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Loop-Based Design and Reconfiguration of 
Wafer-Scale Linear Arrays with High 

Harvest Rates 
Ming-Feng Chang and W. Kent Fuchs, Senior Member, IEEE 

Abstract -Design and reconfiguration approaches for high 
harvest rates and parallel on-wafer diagnosis of linear arrays 
are described in this paper. The defect-tolerant designs employ 
multiplexors to switch intercell connections and guarantee that 
the wire length between any two logically adjacent cells is 
constant, independent of fault distribution. The designs are 
appropriate for implementing linear arrays of wafer-scale mem- 
ory and processor architectures. The harvesting of fault-free 
cells into a linear array is a percolation process; there exists a 
critical cell yield such that the harvest rate drops to zero 
(approaches 100%) if the cell yield is below (above) the critical 
value. Finding a maximum-size linear array for a given set of 
fault-free cells is polynomial time solvable if only the intercon- 
nections between fault-free cells are utilized, but is NP-complete 
if the interconnections between all cells are utilized. A heuristic 
reconfiguration algorithm utilizing the interconnections between 
all cells is presented. Application of boundary scan to parallel 
testing and on-wafer diagnosis of the arrays is described. 

I. INTRODUCTION 

NE OF THE practical applications of wafer-scale 0 integration has been the implementation of linear 
array architectures for electronic disks and large systolic 
arrays. For example, a defect-tolerant linear array archi- 
tecture, originally proposed by Manning [ l], has been 
used by Anamartic to manufacture 200 megabytes of 
memory [2]. Their implementation is a rectilinear grid of 
cells on a wafer, in which each cell interconnects with its 
four nearest neighbors. The target structure is a linear 
array in which each cell connects to two neighboring cells. 
The defect-tolerant design allows each cell to bypass 
defective cells by connecting to any two of its four nearest 
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neighbors. The process of switching interconnection to 
avoid defective cells (reconfiguration) starts from a cell on 
the boundary of a wafer, and then links defect-free cells 
into a chain (linear array). The chain is formed as a spiral 
from the wafer boundary to the center in an attempt to 
link as many good cells as possible. Aubusson and Catt 
independently employed a similar design philosophy for a 
hexagonal array in which each cell has six immediate 
neighbors [3]. Each cell in their design is capable of 
connecting to two of its six neighbors. Since only the 
nearest neighbors are interconnected, the propagation 
delay between any two logically consecutive cells after 
reconfiguration is fixed in these spiral designs. 

Recently, Horst presented an alternative defect-tolerant 
loop WSI architecture that provided a simple reconfigura- 
tion procedure [4]. In his design, each cell includes four 
2-to- 1 multiplexors for intercell connections, as shown in 
Fig. 1. Initially, each cell and its four multiplexors are set 
to form a closed loop. During reconfiguration, the multi- 
plexors can be set such that two or more neighboring cells 
form a larger loop. Similar to the spiral approaches, the 
propagation delay between two logically consecutive cells 
after reconfiguration is fixed, independent of defect dis- 
tribution. This is because the path between two logically 
adjacent cells in a loop has exactly four multiplexor de- 
lays. The goal of reconfiguration in this loop-based design 
is to link as many good cells as possible into a loop. 
Harvest rate, the percentage of good cells that are linked 
in the largest loop, is used to evaluate the effectiveness of 
defect-tolerant designs for linear arrays. One advantage 
of the loop-based approach to defect-tolerant linear ar- 
rays is that each cell can merge as many as four neighbor- 
ing cells into its loop, instead of just two neighbors in the 
spiral approaches. Thus, the loop-based approach has a 
better harvest rate for a given cell yield. However, one of 
the shortcomings of this design is that the harvest rate 
drops dramatically when the cell yield is below 0.75 [41. 

There also exist defect-tolerant linear array structures, 
other than the spiral and loop-based approaches, that try 
to harvest as many good cells as possible using a constant 
upper bound on propagation delay between two logically 
adjacent cells. Fussel and Varman presented an approach 
to connecting a linear array from all good cells in a cluster 
[5].  Leighton and Leiserson developed a scheme to con- 
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Fig. 1. Loop-based design for defect-tolerant linear arrays. 

nect a linear array from all good cells on a wafer with 
wire of length O ( d m ) ,  where N is the number of total 
cells [61. Greene and El Gama1 presented another scheme 
that can connect any constant fraction of the good cells 
on a wafer with a constant upper bound on wire length 
[71. A survey of defect-tolerant linear arrays can be found 
in the book by Negrini et al. [8]. These approaches differ 
from the approach of this paper in that their delay is 
bounded, while ours is fixed. 

