a0 >, =))
B = = <~ B

R R U R AR A AR LIT

IEEE 802.16e OFDMA TDD iRIBEAZF &2 B & & 430 T (v & i

SDSPT fyzuub 7 B & 4

IEEE 802.16e OFDMA TDD Ranging Process and
Uplink Transceiver Integration on DSP Platform
with Real-Time Operating System

g4 sRoE
TR RIS

¢ % R 4 L - & - 3

IEEE 802.16e OFDMA TDD iR|REAR A &2 B £ 2& 4530 T pf i' %)k SLDSPT & 2. b

7@ T i % %

IEEE 802.16e OFDMA TDD Ranging Process and Uplink Transceiver Integration
on DSP Platform with Real-Time Operating System

ogo4 sk Student : Soon Seng Teo
R Advisor : Dr. David W. Lin
gt @i F
T M Pl 20 P e aﬁ HAYEFEmls
oL
A Thesis

Submitted to College of Electrical and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in
Industrial Technology R & D Master Program on
Communication Engineering

Jan 2008

Hsinchu, Taiwan, Republic of China

PERRA4 L E-

[EEE 802.16e OFDMA TDD R|REAZ A 21 £ & £& 0 Tk 1%
¥ ABDSP T Sz b Fl s R

< A"‘

SRt L TR N

Rz < BB F LT

i &

AW T B £ 4 % IEEE 802.16e RIREAZ A % (VAT g ¥ #rid * Il eaplREiF &
E o BF AP R IR AR A I BT L P EY TR ITE AR EL 7
YT,k Lo

EWIMAX 342 > PRS- BEAEZE R «c B9 » 23 H F A B - B
oo 5 A5 ihife 35~ 02 RS fosr ot 2L/ e) G EAR B 0 77 LA 4 IRIBE o -
BrEd A Ease 2 AR DR PR (50 A AR - AR
WAL 3P R R RIEEAR R P 2 #ﬂﬁéiﬁdﬁﬁﬁﬂm%“ﬂ% Higb2okm 26 pliEss
e AP AR RIEE R M E R R ERALS T € AR h v AR o

BREEAR R AL > A3 5 € HAT #&ﬂzilﬁ?z?‘lﬁﬁé% e 0 R~ P A ol S i A5 2 Bt
B AR B P o RS AR SR FE R R P P EEAE 01 2 H Ar e
B A S {es FA T w § o L ob s PERR X H# B TF L R FH 2

2,
It oo

BRI o AP A g SRR RIS cn (R 2 PR OIE R B enip 3t AT ehakiR
BER o @ B T AR B A2 W S SR f R 1%k
EEEE o

RS b Ient (7T kb ’}ﬁ*v:“ oA T P 2w i Sundance#ic i+ i
W RE A P eI BT L o A E F RS 0 AP E#3L Diamond T 5 o
ﬁ&é?u%@ﬂgaa&£m%mi;§ﬁo

WAEE st T RIE B R F 4R 0 A P E A R e e g
fo 500 m?ﬁ}\ﬁ TR R A S| TR RIR 2 T R A RN BT BT
FedZo et 3 Ao] B IR BT B2 S 3SR o gt b 47 5848 e g ST &2 2 Diamond

k:
v

SaE CUE T e i =
: %;"_—S_F ‘—‘-5:;} Ao p B Hci w__agﬁ_,g)—; v_ @ f‘lﬁ“]{rﬂ f#’%ﬁ65
Ms o F A% — i A FHCE o At 1 FR)F 5 F 17,16 ms -

IEEE 802.16e OFDMA TDD Ranging Process and
Uplink Transceiver Integration on DSP Platform

with Real-Time Operating System

Student: Soon Seng Teo Advisor: Dr. David W. Lin

Industrial Technology R & D Master Program of
Electrical and Computer Engineering College
National Chiao Tung University

Abstract

In this thesis, we firstlyyintroduce:the IEEE 802.16e OFDMA TDD
ranging process and its algarithms: Secondly; we discuss about how the uplink
transceiver system is implemented on digital signal processor (DSP) platform
with Real-Time Operating System (RTOS).

Ranging is one of significant processes in the mobile WiMAX standard.
Power adjustment, timing ‘/and- frequency offset estimation, and
synchronization between a Base Station (BS) and all users within a cell are
done through the ranging process, also known as initial ranging. Any Mobile
Station (MS) that attempts to establish a communication link is required to
carry out a successful initial ranging process with the BS. In this thesis, we
discuss about the details of initial ranging and algorithm. In fact, there still
exist other types of ranging processes such as: periodic ranging and bandwidth
request. However, initial ranging is the only ranging process being discussed
in this thesis.

In the initial ranging process, BS is required to detect different received
ranging codes and estimate the timing, frequency offset and the power level
for each user that transmits an initial ranging code. The BS then broadcasts the
detected ranging codes with adjustment instructions for the timing, frequency
and power level. The status notification of either successful ranging or
retransmission is also broadcasted.

We accomplish the ranging code detection and the estimation of its timing
and frequency offset in the frequency domain. The number of complex

multiplications used for ranging code detection and estimation of its timing
offset are only 1% of using cross correlation to complete that work in time
domain.

In the integration work, we implement the uplink transceiver system on
the DSP platform which includes a personal computer and four DSP modules
(SMT395) made by Sundance. Also, we select Diamond platform as our
development environment, which is a 3L’s system for multiprocessor software
design and implementation.

On the system, only fixed-point data format is supported because of the
computational efficiency in DSP. Our optimization goal is to accelerate the
speed of program execution time so that it can achieve the requirement of
real-time processing. Thus, greatly make use of DSP library function is one of
the optimization techniques. Furthermore, software pipelining and several
specific functions supported by Diamond also contribute in achieving the
real-time processing.

Finally, the experimental results show that our system needs 6.5 ms to
process an uplink frame, whereas:ithat needs 17.16 ms with only one
processor.

Mathe avE A o F ABRE R B R R B TS
& fshinsdn 0 02 KRR oL A 0 R meeting B R ATES B0

B 4k B (PR 7 dd o RARE T e)

SN R R

Foobod BB AR R oA AT L RS s otk o 4 AT

P ’5\‘5 , g"%hlé\'?q ’ __EFE‘;'&’#— °

5 3 th
Wk AT R R

R
BRI T S 2 ade g % % (commlab) » #% &
ALFLYFEFLFRERP S E RDE R @ F R IR

LR G T
Bofs o BRI AR A IR AN o g s T A 8 ¥

WETG FE A 1 AAEBE AR AT L B R o B

5% JIIE 1;‘\1

a3

She
_f\
BN

2008 #&.1 *

Contents

1 Introduction 1
2 Introduction to IEEE 802.16e OFDMA 3
2.1 Introduction to OFDMA o 3
2.2 Introduction to IEEE 802.16eo 4
2.3 Concept of OFDMA and DefinitionpofiBasic Terms 5t
2.3.1 Frequency Domain-and Time Domain Descriptions 5

2.3.2 Parameters L 0TI LA Lo 7

2.3.3 Definition of Basic Termso 8

2.3.4 Frame Structure 9

2.4 OFDMA Subcarrier Allocation 9
2.4.1 Uplink 10

24.2 Downlinko o 15

3 DSP Implementation Environment 21
3.1 DSP Implementation Platform 21
3.1.1 Requirements on the PC [5] 21

v

3.1.2 The Carrier Board (SMT310Q) [6] 22

3.1.3 Host Connection 23
3.1.4 The Texas Instruments Module (SMT395) 24
3.1.5 Interconnection Mechanisms 0. 30

3.2 Code Development Environment 32
3.2.1 Code Composer Studio [10] 32
3.2.2 Code Development Flow [11] 34

3.3 Code Optimization and Acceleration 34
3.3.1 Compiler Optimization Options [11] 36
3.3.2 Software Pipelining [12]o 38
3.3.3 Loop Unrolling . . &5 . . smmee o ion o o oo 39
3.3.4 Other Acceleration®Rules . . .20 .0 o0 oo 40

4 Ranging Technique for IEEE 802.16e OFDMA 41
4.1 OFDMA Ranging e 41
4.1.1 Initial-Ranging/Handover-Ranging Transmissions [2], [3] 42
4.1.2 Periodic-Ranging and Bandwidth-Request Transmissions [2], [3] . . . 44
4.1.3 Ranging Codes 2], [3]o 44
4.1.4 Ranging and BW Request Opportunity Size [3] 46

4.2 Initial Ranging Process and Task [2], [3] 47
4.3 Initial Ranging Algorithm and Simulation Results 48
4.3.1 Initial Ranging Algorithm 48

4.3.2 Simulation Results 53

5 Integration of IEEE 802.16e OFDMA TDD Uplink Transceiver System on

DSP Platform with RTOS 57
5.1 Introduction to 3L Diamond 57
5.2 Integration Worko 62
5.2.1 Optimization 62

5.2.2 Imtegration on DSP Platform with RTOS 65

6 Conclusion and Future Work 73
6.1 Conclusion 73
6.2 Future Work oLaks e, 74
Bibliography 75

vi

List of Figures

2.1 Multiple access achieved in OFDMA (from [4]). 4
2.2 OFDMA frequency description (from [2], Figure 214). 6
2.3 OFDMA frequency description (from [2], Figure 213). 6

2.4 Example of the data region which defines the OFDMA allocation (from [2]). 9

2.5 Example of an OFDMA frame (with:enly mandatory zone) in TDD mode
(from [3]). N _EER N 10

2.6 Example of mapping OFDMA slots to subchannels and symbols in the uplink

(from [3]). %% oeWREELEE 40 12
2.7 Description of an uplink tile (from2}).% oo o000 12
2.8 PRBS generator for pilot modulation (from [2] and [3]). 15

2.9 Example of mapping OFDMA slots to subchannels and symbols in the down-

link in PUSC mode (from [3]). 16
2.10 Cluster structure (from [3]). oL L 17
3.1 DSP application using Sundance equipment (from [5]). 22
3.2 Carrier board SMT310Q (from [6]). 23
3.3 Carrier board communitcation (from [5]). L. 24

vil

3.4

3.5

3.6

3.7

3.8

3.9

3.10

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

ComPort switches (from [5]). Lo 25

The SMT395 module (from [5]). 26
Functional block and CPU diagram of the DSP [8]. 27
Interconnection mechanisms of TIM (from [5]).. 31
Sundance High-speed Bus (from [5]). 31
Code development flow for TT C6000 DSP (from [11]).. 35
Software-pipelined loop (from [13]). 39
Initial-ranging/handover-ranging transmission for OFDMA (from [3]). 42

Initial-ranging handover-ranging transmission for OFDMA, using two consec-

utive initial ranging codes (from [3])....o 42

Periodic-ranging or bandwidth-requeést transiission for OFDMA using one

code (from [3]). s EEE DT Bm L 43

Periodic-ranging or bandwidth-request transmission for OFDMA using three

consecutive codes (from [3]). . TR L Lo 43
PRBS generator for ranging code generation (from [3]). 45
Ranging/BW request opportunities (from [3]). 46
Ranging signal receiver. 49
Ranging simulation with detected ranging code. 50
Ranging simulation without detected ranging code. 51
Frequency offset estimation method. 52
CFO simulation in AWGN. 53

viil

4.12 Ranging code detection (1 user vs. busers). 54
4.13 RMSE of timing offset estimation. 54
4.14 Ranging code detection with CFO in AWGN. 56
4.15 Failure rates of ranging code detection in SUI-3. 56
5.1 Building with CCS and Diamond (from [19]). (a) Building with CCS. (b)
Building with Diamond. 59
5.2 Diamond model (from [18]). (a) Processors, wire, and link. (b) Host and
processor. (c¢) Task. (d) Ports. 61
5.3 Profile data of each module. o000 63
5.4 Software pipeline information. L. 64
5.5 Multi-processor networks (from [18])aww o . foe . . L . o L Lo 66
5.6 Uplink transceiver system.= ./, . . . 00 0 LT Lo 68

X

List of Tables

2.1

2.2

2.3

3.1

5.1

5.2

5.3

5.4

System Parameters Used in Our Study 8
OFDMA Uplink Subcarrier Allocation [2], [3] 13
OFDMA Downlink Subcarrier Allocation under PUSC [2], [3] 18
Functional Units and Operations Performed (from [9]). 29
Functions of Modules in Figute 5.6 curw o . 5o . . 0 0 0 0 0L 0oL 69
Descriptions of Modules in“Figure 5.6 .02 .. .= 70
Descriptions of Parametersin Figure'5:6-. .+« 71
Required DSP Computational Load . * "% 72

Chapter 1

Introduction

Orthogonal frequency division multiple access (OFDMA) has gained an increasing interest
recently because of its capability to cope with inter symbol interference (ISI), spectral effi-
ciency, robustness in the multipath propagation environment and ability to exploit multiuser
diversity. It has been utilized as an important physical layer technique in the IEEE wireless

metropolitan area network (MAN) standard 802.16:

An amendment to 802.16-2004, IEEE 802:16e-2005, addresses mobility. It implements a
number of enhancements to 802.16-2004; including better support for Quality of Service and
the use of Scalable OFDMA.

