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Abstract

In order to compensate the-nonlinear distortion in the hands -free telephones or
teleconferencing system, the nonlinear acoustic echo cancellation can be used to
cancel nonlinear acoustic echo. However, the convergence speed of these methods is
too slow. Nonlinear Acoustic Echo Suppressions will resolve the question. This is
because we are not interested in an exact identification of the nonlinear components
of the echo path. We are rather aiming at estimates power spectral density of the
nonlinear components.

In the thesis, two previous methods are introduced to estimate power spectral
density of nonlinear residual error. First, use the linear property of echoes to
estimate. Second, a nonlinear adaptive filter is used. We proposal the new method
that can estimate low order echoes accurately and high order echoes roughly by less
computational complexity than second method and estimate the nonlinear residual

error more accurately than first method. And, we discuss how to choose echo basis.
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Chapter 1
Introduction

In using hands-free telephone or teleconferencing, the speaker always hears his
speech signal. This is because the system suffers from the annoying acoustic echo
problem which is the far-end speech transmitted from the near-end microphone to
near-end loudspeaker and back to far-end user from far-end loudspeaker. A simplified
diagram of a heads-free telephone system is shown in Fig 1.1. If the far-end signal
picked up from the near-end microphone can be cancelled, the acoustic echo problem
would be overcome. If we estimate the echo path accurate, the echo would be
cancelled. This method is acoustic.echo cancellation (AEC) shown in Figl.1. When
using hands-free telephone or- teleconferenecing, the room impulse response can
change very often. So, the AEC isitime-variant to- track the echo path to provide

satisfactory speech communication‘quality in.[1-5].

Microphone Far-end Loudspeaker
- signal
-~ @ 5
AEC
< é_‘
27 <— Near-end
Microphone signal
Loudspeaker
Far-end room near-end room

Fig. 1.1The simplified diagram of hands-free telephone system
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When the volume level is larger than the loudspeaker amplifier capability, the
amplifier is overdriven. So, the loudspeaker power curve is not just linear. The linear
AEC is not sufficient to estimate the acoustic echo channel. The performance is bad
by the high level volume. To overcome the nonlinear problem, there are many
methods that had been proposed. The nonlinearity of loudspeaker can be classified as
nonlinearity with and without memory in [6-10]. In this thesis, we will introduce
several nonlinear AEC methods.

In order to overcome the nonlinear effect of power amplifier, we always use high
order structure of nonlinear AEC. However, the computation is more complex, and the
convergence is too slow. The high order nonlinear AEC (NAEC) must adapt many
coefficients simultaneously at the every iteration. The coefficients are interfering with
each other. The object of nonlinear acoustic echa.suppression (NAES) is to increase
the attenuation of the nonlinearly distorted residual-echo and the convergent speed.
These time-variant estimates iare —used. to approximately adjust the
frequency-dependent gain value of the echo. suppressor. In contrast to the application
of adaptive filters to nonlinear echo cancellation, we are not interested in an exact
identification of the nonlinear components of the echo path. We are rather aiming at
estimates of power spectral density of the nonlinear components. This method uses
linear relation between linear echo and nonlinear residual error to estimate power
spectral density of nonlinear residual error that can save large calculation to suppress
nonlinear residual error [11]. However, the linear echo is not linear with nonlinear
residual error in fact. So, the high order nonlinear echoes can not be suppressed.
Another method uses nonlinear adaptive filter to estimate high order nonlinear
residual error that is more accurate than [12]. But, the method needs large calculation

quantity.



Besides, we propose the new NAES method to combine the methods [11-12]. In
fact, the nonlinear residual error is not linear with linear echo. The proposed method
Is used to overcome this drawback and save the calculation quantity than [12]. The
new method is wanted to estimate nonlinear residual error to two parts. Low order
nonlinear residual echoes estimate accurately by nonlinear adaptive filters and high
order nonlinear residual echoes estimate roughly by correlate with low order echo.

This thesis is organized as follows. More details about nonlinear AEC with and
without memory will be introduced in chapter 2. We will introduce nonlinear acoustic
echo suppressions (NAES) and propose a new method that uses low order power filter
to estimate low order nonlinear residual error and higher-order nonlinear echoes as
basis to estimate high order nonlinear residual error. In chapter 4, we will show
many computer simulations that have been discussed in chapter 2 and 3. Finally, we

give a conclusion of our work.



Chapter 2
Overview of Nonlinear Acoustic Echo
Cancellation

In Chapter 2 we will introduce several nonlinear AEC methods in the time
domain including memoryless and memory. The traditional method to get over the
acoustic echo is to eliminate all the signals from the far-end loudspeaker. However,
this half-duplex communication is bad for user. The linear acoustic echo cancellation
can overcome this difficultly and the hands-free telephone or teleconferencing can
work at full-duplex. The loudspeakers for hands-free telephone or teleconferencing
are usually small and cheap, so the‘loudspeakerwill be saturated at high level speech.
When the saturation effect happens, the loudspeaker is not linear any more. The
residual error using only linear acoustic-echo. cancellation is very large. We will
discuss the nonlinear acoustic echo’caneellation to overcome this question.

To some loudspeakers, the nonlinear effects have memory. If using memoryless
structures to model that, the cancellations don’t eliminate echo perfect. The memory
structures for canceling the memory echo are complex in general, i.e. Volterra model.

As shown below, we will introduce the several memoryless and memory structures.



2.1 Memoryless Nonlinear AEC

2.1.1 Hammerstein model

The Hammerstein model, as shown in Fig. 2.1, is used to model the loudspeaker
and acoustic channel in [6]. The structure has two layers. First layer is nonlinear order
weights to model static loudspeaker part. Second layer is linear FIR to model dynamic
echo path. The first layer can estimate the parameters of nonlinear part separately

from linear part.

X[n]

L —»
: A ~ LB .
First Layer a, || a, r= a, (4

_-y[n]
N>

e[n] d[n]

Fig. 2.1 Hammerstein structure
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2.1.2 Orthogonalized Power Filter model
This method wants to use power filter to model nonlinear effect in [13-14]. A

p-th order power filter defines by its input/output relation as follows
p prl

yin1=>_ > h,,[n]x"[n-1| (2.1.5)

p=1 1=0

From (2.1.5) we notice that power filters can be considered as linear multiple
input/single output systems, where the input of the p-th channel is given by the p-th

power of x[n]. The input of each channel is then filtered by as associated linear filter

h,, with channel length N . For compactness, we write (2.1.5) in matrix notation:
P
y[n1=> h x,[n] (2.1.6)
p=1
With the vectors
x, [n] =[x (n), x2(n —1),K 5 x? (n=Np=+ DT’ (2.1.7)
b, =[h,o.0, 0 K5h, ] (2.1.8)

Note that the input signals of“each'channel are in general not mutually

orthogonal, i.e., E{xi[n]x"[n]};to. Thus, a direct adaptive implementation of the

no-orthogonalized power filter suffers from slow convergence. Therefore, a new set of

mutually orthogonal input signals has been introduced [14]:
X,[n] = x[n] (2.1.9)
p-1 ,
X,,[n]=x[n]+> g, x'[n] (2.1.10)
i=1
for 1< p<P. The orthogonalization coefficients q,; an be determined using the

Gram-schmidt orthogonalization method. Applying standard gradient descent
techniques, it directly follows from (2.1.6) that the normalized least mean square

(NLMS) update of the coefficients of the orthogonaized structure by



h, In+1=h, [n]+a,

X, p[nJefn]

T (2.1.11)

2.2 Memory Nonlinear AEC

In Sec.2.1, we assume the nonlinear effect of loudspeaker is memoryless.

