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摘要 

 

為了去補償在免持聽筒或是視訊會議系統中所發生喇叭的非線性回音，通

常使用非線性音訊回音消除器去消除此回音。不過這些方式的收斂速度太慢而影

響效能。使用非線性回音壓抑方式即改善此問題。這是因為使用非線性回音壓抑

時，不去找出實際的非線性路徑的部分。而是去找出非線性部份的能量頻譜密度。 

這篇論文中，介紹兩種估計非線性回音能量頻譜密度的方式。第一種是以

回音的相關性去估計出。第二種是使用非線性適應性濾波器去得到。然而使用第

一種，會產生較大的誤差，是由於高階與一階回音不會是線性的關係。而第二種，

需要大量的非線性濾波器去估計出高階的回音。在此篇論文將提出新的演算法，

使用非線性適應濾波器去準確找出低階部分的回音，並且使用回音的相關性粗略

估出高階部分的回音。此演算法能以少量的運算量較準確的估計出非線性回音的

能量。另外對基底選擇提出分析方式，進一步的提升估計非線性回音的準確度。 
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Abstract 
In order to compensate the nonlinear distortion in the hands -free telephones or 

teleconferencing system, the nonlinear acoustic echo cancellation can be used to 

cancel nonlinear acoustic echo. However, the convergence speed of these methods is 

too slow. Nonlinear Acoustic Echo Suppressions will resolve the question. This is 

because we are not interested in an exact identification of the nonlinear components 

of the echo path. We are rather aiming at estimates power spectral density of the 

nonlinear components.  

In the thesis, two previous methods are introduced to estimate power spectral 

density of nonlinear residual error. First, use the linear property of echoes to 

estimate. Second, a nonlinear adaptive filter is used. We proposal the new method 

that can estimate low order echoes accurately and high order echoes roughly by less 

computational complexity than second method and estimate the nonlinear residual 

error more accurately than first method. And, we discuss how to choose echo basis. 
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Chapter 1 
Introduction  
  

In using hands-free telephone or teleconferencing, the speaker always hears his 

speech signal. This is because the system suffers from the annoying acoustic echo 

problem which is the far-end speech transmitted from the near-end microphone to 

near-end loudspeaker and back to far-end user from far-end loudspeaker. A simplified 

diagram of a heads-free telephone system is shown in Fig 1.1. If the far-end signal 

picked up from the near-end microphone can be cancelled, the acoustic echo problem 

would be overcome. If we estimate the echo path accurate, the echo would be 

cancelled. This method is acoustic echo cancellation (AEC) shown in Fig1.1. When 

using hands-free telephone or teleconferencing, the room impulse response can 

change very often. So, the AEC is time-variant to track the echo path to provide 

satisfactory speech communication quality in [1-5].  

 

 

Fig. 1.1The simplified diagram of hands-free telephone system 
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When the volume level is larger than the loudspeaker amplifier capability, the 

amplifier is overdriven. So, the loudspeaker power curve is not just linear. The linear 

AEC is not sufficient to estimate the acoustic echo channel. The performance is bad 

by the high level volume. To overcome the nonlinear problem, there are many 

methods that had been proposed. The nonlinearity of loudspeaker can be classified as 

nonlinearity with and without memory in [6-10]. In this thesis, we will introduce 

several nonlinear AEC methods.   

In order to overcome the nonlinear effect of power amplifier, we always use high 

order structure of nonlinear AEC. However, the computation is more complex, and the 

convergence is too slow. The high order nonlinear AEC (NAEC) must adapt many 

coefficients simultaneously at the every iteration. The coefficients are interfering with 

each other. The object of nonlinear acoustic echo suppression (NAES) is to increase 

the attenuation of the nonlinearly distorted residual echo and the convergent speed. 