IEEE 802.16e-2005 is sometimes somewhat erroneously called Mobile WiMAX, after the
WiMAX Forum for interoperability. WiMAX is a telecommunications technology aimed at
providing wireless data over long distances in a variety of ways, from point-to-point links to

full mobile cellular type access [1].

Our study is based on the IEEE 802.16e-2005 standard and can be divided into two parts.
The first part is the ranging techniques for IEEE 802.16e OFDMA and the second part is

the digital signal processor (DSP) implementation of the uplink transceiver system.

In the first part, we discuss the ranging issue and algorithm. Ranging is one significant

process in the mobile WiMAX standard. Power adjustment, timing and frequency offset
estimation, and synchronization between a Base Station (BS) and all users within a cell are

done through the ranging process.

In the second part, we implement a full-software uplink transceiver system on Texas
Instrument (TI)’s DSP. Moreover, we employ various optimization techniques to accelerate

the execution speed of the programs in the DSP implementation.

This thesis is organized as follows. We first introduce the IEEE 802.16e Wireless MAN
OFDMA standard in chapter 2. Chapter 3 introduces the DSP implementation platform.
We discuss the ranging problems and present some solutions in chapter 4. In chapter 5,
uplink transceiver integration on DSP platform with real-time operating system is discussed.
Finally, the conclusion is given in chapter 6, where we also point out some potential future

work.

Chapter 2

Introduction to IEEE 802.16e¢
OFDMA

In this chapter, we first introduce some basic concepts regarding OFDMA. Then we give
an overview of the IEEE 802.16e OFDMA standard. For the sake of simplicity, we only
introduce the specifications that are useful in our study. Other specifications like channel
coding, synchronization, channel estimation, ete. .are not our concern and are ignored in this
introduction. For more details we refer thereader-to [2] and [3], from which we take much

of the material in this chapter.

2.1 Introduction to OFDMA

Orthogonal frequency division multiple access (OFDMA) is a multi-user version of the pop-
ular OFDM digital modulation scheme. It is used in the mobility mode of the IEEE 802.16

WirelessMAN air interface standard, often referred to as Mobile WiMAX.

In OFDMA, multiple access is realized by providing each user with a fraction of the
available number of subcarriers, as shown in Figure 2.1. In this way, it is similar to ordinary
frequency division multiple access (FDMA); however, OFDMA avoids the relatively large

guard bands that are necessary in FDMA to separate different users.

Pilot Subcarriers

User 1 Data Subcaiviers
User 2 Data Subcarriers

IHTTH‘TTTHT%TTTTH[ITHTT HTHT{ TTWTlT"T;I‘} T’I""T}

b\ Frequency

Guard Band Guard Band

Figure 2.1: Multiple access achieved in OFDMA (from [4]).

OFDMA can also be described as a combination of frequency domain and time domain
multiple access, where the resources are partitioned in the time-frequency space, and slots

are assigned along the OFDM symbol index as. well as OFDM subcarrier index [4].

2.2 Introduction to IEEE 802.16¢

The IEEE 802.16 family of standards is officially called WirelessMAN. Part of it has been
dubbed WiMAX (Worldwide Interoperability: for Microwave Access) by an industry group
called the WiMAX Forum. The mission of the Forum is to promote and certify compatibility

and interoperability of broadband wireless products.

The first 802.16 standard was approved in December 2001. It is a standard for point to
multi-point broadband wireless transmission in the 10-66 GHz band, with only a line-of-sight

(LOS) capability. It uses a single carrier (SC) physical layer (PHY) technique.

To overcome the disadvantage of the LOS requirement, the 802.16a standard was ap-
proved in 2003 to support non-line-of-sight (NLOS) links, operational in both licensed and
unlicensed frequency bands from 2 to 11 GHz. It was subsequently integrated with the

original 802.16 and 802.16¢ standards to create the 802.16-2004 standard (initially code-

4

named 802.16d). With such enhancements, the 802.16-2004 standard has been viewed as a
promising alternative for providing the last-mile connectivity by radio link. However, the

802.16-2004 specifications were devised primarily for fixed wireless users.

An amendment to 802.16-2004, IEEE 802.16e-2005, addressing mobility, has been pub-
lished in Febuary 2006. It specifies four air interfaces at PHY: OFDMA, SCa, OFDM, and

SC. This study is concerned with the OFDMA PHY in a mobile communication environment.

Some glossary we will often use in the following is as follows. The SS is considered
synonymous as the mobile station (MS), and it is sometimes termed the user. The BS is an
equipment set providing connectivity, management, and control of the SS. The direction of
transmission from the BS to the SS is called downlink (DL), and the opposite direction is
uplink (UL).

2.3 Concept of OFDMA and:Definition of Basic Terms

We present some basic concepts and terminology of OEDMA signaling in this section. The

contents of this section have been takento a large extent from [2] and [3].

2.3.1 Frequency Domain and Time Domain Descriptions

An OFDMA symbol is made up of subcarriers, the number of which determines the fast

Fourier transform (FFT) size used. There are several subcarrier types:

e Data subcarriers: For data transmission.
e Pilot subcarriers: For various estimation purposes.

e Null subcarriers: No transmission at all, for guard bands and including the DC sub-

carrier.

Subchannel 1 Subchannel 2 DC subcarrier Subchannel 3
4 SN N\

™.

ra \ ¥ RN e 4

A

|

LHITTHITEALL PHERReteebeet |

W Guard Band Channel Guard band ¥

Figure 2.2: OFDMA frequency description (from [2], Figure 214).

Y

Figure 2.3: OFDMA frequengy: deseription (from [2], Figure 213).

In the OFDMA mode, the active subcatriers are Alivided into subsets of subcarriers,
where each subset is termed a subchannel. In' the downﬁnk, a subchannel may be intended
for different (groups of) receivers; in‘the uplink, A tranSmitter may be assigned one or more
subchannels and several transmitters may transmit simultaneously. The subcarriers forming

one subchannel may, but need not be, adjacent. The concept is shown in Figure 2.2.

Inverse-Fourier-transforming creates the OFDMA waveform; its time duration is referred
to as the useful symbol time T3,. A copy of the last T}, of the useful symbol period, termed

cyclic prefix (CP), is used to collect multipaths while maintaining the orthogonality of the

tones. Figure 2.3 illustrates the structure.

2.3.2 Parameters

Primitive Parameters

Four primitive parameters characterize the OFDMA symbols:
e BWW: The nominal channel bandwidth.
® Nysea: Number of used subcarriers (which includes the DC subcarrier).

e n: Sampling factor. Its value is set as follows: For channel bandwidths that are a
multiple of 1.75 MHz, n = 8/7; else for channel bandwidths that are a multiple of
any of 1.25, 1.5, 2 or 2.75 MHz, n = 28/25; else for channel bandwidths not otherwise

specified, n = 8/7.
e (: This is the ratio of CP time to “useful” time, i.e., T,,/Ts.
Derived Parameters
The following parameters are defined in tetms-ofthe primitive parameters.

e Nppr: Smallest power of two greater than V,.q.

e Sampling frequency: Fs = floor(n - BW/8000) x 8000.
e Subcarrier spacing: Af = F,/Nppr.

e Useful symbol time: T, = 1/Af.

o CP time: T, = G x Tj.

e OFDMA symbol time: T, = Ty, + Tj.

Sampling time: T,/ Nppr.

Table 2.1 specifies the system parameters used in our study.

7

Table 2.1: System Parameters Used in Our Study

Parameter Value

System Channel Bandwidth (MHz) 10
Sampling Frequency (MHz) 11.2

FFT Size 1024
Subcarrier Spacing (kHz) 10.94

Useful Symbol Time (usec) 91.4
Guard Time (usec) 114
OFDMA Symbol Time (usec) 102.9

G (Ratio of CP Time to “Useful” Time) 1/8
n (Sampling Factor) 28/25

2.3.3 Definition of Basic Terms

We introduce some basic terms in the OFDMA PHY:

e Slot: A slot in the OFDMA PHY is-a two-dimensional entity spanning both a time and
a subchannel dimension. It is the minimum unit-for data allocation. For DL PUSC
(Partial Usage of SubChannels), one’slot is one subchannel by two OFDMA symbols.

For UL, one slot is one subchannel by three OFDMA symbols.

e Data region: In OFDMA, a data region is a two-dimensional allocation of a group of
contiguous subchannels, in a group of contiguous OFDMA symbols. All the allocations
refer to logical subchannels. A two dimensional allocation may be visualized as a

rectangle, such as the 4 x 3 rectangle shown in Fig. 2.4.

e Segment: A segment is a subdivision of the set of available OFDMA subchannels (that
may include all available subchannels). One segment is used for deploying a single

instance of the MAC.

e Permutation zone: A permutation zone is a number of contiguous OFDMA symbols,

Slot (Symbol Offset)

Subchannel "7 "¢+«
offset ¥_o___ - + L |

No_subchannels

-
Mo_OFDMA_symbols

Figure 2.4: Example of the data region which defines the OFDMA allocation (from [2]).

in the DL or the UL, that use the same permutation formula. The DL subframe or

the UL subframe may contain more than one permutation zone.

2.3.4 Frame Structure

When implementing a time-division-duplex (TDD) system, the frame structure is built from
BS and SS transmissions. Each frame in theé Dl-transmission begins with a preamble followed
by a DL transmission period and an*Ulk: transmission period. In each frame, the TTG
(transmit /receive transition gap) and RT'G (receive/transmit transition gap) shall be inserted
between the downlink and uplink and at the end of each frame, respectively, to allow the BS
to turn around. Figure 2.5 shows an example of an OFDMA frame with only mandatory

zone in TDD mode.

2.4 OFDMA Subcarrier Allocation

The OFDMA PHY defines four selectable FFT sizes: 2048, 1024, 512, and 128. For con-
venience, here we only take the 1024-FFT OFDMA subcarrier allocation for introduction.

The subcarriers are divided into three types: null (guard band and DC), pilot, and data.

OFDMA symbol number !

o=
ket g kRS kS p kT k9 J kL A3 EELS S T A 20 23 20 k+29 k+30 pht32
3 ANeine § hz 5
e . Ranging subchannel i
s+2 _| . . "
— = DL burst #3 UL burst #1
. = I
7 £5 UL burst #2
5 |] o oo . .
= _ O E DL burst #4
2| Je E — |
- = a o = -9
| JE |2 - E
an . E = UL burst #3 54 ;.
z | 4 |2 DL burst #5 & |2
3 - DL burst 42 DL burst #6 UL burst £4
- LIL burst #5
kel
by ad et
v -} - a—————

DL TG UL RTG

Figure 2.5: Example of an OFDMA frame (with only mandatory zone) in TDD mode (from
3)-

Subtracting the guard tones from Ngpr, one obtains the set of used subcarriers N,.q. For
both uplink and downlink, these used subeartiers are allocated to pilot subcarriers and data
subcarriers. However, there is a differencé between the different possible zones. For FUSC
(full usage of subchannels)and PUSC, in the"downlink, the pilot tones are allocated first;
what remains are data subcarriers, which are divided into subchannels that are used exclu-
sively for data. Thus, in FUSC, there is one set of common pilot subcarriers, and in PUSC
downlink, there is one set of common pilot subcarriers in each major group. In PUSC uplink,

each subchannel contains its own pilot subcarriers.

2.4.1 Uplink

The contents of this subsection have been taken to a large extent from [2] and [3].

10

Data Mapping Rules

The UL mapping consists of two steps. In the first step, the OFDMA slots allocated to each

burst are selected. In the second step, the allocated slots are mapped.

Step 1: Allocate OFDMA slots to bursts.

1) Segment the data into blocks sized to fit into one OFDMA slot.

