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Abstract

Multilevel flash memory cells double or even triple storage den-
sity, producing affordable solid-state disks for end users. However,
flash lifetime is becoming a critical issue in the popularity of solid-
state disks. Wear-leveling methods can prevent flash-storage de-
vices from prematurely retiring any portions of flash memory. The
two practical challenges of wear-leveling design are implementa-
tion cost and tuning complexity. This study proposes a new wear-
leveling design that features both simplicity and adaptiveness. This
design requires no new data structures, but utilizes the intelligence
available in sector-translating algorithms. Using an on-line tuning
method, this design adaptively tunes itself to reach good balance
between wear evenness and overhead. A series of trace-driven sim-
ulations show that the proposed design outperforms a competitive
existing design in terms of wear evenness and overhead reduction.
This study also presents a prototype that proves the feasibility of
this wear-leveling design in real solid-state disks.

Categories and Subject Descriptors D.4.2 [Operating Systems]:
Garbage collection; B.3.2 [ Memory Structures]: Mass Storage

General Terms Design, Performance, Algorithm.

Keywords Flash memory, wear leveling, solid-state disks.

1. Introduction

Solid-state disks are storage devices that employ solid-state mem-
ory like flash as the storage medium. The physical characteris-
tics of flash memory differ from those of mechanical hard drives,
necessitating different methods for memory accessing. Solid-state
disks hide flash memory from host systems by emulating a typi-
cal disk geometry, allowing systems to switch from a hard drive to
a solid-state disk without modifying existing software and hard-
ware. Solid-state disks are superior to traditional hard drives in
terms of shock resistance, energy conservation, random-access per-
formance, and heat dissipation, attracting vendors to deploy such
storage devices in laptops, smart phones, and portable media play-
ers.
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Flash memory is a kind of erase-before-write memory. Because
any one part of flash memory can only withstand a limited number
of erase-write cycles, approximately 100K cycles under the current
technology [17], frequent erase operations can prematurely retire a
region in flash memory. This limitation affects the lifetime of solid-
state disks in applications such as laptops and desktop PCs, which
write disks at very high frequencies. Even worse, recent advances in
flash manufacturing technologies exaggerate this lifetime issue. In
an attempt to break the entry-cost barrier, modern flash devices now
use multilevel cells for double or even triple density. Compared to
standard single-level-cell flash, multilevel-cell flash degrades the
erase endurance by one or two orders of magnitude [18].

Localities of data access inevitably degrade wear evenness in
flash. Partially wearing out a piece of flash memory not only de-
creases its total effective capacity, but also increases the frequency
of its housekeeping activities, which further speeds up the wearing
out of the rest of the memory. A solid-state drive ceases to func-
tion when the amount of its worn-out space in flash exceeds what
the drive can manage. The wear-leveling technique ensures that the
entire flash wears evenly, postponing the first appearance of a worn-
out memory region. However, wear leveling is not free, as it moves
data around in flash to prevent solid-state disks from excessively
wearing any one part of the memory. These extra data movements
contributes to overall wear.

Wear-leveling algorithms include rules defining when data
movement is necessary and where the data to move to/from. These
rules monitor wear in the entire flash, and intervene when the flash
wear develops unbalanced. Solid-state disks implement wear lev-
eling at the firmware level, subjecting wear-leveling algorithms to
crucial resource constraints. Prior research explores various wear-
leveling designs under such tight resource budgets, revealing three
major design challenges: First, monitoring the entire flash’s wear
requires considerable time and space overheads, which most con-
trollers in present solid-state disks cannot afford. Second, algo-
rithm tuning for environment adaption and performance definition
requires prior knowledge of flash access patterns, on-line human
intervention, or both. Third, high implementation complexity dis-
courages firmware programmers from adopting sophisticated wear-
leveling algorithms.

Standard solid-state-disk microcontrollers (controllers in the
rest of this paper) cannot afford the RAM space overhead required
to store the entire flash’s wear information in RAM. Chang et al.
[2] proposed caching only portions of wear information. However,
periodic synching between the wear information in RAM and in
flash introduces extra write traffic to flash. Jung et al. [9] proposed
a low-resolution wear information method based on the average
wear of large memory regions. Nevertheless, this approach suffers
from distortion whenever flash wearing is severely biased. Chang et
al. [5] introduced bit-indicated recent wear history. However, recent



wear history blinds wear leveling because recency and frequency
are independent in terms of flash wear.

Almost all wear-leveling designs subject wear evenness to tun-
able threshold parameters [2, 5, 9]. The system environment in
which wear leveling takes place includes many conditions, such as
sector-translating algorithms, flash geometry, and host disk work-
loads. Even though the wear-leveling threshold remains unchanged,
the results of using a wear-leveling algorithm under various sys-
tem environments can be very different. Using inadequately tuned
parameters can cause unexpectedly high wear-leveling overhead
or unsatisfactory wear evenness. Existing approaches require hu-
man intervention or prior knowledge of the system environment
for threshold tuning.

From a firmware point of view, implementation complexity pri-
marily involves the applicability of wear-leveling algorithms. The
dual-pool algorithm [2] uses five priority queues of wear infor-
mation and a caching method to reduce the RAM footprints of
these queues. The group-based algorithm [9] and the static wear-
leveling algorithm [5] add extra data structures to maintain coarse-
grained wear information and the recent history of flash wear, re-
spectively. These approaches ignore the information already avail-
able in sector-translating algorithms, which are firmware modules
accompanying wear leveling, and unnecessarily increase their de-
sign complexity.

This study presents a new wear-leveling design, called the lazy
wear-leveling algorithm, to tackle the three design challenges men-
tioned above. First, this design does not store wear information in
RAM, but leaves all of this information in flash instead. Second,
even though this algorithm uses a threshold parameter, it adopts an
analytical model to estimate its overhead with respect to different
threshold settings, and then automatically selects a good thresh-
old for good balance between wear evenness and overhead. Third,
the proposed algorithm utilizes the address-mapping information
available in the sector-translating algorithms, eliminating the need
to add extra data structures for wear leveling.