These time-variant estimates are used to approximately adjust the 

frequency-dependent gain value of the echo suppressor. In contrast to the application 

of adaptive filters to nonlinear echo cancellation, we are not interested in an exact 

identification of the nonlinear components of the echo path. We are rather aiming at 

estimates of power spectral density of the nonlinear components. This method uses 

linear relation between linear echo and nonlinear residual error to estimate power 

spectral density of nonlinear residual error that can save large calculation to suppress 

nonlinear residual error [11]. However, the linear echo is not linear with nonlinear 

residual error in fact. So, the high order nonlinear echoes can not be suppressed. 

Another method uses nonlinear adaptive filter to estimate high order nonlinear 

residual error that is more accurate than [12]. But, the method needs large calculation 

quantity. 
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Besides, we propose the new NAES method to combine the methods [11-12]. In 

fact, the nonlinear residual error is not linear with linear echo. The proposed method 

is used to overcome this drawback and save the calculation quantity than [12]. The 

new method is wanted to estimate nonlinear residual error to two parts. Low order 

nonlinear residual echoes estimate accurately by nonlinear adaptive filters and high 

order nonlinear residual echoes estimate roughly by correlate with low order echo.  

This thesis is organized as follows. More details about nonlinear AEC with and 

without memory will be introduced in chapter 2. We will introduce nonlinear acoustic 

echo suppressions (NAES) and propose a new method that uses low order power filter 

to estimate low order nonlinear residual error and higher-order nonlinear echoes as 

basis to estimate high order nonlinear residual error.  In chapter 4, we will show 

many computer simulations that have been discussed in chapter 2 and 3. Finally, we 

give a conclusion of our work.  
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Chapter 2 
Overview of Nonlinear Acoustic Echo 
Cancellation 
  

In Chapter 2 we will introduce several nonlinear AEC methods in the time 

domain including memoryless and memory.  The traditional method to get over the 

acoustic echo is to eliminate all the signals from the far-end loudspeaker. However, 

this half-duplex communication is bad for user. The linear acoustic echo cancellation 

can overcome this difficultly and the hands-free telephone or teleconferencing can 

work at full-duplex. The loudspeakers for hands-free telephone or teleconferencing 

are usually small and cheap, so the loudspeaker will be saturated at high level speech. 

When the saturation effect happens, the loudspeaker is not linear any more. The 

residual error using only linear acoustic echo cancellation is very large. We will 

discuss the nonlinear acoustic echo cancellation to overcome this question. 

To some loudspeakers, the nonlinear effects have memory. If using memoryless 

structures to model that, the cancellations don’t eliminate echo perfect. The memory 

structures for canceling the memory echo are complex in general, i.e. Volterra model. 

As shown below, we will introduce the several memoryless and memory structures. 
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2.1 Memoryless Nonlinear AEC

 

2.1.1 Hammerstein model 

The Hammerstein model, as shown in Fig. 2.1, is used to model the loudspeaker 

and acoustic channel in [6]. The structure has two layers. First layer is nonlinear order 

weights to model static loudspeaker part. Second layer is linear FIR to model dynamic 

echo path. The first layer can estimate the parameters of nonlinear part separately 

from linear part. 

 

+

+
-

ĥ

2â1â ˆ pa

h

First Layer

Second Layer

1x 2x px

[n]x

 
Fig. 2.1 Hammerstein structure 
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2.1.2 Orthogonalized Power Filter model 

This method wants to use power filter to model nonlinear effect in [13-14]. A 

p-th order power filter defines by its input/output relation as follows  

1

1 0
[n]

pNP

p l
y

−

= =

= ∑ ∑ p
p,lh [n]x [n - l]                             (2.1.5) 

From (2.1.5) we notice that power filters can be considered as linear multiple 

input/single output systems, where the input of the p-th channel is given by the p-th 

power of . The input of each channel is then filtered by as associated linear filter 

 with channel length . For compactness, we write (2.1.5) in matrix notation: 

nx[ ]

,p lh pN

                                           (2.1.6) 
1

[ ]
P

p
y n

=

=∑ T
p ph x [n]