2) Each slot shall span one or more subchannels in the subchannel axis and one or more
OFDMA symbols in the time axis (see Figure 2.6 for an example). Map the slots such
that the lowest numbered slot occupies the lowest numbered subchannel in the lowest

numbered OFDMA symbol.

3) Continue the mapping such that the OFDMA symbol index is increased. When the
edge of the UL zone is reached; continue .the: mapping from the lowest numbered

OFDMA symbol in the next available subchannel:

4) An UL allocation is created by-selecting @ integer number of contiguous slots, accord-
ing to the ordering of steps 1 to 3. This.xesults in the general burst structure shown

by the gray area in Figure 2.6.
Step 2: Map OFDMA slots within the UL allocation.

1) Map the slots such that the lowest numbered slot occupies the lowest numbered sub-

channel in the lowest numbered OFDMA symbol.

2) Continue the mapping such that the subchannel index is increased. When the last
subchannel is reached, continue the mapping from the lowest numbered subchannel in
the next OFDMA symbol that belongs to the UL allocation. The resulting order is

shown by the arrows in Figure 2.6.

11

B Uplink zone B — e
OFDMA symbol number

-

k-2 k-1 k k+1 k2 k3 k4 kS k6 kT k48 k9 k+10 A+11 k+12
0
1
2
3
4
3
O
7 SIpt{n+j1y St (n+22)
8 Klot (n
9
10 i ’
1 = b
12 Ty L4
13 h 4
14 7 7
15 Fd Vi
Z 2 -
3 ¥ ‘\ h 4
Skt (n+1j0)
AN
AN
AN
S atadegior
vi
Subchannel

number

Figure 2.6: Example of mapping OFDMA slots to subchannels and symbols in the uplink
(from [3]).

% % Symbol 0

Symbol |

% % Symbaol 2

% pilot carrier data carrier

Figure 2.7: Description of an uplink tile (from [2]).

Carrier Allocations

The uplink supports 35 subchannels in the 1024-FFT PUSC permutation. Each transmission

uses 48 data carriers as the minimal block of processing. Each new transmission for the uplink
commences with the parameters as given in Table 2.2.

A slot in the uplink is composed of one subchannel in three OFDMA symbols. Within

12

Table 2.2: OFDMA Uplink Subcarrier Allocation [2], [3]

] Parameter \ Value \ Notes

Number of DC 1 Index 512 (counting from 0)

subcarriers

Nysed 841 Number of all subcarriers used within a symbol

Guard subcarriers: 9291 | Left, right

TilePermutation Used to allocate tiles to subchannels
11, 19, 12, 32, 33, 9, 30, 7, 4, 2, 13, 8, 17, 23,
27,5, 15, 34, 22, 14, 21, 1, 0, 24, 3, 26, 29,
31, 20, 25, 16, 10, 6, 28, 18

Nsubchannels 35

Nsubcarriers 48

Ntiles 210

Number of subcarriers 4 Number of all subcarriers within a tile

per tile

Tiles per subchannel 6

each slot, there are 48 data subcarrierstand 24 pilot subcarriers. The subchannel is con-
structed from six uplink tiles, each having four suceessive active subcarriers with the config-

uration as illustrated in Figure 2.7.

The usable subcarriers in the allocated frequency band shall be divided into N, physical

tiles with parameters from Table 2.2. The ‘allocation of physical tiles to logical tiles in

subchannels is performed according to:

Til€S<S, n) = Nsubchannels ‘n—+ (Pt[<5 + n) mod Nsubchannels} + UL,PermBase)mod Nsubchannels

where:

e Tiles(s,n) is the physical tile index in the FFT with tiles being ordered consecutively

from the most negative to the most positive used subcarrier (0 is the starting tile

index),

e n = 0..5 is the tile index in a subchannel,

13

Pt is the tile permutation function,
s is the subchannel number in the range 0.. Ngupehanners — 1

?

UL_PermBase is an integer value in the range 0..69, which is assigned by a manage-

ment entity, and

Ngubchannels 18 the number of subchannels for the FFT size given in Table 2.2.

After mapping the physical tiles to logical tiles for each subchannel, the data subcarriers

per slot are enumerated by the following process:

)

After allocating the pilot carriers within each tile, indexing of the data subcarriers
within each slot is performed starting from the first symbol at the lowest indexed
subcarrier of the lowest indexed tile and.continuing in an ascending manner through
the subcarriers in the same symbol, then,going t6.the next symbol at the lowest indexed

data subcarrier, and so on. Datassubcarriers are indexed from 0 to 47.

The mapping of data onto the.subcarriers follows the equation below. This equation
calculates the subcarrier index (as‘assigned in item 1) to which the data constellation

point is to be mapped:
SUbCCLTTiBT(TL, S) = (’I’L + 13- S) mod Nsubcarriers (22)
where:

e Subcarrier(n, s) is the permutated subcarrier index corresponding to data sub-
carrier n in subchannel s,
e n = (..47 is a running index, indicating the data constellation point,

e s is the subchannel number, and

® Nyupcarriers 1S the number of subcarriers per slot.

14

LSB MSB
Initialization DLz 1 1 1 | R B B 1 1

Sequences U1 0 0 1] L0 1 0 1

| 3 516 |7 [t

Wy

Figure 2.8: PRBS generator for pilot modulation (from [2] and [3]).

Pilot Modulation

The PRBS (pseudo-random binary sequence) generator depicted in Figure 2.8 is used to
produce a sequence, wy. The value of the pilot modulation, on subcarrier k, is derived from

Wi, .

For the mandatory tile structurein the uplink:"pilot subcarriers are inserted into each data
burst in order to constitute the symbol and they-are modulated according to their subcarrier

location within the OFDMA symbol. The.pilot subearriers are modulated according to

R{cr} — 2(% —wn), et = 0. (2.3)

2.4.2 Downlink
The contents of this subsection have been taken to a large extent from [2] and [3].
Data Mapping Rules

The downlink data mapping rules are as follows:

1. Segment the data after the modulation block into blocks sized to fit into one OFDMA

15

OFDMA symbol index
L

B2 k-l k ktl k2 k3 ktd k5 k6 kT kHE kA9 k10 k1l kHI2

0

1

2

3

;}

§

7 Slaj) | Slot (p=12) |

g Slot fu=T}

] I 4

10 ¥ L

11 Vi 4

12 v 1] 1L

13 2l 4

14 / 7

15 71 T

L4 1 L4 1
7
Slot (11} | L 3 T E 3
b
N
Ihata tegior

vt
Subchanne]
number

Figure 2.9: Example of mapping OFDMA slots to subchannels and symbols in the downlink
in PUSC mode (from [3]).

slot.

2. Each slot shall span one subchannél-in-the-subchannel axis and one or more OFDMA
symbols in the time axis, as per‘the slot definition mentioned before. Map the slots
such that the lowest numbered slot occupies the lowest numbered subchannel in the

lowest numbered OFDMA symbol.

3. Continue the mapping such that the OFDMA subchannel index is increased. When
the edge of the data region is reached, continue the mapping from the lowest numbered

OFDMA subchannel in the next available symbol.

Figure 2.9 illustrates the order of OFDMA slots mapping to subchannels and OFDMA

symbols.

16

L X N N JON N N NON N N N N JEEWEEEvieE
X X XXX XXX X XX YoX BECET tt

& : data subcarrier

(O : pilot subcarrier

Figure 2.10: Cluster structure (from [3]).

Subcarrier Allocations

The OFDMA symbol structure is constructed using pilots, data and zero subcarriers. The
symbol is first divided into basic clusters and zero carriers are allocated. The pilot tones are
allocated first; what remains are data subcarriers, which are divided into subchannels that

are used exclusively for data. Pilots and data carriers are allocated within each cluster.

Figure 2.10 shows the cluster structuire with subcarriers from left to right in order of
increasing subcarrier index. For thespurpose:of determining PUSC pilot location, even and
odd symbols are counted from theZbeginningof the current zone. The first symbol in the
zone is even. The preamble is not counted aspart of the first zone. Table 2.3 summarizes

the parameters of the OFDMA PUSC symbol structure.

The allocation of subcarriers to subchannels is performed using the following procedure:

1) Divide the subcarriers into a number (Ngysers) Of physical clusters containing 14 ad-

jacent subcarriers each (starting from carrier 0).

2) Renumber the physical clusters into logical clusters using the following formula:

RenumberingSequence(PhysicalCluster), first DL zone,
LogicalCluster = RenumberingSequence((PhysicalCluster—i—
13- DL_PermBase)mod Nclustem), otherwise.
(2.4)

3) Divide the clusters into six major groups. Group 0 includes clusters 0-11, group 1

17

Table 2.3: OFDMA Downlink Subcarrier Allocation under PUSC [2], [3]

Parameter \ Value \ Comments

Number of DC 1 Index 512 (counting from 0)

subcarriers

Number of guard 92

subcarriers, left

Number of guard 91

subcarriers, right

Number of used 841 Number of all subcarriers used within a

subcarriers (Nyseq) symbol, including all possible allocated
pilots and the DC carrier

Number of subcarriers 14

per cluster

Number of clusters 60

Renumbering sequence 1 Used to tenumber clusters before
alloeation to subchannels:
6,48,37,21,31:40,42,56,32,47,30,33,54,18,
10:15,50,51,58,46,23,45,16,57,39,35,7,55,
25569503, 11,22.38,28,19,17,3,27,12,29,26,
5,41,49,44.9.8,1,13,36,14,43,2,20,24,52,4,
34,0

Number of data 24

subcarriers in each

symbol per subchannel

Number of subchannels 30

Basic permutation 6 3,2,0,4,5,1

sequence 6 (for 6

subchannels)

Basic permutation 4 3,0,2,1

sequence 4 (for 4

subchannels)

18

clusters 12-19, group 2 clusters 20-31, group 3 clusters 32-39, group 4 clusters 40-51
and group 5 clusters 52-59. These groups may be allocated to segments. If a segment
is being used, then at least one group shall be allocated to it. (By default group 0 is

allocated to segment 0, group 2 to segment 1, and group 4 to segment 2) .

Allocate subcarriers to subchannel in each major group separately for each OFDMA
symbol by first allocating the pilot subcarriers within each cluster and then taking all
remaining data subcarriers within the symbol. The exact partitioning into subchannels

is according to the equation below, called a permutation formula:

subcarrier(k, s) = (Nsubchannels * Tk)
(2.5)
+ {ps [nk mod Nsubchannels] + DL,PermBase}mod Nsubchannels

where:

e subcarrier(k,s) is the subcarrier index of subcarrier k in subchannel s,
e s is the index number of a.subchanmel; from' the set [0.. Nsybchanners — 1],

e n; = (k+ 13- s)mod Ngypearriers, Where k is the subcarrier-in-subchannel index

from the set [0--Nsubcarm'ers - 1]7

® Ngubchanners 18 the number of subchannels (for PUSC use number of subchannels

in the currently partitioned group),

e p;[j] is the series obtained by rotating basic permutation sequence cyclically to

the left s times,

® Noubcarriers 15 the number of data subcarriers allocated to a subchannel in each

OFDMA symbol, and

e DL _PermBase is an integer from 0 to 31.

19

Pilot Modulation

Pilot subcarriers are inserted into each data burst in order to constitute the symbol. The

PRBS generator depicted in Figure 2.8 is used to produce a sequence, wy.
Each pilot is transmitted with a boosting of 2.5 dB over the average non-boosted power
of a data tone. The pilot subcarriers are modulated according to

R{cr} = g(% —w), e =0, (2.6)

20

Chapter 3

DSP Implementation Environment

In this chapter, we introduce the DSP platform used in our implementation, which is a
Sundance’s product. In addition to hardware introduction, we also introduce the software

development tools and code development techniques.

3.1 DSP Implementation Platform

A typical DSP application using Sundancerequipment is made up from a host personal
computer (PC) holding one or more “cartier.boards”. each supporting one or more processing

elements (DSPs, 1/0O devices, or FPGAs) known as the Texas Instruments Module (TIM)
[5].
In our DSP application (Figure 3.1), the carrier board (SMT310Q) plugs into a host

PC using a PCI slot and does not run any program; it simply holds the TIMs (SMT395),

providing them with power and a means of communicating with the rest of the world.

3.1.1 Requirements on the PC [5]

Recommended minimum requirements:

e Hardware: 233 MHz Pentium.