The rest of this paper is organized as follows: Section 2 reviews
flash characteristics and the existing algorithms for sector trans-
lating and wear leveling. Section 3 presents the proposed wear-
leveling algorithm, and Section 4 describes an adaptive tuning strat-
egy for this algorithm. Section 5 reports the results of trace-driven
simulations, and Section 6 presents an implementation of the pro-
posed algorithm based on a real solid-state disk. Section 7 con-
cludes this paper.

2. Problem Formulation
2.1 Flash-Memory Characteristics

Solid-state disks use NAND-type flash memory (flash memory for
short) as a storage medium. A piece of flash memory is a physical
array of blocks, and each block contains the same number of pages.
In a typical flash geometry, a flash page is 2048 plus 64 bytes. The
2048-byte portion stores user data, while the 64 bytes is a spare
area for storing housekeeping data. Flash memory reads and writes
in terms of pages, and it must erase a page before overwriting
this page. Flash erases in terms of blocks, which consist of 64
pages. Under the current technology, a flash block can sustain a
limited number of write-erase cycles before it becomes unreliable.
This cycle limit depends on the type of the flash manufacturing
technology: a single-level-cell flash block endures 100K cycles
[17], while this limit is 10K or less in multilevel-cell flash [18].
The rest of this paper uses terms “flash blocks”, “physical blocks”,
or simply “blocks” interchangeably.

Solid-state disks emulate disk geometry using a firmware layer
called the flash translation layer (i.e., FTL). FTLs update existing
data out of place and invalidate old copies of the data to avoid
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Figure 1. The set-associative mapping scheme whose group size is
two. Each data-block group is associated with up to one log-block

group.

erasing a flash block every time before rewriting a piece of data.
Thus, FTLs require a mapping scheme to translate logical disk-
sector numbers into physical locations in flash. Updating data out
of place consumes free space in flash, and FTLs must recycle mem-
ory space occupied by invalid data with erase operations. Before
erasing a block, FTLs copy all valid data from this block to other
free space. This series of copy and erase operations for reclaiming
free space is called garbage collection. Reducing data-copy over-
head during garbage collection is a priority in FTL designs.

2.2 Flash Translation Layers

FTLs are part of the firmware in solid-state disks. They use RAM-
resident index structures to translate logical sector numbers into
physical flash locations. Mapping resolutions have direct impact
on RAM-space requirements and write performance. Block-level
mapping [21], adopted in many entry-level flash-storage devices
like USB thumb drives, requires only small mapping structures.
However, low-resolution mapping suffers from slow response when
servicing non-sequential write patterns. Sector-level mapping [3, 6,
7] better handles random write requests, but requires large mapping
structures, making its implementation infeasible in high-capacity
solid-state disks.

Hybrid mapping combines both sector and block mapping for
good balance between RAM-space requirements and write perfor-
mance. This method groups consecutive logical sectors as logical
blocks as large as physical blocks. It maps logical blocks to phys-
ical blocks on a one-to-one basis using a block mapping table. 1f
a physical block is mapped to a logical block, then this physical
block is called the data block of this logical block. Any unmapped
physical blocks are spare blocks. Hybrid mapping uses spare blocks
as log blocks to serve new write requests, and uses a sector map-
ping table to redirect read requests to the newest versions of data in
spare blocks.

Hybrid mapping requires two policies: the first policy forms
groups of data blocks and groups of log blocks, and the second
policy associates these two kinds of groups with each other. Figures
1 and 2 show two FTL designs that use different policies. Let
Ibn and pbn stand for a logical-block number and a physical-
block number, respectively. The term [sn represents a logical-
sector number, and disp is the page offset in a physical block.
The bold boxes stand for physical blocks, each of which has four
pages. The number in the pages indicate the [sns of their storage
data. White pages, shadowed pages, and pages with diagonal lines
represent pages containing valid data, invalid data, and free space,
respectively. The BMT and the SMT are the block mapping table
and the sector mapping table, respectively.
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Figure 2. The fully-associative mapping scheme. All data blocks
are in one group and all log blocks are in the other.

Let the group size denote the number of blocks in a group. In
Fig. 1, the group size of data blocks is exactly two, while the group
size of log blocks is no larger than two. This mapping scheme,
called set-associative mapping, associates a data-block group with
one log-block group or none. This design has two important vari-
ants: set-associative sector translation (SAST), developed by Park
et al. [15], and block-associative sector translation (BAST), de-
veloped by Chung et al. [22]. SAST uses two variables, N and
K, to set the group sizes of data blocks and log blocks, respec-
tively. BAST (Block-Associative Sector Translation) [22] is sim-
pler, fixing N=1 and K=1 always. Figure 2 depicts another map-
ping scheme, called fully-associative mapping. This method has
only two groups associated with each other, one for all data blocks
and the other for all log blocks. Fully-associative sector translation
(FAST), developed by Lee et al. [12], is based on this design.

2.3 The Need for Wear Leveling

FTLs write new data in log blocks allocated from spare blocks.
When they run low on spare blocks, FTLs start erasing log blocks.
Before erasing a log block, FTLs collect the valid data from the
log block and from the data block associated with this log block,
copy this valid data to a blank block, remove the sector-mapping
information related to the log block, re-direct block-mapping in-
formation to the copy destination block, and finally erase the old
data block and log block into spare blocks. This procedure is called
either merging operations or garbage collection.

For example, in Fig. 1, the FTL decides to erase the group
consisting of log blocks at pbns 3 and 6. This log-block group is
associated with the group of data blocks at pbns 0 and 2. The FTL
prepares a group of two blank blocks at pbns at 7 and 8. Next, the
FTL collects four valid sectors at [sns 0 through 3, and writes them
to the blank block at pbn 7. Similarly, the FTL copies valid sectors
at [sns 4 through 7 to the blank block at pbn 8. Finally, the FTL
erases the physical blocks at pbns 0, 2, 3, and 6 into spare blocks,
and then re-maps lbns 0 and 1 to physical blocks at pbns 7 and 8,
respectively.

Log-block-based FTLs exhibit some common behaviors in the
garbage-collection process regardless of their grouping and associ-
ating policies. FTLs never erase a data block if none of its sector
data have been updated. In the set-associative mapping illustration
in Fig. 1, erasing the data blocks at pbn 5 does not reclaim any
free space. Similarly, in the fully-associative mapping illustration
in Fig. 2, erasing any of the log blocks does not involve the data
block at pbn 5. This is a potential cause of uneven flash wear.

