Contents

Abstract (in C	Chinese)	
Abstract (in E	(nglish)	
Acknowledge	ment	
Contents		
List of figure	28	XI
Chapter 1	Introduction	1
1-1	A Brief History of Vertical-Cavity Surface-Emitting Laser (VCSEL)	1
1-2	Fabricating Processes of VCSEL Devices	4
1-2-	-1 Gain-guiding mechanism	6
1-2-	2 Index-guiding mechanism	8
1-2-	-3 Hybrid-guiding mechanism	16
1-3	Overview of this Thesis	18
	References	21
Chapter 2	Proton-implanted VCSEL with Transparent Contact	25
2-1	Literature survey	25
2-2	Experiment	27
2-3	Results and Discussions	30
2-4	Summary	34
	References	35
Chapter 3	Si ⁺ -implanted VCSEL (Index-guided VCSEL)	37
3-1	Literature survey	37
3-2	Device structure and fabrication	38
3-3	VCSEL performance	40
3-4	VCSEL reliability	44
3-5	Summary	44
	References	46
Chapter 4	High Speed Oxygen-implanted VCSEL	49
4-1	Literature survey	50
4-2	Device structure and fabrication	51
4-3	Results and Discussion	52
4-4	Summary	54
	References	55
Chapter 5	Proton-implanted VCSELs with Photonic Crystal	59
5-1	Literature survey and Background	59
5-2	Experiment	62
5-3	Results and Discussions	65
5-4	Summary	69
	References	70

Chapter 6	Conclusion	71
6-1	Conclusion	71
6-2	Future work	72
6-2-1 Long-wavelength VCSEL		72
6-2	2-2 Oxidation developed in GaN-based material	75
	References	77
Vita		78
Publication List		79

List of figures

Chapter 1

napter 1		
Figure 1-1	Schematic structure of (a) edge emitting laser, (b) vertical-cavity surface-emitting laser.	3
Figure 1-2	Various choices of the active region materials for VCSEL	5
Figure 1-3	Schematic diagram of a gain-guiding VCSEL with circular electrode to confine injection carrier concentration into the active layer.	6
Figure 1-4	Schematic diagram of a gain-guided VCSEL ion implantation regions to confined injection carrier concentration into the active region.	8
Figure 1-5	Schematic diagram of aorposted VCSEL (index-guided structure); active layer (a) below and (b) within the airposted column.	9
Figure 1-6	Schematic diagram of aorposted VCSEL (index-guided structure) with intracavity design.	10
Figure 1-7	Schematic diagram of a buried heterostructure VCSEL (index-guided structure) with injection carrier concentration strongly confined uniformly inside the active region.	11
Figure 1-8	(a) Schematic diagram of an antiguided VCSEL; (b) the corresponding profile of effective refractive index n_{eff} and change of effective refractive index Δn_{eff} along the transverse direction of the laser cavity.	12
Fugure 1-9	Schematic diagram of an index-guided VCSEL with single oxide aperture.	14
Figure 1-10	Schematic diagram of a tapered waveguide buried heterostructure VCSEL (index-guided structure).	15
Figure 1-11	Schematic diagram of a hybrid-guided VCSEL using ion-implantation for gain-guiding and selective oxidation for index-guiding.	16

Figure 1-12 (a) The schematic structure of implant-apertured index-guided 17 VCSEL (hybrid confinement), current confinement and photon confinement can be controlled independently. (b) The schematic of coupling relationship between transverse mode and gain spectrum.

Chapter 2

- Figure 2-1 The schematic of the overcoated VCSEL device using Ti/ITO 28
 Figure 2-2 The process procedures of proton-implanted VCSEL with 29 transparent contact.
- **Figure 2-3** The L–I–V characteristics of a typical VCSEL with and without 30 Ti/ITO transparent overcoating.
- Figure 2-4 Eye diagrams of the typical VCSEL device (a) without and (b) 32 with Ti/ITO transparent overcoating operating at 2.125 Gb/s with 10 mA bias and 9 dB extinction ratio. The horizontal scale is 40 ps/div.
- **Figure 2-5** The near-filed emission patterns of the typical VCSEL device 33 (a) without and (b) with Ti/ITO transparent overcoating at different injecting currents.