21

Figure 3.1: DSP application using Sundance equipment (from [5]).
e Memory: 64 MB of RAM.

e Operating system: Windows ME‘-‘\W]TI‘CK’)WSEN;[‘LL SP6, Windows 2000, Windows XP
Home or Windows XP Pro.

are not supported.

s
e Disk space: Depends on the sofﬂW&re we chdpSe to install and the options selected.
M T Jni

The host software needs approx1mately 50 MB.

e Power supply: Depends on how many hardware devices are being driven, but typically

for three carrier boards populated with TIMs may require a 20 amp (3.3 V) power

supply.
3.1.2 The Carrier Board (SMT310Q) [6]

The SMT310Q is a quad site module carrier developed to provide access to TIM modules
over the PCI bus running at 33 MHz with a 32-bit data bus. As shown in Figure 3.2, the

main connection to the half-length PCI bus is via the module’s global bus. A single ComPort

22

Buffered External
JTAG connector

HOST 4—- JTAG In, Internal

JTAG Out, Internal

f
) 4
'y
K
4
2
&
I
5

¥ ¥ ¥ ¥
¢ \zzm GLOBAL 8US _‘—l """"" ErIrrITTm| [e==c=sss2] [E=====c=2]

Figure 3.2: Car_r,‘i.'e:f:f"‘bogtfd. SMT310Q (from [6]).

HALTNS -
is also mapped to the PCI bus prov1d1ng support for apphcatlon boot and data transfer. 1

Mbyte of SRAM is mapped on to the globai—bns—and .Can be accessed by the module as a
global resource or by the PCI brldge A 3 3 Volt supply is available at the fixing pillars for

the module. This supply is taken from the PCI edge connector.

3.1.3 Host Connection

As shown in Figure 3.3, the first slot on a multi-TIM carrier board has an extra global bus
connector that is connected to the carrier’s host interface and on-board resources. A TIM
on the first TIM slot of a board is known as the Root TIM, it can access the carrier board

resources.

The Root TIM of a carrier board plugged into a host PC has two ways to communicate

with the host:

23

Top TIM Global bus
connector

Off-board
JTAG
connector

Buffered
comport

Bottom TIM
connector

Figure 3.3: Carrier board communitcation (from [5]).
e Host ComPort.

e PCI connection to host. - b : ‘7 L <]

The host ComPort connection p;bvidés'"é ééﬁfhuﬁiﬂeation path between the host and the
TIM in the first site of the carrier board." Tt typiéally runs at 2 MB/s. ComPort 3 of the
first TIM site is normally connected to the host ComPort on the carrier board, as shown in

Figure 3.4’s additional settings.

The Sundance carrier boards include a PCI bridge chip that gives the first TIM access to
host resources, such as interrupts, I/O and host memory ranges. The TIM can use this PCI

connection for high-speed data transfer between the carrier board and the host memory.

3.1.4 The Texas Instruments Module (SMT395)

The TIMs used in our implementation are Sundance’s SM'T395 shown in Figure 3.5. It is

based on the 1 GHz 64-bit TMS320C6416T fixed-point DSP, manufactured on 90 nm wafer

24

Comport switches m

—Comport switching matiix————————— Addilional settings

TIMI1 TIM2 Host comport External Buffer

J= - :I I:
1+ |4 TIC3 C-Buf
2> s [Host <-> TIC3
Nelesﬂ}at g(innectiug the h.ostfompon to
o> _|3
4« ||l
5+ | |+2

wel| o
n-bl-p,,p,
o | o
Q+L+w
ae| -
R

TIC the ¢
T1C3 and T2CO,

&

TIM4 TIM3 [~ Restore switch settings antomatically
Apply I Clear I Cancel | OK I

Figure 3.4: ComPort switches (from [5]).

technology. The SM'T395 is supported by the TI Code Composer Studio and 3L Diamond
RTOS (real-time operating system) to enable full multi-DSP systems with minimum efforts

by the programmers [6].

Some features of SMT395 are:

e 1 GHz TMS320C6416T fixed-péint DSP processor with L1, L2 cache and SDRAM.

8000 MIPS peak DSP performance.

Xilinx Virtex II Pro FPGA XC2VP30-6 in FF896 package.

256 Mbytes of SDRAM at 133 MHz.

Eight 2 Gbit/sec Rocket Serial Links (RSL) for inter module communication.

Two Sundance High-speed Bus (50, 100 or 200 MHz) ports at 32 bits width.

Six ComPorts up to 20 Mbytes/s each for inter-DSP communication.

8 Mbytes flash ROM for configuration and booting.

25

—— TOP TIM CONNECTOR

| FPGA
: Interfaces for

Communication ||
1E850UTCEs

- b

| ExreRNAL [
---- i —~7] MEMORY N——

s

" BOTTOM TIM CONNECTOR

Figure 3.5: The SMT395 module (from [5]).

DSP Chip [7]

The TMS320C6416T DSP is a fixed-poii PSP in tHeéTMS320C64x series of the TMS320C6000
DSP platform family. It is based onjr‘phe Vei(fciﬂ'lI_"I‘.j.Ve'ry'«"lQng—instruction—word (VLIW) archi-

|]

tecture developed by TI. = g

The C6000 core CPU consists of 64_“"g“elllleral—pu1fp05é 32-bits registers and eight function
units. Features of C6000 devices include the folfawing:

e VLIW CPU with eight functional units, including two multipliers and six arithmetic

logic units:

— Executes up to eight instructions per cycle.

— Allows designers to develop highly effective RISC-like code for fast development

time.
e Instruction packing:

— Gives code size equivalence for eight instructions executed serially or in parallel.

26

C64x Digital Signal Processor

VGPT
L1P Gache

TGPt Direct-Mapped

18K Bytes Total

s |
T] cempspcome
Imerustion Fetch Gorra
Registers
Instrustion Dispatch
Timer 1 Advanced Instruction Packet
Gontral
Instruction Decode Logic
T T
est
A Ragister File B Register Fils
| ASTATE 31518 y—
I memse2 o] A1E-AD 515-80 InGircuit [+1{>
<+ Emulation
'______7‘ [u] si[mi]or]|[o2 me] 2] 12]| meerrspe
uToRIA pm ¢ IR 1 E i Gontrol
it | LT o) |
1 i e 1024K
4-channel) Bytes
MeBSPs: 4
Framing Crips: | T MeBsP .+..
H.100, MVIP,
SGSA T1,E1 | |
AGST Devices, P 2 i sty
g‘l';'d'::‘-"m‘ 2-Way Set-Aosaciative
I messeo ool 16K Bytec Total
16| | srioma
S i oy
| | smiomssr | |
32 ‘
|
| |
| or |
| | Boot Gonfiguration
I PCE | FLL Power-Down
e 4 (x1, 6, x12, Lagic
and x20)
Interrupt
Selector

Figure 3.6: Functional plock and CPU diagram of the DSP [§].
— Reduces code size, program fetches, and power consumption.
e Efficient code execution on indépendent functiomal units:

— Assembly optimizer for fast development and improved parallelization.

— Efficient C complier on DSP benchmark suite.
e Conditional execution of all instructions:

— Reduces costly branching.

— Increases parallelism for higher sustained performance.

27

Central Processing Unit [8]

The C64x DSP core contains 64 32-bit general purpose registers, program fetch unit, instruc-
tion decode unit, two data paths each with four function units, control register, control logic,
advanced instruction packing, test unit, emulation logic and interrupt logic. The program
fetch, instruction fetch, and instruction decode units can arrange eight 32-bit instructions to

the eight function units every CPU clock cycle.

The processing of instructions occurs in each of the two data paths (A and B) shown
in Figure 3.6, each of which containing four functional units and one register file. The four
functional units are as follows. The first unit is for multiplier operations (.M). The second
unit is for arithmetic and logic operations (.L). The third is for branch, byte shifts, and
arithmetic operations (.S). And the last is for linear and circular address calculation to load
and store with external memory operdtions (.D)..The details of the functional units are

described in Table 3.1.

Each register file consists of 32 32-bit 'registers for each four functional units reads and
writes directly within its own data path. That is,the functional units .L1, .S1, .M1, .D1
can only write to register file A. The same condition occurs in register file B. However,
two cross-paths (1X and 2X) allow functional units from one data path to access a 32-bit
operand from the opposite side register file. The cross path 1X allows data path A to read
their source from register file B. The cross path 2X allows data path B to read their source
from register file A. In the C64x, CPU pipelines data-cross-path accesses over multiple clock
cycles. This allows the same register to be used as a data-cross-path operand by multiple

functional units in the same execute packet.

28

Table 3.1: Functional Units and Operations Performed (from [9])

’ Function Unit

\ Operations

L unit (L1, .12)

32/40-bit arithmetic and compare operations

5-bit constant generation, 32-bit logical operations
Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits

Byte shifts, Data packing/unpacking

Dual 16-bit and Quad 8-bit arithmetic operations
Dual 16-bit and Quad 8-bit min/max operations

.S unit (.S1, .S2)

32-bit logical operations, 32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field operations

Data packing/unpacking, Constant generation, Byte shifts, Branches
Register transfers.to/fromr control register file (.S2 only)

Dual 16-bit and Quad 8-bit compare operations

Dual 16-bit shift operations

Dual 16-bit and Quad 8-bit saturated arithmetic operations

M unit (M1, .M2)

16 x 16, 16 x32 multiply operations

Quad 8 x 8 and Dual 16.x.16 multiply operations
Dual 16 x 16 multiply with.add/subtract operations
Quad 8 x 8 multiply 'with add operation

Bit interleaving/de-interleaving

Variable shift operations and rotation

Bit expansion, Galois Field Multiply

.D unit (.D1, .D2)

32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant offset (.D2 only)
Load and store double words with 5-bit constant

Load and store non-aligned words and double words

5-bit constant generation, 32-bit logical operations

29

Memory Architecture and Peripherals

The C64x is a two-level cache-based architecture. The level 1 cache is separated into program
and data spaces. The level 1 program cache (L1P) is a 128 Kbit direct mapped cache
and the level 1 data cache (L1D) is a 128 Kbit 2-way set-associative mapped cache. The
level 2 (L2) memory consists of 8 Mbit memory space for cache (up to 256 Kbytes) and
unified mapped memory. The external memory interface (EMIF) provides interfaces for the
DSP core and external memory, such as synchronous-burst SRAM (SBSRAM), synchronous
DRAM (SRAM), SDRAM, FIFO and asynchronous memories (SRAM and EPROM). The
EMIF also provides 64-bit-wide (EMIFA) and 16-bit-wide (EMIFB) memory read capability.
The C64x contains some peripherals such as enhanced direct-memory-access (EDMA), host-
port interface (HPI), PCI, three multichannel buffered serial ports (McBSPs), three 32-bit
general-purpose timers and sixteen general-purposeé:l/O pins. The EDMA controller handles
all data transfers between the level-two (L2) cache/memory and the device peripheral. The
C64x has 64 independent channels. The HPI'is a 32-/16-bit wide parallel port through
which a host processor can directly aceess the €PUs memory space. The PCI port supports

connection of the DSP to a PCI host via the integrated PCI master/slave bus interface.

3.1.5 Interconnection Mechanisms

As shown in Figure 3.7, there are several different ways to exchange data between Sundance
hardware modules and other peripheral devices; the data rate required by application will

usually determine which one to use. The data exchange mechanisms include:

e Communication Ports (ComPorts).
e Sundance Digital Link (SDL).

e Sundance Digital Bus (SDB).

30

SDB connector

Global bus
connector

connector

2LWLTE

CASEIEL-1E3
N0 1{N00TEIL

(3.3V supply)
ALy,
Figure 3.7: Interconneetion mechanisms of TIM (from [5]).
3 —E R, G

Figure 3.8: Sundance High-speed Bus (from [5]).

31

e Sundance High-speed Bus (SHB).
e Rocket-IO Serial Link (RSL).

e Global bus.

In our system, we use four TIMs and employ SHB cables to connect them. The SHB
cable transfers 32 bits at a time. For each 32-bit access made by the DSP, the firmware
implementation directly accesses the 32 physical bits provided by the SHB physical device.

Figure 3.8 illustrates two TIMs connected by a SHB cable.

3.2 Code Development Environment

In our study, we use two software development tools, Code Composer Studio (CCS) and
3L Diamond. Sundance advises their, eustomers. to design software solutions for multi-DSP
systems and to implement hardware-Solutions formixed multi-FPGA /DSP systems with the
3L Diamond products. We introduce CGS an-this sectioni, and present an introduction to 3L

Diamond in Chapter 5 which discusses'the integration work.

