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Low-angle radar tracking represents a classical 
problem in radar which has been attacked by numerous 
researchers for the past several decades [l-131. The 
goal is to track a target flying at a low altitude, in 
relative terms, omr a fairly smooth reflecting surface 
such as calm sea, for example. Echoes return to 
the radar site via a specular path as well as by a 
direct path. Due to the relatively small differential 
in length between the two paths, the direct and 
specular path signals arrive overlapped in time. In 
addition, the angular separation between the two 
ray paths is typically a fraction of a beamwidth. It 
is well known that the classical monopulse bearing 
estimation technique breaks down under these 
conditions. As a consequence, several alternative 
maximum likelihood (ML) based bearing estimation 
schemes have been proposed, each theoretically 
capable of resolving two targets separated by less 
than a beamwidth [2-131. These various ML-based 
estimation schemes may be classified under two major 
categories: those which operate in element space 
and those which operate in beamspace. Pioneering 
work on the element space-based-ML estimator is 
attributed to Ksienski and McGhee [2]. The major 
drawback of the element space-based ML methods 
is the attendant computational complexity due to the 
required multidimensional search over a multimodal 
surface. 

The bearing estimation technique employed in 
conventional monopulse radar may be interpreted as 
an ML estimator based in a 2-D beamspace defined 
by sum and difference beams [SI. As this technique 
is extremely computationally simple, a number of 
ML estimation schemes based in a suitably defined 
3-D beamspace [6-9, 11-13] have been proposed for 
low-angle radar tracking. These may be classified into 
two categories. In the first category, the transformation 
from element space to 3-D beamspace is achieved by 
applying the same beamforming weight vector to each 
of three identical subarrays extracted from the overall 
array. The subarrays may or may not be overlapping. 
An example of this type of estimation scheme is 
the three-subaperture (3-APE) scheme of Cantrell, 
Gordon, and aunk  [6,9]. In the second category, 
the prescription for converting to 3-D beamspace is 
to apply three different beamforming weight vectors 
to all of the array elements. Examples of this type of 
estimation scheme include the least squares adaptive 
antenna (LSAA) method of Kesler and Haykin [7-8] 
and the 3-D beamspace domain maximum likelihood 
(3D-BDML) method of Zoltowski and Lee [ll-131. 
Each of the these three methods, 3-APE, LSAA, and 
3D-BDML, is computationally simplistic in deference 
to the need for real time applicability. 

A novel and practical approach to low-angle radar 
tracking is described in the pioneering work of White 
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[3]. An important aspect of the method of White is 
that it incorporates a priori knowledge with regard 
to the multipath geometry. The premise is that if 
the surface is smooth enough to provide a specular 
reflection, then it is also predictable. Simple geometry 
yields the angle of the image ray corresponding to 
each direct path ray in terms of the height of the 
radar above the surface and the range of the target. 
Although the theoretical development of the bearing 
estimation procedure of White in [3] was presented 
in element space terms, the actual antenna utilized 
for tracking was not an array. Rather, it employed a 
cluster of six horns feeding a Cassegrain dual reflector 
antenna. The six horns were arranged in three pairs 
stacked in elevation, with each pair providing sum 
and difference beams in azimuth. One pair yielded 
beams above the boresight axb, another yielded 
beams pointed to elevation boresight, while the third 
pair provided beams below boresight. A combining 
network provided a sum beam and a normal elevation 
difference output. A second elevation difference 
pattern provided an output signal that varied as 
the square of the displacement from boresight. At 
high angles where multipath is not a problem, only 
the normal difference signal is used in forming the 
elevation error signaL At low angles, a calibrated 
portion of the second difference is used to generate 
a second null at the expected angle of the specular 
reflection. As a consequence of the expkitation of the 
multipath geometry, the search process even at low 
angles is only over one independent angle variable. 

The performance of any bearing estimation scheme 
in a low-angle radar tracking scenario is dependent on 
the phase difference between the direct and specular 
path signals. As a consequence of the fraction of a 
beamwidth angular separation between the two ray 
paths, the phase difference between the two signals 
does not vary much actoss the array. Let A4 denote 
the phase difference between the direct and specular 
path signals at the center of the array. In addition to 
effectively reducing a two-dimensional (2-D) parameter 
estimation problem to a onedimensional (1-D) one, 
the incorporation of the multipath geometry as a priori 
information also has a favorable effect with regard to 
the dependence on A4. Without the incorporation 
of such, the ML method in either element space 
or beamspace experiences large errors when A4 is 
either 00 or 1800 [3, 6, 131. With a priori information 
included, A4 = 00 is no longer a problem and, in 
fact, yields best performance. The A4 = 1800 case 
still remains a problem, however. One obvious means 
for overcoming this problem is to employ frequency 
diversity. 

Recently, Kezys and Haykin [18] describe an 
ML-based bearing estimation scheme for low-angle 
radar tracking which incorporates frequency diversity 
as well as a priori information with regard to the 
multipath geometry. A novel aspect of their method is 

that it explicitly accounts for some level of inaccuracy 
in the knowledge of both the radar height and the 
target range. However, the method is based in element 
space and is quite computationally burdensome 
involving a search with respect to ten parameters. The 
computational complexity is abated somewhat by the 
imposition of equality constraints which exploit the 
linear dependence of the relative phase difference 
between the direct and specular path signals with 
respect to frequency. It should also be pointed out 
that the method has been demonstrated to perform 
quite well with experimental (real) data for angular 
separations between the two signals as small as a 
quarter of a beamwidth. 

As an alternative, we here present a variation 
of our earlier beamspace domain based method, 
3D-BDML [ll-131, which incorporates frequency 
diversity and a priori information in the form of the 
bisector angle between the direct path ray and the 
image ray. This may be estimated given only the 
height of the radar array and the range of the target 
as shown in Section 11. In Section 111, symmetric 
3D-BDML is formulated by setting the pointing angle 
of the center of three orthogonal beams, q u i - s p a d  
in elevation, equal to the bisector angle. It is shown 
that, in effect, symmetric 3D-BDML exploits the 
underlying symmetry by preprocessing in the form of 
a forward-backward average of the 3 x 3 beamspace 
correlation matrix formed from the three respective 
beam outputs. An ML bearing estimator operatitlg in 
a 2-D beamspace is a h  developed in Section I11 as a 
simplification of 3D-BDML for high angles in which 
multipath is not a problem. In Sectioa IV, the effects 
of the forward-backward average in beamspace are 
analyzed in terms of the dependence of symmetric 
3D-BDML on A4, the performance of symmetric 
3D-BDML when no specular multipath component 
is present, and the degradation in performance 
incurred in symmetric 3D-BDML with estimation 
error in the bisector angle. A multifrequency version 
of symmetric 3D-BDML is developed in Section V. 
The coherent signal subspace concept of Wang and 
Kaveh [ll, 121 is invoked as a means for retaining the 
computational simplicity of 3-D BDML in the case of 
single frequency operation, while incorporating in a 
coherent manner the additional data obtained at the 
auxiliary frequencies. Filly, simulations are presented 
in Section VI as a means of validating results derived 
throughout. 

II. BISECTOR ANGLE DETERMINATION FROM 
MULTIPATH GEOMETRY 

Consider the geometry of the low-angle radar 
tracking scenario in the case of a flat Earth model as 
depicted in Fig. 1. A target is flying at a relatively low 
altitude over the sea surface. The variable RI denotes 
the range of the target, h, denotes the height of the 
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Thus, the additive "bias" in the bisector angle estimate 
due to inaccurate knowledge of the target range is 
inversely proportional to the square of the target 
range!! Notwithstanding, the effect of an error in 
the bisector angle estimate on the performance of 
symmetric 3D-BDML is examined in Section IV. 