With the vectors  

[ ( ), ( 1), , ( 1)]p p p
Px n x n x n N= − −px [n] K T+

⎤
⎦

              (2.1.7) 

                                    (2.1.8) ,0 ,1 , 1, , ,
pp p p p Nh h h −

⎡= ⎣h K

Note that the input signals of each channel are in general not mutually 

orthogonal, i.e., { } 0E ≠i jx [n]x [n] . Thus, a direct adaptive implementation of the 

no-orthogonalized power filter suffers from slow convergence. Therefore, a new set of 

mutually orthogonal input signals has been introduced [14]: 

                                              (2.1.9) o,1x [n] = x[n]

                                  (2.1.10) 
1

,
1

p

p i
i

q
−

=

+∑p
o,px [n] = x [n] x [n]i

for . The orthogonalization coefficients  an be determined using the 

Gram-schmidt orthogonalization method. Applying standard gradient descent 

techniques, it directly follows from (2.1.6) that the normalized least mean square 

(NLMS) update of the coefficients of the orthogonaized structure by 

1 p P< ≤ ,p iq
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         ,
, ,

, ,

[ ] [ ]
[ 1] [ ]

[ ] [ ]
o p

o p o p p T
o p o p

n e n
h n h n

n n
α+ = +

x
x x

                 (2.1.11) 

 

2.2 Memory Nonlinear AEC

In Sec.2.1, we assume the nonlinear effect of loudspeaker is memoryless. 

However, when the nonlinear memory effect of loudspeaker happens, the nonlinear 

memory AEC should be used.  

2.2.1 Wiener Model 

The Wiener model can model the memory loudspeaker in [15]. Wiener model has 

three layers. First layer and second layer model the nonlinear memory effect, and third 

layer models linear echo path. The Wiener model is shown Fig.2.2.  

 

ĥ

h

[ ]x n

[ ]hx n

 

Fig. 2.2 Wiener model 
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2.2.2 Volterra Model 

 As show in Fig 2.3 the system is composed of two different modules organized 

in a cascaded structure: a first level is modeling the nonlinear loudspeaker effect 

based on polynomial Volterra structure, and a second level is modeling the room 

impulse response of the acoustic path with standard linear filter in.  

oww[n]

, ,δ o o
c2 c3h h, ,δ c2 c3h [n] h [n]

ˆ[ ]d n

+

−

[ ]x n

 

Fig. 2.3 Cascade model of the system and mirror adaptive system 

 

The global include loudspeaker and acoustic path may be modeled by the parallel 

system (nonlinear/linear). The system, whose output is denoted by , is then 

modeled by a parallel structure with first-, second-, and third-order kernels 

[ ]d n

0 0

0

[ ]

           

L L L

i i j i

L L L

i j i k j

d n
= = =

= = =

= +∑ ∑∑

∑∑∑

o o
1 2

o
3

h [n]x[n - i] h [i, +j]x[n - i]x[n - j]

h [i, j,k]x[n - i]x[n - j]x[n - k]
        (2.2.1) 

( )d̂ n  is far-end signal pass through two layers adaptive filter to model nonlinear 

loudspeaker and linear channel.  

( )d̂ n = T T T
1 1 2 2 3 3X [n]h [n]+ U [n]h [n]+ U [n]h [n]             (2.2.2) 

The input signal vectors for second- and third- order may be expressed as 
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products of matrices [16]. We define first the filter , corresponding to the 

second-order nonlinearity as the vector of dimension ( where 

 ).   