Our discussion is restricted to the design and analysis 
of defect-tolerant linear arrays that guarantee a fixed 
intercell wire length. We show how the defect-tolerant 
loop-based approach developed by Horst [4] can be modi- 
fied to provide high harvest rates. The defect-tolerant 
designs described allow the interconnection of up to eight 
neighbors, and maintain constant propagation delay be- 
tween cells. The harvesting of fault-free cells into a linear 
array is a percolation process; there exists a critical cell 
yield such that the harvest rate drops to zero (approaches 
100%) if the cell yield is below (above) the critical value. 
The designs with a larger number of neighbor intercon- 
nections reduce the critical cell yield and enhance the 
harvest rate. A further improvement to harvest rates 
through reconfiguration strategies that make use of the 
multiplexors in faulty cells is also described. 

11. DEFECT-TOLERANT LINEAR ARRAYS 
In this section we describe the design approach for 

enhancing the harvest of good cells into a linear array 
based on loop interconnections. The cells are placed as a 
two-dimensional grid on a wafer. Each cell includes 1 
multiplexors; the multiplexors are placed along the cell 
boundaries, and are used to switch intercell connection 
buses. Each cell and its multiplexors form a closed loop, 
as shown in Fig. 2(a). The multiplexors of each cell are 
labeled such that md denotes a multiplexor whose inputs 
need to propagate through d multiplexors to reach the 
cell in the closed loop. The interconnection between two 
neighboring cells is through a pair of multiplexors, one 
from each cell, with the same subscript. Each multiplexor 
sets up an interconnection with one neighbor; a cell with 1 

multiplexors can have interconnections with 1 immediate 
neighbors. Two example interconnections between two 
neighboring cells are shown in Fig. 2. The interconnection 
is active if the pair of multiplexors selects the input 
source from their neibhboring cell as their outputs, as 
shown in Fig. 2(b). Otherwise, the interconnection is 
inactiue, as shown in Fig. 2(a). Two neighboring cells can 
be linked in a loop by setting the interconnection between 
them active. An important feature of the design is that 
the path between two logically adjacent cells in a loop 
contains exactly 1 multiplexors, and the multiplexors are 
linked in the sequence m,, m,- ,; . ., m,. Therefore, the 
propagation delay between two logically adjacent cells is 
fixed, if the propagation delay between two consecutive 
multiplexors (ml+, ,ml)  is constant for each i. The design 
rules are summarized as follows. 

Rule # I :  Each cell and its 1 multiplexors (m,,m,-l ,  
. . . ,ml)  form a closed loop. The interconnection between 

two neighboring cells is through a pair of multiplexors 
with the same subscript. 

Rule #2: The wire length between any two consecutive 
0 

Design rule #1 ensures that the multiplexors between 
any pair of consecutive cells in a loop is fixed 
(m,,m,-,; .  .,in,). Design rule #2 ensures the propaga- 

multiplexors (m, + , , mi> is fixed for each i. 
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Fig. 3. An example three-neighbor loop. 

tion delay between any pair of consecutive multiplexors is 
constant. As a result, the design guarantees a constant 
propagation delay between any two logically adjacent 
cells, independent of fault distribution. 

Horst's loop-based defect-tolerant architecture follows 
these design rules and uses four 2-to-1 multiplexors in 
each cell [41. Since each cell has interconnections with its 
four neighbors, Horst's scheme is an example of four- 
neighbor loops. As a simple variation of four-neighbor 
loops, a defect-tolerant linear array with three-neighbor 
interconnections can be obtained by deleting all the m4 
multiplexors, as shown in Fig. 3. A three-neighbor recon- 
figurable linear array will be shown in Section IV to have 
a smaller harvest rate than a four-neighbor design, but it 
uses less interconnection area due to the elimination of 
multiplexors. 