The expression for the bisector angle in (4) is 
approximately equal to the angle of a ray from the 
center of the array to a point on the surface directly 
under the target. This observation provides the 
motivation for a method of approximating the bisector 
angle in long range applications where the curvature of 
the Earth must be taken into account. Approximating 
the Earth as a sphere with known radius, consider a 
plane that is tangent to the surface at the reflection 
point. TI a high degree of precision, the bisector angle 
may be approximated as the angle of a ray from the 
center of the array to a point on this tangent plane 
directly below the target. Now, the location of the 
tangent point depends on the target height such that, 
in the case of a spherical Earth model, the bisector 
angle depends on the target height in addition to 
the radar height and the target range. Fortunately, 
however, the dependence is not great as demonstrated 
in Bble I. mble I lists the values of the angle of 
the direct path ray, the angle of the image ray, and 
the bisector angle as a function of target height for 
a target range of 5 nmi and a radar height of 60 ft. 
Refraction effects were accounted for by using a radius 
equal to 4/3 times the true radius of the Earth. It is 
observed that as the target height varies from 0 to 
200 ft, the bisector angle only varies by roughly plus 
or minus one hundredth of a degree from the value 
computed for a target height equal to the radar height 
of 60 ft. Thus, in the case of a spherical Earth model, 
the bisector angle estimate to be used in symmetric 
3D-BDML is the angle from the array center to a 
point directly under the target on the plane tangent 
to the surface of the Earth at the point of reflection, 
computed for a target height equal to the radar height. 
Again, the effect of an error in the bisector angle 
estimate on the performance of symmetric 3D-BDML 
is examined in Section IV. 

Fig. 1. Multipath geometry for low-angle radar tracking scenario 
for case of flat Earth model 

center of the receiving array above sea level, and h, 
denotes the height of the target above sea level, i. e., 
the target altitude. Echoes return to the radar site via 
a specular path as well as by a direct path. 8 is the 
angle of the direct path ray measured upward with 
respect to broadside to the array, while a is the angle 
of the specular path ray measured downward from 
broadside to the array. In this notation, the bisector 
angle is 8s = (8 - a)/2. The other angles indicated in 
Fig. 1 were determined from a and 8 in accordance 
with Snell's law of reflection and the fact that the sum 
of the angles in a triangle is 1 8 0 O .  Invoking the law of 
sines, 8s = (8 - a)/2 may be approximated, to a high 
degree of precision, with only knowledge of hr and RI. 
The appropriate development is as follows. 

The law of sines dictates 

Substitution of the trigonometric identity sin(l80 - 
2a) = sin(2a) = 2sinacosa coupled with simple 
algebraic manipulation yields 

h 
Rt 

~ i n ( a  - 6) = 2' COSQ. 

In the low-angle radar scenario, a is rather small such 
that m a  = 1. Incorporating this approximation yields 

Finally, invoking the fact that hr/& << 1 in the U = 
sin(8) domain yields 

(4) 

where U B  = ${sin8 - sina}. In the case of a flat-Earth 
model, this is the estimate of the bisector angle to 
be employed by the symmetric 3D-BDML bearing 
estimator developed in Section 111. 

Now, R, is only known to within a certain 
tolerance based on the dimensions of range bin in 
which the target is located. Let AR, be the error in the 

range estimate. For the practical case where ARt << R, 

hr 
R,+ARt = % {  l+ARt,Rt 

Ill. 3-D BEAMSPACE ML BEARING ESTIMATION 
FOR TWO-RAY MULTIPATH 

We here present a brief development of the 
3D-BDML bearing estimator for low-angle radar 
tracking. The reader is referred to [13, 221 for a more 
detailed development. As a means for differentiating 



TABLE I 
Bisector Angle Ertimates with Spherical Earth Model 'Igrget 

Range: 5 n e  Radar Height 60 h 

'Igqet Ht Elevation Angk in depres 
Feet Direct Path Imagepath BiaectorAngle 

10 -0.1240 -0.1604 -0.1422 
20 -0.1053 -0.1768 -0.1411 
30 -0.0869 -0.1931 -0.1400 
40 -0.0684 -0.2093 -0.1389 
50 -0.0499 -0.2256 -0.1371 
60 -0.0312 -0.w9 -0.1366 
80 0.0062 -0.2752 -0.1343 
100 0.0438 -0.3090 -0.1326 
120 0.0615 -03434 -0.1310 
140 0.1192 -0.3783 -0.1296 
160 0.1569 -0.4136 -0.1283 
180 0.1946 -0.44% -0.lrn 

250 0.3268 -0.5756 -0.1244 
300 0.4211 -0.6671 -0.1230 
400 0.5979 -0.8395 -&*a8 
500 0.7859 -1.0249 -0.11% 

a00 0.2324 - 0 . a  -0.1263 

among the various BDML estimators to be developed 
within, the estimation scheme presented in [13] is 
here referred to as nonsymmetric 3D-BDML. The 
development of nonsymmetric 3D-BDML is then 
simply modified to incorporate a priori information 
with regard to the bisector angle yielding an estimation 
scheme referred to as symmetric 3D-BDML. Finally, a 
2-D beamspace domain ML estimator (2D-BDML) is 
derived from the nonsymmetric 3D-BDML estimator 
for use in cases in which the specular multipath 
component is either nil or negligible. It should be 
noted that symmetric 3D-BDML worh properly, Le., 
provides accurate estimates of the target bearing angle, 
even in rough sea surface scenarios where there is 
no measurable specular multipath component at the 
receiving array. This assertion is justified analytically 
in Section I11 and is backed up by simulation results 
presented in Section VI. 

A. Array Data Model 

The data for the 3D-BDML estimator is the 
collection of signals received at a radar antenna 
array. It is here assumed that the array is linear 
and composed of M elements uniformly spaced by 
half the wavelength of the transmitted pulse. It is 
further assumed that the array is mounted vertically 
to monitor target elevation. Due to the low elevation 
angle of target, assumed to be in the far-field, the 
direct and specular path signals arrive overlapping 
in time and angularly separated by less than the 
nominal 3 dB beamwidth at broadside. In the case 
of a uniformly spaced linear array (ULA) of M 
elements, the nominal 3 dB beamwidth at broadside 
is approximately 2 / M .  Let x(n) denote the M x 1 
snapshot vector. The ith element of x(n) is xi(n), 

~ 
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i = 1,. . . , M ,  the value of the complex analytic signal 
outputted from the ith element of the array measured 
at discrete time n. Invoking the standard narrowband 
model, x(n)  may be expressed as 

+ n(n) n = 1, ..., N 

= Ac(n) + n(n) (6) 
where q ( n )  is the sample value of the complex 
envelope of the direct path echo at the nth snapshot 
and u 1 =  sinel; 81 denotes the arrival angle of the 
direct path signal. ~ ( n )  and 02 are defined similarly 
with respect to the specular path signal. In terms of the 
notation in Fig. 1,81 = 8 and 82 = -a. The elements 
of n(n) constitute the complex noise present at each 
antenna output at the nth snaphot. 

The phase angle of ct(n) is that measured at the 
center of the array such that aM(u1) accounts for a 
linear phase variation across the array due the planar 
nature of the wavefront arriving via the direct path. 
Similar comments hold with regard to role of a ~ ( u 2 )  
in the case of the specular path signal. For the case of 
M odd such that M = 2K + 1, where K is an integer, 

e jru, e2jru ,.*., ejrKu] T if M = 2 K + 1 .  
Pa)  

On the other hand, for M even such that M = 2K, 
where K is an integer, 

if M = 2 K .  (7b) 

The subscript M on either of these entities is intended 
to designate the dimension of the vector aM(u). We 
note that when aM(u) for some specific value of U 
is employed as a weight vector applied to x(n), the 
operation is referred to as classical beamforming. 

In the 3D-BDML scheme, a 3 x 1 beamspace 
snapshot vector, denoted X B ( ~ ) ,  is formed as 

where SM is the M x 3 matrix beamformer 

(9) 
with aM(u) defined previously in (7). The M x 3 
beamforming matrix SM serves to form a center beam 
pointed to U,, and two beams pointed symmetrically 
above and below u, at u = uc + 2 / M  and u = U,- 
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Fig. 2 Plot of normalized array patterns associated with each of 
three mutually orthogonal, classical beamformers with pointing 

angles of - 5 . 4 6 O ,  Oo, and 5 . 4 6 O ,  respectively, for case of M = 21 
element array uniformly spaced by a half-wavelength. Array 

patterns have M - 3 = 18 nulls in common. 

2/M, respectively. The three respective beam patterns 
for the case of U, = 0 and M = 21 are depicted in 
Fig. 2. It is observed that each beam has a null in 
the location of the peak of the respective mainlobe 
associated with each of the other two beams. This is 
a consequence of the fact that the columns of SM are 
mutually orthogonal, i.e., S E S M  = 13. 