2h [n]

2 1 L ×

( )2 1 / 2L L L= +

( )

2

2 2 2

2

2 2

[ ] [ 1] [ 1]
[ ] [ 1] [ 1] [ 2]

[ ] [ 1]
[ 1]

[ 1] [ 2] L N

x n x n x n N
x n x n x n x n

x n x n L
x n

x n L x n L N ×

⎡ ⎤− − +
⎢ ⎥− − −⎢ ⎥
⎢ ⎥
⎢ ⎥

= − +⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥− + − − +⎣ ⎦

2U n (2.2.3)

                                      (2.2.4) 

2

2

2

2

2

2 1

[0,0; ]
[0,1; ]

[0, 1; ]
[1,1; ]

[ 1, 1; ]
L

h n
h n

h L n
h n

h L L n
×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢= −⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

2h [n] ⎥
⎥

( ) ( ) ( )ˆe n d n d n= −  

The update equation of a given vector , using the NLMS 

algorithm is given by [17-19]. 

, ,1 2 3h [n] h [n] h [n]

1

2

3

[ ]

[ ]

[ ]

e n

e n

e n

μ

μ

μ

= +
+

= +
+

= +

1
1 1 T

1 1

2
2 2 T

2 2

3
3 3 T

3 3

X [n]h [n +1] h [n]
X [n]X [n] δ

U [n]h [n +1] h [n]
U [n]U [n] δ

U [n]h [n +1] h [n]
U [n]U [n]+δ

                     (2.2.5) 

The performance for Volterra structure is the best to the other structures, but the 

computer complexity is the most complexity.  
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2.3 Computation Reduction of Simplified Volterra Model 

 

   As the echo path inherently has memory, the nonlinear approaches have to be 

capable to model nonlinear system with memory. The Volterra filter is the common 

method to be deal with such system. Unfortunately, they suffer from high 

computational complexity. Therefore, we introduce an adaptive structure representing 

a simplified realization of a special second order Volterra filter in [20]. The simplified 

second Volterra filter is illustrated in Fig.2.4 and includes a linear branch and a second 

order nonlinear branch in parallel. The nonlinear branch consists of the cascade of an 

FIR filter, a multiplier, and a second stage filter. 

1ĥc

w

×

[ ]kv

[ ]ku

h2ˆSVFy

[ ]x n

 

Fig. 2.4 simplified second order Volterra filter 

 

 10



The coefficients of Volterra second order is ( +1)
2

v vN N , the memory length is . 

However, the coefficients of simplified second order Volterra is  which is sum of 

. 

vN

vN

c wN N+

As the below, we will discuss the distribution for  and  at the total  

coefficients. For example N=5, we expand three conditions , 

, . 

cN wN vN

4 1c wN N= =

2 3c wN N= = 1 4c wN N= =

4 1c wN N= = : 

                                          (2.2.6) 
3

0
[ ] [ ]i

i

v n c x n i
=

= ∑ −

−

− +

−

−

+

                  (2.2.7) 
23 3 3

0 0 0
[ ] [ ] [ ] [ ]i i j

i i j
u n c x n i c c x n i x n j

= = =

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠
∑ ∑∑

     (2.2.8) 

( )
( ) ( )

( )

3 3

0 0

0 0 1 0 0 1

2 0 0 2 0 3 3 0

1 1 1 2 2 1

1

[ ] [ ] [ ] [ ]

      [ ] [ ] [ ] [ 1]

         [ ] [ 2] [ ] [ 3]

          [ 1] [ 1] + [ 1] [ 2]

         

i j
i j

y n w u n wc c x n i x n j

wc c x n x n wc c wc c x n x n

wc c wc c x n x n wc c wc c x n x n

wc c n x n wc c wc c x n x n

wc c

= =

= ⋅ = − −

= + + − +

+ − + +

− − + − − +

∑∑

( )
( )

3 3 1 2 2

2 3 3 2 3 3

[ 1] [ 3] [ 2] [ 2]

         [ 2] [ 3] [ 3] [ 3] 

wc c x n x n wc c x n x n

wc c wc c x n x n wc c x n x n

+ − − + − − +

+ − − + − −

2 3c wN N= =  
1

0
[ ] [ ]i

i

v n c x n i
=

= ∑                                       (2.2.9) 