The harvest rate can be improved by increasing inter- 
cell connections at the cost of more interconnection over- 
head and more multiplexors. By skewing the placement of 
every row of cells by half a cell width, each cell will have 
six immediate neighbors instead of four, as shown in Fig. 
4. However, a straightforward extension of the four- 
neighbor design, using six 2-to-1 multiplexors to intercon- 
nect with six neighbors, does not satisfy the fixed wire 
length rule. In Fig. 4, every pair of consecutive multiplex- 
ors ( m j , m j p 1 )  is physically adjacent for each cell on the 
second and fourth rows, but ( m 6 , m 5 ) ,  (m,,m,>, and 
(m, ,m,)  of each cell on the third row are not physically 
adjacent. The wire length between these logically consec- 
utive, but physically disjoint, multiplexors is longer than 
the wire length between other consecutive multiplexors. 
As a result, the propagation delay between two logically 
adjacent cells after reconfiguration may not be constant. 

In order to satisfy the fixed wire length rule for six- 
neighbor loops, 3-to-1 multiplexors can be used for inter- 
cell connections. Each cell uses three 3-to-1 multiplexors, 
and each multiplexor sets up interconnections with two 
neighboring cells. A defect-tolerant linear array with six- 
neighbor interconnections is shown in Fig. 5. It can be 
verified that the interconnections satisfy the two design 

m2 

m. 

m3 

m3 

m4 

m2 m3 ms . 

Fig. 4. A six-neighbor loop design violating the fixed wire length rule. 

rules and hence the propagation delay between two logi- 
cally adjacent cells is constant. 

A reconfigurable linear array with eight-neighbor inter- 
connections and fixed intercell delay can be made by each 
cell having interconnections not only with the four bor- 
der-adjacent neighbors, but also with the four neighbors 
in diagonal directions. There are two possible ap- 
proaches: one uses only 2-to-1 multiplexors, and the other 
uses 4-to-1 and 2-to-1 multiplexors. The design with eight 
2-to-1 multiplexors in each cell is essentially a simple 
combination of two 4-neighbor loops; an example is shown 
in Fig. 6. The design with two 4-to-1 and two 2-to-1 
multiplexors in each cell is shown in Fig. 7. By using 
4-to-1 multiplexors, the total number of control lines of 
the multiplexors in each cell is reduced to six, instead of 
eight if eight 2-to-1 multiplexors are used. The increased 
neighboring interconnections require a larger number of 
multiplexors in each cell, and thus lower the cell yield. 
However, the overall harvest rate will improve because 
the cells are less likely to be isolated with increased 
interconnections. 

111. RECONFIGURATION 

A. Problem Description 

The reconfiguration problem consists of harvesting as 
many good (defect-free) cells as possible in a linear array. 
For the loop-based design, a straightforward reconfigura- 
tion approach is to use the interconnections between 
good cells and link all neighboring good cells into a linear 
array [41. Therefore, each cluster of good cells forms a 
linear array. An example reconfiguration for three- 
neighbor loops is shown in Fig. 8(a). The three linear 
arrays constructed are of maximal size in the sense that 
the neighboring cells of each linear array are all faulty. 

It is possible to improve the rate of harvesting good 
cells into a single linear array by utilizing the interconnec- 
tions between all cells, including the fault-free multiplex- 
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Fig. 5 .  A six-neighbor loop-based design with fixed wire length. 

Fig. 6 .  An example of eight-neighbor loops. 

(b) 

Fig. 8. Reconfiguration solutions for three-neighbor loops: (a) utilizing 
interconnections between good cells only, and (b) utilizing interconnec- 

Fig. 7. An alternative eight-neighbor loop design. tions between all cells. 
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(b) 

Fin. 9. Reconfinuration solutions for six-neighbor loops: (a) utilizing interconnections between good cells only, and 
(b) utilizing interconnections between all cells. 

ors of defective cells. Fig. 8(b) shows a reconfiguration 
solution that links all the good cells in a single linear 
array. 

Another set of example reconfigurations for six-neigh- 
bor interconnections is shown in Fig. 9. A reconfiguration 
solution that uses only the multiplexors of good cells is 
shown in Fig. 9(a). The solution cannot connect the 
isolated cell in the bottom left corner. By using the 
multiplexors of all the cells, an optimal reconfiguration 
solution is able to connect all the good cells in a loop, as 
shown in Fig. 9(b). 

The complexity of the reconfiguration problem is ana- 
lyzed in the following sections under two different as- 
sumptions: one in which only the interconnections be- 

tween good cells can be used, and the other in 
the interconnections can be used. 

