice of a stable proper
diagonal I/O mapH so that the correspondingQ and (I � PQ)P
are proper and stable. In fact, the Hurwitz polynomials�i are subject
only to (15) and can otherwise be arbitrarily chosen. It remains to
show that if (9) is also satisfied, then the matrixQP is stable. By
Lemma 2.1, withQ and (I � PQ)P stable, theC+-poles ofQP
form a subset off�1; � � � ; �Mg. However, (9) and the stability of
Q and(I � PQ)P together ensure thatQP is analytic atf�jgMj=1.
ThusQP is stable. We have thus established the following necessary
and sufficient conditions for the existence of a decoupling controller.

Theorem 3.1:For the plantP (s), together with its inverseP (s)�1

given in (3), there exists a decoupling controller if and only if (8)
and (9) hold.

Example 1: Consider the plant [7]

P (s) =

1

s+ 1

1

s+ 2
1

(s� 1)(s+ 1)

s

(s� 1)(s+ 2)

=

0 0

1

2

1

3

s� 1
+

1

s+ 1

1

s+ 2
�1

2(s+ 1)

2

3(s+ 2)

=:
R

s� 1
+ U(s)

P (s)�1 =

2 0
�3 0

s� 1
+

s+ 2 �(s+ 1)
�1 s+ 2

=:
T

s� 1
+ V (s):

The plant has aC+-coincidence ats = 1. Condition (8) is satisfied,
but

V (1)R =
3 �2

�1 3
0 0
1

2

1

3

=
�1

�2

3
3

2
1

6= 02�2:

Thus the plant cannot be decoupled, and any controller that makes
Hy u diagonal will result inHy u containing a pole ats = 1.

Example 2: Consider the plant [4]

P (s) =

1

s� 1

1

s� 1
s� 1

(s+ 1)2
2(s� 1)

(s+ 1)2

=

1 1
0 0

s� 1
+

0 0
s� 1

(s+ 1)2
2(s� 1)

(s+ 1)2

=:
R

s� 1
+ U(s)

P (s)�1 =

0 �4
0 4

s� 1
+

2(s� 1) �(s+ 3)
�(s� 1) s+ 3

=:
T

s� 1
+ V (s):

Again the plant has aC+-coincidence ats = 1. Condition (8) is
satisfied, and

V (1)R =
0 �4
0 4

1 1
0 0

=
0 0
0 0

:

Thus, for this plant a decoupling controller exists.

B. General Case

We now consider the general case. Let

P (s) =

M

j=1

K

k=1

Rjk

(s� �j)k
+ U(s)

and

P (s)�1 =

M

m=1

L

l=1

Tml

(s� �m)l
+ V (s) (17)

where �j 2 C+; R
jk; Tml 2 Cn�n, Kj � 1; Lm � 1; U 2

IRpo(s)
n�n; and V 2 IR(s)n�n are analytic atf�jgMj=1 and

P+[U ] \ P+[V ] = ;. Let Rjk
i be the ith row of Rjk and Tml

i

be theith column ofTml, and let, forj = 1; � � � ; M

Wj(s) =

M

m=1;m 6=j

L

l=1

Tml

(s� �m)l
+ V (s): (18)

The sufficient and necessary condition for the existence of a decou-
pling controller is the following Theorem whose proof is given in
the Appendix.

Theorem 3.2: For the plantP , together with its inverseP�1

given in (17), there exists a decoupling controller if and only if,
for j = 1; � � � ; M

T
jl
i R

jk
i = 0; i = 1; � � � ; n; l = 1; � � � ; Lj

k = 1; � � � ; Kj (19)

and
n

k=0

W
(k)

j (�j)R
j(K +k�n )

�
1

k!
= 0; nj = 0; 1; � � � ; Kj � 1: (20)

Comments:

1) Conditions (19) and (20) reduce to (8) and (9) if all the
coincidences are simple.

2) Condition (19) ensures thatPi+ andDi+ defined in (12) and
(13), respectively, are coprime; (20) ensures that the stability
of Hy u andHy u imply stability of Hy u .

3) The condition is simple in that no computations of either
coprime factorizations or Smith–Mcmillan form is required.

4) We note that since a transfer matrix generically does not have
any pole-zero coincidence, the conditions hold generically. This
result, however, allows a quantitative discussion of the relation
of the cost of decoupling when the conditions are “nearly
violated” [3].