Substituting (6) into (8) and defining b(u) = 
ScaM(u) as the 3 x 1 beamspace manifold vector 
yields 

X E ( ~ )  = [b(ul);b(u2)] c(n) + S$n(n) = Bc(n) + na(n) 

where B = [Sgay(ul);Sga~(u2)]  = [b(ul);b(u2)] and 
na(n) = Sgn(n). Let us examine the structure of the 
3 x 1 beamspace manifold vector b(u) = S;aM(u). 
Invocation of the definitions of aM(u) and SM in 
(9) and (7), respectively, yields a component-wise 
expression for b(u): 

(10) 

sin (E (u - U, + $)) b(u) = 

sin ( I  M-(U-U,)) 

sin (5  (U - 24,)) ' 
R 

sh(M;(u-u,-$))]  T 

sin ( 5  (U - U, - i)) 

nonsymmetric and symmetric versions of 3D-BDML 
to be presented shortly. An additional property of 
b(u) critical in the development and analysis of the 
symmetric 3D-BDML estimator is 

f3b(u) = b(2uC - U) or 

where f3  is the 3 x 3 reverse permutation matrix 

f3b(u, + A) = b(u, - A) 
(12) 

I3= 0 1 0 .  (13) 
- [: : :I 

The property in (12) is easily verified by invoking the 
fact that 

sin ( M I u )  

sin (4.) 
is an even function of U. Note that f 3  in (13) satisfies 
f$ = f 3  and f3& = 13. These properties of 53 are 
exploited in the development and analysis of symmetric 
3D-BDML. 

B. Nonsymmetric 3D-BDML Bearing Estimator 

Assuming the receiver generated noise at each 
of the M antenna elements to be independent and 
identically distributed (IID), the Central Limit 
Theorem may be invoked in the practical case of M 
large to adequately model na(n) as a 3x1 multivariate 
Gaussian distributed random vector with zero mean. 
Recall that the columns of SM are orthogonal. If the 
expected power of the noise at each element is of 
nearly equal power, it is also adequate to model the 
components of nB(n) to be independent and of equal 
power. As a consequence of these observations, the 
3D-BDML estimates of u1 and 112 may be formulated 
as the solution to the following nonlinear least squares 
problem 

N 

where N is the number of snapshots. For the sake of 
generality, we consider the general case of multiple 
snapshots, although in practice the procedure may be 
limited to working with a single snapshot as in the 
simulations are presented in Section VI. Assuming 
the signals cl(n) and c2(n) to be unknown but 
deterministic, we invoke separability and substitute 
in (14) the respective least -quare error solution 
cu(n) = PTB]-lBTx~(n), n = I,.. .,N. This yields 

N 
(11) 

Minimize x i  (n)Pi (u1, uq)xg(n) (15) 
UI.U? 

n =1 ., ,. 
Note that b(u) is real-valued for all U. This property 
is a consequence of the conjugate centrosymmetry 
of aM(u) defined in (7) and is invoked in both the 

ZOLTOWSKI & LEE BEAMSPACE ML BEARING ESTIMATION INCORPORATING LOW-ANGLE GEOMETRY 

where Pi(ul,u2) = 13 - B[BTB]-'BT. P$(ul,u~) is a 
projection operator onto the 1-D space orthogonal 
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to the span of b(u1) and b(u2). Hence, P;(ul,u2) = 
wT/vTv, where v satisfies 

vTb(u;) = 0, i = 1,2. (16) 
Since b(u1) and b(u2) are both real-valued, v must be 
real-valued to within a complex-valued scalar multiple. 
Without loss of generality, we take v to be real-valued. 
At this point, we convert the search over u1 and 242 to 
a search over v by substituting Pi(ul,u2) = wT/vTv in 
(15). This yields 

vlv vlv 

where $6 is the 3 x 3 beamspace domain sample 
correlation matrix 

a N  

$6 = $ c x B ( n ) x f ( n ) *  (18) 
n =1 

The solution for v in (17) is that eigenvector of 
Re {$a 1 associated with the smallest eigenvalue. 
Given this v, the 3D-BDML estimates of u1 and u2 
are found via the relationship in (16). We expand on 

Substituting v = [v1,v2,v3IT and b(ui) = Sza(ui) 
this final point. 

vTSEaM (ui) 

into (16) and expanding yields 

= viaz  ( u c  - $) aM(ui) + v2az(uC)aM(ui) 

(19) 

Without loss of generality, consider the case of M odd 
such that M = 2K + 1. Rctoring e-jrKui out of (19) 
yields 

i = 1,2 

(20) 

where 

Denoting SMV = [WO, ~ 1 , .  . ., w?-~I*, it follows from 
these observations that zi = eJ*"i, i = 1,2 are two of 
the M - 1 roots of the polynomial 

W ( Z )  + WO + WIZ + W222 + * * * + WM-lZM-1 = 0. 
(22) 

lb simplify further, note that the respective three 
beams associated with each of the columns of S M  

defined in (9) have M - 3 nulls in common. This 
phenomenon is depicted in Fig. 2 for the case of 
M = 21 wherein we observe M - 3  = 18 nulls in 
common among the three beams. This commonality 
of nulls translates into a condition that each of the 
three polynomials formed with a particular column 
of S M  as the corresponding coefficients has M - 3 
roots in common with the other two polynomials. It 
is easily shown [l3,22] that the M - 3 common roots 
are located on the unit circle at z,,, = ejf(uc+2n/M), 
rn = 2,. . ., M - 2. Observing (20) and (21), we note 
that W ( Z )  in (22) is simply a linear combination of the 
three polynomials constructed from the columns of 
SM. Thus, the two roots of W ( Z )  in (22) of interest 
are those of a quadratic equation obtained via the 
polynomial division 

(23) 
This polynomial division may be accomplished via 
simple algebraic manipulation to yield expressions for 
the coefficients of q(z) in terms of the components 
of v and M, the number of elements. The resulting 
expressions are 

J 

(24) 
q1 = 2(v1+ v3)cos (G) - 2v2cos (g) . 

A summary of nonsymmetric 3D-BDML is then as 
follows. Compute v = [VI, v2, v31T as that eigenvector 
of Re{&} associated with the smallest eigenvalue. 
Form the coefficients of the quadratic equation q(z) 
according to the expressions in (24). Compute z1 
and 22 as the two roots of q(z). The 3D-BDML 
estimates of u1 and u2 are a1 = ( l / j~) ln{z l )  and 

It is noted that nonsymmetric 3D-BDML is 
very similar to the beamspace version of MUSIC 
[17] for the case of two signals and operation in a 
beamspace of dimension three. The primary difference 
between the two is the fact that nonsymmetric 
3D-BDML computes the socalled noise eigenvector 
[17] as the "smallest" eigenvector of the real part 
of $6 while MUSIC computes such as the smallest 
eigenvector of $6 itself. Here smallest eigenvector 
refers to that eigenvector associated with the smallest 
eigenvalue. This has implications with regard 
to performance in the case of a single snapshot 
and/or fully correlated signals. It is well known that 
MUSIC, stripped of spatial smoothing [15] and/or 
forward-backward averaging [lq, breaks down under 
these conditions. On the other hand, as shown in 
Section IV nonsymmetric 3D-BDML is able to handle 
fully correlated signals as long as the relative phase 
difference between the two, A*, is neither 00 or 1800. 

02 = (1/j79l4z2}. 
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It should be noted that MUSIC is not an ML-based 
estimation scheme. 

(23) with v3 = VI. Consequently, the coefficients of 
q(z) are given by (24) with v3 = VI: 

C. Symmetric 3D-BDML Bearing Estimator 

The development of nonsymmetric 3D-BDML is 
easily modified to incorporate an a priori estimate of 
the bisector angle U B  = (u1+ u2)/2. With uc = UB = 
(u1+ u2)/2 in (ll), invocation of the property of b(u) 
in (12) yields the following relationship between b(u1) 
and b(u2) 

b(u2) = b ( u i )  (W) 

where 13 is the 3 x 3 reverse permutation matrix 
defined previously in (13). The translation of (16) for 
the case of uc = UB = (u1+ u2)/2 yields the following 
pair of relationships between v and u1: 

vTb(rcl) = 0 and vT13b(u1) = 0. (26) 

These relationships imply that v must satisfy f3v = v, 
Le., v must exhibit centro-symmetry. Hence, the 
condition uc = U B  dictates the incorporation of the 
constraint 13v = v into the optimization problem 
described by (17). 

subject to: I ~ v  = v. 