21 1 1

0 0 0
[ ] [ ] [ ] [ ]i i j

i i j
u n c x n i c c x n i x n j

= = =

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠
∑ ∑∑               (2.2.10) 

( )
( ) ( )
( )

2 2 1 1

0 0 0 0

0 0 0 1 0 0 0 1 1

2 0 0 1 1 1 0 1 0 0 0 1

1 1 0 1 0 1

[ ] [ ] [ ] [ ]

      [ ] [ ] [ 1] [ 1]

         [ 2] [ 2] [ ] [ 1]

         [ 1] [ 2] 

k k i j
k k i j

y n w u n k w c c x n k i x n k j

w c c x n x n w c c w c c x n x n

w c c w c c x n x n w c c w c c x n x n

w c c w c c n x n w

= = = =

= ⋅ − = − − − −

= + + − − +

+ − − + + −

+ − − +

∑ ∑ ∑∑

( )
( )

1 2 2 1

2 1 0 2 0 1 2 2

2 1 1

[ 1] [ 2]

         [ 2] [ 3] [ 2] [ 2]
          [ 3] [ 3] 

c c wc c x n x n

w c c w c c x n x n wc c x n x n
w c c x n x n

+ − −

+ − − + − − +

− −

+

 (2.2.11) 
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1 4c wN N= = : 

                                             (2.2.12) [ ] [ ]v n c x n= ⋅

                                  (2.2.13) ( )2 2 2[ ] [ ] [ ]u n c x n c x n= ⋅ = ⋅

( )
( ) ( )
( )

3 2 1 1

0 0 0 0

0 0 0 1 0 0 0 1 1

2 0 0 1 1 1 0 1 0 0 0 1

1 1 0 1 0 1

[ ] [ ] [ ] [ ]

      [ ] [ ] [ 1] [ 1]

         [ 2] [ 2] [ ] [ 1]

         [ 1] [ 2] 

k k i j
k k i j

y n w c x n w c c x n k i x n k j

w c c x n x n w c c w c c x n x n

w c c w c c x n x n w c c w c c x n x n

w c c w c c n x n wc

= = = =

= ⋅ = − − − −

= + + − − +

+ − − + + −

+ − − +

∑ ∑ ∑∑

( )
( )

1 2 2 1

2 1 0 2 0 1 2 2

2 1 1

[ 1] [ 2]

         [ 2] [ 3] [ 2] [ 2]
          [ 3] [ 3] 

c wc c x n x n

w c c w c c x n x n wc c x n x n
w c c x n x n

+

+ − −

+ − − + − − +

− −

+

 

(2.2.14) 

 

Table 2.1 The parameter of simplified Volterra Model 

 4 1c wN N= =  2 3c wN N= =  1 4c wN N= =  

00h  0 0wc c  ( )0 1 2 0w w w c c+ + 0  ( )0 1 2 3 0w w w w c c+ + + 0

01h  0 1 1 0wc c wc c+  ( )0 1 2 02 2 2w w w c+ + 1c 0 

02h  0 2 2 0wc c wc c+  0 0 

03h  0 3 3 0wc c wc c+  0 0 

11h  1 1wc c  ( )0 2 1w w c c+ 1  0 

12h  1 2 2 1wc c wc c+  2 1 2w c c  0 

13h  1 3 3 1wc c wc c+  0 0 

22h  2 2wc c  0 0 

23h  2 3wc c  0 0 

33h  3 3wc c  0 0 
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When the  is more, the coefficients is more for nonlinear effect. From Table 

2.1, modeling nonlinear memory effect of 

cN

4 1c wN N= =  is the same with Volterra 

filter. However, the linear adaptive filter tap is one. 1 4c wN N= =  is the same with 

linear adaptive filter. But, this condition can’t estimate nonlinear effect at all. The total 

modeling nonlinear memory coefficients for simplified Volterra structure are shown in 

(2.2.15) and Volterra structure are shown in (2.2.16) . 

