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Abstract: This paper presents a method for 
finding the boundaries of constant gain margin 
and phase margin of sampled-data control 
systems. The considered systems are first modified 
by adding a gain-phase margin tester, then the 
characteristic equations are formulated and fac- 
tored into stability equations, and finally the 
parameter-plane method is used to find the 
boundaries of constant gain margin and phase 
margin. The main advantage of the presented 
method is to obtain complete information about 
the effects of adjustable and/or variable param- 
eters on gain margins and phase margins. 

1 Introduction 

For the analysis and design of practical control systems, 
gain margin and phase margin are the two important 
specifications. The frequency domain approach, based 
upon the works of Nyquist, Bode and Nichols, permits a 
designer to find these two values in a simple manner [l]. 
However, this approach is not suitable for systems with 
two or more adjustable parameters. On the other hand, 
the Vishnegradskii diagram [2], the parameter-plane 
method [3,4], the stability-equation method [ S ,  61 are all 
useful for plotting the stability boundaries, the damping 
ratio boundaries, etc., and for finding the effects of 
parameter variations, but no result related to phase 
margin and gain margin has been given. 

In References 7 and 8, methods of plotting the bound- 
aries of constant gain margin and phase margin in a 
parameter plane or a parameter space have been pro- 
posed for analysis and design of continuous control 
systems and systems with multiple transport lags. The 
main purpose of this paper is to extend the aforemen- 
tioned papers to plot the boundaries of constant gain 
margin and phase margin of sampled-data control 
systems. 

The advantage of the proposed method is that the 
design work by adjusting parameters to obtain desirable 
gain margin and phase margin can be simplified due to 
the fact that the effects of parameter variations on phase 
margin and gain margin can be clearly defined. In addi- 
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tion, the phase crossover frequency and the gain cross- 
over frequency can be obtained directly from these 
boundaries. 

The presented method is useful for analysis and design 
of very complicated systems. A nonminimum phase 
sampled-data control system with multiple gain margins 
and phase margins is presented as an illustration. 

2 Basic approach 

Consider the system shown in Fig. 1 .  The open-loop 
transfer function is 

I 
Fig. 1 Block diagram o f a  sampled-data control system 

where z = esT, and T is the sampling period. Let s = jw ,  
then one has 

(2) = ejoT = cos wT + jJ(1 - cos2 wT)  

Define w, = cos U T ,  then eqn. 2 becomes 

z = w, + jJ(1 - w t )  

Substituting eqn. 3 into eqn. 1 yields 

G(z) = Re [G(z)] + j Im [G(z)] 

where Re [G(z)] and Im [C(z)] are the real and imagin- 
ary parts of C(z), respectively. Eqn. 4 can be expressed in 
terms of its magnitude and phase such as 

G(z) = I G(z) I ej+ 

I G(4l = JCRe G(Z)l2 + Im CG(z)121 

( 5 )  

(6) 

where 

and 

(7) 
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From eqns. 1 and 5, one has 

D(z)  I C(z )  12' - N(z )  = 0 

i.e., 

1 
D(z)  - ~ I qz) Nz) = O 

Define 

1/1 WI = A 

4 + 180" = 0 

Then, eqn. 9 becomes 

D(z) + Ae- jeN(z)  = 0 

(9) 

Note that A is the gain margin of the system if 0 = 0, 
and that 0 is the phase margin of the system if A = 1. 
This can be checked by use of a Nyquist plot. The physi- 
cal meaning of eqn. 11 is that the gain margin and the 
phase margin of a system can be determined by the gain- 
phase margin tester Ae-je which can be considered as an 
additional block as shown in Fig. 2. 

Fig. 2 A control system with a gain-phase margin tester 

Eqn. 11 can also be considered as 

F(z, Ae- je)  = 1 + Ae-"%(z) = 0 (12) 
which indicates that the gain margin and the phase 
margin of the system can be determined from the charac- 
teristic equation of the system with a gain-phase margin 
tester. 