Figure 3(a) shows a fragment of the disk-write traces recorded
from a laptop PC’s daily use'. The X-axis and the Y-axis of this

'This workload is the NOTEBOOK workload in Section 5.1.
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Figure 3. Flash wear in a solid-state disk under the disk workload
of a laptop. (a) A fragment of the disk-write workload and (b) the
final distribution of flash blocks’ erase counts.

figure represent the logical time and the [sns of write requests, re-
spectively. This pattern biases write requests toward a small collec-
tion of disk sectors. Let a physical block’s erase count denote how
many write-erase cycles this block has undergone. After replay-
ing the trace set on a real solid-state disk which adopts an FAST-
based FTL (Section 6.1 describes this product in more detail), Fig.
3(b) shows that the final distribution of erase counts is severely un-
balanced. The X-axis and Y-axis of Fig. 3(b) represent the pbns
and erase counts of physical blocks, respectively. Nearly 60% of
all physical blocks have zero erase counts, as the horizontal line at
the bottom of Fig. 3(b) shows. In other words, this workload retires
only 40% of all blocks, while the rest remain fresh. Evenly dis-
tributing erase operations can double the flash lifespan compared
to that without wear leveling.

2.4 Prior Wear-Leveling Strategies

This section provides a conceptual overview of existing wear-
leveling designs. Static wear leveling moves static/immutable data
away from lesser worn flash blocks, encouraging FTLs to start eras-
ing these blocks. Flash vendors including Numonyx [14], Micron
[13], and Spansion [20] suggest using static wear leveling for flash
lifetime enhancement. Chang et al. [5] described a static wear lev-
eling design, and later Chang et al. [2] showed that this design is
competitive with existing approaches. However, the experiments in
this study reveal that static wear leveling suffers from uneven flash
wear on the long-term.

Hot-cold swapping exchanges data in a lesser worn block with
data from a badly worn block. Jung et al. [9] presented a hot-cold
swapping design. However, Chang et al. [2] showed that hot-cold
swapping risks erasing the most worn flash block pathologically.
Cold-data migration relocates immutable data to excessively worn
blocks and then isolates these worn blocks from wear leveling until
they are no longer worn blocks compared to other blocks. Chang
et al. [2] described a design of this idea. This design adopts five
priority queues to sort blocks in terms of their wear information
and a cache mechanism to store only frequently accessed wear lev-
eling. However, synching the wear information between the cache
and flash introduces extra write traffic to flash, and its higher im-
plementation complexity may be a concern of firmware designers.

Unlike the wear-leveling designs above that treat wear leveling
and garbage collection as independent activities, Chiang et al. [6]
and Kim et al. [11] proposed heuristic functions that score flash
blocks with considering garbage collection and wear leveling. In
this case, FTLs erase the most scored block. However, erasing a
block can require re-scoring all flash blocks. This task excessively
stress the controllers and delay ordinary read/write requests.

There are compromises between algorithm concept and im-
plementation, because the controllers can offer very limited re-
sources. Even though different wear-leveling designs are based on



Large &

E a 2

t d= g

o

3

2 b s

5 1 (P 2
g
]

8 | e ____

2 The average erase count -

A =

teg =

¢ = o

- th &

f - =

= z

Small -

>

Physical-block numbers (pbn)

Figure 4. Physical blocks and their erase recency and erase counts.
An upward arrow indicates that a block has recently increased its
erase count.

the same concept, they could have very different resource demands
and performance characteristics. For example, among the differ-
ent designs of static wear leveling, Chang et al. [5] proposed us-
ing a periodically-refreshed bitmap to indicate not recently erased
blocks. Differently, the designs from Numonyx [14] and Chang and
Kuo [4] store blocks’ erase counts in RAM, and involve the block
of the smallest erase count in wear leveling.

Lazy wear leveling (the proposed approach) roots in cold-data
migration. However, different from the dual-pool algorithm [2],
which is also based on cold-data migration, lazy wear leveling
adopts the following innovative designs. First, lazy wear leveling
does not store blocks” wear information in RAM. It leaves them
in flash instead, and utilizes the mapping information available in
FTLs to assist wear leveling. In contrast, the dual-pool algorithm
requires RAM space to store blocks’ wear information and monitor
them constantly. Caching the frequently referenced wear informa-
tion helps to reduce the RAM requirements, but synching wear in-
formation between the cache and RAM can add up to 10% of extra
write traffic to flash [2]. The second new idea in lazy wear level-
ing is the ability of self tuning. Wear-leveling algorithms subject
wear evenness to a threshold parameter. However, the overhead of
wear leveling grows at different rates under different system envi-
ronments when changing the threshold value. Lazy wear leveling
characterizes the overhead as a function of the threshold values,
and adaptively tunes the threshold for good balance between the
overhead and wear evenness.

3. A Low-Cost Wear-Leveling Algorithm for
Block-Mapping FTLs

3.1 Observations

Let the update recency of a logical block denote the time length
since the latest update to this logical block. If a logical block’s
last update is more recent than the average update recency, then
this logical block’s update recency is high. Otherwise, its update
recency is low. Analogously, let the erase recency of a physical
block be the time length since the latest erase operation on this
block. Thus, immediately after garbage collection erases a physical
block, this block has the highest erase recency among all blocks.
A physical block is an elder block if its erase count is larger than
the average erase count. Otherwise, it is a junior block. Notice that
block seniority is a relative measure. For example, even though all
blocks in a brand-new flash have small erase counts, there will be
some elder blocks and junior blocks.

FTLs avoids erasing flash blocks mapped to unmodified logical
blocks, because erasing these flash blocks reclaims no free space.
Thus, the temporal localities of writing disk sectors can translate
into temporal localities of erasing physical blocks. If a flash block
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has a high erase recency, then this block was not mapped to a static
logical block. This flash block will then be mapped to a recently
modified logical block. Because of temporal localities of writing
disk sectors, recently modified logical blocks will be frequently
modified. Therefore, the flash block will be mapped to mutable
logical blocks and frequently increases its erase count. Conversely,
a physical block loses momentum in increasing its erase count if its
erase recency is low.