         ( ) (1
1

2
c c

c w

N N
N N

+
+ )−                            (2.2.15) 

             ( )1
2

vN N+ v                                       (2.2.16) 
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Chapter 3 
Estimate Nonlinear Residual Error 
for Nonlinear Acoustic Echo 
Suppression 
 

Loudspeakers and amplifiers of mobile communication device may cause 

significant nonlinear distortion in the acoustic echo path, resulting in a limitation of 

the performance of only using linear acoustic echo cancellation [1-5]. There are 

several nonlinear acoustic echo cancellations [6-10] to overcome this distortion. But 

these methods converge too slowly for the room impulse response is changing on the 

going. So, we introduce nonlinear acoustic echo suppression (NAES). The 

convergence speed is faster than nonlinear acoustic echo cancellation (NAEC) [12]. 

Besides, NAES suppresses the residual echo that remains after a purely linear AEC is 

better than NAEC cancels the acoustic echo. There is linear acoustic echo cancellation 

and nonlinear acoustic echo suppression structure in Fig. 3.1. 

 

ˆ[ ]y n

 

Fig. 3.1 Linear AEC and nonlinear acoustic echo suppression structure 
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The near-end microphone picks up the signal  which includes the acoustic 

echo speech  and near-end speech  in silent room. The acoustic echo 

speech  is far-end speech passing through nonlinear loudspeaker and room 

impulse response. We use a linear adaptive filter to find room impulse response, and 

want to get replica acoustic echo  to cancel the desire signal . However, this 

adaptive filter can’t find the loudspeaker’s nonlinear channel. The residual error is 

very large by only using linear acoustic echo cancellation (AEC) when a high level’s 

power speech is injected into a small loudspeaker. That is because the loudspeaker has 

been operated at saturation region. So, we want to find the filter  after AEC 

to suppress nonlinear residual error. If the optimum gain can be found, the output 

signal of suppressed signal will be close to the near-end signal . 

[ ]d n

[ ]y n [ ]b n

[ ]y n

ˆ[ ]y n [ ]d n

( , )G k m

[ ]b n

 
3.1 Wiener Filter 

 

The foundation of nonlinear acoustic echo suppression is Wiener filter [1]. 

Consider the block diagram of Fig. 3.2 built around a linear discrete-time filter. The 

filter input consists of a time series , and the filter is itself 

characterized by the impulse response . At some discrete time n, the filter 

produces an output denoted by . The output is used to provide an estimate of a 

desired response designated by . With the filter input and the desired response 

representing single realizations of respective stochastic processes, the estimation is 

ordinarily accompanied by an error with statistical characteristics of its own. In 

particular, the estimation error, denoted by , is defined as the difference between 

the desired response and the filter output . 

(0), (1), (2),...u u u

0 1 2, , ,...w w w

( )y n

( )d n

( )e n

( )d n ( )y n
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0 1 2, , ,...w w w

 

Fig. 3.2 Block diagram representation of the statistical filtering problem 

 

The optimum linear filter in Fig.3.2 is shown in Eq. (3.1.13). Assuming 

that for allΩ , we find the following transfer function of the noncausal 

Wiener filter: 

( ) 0UUS Ω ≠

* ( )( )
( )

UD
opt

UU

SH
S

Ω
Ω =

Ω
                                 (3.1.13) 

 

3.2 Acoustic Echo Suppression Structures 

 

The integration [21] of noise reduction and echo cancellation has advantage of 

utilizing the synergy among its components. An important issue is the placement of 

these two algorithms. There structures can only be implemented in frequency domain 

because noise reduction requires frequency-domain implementation using FFT. Since 

the performance of the NLMS algorithm degrades significantly in the presence of 

high-level background noise, an immediate suggestion would be place the noise 

reduction prior to echo cancellation. However, the drawback is that the noise 

reduction introduces nonlinearity into the echo path.  