Rewrite eqn. 12 as 

F(z, Ae-Je) = D(z) + Ae-jeN(z) 

(13) 
k = O  

where the coefficients a k ( Z )  are functions of Ae-je and the 
system parameters, and can be defined in the following 
manner in order to include all possible linear com- 
binations of parameters: 

U k ( Z )  = abk + aAe-jeCk + /?dk 

+ /?Ae-'e*e' +fk + Ae-jegk (14) 

Since z = o, + j J( 1 - 0:) as defined in eqn. 3, one 

(15) 

where LX and /? are parameters. 

has 

zk = CTk(wz) +jJ(1 - w : ) u k ( o z ) l  

where T(oz) and Uk(0,) are the Chebyshev functions of 
the first and second kinds, respectively. The argument of 
Chebyshev functions is 0 < I w, I < 1, and can be calcu- 
lated by applying the recurrence formulae 

T +  1(%) - 2% T(%) + T k -  1 ( 4  = 0 ( 164 

l(oz) - 2oz + l ( w z )  = ( 16b) 
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where To(o,) = 1, TI&) = w,, Uo(w,) = Oand U,(o,)  = 1. 
Substituting eqns. 14 and 15 into eqn. 13 gives 

F(w,, A, 0) = CaB l(w,, -4 0) + BC l(w,, A, 0) 

+ D 1 ( ~ , ,  A, @)I  + j[aB2(o, ,  A, 0) 

+ B C ~ ( W , ,  A,  0) + D,(o,, A,  @)I (17) 

where 

In eqns. 18a-f the arguments w,, A and 0 have been 
omitted for simplicity. Setting F(z, Ae-je) = 0, i.e. setting 
the real and imaginary parts of eqn. 17 equal to zero, 
yields 

F , = a B , + / ? C , + D , = O  ( 194 

Fi  = u B ,  +BC2 + D2 = 0 ( 19b) 
which are the two stability equations as defined in Refer- 
ences 5, 6, 7 and 8. Solving eqns. 19a and b for a and p, 
one has 

D1 . B2 - D2 . B1 
A B =  

where 

A = B1 ' C2 - B2 . C1 (21) 

Let A = l(0 dB) and 0 = 0, and let w, vary from 1 to 
- 1, then a stability boundary can be plotted in the a- vs. 
/?-plane. Each point of this boundary can be considered 
as a condition for which the Nyquist plot of C(z) passing 
through the critical point (- 1, io), or at least a pair of 
characteristic roots, is on the unit circle of the z-plane. If 
A is assumed equal to a constant value and 0 = 0, the 
curve in the parameter plane is the boundary of constant 
gain margin. On the other hand, if A = 1 and 0 is 
assumed equal to a constant value, a boundary of con- 
stant phase margin can be obtained. The corresponding 
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values of w, on the constant gain-margin boundary and 
constant phase-margin boundary are the phase crossover 
frequencies (wzCp) and the gain crossover frequencies 
(wzcg), respectively. 

Since the relation between w, and w is defined by 

w, = COS wT (22) 
or 

(23) 
1 
T 

0 = - cos-1(w2) 

It should be noted that the crossover frequencies rep- 
resented by w, are quite different from the frequencies (0) 

in the s-plane and that the variations of w, from 1 to - 1 
are equivalent to the variations of w from 2mn/T to 
(2m + l)n/T, where m = 0, 1, 2, ..., due to the periodic 
strips in the s-plane. 

Note also that, for the special cases such as w, = 1 
and/or w, = - 1, the substitutions of z = w, and 0 = 0 
into eqns. 13 and 14 yield 

n n 

a 1 (w,)k(bk + ck A )  + 8 (wJk(dk + ek A )  
k = O  k = O  

which may be represented by straight lines in the up- 
plane if w, and A are given. These straight lines can be 
considered as limits of stability boundaries and the con- 
stant gain-margin boundaries. 

For analysis and design, one generally finds the stabil- 
ity boundary first, and then finds the boundaries of con- 
stant gain margin and phase margin that appear in the 
stable region. The method for determining the stable 
region by use of the stability boundary is that, if the sign 
of A defined in eqn. 21 is positive (negative), facing the 
direction in which the w, is decreasing, the left (right) side 
of the stability boundary is the stable region [3]. 