Figure 4 provides an example of eight physical blocks’ erase re-
cency and erase counts. Upward arrows mark physical blocks cur-
rently increasing their erase counts, while an equal sign indicates
otherwise. Block a is an elder block with a high erase recency,
while block d is an elder but has a low erase recency. The junior
block 4 has a high erase recency, while the erase recency of the
junior block e is low.

A block should keep its erase count close to the average. For
instance, the junior blocks g and /4 are increasing their erase counts
toward the average, while the difference between the average and
the erase counts of the elder blocks ¢ and d is decreasing. However,
other than the above two cases, block wear can require intervention
from wear leveling. First, the junior blocks e and fhave not recently
increased their erase counts. As their erase counts fall below the av-
erage, wear leveling has them start participating in garbage collec-
tion. Second, the elder blocks a and b are still increasing their erase
counts. Wear leveling should have garbage collection stop further
wear in these two elder blocks.

3.2 The Lazy Wear-Leveling Algorithm

This study proposes a new wear-leveling algorithm based on a sim-
ple principle: whenever any elder blocks’ erase recency becomes
high, the algorithm re-locates (i.e., re-maps) logical blocks with a
low update recency to these elder blocks. This algorithm, called the
lazy wear-leveling algorithm, is named after its passive reaction to
unbalanced flash wear.

Lazy wear leveling focuses on the wear of elder blocks only,
because elder blocks retire before junior blocks. Thus, being aware
of recent wear of elder blocks is important. Physical blocks boost
their erase recency only when the FTL erases them for garbage col-
lection. Thus, if the FTL notifies lazy wear leveling of its decision
on the next victim block, lazy wear leveling can check this victim
block’s seniority. This way, lazy wear leveling needs not repeatedly
check all elder blocks’ wear information.

How to prevent elder blocks from further aging is closely related
to garbage-collection behaviors: Garbage collection has no interest
in erasing a data block if this data block is not associated with any
log blocks. A data block does not require any log blocks for storing
new updates if the logical block mapped to this data block has a low
update recency. Because recent sector updates to a logical block
leaves mapping information in the FTL’s sector-mapping table,
lazy wear leveling selects logical blocks not related to any sector-
mapping information as logical blocks with a low update recency.
The logical block at [bn 3 in Fig. 1 and 2 is such an example.

Re-mapping logical blocks with a low update recency to elder
blocks can prevent elder blocks from wearing further. To re-map
a logical block from one physical block to another, lazy wear lev-
eling moves all valid data from the source physical block to the
destination physical block. This invalidates all data in the source
block and directs the upcoming garbage-collection activities to the
source block. Junior blocks are the most common kind of source
blocks, e.g., blocks e and fin Fig. 4, because the storage of im-
mutable data keeps them away from garbage collection. Therefore,
selecting logical blocks for re-mapping is related to the wear of
junior blocks. To give junior blocks an even chance of wear, it is
important to uniformly visit every logical block when selecting a
logical block for re-mapping.



Algorithm 1 The lazy wear-leveling algorithm

Input: v: the victim block for garbage collection
Output: p: a substitute for the original victim block v
1: ey—eraseCount(v)
2: if (ey — eavg) > A then
3 repeat
4: I — IbnNext()
5:  until lbnHasSector M apping(1)=FALSE
6: _erase(v);
7: p pbn(l)
8:  _copy(v,p); -map(v,1)
9 ey €y +1
10:  equg < updateAverage(equvg, €v)
11: else
12 p+—w
13: end if
14: RETURN p

The temporal localities of write requests can change occasion-
ally. Disk workloads can start updating a logical block which pre-
viously had a low update recency. If this logical block was re-
cently re-mapped to an elder block for wear leveling, then the new
updates neutralize the prior re-mapping operation. However, lazy
wear leveling will perform another re-mapping operation for this
elder block when the FTL is about to erase this elder block again.

3.3 Interaction with FTLs

This section describes how lazy wear leveling interacts with its
accompanying firmware module, the flash translation layer. Lazy
wear leveling and the FTL operate independently, but the FTL pro-
vides some information to assist wear leveling. Algorithm 1 shows
the pseudo code of the lazy wear-leveling algorithm. The FTL in-
vokes this procedure every time it erases a victim block for garbage
collection. This procedure determines if wear leveling needs inter-
vene in the erasure of the victim block. If so, this procedure looks
for a logical block that has not been updated recently, re-maps this
logical block to the victim block, and then selects the physical block
previously mapped to this logical block as a substitution for the
original victim block. Notice that the FTL needs not consider wear
leveling when selecting victim blocks. In other words, lazy wear
leveling is independent of the FTL’s victim-selection policy.

In Algorithm 1, the FTL provides the subroutines with leading
underscores, and wear leveling implements the rest. The algorithm
input is v, the victim block’s physical block number. Step 1 obtains
the erase count e,, of the victim block v using eraseCount(). Step
2 compares e, against the average erase count eq.q. If €, is larger
than eq.y by a predefined threshold A, then Steps 3 through 10
will carry out a re-mapping operation. Otherwise, Steps 12 and 14
return the original victim block to the FTL intact.

Steps 3 through 5 find a logical block with a low update re-
cency. Step 4 uses the subroutine lbnNext() to obtain I the next
logical block number to visit, and Step 5 calls the subroutine
_IbnHasSector Mapping() to check if the logical block ! has
any related mapping information in the FTL’s sector-mapping ta-
ble. These steps cycle through all logical blocks until they find a
logical block not related to any sector-mapping information. As
mentioned previously, to give all junior blocks (which are related
to logical blocks with a low update recency) an equal chance to
get erased, the subroutine lbnNext() must evenly visit all logical
blocks. The implementation of lbnNext() can be any permuta-
tions of all logical block numbers, such as the Linear Congruential
Generator [16]. Using permutations also maximizes the interval
between two consecutive visits to the same logical blocks, reduc-
ing the probability of re-mapping a logical block with a low update
recency from an elder block to another.
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Figure 5. A scenario of running the lazy wear-leveling algorithm.
Crosses indicate write requests to logical blocks.

Steps 6 through 8 re-map the previously found logical block [.
Step 6 erases the original victim block v. Step 7 uses the subroutine
_pbn() to identify the physical block p that the logical block I
currently maps to. Step 8 copies the data of the logical block ! from
the physical block p to the original victim block v, and then re-maps
the logical block [ to the former victim block v using the subroutine
_map(). After this re-mapping, Step 9 increases e,, since the former
victim block v has been erased, and Step 10 updates the average
erase count. Step 14 returns the physical block p, which the logical
block ! previously mapped to, to the FTL as a substitute for the
original victim block v.