3.2.1 Code Composer Studio [10]

Code Composer Studio is a Texas Instruments product. It provides the compiler, assembler,
and linker that we need to be able to generate programs that will execute on DSP TIMs.
It also provides software for debugging programs by watching and interacting with their

execution.

Code Composer Studio furnishes its own development environment to load code to par-
ticular processors; all processors in the system must be loaded separately. As this can be

inconvenient and error-prone and does not include any support for Sundance peripherals,

32

Sundance recommends the developer to develop the code using the Diamond real-time oper-

ating system from 3L, for efficient use of both the developer’s time and the DSP resources.

Some main features of the CCS are listed below:

e Real-time analysis.
e Source code debugger common interface for both simulator and emulator targets:

— C/C++/assembly language support.
— Simple breakpoints.
— Advanced watch window.

— Symbol browser.

DSP/BIOS host tooling support.(eonfigure, réal-time analysis and debug).

Data transfer for real time data ‘exchange between host and target.

Profiler to understand code performance.

DSP/BIOS support:

— Pre-emptive multi-threading.
— Interthread communication.

— Interupt handling.

e Chip Support Libraries (CSL) to simplify device configuration. CSL provides C-

program functions to configure and control on-chip peripherals.

e DSP libraries for optimum DSP functionality. The libraries include many C-callable,

assembly-optimized, general-purpose signal-processing and image/video processing rou-

33

tines. These routines are typically used in computationally intensive real-time appli-

cations where optimal execution speed is critical.

3.2.2 Code Development Flow [11]

The recommended code development flow involves utilizing the C6000 code generation tools
to aid in optimization rather than forcing the programmer to code by hand in assembly.
Hence the programmer may let the compiler do all the laborious work of instruction selection,
parallelizing, pipelining, and register allocation. This simplifies the maintenance of the code,
as everything resides in a C framework that is simple to maintain, support, and upgrade.
Figure 3.9 illustrates the three phases in the code development flow. Because phase 3 is
usually too detailed and time consuming, most of the time we should not need to go into
phase 3 to write linear assembly code unless;the software pipelining efficiency is too bad or

the resource allocation is too unbalanced.

3.3 Code Optimization.and Acceleration

In this section, we describe several methods that can accelerate our code and reduce the
execution time on the C64x DSP. First, we introduce two techniques that can be used to

analyze the performance of specific code regions:

e Use the clock() and printf() functions in C/C++ to time and display the performance
of specific code regions. Use the stand-alone simulator (load6x) to run the code for

this purpose.

e Use the profile mode of the stand-alone simulator. This can be done by compiling the
code with the -mg option and executing load6x with the -g option. Then enable the

clock and use profile points and the RUN command in the Code Composer debugger

34

Phase 1: I Write C code I

Develop C Code <
I Compile I
v
| Profile |

Complete

—I Refine C code I

Phase 2: *
Refine C Code I o
¥
| Profile |

Complete

Yes

optimization?,

—I Write linear assembly |
Phase 3:
Write Linear —
Assembly I Assembly optimize I
| Profile |

Complete

Figure 3.9: Code development flow for TT C6000 DSP (from [11]).

35

to track the number of CPU clock cycles consumed by a particular section of code.

Use View Statistics to view the number of cycles consumed.

Usually, we use the second technique above to analyze the C code performance. The
feedback of the optimization result can be obtained with the -mw option. It shows some
important results of the assembly optimizer for each code section. We take these results into

consideration in improving the computational speed of certain loops in our program.

3.3.1 Compiler Optimization Options [11]

In this subsection, we introduce the compiler options that control the operation of the
compiler. The CCS compiler offers high-level language support by transforming C/C++
code into more efficient assembly language source code. The compiler options can be used

to optimize the code size or the executing performance.

Some compiler options that are more important in our code development are:

e -00:

— Performs control-flow-graph simplification.

Allocates variables to registers.

— Performs loop rotation.

Eliminates unused code.

Simplifies expressions and statements.

— Expands calls to functions declared inline.
e —0l. Performs all -00 optimization, and:
— Performs local copy/constant propagation.

36

— Removes unused assignments.

— Eliminates local common expressions.

e -02. Performs all -0l optimizations, and:

— Performs software pipelining.
— Performs loop optimizations.

— Eliminates global common subexpressions.

Eliminates global unused assignments.
— Converts array references in loops to incremented pointer form.

— Performs loop unrolling.

e -03. Performs all -02 optimizations;‘and:

— Removes all functions that are never called.
— Simplifies functions with-return values-that are never used.
— Inline calls to small functions.

— Reorders function declarations so that the attributes of called functions are known

when the caller is optimized.

Propagates arguments into function bodies when all calls pass the same value in

the same argument position.

Identifies file-level variable characteristics.

e -k: Keep the assembly file to analyze the compiler feedback.

e -pm -op2: In the CCS compiler option, -pm and -op2 are combined into one option.

37

— -pm: Gives the compiler global access to the whole program or module and allows

it to be more aggressive in ruling out dependencies.

— -op2: Specifies that the module contains no functions or variables that are called
or modified from outside the source code provided to the compiler. This improves

variable analysis and allowed assumptions.

e -mw: Produce additional compiler feedback. This option has no performance or code

size impact.

e -mi: Describes the interrupt threshold to the compiler. If the compiler knows that no
interrupts will occur in the code, it can avoid enabling and disabling interrupts before
and after software-pipelined loops for improvement in code size and performance. In
addition, there is potential for performance improvement where interrupt registers may

be utilized in high register pressure loops.

3.3.2 Software Pipelining [12]

Software pipelining is a technique used'toschedule instructions from a loop so that multiple
iterations of the loop can be executed in parallel. Figure 3.10 illustrates a software pipelined
loop. The stages of the loop are represented by A, B, C, D and E. In this figure, a maximum
of five iterations of the loop can execute at one time. The shaded area represents the loop
kernel. In the loop kernel, all five stages execute in parallel. The area above the is known
as the pipelined loop prolog, and the area below the kernel is known as the pipelined loop

epilog.

But under the conditions listed below, the compiler will not do software pipelining;:

o [f a register value lives too long, the code is not software-pipelined.

38

Al
B1 A2
= = e Pipelined-loop prolog
D1 c2 B3 A4
E1 D2 C3 B4 A5 Kemnel
E2 D3 Cc4 B5
E3 D4 C5
= D% Pipelined-loop epilog

ES

Figure 3.10: Software-pipelined loop (from [13]).

If a loop has complex condition code within the body that requires more than five

condition registers, the loop is not software pipelined.

A software-pipelined loop cannot contain function calls, including code that calls the

run-time support routines.

In a sequence of nested loops, the jntiermostiloop is the only one that can be software-

pipelined.

If a loop contains conditional break, itis not. software-pipelined.

3.3.3 Loop Unrolling

Loop unwinding can be used to make programs more suitable for parallel processing. The
idea of loop unrolling is to save time by reducing the number of overhead instructions that
the computer has to execute in a loop, thus improving the cache hit rate and reducing
branching. To achieve this, the instructions that are called in multiple iterations of the loop

are combined into a single iteration.

39

3.3.4 Other Acceleration Rules

Other code acceleration rules include reducing memory access, using bit shifts for multiplica-
tion or division, declaring constants as constants that are not variable, accessing the memory

sequentially, and minimizing use of conditional breaks or complex condition codes in loops.

40

Chapter 4

Ranging Technique for IEEE 802.16€
OFDMA

In OFDMA, the active subcarriers are divided into subsets of subcarriers termed subchannels
which are assigned to multiple users for simultaneous transmissions. The subcarriers of each
subchannel may not necessarily be adjacent. To maintain the orthogonality among the
subcarriers in the uplink of OFDMA systems, the signals from all active users should arrive
at the BS synchronously [14]. This is aceémplished by an initial uplink synchronization

called a ranging process.

Ranging process includes initial ranging, periodic ranging, bandwidth request and handover-

ranging. However, we mainly discuss initial ranging in this chapter.

4.1 OFDMA Ranging

The contents of this section have been taken to a large extent from [2] and [3].

A ranging channel is composed of one or more groups of six adjacent subchannels, where
the groups are defined starting from the first subchannel. Optionally, ranging channel can
be composed of one or more groups of eight adjacent subchannels. We choose the former in

our study.

41

time

OFDM symbol period OFDM symbol period

Figure 4.1: Initial-ranging/handover-ranging transmission for OFDMA (from [3]).

e

CP Guard CP Guard
M [T] []
\! Code X m Code X m Code (X+1) E\ Code (X~1) %
%
A i Ad i A
| Copysmples i ¢ pysamples 1 ¢ opysamples i ¢ opy samples.
e | . 1

OFDM symbwol peniod OFDM symbel peniod

Figure 4.2: Initial-ranging handover—ranglng transmlssmn for OFDMA, using two consecutive
initial ranging codes (from [3]). ‘

Subchannels are considered adjacent if they: have“sﬂuccessive logical subchannel numbers.
The indices of the subchannels that compose the ranging channel are specified in the UL-
MAP message. Users are allowed to collide on this ranging channel. To effect a ranging
transmission, each user randomly chooses one ranging code from a bank of specified binary
codes. These codes are then BPSK modulated onto the subcarriers in the ranging channel,

one bit per subcarrier.

4.1.1 Initial-Ranging/Handover-Ranging Transmissions [2], [3]

The initial ranging codes are used for any MS that wants to synchronize to the system for the

first time. Handover ranging codes are used for ranging against a target BS during handover.

42

guard
interval fume

OFDM 5}-‘1!1!}0] pertod

Figure 4.3: Periodic-ranging or bandwidth-request transmission for OFDMA using one code

(from [3]).

OFDM sy:Lb ol period

Figure 4.4: Periodic-ranging or bandwidth—request traf;smission for OFDMA using three
consecutive codes (from [3]).

An initial-ranging transmission is performed using two or four consecutive symbols as shown
in Figures 4.1 and 4.2, respectively. The same ranging code is transmitted on the ranging
channel during each symbol, with no phase discontinuity between the two symbols. In the
latter case (Figure 4.2), the BS can allocate two consecutive initial-ranging /handover-ranging
slots, onto which the MS transmits the two consecutive initial-ranging/handover-ranging

codes (the starting code shall always be a multiple of 2). We choose the former in our study.

43

4.1.2 Periodic-Ranging and Bandwidth-Request Transmissions [2],

[3]

Periodic ranging transmissions are sent periodically for system periodic ranging. Bandwidth-

requests transmissions are for requesting uplink allocations from the BS.

These transmissions shall be sent only by MS that have already synchronized to the
system. To perform either a periodic-ranging or bandwidth-request transmission, the MS

can send a transmission in one of the following ways:

e Modulate one ranging code on the ranging subchannel for a period of one OFDMA
symbol. Ranging subchannels are dynamically allocated by the MAC layer and indi-
cated in the UL-MAP.

e Modulating three consecutive ranging eodes (starting code shall always be a multiple
of 3) on the ranging subchanael forla period of three OFDMA symbols (one code
per symbol). Ranging subchannels are dynamically allocated by the MAC layer and
indicated in the UL-MAP.

A time domain illustration of the formerand latter are shown in Figure 4.3 and Figure

4.4.

4.1.3 Ranging Codes [2], [3]

The binary codes are the pseudonoise (PN) codes produced by the PRBS generator described
in Figure 4.5, which implements the polynomial generator 1+ z! 4 z* + 27 4+ 2. The PRBS
generator is initialized by the seed b14..b0 = 0,0,1,0,1,0,1,1,80,s1,52,s3,54,85,56 where s6 is the

LSB of the PRBS seed, and s6:s0 = UL_PermBase, where s6 is the MSB of UL_PermBase.

The length of the ranging codes is 144 bits, which are subsequences of the pseudonoise

sequence appearing at its output (Cy). These bits are used to modulate the subcarriers in

44

Initiahzation
S.qu.ltlicc

LSB 6 5 s4 s3 s2 s1 s0 1 1 ¢ 1 ¢ 1 0 0 MSB

5|5|-|3|ghﬂ|1| |3|14|:5

12

5

(1]2 3]s
o ?1;‘/ _]
\ \

— b

Ce

Figure 4.5: PRBS generator for ranging code generation (from [3]).

a group of six adjacent (logocally) subchannels. The bits are mapped to the subcarriers in
increasing frequency order of the subcarriers, such that the lowest indexed bit modulates
the subcarrier with the lowest frequency index and the highest indexed bit modulates the
subcarrier with the highest frequency index. The index of the lowest numbered subchannel
in the six shall be an integer multiple‘ of. sixs» The six subchannels are called a ranging

subchannel.