However, when the nonlinear memory effect of loudspeaker happens, the nonlinear

memory AEC should be used.

2.2.1 Wiener Model

The Wiener model can model the memory loudspeaker in [15]. Wiener model has

three layers. First layer and second layer model the nonlinear memory effect, and third

layer models linear echo path. The Wiener model is shown Fig.2.2.

X[n]

-

%[Nl

O [lor2l .. |oe] A

a L A . & / ;\
— [

e[n] -Y[n] dl’n]

Fig. 2.2 Wiener model



2.2.2 Volterra Model

As show in Fig 2.3 the system is composed of two different modules organized
in a cascaded structure: a first level is modeling the nonlinear loudspeaker effect
based on polynomial \olterra structure, and a second level is modeling the room

impulse response of the acoustic path with standard linear filter in.

x[n]

v !
51 hcz[n]’hc3[n] T 5! h(c)Z’h(c)S
v '
/
w[n] w’
i
B d[n]
e[n]: =%

Fig. 2.3 Cascade model iof the system and mirror adaptive system

The global include loudspeaker and acoustic path may be modeled by the parallel

system (nonlinear/linear). The system, whose output is denoted by d[n], is then

modeled by a parallel structure with first-, second-, and third-order kernels

d[n]= ZL:h‘l’[n]x[n -i]+

> h[i, jIx[n-ilx[n- j]+

L
=

L
v =0 (2.2.1)
2> > w3l jkIx[n-ilxn - j]x[n-K]

i=0 j=i k=j
&(n) is far-end signal pass through two layers adaptive filter to model nonlinear

loudspeaker and linear channel.

A

d (n) = X{[n]h,[n]+ U] [n]h,[n]+ U [n]h;[n] (2.2.2)

The input signal vectors for second- and third- order may be expressed as



products of matrices [16]. We define first the filter h,[n], corresponding to the

second-order nonlinearity as the vector of dimension L,x1 ( where
L,=L(L+1)/2 ).

x*[n] x’[n-1] e X[N=N+1] ]
X[n]x[n-1]  x[n-1x[n-2] :

UAH%=XWVW;L+H ; ; (2.2.3)
x’[n-1] : :

- X’[n—-L+1] : o X [N-L-=N+2]]

L,xN

h,[0,0; n]
h,[0,1;n]

h,[n]=| h,[0,L-1n] (2.2.4)
h,[1,1;n]

h[L-1,L-Ln]

L,x1

e(n)=d(n)-d(n)
The update equation of a given vector h,[n] h,[n] h,[n], using the NLMS
algorithm is given by [17-19].

e[n]X,[n]

= R X g+

h,[n +1] = h, [n] + £V (0] (2.2.5)
U'[n]U,[n]+6

/136[n]U3 [n]
U; [n]U,[n]+&

h,[n+1]=h,[n]+

The performance for Volterra structure is the best to the other structures, but the

computer complexity is the most complexity.



2.3 Computation Reduction of Simplified Volterra Model

As the echo path inherently has memory, the nonlinear approaches have to be
capable to model nonlinear system with memory. The Volterra filter is the common
method to be deal with such system. Unfortunately, they suffer from high
computational complexity. Therefore, we introduce an adaptive structure representing
a simplified realization of a special second order \Volterra filter in [20]. The simplified
second \olterra filter is illustrated in Fig.2.4 and includes a linear branch and a second
order nonlinear branch in parallel. The nonlinear branch consists of the cascade of an

FIR filter, a multiplier, and a second stage filter.

X[Nn]

e[n] Yl g

Fig. 2.4 simplified second order Volterra filter



N, (N, +1)

The coefficients of \olterra second order is— 5 , the memory length isN, .

However, the coefficients of simplified second order Volterra is N, which is sum of
N, +N,.

As the below, we will discuss the distribution for N, and N, at the total N,

coefficients. For example N=5, we expand three conditions N._=4N, =1,

N.=4N,=1
v[n]=icix[n—i] (2.2.6)
u[n]:(zalcix[n—i]j :iicicjx[n—i]x[n— il (2.2.7)

y[n]=w-u[n] = iiwcicjx[n —1x[n<4]

= WC,CoX[NIX[N] +(We,Cy + WEoCy ) X[n]XEn — 1] +
(WC,C, + WC,oC, JX[NIX[N =2]+ (We,cy + we,c, ) X[IX[n—3]+ (2.2.8)
we,c, [n—1]x[n —1] + (wc,c, +we,e ) X[n —1]x[n — 2] +
(we,c, +we,c, ) x[n —1]x[n=8]+wc,c,x[n - 2]x[n - 2] +

(wc,c, +we,e, ) X[n — 2]x[n — 3]+ we,c,x[n —3]x[n —3]

N.=2N,=3
v[n]= icix[n —i] (2.2.9)
u[n]= ( .l cX[n— i]j = 21: .1 c.c;X[n—i]x[n— j] (2.2.10)

y[n]:ZZ:Wk -u[n—k]=Zzlwkzllzllcicjx[n—k—i]x[n—k— il

= i=0 j=0
= WoCoCoX[NIX[N] + (W,C,C, + WyC,C, ) X[ —1]X[n—1] +
(W,C4Co +WiC,C, ) X[N— 2]X[N — 2] + (Wc,Cy + WoCoC, ) XINIX(n—1] +  (2:2.11)
(we,C, +Wie,C, ) [N —1]x[n - 2] +(we,c, +we,c, ) X[n—1]x[n— 2]+
(W,C,C, +W,C,C, ) X[n—2]x[n — 3]+ wc,c,x[n— 2]x[n — 2] +
w,c,c,X[n—3]x[n—3]
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=1N, =4:
v[n]=c-x[n] (2.2.12)
u[n] = (c-x[n])2 =c?-x’[n] (2.2.13)

ynl =2 we-x[n] =3 w3

lecicjx[n—k—i]x[n—k— il

1
=0 j=0

k=0 i

0
= WoCoCoX[NIX[N] + (W,C,Cy + WyCiC, ) X[n—1]x[n—1] +

(W,C,Co +WiC,C, ) X[N— 2]X[N — 2]+ (W,C,C, + W,CoC, ) X[NIX[N —1] + (2.2.14)
(we,C, +W,e,C, ) [N —1]x[n — 2] +(we,c, +we,c, ) X[n—1]x[n—2]+

(W,C,Cq +W,CoC, ) X[N—2]X[n — 3]+ wc,c,x[n — 2]X[n — 2] +
w,c,c,X[n—3]x[n—3]

Table 2.1 The parameter of simplified Volterra Model

N.=4N, =1 N.=2N,=3 N,=1N, =4
heo WC,Cy (W, + W, + W, ) c,C, (Wo + W, +W, +W, ) CyC,
hos WCoC, +WC,Cy (ZW0 +2W, + 2W, ) C,C 0
Ny, WC,C, + WC,C, 0 0
Nos WC,C, + WC,C, 0 0

wc,C
hy, C,C (Wo +W2)C1C1 0
h, WC,C, +WC,C, W,C,C, 0
h, WC,C, + WC,C, 0 0
h,, WC,C, 0 0
hys WC,Cy 0 0
h,, WC,C, 0 0

12




When the N, is more, the coefficients is more for nonlinear effect. From Table
2.1, modeling nonlinear memory effect of N_=4 N, =1 is the same with \Volterra
filter. However, the linear adaptive filter tap is one. N, =1 N, =4 is the same with
linear adaptive filter. But, this condition can’t estimate nonlinear effect at all. The total
modeling nonlinear memory coefficients for simplified Volterra structure are shown in

(2.2.15) and Volterra structure are shown in (2.2.16) .