3.4 Algorithm Demonstration

Figure 5 shows a four-step scenario of using the lazy wear-leveling
algorithm. In each step, the left-hand side depicts the physical
blocks and their erase counts, and the right-hand side shows the
logical blocks and their updates marked with bold crosses. This
example shows only the mapping of logical blocks with a low
update recency to elder physical blocks.

Step 1 shows the initial condition. Let the erase counts of the
elder physical blocks B, F, G, and H be greater than the average
by A. Step 2 shows that lazy wear leveling re-maps logical blocks
of a low update recency f, b, d, and e to elder physical blocks B,
F, G, and H, respectively. As garbage collection avoids erasing
physical block with no invalid data, Step 3 shows that physical
blocks other than B, I, G, and H increase their erase counts, after
processing a new batch of write requests. In this case, the wear of
all blocks is becoming even.

In Step 3, the write pattern generates several updates to the
logical block b. However, previously in Steps 1 and 2, this logical
block had a low update recency, and wear leveling already re-
mapped it to the elder physical block F'. As previously mentioned
in Section 3.2, these new updates to the logical block b will cause
further wear of the elder physical block F', making the prior re-
mapping operation of the logical block b ineffective in terms of
wear leveling. Step 4 shows that lazy wear leveling re-maps another
logical block g with a low update recency to the elder physical
block F' as soon as it learns that the FTL is about to erase the elder
physical block F'.

4. Adaptive Self Tuning

Tuning the threshold parameter A helps lazy wear leveling to
achieve good balance between overhead and wear evenness. This
tuning strategy consists of two parts: Section 4.1 presents an ana-
lytical model of the overhead and wear evenness of wear leveling.




A A
«n, —>» [€«—n, —>€<—n —>
bh b bh
n %
= =
2 |
=} Q
o <
)
z A % A+l A
&3] =
Physical block numbers Physical block numbers
(a) (b)

Figure 6. Erase counts of flash blocks right before the lazy wear-
leveling algorithm performs (a) the first re-mapping operation and
(b) the ny,+1-th re-mapping operation.

Section 4.2 introduces an on-line algorithm that adjusts A based on
the analytical model.

4.1 Performance Analysis: Overhead and Wear Evenness

Consider a piece of flash memory consisting of n, physical blocks.
Let immutable logical blocks map to ms. among all physical
blocks. Let the sizes of write requests be multiples of the block size.
Let write requests be aligned to block boundaries. Suppose that the
disk workload uniformly writes the mutable logical blocks. Thus,
the FTL evenly increases the erase counts of the nyp=ny — N
physical blocks.

Let the function f(z) denote how many blocks garbage collec-
tion erases to process a workload writing x logical blocks. Consider
the case x = i X npp, X A, where 7 is a non-negative integer. As all
request sizes are multiples of the block size and requests are block-
aligned, erasing victim blocks does not cost garbage collection any
overhead in copying data. Thus, without wear leveling, we have

flx) ==

Now, consider wear leveling enabled. For ease of presentation,
this simulation revises the lazy wear leveling algorithm slightly:
instead of comparing the victim block’s erase count to the aver-
age erase count, the algorithm compares it against the smallest
among all blocks’ erase counts. Figure 6(a) shows that, right before
lazy wear leveling performs the first re-mapping, garbage collection
has uniformly accumulated np, X A erase counts in 7145, physical
blocks. In the subsequent n), erase operations, garbage collection
erases each of these ny, physical blocks one more time, and in-
creases their erase counts to A + 1. Thus, lazy wear leveling con-
ducts np, re-mapping operations for these physical blocks at the
cost of erasing npp, blocks. These re-mapping operations re-direct
garbage-collection activities to another ny;, physical blocks. Simi-
larly, Fig. 6(b) shows that, after garbage collection accumulates an-
other np, X A erase counts in these new npp, physical blocks, lazy
wear leveling again spends npp, erase operations for re-mapping
operations. Let function f’(x) be analogous to f(z), but with wear
leveling enabled. We have

x

f@=a+|3

Under real-life workloads, the frequencies of erasing these nyp
blocks may not be uniform. Thus, f’(x) adopts a coefficient K
to take this into account:

J:$+i><nbh.

f/(CIZ'):.T—‘ranthK.

The coefficient K depends on various system conditions, such as
flash geometry, host workloads, and FTL algorithms. For exam-
ple, dynamic changes in temporal write localities can increase K
because the write pattern might start updating the logical blocks
which wear leveling has previously used for re-mapping.
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Let the overhead function g(A) denote the overhead ratio with
respect to A:

7’L.><?’Lbh><K7K
_anthA_A'

Because lazy wear leveling compares victim blocks’ erase counts
against the average erase count rather than the smallest erase count,
we use 2A as an approximation of the original A, and have the co-
efficient K include the compensation for the error in the approxi-
mation. Thus, we have

9(8) = o~ )

Notice that, when A is small, a further decrease in A rapidly
increases the overhead ratio. For example, decreasing A from 4
to 2 doubles the overhead ratio.

Next, let us focus on the relation between A and the wear even-
ness in flash. Let the metric of the wear evenness be the standard de-
viation of all blocks’ erase counts, i.e., n% >t (eb; — €avg)?.

The smaller the standard deviation is, the more even the wear
of flash blocks is. Provided that wear leveling is successful,
S (ev; — €avg)?® would be bounded by ny x A®. Thus, the
relation between the wear evenness and A would be bounded by a
linear relation.

4.2 On-Line A Tuning

As the wear evenness is linearly related to A, small A values are
always preferred in terms of wear evenness. Differently, the relation
between the overhead and A is non-linear, and decreasing A value
can cause an unexpectedly large overhead increase. Thus, in spite
of limiting the total overhead, setting A should consider whether
the overhead is worth the wear evenness. This section presents an
on-line algorithm that dynamically tunes A for balance between
overhead and wear evenness. Because there are simple means to
limit the total overhead such as adjusting the duty cycle of wear
leveling, this study focuses on limiting the overhead growth rate
when tuning A.

