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C := the field of complex numbersC_ := {s € C|Re(s) <
0}; C; := {s € C|Re(s) > 0}. IR[s] := the ring of polynomials in
s with real coefficientsIR(s) := the field of rational functions i
with real coefficients]R, (s)(IR,.(s)) := the set of proper (strictly
proper, respectively) rational functions ¢rwith real coefficients. For
H(s) € R(s)"*", Z|H] := the set of all zeros off in C, P[H] :=
the set of all poles o in C, Z4[H]| := Z[H|NC4, andP4[H] :=
P[H]N CL. A proper transfer matri (s) € IR, (s)"*™ is stable if
and only if P[H] C C_. For f, g € R[s], deg (f) := degree off,
the relative degree of/g € IR(s) is defined asleg (f)—deg (¢) and
flg meansyf dividesg, or equivalently,g = fh for someh € IR[s].
The relative degree af(s) = [01(s) - -- va(s)]' € IR(s)" is defined
as the largest relative degree @f(s), 1 < i < n. Finally, we use
diag[h;] to denote the: xn matrix with i; as its:th diagonal element.

Necessary and Sufficient Conditions for
Existence of Decoupling Controllers

Ching-An Lin

Abstract—t is well known that if a linear time-invariant plant is free
from coincidences of poles and zeros in the right half-plane, then it can be
decoupled with internal stability under unity-feedback configuration. We
consider plants for which such coincidences do occur and give necessary
and sufficient conditions under which stabilizing decoupling controllers
exist. The conditions derived, based on transfer matrices and residues,
are simple and straightforward.

Ill. PRELIMINARIES

Consider the unity-feedback systefi{P, C'), shown in Fig. 1,
whereP € IR,.(s)"*™ is the plantC' € R, (s)"*" is the controller,
(u1, u2) is the input, and(y:, y2) is the output. We assume that
P is nonsingular so that the inverde™' ¢ TR(s)"*" exists. Let
w = [ul wi]* andy := [yi vil]*.

The closed-loop transfer matrix iy, € IR,(s)*"**" and is

Index Terms—Decoupling controllers, multivariable systems.

. INTRODUCTION

Necessary and sufficient conditions for the existence of decouplin
. . . .%%en by
controllers, under unity-feedback configuration, have been studi

in [7] and, for the two-input/two-output case, in [5]. The approach H.. = {Hylul Hyluz}

in [5] and [7] is to find conditions under which there exist open- v Hy,uy, Hysu,

loop precompensators which decouple the plant while maintaining C(I+PC)t —CPI+CP)!
stabilizability. Existence of such precompensators is equivalent to = {pc(]+ PC)™! P(I4+CP)™! @)

the existence of stabilizing decoupling controllers. L .
Itis well known that if the plant has no coincidence of pole and zerffe say that the systerfi(P, C) is (internally) stable and’ is a

in the right half-plane, then there exist controllers that stabilize arfiilizing controller forP” if H,, is stable; the system is decoupled
decouple the system [6]. When a plant cannot be decoupled WithC_'ilu”ld C'is a decoupling control_ler fO'P_ if C stablllzgsP and the
sacrificing closed-loop stability, it is precisely due to the coincidencd¥Put-output (I/0) map. H,,., is nonsingular and diagonal.

of unstable poles and zeros. Our approach is to look carefully on suctpinc€ I is strictly proper there is a one-to-one correspondence
coincidences and see how their presence interferes with stability atid"/een the controlleC” and the transfer matrixfy,., =: «).

I — —1 nXn .
decoupling requirements. The conditions and derivations are simpf@"® Precisely.Q = C(I + PC)™" € IR, (s)""" if and only if
and straightforward. C=Q(I-PQ)" € R,(s) [1]. In terms of @, the closed-loop

transfer matrix in (1) becomes

—-QP
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Stability of S(P, C') requires the stability of the four block entriesConditions (5) and (7) together imply that
of (2). The following result says that if the (block) diagonal entries TR =0 =1 i M P21 ®)
of (2) are stable, then the only unstable poles that may appear in the S X T ' o
off-diagonal entries are those that are both poles and (transmissi®hys, for eachi and each, eitherI! is azero columror R! is azero
zeros of P. row. Assume that botl) and (I — PQ)P are analytic at{\;}}Z,
Lemma 2.1: For the systent (P, C') with Hy, given in (2), if@Q and write
and(I — PQ)P are stable, the[PQ] C (P+[P] N Z4[P]) and
P[QP] C (P+[PIN Z.[P)). i QP =
Proof: The assertion follows easily by noting that the poles of
P~ are the zeros oP [1] and thatPQ = I — [(I — PQ)P|P~"
andQP =1 — P~ [(I - PQ)P).
Comment: If there is no coincidence of poles and zeros@n,