The first 144-bit code obtained by clockiﬁg the PNj generator as specified become the
first ranging code. The next ranging code is' produced ‘by taking the output of the 145th
to 288th clock instances of the PRBS genérator; ete. The number of available codes is 256,
numbered 0..255. Each BS uses a subgroup of these codes, where the subgroup is defined by
a number S, 0 < § < 255. The group of codes will be between S and ((S+O+N+M-+L)
mod 256).

e The first N codes produced are for initial ranging. Clock the PRBS generator 144 x
(S mod 256) times to 144 x ((S + N) mod 256) —1 times.

e The next M codes produced are for periodic ranging. Clock the PRBS generator 144
X ((N + S) mod 256) times to 144 x ((N + M + S) mod 256) —1 times.

e The next L codes produced are for bandwidth requests. Clock the PRBS generator

45

Ranging (| BW -——————————Ranging / BW request allocation— o
request slot

number
0 1 2
-
3 4 5
Empty
6 7 8
Na
subchannels 9 10 11
- -
Ny OFDMA symbols = length of CDMA code Ny OFDMA symbols

Figure 4.6: Ranging/BW request opportunities (from [3]).

144 x (N + M + S) mod 256) times to 144 x (N + M + L + S) mod 256) —1

times.

e The next O codes produced are for handover tanging. Clock the PRBS generator 144
X (N + M+ L+ S) mod 256) times to 144 X (N + M + L + O + S) mod 256)

—1 times.

4.1.4 Ranging and BW Request Opportunity Size [3]

For CDMA ranging and BW request, the ranging opportunity size is the number of symbols
required to transmit the appropriate ranging/BW request code (1, 2, 3 or 4 symbols), and is
denoted N;. Ny denotes the number of subchannels required to transmit a ranging code. In
each ranging/BW request allocation, the opportunity size (V) is fixed and conveyed by the
corresponding UL_MAP_IE that defines the allocation. As shown in Figure 4.6, the ranging
allocation is subdivided into slots of Ny OFDMA symbols by Ny subchannels; in a time
first order, i.e., the first opportunity begins on the first symbol of the first subchannel of

the ranging allocation, the next opportunities appear in ascending time order in the same

46

subchannel, until the end of the ranging/BW request allocation (or until there are less than
N; symbols in the current subchannel), and then the number of subchannel is incremented
by Nsy. The ranging allocation is not required to be a whole multiple of N; symbols, so a
gap may be formed (that can be used to mitigate interference between ranging and data
transmissions). Each CDMA code will be transmitted at the beginning of the corresponding

slot.

4.2 Initial Ranging Process and Task [2], [3]

This section mainly introduces initial ranging process and the task needing to be done at

the receiver side.

Once a MS senses a BS, for network entry it first scans for a DL channel and synchronizes
itself with the BS. It learns the uplinkiehannel characteristics through the Uplink Channel
Descriptor (UCD) MAC management message, “At'this point, the MS shall scan the UL-MAP

message to find an initial ranging interval and ‘acquire transmit parameters.

At the transmitter side, when MSs perform initial ranging, they shall transmit a randomly
chosen frequency domain ranging code on the ranging channel in a randomly chosen ranging

time slot.

Since more than one MSs may choose the same time slot, the received ranging signal
may include several MSs’ ranging information. So, at the receiver side, the BS is required to
detect different received ranging codes, estimate the timing, frequency offset and the power

level of each user that transmits an initial ranging code.

The BS then broadcasts the ranging response which includes the detected ranging codes
and ranging slots with adjustment instructions for the timing, frequency and power level.

This information is used by the MS that sent the CDMA ranging code to identify the ranging

47

response message that corresponds to its ranging request. The status notifications of either

ranging successful or retransmission are also broadcasted.

According to the ranging response, the MS knows what action should be taken. More

details about the ranging response are specified in [3].

Ranging code detection and the estimation of its timing offset and frequency offset are

some of the main subjects of our work.

4.3 Initial Ranging Algorithm and Simulation Results

In this section, we present our ranging algorithm and the simulation results. As mentioned

before, the tasks in ranging are:

e Detection of ranging code,
e Estimation of timing offset,and

e Estimation of frequency offset.

4.3.1 Initial Ranging Algorithm

Figure 4.7 depicts the overall structure of the ranging receiver system. Ranging code’s
detection and timing offset estimation will complete at the same time. If we determine that
the received signal contains a ranging signal, then we will estimate the frequency offset of
the received ranging signal. When the detected signal is too weak, we will drop the received

signal and will not estimate the frequency offset.

In the figure, the FFT processor processes the time domain data from the receiver filter
and outputs frequency domain data. The ranging subcarrier selector extracts subcarrier val-

ues on which a ranging code may be loaded. As shown in Figure 4.1, since the ranging signal

48

Ranging Cioda
derection and
Timing Offset
Estimaiion
Ench Possible
Ranging Code
Tx S_igna] ‘
l Cik)
I
- Lemo
= Hangmg
Channel #| Rx_Filier | PrEH Subcirrier —5[1:»@—\-"“:}-!— Tnselr;_:‘drand
| Selector Priscessar
Fiky I
l Rk)
I : Deter :
Estimated Frequeney ﬁuifmmy Uiser Detecred | | Tﬁ':jmn » MNorm
(Hfset Etiation | BNE oftset) Biifiiatian Ciperarion

Mo user detected

J

Abort

Figure 4.7: Ranging signal receiver.

49

160 T T T
H ; 1 [AWGN

: ; i |SNR=10dB
1405 ----- ____________________________ “ Single User

L Lusspmensmeneheen e b

Sample

Figure 4.8: Ranging simulation with detected ranging code.

spans two successive OFDMA symbgls, the ranging subcarrier selector extracts subcarriers
from the second OFDMA symbol of the FET. processor’s output, too. Then the multiplier
multiplies the subcarrier values recerved from the ranging subcarrier selector by the possible

ranging codes.

Herein, the output of multiplier (V(k)) is composed of 144 samples. Zeros are inserted
to the frequency positions and the IFFT processor processes the result and outputs R(k)
which is composed of 1024 complex samples. The total number of zeros inserted is 880, to
make the OFDMA symbol containing zero in all channels beside the ranging channels. After
IFFT, the signal becomes a time domain symbol. The next step is norm operation, which
calculates the norm of R(k). If the detected signal contains a ranging signal and multiplies
by a correct ranging code, it will have a large value at the correct timing offset, as shown in
Figure 4.8. Figure 4.9 shows a simulation result of received signal multiplies by an incorrect

ranging code. More simulation results and analysis will be presented in the next subsection.

20

Figure 4.9: Ranging simulation without detected ranging code.

Ranging code detection and the estimation of its timing offset can also be accomplished
in the time domain by using cross correlation, itneeds 1024 x 1024 complex multiplications to
complete that work. In our study, using IEFT to achieve'same purposes needs 1024 xlog,1024
complex multiplications, it is only 1% in Gemplex multiplications of using cross correlation

in the time domain.

As mentioned before, we estimate the frequency offset of the received ranging signal if
a ranging signal is detected. As shown in Figure 4.7, the inputs to the frequency offset
estimation block are F'(k) and the timing offset value. Figure 4.10 describes the block’s

function.

There are three successive OFDMA symbols in an uplink slot. If any uplink slot contains
a ranging signal, then the ranging signal is loaded in this slot according to OFDMA symbol
offset value specified by UL-MAP. F(k) denotes the time period of three successive OFDMA

symbols that contains at least one ranging code, the timing offset Y corresponds to a detected

o1

F(k)

L

Ranging
'Fiming Oitser=7% £ FFT Processor ——a(k) — Rebcarvier Ak LFCY estimate
Selector

Figure 4.10: Frequency offset estimation method.

ranging code’s timing offset. We pick out two successive OFDMA symbols from F'(k) starting

time at Y, to form the input of the FFT processor.

The input to the ranging subcarrier,sélector (k) is obtained from the output of the
FFT processor. As mentioned before, the ranging, subcarrier selector extracts the ranging
subcarriers from G(k), and outputs Z(k) which are composed of two successive OFDMA

symbols, ranging subcarriers.

The last step of Figure 4.10 implements/the equation below [16]:

N;—1

L(0>° Z°(k) x Z(k+ N,))
k=0

27

~

Af =

(4.1)

where N, = 144 and Z(k) is the output of the ranging subcarrier selector, which consists of

288 complex values.

From (4.1), the detectable range of frequency offset values is (—0.5,0.5) (see Figure 4.11),

which will cover the range of expected frequency offsets in initial ranging.

52

5 10
SNR (dB)

Figure 4.11: CFO simulation in AWGN.

4.3.2 Simulation Results

In this subsection, we use last subsection’s-algorithm and present some simulation results

about timing offset and frequency offset’s ‘estimation and detection of ranging codes.

Figure 4.12 shows a simulation result of ranging code detection and timing offset esti-
mation with ranging channel containing one single user and five users, respectively. It is
obvious that more ranging users causes more interference. In AWGN channel, we can set a
threshold to decide whether the ranging channel contains ranging code or not. For example,
if we choose 100 as threshold, when the calculated norm has a value greater than 100, then
we say that the received signal contains ranging code, and the location of this value is the
estimated timing offset. This is a simple method, but its performance is bad in multipath

channels.

We can use another way to decide whether the received OFDMA symbol contains a

23

Norm

Norm

150 T T T

! [AWGN |, SNR=54B ||
v | Single User :

100
502
¢ imomiilii iimanieili :
1] 250 500 750 1000
Sample
L ! 1 1 1
= ! ; b |AWGH | SNR=5dB ||
: : 5 Users
A v s s s e D B D e e e e e S A R A A

Figure 4.13: RMSE of timing offset estimation.

o4

ranging code. Choose three thresholds H, H;, H,, where H; is greater than Hs;. We
calculate the ratio of the mean of norm value greater than H; (hy) to the mean of norm
value smaller than Hy (ho). If this ratio (hy/hs) is greater than H, we say that the received
OFDMA symbol contains ranging code. The choice of H, H; and H, determines the tradeoff
between false alarm and miss detection. To find the timing offset, let the maximum value
of the norm be divided by a number (h;), then we get a new threshold. We choose the first

location of norm greater than this threshold as the estimated timing offset [15].

We use the method mentioned in the last paragraph to run a simulation under the SUI-3
channel and show the result in Figure 4.13. The values of H, H;, and Hs in our simulation
are 85.333, 21.333, 11.022, respectively. We calculate the RMSE of timing offset estimation
based on the first path for one single user and five users, respectively. The determination
of optimum parameters are not easy work,;especially for different numbers of users under

multipath propagation. This work iseft to_potential future work.

In our system, frequency offset value is within the range of [—0.1,0.1], where the speed
is 120 km/hr and the central frequeney is 3.5/GHz. Eigure 4.14 shows the simulation result
of received signal containing five ranging eodes with CFO = 0.1 under AWGN channel.
Compared with the bottom figure of Figure 4.12, Figure 4.14 has no evident difference due
to effect of CFO.

Figure 4.15 shows the failure rate of ranging code detection. Single user and three users
in ranging channel under SUI-3 channel are shown in top and bottom of figure, respectively.
The effect of CFO decreases the success rate of ranging code detection by about 1% for single

user and about 3% for three users in ranging channel.

95

140 T T
; 3 [AWGN - SNR=5dB

: : 115 Users

1200 S - 12X

100

Norm

Figure 4.14: Ranging«¢ode detectionwith CFO in AWGN.

Single user

Failure rate

0.08 :' i * * i ‘
() 2 4 5 3 10 12 14 16 18 20
SNR(dB)

Three users

Failure rate

i i i
04 2 4 3 3 10 12 14 16 18 20
SNR(dE)

Figure 4.15: Failure rates of ranging code detection in SUI-3.

26

Chapter 5

Integration of IEEE 802.16e OFDMA
TDD Uplink Transceiver System on
DSP Platform with RTOS

In this chapter, we first introduce the software.platform used in our integration system.
Then we discuss how the uplink transeeiver system is implemented on DSP platform with a

real-time operating system (RTOS)s

5.1 Introduction to 3L Diamond

Diamond is 3L’s system for multiprocessor software design and implementation. Diamond
uses the communicating sequential processes (CSP) model to give a simple but powerful way
of developing applications that make use of one or more processors [17]. The 3L Ltd has
been working closely with Sundance, aiming to provide simple-to-use, reliable and flexible

development environment for the Sundance hardware.