Since v is constrained to be centro-symmetric, we may 
express the objective function in (27) in an alternative 
fashion as: 

[Re{fBb } + 13 Re{ f B b  }13]V Minimize 
V j v q I  + f3f3]v 

subject to: 13v = v 

where 
= 4 { Rbb + 13&13} (29) 

may be interpreted as a forward-backward averaged 
beamspace sample correlation matrix [16]. It can be 
shown [22] that two of the eigenvectors of Re{fiLL} 
exhibit centro-symmetry while the third exhibits 
centro-antisymmetry. Thus, the minimizing v in (28) 
is that centro-symmetric eigenvector of RZ{RL;} 
associated with the smaller eigenvalue. 

we may proceed to fmd the symmetric 3D-BDML 
estimate of u1 using the same approach as in 
nonsymmetric 3D-BDML. The variable z1 = dTU1 
and z2 = ejTUz are found as the two roots of q(z) 
determined via a polynomial division of the form in 

Given v = [VI, v2,v1IT obtained from this procedure, 

It is easily shown that if 1q1/qo1< 2, the roots of q(z) 
lie on the unit circle and may be expressed in terms of 
41 and 40 as 

-41 f 4 4 ?  - 414Ol2 

3 0  
z1,2 = 

where qo, = v2 - 2vlcos(?r/M). If 1q1/qo1 > 2, the two 
roots of q(z)  have the same phase angle, ?rue with 
the magnitude of one equal to the reciprocal of the 
other; this is an indication that the direct and specular 
path signals have not been resolved. If 1q1/qo1 < 2, the 
quantity in brackets in the far right-hand side (RHS) 
of (31) lies on the unit circle such that the two mots 
lie on the unit circle and are equidistant from the 
point z = e j T u c .  Equating the phase angle of the far 
RHS of (31) with that of z1 = ej*'l yields, after some 
algebraic manipulation, an expression for a1 in terms 
of M and the components of v = [v1,v2,v1IT, the 
centro-symmetric eigenvector of Re{ g:} defined by 
(29) associated with the smaller eigenvalue: 

D. 2D-BDML Bearing Estimator 

be simply modified to yield a 2D-BDML estimator of 
the target bearing for cases in which the contribution 
to the beamspace outputs due to specular multipath is 
either nonexistent or negligible. This may be the case 
when either the target is at an elevation of a couple 
of beamwidths above broadside, corresponding to 
the initial stages of tracking in certain applications, 
or when the sea surface is very rough. Although the 
symmetric 3D-BDML estimator still performs properly 
under these conditions, as is shown in Section IV, 
higher quality estimates may be obtained by employing 
the 2D-BDML estimator. This is demonstrated and 
explained in Section VI. On the other hand, the 
2D-BDML estimator performs rather poorly when 
a specular multipath component is present in the 
mainlobe of either of the two beams. 

The development of nonsymmetric 3D-BDML may 
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In heuristic terms, the 2D-BDML estimator is 
effectively derived from the nonsymmetric 3D-BDML 
estimator by shutting off the beam pointed to U = U, - 
2/M. U, is then chosen to be an angle in the general 
vicinity of the pointing angle of the transmission 
beam. The transformation from element space to 
beamspace is accomplished by applying the M x 2 
matrix beamformer 

(33) 

to each snapshot; the superscript r stands for reduced 
dimension. This produces the 2 x 1 beamspace 
snapshot vectors xi(n) = ~;nHx(n), n = I,. . .,N, from 
which the 2 x 2 beamspace correlation matrix is 
formed as fiLb = ( l / N ) C ~ = l x ~ ( n ) x i ~ ( n ) .  Again, we 
are primarily concerned with N = 1. 

the nonsymmetric 3D-BDML, bearing estimation 
scheme yields a similar two-step procedure. In the first 
step, v' = [<,vi] is computed as the eigenvector of 
Re{%} associated with the smallest eigenvalue. In 
the second step, a1 is determined as that value of U, in 
the vicinity of the angular region encompassed by the 
mainlobes of the two beams, satisfying vrTb'(u1) = 0, 
where b'(u1) = SfaM(u1). Similar to the case with 
nonsymmetric 3D-BDML, the second step may be 
formulated in terms of the root of a simple linear 
equation. This is accomplished by observing that 
the (M - 1)th order polynomial formed using the 
first column of S& as the coefficient vector has 
M - 2 roots in common with that using the second 
column. In addition to the M - 3 common mots z,,, = 
ejr(uc+(2m/M)), m = 2,. . . , M - 2 cited previously, these 
two polynomials each have a root at z = ejr(Ue-(2/M)) 
as well. Let d(z)  = do + dlz be the linear polynomial 
for which 21 = ej*'I is the root. It is easy to verify that 
d(z) may be obtained via the polynomial division 

A development similar to that which lead to 

where qo and q1 are given by (24) with VI = 0, V i  = v2, 
and v; = v3, Le., 

Cross-multiplying by z - ejr(uc-(2/M)) in (34) and 
equating the coefficients of zo and z2 on both sides 
yields the relationships 

Now, the root of do + dlz is simply 21 = -do/dl. 
Invoking the relationships in (36), this root may be 
expressed as 

(37) 

~ 
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It is obvious from this equation that 21 lies on the unit 
circle. As the phase angle of 21 is xal, (37) dictates 

(38) 
2 1  

M x  01 = -U, + - + -2arg{qo} 

arg{ q o }  is simply determined by manipulating the 
expression for qo in (35) 

such that 

(39) 
Substitution of (39) in (38) yields 

where v' = [v~,v$] is the eigenvector of Re{&&,) 
associated with the smallest eigenvalue. Note that 
the angle U = U, + 1/M is the midpoint between the 
pointing angles of the two beams, U, and uC + 2/M. 

IV. EFFECTS OF FORWARD-BACKWARD 
AVERAGING I N  SYMMETRIC 3D-BDML 

Recall that A* denotes the phase difference 
between the direct and specular path signals at the 
center of the array. We here demonstrate analytically 
that nonsymmetric 3D-BDML breaks down when 
A* is either 00 or 1800 while symmetric 3D-BDML 
exhibits no such breakdown phenomenon. Let p denote 
the magnitude of the reflection coefficient; for a 
smooth surface of reflection p = 0.9 [19]. The expected 
value of the 3 x 3 sample beamspace correlation 
matrix, &b, defined in (18) has the form 

where & is the mean square value of the noise 
present at each of the three beamspace ports and 

c(n) = [c1(n),c2(n)lT as prescribed previously in (6) 
and i7: = ( l /N)Cr=l  Icl(n)12. Recall that cl(n) and 



~ ( n )  are here viewed as deterministic but unknown 
sequences. Also, the form of EL, in (42) assumes that p 
and AQ are constant over the interval in which the 
N snapshots are collected; the basic assumption is 
that N is small, typically one as implied by the term 
"monopulse". 

eigenvector of Re{$b} associated with the smallest 
eigenvalue. Recall that B is real such that 

In nonsymmetric 3D-BDML, v is computed as the 

Re{%b} = BRe{R,,}BT + u&I3 (43) 

where 

We state without proof some important properties 
with regard to the eigenstructure of Re{&}. The 
proof of each of these properties is straightforward 
and may be found in [22]. First, the smallest eigenvalue 
of Re{%b}, denoted A ? ~ ,  is equal to g i b .  Second, if 
Re{%,} is of rank two, the eigenvector of Re{&,} 
associated with = is orthogonal to both b(u1) 
and b(u2). Thus, if Re{R,,} is of rank two, execution 
of nonsymmetric 3D-BDML with either the expected 
value or the noiseless version of a b  provides the true 
values of u1 and 242. Observing (44), Re{%,} is of full 
rank equal to 2 so long as AQ does not equal to either 
00 or 1800. In these two cases, Re{%,} is of rank 
1 such that the smallest eigenvalue ~2~ = u:b is of 
multiplicity 2 and the corresponding 2-D eigenspace is 
orthogonal to the 1-D space spanned by b(u1) f pb(u2), 
where "+" is for the case AQ = 00 and "-" is for the 
case A 9  = 1800. Under either of these two conditions, 
neither of the two vectors chosen to span the 2-D 
eigenspace associated with = is orthogonal 
to b(u1) and b(u2) individually. Thus, the method 
breaks down when either AQ = 0' or AQ = 180'. 
This phenomenon is demonstrated in the simulations 
presented in Section VI. 