3 Examples 

Example 1 [-?I 
Consider the system shown in Fig. 3, where the transfer 
functions are 

s + h  
G2(s)  = K ~ 

s + 0.01 

2.346 
(s + 2.3)(s + 0.51) G 3 N  = 

controller plant I 
Fig. 3 System block diagram oJExample I 

The purpose is to find all values of the parameters K and 
h which can make the system stable and have gain 
margin ( G M )  larger than 6 dB and phase margin ( P M )  in 
the range of 30" < P M  < 60". 
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The open-loop transfer function in z-domain is given 

G(z) = 

by 

(0.24h + 0 . 5 1 ) ~ ~  + (0.43h - 0.28)~ + (0.054h - 0.2) 
K 

(Z - 0.98)(~ - 0.6Xz - 0.1) 

(26) 
Letting a = Kh and 8 = K, the characteristic equation of 
the system with a gain-phase margin tester is 

F(z ,  Ae-je) = z 3  + (0.24Ae-jea + 0.51Ae-je8 - 1 . 6 8 ) ~ ~  

+ (0.43Ae-jea - 0.28Ae-je8 + 0.746)~ 

+ (0.054Ae-jea - 0.2Ae-je/3 - 0.0588) = 0 (27) 
According to eqn. 14 and defining a coefficient vector 
ak = [bk ck dk e, fk gk], eqn. 27 gives 

U, = [0 0.054 0 -0.20 -0.0588 01 

U ,  = [0 0.430 0 -0.28 0.7460 01 

= [0 0.240 0 0.51 - 1.6800 01 

a3 = [O o.Oo0 0 0.00 1.oooo 01 (28) 
Let A = 1, 0 = 0. Using eqns. 18u-f and 20a-b, and 
letting w, change from 1 to - 1 +, a stability boundary 
can be plotted in the a- vs. /?-plane as shown in Fig. 4. 

0 

Fig. 4 
margin in the a- us. 8-plane 

The boundaries of constant gain margin and constant phase 

From eqn. 24, the equation for w, = 1 and CO, = - 1 
are 

0.724a + 0.038 + 0.007 = 0 for w, = 1 (294 
0.136a - 0.598 + 3.4548 = 0 for w ,  = - 1 (29b) 

These two equations represent two straight lines which 
are shaded in accordance with the stability boundary to 
yield the stable region as indicated in Fig. 4. 
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Let 0 = 0" and A = 6dB. Applying the same 
approach as before, the boundary of constant gain 
margin ( A  = 6 dB) can be obtained. The equations for 
the two straight lines are 

0 . 7 2 4 ~  + 0.038 + 0.00351 = 0 for w, = 1 (304 
and 

0.136~ - 0.598 + 1.74663 = 0 for w, = - 1 (30b) 
then the region for GM > 6 dB in the stable region can 
be found. Similarly, by letting A = 1, 0 = 30" and 
0 = 60", the two boundaries of constant phase margin 
can be obtained. Finally the region denoted by R for 
GM > 6 dB and 30" < PM < 60" as shown in Fig. 4 can 
be found. 

are adjusted to point P(0.2325, 
- 0.0905), which is the intersection point of the bound- 
aries of constant gain margin ( A  = 6 dB) and constant 
phase margin (0 = 307, the system will have GM = 6 dB 
and PM = 30". The corresponding phase crossover fre- 
quency wzCp and gain crossover frequency wZcg are at 
0.832 and 0.932, respectively. By use of eqn. 23, the values 
of wcp and U,, are at 0.5881 rad/s and 0.371 rad/s, respec- 
tively. The results can be checked by use of Nyquist plot 
and Bode diagram as shown in Figs. 5A and B. In Fig. 4, 

c! 
E 

In Fig. 4, if E and 

- - 
E I 1  

G(eJwT ) 