In this section, we only take care of the linear echo and background noise. Only 

using the AEC to cancel the echo is not enough to assure the quality of auditory. This 

 16



is because another side user hears the background noise and the background noise 

interferes with the AEC algorithm. We will introduce two combined structures as 

below. 

 

3.2.1 AEC+NR structure 

The combined system is shown in Fig. 3.3 [21]. We use a conventional echo 

canceller, consisting of a time variant FIR-filter adapted by the NLMS algorithm, and 

of a combined residual echo and noise reduction filter implemented in the frequency 

domain. [ ]x n denotes the far-end speech, the near-end speech and the noise. 

The microphone signal is made up of the echo as well as of the near-end 

speech and noise, 

[ ]b n [ ]v n

[ ]d n [ ]y n

[ ] [ ] [ ] [ ]d n y n b n v n= + +                               (3.2.1) 

The estimated echo is subtracted from forming the echo compensated 

signal , 

ˆ[ ]y n [ ]d n

[ ]e n

ˆ[ ] [ ] [ ] [ ] [ ]
      [ ] [ ] [ ]
e n y n y n b n v n

y n b n v n
= − + +
= Δ + +

                         (3.2.2) 

Depending on the effectiveness of the echo canceller, the residual echo 

must be more or less attenuated by the filter G. The output signal 

of the system is denoted by . If the AEC is perfect, the residual error e[n] is shown 

in (3.2.3). 

ˆ[ ] [ ] [ ]y n y n y nΔ = −

[ ]z n

                                           (3.2.3) [ ] [ ] [ ]e n b n v n≈ +

The suppression gain G suppresses the noise v[n], and the output z[n] is approximated 

to b[n]. 

           ( ) ( ) ( )Z w G w E w= ⋅                                   (3.2.4) 

The suppress gain comes from the Wiener filter concept in Eq. (3.13) of Sec.3.1. 
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B( )           

        

E

EE

BB

EE

SG w if b and n are uncorrelated
S
S
S

=

=
           (3.2.5) 

( )BBS w  is power spectral density of near-end speech and the  is power 

spectral density of residual error. 

( )EES w

The error signal is then processed by noise reduction to get the noise free 

signal . With an optimal echo, the echo is completely canceled by the first filter, 

leaving the useful signal and noise unchanged. The output from the AEC is 

ideally . The second stage aims at reducing noise through the Wiener gain 

filter

[ ]e n

[ ]z n

[ ] [ ]b n v n+

BB

BB VV

S
S S+

. A disadvantage of this integrated structure is that the AEC has to 

process noisy signals. In practice, the AEC system is adaptive. The coefficients of the 

AEC are disturbed by the ambient noise which is omnipresent. 

ˆ[ ]y n

AEC

[ ]x n

Fig. 3.3 Block diagram of a combined echo canceling and noise reduction system 

 

3.2.2 NR+AEC structure 

Fig. 3.4 [21] shows the implementation of the integrated noise reduction and 

echo cancellation where echo cancellation precedes noise reduction. [ ]x n  is 

processed by the AEC filter H to generate the echo , which is subtracted from [ ]y n
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[ ]d n′  that is the microphone signal  after suppressing the noise to generate .  [ ]d n [ ]e n

The effects of noise on the AEC can be minimized by placing noise reduction 

upstream from this system. The noise reduction operation enhances the signal-to-noise 

(SNR), which can improve the AEC behavior. However, the noise reduction causes 

nonlinear distortion, and disturbs the AEC. 

 

ˆ[ ]y n

AEC

'[ ]d n [ ]d n

[ ]x n

 

Fig. 3.4 Block diagram of a combined noise reduction and echo canceling system 

 

3.3 Estimation nonlinear residual error for NAES 

 

One of most basic filter to echo suppression is Wiener filter in Fig3.3.  

The Wiener filter gain is shown in (3.3.1).  

EZ

EE

SG
S

=                                     (3.3.1) 

If the Z B= , the suppression performs optimally. E  concludes three parts 

which are nonlinear residual echo , near-end speechb , and background noise . 