M T! ] M R
Z —" +V(s)|H(s) Z Y +U(s)

=1 =1

Since @ is analytic at{)\,;}}L,, QP is analytic at{\;}’Z, if and
only if the associated residues are zero. The residue associated with

that is, if P+[P] N ZL[P] = 0, then it suffices to check) and the pole; is
(I — PQ)P for the stability of S(P, C) [2]. M Tt
Y otV A
IV. NECESSARY AND SUFFICIENT CONDITIONS (=1 s=Ag
A sufficient condition for the existence of a decoupling controlleFhus QP is analytic at{),}}Z, if and only if
for the plantP is that P has no coincidences of poles and zeros in o T
C. _[6]; however, the suf'ﬂcngqt condltlgr_l is not necessary [5], [7_]. TV =0  j=1---. M ©)
To find a necessary and sufficient condition we only need to consider),_ 7., Aj =N

the cases where coincidences@f pole—zero do occur. To simplify
derivations we consider first the case where @hecoincidences are
all simple.

where we have used (6).

We now show that thaecessary condition®) and (9) together are
also sufficient to guarantee the existence of a decoupling controller
. - for P. We do this by showing that if (8) and (9) hold, then it is
A. Simple Coincidences possible to choose proper stable diagonal/O map H for which

Given the plantP € IR, (s)"*" with P~" € R(s)"*", write the matricesQ := P~'H, (I — PQ)P, and QP are all proper

Moo and stable, and thus the controller = P~'H(I — H) ' is the
P(s)= Z —/\ 4+ U(s) decoupling controller achieving the /0O mdp.
j=1 Let hi(s) = Bi(s)/ai(s) and H(s) = diaglh:(s)], where
and Bi(s), ai(s) € R[s] and a;(s) is Hurwitz, i = 1, ---, n. Write
Mo [2]
—1 -
Ps) =3 —+ V() 3) 7.
=R P (10
where); € C; are distinct,R?, T' € C**", U(s) € Ryo(s)"*", oot _ ) _
andV (s) € R(s)™*" are analytic a{\, 1L, andP, [U]NP4 [V] = whereZ;;, P;;—, P;;+ € R[s] are mutuz_;llly coprimel;+ is monic,
0. The plant has\/ simple C.-coincidences af);})Z,. Z[Pij+] C €4, and Z[F;;-] C C; write
Consider the systerfi( P, C') shown in Fig. 1. Suppose for some 1 N;j
stabilizing controllerC' the resulting I/O mapH,,., =: H is P = |:Dij*Dij+:| 11

diagonal, that is(C' is a decoupling controller foP. Write H = . ) )

diag[h,] where h; € R,(s) is stable. WithQ = C(I + pC)~t Where Nij, Di;—. Dijy € R[s| are mutually coprimeDi;4 is

we have H = PQ. Internal stability of S(P, C') implies that monic, Z[D;;+] C €, and Z[Di;-] C C-.

Q, (I — PQ)P and QP are all stable, in particular, they are all Let

analytic at{\;}4Z,. P, =the monic least common multiple ¢4}, (12)
Let us examine the consequences of these requirements. Sigce

P'H, @ is analytic at{\ if and only if
Q= © Y b= y D, =the monic least common multiple ¢D,,+}7—;  (13)