B. Graph Model 

A graph model is introduced as a basis for 

which all 

analyzing -~ 

the reconfiguration problems. Only the reconfiguration 
for four-neighbor loops will be examined, but the results 
apply also to three-, six-, and eight-neighbor loop recon- 
figurations. 

A rectilinear grid graph consists of vertices which are 
points at the Cartesian coordinates with integer coordi- 
nates, and edges between any two vertices at unit dis- 
tance. An m-by-n rectilinear grid graph R(m,n)  is a 
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Fig. 10. An example reconfiguration and its grid graph model. 

graph (V ,  E) ,  where I/ = ( ( x ,  y)ll =G x =G m ,  1 G y =G n}, and 
( u j ,  u j )  E E if and only if the distance between ui and uj  
is 1. 

A wafer of m-by-n cells with four-neighbor loops can 
be modeled by R ( m , n )  with some modifications. Each 
vertex represents a cell. Each edge represents the inter- 
connection between two neighboring cells containing a 
pair of multiplexors. A vertex is fault-free (faulty) if its 
corresponding cell is fault-free (faulty). A circle is used to 
denote a fault-free vertex. An arrow is also used in each 
vertex to show the location of the cell, which is between 
m4 and m,. The location of each cell is important for the 
discussion later. An edge is active (inactive) if the corre- 
sponding interconnection is active (inactive). An active 
edge is drawn in a solid line, and an inactive edge in a 
dotted line. R' (m ,n )  or R', if its size is not specified, 
refers to the modified grid graph. An example intercon- 
nection setting and its corresponding grid graph model 
R'(4,3) are shown in Fig. 10. 

For purposes of reconfiguration, consider the active 
edges only and discard all the inactive edges. One can 
verify the following correspondences between abstract 
objects in R' and physical cell loops on the wafer: 

1) an isolated vertex in R' represents a loop that con- 
tains only the cell of the vertex; 

2) a single (active) edge in R' represents a loop that 
contains the cells of the two incident vertices of the 
edge; 

Fig. 11. An example reconfiguration that forms six contours. 

3) a tree in R' represents a loop that contains the cells 
of all vertices on the tree; 

4) a simple cycle in R' represents two loops: one con- 
sists of all the cells whose vertices are on the cycle 
and whose arrows point outside of the cycle, and the 
other consists of the cells of all the other vertices on 
the cycle. 

Assume that the grid graph is embedded on an infinite 
plane. In general, the active edges may divide the plane 
into regions. Contours are the closed lines along the 
boundaries of all regions. An example reconfiguration 
solution is shown in Fig. 11; there are four regions and six 
contours. The contours are labeled as cI,c2; . . ,ch. The 
region that is unbounded is the outside region. The con- 
tours that are on the boundaries of the outside region are 
called outside contours; otherwise, they are inside con- 
tours. It can be verified that each contour represents a 
loop that consists of all the cells (vertices) whose arrows 
point toward the contour. Thus, besides the isolated ver- 
tices, six loops arc constructed by reconfiguration in Fig. 
11. The size of a contour will be considered to be the 
number of cells it contains. A contour is fault-free if all of 
its cells are fault-free. For example, the largest fault-free 
contour in Fig. 11 is c2 of size 18. 

C. Reconfiguration Complexity 

For the spiral approach with four neighbors, each cell 
can only connect to two of its neighbors. The reconfigura- 
tion problem is to find a maximum length path in the grid 
subgraph induced by good vertices. This maximum-length 
path problem has been shown to be NP-complete [91. 

The reconfiguration complexity for four-neighbor loops 
is considered under two reconfiguration assumptions. 
First, suppose that only the multiplexors of good cells can 
be properly controlled. In this case, only the interconnec- 
tions between good cells can be active, i.e., only the edges 
between good vertices in R' can be active. Therefore, only 
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Fig. 12. An example maximum fault-free tree of size 10. 

good cells can be linked in a loop of size > 1. It is 
undesirable to generate a cycle in R‘, because a cycle has 
an inside contour(s), and hence reduces the size of the 
outside contour. The reconfiguration problem is to find a 
maximum-size spanning tree in the grid subgraph induced 
by good vertices. Clearly, the problem can be solved in 
linear time [4]. 