Under dynamic disk workloads, the coefficient K in g(A) may
vary over time. Thus, wear leveling must first determine the coef-
ficient K before using g(A) for A-tuning. This study proposes a
session-based method for A-tuning. A session refers to a time in-
terval in which lazy wear leveling contributed a pre-defined number
of erase counts. This number is the session length. The basic idea
is to compute K., of the current session and use this coefficient
to find A,eq¢ for the next session.

The first session adopts A=16, but in theory this initial A value
can be any number because it will not affect K. Let the current
session adopts Acqr,. Figure 7 illustrates the concept of the A-
tuning procedure: during a runtime session, lazy wear leveling
records the erase counts contributed by the garbage collection and
wear leveling. At the end of the current session, the first step (in
Fig. 7) computes the overhead ratio W, i.e., g(Acur), and
solves K., of the current session using Equation 1, i.e., Kcur =
2Acur X Q(Acur)~

The second step uses g(Anert)=Keur /(208 next) to find Apeat
for the next session. Basically, lazy wear leveling minimizes A
values subject to a user-defined limit A on the growth rate of the
overhead ratio (when decreasing A). Let the unit of the overhead
ratio be one percent. For example, A=-0.1 means that the overhead
ratio increases from x% to (x+0.1)% when decreasing A from y to
(y-1). Solve % 9(Anext) = == for the smallest A value subject

100
to A. Rewriting this equation, we have

100
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g(Acur)Acur .
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Figure 7. Computing A+ subject to the overhead growth limit
A for the next session according to A, and the overhead ratio
g(Acur) of the current session.

For example, when A\=-0.1, if the overhead ratio g(Acyr) and Acyr
of the current session are 2.1% and 16, respectively, then A, ez for

the next session is B%’? 2.1% x 16 = 18.3.

The A-tuning method adjusts A on a session-by-session basis.
It requires the session length as the period of adjusting A, and A
as a user-defined boundary between linear and super-linear over-
head growth rates. The later experiments show that A=-0.1 is a rea-
sonably good setting, and wear-leveling results are insensitive to
different session lengths.

5. Performance Evaluation
5.1 Experimental Setup and Performance Metrics

We built a solid-state disk simulator using System C [8]. This sim-
ulator includes a flash module for behavioral simulation on read,
write, and erase operations. This flash module can also accept dif-
ferent geometry settings. Based on this flash module, the simulator
implements different FTL algorithms, including BAST [22], SAST
[15], and FAST [12], which are representative designs at the current
time. We tailored the lazy wear-leveling algorithm to accompany
each of the FTL algorithm. This simulator also includes the static
wear-leveling algorithm based on Chang’s design [5]. Static wear
leveling is widely used in industry [13, 14, 20] and has been proven
competitive with existing wear-leveling algorithms [2].

The input of the simulator is a series disk requests, ordered
chronologically. These disk requests were recorded from four types
of real-life host systems: a Windows-based laptop, a desktop PC
running Windows, a Ubuntu Linux desktop PC, and a portable me-
dia player. The user activities of the laptop and desktop workloads
include web surfing, word processing, video playback, and gam-
ing, while those of the media player workload are to copy, play,
and delete MP3 and video files. These choices include popular op-
tions of operating systems (e.g., Linux or Windows), file systems
(e.g., ext4 or NTFS), hard-drive capacity, and system usages (e.g.,
mobile or desktop). Table 1 describes the four disk workloads.

This study adopts two major performance metrics for flash-wear
evenness and wear-leveling overhead. The standard deviation of
all flash blocks’ erase counts (the standard deviation for short)
indicates the wear evenness in the entire flash. The smaller the
standard deviation is, the more level is the wear in flash. The
mean of all flash blocks’ erase counts (the mean for short) is
the arithmetic average of all blocks’ erase counts. The difference
between the means of with and without wear leveling reveals the
overhead of wear leveling in terms of erase operations. The smaller
the mean increase is, the lower is the wear-leveling overhead. It is
desirable to achieve both a small standard deviation and a small
mean increase.

Unless explicitly specified, all experiments adopted the follow-
ing default settings: The threshold parameters A and T'H of lazy
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Workload Operating Volume File Total
system size system  written
Notebook ~ Windows XP 20 GB NTES 27
Desktop 1 ~ Windows XP 40 GB NTEFS 81
Desktop 2 Ubuntu 9 40 GB ext4 55
Multimedia ~ Windows CE 20 GB ~ FAT32 20
GB

Table 1. The four experimental workloads.
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Figure 8. Evaluating lazy wear leveling and static wear leveling
with FTL algorithms BAST, SAST, and FAST under the notebook
disk workload.

wear leveling and static wear leveling were both 16. T'H refers
to the ratio of the total erase count to the total number of re-
cently erased flash blocks (i.e., the blocks indicated as one in the
erase bitmap). Dynamic A tuning will be evaluated in Section 5.3.
The flash page size and block size were 4KB and 512KB, respec-
tively, reflecting a typical geometry of MLC flash [18]. The in-
put disk workload was the notebook workload, and the FTL al-
gorithm was FAST [12]. The sizes of the logical disk volume and
the physical flash were 20GB and 20.5GB, respectively. Thus, the
over-provisioning ratio was (20.5-20)/20=2.5%. The experiments
replayed the input workload one hundred times to accumulate suffi-
ciently many erase cycles in flash blocks. This helped to differenti-
ate the efficacy of different wear-leveling algorithms. These replays
did not manipulate the experiments. Provided that wear leveling is
effective, replaying the input disk workload once sufficiently erases
the entire flash one time.

5.2 Experimental Results
5.2.1 Effects of Using Different FTL Algorithms

Figure 8 shows the results of using BAST, SAST, and FAST with
lazy wear leveling and static wear leveling. The Y-axes of Fig. 8(a)
and 8(b) indicate the standard deviations and the means, respec-
tively. First consider the results without using wear leveling. These
results show that FAST achieved the smallest mean among the three
FTL algorithms. This is because FAST fully utilizes free space in
every log bock [12]. On the contrary, BAST suffered from very
high garbage-collection overheads, because BAST has poor space
utilization in log blocks. These observations agreed with that re-
ported in prior work [12, 15, 22].