M !
= +V(s s and~; be the relative degree of theh column of P~!. SinceP ¢
P'H T/\ Vv H(s) d~; be th lative d f thieh col fP~'. SinceP
= TN R,.(s)"*", v; > 0. Note that (8) implies that, fof = 1, -+, n,
: ; . R,
is analytic at{\,}Z,. SinceV and H are analytic af\}4,, @ is e polynomlaIleJr and I’ arecoprime Since@ = P H =
analytic at{A,}j\fl |f and only if P~ diag[3,/a;], Q is proper and stable if and only if
T'HO\) =0, 1=1,---, M. (4) Dj|p; and deg(a;) —deg(8;) =7,  j=1,-,n
Let 7! be theith columnof T". SinceH is diagonal, (4) is equivalent O €quivalently
to 3j=D;+3; forsomes; eR[s], j=1,---,n (14)
Tihi(\)=0, 1=1,--,M, i=1-,n (5 and
Similarly, (I — PQ)P is analytic at{\,;}}L, if and only if deg (aj) — deg (3;) > v, + deg (D), j=1,,n.
HO)R =R, j=1,---, M. (6) (15)
Let B! be theith row of R’, and (6) becomes With (14) and (15) satisfied,] — PQ)P is stable if and only if

hi MRl =R!,  j=1,---, M, i=1,-,n (7) Piy|(i — Dit 8), i=1,---,n. (16)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 8, AUGUST 1997 1159

Since D,+ and P, are coprime, there are;(s) € IR[s] which are B. General Case
Hurwitz and i (s) € IR[s] such that (15) and (16) are satisfied [2]. \ve now consider the general case. Let
We thus have shown that (8) implies the coprimenes$’af and

D4, which in turn makes possible the choice of a stable proper ; M2 Rik
diagonal 1/0 mapH so that the corresponding and (I — PQ)P Pls)=> > G- +U(s)
are proper and stable. In fact, the Hurwitz polynomiajsare subject J=L k=1 0 !

only to (15) and can otherwise be arbitrarily chosen. It remains &hd
show that if (9) is also satisfied, then the matépd is stable. By
Lemma 2.1, with@ and (I — PQ)P stable, theC-poles of QP

form a subset off A1, - -+, A }. However, (9) and the stability of

Q and (I - PQ)P together ensure thap P’ is analytic at{\;};21. where\; € €y, B*, 7™ € ©*", K; > 1, Ln > 1, U €

Thus@QP is stable. We have thus established the following necessapy, (s)an, and V € IR(s)"*" are analytlc at{); }]Wl and

P(s)"' = ———— 4+ V(s) @7

and sufficient conditions for the existence of a decoupling controlle]ru+[U] N P4[V] = 0. Let R’* be theith row of RJk and T,
Theorem 3.1: For the plant”(s), together with its invers@(s) —* be theith column of 77!, and let, forj = 1, ---, M
given in (3), there exists a decoupling controller if and only if (8)
and (9) hold. O ] M 7!
Example 1: Consider the plant [7] W(s) = Z Z (5 — >\m)’ +V(s). (18)
1 1 m=1,m#j (=1
P(s) = s+1 s+ 2 The sufficient and necessary condition for the existence of a decou-
a 1 s pling controller is the following Theorem whose proof is given in
(s—=1D(s+1) (s—1)(s+2) the Appendix.
0 0 Theorem 3.2:For the plantP, together with its inverseP™*
1 1 . . . . . .
11 given in (17), there exists a decoupling controller if and only if,
3 3 541 542 for i = 1.---. M
= == 4 or g = 1, s M
s—1 -1 2
2s+1) 3(s+2) T'R* =0, i=1,---,n, I=1,---, L,
:,91_3 +U(s) k=1, .-, K, (19)
{ 2 0} and
. 30 s+2 —(s+1) ;
3 1 — \ / T’LJ
P(s) —3 { 1 s 12 W](L»)(/\j)R,,'(r(ﬁk—nj)
T N -
= 7 V(s i
5 c= =0, n;=0,1, K —1L (20)
The plant has aC,-coincidence at = 1. Condition (8) is satisfied, k!
but O
5 0 0 -1 2 Comments:
V(DR = {_1 3} L 7} = 3 | # 02x2. 1) Conditions (19) and (20) reduce to (8) and (9) if all the
203 2 coincidences are simple.