—(chl)m +Ng (N, -1) (2.2.15)
(N, +2_1) N, (2.2.16)
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Chapter 3

Estimate Nonlinear Residual Error
for Nonlinear Acoustic Echo
Suppression

Loudspeakers and amplifiers of mobile communication device may cause
significant nonlinear distortion in the acoustic echo path, resulting in a limitation of
the performance of only using linear acoustic echo cancellation [1-5]. There are
several nonlinear acoustic echo cancellations [6-10] to overcome this distortion. But
these methods converge too slowly for the room,impulse response is changing on the
going. So, we introduce nonlinear acoustic. ‘echo suppression (NAES). The
convergence speed is faster than nonlinear acoustic echo cancellation (NAEC) [12].
Besides, NAES suppresses the residual echo that remains after a purely linear AEC is
better than NAEC cancels the acoustic echo. There is linear acoustic echo cancellation

and nonlinear acoustic echo suppression structure in Fig. 3.1.

X[n]
Y
AEC 7 y[n]
i Jin]
<A Naps <t ol O <
G(k,m)

Fig. 3.1 Linear AEC and nonlinear acoustic echo suppression structure
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The near-end microphone picks up the signal d[n] which includes the acoustic
echo speech y[n] and near-end speechb[n] in silent room. The acoustic echo
speech y[n] is far-end speech passing through nonlinear loudspeaker and room
impulse response. We use a linear adaptive filter to find room impulse response, and
want to get replica acoustic echo y[n] to cancel the desire signald[n]. However, this
adaptive filter can’t find the loudspeaker’s nonlinear channel. The residual error is
very large by only using linear acoustic echo cancellation (AEC) when a high level’s
power speech is injected into a small loudspeaker. That is because the loudspeaker has
been operated at saturation region. So, we want to find the filter G(k,m) after AEC
to suppress nonlinear residual error. If the optimum gain can be found, the output

signal of suppressed signal will be.close to the near-end signalb[n] .

3.1 Wiener Filter

The foundation of nonlinear acousticiecho suppression is Wiener filter [1].
Consider the block diagram of Fig. 3.2 built around a linear discrete-time filter. The
filter input consists of a time series u(0),u(l),u(2),..., and the filter is itself
characterized by the impulse response w,, w,, w,,.... At some discrete time n, the filter
produces an output denoted by y(n). The output is used to provide an estimate of a
desired response designated by d(n) . With the filter input and the desired response
representing single realizations of respective stochastic processes, the estimation is
ordinarily accompanied by an error with statistical characteristics of its own. In
particular, the estimation error, denoted bye(n), is defined as the difference between

the desired response d (n) and the filter output y(n).

15



Desired

Input Linear Output Response
u(0),u(1),u(2),... Discrete-time y(n) d(n)
> Filter -
Wy, W, W, ...
Estimation
Error
e(n)

Fig. 3.2 Block diagram representation of the statistical filtering problem

The optimum linear filter in Fig.3.2 is shown in Eqg. (3.1.13). Assuming

that Sy, (©2) =0 for allQ, we find the following transfer function of the noncausal

Wiener filter:

Hon (Q) :?D—EQQ; (3.1.13)

3.2 Acoustic Echo Suppression Structures

The integration [21] of noise reduction and echo cancellation has advantage of
utilizing the synergy among its components. An important issue is the placement of
these two algorithms. There structures can only be implemented in frequency domain
because noise reduction requires frequency-domain implementation using FFT. Since
the performance of the NLMS algorithm degrades significantly in the presence of
high-level background noise, an immediate suggestion would be place the noise
reduction prior to echo cancellation. However, the drawback is that the noise
reduction introduces nonlinearity into the echo path.

In this section, we only take care of the linear echo and background noise. Only

using the AEC to cancel the echo is not enough to assure the quality of auditory. This
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is because another side user hears the background noise and the background noise
interferes with the AEC algorithm. We will introduce two combined structures as

below.

3.2.1 AEC+NR structure

The combined system is shown in Fig. 3.3 [21]. We use a conventional echo
canceller, consisting of a time variant FIR-filter adapted by the NLMS algorithm, and
of a combined residual echo and noise reduction filter implemented in the frequency
domain. x[n]denotes the far-end speech, b[n]the near-end speech andv[n]the noise.
The microphone signald[n]is made up of the echoy[n]as well as of the near-end
speech and noise,

d[n] = y[n]+b[n]+y[n] (3.2.1)

The estimated echo y[n]is-subtracted fromd[n]forming the echo compensated

signale[n],

e[n] = y[n]— y[n]+b[n]-+vin]

(3.2.2)
= Ay[n]+Db[n]+Vv[n]

Depending on the effectiveness of the echo canceller, the residual echo
Ay[n] = y[n]- y[n] must be more or less attenuated by the filter G. The output signal
of the system is denoted by z[n]. If the AEC is perfect, the residual error e[n] is shown
in (3.2.3).

e[n] =~ b[n]+v[n] (3.2.3)
The suppression gain G suppresses the noise v[n], and the output z[n] is approximated
to b[n].
Z(w) = G(w)- E(w) (3.2.9)

The suppress gain comes from the Wiener filter concept in Eq. (3.13) of Sec.3.1.
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G(w) :h if b and n are uncorrelated

(3.2.5)

Sgs (W) is power spectral density of near-end speech and the S..(w) is power
spectral density of residual error.

The error signal e[n]is then processed by noise reduction to get the noise free
signal z[n]. With an optimal echo, the echo is completely canceled by the first filter,

leaving the useful signal and noise unchanged. The output from the AEC is

ideallyb[n]+v[n]. The second stage aims at reducing noise through the Wiener gain

filteri. A disadvantage of this integrated structure is that the AEC has to

BB+ A

process noisy signals. In practice, the AEC system is adaptive. The coefficients of the

AEC are disturbed by the ambient.noise which is.emnipresent.

xX[n]
i v
AEC y[n]
Y y[n]
L I I é< d[n] q bl

\V[n]

Fig. 3.3 Block diagram of a combined echo canceling and noise reduction system

3.2.2 NR+AEC structure
Fig. 3.4 [21] shows the implementation of the integrated noise reduction and
echo cancellation where echo cancellation precedes noise reduction. x[n] is

processed by the AEC filter H to generate the echo y[n], which is subtracted from
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d’[n] that is the microphone signald[n] after suppressing the noise to generatee[n].
The effects of noise on the AEC can be minimized by placing noise reduction

upstream from this system. The noise reduction operation enhances the signal-to-noise

(SNR), which can improve the AEC behavior. However, the noise reduction causes

nonlinear distortion, and disturbs the AEC.

X[n]

v y[n]

/

st
B e[n] é< d In] G lod O b[n]

\V[l’l]

Fig. 3.4 Block diagram of a combined noise reduction and echo canceling system

3.3 Estimation nonlinear residual error for NAES

One of most basic filter to echo suppression is Wiener filter in Fig3.3.
The Wiener filter gain is shown in (3.3.1).