We next consider the execution of symmetric 
3D-BDML when supplied with either the expected 
value or the noiseless version of %b. In the first 
analysis, we consider uc to be exactly equal to the 
bisector angle UB. Symmetric 3D-BDML dictates that 
v be computed as that centro-symmetric eigenvector 
of Re{R{L} associated with the smaller eigenvalue, 
where k{; is defmed in (29). Recall that with U, = 
uB, the two columns of B are related according to 
b(u2) = ffb(U1) such that f3Bf2 = B. Exploitation of 
this property yields 

Re{g:} = ;Re { &a + 13&b13} 

= ; { BRe{R,}BT + i3B1212Re{R,}i212BT13} 

+ U& = ~f Re { R, + i2%,i2} B~ + u;,I~ 

(45) 

where we have invoked the property 1212 = 12. Thus, 
Re{%/b} can be expressed in the form BRe{d:}BT + 
&I3, where 

1+p2 pcosA* 
=Tf[ 1 + p 2  ] (46) 

pcosAQ - 

where we have substituted (42) for IL. In contrast to 
the situation with Re{ R,,} in (44), which is of rank 
one for all values of p when A* is either 00 or 1800, 
df," is of rank two except when either A* = 00 and, 
at the same time, p = 1, or  when A* = 1800 and, at 
the same time, p = 1. That is, denoting pc = pejA8, the 
only values of pc for which d: in (46) is of rank one 
are pc = 1 or pc = -1. Thus, as long as pc is neither 
1 or -1, execution of symmetric 3D-BDML in the 
asymptotic or noiseless cases provides the true value 
of u1. 

As a practical matter, the magnitude of pc, p, is 
always less than one due to losses incurred at the 
surface of reflection [19]. Notwithstanding, symmetric 
3D-BDML does not break down when AQ = 0' and 
p = 1, i.e., when pc = 1, despite the rank deficiency 
problem. In this case, BRe{d:}BT is of rank one 
such that the smallest eigenvalue of Re{R$}, A t h  = 
u:~, is of multiplicity 2 and the corresponding 2-D 
eigenspace is orthogonal to the 1-D space spanned by 
b(u1) + b ( ~ 2 )  = b(u1) + f3b(ul). Since b(u1) + 13b(~1) 
is centro-symmetric, one of the eigenvectors associated 
with A t h  = aib is centro-symmetric while the other is 
centro-antisymmetric. In accordance with symmetric 
3D-BDML, v is chosen as the centro-symmetric 
eigenvector associated with A$, = Invoking the 
centro-symmetry of v yields 

VT{b(ul) + b(U2)) = VT{b(ul) + fSb(u1)) 

= 2vTb(u1) = 0 (47) 

which indicates that v is orthogonal to b(u1). This 
implies that in the asymptotic or no noise cases, 
symmetric 3D-BDML provides the true value of u1 
even in the extreme case of AQ = 00 and p = 1. 

Note that the argument above signified by (47) 
does not work for the case of A+ = 180' and 
p = 1, i.e., pc = -1. Symmetric 3D-BDML breaks 
down under these extreme conditions. In general, 
poor performance is obtained in the case of AQ = 
1800 when p zz 1. The use of frequency diversity to 
overcome this problem is explored in the next section. 

A. Operation With No Specular Multipath 

The previous analysis provides a simple means 
for examining how symmetric 3D-BDML performs 
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when no specular multipath component is present. The 
absence of a specular multipath component is signified 
by setting p equal to zero. With p = 0 in (45) and (46), 
R e { c }  may be expressed as BRe{d:}BT + &.I3, 
where d: = iq:I2 and 

where we have invoked the property of b(u) described 
by (12). It is deduced that despite the absence of 
specular multipath, the process of forward-backward 
averaging according to (29) effectively creates an 
artificial source at U = 224, - u1 of equal power. Thus, 
even without a specular multipath component present, 
symmetric 3D-BDML must nevertheless resolve two 
sources angularly separated by lul - (2u, - ul)l= 
2124, - ull. Hence, the closer U, is to u1, the "harder" 
symmetric 3D-BDhU must work to resohe the actual 
source and the artificial source. This phenomenon 
is illustrated in simulations presented in Section VI. 
Nevertheless, since g. = 43:12 is of rank 2, it follows 
that in the asymptotic or no noise cases symmetric 
3D-BDML provides the true value of ut. 

B. Effect of Error in Bisector Angle Estimate 

The formula for the bisector angle given by (4) was 
based on a flat-Earth model and the approximation 
that cos(a) = cos(&) e 1. In the case of a spherical 
Earth model, the bisector angle is approximated as the 
angle from the array center to a point directly under 
the target on the plane tangent to the surface of the 
Earth at the point of reflection, computed for a target 
height equal to the radar height. Although the bisector 
angle estimates provided by these procedures are quite 
accurate, an assessment of the sensitivity of symmetric 
3D-BDML to an error in the bisector angle estimate is 
in order. Although symmetric 3D-BDML is a nonlinear 
estimator, a simple analysis leads to the intuitively 
satisfying conjecture that an error in the bisector 
angle estimate translates into a bias in the symmetric 
3D-BDML estimator of the same magnitude. The 
argument is as follows. 

assumed that the deviation 6 is a very small fraction of 
a beamwidth, i.e, 6 << 2/M. Now, since U B  is the true 
bisector angle, u1 = U B  + A and u2 = U B  - A. Invoking 
the property of b(u) in (12) yields 

Consider U, # U B  such that U, = U B  + 6. It is 

(49) = b(uB - A + 26) = b ( ~ 2  + 26). 

Similarly, &b(u2) = b ( q +  26). Hence, in the case 
of U, # U S ,  the expected value of Re{R{i} may be 
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expressed as 

T 
x [b(u2 + 2s)ib(ul+ 241 + (SO) 

The forward-backward averaging process has 
effectively created two artificial sources, one at U = 
u1+26 and another at U = u2 +26. As p w  1, the four 
sources, the two actual sources and the two artificial 
ones, are of nearly equal strength. In the practical case 
where 6 is a very small fraction of a beamwidth, it is 
conjectured that symmetric 3D-BDML cannot resolve 
the actual source at U = u1 and the artificial source at 
U = u1+ 26 and, in light of their equal power, yields 
(on average) an estimate equal to the center value of 
U = u1+ 6. This, in turn, leads to the conjecture that 
an error in the bisector angle estimate translates into a 
bias in the symmetric 3D-BDML estimator of the same 
magnitude. This conjecture is validated by simulations 
presented in Section VI. 

V. FREQUENCY DIVERSITY 

Advances in radar technology have progressed 
to the point where the use of frequency diversity 
in tracking systems has become increasingly more 
commonplace. Depending on the system hardware, 
the pulses at the various frequencies may be 
transmitted simultaneously and/or in rapid succession 
corresponding to frequency hopping. An example 
of a real radar system where frequency diversity 
is employed is the multiparameter adaptive radar 
system (MARS) described by V. Kezys and S. Haykin 
[MI. This experimental bistatic radar array consists 
of a 32element, horizontally polarized linear array 
operating coherently over the band 8.05 to 1236 GHz. 
Each antenna element is followed by two receiver 
channels allowing for simultaneous reception on two 
separate frequencies: one fixed at 10.2 GHz and the 
other agile over the band 805 to 1236 GHz in 30 MHz 
steps. We cite the MARS radar system as an example 
of what is feasible in the way of multifrequency 
transmission with current technology. 

frequency diversity for tracking purposes. Eor 
our purposes here, frequency diversity translates 
into phase diversity, i.e., diversity in the phase 
difference occurring at the center of the array. 
Accordingly, multifrequency operation diminishes the 
pejorative effect of a 1800 phase difference at any one 
transmission frequency. With judicious processing, 
the use of multiple frequencies also allows us to 
achieve a large effective signal-to-noise ratio (SNR). 
This is accomplished by coherently combining the 

There are a number of advantages to employing 



additive component of the 3 x 3 beamspace correlation 
matrix at each frequency due solely to the direct and 
specular path signals; the additive components of 
the beamspace correlation matrix at each frequency 
due to receiver noise and cross-products between 
signal and noise are incoherently combined. The 
coherent combination of the signal-only (no noise) 
component of the beamspace correlation matrix 
at each frequency is accomplished through the use 
of focusing transformations in accordance with the 
coherent signal subspace (CSS) processing method of 
Wang and Kaveh [2&21]. A multifrequency version of 
3D-BDML incorporating CSS is developed below. 

the introduction of some notation. The transmission 
frequencies are denoted f j ,  j = 1 ,..., J ,  where J is 
the total number of such frequencies. fo denotes the 
frequency for which the M elements of the array are 
spaced by a half-wavelength; fo may or may not be 
one of the transmission frequencies. At frequency fi, 
we allow the option of operating with an array of Mj 
contiguous elements extracted from the overall array 
of M elements. The formulation is general; Mj may be 
equal to M or it may be less than M. There are two 
advantages to operating with an effective subaperture 
equal to that associated with a subarray of Mj elements 
at frequency f j .  First, it leads to a criterion for the 
selection of transmission frequencies which makes 
the job of coherently combining the signal-only 
component of & b ( f j ) ,  the 3 x 3 beamspace correlation 
matrix formed at fi, a very simple procedure. This 
criterion is discussed shortly. Second, with Mj < M ,  
there are M - Mj + 1 identical subarrays of Mj < M 
contiguous elements allowing for spatial smoothing 
[15] at frequency f j .  The process of spatial smoothing 
in addition to CSS processing further diminishes the 
sensitivity of 3D-BDML to the phase difference at any 
one frequency. 