Condition (19) ensures thd&;+ and D;; defined in (12) and

Thus the plant cannot be decoupled, and any controller that makeg) X ; -
(13), respectively, are coprime; (20) ensures that the stability

H,,., diagonal will result inH,,., containing a pole at = 1. : o
yszzlzlmpIe 2: Consider the pI:llntz [4] Of Hy,u, @nd Hy,y, imply stability of Hy, .
1 1 3) The condition is simple in that no computations of either

— — coprime factorizations or Smith—Mcmillan form is required.
_ s—1 s—1 . . .
P(s) = s—1 2(s — 1) 4) We note that since a transfer matrix generically does not have
GH1? (s+1)p2 any pole-zero coincidence, the conditions hold generically. This
' : result, however, allows a quantitative discussion of the relation

Ll) (1)} 0 0 of the cost of decoupling when the conditions are “nearly
=L+ 44| s-1 2(s—1) violated” [3].
s=L O GF? Gr)e
=: il +U(s) V. CONCLUSIONS
80 4 We derive necessary and sufficient conditions for the existence
{0 4} ) ) of decoupling controllers. The conditions and derivations based on
Ps)"'=Lt 44 {2(3‘ - 11) —(s +03)} transfer matrices and residues are simple and straightforward. The
s—1 —(s-1) 549 necessary and sufficient conditions easily can be extended to the
= - T V(). block decoupling [4].
Again the plant has &, -coincidence ats = 1. Condition (8) is APPENDIX
satisfied, and
V()R = {8 —ﬂ Ll) H _ {3 8} A. Proof of Theorem 3.2
For simplicity we prove only the case whel€ = 2. The extension

Thus, for this plant a decoupling controller exists. to the case wherdf > 2 is straightforward, though tedious.
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Write
K1 Rk Ky 2k
R .
Z (s = A0F Z (5= Az)* +UL)
and
. L Tll Lo T2I
P(s) :ZW‘FZW‘F‘”(S)
=1 / =1

wherelU andV are analytic a; and).. Assume thaf{ is diagonal
and analytic at\; and ).

We show that (19) and (20) are necessary. Sifjce P~'H, by
taking the partial fraction expansion, we have

T4 1 Ty—1 1
_ L aar) e
Q_Z .s—All;k!T H ()

Lo—1

Z Ll TV ES (h) + G(s)

1
+Z (b—AZ)’

for someG(s) € R(s)"*" analytic at\; and ..
Thus @ is analytic at\; if and only if

Li—1 1
> FTI(”’“)H(’“)(AI) =0, I=1,---,Li. (21)
k=0 !

The last equation (i.el, = L;) of (21) is

T H(\) =0. (22)

Since H = diag[h:], (22) is equivalent to

hi(A)=0 if T'"#0, i=1, .-, n (23)

The second-to-last equatioh=€ L, — 1) of (21) can be written as

T VR0 + THE R =0, i=1,---,n.  (24)
It follows from (23) and (24) that
7' hi (A1) =0
and
THApi(A) =0,  i=1,---, n.

The second-to-last equation of (21) thus becomes

TV HE(N) =0 and T H' (M) = 0.

By examining the equations in (21) from last to first, it follows that

each individual term in (21) equals zero, that is

7' g®E oy =0, foral 1=1,---, L,

E=0,---, [, — L (25)
In particular
T"H(M\)=0 forall I=1,---, L. (26)

Similarly, the requirement tha® is analytic at\, implies that

T*HERF® (\) =0, forall =1, -, Ly
k=0,---,Lo—1 (27)
and in particular
T H(\) =0, forall [=1,---, Lo. (28)
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By taking the partial fraction expansighi — PQ) P can be written as

K1

, _ 1 _ 1k
(I-PQP= ; GO [u H(\))R™)
Ki—k
+ H(’»l)(}\ )Rl(k1+k):|
Ky 1
2k
+};(5—A) (I —H(X2))R™")
Ko—k
+ (’»’2)(}\. )Rz(k2+k):|
+ G(s)

for someG(s) € IR(s)"*" analytic atA; and \,. From similar
arguments as above, it follows thagk — PQ)P is analytic at\; if

and only if fork = 1, ---, K,
H(\)R'"™ =R"™ (29)
and
H*D (AR R =, Fi=1,--, K —k (30)
and(I — PQ)P is analytic at\, if and only if fork =1, ---, K>
H(\)R*™ =R (31)
and
HF2) ()RRt =, k=1, Ku—k.  (32)
Since H is diagonal, (26) and (29) imply that
T'R* =0, for i=1,,n, I=1,---, L
k=1, K, (33)
and (28) and (31) imply that
THR¥* =0, for i=1,---,n, I=1,---, Ly
E=1, -, Ks. (34)