G-Su (3.3.1)

SEE
If theZ =B, the suppression performs optimally. E concludes three parts

which are nonlinear residual echoY,,, near-end speechb, and background noise N .
Assuming the residual echo, near-end speech, and near—end noise are uncorrelated

and ignoring the noise, we have
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(3.3.2)
SBB

SBB + SYn,Yn, + SNN

In fact, we don’t know S, . So, we want to use S, S, , ,and S, toestimate G.

G= SEE B SYH,YM B SNN (3'3.3)
SEE

Sge can be easily estimated fromE . S, , 'is more difficult to estimate.

We assume the background noise is very small in the quiet room [21].

Sy =0 (3.3.4)
This would be the case in quiet offices or in cars that are not moving and when the
engine is switched off. The nonlinear residual echo suppression filter is used to reduce
the nonlinear echo further. For the, transfer function of this filter, a Wiener filter is

often applied:

S _
_ OB vy, (3.3.5)

S

nl

SEE

Y,

nl

It should be noted that any impact of the residual echo suppression filter on residual

echoes also affects the local speech signal. When applying Eq.( 3.3.5), the estimated

~ ~

power spectral densities Sg. and S, , contain estimation errors. Therefore, the

quotient may become larger than one. To prevent that, the filter transfer function can

be used in Eq.(3.3.6) where H_. determines the maximum attenuation of the filter.

The overestimation parameter [21] £ can be used to control the “aggressiveness” of

the filter.
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S
H.. = max [1,6’—1“””' : Hmm] (3.3.6)

EE

~

In order to estimate the short-term power spectral density of the error signal S..

first-order 1IR smoothing of the squared magnitudes of the frequency domain error
signals E is applied in order to estimate the short-term power spectral density. m

represents the frame index.
A ) a
SEE(m):(1_7)|E| +7Sge(M-1) (3.3.7)
Because the disturbed error Y, is not accessible, the estimation of the

short-term power spectral density SAYMYM can’t be approximated in the same manner

N

asSg; .

N

As the above, we will discuss howgto estimatesS, ., . If the S

v.v, can be estimated

YnIYnI
accurately, the low level of echo signal-and minimum distortion of near-end speech

can be achieved.

3.3.1 Based on Highly Correlated Nonlinear Residual Echo
This method [11] proposes a new residual-echo model based on the spectral
correlation between the residual echo and the echo replica. For this method there

should have ambient length for near-end at beginning. At first, find the ratio of AEC

residual error |E(k,m)| to AEC replica |Y(k,m)| when there is only single talk.
k,m represent the frame index, and the frequency bin, respectively. The |E(k,m)| is
approximated to |E, (k,m)| in quiet room.

[Ek,m)| =|E,, (k, )] ~ a(k, m)-|Y (k, m) (338)
Let us consider approximating a(k,m) by a(k) using averaged absolute
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values of the residual echo and the echo replica. Then,

[E(k,m)|_
é.(k) — single talk (339)
Y (k,m)
where overline - means an average operation. When there is no near-end speech,

i.e. B(k,m)=0. By approximating a(k,m) in (3.3.8) with a regression coefficient

(k) , the residual echo |E,(k,m) is modeled as the product of &(k) and
Y (k,m)|.

|En| (k,m)| ~

E. (K, m)‘ 2 3(k) -\\? (K, m)‘ (3.3.10)

So, we can find suppression magnitude gain G, _ _(k,m).

0,p,m

Gtlm) =g

— SEE (k1 m) {— SEnIEnI (k1 m)
See (k,m)

(3.3.11)

However, this method has ‘drawback..-The property between the nonlinear

residual error and linear echo is not linear in real system.

3.3.2 Power Filter Model

We will find a frequency-depend gain G(k,m) which is cascade the residual

error from AEC [12]. If the optimum gain is found, the suppressed error will be close

to the near-end signal. The output Z(k,m) of the AES with input e[n] reads in the

frequency domain.

Z(k,m)=G(k,m)E(k,m) (3.3.17)
Here, E(k,m) denotes the STFT of e[n], where k represents the block time index
and m represents frequency bin. For the power spectral density,

Szz (W) = G(W)Sge (W) (3.3.18)
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If we want to find optimum value G(w), S,,(w) is equal to near-end
background noise Sz;(w), and S.. (w) is equal to AEC residual error which includes

Sgs (W) and the high order nonlinear echo signal S, (w) .

Sy (k,m)

See (k,m)

_ Sgs (K, M)
 Sua(k,m)+ S, (k,m)
_ Sge(k,m)—S, (k,m)
 See(kom)

Gy (K, M) =

(3.3.19)

In the above equation, S..(w) can be obtained from AEC, but S (w) can not.
We will try to find the approximate the high order nonlinear echo power spectral
density. This method uses power filter model to replace the loudspeaker nonlinear
effect.

The input/output relation of a pth-order power filter is given by

P N-1

yInl=>" 3 h. %P (k;m) (3.3.20)

p=1 n=0

where h_ — denotes the filter coefficients of the pth channel having input x°[n].
Aiming at a frequency-domain implementation of power filters, we give the
short-time Fourier transfer (STFT) representation of (3.3.20):

P
Y(k,m)=> H_ X (km) (3.3.21)
p=1
Here, X (k,m) denotes the STFT of x°(k) of length M. k,m represent kth

frame and mth frequency bin. H is the coefficient of the pth power filter

p.m

corresponding to the mth frequency bin. In order to un-correlating the channel inputs,

we will use equivalent orthogonal structure (EOS) [14].

The adaptation of the channels H (k) is performed independently for each

0,p,m

nonlinear channel (p>2) with respect to the channel dependent error signal
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E, ,(k,m) = E(k,m)-Y, ,(k,m) (3.3.27)

In comparison to the application of adaptive power filters to nonlinear echo

cancellation, they are not interested in an exact identification of the nonlinear

components of the echo path H__ _(k,m) by their adaptive couterparts H (k,m)

0,p,m o,p,m

[15]. They are rather aiming at estimates of S, X (k,m).

3.4 Suppression of nonlinear residual error and background noise

The combined structure from Sec.3.2 can suppress the background noise. If the
loudspeaker is ideal, the combined structures of AEC and NR could cancel the linear
echo and suppress the background noise. However, the loudspeaker for mobile
communication is cheaper and small, so the nonlinear effect is obvious. The methods
in Sec. 3.3 ignore the background noise;-and-only cancel the linear echo and suppress
the nonlinear residual error. In this section, we will suppress the noise first, and then

use this concept in the NR+AEC structure o Section 3.3.1.

3.4.1 AEC+NR suppression of noise and nonlinear residual error

The NR+AEC structure to suppress the background noise and nonlinear residual error
is shown in Fig.3.7. The microphone receives the linear echo, nonlinear echo,
near-end speech signal, and noise signal. In optimal condition, the AEC can cancel the
linear echo and suppression gain G,,,, suppress the nonlinear residual error and the

background noise in (3.4.1).

S
Gawni = B;_ANn_l_avg (3.4.1)

EE _avg

24



x[n]

aechk yinl+y,,[n]
Y JIn]
LN PSR S U ¥ o dn] O </

Fig. 3.5 Block diagram of NR+AEC to suppress noise and nonlinear residual

error

S is the average power spectral density of the residual error from AEC in

E_avg

(3.4.2).

SE_avg :ﬂXSE_avg +(1_ﬂ)XSE (342)

In ideal condition, the S, ., ag 15" @pproximated to S However, we can’t

B_avg *

know S We can estimate Sy sy . 10 replace Sg ... Sg aum ag 1S Used

B_avg *

S to eliminate S and S The background noise N can be

E_avg N _avg Nonlinear _avg *

estimated first when there is no far-end speech signal.