The element space manifold vector/classical 
beamforming vector associated with frequency f i  and 
a subarray of Mj contiguous elements is denoted 
aMj(u;fj). aM(u) in (2), now denoted aM(u;fO), 
is easily generalized for arbitrary frequencies of 
operation and subarrays of length Mi: 

A discussion of multifrequency operation requires 

if Mj is odd 

1 

if Mj is even. (51) 

~ 
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Given the definition of aMj(u;fi) in (51), it is easily 
verified that the columns of S ~ ~ c f j )  are mutually 
orthonormaL It is also easily verified that each of the 
three polynomials formed with a particular column of 
S ~ ~ ( f j )  as the corresponding coefficients has Mj - 3 
roots in common with the other two polynomials. 

The first step in multifrequency 3D-BDML 
incorporating CSS is to form a spatially smoothed 
[15], beamspace correlation matrix, denoted &b a), 
at each frequency in the following manner. The overall 
array is decomposed into M - Mj + 1 overlapping 
subarrays of Mj < M contiguous elements. S ~ ~ ( f j )  
is applied to each subarray, and RbbCfj) is formed 
as the arithmetic mean of the outer products of 
the M - Mj + 1 3 x 1 beamspace snapshot vectors 
thus created. The second step is to apply a focusing 
transformation on both the left and right of each 
& ( f j ) ,  j = 1 ,..., J ,  so that the signal-only component 
of each may be coherently combined at some common 
frequency. Let the common frequency be fk, where 
fk E {fl,fi, ...,,fi}. The focusing transformation to 
be applied to % b ( f j )  is denoted T!, j = 1 ,..., J .  As 
fk E {fi,f2 ,..., f~}, the notation implies Ti = 13. We 
quantify the role of the focusing transformations more 
precisely as well as discuss methods for constructing 
such shortly. Given the appropriate set of focusing 
transformations, the CSS averaged correlation matrix, 
denoted { E b b } ,  is computed via the simple sum 

Let S~~cfj) denote the Mj x 3 beamformer to be 
applied to each of M - Mj + 1 identical subarrays of 
Mj < M contiguous elements at frequency f j .  

j = 1, ..., J .  (52) 

(53) 

A summary of the multifrequency version of 
nonsymmetric 3D-BDML is then as follows. Compute 
v = [VI, v2, v31T as that eigenvector of Re{&,}, 
computed in the metric T = l / J C I = l  TfTT, 
associated with the smallest eigenvalue. Form the 
coefficients of the quadratic equation q(z)  according 
to 

where the scaling factor fo/fk accounts for operation 
at a frequency other than that for which the elements 



are spaced by a half-wavelength. Next, compute 21 
and 22 as the two roots of &). The estimates of 
u1 and 242 are then a1 = cfo/f~)(l/jr)ln{z~} and 

The multifrequency version of symmetric 
02 = (fO/f&)(l/j?7)WZ2}. 

3D-BDML is S h i h ‘  except that Ebb  is replaced by 
= ; {Ebb  + f 3 E b b f 3 ) .  v = [ V I ,  v2, is computed 

as that centm-symmetric eigenvector of Re{EiL}, in 
the metric T = 1/J E;=l *eT, associated with the 
smaller eigenvalue. With v3  = v1 in (%I), the remaining 
steps are the same. Of course, use of symmetric 
3D-BDML implies that U, in (52) is equal to an 
estimate of bisector angle. 

With the phase diversity achieved with frequency 
diversity, one might question the need for symmetric 
3D-BDML in the case of multifrequency operation. 
Of course, the differential in performance between 
the symmetric and nonsymmetric cases will depend 
on the specific values and total number of frequencies 
employed. For most practical applications in which the 
number of transmission frequencies is rather small (2, 
3, or 4) and the inter-frequency spacings not so great, 
symmetric 3D-BDML can be expected to significantly 
outperform nonsymmetric 3D-BDML. Simulations are 
presented in the next Section backing this claim. 

more precisely, let 
b(u;fi) denote the 3 x 1 beamspace manifold 
vector associated with frequency f i ,  i.e., b(u;fi) = 
Szj(fi)aMj(u; f j ) ,  j = 1,. . . , J .  Given the definitions of 
aMj(u; f j )  and S ~ ~ c f j )  in (51) and (52), respectively, 
it is easy to verify the following component-wise 
expression for b(u; fi) 

’~b quantify the role of 

sin (Mj;i (U - U, + f o  --)) 2 
- 1 fiMi , -- [ sin(;g(u-uc+--)) f o  2 

f i  Mj 

sin M . E f i ( u -  U,)) 
’ 2 f O  

sin(;+)) ’ 

fj Mj 

(55) 

Further, define BCfi) = [b(ul;fi)ib(u2;fi)], j = 1, ..., J. 
In accordance with the CSS methodology of Wang and 
Kaveh, the focusing matrices must satisfy 

Again, 3 = 13. In general, construction of the 
appropriate set of focusing matrices satisfying (56) 
requires knowledge of u1 and 242, Le., the angles 
we are trying to estimate. Accordingly, Wang and 
Kaveh [20-211 propose an iterative procedure which 
commences with an initial set of focusing matrices 
based on some coarse estimates of the angles. One 
possibility for initialization is to take the pointing angle 
of the center beam U, as an estimate of both angles. 
In a tracking situation, it makes sense to use the 
most recent bearing estimates as the initial estimates. 
Proceeding with the initial set of focusing matrices 
yields updated estimates of the angles corresponding 
to the first iteration. The new pair of angles are used 
to construct an updated set of focusing matrices which, 
in turn, yield the estimates of the angles at the second 
iteration. This procedure is iterated until the absolute 
value of the difference between respecti% angle 
estimates obtained at the (k + 1)th and kth iterations 
is less than some threshold. A number of methods for 
constructing the focusing matrices have been proposed 

The need for focusing matrices in multifrequency 
3D-BDML may be eliminated if the transmission 
frequencies, f j ,  j = 1,. . . , J ,  and corresponding subarray 
lengths, Mi, j = 1 ,..., J, are selected such that the 
product f iMj is the same for each frequency, Le., 
f i  Mj = constant., j = 1,. . . , J. This assertion is justified 
by approximating each of the array patterns comprising 
the components of b(u;fj) in (55) as a sinc function 
in the vicinity of the respective mainlobe and first few 
sidelobes: 

[20-21]. 

b(u;fi)  = sZj Uj)aMj (u;f i )  

(57) 

It is thus apparent that if fjMj = a, j = 1 ,..., J, the 
beamspace manifold vector b(u; f j )  is approximately 
identical, to a high degree of precision, for each 
transmission frequency!! With regard to (%), under 
these conditions BVk) x B(fj), j = 1,. . . , J ,  eliminating 
the need for focusing matrices. In effect, with 
frequencies satisfying this criterion, the appropriate 

Bcfk) = IjBCfj), j = 1,. . . , J .  (%) foc&ing matrices-are identity matrices, Le, Tf = 13, 
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Fig. 3. Performance comparison: Nonsymmetric 3D-BDML Venus 
symmetric 3D-BDML using true bisector angle. M = 21 elements 

and N = 1 snapshot. Direct path 61 = lo and SNR = U) dB. 
Specular path: 62 = -lSO and p = 0.9. Single frequenq operation. 

SMEANsBSTDs computed from 150 independent trials. 
(a) Direcl path sample means. (b) Direct path sample STDs. 

j = 1 ,..., J. Also, observing (54), it is apparent that 
with fjMj = a, j = 1,. . . ,J, any of the transmission 
frequencies may serve as the reference frequency 
fk. Hence, C S S  averaging is simply accomplished by 
summing the spatially smoothed beamspace correlation 
matrices formed at each frequency. This represents a 
dramatic simplification. 