I 

Re LG(Z)I  

I tl 

Example 2 [6,9] 
The block diagram of a high order proportional naviga- 
tion system is shown in Fig. 6. Typical application of 
such a system is the missile homing system for engaging a 
moving target in the vertical plane. The seeker is a micro- 
wave or an IR (infra-red) device wth transfer function 

K,s(l + 0.02s) * ] (31) 
V,*(s) 1 &*(SI - 
a*(s) K, a*(s) - [ '" K, K, + s(1 + 0.02s) 

The combined transfer function of control system and 
vehicle dynamics is 

where the transfer functions of G I ,  G , ,  G ,  , G4, G ,  are 
shown in Fig. 6, and Gh, is the zero-order holding device. 
Assuming K,K, is equal to 15 and taking the z- 

nhase 

\ P M 3 0 '  

wcg zo.371 uJcp =o 5 
-4 0 I 

1 o-2 lo-' 10 O 

w,rad ls  
b 

Fig. 58 Bode diagram ofExample I 

transformation (for T = 0.05 s), eqns. 31 and 32 can be 
expressed, respectively, as 

V,(Z) 1 &(z) K,(z2 - 0.90312 - 0.0969) 
- (334 a(z) K, a(z) - z2 - 0.48582 + 0.0821 

and 

w 
V,(4 
-= 

- 1.12KS( - 0 . 0 9 3 6 ~ ~  + 0.25522' - 0.09792 + 0.0006) 
[(z4 - 2 . 1 7 4 3 ~ ~  + 1 . 6 2 1 4 ~ ~  - 0.35842 + 0.0023) 

- 1.12KS VKac(-0.0891z3 + 0.2322' - 0.07182 + 0.0067)] 
- 1.12KS Kg(7.4668z3 - 8.97182' + 0.85982 + 0.7097) 

(33b) 
In order to ensure the proportional navigation constant 
N ,  it is required that the steady-state ratio of j~ and (r be 
equal to N ,  i.e. 

- 1.12Ks 
K,(1.414 - 1.12K,K9 - 1.12Ks VK,,) 

[m] = = N  
&(z) z = l  

(34) 
The vehicle is considered as a point moving along its 
flight path with instantaneous displacements 

dx = V COS y ( t )  dt  

dy = V sin y(t) dt 
( 3 5 4  
(354 

where V is the velocity and y is the flight-path angle. 

considered as 
The open-loop transfer function of the system can be 

(36) 
-Gho t(t)s-'GIGZ Gq(s) 

X 
+ Gho GlG2 Gx(s) + Gho G l G 2  G 3  G:(s) 

where Q t )  is a time-varying gain that represents the 
geometry relation. After the z-transformation, eqn. 36 can 
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be expressed as 

1.12Kr Ks <(t)x,(z) 
= X,(z) - 1.12K,KgX,(z) - 1.12Ks VKac X4(Z) 

function is 

C,(Z),= 1 z - 1.38((t)N (42) 

which indicates that the steady-state gain of the system is 
proportional to ( ( t ) N ,  and will not be affected by the 
parameters a and p. For system stability and the pro- 
portional navigation requirement, the condition is 

(43) 

Substituting eqns. 40u-b and 41 into eqn. 39, the charac- 
teristic equation is 

( ( t )N < 1/1.38 = 0.7246 

F(z,  Ae-je) = aX3(z) + aAe-je[ - 1 5 ( ( t ) ~ ~ , ( z ) ]  

+ ~x,(z)  + /?Ae - j e [  - 15((t)~X,(z)] 

+ X,(z) + A e - J e [ -  15((t)N x 1.414X1(z)] 

where 
x , ( ~ )  = -3.0093. 1 0 - 3 z 5  + 5.331 . 10-3z4 

+ 3.254. lOP3z3 - 1.8546. 10-3z2 

- 1.9095. 10-4z + 1.3698 . 
X,(Z) = z6 - 2 . 6 6 0 1 ~ ~  + 2 . 7 5 9 8 ~ ~  - 1 . 3 2 4 5 ~ ~  

+ 3.0953. 1 0 - l ~ ~  - 3.0555 . ~ O - ' Z  

+ 1.9223. 