SB_ANnI_avg = SE_avg - SN_avg - SNonlinear_avg (343)
SN_avg =ﬂXSN_avg +(1_ﬁ)XSN (344)
SNonlinear_avg = 18 x SNonIinear_avg + (1_ ﬂ) X SNonIinear (345)

3.4.2 NR+AEC suppression of noise and nonlinear residual error

In Section3.4.1, the combined structure cancels echo first, and suppresses

25



background noise continuous. However, background noise disturbs adaptive filter for

echo cancellation. So, NR+AEC structure overcomes this disturbance in Fig. 3.6.

x[n]

y[nl+y,[n]

AEC

B e[n] 59'4 dlnl [ d[n]: b[n]
\V[n]

Fig. 3.6 Block diagram of NR+AEC to suppress noise and nonlinear residual

error

The suppression gain Gy, is shown.to be

S,
Gy = == (3.4.6)
SD_avg
Sp_ag IS the average power spectral density of the signal received from microphone
in (3.4.7).

SD_avg :ﬂXSD_avg +(1_ﬂ)XSD (347)

In ideal condition, the S IS approximated to S and the average power

D' avg B_avg

spectral density of linear echoS, . However, we can’tknow S, .. and S, _ .

We can estimate S, ,,, whichisused S, . toeliminate S, . and S, e a

to replace optimal S in Eq. (3.4.8).

D' avg
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S includes linear echo. The linear echo has been removed fromS; ., .- SO,

D' avg

S is larger than Sy, ag» @Nd Gy, Will cause larger distortion than G,

D'_avg
for near-end speech signal.

S S S S (3.4.8)

D avg — °D_avg  °N_avg _ °Nonlinear_avg
NR+AEC structure can suppress background noise before adaptive filter. However,
the suppression gain will cause distortion for microphone signal. The adaptive filter

can’t estimate real room impulse response. The AEC will not cancel echo perfect. In

3.5 Volterra structure for NAES

The high order echo basis.0f the nonlinear acoustic echo suppression can
estimate the power spectral density.of nonlinear residual error. However, the nonlinear
memory effect maybe arises in_ some-microphone. The nonlinear acoustic echo
suppression can’t suppress this error and.we. use the \olterra structure in Section 2.2.3
to overcome nonlinear memory effect. In this section, we use second order \olterra
structure to suppress the nonlinear memory effect in frequency domain [22].

First, get the Fourier transfer of the second order Volterra for far-end speech

signal. The Fourier transfer for linear far-end speech signal is shown in(3.5.1).

X (W) = ij[k]e‘hNkw (3.5.1)

The Fourier transfer of the second order Volterra for far-end speech signal is
shown in(3.6.2). An second order discrete Volterra filter with input x[k], frequency

Xv(w) and memory length L can be described as

Xv(w) = N_“zjix[k Pk -k (35.2)

The nonlinear echo basis and Volterra structure is shown in Fig.3.13
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x[n] ’[[I
| xv, [n] lxvg[n] Pven] - xv,[n]
~ HA . HA 3 HAVZ l_,il y[n]
Al =k 2
YVn YV3 YVZ Yl
m, ﬁ— efn] dIn] "
_ | 1] B
SEV_nl SEE | |7
Z[n]'_' Gvolterra <

Fig. 3.7 The Wolterra structure for NAES

The Volterra structure can estimateisecond.order nonlinear residual error Yv, (k) , and

use the value to estimate slope :m, (k). m:(K) is more accurate than a(k) in Eq.

(3.3.9) to estimate nonlinear residual error, because the second order residual error has
been removed.

_ By (K)-Yv, (K)

m, (k) 0

(3.5.3)

Then, we will find nonlinear residual error from m_ (k) . The nonlinear residual error

is equivalent to the linear echo\?l(k,m) multiplied the fixed value for every frame

m,, (k) plus second order Volterra echo.
Ev,, (k,m) =Y, (k,m)-m, (K)+Yv,(k, m) (3.5.4)

For finding suppression gain, we use SEvavg and S are the power spectrum

Enlv,,

density and average from linear residual error Ev(k,m) and nonlinear residual error

Ev, (k,m).
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_SEnIv

S V.
G_volterra(k,m)= % (3.5.5)

Eva‘,g

The suppression error is the power spectrum from instant linear residual error

Z(k,m)=G_volterra(k,m)- S,

instant (3'5.6)
Using \olterra structure for NAES can suppress nonlinear residual error more

accurate than Hammerstein structure.

3.6 Using high order nonlinear echo to estimate nonlinear residual

error

In Section 3.3.1, it is assumed that the.nonlinear residual errors of orders more

than two are linearly related with-linear echo Y. In'fact, they are not. The assumption
can be wrong. Fig. 3.8 is a block diagram of Section 3.3.1. However, if we could

estimate higher order of residual error, the:-slope m(k) is more accurate to estimate

nonlinear residual error

x[n] >
m Ak - y[n]
Zenl[n]l A~

. <—| . |<—®< y[n]

SEnIEnI EEMVG | . |2< o (De— 1 - _
r M din] g

z[n]<— Gm <

NAES

Fig. 3.8 Block diagram of Sec3.3.1
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The nonlinear power filter can estimate nonlinear residual error to NAES in
Section 3.3.2. So, we exploit this ideal to find medium order nonlinear echoes
accurately and use slope method in Section 3.3.1 to estimate high order nonlinear
echoes roughly.

We propose the new method as shown in Fig.3.9. The block diagram includes

first, and third-order adaptive filters. For finding m__(k) first, the difference to

pro
Section 3.3.1 is removing the third order echo.

mmmFEﬁ%%§£9 (36.1)

The nonlinear residual error includes two part that are third-order echo, and above

fifth-order echoes.

E,y (ko m) = Y3 (k, m)+ Y (i my=my,, () (3.6.2)
x[n] R
lﬁm] ]
My Y
H; H;
) g,[n] | 9in]
e[n] d[n] b{n]

S_Enl

[nje— G |«

pro

Fig. 3.9 Block diagram of the proposed method
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For finding suppression gain, we use SEan and SEnlavg are the power spectrum density

and average from linear residual error E(k,m) and nonlinear residual error

E, (k,m).

Enl

Sg -S
G_proposed(k,m):% (3.5.7)

E

avg

The suppression error is the power spectrum from instant linear residual error.

Z(k,m)=G_proposed(k,m)- S, (3.5.8)

instant

The good combined system wants to cancel or suppress echo large and keep the
near-end speech signal.

The linear AEC slightly cancels the far-end speech and keeps the near-end
speech signal. The nonlinear AEC. :hears the noise even louder than the near-end
speech. This is because the near=end speech:would interfere with the adaptive filter to
estimate the nonlinear and linear channels in the double-talk situation. The linear AEC
and nonlinear AEC are not using“suppression structure, so we don’t discuss Gmin in
Eqg. (3.3.6). The nonlinear AES can greatly suppress the nonlinear residual error.
However, the near-end speech signal is seriously lossy. That is because the
suppression gain causes the large disturbance. So, we should set Gmin for suppression
gain. With Gmin=0.25, the near-end speech is little lossy, in spite of the far-end

speech is less canceling than Gmin=0.