V. CONCLUSIONS

We derive necessary and sufficient conditions for the existence
of decoupling controllers. The conditions and derivations based on
transfer matrices and residues are simple and straightforward. The
necessary and sufficient conditions easily can be extended to the
block decoupling [4].

APPENDIX

A. Proof of Theorem 3.2

For simplicity we prove only the case whereM = 2. The extension
to the case whereM > 2 is straightforward, though tedious.
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Write

P (s) =

K

k=1

R1k

(s� �1)k
+

K

k=1

R2k

(s� �2)k
+ U(s)

and

P (s)�1 =

L

l=1

T 1l

(s� �1)l
+

L

l=1

T 2l

(s� �2)l
+ V (s)

whereU andV are analytic at�1 and�2. Assume thatH is diagonal
and analytic at�1 and �2.

We show that (19) and (20) are necessary. SinceQ = P�1H, by
taking the partial fraction expansion, we have

Q =

L

l=1

1

(s� �1)l

L �l

k=0

1

k!
T
1(l+k)

H
(k)(�1)

+

L

l=1

1

(s� �2)l

L �l

k=0

1

k!
T
2(l+k)

H
(k)(�2) +G(s)

for someG(s) 2 IR(s)n�n analytic at�1 and�2.
ThusQ is analytic at�1 if and only if

L �l

k=0

1

k!
T
1(l+k)

H
(k)(�1) = 0; l = 1; � � � ; L1: (21)

The last equation (i.e.,l = L1) of (21) is

T
1L

H(�1) = 0: (22)

SinceH = diag[hi], (22) is equivalent to

hi(�1) = 0 if T
1L
i

6= 0; i = 1; � � � ; n: (23)

The second-to-last equation (l = L1 � 1) of (21) can be written as

T
1(L �1)

i
hi(�1) + T

1L
i

h
0

i(�1) = 0; i = 1; � � � ; n: (24)

It follows from (23) and (24) that

T
1(L �1)

i
hi(�1) = 0

and

T
1L
i

h
0

i(�1) = 0; i = 1; � � � ; n:

The second-to-last equation of (21) thus becomes

T
1(L �1)

H(�1) = 0 and T
1L

H
0(�1) = 0:

By examining the equations in (21) from last to first, it follows that
each individual term in (21) equals zero, that is

T
1(l+k)

H
(k)(�1) = 0; for all l = 1; � � � ; L1

k = 0; � � � ; L1 � l: (25)

In particular

T
1l
H(�1) = 0 for all l = 1; � � � ; L1: (26)

Similarly, the requirement thatQ is analytic at�2 implies that

T
2(l+k)

H
(k)(�2) = 0; for all l = 1; � � � ; L2

k = 0; � � � ; L2 � l (27)

and in particular

T
2l
H(�2) = 0; for all l = 1; � � � ; L2: (28)

By taking the partial fraction expansion(I�PQ)P can be written as

(I � PQ)P =

K

k=1

1

(s� �1)k
(I �H(�1))R

1k)

+

K �k

k =1

�1

k1!
H

(k )(�1)R
1(k +k)

+

K

k=1

1

(s� �2)k
(I �H(�2))R

2k)

+

K �k

k =1

�1

k2!
H

(k )(�2)R
2(k +k)

+ ~G(s)

for some ~G(s) 2 IR(s)n�n analytic at�1 and �2. From similar
arguments as above, it follows that(I � PQ)P is analytic at�1 if
and only if for k = 1; � � � ; K1

H(�1)R
1k =R

1k (29)

and

H
(k )(�1)R

1(k +k) =0; k1 = 1; � � � ; K1 � k (30)

and(I � PQ)P is analytic at�2 if and only if for k = 1; � � � ; K2

H(�2)R
2k =R

2k (31)

and

H
(k )(�2)R

2(k +k) =0; k2 = 1; � � � ; K2 � k: (32)

SinceH is diagonal, (26) and (29) imply that

T
1l
i R

1k
i = 0; for i = 1; � � � ; n; l = 1; � � � ; L1

k = 1; � � � ; K1 (33)

and (28) and (31) imply that

T
2l
i R

2k
i = 0; for i = 1; � � � ; n; l = 1; � � � ; L2

k = 1; � � � ; K2: (34)

Suppose now that (33) and (34) hold and that bothQ and
(I � PQ)P are analytic at�1 and�2. Write

QP =

L

l=1

T 1l

(s� �1)l
H(s)

K

k=1

R1k

(s� �1)k

+

L

l=1

T 2l

(s� �2)l
H(s)