X,(Z) = 7 . 4 6 6 8 ~ ~  - 1 2 . 5 9 9 ~ ~  + 5.831 lz3 

- 4.4441 . 10-'z2 - 2.74192 
+ 5.8256. 

X,(Z) = -8.9118. 10-2z5 + 2.7529. 10-'z4 

- 1.9178. 10-'z3 + 4.7182. 10-2zz 
- 2.6241 . 10-3z - 5.52. l o p 4  

The characteristic equation for the considered system 
with a gain-phase margin tester is 

F(z,  Ae- je)  = 1 + Ae-jeG A z 1 
= X2(Z) - 1.12KsKgX3(z) 

- 1.12K, VKac X ~ ( Z )  

+ Ae-je1.12K, K ,  ((t)X,(z) = 0 (39) 
Since K, K, = 15, letting 

- 1.12K,Kg = a (404 
- 1.12Ks VK, ,  = /? (40b) 

1.12K,Ks = - lm(1.414 + U +  p) (41) 

eqn. 34 gives 

Substituting eqns. 40u-b and 41 into eqn. 37, and setting 
z = 1, the steady-state gain of the open-loop transfer 

6 

= 1 ak(z)zk = 0 
k - 0  

(44) 

which shows that, if ( ( t ) N  is given, the coefficient vector 
can be obtained directly from the coefficients of eqns. 

38u-d. Assuming ( ( t )N = 0.6, the stability boundary, and 
the boundaries of constant gain margins (A = 10 dB, 
A = - 10 dB, A = -CO dB) and phase margins (0 = 45", 
0 = -45") are plotted in the a- vs. /?-plane as shown in 
Fig. 7. It can be seen that the boundaries of constant gain 
margins and phase margins of both positive, and nega- 
tive signs appear in the stable region. This is because 
the system has an unstable open-loop zero, and the 
parameters a and p may yield unstable open-loop poles 
for the system. Note that the region in the right-hand 
side of the boundary for A = - 00 dB will give the 
system a positive gain margin, which means that the 
open-loop transfer function of the system has stable 
poles. 

On the other hand, the region in the left-hand side of 
the boundary for A = -cc dB will give the system posi- 
tive as well as negative gain margins, and the open-loop 
transfer function has unstable poles. For example, if a 
and /? are adjusted to point P,(a = 0.1, p = 3.35), the 

servo I 1  I 
I 

I 
I 
I 
I 
I 
I 

I 

I 

I 
I 
I 

--1 r - - - - - - -  - -  
I yo- I I 

I 

I q7-J 
I 13 
I 
I 
I 

Fig. 6 Block diagram of a proportional navigation system 
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open-loop transfer function is 

0.1317(~ - 0.0067)(~ + 0.0969) 
x (Z - 0.4504Xz + 0.7249)(~ - 2.1361) 

(45) Go(z) = (z - 0.1652Xz - 0.391OXz - 0.585 
- + j0.6662Xz - 0.2429 f jO.15 19) 

-0 1 0 01 02 0 3  04 0 5  
(x 

Fig. 7 
Example 2 

The boundaries of constant gain margin and phase margin of 

which has a zero at 2.1361 outside the unit circle. If a and 
B are adjusted to point P,(a = 0.044, B = 3.22), the open- 
loop transfer function is 

0.1267(~ - 0.0067)(~ + 0.0969) 
x (Z - 0.4504Xz + 0.7249Xz - 2.1361) 

( z  - 0.0235Xz - 0.4145)(z - 0.8474 (46) 

f j0.71OXz - 0.2429 f j0.1519) 

which has a zero at 2.1361 and a pair of unstable poles at 
0.8474 f j0.710. The Nyquist plots and the Bode dia- 
grams of eqns. 45 and 46 are shown in Figs. SA, B and C ,  

& G M = - l O  dB - 

1 

a 

Nyquist plots of eqns. 45 and 46 Fig. 8A 

which indicate that the results for gain margins and 
phase margins are the same as those given in Fig. 7. 