3.6.1 Basis Selection for proposed slope method

From Section 3.2, we only estimate the linear echo from linear AEC. So, there is
only one choice for finding slope basis. The choice is the linear echo. For proposed
method, there are several bases to be selected, because we use nonlinear AEC to

estimate linear echo and lower order nonlinear echo. Next, we will discuss selecting
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basis for proposed method.

A commonly used function for modeling saturation is a sigmoid function ¢(u) in
(3.5.9) [15]. It’s popular to model nonlinear effect of loudspeaker. Fig.3.10 is used
parameter «=35,5=1. We try to fix the sigmoid function by fifth-order polynomial

function in Eqg. (3.5.10).

2
o(U) :(1+e"“ —1j/3 (3.5.9)

s(X) = 3.4761x —3.1740x> + 2.3999x° — 0.8233x’ (3.5.10)

sigmoid function

output

Fig. 3.10 Sigmoid function

The nonlinear AEC includes linear and third order adaptive filter. If the nonlinear

AEC is ideal, the residual error has only fifth and seventh order echoes. We will select
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first or third echo as basis to estimate summation of fifth and seventh order echoes.
However, we can’t which order echo is more linear than summation echoes in every
frequency bin. For selecting basis, we only observe the statistic distribution and ERLE
in chapter 4. From simulation, we can say the third echo is linear than first echo.

In order to accurately estimate the linear property, we define correlation
mismatch factore which is variance of estimate nonlinear residual error and real
nonlinear residual error. If the correlation mismatch factor ¢ is less, the order nonlinear

echo is more linear.

(3.5.16)

nl_est — mxY (3.5.17)

The & of third basis is smaller than first basis.. So, we will select the highest order

echo that we can get as basis.
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Chapter 4
Computer Simulations

We will show the simulation of chapter 3 to verify the algorithms in this chapter.
First, we define some parameters and speech signal in Section 4.1. Second, compare
two combined structures that are AEC+NR and NR+AEC in three conditions. The
conditions include background noise, nonlinear residual error, and both of two in
Section 4.2. Third, we use \olterra structure to estimate second order memory echo
for nonlinear AES. Fourth, comparing six methods in ERLE are linear AEC, linear &
third order AEC, linear AEC & third order AES, linear AEC & slopel AES, AEC1
& third order AES & slopel, and:AEC1 & third order AES& slope 3 in Section 4.3.
Finally, in Section 4.4, we analyze the statistical distributions and correlation
mismatch factore of three slope methods-that are discussing in Section 4.3, and

select nonlinear order echo to as basis.

4.1 Parameters and speech signal of simulations

For nonlinear systems, the sigmoid function is commonly used [15], is shown in

Fig. 3.10. The sigmoid function is¢(u) :(1 2 —1},8. In the following nonlinear

—au

model for sigmoid function, the parameters are o =3.5and g =1. We give a real
speech signal as far-end signal, and then the output of near-end microphone which we

get is defined as desired signal in Fig. 4.1.
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speech signal

1 ‘ ‘
1 l l } } } ~— far-end signal
0.8 - “ S R desired signal -
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: £l }it'e'r?;it)ns‘ Y '_-_ « 10"
. Fig, 4.1 Speech signal

4.2 Compare two combined structures in three conditions

The two combined structures are AEC+NR, and NR+AEC. NR+AEC structure
can suppress background noise or nonlinear residual error first that avoid the noise
disturbing operation of AEC. However, if we use NR first, there is a distortion for
desired signal. Then, the AEC can’t estimate the real impulse response any more. We

will discuss the two structures in three different noise conditions.

4.2.1 Background noise

The input signal is white gauss signal. The loudspeaker is perfect and room
impulse response is exponential decay with 128 taps in Fig. 4.2. The SNR is 20dB and
-5dB. The adaptive filter is linear and the length is 128.
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As evaluation criterion we use the echo return loss enhancement (ERLE) defined as

E{d®(k)}

ERLE=10l0g—— T[dB] (4.2.1)

{2

If the output signal after the cancellation or suppression structures is less correlated

than input signal, the performance of the structures is better. From Eq. (4.2.1), ERLE

is large for good cancellation or suppression structures.

Amplitude

Room Impulse Response

Fig. 4.2 Pseudo room impulse response

The Fig. 4.3 and Fig. 4.4 are shown the simulation in SNR = 20dB, and SNR =

-5dB. In Fig. 4.3, AEC+NR structure is better than NR+AEC structure by 3.5dB in

SNR = 20dB. However, in Fig. 4.4 AEC+NR structure is worse than NR+AEC

structure by 1.5dB in SNR = -5dB. This is because using NR first will cause nonlinear

distortion obviously to disturb AEC in high SNR and using AEC first that the

background noise will disturb AEC in low SNR. The background noise is large (SNR

=-5dB) in Fig. 4.4, so the performance is not good in both structures.
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ERLE[dB]

Combined Structures: SNR = 20dB
30 I I I I I

, ! ! ! ! ! far-end(WGN)
eV . A S 7| — + —Linear AEC |
, | | | | | | AEC+NR
5 ,#/, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, — — NR+AEC

O A T SR A AR -

_5 | | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
|terat|ons 4
i, x 10

Fig. 4.3 Combined structL@s'E‘or ﬁ‘rpﬂfs}sﬁi background noise (SNR=20dB)

e 1

4
|terat|0ns 10

Fig. 4.4 Combined structures for suppressing background noise (SNR=-5dB)
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4.2.2 Nonlinear residual error

We use two combined structures to suppress nonlinear residual error. The
environment is same as Section 4.2.1 except for loudspeaker that has nonlinear effect
and SNR = 50dB. The nonlinear effect uses the sigmoid function in Fig. 3.10 and Eq.
(3.5.9). In order to estimate nonlinear residual error for NR structure, we use “Based
on Highly Nonlinear Residual Echo” in Section3.3.1. In Fig.4.5, AEC+NR structure is
better than NR+AEC structure by 3dB.

Combined Structure: Nonlinear function 3.4761*x-3.1740*x.3+2.3999*x.5-0.8233*.”

25
20 : l
15 5o thELELEREEE EELED
g / | | | | |
w 10 */" o T e R T - far-end(WGN) | -
5 ;o | | | | A I Linear
Coo 1 1 1 1 | = —AEC+NR
] R R R R NR+AEC -
0 i Il Il R
5 1 1 1 1 1 1 1 1 1
0O 02 04 06 08 1 1.2 14 16 1.8 2
Iterations X 104

Fig. 4.5 Combined structures for suppressing nonlinear residual error

(SNR=200B)
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4.2.3 Background noise and nonlinear residual error

In Section 3.4, we introduce two combined structures AEC+NR and NR+AEC to
suppress background noise and nonlinear residual error in simultaneous. The
simulation result is shown in Fig.4.4. The AEC+NR structure is better than NR+AEC
structure by 3dB.

Combined Structure: Nonlinear function 3.4761*x-3.1740%x.3+2.3999*x.%-0.8233*x.”