Lazy wear leveling consistently delivered low standard devia-
tions under the three FTL algorithms. Its standard deviations were
between 10 and 12, almost not affected by FTL algorithms. In con-
trast, static wear leveling’s standard deviations were much larger
than that of lazy wear leveling, and was very sensitive to the use of
different FTL algorithms. In particular, its standard deviations were
137 and 66 under BAST and FAST, respectively. Regarding wear-
leveling overhead, the mean increase of lazy wear leveling was very
small, which was no more than 3% in all experiments. Static wear
leveling’s mean increase was slightly larger, reaching 6%.

Figure 8(b) shows that when the FTL algorithm was SAST,
lazy wear leveling introduced a slightly larger mean increase than
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Figure 9. Experimental results of using lazy wear leveling and
static wear leveling under the four types of disk workloads.

static wear leveling. This is due to the different definitions of the
threshold parameters of lazy wear leveling and static wear leveling.
For a fair comparison, we set A = 18 and T'"H = 16 such that the
two wear-leveling algorithms produced the same mean increase.
Under these settings, the standard deviations of lazy wear leveling
was 18, which was much better than 107 in static wear leveling.
Section 5.4 provides explanations of the large standard deviation of
static wear leveling.

5.2.2 Effects of Using Different Host Workloads

This part of the experiment evaluated wear-leveling algorithms
under the four types of disk workloads (as Table 1 shows). The
number of times each of the four workload replays was subject to a
constant ratio of the total amount of data written into the disk to the
logical disk volume size. This ratio was determined by replaying
the notebook workload 100 times, i.e., (100x27GB)/20GB=135.

Figure 9 shows that, without wear leveling, the multimedia
workload had the smallest mean and standard deviation among
the four workloads. This workload consisted of plenty of large
and sequential write requests that accessed almost the entire disk
space. Therefore garbage collection incurred mild overhead and
accumulated erase cycles in all flash blocks at nearly the same rate.
On the other hand, the standard deviations and means of using the
notebook workload and the two desktop workloads were large. This
is because these disk workloads consisted of temporal localities,
which amplified the garbage-collection overhead and biased the
flash wear as well.

Figure 9 shows that, regardless of the disk workload adopted,
lazy wear leveling successfully lowered the standard deviations to
about 10. Lazy wear leveling caused only marginal mean increase,
no more than 3% under all workloads. On the other hand, even
though static wear leveling’s increases on the mean were compara-
ble to that of lazy wear leveling, its large standard deviations indi-
cate that it failed to balance the flash wear in all workloads.

5.2.3 Flash Geometry and Over-Provisioning Ratios

Flash geometry and over-provisioning ratios directly affect garbage-
collection overhead and the wear evenness in flash. This experi-
ment has two parts. The first part considered three kinds of flash
geometry of page size/block size: 2KB/128KB, 4KB/512KB, and
4KB/2MB. The first and the second setups were typical geome-
tries of SLC flash [17] and MLC flash [18], respectively. Advanced
architecture designs employ multiple channels for parallel access
over multiple flash chips [1, 10, 19]. Thus, the third setting cor-
responds to the effective geometry of a four-channel architecture.
The results in Fig. 10 show that, without wear leveling, adopting
coarse-grained flash geometry not only increased the overhead of
garbage collection but also degraded the evenness of flash wear.
When using lazy wear leveling, the standard deviations and the
mean increases were both small. This advantage remained whether
the flash geometry was coarse-grained or fined-grained.
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Figure 10. Experimental results under different settings of flash

geometry.
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Figure 11. Experimental results under different over-provisioning
ratios of flash memory.

The second part of this experiment adopted three over-provisioning
ratios: 1.25%, 2.5%, and 5%. The smaller the over-provisioning ra-
tio is, the fewer log blocks the FTL can have. Figure 11 indicates
that using small over-provisioning ratios resulted in high overhead
of garbage collection. This is because the demand for free space
forced the FTL to prematurely copy valid data for garbage col-
lection before these valid data might be invalidated by new write
request. Amplified garbage-collection activities also increased the
wear unevenness in flash. When using lazy wear leveling, the stan-
dard deviations and the mean increases were again small, and its
performance was not significantly affected by using different over-
provisioning ratios.

5.3 Automated A-tuning

This experiment adopted two system configurations C; and Cp:
the configuration C; used the Linux desktop workload with BAST,
while the configuration Co adopted the notebook workload with
FAST. The flash geometry was in both C; and Co were both
4KB/2MB. The over-provisioning ratios of C; and Cz were 1.25%
and 0.625%, respectively.

This experiment consists of three parts. The first part reports the
overhead and the standard deviation with respect to different static
A settings (i.e., dynamic A-tuning was disabled) under various sys-
tem configurations. Figure 12(a) depicts that the relations between
A and standard deviations appear linear in both C; and Cz. This
agrees with the analysis of wear evenness in Section 4.1. When A
was large, the standard deviations of C; were larger than those of
Co, indicating that C; required more wear leveling than C,. Figure
12(b) depicts the overhead ratios (see Section 4.1 for definition)
for different A values. The two solid curves depicts the actually
measured overhead ratios in C; and C». The two dotted lines plot
the estimated overhead using g(A) with K=1.2 and K=0.76. The
dotted lines and the solid lines are very close, showing that g(A)
can produce accurate overhead estimation. The overhead increased
faster in C; than in Co, indicating that the cost of wear leveling was
higher in C;.

The second part of this experiment enabled the dynamic A-
tuning method presented in Section 4.2. The session length for
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Figure 13. Runtime A values and standard deviations in system
configurations C; and Cz with the A-tuning method enabled. The
final overhead ratios of C; and Co were 2.22% and 1.95%, respec-
tively.

A-tuning was 1,000, meaning that A adjusted every time after
lazy wear leveling erased 1,000 blocks. The value of A was -0.1.
Figure 13 plots the A values and the standard deviations session-
by-session. The A value dynamically adjusted during experiments,
and the standard deviations occasionally increased but remained
at controlled levels. Overall, even though C; requires more wear
leveling than Ca (as Fig. 12(a) shows), the tuning method still
refrained from using small A values in C; because in C; the
overhead grew faster than in Cz (as Fig. 12(b) shows).