From Figs. 7 and 8 it can be seen that, for analysis 
and design of a system with adjustable parameters, to 
plot the boundaries of constant gain margin and phase 
margin is better than plotting several Nyquist plots and 
Bode diagrams. Since one generally finds the stable 

290 

region first and then finds the boundaries of constant 
gain margin and phase margin that appear in the stable 
region, one does not need to worry about the signs of the 

t I I 

lo-' 10 0 10' 
w,rad ls  

b 

Bode diagram of eqn. 45 Fig. 86 

-401 I I 1-240 
lo-' loo 10' 

w.radis 

Bode diagram ofeqn. 46 
C 

Fig. 8C 

gain margin and phase margin to represent the relative 
stability of the system. 

In addition, the stable region is separated into several 
regions by the boundaries of constant gain margin and 
constant phase margin, and each region has its specified 
characteristics on gain margin and phase margin. For 
example, the region marked by R I  will give G M  > 10 dB, 
P M  > 45" and P M  < -45"; the region marked by R ,  
will give G M  > 10 dB, P M  > 45" and P M  > -45"; the 
region marked by R ,  will give G M  > lOdB, 
G M  < - 10 dB, P M  > 45" and P M  > -45"; the region 
marked by R ,  will give G M  > 10 dB, G M  < -10 dB, 
P M  < 45" and P M  > -45". In short, a designer can 
select desirable values of parameters to make the system 
meet specifications on gain margin and phase margin 
simply by looking at a few boundaries. 

In order to find the effects of the third parameter 
( ( t )N ,  several values are assigned to it, and the corre- 
sponding boundaries in parameter planes are found. 
Then, a subspace with A = -CO dB, A = 25 dB, 
0 = -45" and 0 = -90" in a three-dimensional param- 
eter space can be constructed as shown in Fig. 9. Inside 
this subspace any point selected will represent a set of 
values of a, B and ( ( t ) N  to make the system meet specifi- 
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cations GM > 25 dB and -90” < P M  < -45”. For 
testing purposes, three points (Q1, Q 2 ,  Q3)  in the sub- 
space are selected, a unit impulse disturbance at (T is 
assumed, and the responses at 0 are obtained as shown in 
Fig. 10. 

, 

- 
X 

5( t )N 
Fig. 9 A subspace for GM > 25 dB and -90” < PM < -45‘ 

0 20 

- 
k- 

b 
c 0 10 
v 

0 

I 1 I I I I 1 

0 10 20 30 40 50 60 
sampling number, n T  

Fig. 10 Responses of a sampled-data control system to a testing signal 

Note that since N is the proportional navigation con- 
stant which is preselected, such as N = 2, the third 
parameter is ( ( t )  instead of ( ( t )N .  Since ( ( t )  is time 
varying, all the characteristics of the system, such as gain 
margin, phase margin and crossover frequencies, are time 
varying. Therefore, a designer must first define the range 
of ( ( t )  from the geometry relation as shown in Fig. 6, 
then check the ranges of variations of gain margins, 
phase margins and crossover frequencies, and finally the 

proper values of parameters (M and a) can be defined by 
use of the subspace as shown in Fig. 9. 

In short, the presented method is useful for analysis 
and design of control systems with adjustable and/or 
variable parameters. It is more useful than the commonly 
used methods, such as Bode diagram and Nyquist plot, 
especially for the complicated system as shown in 
Example 2, which has multiple gain margins and phase 
margins. 

4 Conclusions 

A method for finding the boundaries of constant gain 
margin and phase margin of sampled-data control 
systems with adjustable parameters has been presented. 
The relations among gain margins, phase margins and 
adjustable parameters can be defined completely and 
easily. 

From the two examples, it can be seen that, by use of 
the presented method, the works of analysis and design of 
sampled-data control systems with adjustable parameters 
to meet specifications on gain margins and phase margins 
and their corresponding crossover frequencies can be 
much simplified by looking at a few boundaries in a 
parameter-plane or a parameter-space. 

Since all the analyses are based upon two stability 
equations, and all the calculations are performed in the 
real domain, the presented method has the potential for 
analysis and design of very complicated sampled-data 
control systems. 
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