20 I I I I I I I I I
15 - | ]
10 7/7 T roooo- e T - far-end(WGN) .
S, : c | | | | — « — Linear
- S | | | } AEC+NR
% 5|/ | | ! ! ! AEC+NR+nonlinear
( 1 1 | 1 1 NR+AEC
| ! ! ! ! NR+AEC+nonlinear
0 _
5 1 1 1 1 1 1 1 1 1

iterations X 104

Fig. 4.6 Combined structures for suppressing nonlinear residual error and

background noise

4.3 Performance of Volterra Structure for NAES

In Section 3.6, we introduce use the Volterra structure in Section 2.2.3 can cancel

the nonlinear memory effect. The simulation result is shown in Fig.4.5 and Fig.4.6.
The linear filter ﬁl length is N=64. The second order Volterra filter \72 of length V

= 4. For input signal of WGN, the Volterra structure is better than NAEC. However,

for input signal of speech, the Volterra structure is worse than NAEC. This is because

39



the convergence speed for \Volterra structure is slow. The linear filter H length is
N=128, and the nonlinear filter is memory polynomial shown in (4.5.1). \olterra
structure for NAES is not better than power filter, because the \Volterra structure needs

to adaptive too many coefficients.

S = x[n]+0.05x*[n]+
0.1{X[n —1]x[n — 2]+ x[n —1]x[x — 3] + x[n]x[x — 4]+

(4.5.1)
X[n — 2]X[x — 3]+ X[n— 2]x[x — 4]+ x[n — 3]x[n — 4]}

speech + polynomial system

@ 20p------ mo o T T far-end(WGN) .
w 1 1 1 1 — « —AEC1
@ 15p------ F- moooe- moooo- AR AEC1V2 .
| | | | —— — AEC1/AESV2
10f------ Fe T T T AEC1/AESV2/slopel [ |
S5~ Fo---- m----- - Fo---- m----- - - .
0 : - - -
5 | | | | | | |

0 1000 2000 3000 4000 5000 6000 7000 8000
iterations

Fig. 4.7 The Wolterra structure for NAES using WGN
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4.4 Simulation of Highly Nonlinear Residual Errors

4.4.1 Single talk

The linear AEC is only used to cancel the linear echo only. The nonlinear residual
echo of more than two orders is not cancelled at all. The Nonlinear AEC method can
cancel the high orders’ residual echo. The performance of NAEC is dependent on the
adaptive filter number you used. We implement the third order NAEC. We use two
concepts of “slope” and “power filter” in Section 3.3.1 and Section 3.3.2 and use the
proposed method in Section 3.5 to run the simulation. We arrange the six algorithms’

notation in Table 4.1.

Table 4:1 Notation of six algorithms

notation comment Reference
1 AEC1 AEC [1]
2 AEC13 NAEC [3]
3 AEC1/AES3 AEC/NAES [9]
4 AEC1/slopel—>3+ AEC/ slope(linear echo) [10]
5 | AEC1/AES3/slopel—>5+ AEC/ NAES/ slope(linear echo) Proposed
6 | AEC1/AES3/slope3>5+ AEC/ NAES/ slope(third echo) Proposed

AEC1 uses linear AEC to cancel the linear echo that can’t cancel the nonlinear
residual error anymore. AEC13 uses linear AEC and third-order nonlinear AEC to
cancel linear echo and third echo that still exists the nonlinear residual error more than
fifth-order nonlinear residual error. The performance of AEC13 is better than AECL.

AEC1/AES3 uses linear AEC to cancel the linear echo and suppress third-order
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nonlinear residual error by “power filter” method in Section 3.2.2. The performance
of AEC1/AESS is better than AEC1/AEC3. That is because the convergence speed of
AEC1/AES3 is quicker than AEC1/AEC3. AEC1/slopel->3+ uses linear AEC to
cancel linear echo and suppress all order nonlinear error by “slope” method of linear
echo basis in Section 3.2.1. If the total high order nonlinear residual error is larger
than the third-order nonlinear echo, the performance of AEC1/slopel—>3+ is better
than AEC1/AEC3. AEC1/AES3/slopel—>5+ and AEC1/AES3/slope3—>5+ use linear
AEC to cancel the linear echo, third-order suppression to suppress third echo, and
suppress more than fifth-order nonlinear residual error by *“slope” method of linear
echo or third-order echo basis. AEC1/AES3/slopel—->5+ and AEC1/AES3/slope3->5+
are better than AEC1/AES3 and AEC1/slopel->3+, because AEC1/AES3/slopel—>5+
and AEC1/AES3/slope3—>5+ can.suppress third-order echo accurately and suppress
more than fifth-order nonlinear-residual error: For real speech signal to loudspeaker,
the high order nonlinear residual error.is-more-linearly with the third-order echo.

In Fig. 4.8, we use the real speech-signal-and real system. The nonlinear effect is
of the total more than fifth-order nonlinear residual error is larger than third-order
echo. So, AEC1/slopel is better than AEC1/AES3. AEC13/AES3/slopel can suppress
third-order echo accurately than AEC1/slopel, so the performance is better. The
nonlinear residual error that is more than fifth-order echo is more linearly with the
third-order echo than first-order echo. So, AEC13/AES3/slope3 is better than

AEC13/AES3/Slopel.

In Fig. 4.9, we use speech signal as far-end signal and nonlinear system is

polynomial ~ function ~ S(X) =3.4761x—3.1740x° + 2.3999x° —0.8233x" . The
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proposed method is the best than the others.

In Fig. 4.10, we use white gauss noise as far-end signal and nonlinear system is
polynomial  function S(X) =3.4761x—3.1740x° +2.3999x° —0.8233x" . The
third-order echo is large. If we can’t estimate third-order echo accurately, the ERLE
will bad. So, AEC1/AES3 is better than AEC1/slopel. The proposed method is the

best than the others.

speech + real system

ERLE[dB]

far-end(speech)
AEC1

AEC13

AEC1/AES3
AECl/slopel
AEC1/AES3/slopel
AEC1/AES3/slope3

1.6 1.8 2
iterations % 10"

Fig. 4.8 ERLE for speech signal & real system
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| AEC1
| AEC13
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AEC13/AES3/slopel

e

AEC13/AES3/slope3

-5 | | |
0 0.5 1 . ... 15 2 2.5
¥ : x 10

i HALTR. &
Fig. 4.9 ERLE for speech signal & polynomial system

il | ! a
~ . WGN#palysystem

e .,

-5 | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

tttttttttt X 104

Fig. 4.10 ERLE for WGN & polynomial system
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4.4.2 Double Talk

In order to avoid severe degradation of near-end speech signals during
double-talk situations, the actual values of G(k,m)are usually limited to a desired
level of attenuationG_,,. We set G, =0.25dB, implying a maximum attenuation of
about 12dB. The simulation result is shown in Table 4.3. AEC1 can cancel the linear
echo in spite of the near-end speech signal disturbs AEC. We hear a slightly low level
of echo from the near-end speech signal. Using AEC13, we hear the loud noise that is
almost covered the near-end speech signal. This is because the near-end speech is
critically disturbing the nonlinear AEC. For suppression structures, we only discuss
G,i, =0.25 , because G, =0 1is critically distorting the near-end speech.
AEC1/slopel can suppress the echo better than AEC1, but the near-end speech signal
is poorly disturbed than AEC1. AEC13/AES3/slopel and AEC13/AES3/slope3 can

suppress the nonlinear residual error better than AEC1/slopel.

Table 4.2 Simulation. of double-talk

Gmin=0 Gmin =0.25 (-12dB)
AEC1 Echo: slightly cancelled

DT: not distortion
AEC13 Echo: mismatch noise

DT: not distortion
AEC1/slopel Echo: almost cancelled Echo: little cancelled

DT: lossy DT: little lossy
AEC1/AES3 Echo: almost cancelled Echo: moderately cancelled
fslopel DT: almost silent DT: slightly lossy
AEC1/AES3 Echo: almost cancelled Echo: moderately cancelled
Islope3 DT: almost silent DT: slightly lossy

In double-talk situation, we want to cancel or suppress the echo large and keep the

near-end speech signal. From Table 4.2, the near-end speech of AEC1/AES3/slopel and
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AEC1/AES3/slope3 for Gmin = 0.25 is better than the others except AEC1 and AEC13.
However, AEC1 and AEC13 can slightly cancel the echo only or cause the adaptive
filter mismatch. The AEC13/AES3/slopel or AEC13/AES3/slope3 is the better choice

than the others.