Suppose now that (33) and (34) hold and that bahand
(I — PQ)P are analytic at\; and \2. Write

T Ky R'*
QP = Z(b—)\)l Z(s—)\l)’“

Ko

+Z 531/\2)’ )Z(s—ka)"
Koy B2k
+Z /\)IH(S)Z( “)F
72 21 K1 Rk
D P wiOD Dy
L1 L
+3 g H
Lo 72l
+l§ mﬂ(s)U(s)
Ky Rk
Z (9 — A )k
Az
+V(s)H(s) Z G Az)"
+V(s)H(s )U(Q). (35)
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SinceH is diagonal, by (33) and (34) the first two terms in the right- Improving Stability Margins via Dynamic-State

hand side of (35) are zero. Sin€g= P~ H is analytic at\; and Feedback for Systems with Constant Uncertainty
A2, the third term is analytic ah,, the fourth term is analytic at
A2, and the fifth and sixth terms are analyticatand \.. Thus the W. E. Schmitendorf and H. L. Stalford
matrix QP is analytic at\, if and only if
[ L2 T2 1 Ky Rk Abstract—t is well known that if a linear system with time-varying
Z ——; + V(s)| H(s) Z — (36) uncertainty in the system matrix and/or the input connection matrix is
= (=) ] = (s— A1) quadratically stabilizable by linear dynamicstate feedback, then it is also
guadratically stabilizable by linear staticstate feedback. In this paper, we
is analytic at\;; QP is analytic at\, if and only if provide an example of a system with unknown constant real uncertainty
: which is stabilizable by a linear, dynamic-state feedback controller but
rLy _y 7 Ko ok not by a static-state feedback controller.
- Vis)|H(s _B 37
Z (s =)l +Vis) | Hs) Z (s — Xo)* (37) Index Terms—Dynamic state feedback control, quadratic stability,
Li=1 . k=1 ’ robust controls.
is analytic at\..
Thus with I. INTRODUCTION
L2 T2 Consider the uncertain linear system
"1’71 (5) = Z )4)\[ + ‘/’Y(S) .
— (s — A2) () =[A+ AA()] 2(t) + [B+ AB(r)] u(t) @)
and . . .
I, ; wherez(t)eR™ is the stateu(t)=R™ is the control, and=R? is a
Wa(s) = Z T +V(s) vector of uncertain real parameters belonging to a compack skt
— (s — ) is assumed that the uncertainty satisfies
QP is analytic at\; and ), if and only if [AA(r) AB(r)]=DF(r)[E1 E] (2a)
n WEI <7 (2b)
Z W/,v(k)()\ )B1(K1+k7n1) ) ) )
1 172t For problems where is allowed to be time varying, Rotea and
k=0 1 Khargonekar [1] have shown that if the system is quadratically
ke 0, n=01,---, Ky — 1 (38) stabilizable by dynamic-state feedback, i.e., a controller of the form
and 2(t) = Acz(t) + Bo(t)a(t) (3a)
g
Z W (Ag) B2 2Fh=n2) u(t) = K12(t) + K2 (t)a(t) (3b)
k=0 1 wherezeR"<, then it is quadratically stabilizable via a static linear-
ke 0, no=0,1,---, Ko — 1 (39) state feedback controller

where we have used (29)—(32) in computing the partial fractions of u(t) = Ka(t). “)

(36) and (37). N We give an example to show that if the vector of uncertain parameters
We have shown that the conditions (33), (34), (38), and (39) agetime invariant, there may not exist a control of the form (4) that

necessary. The proof that these conditions together are also sufficigghijizes (1), but there does exist a control of the form (3) which
is exactly the same as that for the simple coincidence case andgsyilizes (1).

omitted. The system equations are
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