Some practical issues with regard to the selection 
of transmission frequencies are discussed in Section 
VI. The sensitivity of this multifrequency method 
to deviations in the product f iMj  from frequency to 
frequency is examined as well. 

VI. COMPUTER SIMULATIONS 

Computer simulations were conducted to assess 
the performance of the various BDML bearing 
estimation schemes developed within in a simulated 
low-angle radar tracking environment. The following 
parameters were common to all test cases. First, 
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Fig. 4. Sensitivity of symmetric 3D-BDML to errors in the 
bisector angle estimate. Simulation parameters are same as those 

described in caption to Fig. 3. (a) Direct path sample means. 
(b) Direct path sample STDs. 

the array employed was linear consisting of M = 21 
elements uniformly-spaced by a half-wavelength at 
fo. The nominal 3 dB beamwidth for this array is 
6 rads = 5 . 4 6 O .  The direct and specular path signals 
were angularly located at 81 = lo and 62 = -lSO, 
respectively, corresponding to an angular separation of 
0.46 beamwidths and a bisector angle of 8 B  = -0.25O. 
In the U = sin@) domain, the relevant bisector quantity 
is U B  = !j{sin& + sin&} = -0.00436. The noise was 
additive, spatially white, and uncorrelated with the 
direct and specular path signals. The SNR of the 
direct path signal was 20 dB (per element). The ratio 
of the amplitude of the specular path signal to that 
of the direct path signal, p, was 0.9. In the case of 
single frequency operation at fo, corresponding to 
the simulations presented in Figs. 3 through 5, each 
independent trial involved a single snapshot of data, 
N = 1. For each simulation example, the respective 
performance of the particular 3D-BDML algorithm 
employed was examined at nine equi-spaced values 
of A@, the phase difference between the direct and 
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Fig. 5. Performance comparison: Symmetric 3D-BDML versus 

2D-BDML as function of pointing angle of center beam in case of 
no specular multipath. Simulation parameters are same as those 

desaibd in caption to Fig. 3 except p = 0. (a) Dim path sample 
means (b) D i m  path sample S'IDs 

- symmetric - nonsymmetric 

specular path signals at the center element at fo, 
over the interval from 00 to 1800. Multifrequency 
operation with three frequencies satisfying fiMj = 
constant, j = 1,&3, is examined in Fie. 6 and 7. In 
this case, each independent trial involved the execution 
of the simplified multifrequency version of either 
symmetric 3D-BDML or nonsymmetric 3D-BDML 
given a single snapshot of data, N = 1, at each of the 
three frequencies. Finally, in all cases, sample means 
(SMEANs) and sample standard deviations (SsI l )s)  
were computed from the results of 150 independent 
trials. 

The first simulation results presented in Fig. 3 
compare the performance of nonsymmetric 3D-BDML 
with that of symmetric 3D-BDML employing the 
actual bisector angle. The breakdown of nonsymmetric 
3D-BDML in the respective cases of Ah4 = 00 and 
Ah4 = 1800 is apparent. Interestingly enough, the 
performance achieved with Ai4 = 00 is worse than 
that achieved with Ah4 = 1800. No such breakdown 
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Fig. 6. Performance Comparison: Nonsymmetric 3D-BDML versus 
symmetric 3D-BDML using the true bisector angle in the case of 

multifrequency operation. Simulation paramems a~ same as those 
described in caption to FQ. 3. 2ansmiisSion ftequenckx fi = fo, 
f2 = Qfh and f3 = S f o ,  where fo denote8 frrqucmy for whi& 

elements are spaced by A/2. A@ denotes difference at 
aperture center at fo. (a) Direct path sampk means. 

@) Direct path sampk STak 

phenomenon is observed with the symmetric 
3D-BDML estimator. However, the sample STD of 
the symmetric 3D-BDML estimator steadily increases 
from a value of 0.07' at Ah4 = 00 to a value of 0.94O at 
Ah4 = 1800. The sample STD obtained with symmetric 
3D-BDML is observed to be substantially smaller than 
that obtained with nonsymmetric 3D-BDML for Ah4 
equal to 0 0 , 2 2 5 O ,  45O, 67.S0, and 1800. 

The simulation results presented in Fig. 3 indicate 
that symmetric 3D-BDML significantly outperforms 
nonsymmetric 3D-BDML for most values of A*. This 
may be attributed to the use of a priori information 
by symmetric 3D-BDML with regard to the bisector 
angle. An indication of the sensitivity of symmetric 
3D-BDML to error in the estimated bisector angle 
may be gleaned from observhg the simulation results 
plotted in Fig. 4. For a given test case, the error cited 
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Fig. 7. Sensitivity of Symmetric 3D-BDML in case of 
multifrequency operation to deviations (in GHz) from the 

presaiption fi = (M/M;)fo,  i = 53, where fo = 10 GHz, M2 = 19 
and MJ = 17, for the two auxiliary frequencies employed in the 

simulations presented in Fig. 6. Simulation parameters are same as 
those desaibed in caption to Fig. 6. (a) Direct path sample means. 

@) D i m t  path sample STDs. 

in the legend is defined as OB - a,, where 8, is the 
pointing angle of the center beam and 8B is the actual 
bisector angle equal to -0.25' in this example. The 
performance statistics plotted for the noerror case 
are exactly the same as those associated with the 
symmetric 3D-BDML estimator plotted in Fig. 3. (Note 
the change in scale, however, between the vertical axes 
in Figs. 3(a) and 4(a), respectively.) For the error levels 
tested, which in view of the result in (5) correspond 
to fairly gross errors, very little difference is observed 
among the respective sample STD curves. On the other 
hand, an examination of the respective sample mean 
curves substantiates the conjecture made in Section I11 
that the error in the bisector angle estimate translates 
into a bias in the symmetric 3D-BDML estimator of 
the same magnitude. 

As an illustrative example, consider the case 8, = 
-0.15', which corresponds to an error of 8s - 8, = 

~ 
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0.1'. In accordance with the discussion in Section 111, 
the process of forward-backward averaging creates an 
artificial source at 28, - 81 = 2(-0.15') - 1' = -1.3' 
and another at 28, - 82 = 2(-0.15') - (-1.5') = 1.2'. 
Symmetric 3D-BDML cannot resolve the actual 
source at 1' and the artificial source at 1.2', as they 
are angularly separated by 0.036 beamwidths, and 
in light of the nearly equal strength among the two 
sources, "sees" a single source at ;{lo + 1.2') = 1.1'. 
Correspondingly, we observe that with an error in 
the bisector angle of 0.lo, the sample mean obtained 
with symmetric 3D-BDML estimator of the direct path 
angle is 1.1' for most of the nine phase values tested. 

The sample mean curves in Fig. 4(a) also suggest 
that an error in the bisector angle estimate pejoratively 
effects performance rather substantially in the case of 
Ai& = 1800. However, it should again be noted that 
the error levels tested represented gross deviations. In 
addition, the use of frequency diversity should remedy 
this problem. 

The next set of simulation results examine the 
effect of removing the specular multipath component 
from the data, corresponding to p = 0. As discussed in 
Section 111, the process of forward-backward averaging 
in the execution of symmetric 3D-BDML nevertheless 
creates an artificial source at 28, - 81, where 8, is the 
pointing angle of the center beam. Thus, despite the 
absence of specular multipath, symmetric 3D-BDML 
must nevertheless resolve two sources separated by 
2(8, - el). Hence, the closer 8, is to el, the "harder" 
symmetric 3D-BDML must work to resolve the actual 
source and the artificial source. This translates into an 
increase in the sample STD of the bearing estimates 
as the separation between 81 and 8, decreases, as 
illustrated in Fig. 5(b). For purposes of comparison, 
the sample means and sample STDs achieved with 
2D-BDML for the same set of parameters are plotted 
in Figs. 5(a) and 5@), respectively, as well. The 
absence of a specular multipath component renders 
2D-BDML a viable bearing estimation procedure. 
With 2D-BDML, resolution is not an issue and, as a 
consequence, the sample STD does not vary much 
with respect to the location of the pointing angles 
of the two beams employed. Also, as expected, the 
sample STDs achieved with 2D-BDML are significantly 
lower than the respective sample STDs achieved with 
symmetric 3D-BDML for each of the different beam 
locations tested. 