4.5 Statistics Distribution of Higher-Order Nonlinear Residual Errors

In Section 4.4.1, we discuss the ERLE for six methods and the “slope” method in
Section 3.3.1 has been wused in AEC1/slopel, AEC1/AES3/slopel, and
AEC1/AES3/slope2. In order to analyze the three methods, we will observe statistical
distributions. If the residual error is linearly than which order echo, the residual error

is closer than estimate value. The straight.line is estimated nonlinear residual error

Y, and the point is real nonlinear residual error. Y,

(1) speech signal + real system:

First, we input speech signal and real system that is real loudspeaker and real

room impulse response.
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AEC1/slopel(speech+real)
2.5 T T

Amplitude in Residual Echo |[E3+(m)|

1 1 1
0.5 1 1.5 2 25 3 3.5
Amplitude in"Echo Replica |Y(m)|

Fig. 4.11 Statistic distribution of AEC1/slopel-in speech signal + real system
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=
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|

1
0.5 1 1.5 2 2.5 3
Amplitude in Echo Replica |Y(m)|

Fig. 4.12 Statistic distribution of AEC13/AES3/slopel in speech signal + real system
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AEC13/AES3/slope3(real+speech)
18 T T T T T

161 O i

1.4} O B

121 -

Amplitude in Residual Echo |[E5+(m)|

Amplitude in Echo Replica |Y3(m)| x 107

Fig. 4.13 Statistic distribution.of AEC13/AES3/slope3 in speech signal + real

system

The point is closer than straight lineinFig:4.13 than Fig. 4.11 and Fig. 4.12.

(2) WGN signal + polynomial system:
Second, we input white gauss noise signal and the pseudo system includes two
parts that are polynomial function in Fig. 3.10 and exponential function in Fig.

4.2.
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AEC1/slopel(WGN+polynomial)
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Fig. 4.14 Statistic distribution of AEC1/slopel in WGN signal + polynomial system

AEC13/AES3/slopel(WGN+polynomial)
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Fig. 4.15 Statistic distribution of AEC13/AES3/slopel in WGN signal +

polynomial system
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AEC13/AES3/slope3(WGN+polynomial)
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Fig. 4.16 Statistic distribution of AEC13/AES3/slope3 in WGN signal +

polynomial

The point is closer than straight line in Fig. 4.16 than Fig. 4.14 and Fig. 4.15.

(3) speech signal + polynomial system:
Third, we input speech signal and the pseudo system includes two parts that are

polynomial function in Fig. 3.10 and exponential function in Fig. 4.2.
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Amplitude in Residual Echo |[E3+(m)|
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Fig. 4.17 Statistic distribution-of AEC1/slopel in speech signal + polynomial
system

AEC13/AES3/slopel(speech+polynomial)
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Fig. 4.18 Statistic distribution of AEC13/AES3/slopel in speech signal +

polynomial system
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AEC13/AES3/slope3(speech+polynomial)
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Fig. 4.19 Statistic distribution of AEC13/AES3/slope3 in speech signal +

polynomial system

The point is closer than straight line in‘Figr4-19than-Fig. 4.17 and Fig. 4.18.
(4) WGN signal + real system:

Fourth, we input white gauss noise signal and real system that is real

loudspeaker and real room impulse response.
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Amplitude in Residual Echo |[E3+(m)|

Amplitude in Residual Echo |E5+(m)|
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Fig. 4.20 Statistic distribution of AEC1/slopel in WGN signal + real system
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Fig. 4.21 Statistic distribution of AEC13/AES3/slopel in WGN signal + real
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system

AEC13/AES3/slope3(WGN+real)
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Fig. 4.22 Statistic distribution of AEC13/AES3/slopel in WGN signal + real

system

The point is closer than straight line in Fig. 4.22 than Fig. 4.20 and Fig. 4.21.

From the above statistical distribution, we can find roughly the
AEC13/AES3/slope3 is more linear than the AEC13/AES3/slopel and AEC1/slopel.
In order to accurately find which one can suppress nonlinear residual error more, we
define correlation mismatch factore which is variance of estimate nonlinear residual
error and real nonlinear residual error. If the correlation mismatch factor ¢ is less, the

method is more linear.

&=Enl Enl (4.5.1)

real estimate

ENl e =(M-Y,) (4.5.2)

avg

54



Table 4.3 Correlation mismatch factor ¢

AEC1/slopel AEC1/AES3/slopel | AEC1/AES3/slope3
Speech & Real 5.4690e-004 5.0143e-004 5.0079e-004
WGN & Polynomial 0.0121 0.0123 0.0058
Speech & polynomial | 3.8030e-004 3.1465e-004 3.1465e-004
WGN & Real 3.4303e-005 3.3021e-005 2.3639e-005

The correlation mismatch factor & of AEC1/AES/slope3 is less than AEC1/slopel

and AEC/AES/slopel and AEC1/AES/slope3 can suppress more nonlinear residual

error than the others. Table 4.3 can prove the ERLE of AEC1/AES/slope3 is the best

than the others in Section 4.4.1.
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Chapter 5
Conclusion

In this thesis, we introduce different structures for estimating the nonlinear
residual error and near-end speech signal. However, the method using the linear echo
to estimate the nonlinear residual error in Section 3.3.1 is not accurate. The method
using the NAEC to estimate the nonlinear residual error needs large computational
operation in Section 3.3.2. We integrate the two methods to propose the new method
that can estimate the nonlinear residual error more accurate and save the calculating
operation. From the simulation results in Fig. 4.8-11, we know the new method is
better than the others methods. Besides, the statistics distribution and correlation
mismatch factor can prove the proposed methad better than the others. We provide the
input signal of WGN or speech signal and the system of polynomial or real
loudspeaker for the simulation,”.and the new.method are better than the others
methods.

In addition, we introduce the other suppression structure which is NR+AEC
structure. In low SNR condition, the NR+AEC structure is better than AEC+NR
structure. The first NR suppresses the large noise, so the noise has less affect on AEC.
The AEC can estimate the echo path accurately. In high SNR condition, the NR+AEC
structure is worse than AEC+NR structure. This is because the NR+AEC structure
causes the nonlinear disturbance by the NR. So, AEC can’t estimate the accurate echo
path. We also extend the NAES to other nonlinear adaptive filter which is Volterra
model. Volterra model can estimate nonlinear memory residual error that the
loudspeaker is time-variant. So, the performance is better than Hammerstein model

that can estimate memoryless residual error only.
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The simulation result shows the Volterra model is better than Hammerstein
model for steady input signal, but the input signal is real speech model for
communication that the performance is worse than Hammerstein model. This is
because the convergence speed of \olterra structure is too slow. When the length of
input signal period isn’t enough to adaptive the nonlinear channel, the performance
will come down.

Using higher-order nonlinear echoes as bases to estimate nonlinear residua error
is not only can estimate lower-order nonlinear echoes accurately, but also estimate

high-order nonlinear echoes roughly.
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