Second, consider the case where the multiplexors of 
faulty cells can be utilized to set up interconnections. In 
this case, all the interconnections can be active, i.e., all 
edges in R‘ can be active. The reconfiguration problem is 
to find a fault-free contour of maximum size. The prob- 
lem will be shown in the following discussion to be 
NP-complete. 

Clearly, the size of the maximum fault-free path is at 
most equal to the size of the maximum fault-free span- 
ning tree, which in turn is at most equal to the size of the 
maximum fault-free contour. The examples in Figs. 11 
and 12 have the same fault-free cells. Fig. 12 shows that 
the largest fault-free spanning tree contains ten vertices, 
while Fig. 11 shows that there exists a fault-free contour 
of size 18. One can also easily verify that the maximum 
fault-free path contains only seven vertices. 

Finding a maximum-size fault-free contour for a given 
fault distribution R‘ is NP-complete. The first lemma was 
proved by Dolev et al. [lo]. 

Lemma 1: For any planar graph G of maximum de- 
gree 3, there exist a constant c > 0 and a planar embed- 
ding of G on a rectilinear grid such that the longest edge 
is of length en, where n is the number of vertices of G. 0 

The following lemma shows that all edges can be of the 
same length. 

Lemma 2: For any planar graph G of maximum de- 
gree 3, there is a planar embedding of G on a rectilinear 
grid such that all edges are of the same length 2(cnI2, 
where c is the constant in Lemma 1 and n is the number 
of vertices of G. 

Proof: From Lemma 1, there is a planar embedding 
+(G,R,) of G on rectilinear grid RI .  A grid point (x, y )  
is even, if x + y 5 0 (mod2). Without loss of generality, 
assume all vertices of G are mapped into even grid 
points, so that the length of any edge is an even integer. 

Replace each cell square of R,  by a grid of size 
2cn X 2cn. Call the new grid R,. For any edge e of length 
l(e) in +(G,R,), we can change the length of e to any 
even integer between l(e)-2cn and l(e).2(cn)’ in the 
embedding +(G, R2),  because each unit length line in RI  
is enlarged 2cn times and has at least 2(cn)’ space to 
extend. Thus, the shortest possible edge, of length 2 
in +(G,R,), can be of a length from 4cn to 4(cnI2 in 
+(G,R2),  and the longest possible edge, of length en in 
+(G,R,), can be of a length from 2(cnI2 to 2(cnI3 in 
+(G, R2). Therefore, all edges can be of the same length 

Theorem: The problem of determining whether a given 
fault distribution of R’(m, n> contains a fault-free contour 
of size >, k is NP-complete. 

Proof: The problem is in NP, since one can arbitrar- 
ily make a subset of edges active and check in polynomial 
time whether a fault-free contour of size > k exists or 
not. 

In the remainder of the proof, we show a reduction 
from the following NP-complete problem [ 113: 

Instance: Planar digraph D with indegree ( U )  + 
outdegree(u) G 3 for all vertex U E D. 

Question: Docs D have a Hamiltonian cycle? 
From Lemma 1, we can find an embedding +(D,  R 2 )  of 

D on a rectilinear grid such that all edges are of the same 
length 2(cnI2. Construct an embedding +(D,R3) by re- 
placing each cell square of R ,  by a grid of size 4 X 4. All 
arcs are enlarged four times and are of the same length 
8(cn),  in +(D,R,). An instance of fault distribution Rj 
can be built from R, as follows: 

1) all the vertices, in which vertices of D are embed- 
ded, arc fault-free; 

2) all the vertices, whose cells lie on the right-hand side 
of an arc, are fault-free; 

3) all other vertices are faulty. 
An arc-embedding path is the whole path in which an 

arc of D is embedded. Each arc-embedding path in Rj 
consists of 4(cn)’ - 1 f 1 fault-free vertices, and all the 
fault-free vertices are on the right-hand side of the arc. 
The remainder of the proof shows that graph D has a 
Hamiltonian cycle if and only if R; has a fault-free 
contour of size 3 4n(cnI2 - 2n. 

If D has a Hamiltonian cycle C, let all the edges of Rj,  
in which the arcs of C are embedded, be active. All these 
active edges form a cycle in R;. Since all the vertices on 
the right-hand side of the arcs are fault-free, one contour 
of the cycle is fault-free and of size >, 4n(cnl2 -2n. 