The simulation results presented in Fig. 6 compare 
the performance of nonsymmetric 3D-BDML with that 
of symmetric 3D-BDML employing the true bisector 
angle in the case of multifrequency operation. J = 3 
frequencies satisfying fiMj = constant were employed 
with fi = f i  and MI = M. This corresponds to no 
spatial smoothing and, hence, use of the full aperture 
at f,. In turn, this automatically dictates that the 
other two frequencies satisfy f iMj = flMl = 21f& or 
fi = (21/Mj)fo, j = 5 3 ,  where Mj is an integer strictly 



less than 21. The specific selections were M2 = 19 and 
M3 = 17 yielding the frequencies f2 = $ fo = l.lO5fo 
and f3 = 6fo  = 1.235fo. Let A*i, i = 1 , 2 , 3 , denote 
the phase difference occurring at the center element, 
modulo 3600, at the respective frequency fi, i = 1,2,3. 
Further, let A*qT denote the total phase difference 
between the direct and specular path signals at the 
center element at fi = fo counting integer number 
of wavelengths delays, i.e., without the modulo by 
3600 operation. The values of A!&, i = 1,2,3, were 
determined from AqqT according to 

i =  1,2,3 (58) 

in accordance with the low-angle radar model 
described by Skolnik [19]. Note that this formula 
accounts for a 1800 phase shift occurring at the surface 
of reflection. The phase shift occurring at the point of 
reflection is a phenomenon discussed by Skolnik [19] 
and Barton [l]. Note that in Fig. 6 (and Fig. 7 as well), 
A91 is simply denoted A*. 

The performance statistics plotted in Figs. 6(a) 
and 6@) demonstrate the robustness to the phase 
difference at any one frequency achieved with 
multifrequency operation. Although this is true 
for both nonsymmetric 3D-BDML and symmetric 
3D-BDML, it is observed that the sample STDs 
achieved with symmetric 3D-BDML are smaller 
than the respective sample STDs achieved with 
nonsymmetric 3D-BDML for all nine values of Aq1 = 
A 9  tested, with the differential between the two quite 
substantial for values of A* near zero. It is noted that 
in all cases the sample bias achieved with symmetric 
3D-BDML is less than 0.015’ and the corresponding 
SSTD is less than 0 . 0 7 O .  

’Ib emphasize the computational simplicity of 
symmetric 3D-BDML with multiple frequencies 
satisfying fjMj = constant, we summarize the specific 
form of the algorithm employed in the simulations 
presented in Fig. 6. Recall that fi = fo and MI = M. 
S~~(f2),  with f2 = Q fo and M2 = 19, is applied to 
each of two overlapping subarrays of 19 contiguous 
elements and 
of the outer products of the two 3 x 1 beamspace 
snapshot vectors thus created. Similar processing 
occurs at f3 = #fo with M3 = 17 to create %b(f3). 

with %b = 4 
as that centro-symmetric eigenvector of Re{&,} 
associated with the smaller eigenvalue. Finally, til is 
computed according to (32) since f1 = fo and MI = M. 

In a real-world application, the actual value of a 
transmission frequency will only match the desired 
value to within a certain tolerance. For example, in 
the M A R S  system described previously, the smallest 

is formed as the arithmetic mean 

%bcfi), E{: is formed as i ~ { :  = 
${Ebb + 13&f3}. v = [V1,V2,VI]T is then computed 

increment the frequency of the agile transmitter may 
be stepped is 30 MHz. Suppose that specific values! 
of f1 and MI are selected, say f1= fo = 10 GHz and 
MI = M = 21, for example. Further, in determining 
two auxiliary frequencies to satisfy fjMj = constant, 
we select M2 = 19 and M3 = 17 as above, such that 
f2 = Sfo = 11.05 GHz and f3 = 6 fo = 12.35 GHz. 
These frequencies are in the range of the agile 
transmitter in the MARS system. The best we can do 
is synthesize these frequencies to within a tolerance of 
f 1 5  MHz = f.015 GHz. For the sake of illustration, 
consider that instead of f2 = 11.05 GHz and f3 = 12.35 
GHz, the actual transmission frequencies are fi = 
f2 + 0.015 = 11.065 GHz and f; = f3 - 0.015 = 12.335 
GHz. And, despite the fact that fi)Mj # 21f0, j = 2,3, 
we nevertheless employ the simplified multifrequency 
version of symmetric 3D-BDML outlined above. 
The resulting performance is plotted in Fig. 7 and 
compared with the performance achieved with f2 and 
fi equal to the desired values of 11.05 GHz and 12.35 
GHz, respectively, signified by the “no errors” label 
in the legend. The difference between the respective 
sample mean curves is practically negligible, as is the 
difference between the respective sample STD curves. 

To really demonstrate the robustness of the 
method, the magnitude of the respective error in the 
two auxiliary frequencies was increased by a factor 
of ten, to 150 MHz, yielding the actual transmission 
frequencies fi = f2 + 0.15 = 11.2 GHz and fi = 
f3 - 0.15 = 12.2 GHz. Again, very little difference 
between the respective sample STD curves is observed. 
However, the corresponding sample mean curve 
does reveal a phase dependent bias: the sample bias 
is negative for values of Ail! less than or equal to 
900 and positive for values of A* greater than 900. 
A phase dependent sample bias curve of similar 
shape is obtained if the magnitude of the respective 
error in the two auxiliary frequencies is further 
increased by a factor of two, to 300 MHz, yielding the 
actual transmission frequencies fi = fi + 0.3 = 1135 
GHz and f; = f3 - 0.3 = 12.05 GHz. As might be 
expected, the maximum sample bias obtained with 
these frequencies is about twice that obtained with 
fi = fi + 0.15 = 11.2 GHz and fi = f3 - 0.15 = 12.2 
GHz. 

VI. CONCLUSIONS 

3D-BDML is a computationally simple ML bearing 
estimation algorithm for low-angle radar tracking 
which operates in a 3-D beamspace generated by three 
orthogonal, classical beamformers with equi-spaced 
pointing angles. In symmetric 3D-BDML the pointing 
angle of the center beam is equal to the bisector 
angle between the direct path ray and the image 
ray, yielding a 1-D parameter estimation problem. 
The bisector angle may be accurately estimated a 
priori given the height of the receiving array and 
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an estimate of the range of the target. In contrast, 
nonsymmetric 3D-BDML does not account for the 
multipath geometry and effectively solves a 2-D 
parameter estimation problem. As a consequence, we 
find that that nonsymmetric 3D-BDML breaks down 
when A@, the phase difference between the direct and 
specular path signals at the aperture center, is either 
00 or 1800. In contrast, symmetric 3D-BDML can 
theoretically handle any value of A@ with AB = 0' 
yielding best performance. 

symmetric 3D-BDML and nonsymmetric 3D-BDML 
is the forward-backward averaging of the 3 x 3 
beamspace correlation matrix performed in symmetric 
3D-BDML. If the pointing angle of the center beam 
is not equal to the bisector angle, the process of 
forward-backward averaging serves to effectively create 
artificial sources at the mirror images of the actual 
sources about the pointing angle of the center beam. 
A simple analysis of this phenomenon reveals that 
an error in the bisector angle estimate translates into 
a bias in the symmetric 3D-BDML estimator of the 
same magnitude. In the case of no specular multipath, 
this phenomenon makes the symmetric 3D-BDML 
estimator nevertheless have to resolve two sources 
separated by less than a beamwidth. The 2D-BDML 
estimator may be used under these conditions to 
achieve better performance. 

Although symmetric 3D-BDML is theoretically 
capable of handling any value of AB, performance 
in the case of A@ = 180' is rather poor. An obvious 
means for overcoming this problem is to employ 
frequency diversity. It has been shown that if the 
transmission frequencies satisfy fiMj = constant, 
j = 1,. . . , J ,  where Mj I: M is the number of elements 
comprising the subarray employed at fj, coherent 
signal subspace averaging is achieved by simply 
summing the (spatially smoothed) beamspace 
correlation matrices formed at each frequency. The 
multifrequency version of symmetric 3D-BDML is then 
simply the single frequency version executed with the 
coherently averaged beamspace correlation matrix thus 
obtained. Simulations demonstrating the method to 
be rather robust to relatively large deviations in the 
product f iMj  from frequency to frequency suggest that 
the procedure may indeed be practicable. 

In terms of processing, the only difference between 
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