The way to build and run applications using Diamond differs substantially from the
more traditional techniques used in other environments, particularly the Code Composer
Studio (CCS). CCS has been designed to produce applications for single processor systems;

multiprocessor systems are seen as several separate applications that just happen to be

27

executed at the same time. Diamond takes the opposite view and considers multiprocessor

systems as an integrated whole [18].

Diamond uses a three-stage approach to building an application:

1. Compile source files with the Texas Instruments (TI) compiler;
2. Use the TT linker, usually several times, to generate a number of separate task files;

3. Use the configurer to combine task files into a single application file that contains
everything needed to get application running on a network of DSPs. Allocation of

memory is done automatically by the configurer.

Once a Diamond application has been constructed, it is loaded into DSPs and executed by

a server program running on the PC.

Figures 5.1(a) and (b) show the baildinglprocessiwith CCS and Diamond respectively. As
mentioned before, CCS is really a single-processor systemy; it treats each processor separately.
The processor types, memory layout;1/Ordevicesbeing used and connections between proces-
sors are needed when we build the application uinder CCS. We have to completely control
everything, which may take much time and experience, and it is also hard to make significant

changes [19].

Compared with CCS, Diamond is designed for multiprocessor systems and does a lot of

the work for us due to an extra configuration step.

As shown in Figure 5.1(b), each individual task is built by compiling all its source files
with the C compiler and using the linker to combine the resulting object files with the
necessary modules from the run-time library. Repeating this for every task in the application
results in a number of task image files. The program called configurer combines all task image

files to form a single executable application file. A user-supplied textual configuration file

o8

Texas Instrum ents

Compiler Linker

Object file

Object file
Object file

Object file
Object file

Object file

(a)

utable
.out

Executable
.out

Texas Instruments

Compiler Linker

Ask

| -app

1

(b)

Figure 5.1: Building with CCS and Diamond (from [19]).
Building with Diamond.

29

(a) Building with CCS. (b)

drives the configurer and specifies:

1. Hardware structure: available processors and link connections between them.
2. Software structure: task to be included and channel connections between them.

3. How to map the software onto the hardware.

The configurer allocates memory for the tasks and combines them into a single application
file that can be loaded into the specified hardware network and executed using the Diamond
command, 3L x. The configurer is also responsible for determining which system tasks need
to be loaded. To change the way in which tasks are connected together or the processors on
which they are to run, it is not necessary either to change the source code or to recompile
or re-link the tasks themselves. This means}/ittis. possible to develop an application while
running all the tasks on one processor, and then reconfigure it, without any other change,
to run on a network. Physical channels may be transparently substituted for virtual ones in

a similar way.
We use a simple Diamond model to explain’some terminology of Diamond in Figure 5.2.

The hardware on which a Diamond application runs is described as a network of proces-
sors, each with a number of links connected by pairs by wires. Each wire is a two-way
communication path between two processors. As shown in Figure 5.2(a), processor P1 has
two links: link 0 connects to processor P2 using wire W1, and link 1 connects to processor P3
using wire W2. As long as we can connect the processors using supported devices, Diamond

can create applications for systems of any complexity and any intermixture of hardware
types.

The starting point in every Diamond application is a processor called root. The root acts

as the base of the network and a reference for locating all other processors (Figure 5.2(b)).

60

[e]
Prossicr @ [® Processor
Pa ® @ Pa
]
= [l
e
(a) (b)

Processor X Processor Y

Task | —3| Task
A e j C

Ly Task |
| B

© -

Figure 5.2: Diamond model (from [18]). (a) Processors, wire, and link. (b) Host and
processor. (c) Task. (d) Ports.

61

A complete application is a collection of one or more concurrently executing tasks con-
nected by channels (Figure 5.2(c)). A channel can transfer messages from one process to one
other process. A channel can only carry messages in one direction: if communication in both
directions between two processes is required, two channels must be used. Diamond tasks are
relocatable, that is, they do not contain fixed memory addresses, memory allocation is done

at a configurer stage.

Each task has a vector of input ports and a vector of output ports that are used to
connect tasks together. A task is like a software black box, communicating with the outside
only via its ports, as shown in Figure 5.2(d). We join tasks by connecting output ports to
input ports using channels, and this collection of tasks is combined into a single application

file by a utility called the configurer [18].

5.2 Integration Work

The work of integration can be divided inté two parts. The first part is to develop the
function of each module and optimize thém. The second part is final integration on DSP
platform, in which we decide the loading of each processor and connect them with physical

link.

5.2.1 Optimization

In the first part, we use CCS to help the optimization. After developing the module, we
utilize CCS’s profile function to analyze the profile data of each module. Figure 5.3 shows
the consumption of cycles for each module. Our concern is about the values in the last

column. For example, the framing function needs 1,021,636 cycles for each run.

Aiming at the functions or loops which need a large number of cycles, then, we optimize

62

TLT A T el 1T

Address Range Symbol Name SLR [Symbol Type [Access Connt [c¥ole. Total: Incl. Total [c¥cle. Total: Excl. Total |
[EREEEIT T _ftlkelen 55- 106 1. CRE_HH6. .. functon ! L L
[FFI_FLLED 1761 T%_DOWHLL.. function 2 1380755 i1 3
kS dco0-Ths 5 254 TFFT_FLLED 179 TE_DOWNLL.. function 1 BT By
i e e G i g
T LB e 55 14 Jeliming SASDL RN defn. | funchon i ST SPES
TS e dete Tourfilter 1 145198t filbere fumetion 2 dleEme e
i e I E s S Aty Ay
3 L=}
[isdn 14105: TX_DOWNL... funchion 1 J145351 I
[E TR e TEF_flEelen TG4 TEP M., loop 18 ety JEorat ity
[T TEF_fitlfelér TR DEF Mt . loop ferc) fhtecu] bl
i T e — g g i
D Sed o a5e TEF_fitlfelf et cchin) aliia L N) 1 51599 51599
[T) FFT_FLLED 252 TH_DOWHLL.. lnop 24 OsI1E I
e TR P S e G e
[) FFT_FLLED 5657 TH_DOWHLL. loop 1680 ST ST
T Lo Ad TFFT_FLLED 2552 TH DOWHLL.. lnop a9 612 E130]
T Aeel] TFFT_FLILED 3440; TH_DOWHLL.. lnop o] B I
A2 bS5 TFFT_FLLED 4755 T DOWHLL . loop 420 AR 3R
[T T TFFT_FIEED AABLUTE DOWNLL eep L= SREym——"—"" geRgy T ———
5 L h 2t TFFT_FLLED 8671 TH DOWHLL . loop 024 alsx 19
T S Ea0 e e FRRCEx 1B IZE8FRCRee locp iz 13813 313
it e T By o S e S e
(TR ERRCEx 1T SRRCE: loop 113 "3 g
[BRRCEx [B 457 8RRCRx e locp e AT a] 5]
[T AT BRRCFox 132136 8RRCRx: loop Bkike:) BT BAT0Y
[ErET AT =L SFRCEx 133145 8FFCRes locp e idese oise
i - e g SR SR
(R i) Jeliming SAST DL RN detin. . loop 240 31341 31341
[A] JeTiming S6d DL EX et loop 2 3] [=:3ber]
e = e s e g e
[T R B] JeTwming Sl DL RH et loop 1620 R)
TS 2L So- o Jefirming G571 OL R detin. . loop 2 =it e
[ey Jefiaring ST DL RY s, loop ik} b=l T
A2 e 2 Jefiarring #2871 DL FXdefis. . loop 1620 By TRl
ki sl e — G g G
[Ty Feliming DL BN defn. . loop fle] e e
TS e e e Jeliring P DL Y deti. loop b=z T T
T = e s gy D g
[) JeTmming B DL R detia | loop fle] e AT
b Bad o200 Jefmming 105-125: DL -R¥dete . loop 2 550 52550
[e] Jefiring leep e fra vl fra 2rc
TS B2 e Jelimming 107-115: DL FXdeti... locp ZE ELaE EEm
T o e e — g S S
OS2 e Jelimming 13198 DL RHdeti . locp) ke ke
T 2R s Jeliring 138147 DL RYeti . locp 2 e e
g - e o S e S Sy
T b 2P e e JeTiming 143184 DL R ati . locp 144 ‘w30 w330
T2 So e Fefwming 156160 DL ARH et locp % 27 247
DS 2EHES3010 Jefirring 163-168: DL RXdets. .. loop a4 10083 jlurs]
[1 ATT BV A~fe T [="=5 [oratai [t

Profiler |Conzultart | CodeSizeTune

Figure 5.3: Profile data of each module.

63

Irbdmaplgroup[i] [j][k]=rdataln[k+12*j+24%1];

0,459,586
A3,0%3,47
A6, Oxd,A7
A7,B3,A8
A7, BE,A7
A6,025,B7
E4,28,B6
AR, 0z4,A31
0z5878,E5
A31,B7,A47
EG,A7,BE
0z60000,ES
A3,0=4,430
*+B5[BE] ,B7
A30,A3,A8
9P ,A7,ES
E5,A8,E5
E5,E4,E5
Dz2h5e,B31
E5,B31,B5
E7,%+B5[0x0]
2

23,023,47
B6,Ox4,A16
0z58d8,A29
27,8347
57,B4,A16
%6,0x5,E5
B16, A6, ALT
23,024,458
B8,A3,A8
517,816,26
%6,0x4,EB6
0=z60000,429
*+AZT[AR] AR

Qoos05c0 DWsLs FramingsosE:
Q00505C0 03240FD9 DR.L1
Q00505C4 O03BCECAD ||| SHL.Z1
Q0050505 03983CA1 SHL.Z1
QOo505CC 04107040 || ADDAW.D1
Q0050500 O039CDE41 ADDALD-.D1
Q0050504 O0393BCAZ 1 || SHL . 32X
Q0050505 0320307E ADD.LZX
QOo505DC OF938CAL | || SHL.31
QOOS05ED O2ACIC2A | || MVE .32
QO00505E4 O39FFO79 ADD.L1X
QOO505ES O031CDOYE | || ADD.LZX
QOO505EC 0280036E-| || MWVEH .22
QOO505F0 OFOCECAO N || SHL.31
QO0505F4 0394CACT LDH.DZTZ2
QOO505F8 04737E40 7 || ADDALD.D1
QOO505FC 029DFO7A ADD.LZX
Q0050600 O2E0BOVA ADD.LZX
Q0050604 02943243 ADDAH.DZ2
Q0050605 DF932F2a 1| MVE .32
QOos060C 0297FC42 ADDAW . D2
Q0050610 03940206 STH.DZT2
Q0050614 OOODZO0O HOP
ibdmapZgroup[i][J][k]=1dataln[k+12*j+24%1];
NO050618 O38CECAD SHL .51
Oo05061C O8183CAN SHL .51
NO050620 DEACECZY MVE .51
No0s50624 039C7C40 || ADDAW.D1
No05062Z58 O0B10FOYY ADD.L1X
Oo0506ZC O0298BCAS || SHL . 532¥
NO050630 OBCODE41 || ADDAD.D1
No050654 040C3CAO0 || SHL .51
NO050635 04207E41 ADDAD D1
00050630 03422079 || ADD.L1
Oo050640 O03183CAT || SHL . 532X
noo0s0644 ODESODOZRE || MVEH. 31
OO050648 0374C245 LOH.DITL

Figure 5.4: Software pipeline information.

64

them and compare again the consumption of cycles. There are several methods that can
accelerate our code and reduce the execution time. For example, we can utilize the TT C64x
DSP library that includes many C-callable, assembly optimized, and general-purpose signal-
processing routines to accelerate our implementation. We also make use of several useful
compiler options supported by TI’s compiler. As mentioned in chapter 3, the compiler
options can be used to optimize code size or execution performance. The major compiler

options we utilize are -03, -k, and -pm -op2.

Furthermore, we can take advantage of the software pipeline information, as shown in
Figure 5.4. Software pipelining is a technique used to schedule instructions from a loop so

that multiple iterations of the loop can be executed in parallel.

Loop unrolling is suitable for use with software pipelining. The compiler needs more
waiting time for the decision of branch operation when our code has conditional instructions.

If we unroll the loop, some of the overheadifor branching instructions can be reduced.

5.2.2 Integration on DSP Platform with RTOS

In fact, the tasks of an application may be spread over a large network of processors. We
use four processors (SMT395 with C6416 at 1 GHz and 256 M DRAM) to implement our

integrated system and choose 3L. Diamond as our software platform of integration.