The distance between two fault-free vertices is at least 
four, except for two fault-free vertices on an arc-embed- 
ding path. Thus, only these arc-embedding paths contain 

2( en ) 2. 0 
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all fault-free vertices on one side of the paths. If R;  has a 
fault-free contour of size 4n(cn)' - 2n, the contour 
must contain at least n arc-embedding paths. Since the 
degree of each vertex of D is at most 3 and each arc- 
embedding path contains fault-free vertices only on its 
right-hand side, the fault-free contour contains at most n 
arc-embedding paths and these paths must form a cycle. 
Therefore, the fault-free contour is a contour of a cycle 
which consists of exactly n arc-embedding paths, and the 
n corresponding arcs in D are a Hamiltonian cycle. 0 

In actual implementations, some multiplexors may also 
be faulty. By a similar argument, one can prove that 
finding a maximum size fault-free contour for a given set 
of faulty multiplexors is also NP-complete. 

: : t  e : ;  
* 4-neighbor . . .  . . .  . . .  . . .  . . .  . . .  . . .  . . .  . . .  . . .  A 6-neighbor 

; A i  . . _  . . .  ' . .  . . .  
' . .  . . .  . . _  8-neighbor . .  . . *  
p ; :  

a...*.. ,&,.A&.** 

I 1  I I I I I  

D. Heuristic Reconfiguration Algorithm 

Since only the outside region is unbounded, the heuris- 
tic algorithm focuses on generating a fault-free contour 
on the boundary of the outside region. First, all fault-free 
spanning trees are constructed. Disjoint fault-free span- 
ning trees can be connected by cycles that have fault-free 
outside contours, and the connected component still has a 
fault-free outside contour. Therefore, we find all the 
cycles that have fault-free outside contours and can con- 
nect at least two disjoint spanning trees. However, it is 
possible that a group of cycles may generate inside con- 
tours that contain good cells. Moreover, some cycles need 
to be included before we can use other cycles, i.e., there 
exist precedence constraints (a partial-order relation) in 
including these cycles. The following algorithm decides 
which cycle should be included in the connected compo- 
nent: 

Algorithm 
1: Form all spanning trees consisting of good cells only. 
2: Find all possible cycles that can connect two sepa- 

3: Find the partial-order relation between the cycles 

4: While there are still cycles to choose 

rated spanning trees. 

found in step 2. 

4.1: While there are cycles that connect only a single 
cluster and have no successor. 

4.1.1: Delete the cycles found in step 4.1. 
4.1.2: Include the cycles that cannot cause any 

inside contour containing good vertices and 
have all preceding cycles included in some 
component. 
Merge connected components. 

4.2: Choose one cycle with all preceding cycles in- 
cluded. 
Include the cycle and merge the connected 
components. 

0 5: Report the largest contour that is built in step 4. 

IV. HARVEST RATE AND YIELD 
Computer simulations have been used to estimate har- 

vest rate with respect to the yield of the cells. The 
distribution of faulty cells is assumed to be random. First, 

0.9 l l  

0.8 

Harvest o,5 

0.4 
rate 

. .  
: . ' f '  : 

? A :  . .  i . . .  . . . .  . 
' : f ; 

d p ; .  . . .  : , .  . . .  
Q A . ?  : . .  

. 3-neighbor 

* 4-neighbor 

A 6-neighbor 

0 

011 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
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Cell yield 

Fig. 13. The expected harvest for a wafer with 16x16 cells using 
multiplexors of only good cells. 

consider the reconfiguration strategy that utilizes the mul- 
tiplexors of good cells only. The harvest rates of a 256-cell 
wafer, in a 16 X 16 layout, for alternative defect-tolerant 
loop-based designs are shown in Fig. 13. In each case, the 
harvest rate is the average of 10 000 different simulation 
samples. The results show that the harvest rate improves 
consistently as the cell yield increases. The harvest rate 
also improves consistently with larger numbers of intercell 
connections. This is because both higher cell yield and 
more intercell connections generate a larger cluster of 
good cells. The harvest rate of a large array, a wafer with 
1024 x 1024 cells, was also estimated by simulations. Each 
harvest rate in Fig. 14 is the average result of 1000 
different simulation samples. The results show that there 
is a rapid transition in the harvest rate, i.e., the harvest 
rate drops to zero, when the cell yield is below a critical 
value. 