The third part reports results of using different settings of A and
session lengths. This part used A=-0.2 in comparison with A=-0.1 in
configuration C2. When switching A from -0.1 to -0.2, the overhead
ratio increased about 1.7 times (from 1.95% to 3.37%), while the
standard deviation improved by only 15% (from 14.46 to 12.28).
This is because the overhead growth (when decreasing A) can
become super-linear when the tangent slope to g(A) is smaller than
-0.1 (as Fig. 12(b) shows). Therefore, using A=-0.2 produced only
marginal improvement upon the standard deviation which is not
worth the large overhead increase. This part also includes results
of using different session lengths. The final standard deviations of
C; with session lengths 1000, 2000, and 3000 were 14.46, 14.86,
and 14.51, respectively. The final overhead ratios with these three
session lengths were 1.95%, 2.02%, and 2.05%, respectively. Thus,
the efficacy of the A-tuning method is insensitive to session-length
settings.

5.4

Keeping the standard deviation stable is as important as keeping it
low. This experiment observed the change history of standard de-
viations using different wear-leveling algorithms. The experiment
settings here are the same as those in Section 5.2.2. The trace-
collecting duration of the notebook workload was one month. Thus,
the experimental setting emulated an eight-year session of disk ac-
cess by replaying the trace 100 times.

Wear-Leveling Stability

Standard deviations
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Figure 15. The final distribution of blocks’ erase counts under the
notebook workload.

Figure 14 shows the standard deviations when using lazy wear
leveling and static wear leveling under four types of disk work-
loads. The X-axes and Y-axes indicate the total amount of data
written into the disk and the standard deviations, respectively. Let
the stable interval of a wear-leveling algorithm be the longest time
period [t, '] in which the standard deviations at time points ¢ and
t' are the same. A wear-leveling algorithm is stable if its stable
interval increases as the total amount of data written into the disk
increases. Figure 14(a) shows that lazy wear leveling was stable
under all workloads. On the contrary, Fig. 14(b) shows that static
wear leveling was instable. Figure 15 shows the final distribution of
erase counts under the notebook workload. As static wear leveling
was instable, the belt of erase counts gradually grew thicker dur-
ing experiments. A closer inspection of the static wear leveling’s
results revealed two causes of this instability.

Static wear leveling proactively moves static data away from
physical blocks with a low erase recency (called static blocks here-
after), giving static blocks a chance to participate in garbage col-
lection. Erasing a static (physical) block forcibly re-maps the log-
ical block previously mapped to this static block to a spare block.
However, static wear leveling conducts this re-mapping regardless
of whether the spare block is also static or not. Under the note-
book workload, there was a 70% probability that static wear lev-
eling would re-map a logical block of a low update recency from
a static block to another static block. This impeded the aging of
static blocks only. The second problem is that static wear leveling
erases static blocks regardless of their (absolute) erase counts. Un-
der the notebook workload, there was a 50% probability that the
block erased by static wear leveling was an elder block. Erasing an
elder block does not help wear leveling in any way.

6. An SSD Implementation
6.1 Hardware Architecture

This study reports the implementation of the lazy wear-leveling al-
gorithm in a real solid-state disk. This implementation used Global
UniChip Cooperation’s GP5086 system-on-a-chip (i.e., SoC) con-



No WL Lazy WL  Ratios

Average write [IOPS 390 380 -3%
Erase counts
standard deviation 613 11 -98%
mean 733 751 +2%

Table 2. Evaluation results of the GP5086-based SSD prototype.
The average size of write requests was 22 KB.

troller for solid-state disks. The controller includes an 150-MHz
ARM7 core, a BCH-based ECC engine, SLC/MLC flash interfaces,
and host interfaces including serial ATA and parallel ATA. This
controller supports 128KB of embedded SRAM for run-time vari-
ables and FTL mapping tables. GP5086 features a four-channel
architecture aiming at high sustained data transfer rates. GP5086
erases in terms of four parallel flash blocks in the four channels,
while reading and writing do not necessarily involve all the chan-
nels. We designed a solid-state disk using GP5086 and four MLC
flash chips, with one chip for each channel. The effective page
size and block size were 4KB and 2MB, respectively. The GP5086
firmware implemented a SAST-like FTL algorithm optimized for
its multichannel architecture. This firmware also included the lazy
wear-leveling algorithm for performance evaluation.

6.2 Experimental Results

In this experiment, the over-provisioning ratio was 2.5%, and the
threshold parameter A was 16. The solid-state disk was connected
to a Windows-based PC. A user application ran on this PC and
replayed the notebook disk workload one hundred times on the
solid-state disk using non-buffered Win32 I/0O APIs. To speed up
the experiment, the GP5086 firmware replaced its flash-accessing
routines with dummy functions.

The results in Table 2 show that enabling lazy wear leveling
significantly reduced the standard deviation from 613 to 11, while
the mean increase was only 2%. These numbers are consistent with
the simulation results. We also measured the time overhead in terms
of the average number of write requests completed per second
(i.e., the average write IOPS). When measuring IOPS, the firmware
switched back to real flash-access routines and the experiment
measured the response times of one million write requests. Results
show that enabling lazy wear leveling decreased the write IOPS by
3%, which is slightly greater than the 2% mean increase. This is
because wear leveling involves extra copy operations in addition to
erasing blocks.

7. Conclusion

Successful wear leveling relies on monitoring not only the current
wear in flash, but also recent trends in flash wear. Thus, keeping
track of blocks’ erase frequency (i.e., erase counts) and erase re-
cency is a fundamental design issue. This study presents a simple
but effective wear-leveling design called lazy wear leveling. This
approach does not require any extra data structures for storing erase
counts in RAM. Instead, it borrows the mapping information from
the sector-translating algorithm to seek out data that has not been
updated recently, and utilizes only in-flash erase counts to identify
worn blocks. The timely re-mapping of these data to worn blocks
helps even out flash wear.

Lazy wear leveling subjects wear evenness to a threshold vari-
able. This study shows the feasibility of on-line overhead estimat-
ing using an analytical overhead model. Based on these estima-
tions, lazy wear leveling can tune the threshold variable for appro-
priate balance between overhead and wear evenness. A series of
trace-driven simulations show the merits of lazy wear leveling, and
a prototype proves the applicability of lazy wear leveling in real
solid-state disks.
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