Chapter 3

- **Figure 3-1** Schematic structure of a Si⁺-implant VCSEL. The Si implanted 38 aperture is $13 \times 13 \ \mu\text{m}^2$ and proton implanted aperture is $30 \times 30 \ \mu\text{m}^2$.
- Figure 3-2The schematic diagrams of fabricating processes.39
- Figure 3-3 (a) Power versus current curves at 20 °C to 90 °C. The 40 Si^+ -implanted VCSELs exhibit kink-free current-light output performance with threshold currents ~2.4 mA, and the slope efficiencies ~ 0.45 W/A.
- **Figure 3-3** (b) Voltage versus current curves at 20 °C to 90 °C. The series 41 resistance of more than 90% Si⁺-implanted VCSELs is within 40-45 Ohm indicating good re-growth interface.
- **Figure 3-4** Distributions plot for threshold current and slope efficiency of 42 Si⁺-implanted VCSEL.
- Figure 3-5 The optical output power spectrum of a Si^+ -implanted VCSEL 43 driving at 3.5 mA (1.45 × I_{th}). Inset is the spectrally resolved intensity pattern.
- **Figure 3-6** Typical eye diagram of our VCSEL on TO-46 operating at 44 2.125 Gb/s (Fiber-Channel mask w. 20%-margin) with 7 mA bias and 9 dB extinction ratio at (a) 25 °C (b) 85 °C
- **Figure 3-7** The WHTOL (85 °C/85 humidity) performance of 45 Si⁺-implanted VCSEL chips.

Chapter 4

- **Figure 4-1** Schematic structure of single-mode VCSEL. The O^+ -implanted 58 aperture is 8 μ m in diameter and the oxidation aperture is 10 μ m in diameter.
- **Figure 4-2** Figure 4-2 Device process flowchart. (a) The O⁺-implanted 59 aperture was defined by photolithography with diameter of 8 μ m. (b) The surface relief pattern with a diameter of 20 μ m was etched by chemically assisted RIE (Reactive Ion Etching)
- **Figure 4-3** (a) L-I-V curves, spectral characteristics and the near-field 60 pattern of the O⁺-implanted VCSEL. The emission spectrum is obtained at 10 mA and the near-field pattern is obtained at 5 mA. They demonstrate that the O⁺ implanted VCSEL has a fundamental mode only over the full operating range. (b) L-I-V curves of the comparable conventional VCSEL.
- Figure 4-4 Characteristic eye diagram of (a) large-aperture single-mode 61
 VCSEL with diameter of 8μm; (b) conventional multi-mode
 VCSELs with diameter of 8μm, transmitted at 10Gb/s with a bias of 5mA and an extinct ratio of 6dB.

Chapter 5

- Figure 5-1 Schematic of the 850 nm PC-VCSEL. Note that the first 60 generation PC-VCSEL structure has no oxide current aperture. The oxide aperture is added to the second generation devices for current confinement.
- **Figure 5-2** The Schematic of lateral effective index variation provided by 61 the photonic crystal
- **Figure 5-3** V_{eff} parameters for γ =0.06, which correspond to etching depths 63 of 17 pairs, are calculated.
- **Figure 5-4** Schematic of PC-VCSEL. The hole depth of PC is 17 pairs out 64 of 22 pairs of top DBR been etched off. The proton implantation position is 3 pairs of DBR layers above active region
- **Figure 5-5** CW L-I-V characteristics and near-field image (inset) of a 65 PC-VCSEL. The ratio (α/Λ) is 0.5 and the lattice constant Λ is 5 μ m.
- **Figure 5-6** Spectra of the proton-implanted (a) photonic crystal VCSEL 66 with ratio (α/Λ) is 0.5 and the lattice constant Λ is 5 µm and (b) VCSEL without photonic crystal holes.
- **Figure 5-7** Sepectra of the proton-implanted VCSEL with photonic crystal 67 ratio (α/Λ) is 0.5, seven-point defects and the lattice constant Λ

is 5 μ m. The mesa of this device is 68 μ m.

Figure 5-8 Divergent angles of the proton-implanted VCSEL (a) without 68 and (b) with photonic crystal

Chapter 6

- Figure 6-1Schematic of photoelectrochemical oxidation setup.74
- **Figure 6-2** L-I characteristics of conventional and PEC oxided GaN-based 76 LEDs.