K

k=1

R2k

(s� �2)k

+

L

l=1

T 1l

(s� �1)l
H(s)

K

k=1

R2k

(s� �2)k

+

L

l=1

T 2l

(s� �2)l
H(s)

K

k=1

R1k

(s� �1)k

+

L

l=1

T 1l

(s� �1)l
H(s)U(s)

+

L

l=1

T 2l

(s� �2)l
H(s)U(s)

+ V (s)H(s)

K

k=1

R1k

(s� �1)k

+ V (s)H(s)

K

k=1

R2k

(s� �2)k

+ V (s)H(s)U(s): (35)
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SinceH is diagonal, by (33) and (34) the first two terms in the right-
hand side of (35) are zero. SinceQ = P�1H is analytic at�1 and
�2, the third term is analytic at�1, the fourth term is analytic at
�2, and the fifth and sixth terms are analytic at�1 and�2. Thus the
matrix QP is analytic at�1 if and only if

L

l=1

T 2l

(s� �2)l
+ V (s) H(s)

K

k=1

R1k

(s� �1)k
(36)

is analytic at�1; QP is analytic at�2 if and only if

L

l=1

T 1l

(s� �1)l
+ V (s) H(s)

K

k=1

R2k

(s� �2)k
(37)

is analytic at�2.
Thus with

W1(s) =

L

l=1

T 2l

(s� �2)l
+ V (s)

and

W2(s) =

L

l=1

T 1l

(s� �1)l
+ V (s)

QP is analytic at�1 and�2 if and only if

n

k=0

W
(k)

1 (�1)R
1(K +k�n )

�
1

k!
= 0; n1 = 0; 1; � � � ; K1 � 1 (38)

and
n

k=0

W
(k)

2 (�2)R
2(K +k�n )

�
1

k!
= 0; n2 = 0; 1; � � � ; K2 � 1 (39)

where we have used (29)–(32) in computing the partial fractions of
(36) and (37).

We have shown that the conditions (33), (34), (38), and (39) are
necessary. The proof that these conditions together are also sufficient
is exactly the same as that for the simple coincidence case and is
omitted.
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Improving Stability Margins via Dynamic-State
Feedback for Systems with Constant Uncertainty

W. E. Schmitendorf and H. L. Stalford

Abstract—It is well known that if a linear system with time-varying
uncertainty in the system matrix and/or the input connection matrix is
quadratically stabilizable by linear dynamicstate feedback, then it is also
quadratically stabilizable by linear staticstate feedback. In this paper, we
provide an example of a system with unknown constant real uncertainty
which is stabilizable by a linear, dynamic-state feedback controller but
not by a static-state feedback controller.

Index Terms—Dynamic state feedback control, quadratic stability,
robust controls.

I. INTRODUCTION

Consider the uncertain linear system

_x(t) = [A+�A(r)] x(t) + [B +�B(r)]u(t) (1)

wherex(t)"Rn is the state,u(t)"Rm is the control, andr"Rq is a
vector of uncertain real parameters belonging to a compact set<. It
is assumed that the uncertainty satisfies

[�A(r) �B(r)] =DF (r)[E1 E2] (2a)

jjF (r)jj � r: (2b)

For problems wherer is allowed to be time varying, Rotea and
Khargonekar [1] have shown that if the system is quadratically
stabilizable by dynamic-state feedback, i.e., a controller of the form

_z(t) =Acz(t) +Bc(t)x(t) (3a)

u(t) =K1z(t) +K2(t)x(t) (3b)

wherez"Rn , then it is quadratically stabilizable via a static linear-
state feedback controller

u(t) = Kx(t): (4)

We give an example to show that if the vector of uncertain parameters
is time invariant, there may not exist a control of the form (4) that
stabilizes (1), but there does exist a control of the form (3) which
stabilizes (1).

The system equations are

_x(t) =
2 �1

1 1
x(t) +

1:5 + r

1
u(t); jrj � r: (5)

For r > 0:5, it is easily verified that there does not exist a controller
of the form (4) which stabilizes (5). To see this, letu = k1x1+k2x2.
The closed-loop system is

_x(t) =
2 + (1:5 + r)k1 �1 + (1:5 + r)k2

1 + k1 l+ k2
x(t):

From the Routh–Hurwitz condition, the system is stable if and only
if �3� (1:5+r)k1�k2 > 0 and3+(2:5+r)k1+(0:5�r)k2 > 0.
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