We illustrate the multi-processor network with Figure 5.5, taken from [18]. Each channel
that communicates from one processor to another is carried by a link, a physical connection
or wire, between two processors. It may be implemented in a variety of ways, but it is

capable of supporting communication in both directions.

If a channel connects tasks that are on different processors, the messages on that channel
are routed through a link between the two processors. Each link can support only two

physical channels, one in each direction. We can choose to use these two physical channels

65

Physical Channel -—/-.Z—-b

Virtual Chanmnel s———

(BCtUDl route) =— —
Physical Link -—

Systam Task -

Figure 5.5: Multi-processor networks (from [18]).

66

explicitly or allow Diamond to manage them for us to give any number of slower virtual
channels. The network can only be built if there are enough links between two processors
to support all the required channels. Any task may communicate with any other task,
regardless of where it is in the network. Messages can be routed via the inter-processor links

over virtual channels.

Our integrated system, shown in Figure 5.6, comprises more than ten modules. Arrows
indicate inputs and outputs. Solid arrows indicate data while dotted arrows indicate control
information. Tables 5.1, 5.2 and 5.3 show the details of each module’s function and each

[/O parameter’s properties.

As mentioned before, Diamond uses a three-stage approach to building an application:
compiling source files, using TT linker to generate a number of separate task files, and using
configurer to combine task files into a single'application file. At the last stage, we need to

determine which task should be loaded into each processor.

In order to balance the loading of eagch processor, we compute the time consumption
of each module in processing an uplink slot (three OEDMA symbols). The reason that we
choose slot as a unit is a module processes ‘and outputs data of an uplink slot at a time to

the next module in our system.

Table 5.4 shows each DSP’s load and the required DSP computational load for processing
an uplink frame. Then, we complete the last stage and get a single application file that can
be loaded into the multi-processor network and execute it using the Diamond command, 3L

X.

Finally, our system needs 6.5 ms to process an uplink frame (1440 bytes/frame), where the
coding modulation scheme and code rate used in simulation is QPSK and 1/2, respectively.
If we reconfigure and use a single processor to implement the integrated system, it needs

17.156 ms to process an uplink frame.

67

RNG format
— T T . — . — ,I

e
_SubCHId) Ra_ngmg
i Sigtial
InfoSlot : Ll jormat i Generator
y subCh ¥ RH(5ig
: ¥
Coding Mod| DataSlot Erame . Tx3
; = #| Freq2Time w Tz SERC
ulation Packaging TaSym
SubChld ULFgrmBase T4
e ¥ * = Chise
[~ ===
R snDeFrame [P | Channel i e MAC
TppertPHT | Packaging | T imulation *_i
InfoSio Clk format Ny Preawbleld | i
JlsbCH : AR)
DeCading DeFrame i Rl
Modulation Packaging | TimezFreq 4 Bz SREC
e Rl Sygm
PHY SAP ¥
Fanging
M Bs MAC Signal
- RNG Beceiver
Parameter

Figure 5.6: Uplink transceiver system.

68

Table 5.1: Functions of Modules in Figure 5.6

Name

Input Parameters

Output Parameters

Ms_MAC

N/A

ULMAP, PHY _SAP

ULTx_UpperPHY

ULMAP, PHY_SAP

InfoSlot, NsubCh, Sub-
Chld, CM _format,
ULPermBase, RNG_format.

Coding_Modulation

InfoSlot, CM_format,

DataSlot, PilMod

NSubCh
Frame_Packaging DataSlot, PilMod, Sub- | TxSymb
Chld, ULPermBase
Ranging Signal Genera- | RNG_format RNGSig
tor
Freq2Time TxSymb TxS
Tx_SRRC TxS TxS4
bs_-MAC N/A ChDsc
Channel_Simulation TxS4; ChDse, SyncErr RxS4
Rx_SRRC RxS4 RxS

Time2Freq

RxS

RxSymb, Preambleld

Channel_Estimation

RxSymb ULPermBase,
SubChld, Slotld

ChRsp

Ranging Signal Receiver

RxSymb

RNGParameter

DeFrame_Packaging

RxSymb, ChRsp, SubChld,
ULPermBase, Slotld

RxData, ChGain

DeCoding_Modulation

RxData, CM _format,
ChGain

InfoSlot

ULRx_UpperPHY

InfoSlot, Preambleld

CM _format, SubChld,
ULPermBase, Slotld,
PHY_SAP

BS_MAC

PHY_SAP

N/A

69

Table 5.2: Descriptions of Modules in Figure 5.6

Name

Descriptions

MS_-MAC

Mobile Station of MAC

ULTx_UpperPHY

Uplink Transmitter UpperPHY

Coding_Modulation

Coding and Modulation

Frame_Packaging

Frame Packaging

Ranging Signal Generator

Generate the Ranging Signal

Freq2Time Freduency to Time Process
Tx_SRRC Transmit Filter
bs_.MAC Virtual Base Station MAC
Channel_Simulation Channel Simulator
Rx_SRRC Receiver Filter
Time2Freq Time to.Frequency Process

Channel_Estimation

Channel Estimation

Ranging Signal Receiver

Estimate and Detect Ranging Signal

DeFrame_Packaging

De-Frame packaging

DeCoding_Modulation

Coding-Modulation Decoder

ULRx_UpperPHY

Uplink Receiver UpperPHY

BS_-MAC

Base Station of MAC

70

Table 5.3: Descriptions of Parameters in Figure 5.6

Name Descriptions Type
ULMAP Uplink MAP Information Data
PHY SAP Information Stream UpperPHY Data
InfoSlot Information Bits in a Slot Unit Data
DataSlot Modulated Data in a Slot Unit Data
TxSymb Transmit Frequency Domain Symbol Data
RNGSig Ranging signal Frequency Domain Symbol Data
TxS Transmit Signals Data
TxS4 4x Oversampling Transmit Time Domain Signals Data
RxS4 4x Oversampling Reeceived, Time Domain Signals Data
RxS Received Signals Data
RxSymb Received Frequency Domain Symbol Data
ChRsp Channel Frequency Response Data
RxData Received Data Data
ChGain Channel Gain-at the Corresponding Data Carrier Data
RNGParameter Detected Ranging code; Timing-offset, Data
Frequency-offset, Power-offset
CM _format Coding-modulation Format Control
SubChld Sub-channel Indexing Control
Preambleld Preamble Index Control
ULPermBase Uplink Permutation Base Control
ChDsc Channel Descriptor Control
SyncErr Given Synchronization Error in Simulations Control
RNG _format Ranging Format Control
Slotld Given Deframing Slot Indexing Control

71

Table 5.4: Required DSP Computational Load

DSP Computational

DSP Module Load
(1 UL subframe/ 5 ms)
DSP 1 | TxUphy+FEC+Framing+Freq2Time 0.82
+Ranging Signal,Generator
Tx-Filter 0.25
DSP 2 Channel Simutator:
AWGN 0.82
SUIs 1.52
ETSLLA 2.56
DSP 3 Rx-Filter 0.54
Time2Freq+Ranging Signal Receiver 0.23
+Channel Estimation
DSP 4 RxUphy+De-FEC+De-Framing 1.16

72

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we first presented the ranging techniques of the IEEE 802.16e OFDMA TDD
system. Second, we implemented the integrationtof IEEE 802.16e-2005 OFDMA TDD uplink

transceiver system on DSP Platformswith RTOS{(3L Diamond).

In the first part, we mainly discussed the-initial ranging process and presented several
simulations. In our simulation environments, thefrequency offset value was within the range
of [-0.1,0.1], and it did not cause an effect inevidence when we needed to determine whether
the received signal contained ranging signal or not. Thus, we could concentrate on developing

ranging code detection and timing offset estimation, ignoring the effect of frequency offset.

In the second part, we introduced the software platform used in our integrated system,
3L Diamond. Then, we discussed about how the uplink transceiver system was implemented
on DSP platform with RTOS. Our DSP application was made up from a host PC holding one
carrier board (SMT310Q) which supported four TIMs (SMT395). We also utilized several
methods that could accelerate our code and reduce the execution time. Another version
of DSP application employed single TIM rather than four TIMs also was accomplished in

our study. Compared with using single TIM, we employed four TIMs to perform overall

73

operations that reduced up to 62% of overall processing time.

6.2 Future Work

There are several improvements and extensions can be considered in the future:

e Ranging Process

In this thesis, we only discussed initial ranging. However, it is possible that includes

bandwidth request or handover ranging into our study.
As mentioned in chapter 4, we pointed out a potential future work when we handled
ranging code detection under multipath channels.

e Integration System

In convolution code, the C64x=is equipped with:a Viterbi decoder co-processor [20].

Using this co-processor may be helpful in‘raising the decoding speed.

As mentioned in last section, using four TIMs can'reduce up to 62% of processing time.
We may rewrite or re-organize our code, this way may accelerate our code and further

reduce the execution time close to 75%.

74

Bibliography

WiMAX Introduction on Wikipedia: http://en.wikipedia.org/wiki/802.16e

IEEE Std 802.16-2004, IEEE Standard for Local and Metropolitan Area Networks —
Part 16: Air Interface for Fized Broadband Wireless Access Systems. New York: TEEE,
June. 2004.

[EEE Std 802.16e-2005, IEEE Standard for Local and Metropolitan Area Networks —
Part 16: Air Interface for Fized:Broadband. Witeless Access Systems. Amendment 2:
Physical and Medium Access Control Layers'for-Cambined Fized and Mobile Operation
i Licensed Bands and Corrigendum 1. New York:-TEEE, Feb. 2006.

OFDMA Introduction on Wikepedia: http://en.wikipedia.org/ofdma
Sundance, Sundance.chm, Apr. 2006.

Sundance home page: http://www.sundance.com/default.asp

Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide. Litera-
ture no. SPRU189F, Oct. 2000.

Texas Instruments, TMSS32006414T, TMS32006415T, TMS32006/16T Fized-Point

Digital Signal Processors. Literature no. SPRS226A, Mar. 2004.

Texas Instruments, TMS320C6000 CPU and Instruction Set. Literature number
SPRU189F, Oct. 2000.

75

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Texas Instruments, TMS320C6000 Code Composer Studio Tutorial. Literature no.

SPRU301CI, Feb. 2000.

Texas Instruments, TMS320C6000 Programmers Guide. Literature no. SPRU198I, Mar.
2006.

Texas Instrument, TMS320C6000 Optimizing Compiler User Guide. Literature no.
SPRU187K, Oct. 2002.

Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide. Litera-
ture no. SPRU189F, Oct. 2000.

Xijaoyu Fu and Hlaing Minn, “Initial uplink synchronization and power control (ranging
process) for OFDMA Systems,” in IEEE Global Telecommun. Conf., vol. 6, Nov.-Dec,
2004, pp.3999-4003.

Jae-Hyok Lee, Evgeny Gontcharev, Jae-Ho<Jeon, and Seung-Joo Maeng, it “Appara-
tus and method for detecting user in-a communication system,” United States patent

application, pub. n0.US2007/0002959 A1, Jan: 4, 2007.

Yue Zhou, Zhaoyang Zhang, and Xiangwei Zhou, “OFDMA initial ranging for IEEE
802.16e based on time-domain and frequency-domain approaches,” in Int. Conf. Com-

mun. Technology, Nov. 2006, pp.1-5.
3L Diamond Company Homepage: http://www.3l.com/Diamond/Diamond.htm
3L Diamond, 3L Diamond User Guide: Sundance Edition V3.1. Sep. 12, 2006.

3L Diamond, An Introduction to 3L Diamond on Sundance Hardware.

http://www.3l.com/Documents/Overview.ppt

76

[20] Texas Instruments, TMS320C64x DSP Viterbi-Decoder Coprocessor (VCP) Reference
Guide. Literature no. SPRUbH33D, Sep. 2004.

7

Wi o5k E
p 1982 £ 8 " 12 F
M4 w5 kT I

g
=P

TR rEL
AEANERRAHE R
T AR DI kLA g;:.f_gwff]

< 48P : IEEE 802:16e“OFDMA TDD p|#EA4% F
g1 R LA g (v & SDSP T

L b 0 2 2, 12
o 2. _FF T A

\v

(IEEE 802.16e OFDMA TDD Ranging Process and
Uplink Transceiver Integration on DSP Platform

with Real-Time Operating System)

	論文書名頁
	

	論文書名頁
	

	論文書名頁
	