The harvest of good cells into a linear array in a 
loop-based design is an example of a well-known physical 
process-the percolation process [12]. A percolation pro- 
cess is a random process over an infinite regular lattice of 
cells in which a fluid starts from a cell and percolates in 
all directions to neighboring cells. A flawed cell will not 
allow the passage of the flow. Let q be the probability of 
each cell being flawed. There exists a critical probability 
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Fig. 15. The effect of using all multiplexors (16x16 cells with four- 
neighbor interconnections). 

qc, such that if q < q, the probability of the number of 
wet cells being infinite is equal to 1. Agrawal has pointed 
out that the harvest rate of the spiral approaches is 
bounded by the fraction of good cells that are wet in a 
percolation process [13]. It is clear that the harvest rate of 
a loop-based design is equal to the percentage of good 
cells that are wet in a percolation process. For the four- 
neighbor case, qc =: 0.42 requires cell yields higher than 
0.58. The critical cell yield for the six-neighbor intercon- 
nections is equal to 0.5 (exact) [14], and the critical cell 
yield for the eight-neighbor interconnections is approxi- 
mately 0.40. 

The optimal harvest can be achieved by utilizing all the 
interconnections; however, the reconfiguration problem 
when all interconnections are allowed is NP-complete. 
The harvest capability of the heuristic algorithm in Sec- 
tion 111 was evaluated by simulations. The expected har- 
vest rate for 16 X 16 cells with four-neighbor interconnec- 
tions and using all the multiplexors is shown in Fig. 15. 
One thousand simulation samples are repeated for each 
case. The results show that by utilizing all the multiplex- 
ors, the harvest rate is improved and the critical value of 
cell yield is reduced significantly. 

V. PARALLEL ON-WAFER DIAGNOSIS 

In many defect-tolerant designs an effective strategy for 
diagnosing defective cells is often ignored. One approach 
to on-wafer diagnosis, which employs both pipelining and 
parallelism, is illustrated in Fig. 16. Each basic cell in the 
scan array implements the JTAG boundary scan standard 
i1.51. The test access ports (TAP'S) of the cells are linked 
into a linear chain, and the testing is done in a pipelined 
fashion. The array cells are connected in parallel scan 
paths. Since the cells are identical in function, it is possi- 
ble to perform parallel clocking of test vectors as well as 
pipelined comparison of test outputs for diagnosis. 

The parallel diagnosis requires three extra linear chains 
for test-mode select, (TMS) test data input (TDI), and 
test data output (TDO). These linear chains for testing 
must be defect-tolerant, because any defect in these chains 
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Paths 
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Fig. 16. Parallel on-wafer diagnosis. 

makes some of the cells untestable. Therefore, the loop- 
based defect-tolerant design is also used for these testing 
chains. The external bonding pads of the wafer can be 
placed in any cell on the wafer. The loop interconnections 
of the cell are replaced by input and output (I/O) pads. 
The multiplexors are controlled by its cell. At the power- 
up, each cell controls its multiplexors so that they form a 
closed loop. During the wafer test, the tester selects a set 
of 1 /0  pads connecting to a cell first. Then from the first 
connected cell, the connected cells set up active intercon- 
nections with the unconnected neighbors only so that no 
cycles (in R') are generated. After the parallel on-wafer 
diagnosis, the external tester pipes in the multiplexor 
controls for each cell so that a fault-free linear array is 
connected. 

VI. CONCLUSIONS 
A loop-based approach to defect-tolerant wafer-scale 

linear arrays was presented. This approach is a general- 
ization of the four-neighbor design of Horst [4]. In terms 
of harvest rate, the loop-based approach is significantly 
better than the traditional spiral approaches. Similar to 
the spiral designs, the loop-based approach guarantees a 
fixed propagation delay between any logically consecutive 
cells after reconfiguration, independent of the fault distri- 
bution. However, the propagation delay (latency) is larger 
than that of the spiral designs. Two reconfiguration 
strategies were also presented: one utilizes the intercon- 
nections between good cells only; the other utilizes the 
interconnections between all cells. Finding a maximum 
size linear array for a given set of faulty cells was shown 
to be NP-complete when all the interconnections are 
utilized. The simulation-based harvest rates for four 
loop-based designs were described; the results illustrated 
the improvement in harvest rate when the neighborhood 
connectivity is enlarged at the cost of more multiplexors 
and interconnections. Application of boundary-scan de- 
sign to parallel testing and on-wafer diagnosis of the 
arrays was also presented. 
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