Assuming the residual echo, near-end speech, and near–end noise are uncorrelated 

and ignoring the noise, we have 

nlY N
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nl nl

EB

EE

BB

BB Y Y NN

SG
S

S
S S S

=

=
+ +

                               (3.3.2) 

In fact, we don’t know . So, we want to use , , and  to estimate G. BBS EES
nl nlY YS NNS

        nl nlEE Y Y NN

EE

S S S
G

S
− −

=                                 (3.3.3) 

EES can be easily estimated from E . is more difficult to estimate. 
nl nlY YS

We assume the background noise is very small in the quiet room [21].  

                                                   (3.3.4) 0NNS ≈

This would be the case in quiet offices or in cars that are not moving and when the 

engine is switched off. The nonlinear residual echo suppression filter is used to reduce 

the nonlinear echo further. For the transfer function of this filter, a Wiener filter is 

often applied: 

       

ˆ
ˆ

ˆ ˆ
      ˆ

ˆ
      1 ˆ

nl nl

nl nl

EB
RE

EE

EE Y Y

EE

Y Y

EE

SH
S

S S

S

S

S

=

−
=

= −

                                    (3.3.5) 

It should be noted that any impact of the residual echo suppression filter on residual 

echoes also affects the local speech signal. When applying Eq.( 3.3.5), the estimated 

power spectral densities  and  contain estimation errors. Therefore, the 

quotient may become larger than one. To prevent that, the filter transfer function can 

be used in Eq.(3.3.6) where  determines the maximum attenuation of the filter. 

The overestimation parameter [21] 

ˆ
EES ˆ

nl nlY YS

minH

β  can be used to control the “aggressiveness” of 

the filter. 
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         min

ˆ
max 1 ,ˆ

nl nlY Y
RE

EE

S
H

S
β

⎡ ⎤
= −⎢

⎢ ⎥⎣ ⎦
H ⎥                       (3.3.6) 

In order to estimate the short-term power spectral density of the error signal  

first-order IIR smoothing of the squared magnitudes of the frequency domain error 

signals 

ˆ
EES

E  is applied in order to estimate the short-term power spectral density. m 

represents the frame index.  

        2ˆ ( ) (1 ) ( 1)EE EES m E S mγ γ= − + −ˆ                      (3.3.7) 

Because the disturbed error  is not accessible, the estimation of the 

short-term power spectral density  can’t be approximated in the same manner 

as .   

nlY

ˆ
nl nlY YS

ˆ
EES

As the above, we will discuss how to estimate . If the can be estimated 

accurately, the low level of echo signal and minimum distortion of near-end speech 

can be achieved. 

ˆ
nl nlY YS ˆ

nl nlY YS

 

3.3.1 Based on Highly Correlated Nonlinear Residual Echo 

This method [11] proposes a new residual-echo model based on the spectral 

correlation between the residual echo and the echo replica. For this method there 

should have ambient length for near-end at beginning. At first, find the ratio of AEC 

residual error ( , )E k m  to AEC replica ( , )Y k m  when there is only single talk. 

 represent the frame index, and the frequency bin, respectively. The ,k m ( , )E k m  is 

approximated to ( , )nlE k m  in quiet room. 

         ( , ) ( , ) ( , ) ( , )nlE k m E k m a k m Y k m≈ ≈ ⋅                 (3.3.8) 

Let us consider approximating  by  using averaged absolute ( , )a k m ˆ( )a k
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values of the residual echo and the echo replica. Then, 

         single talk
( , )

ˆ( )
( , )

E k m
a k

Y k m
=                               (3.3.9) 

where overline   ⋅  means an average operation. When there is no near-end speech, 

i.e. . By approximating  in (3.3.8) with a regression coefficient 

, the residual echo 

( , ) 0B k m = ( , )a k m

ˆ( )a k ( , )nlE k m  is modeled as the product of  and ˆ( )a k

( , )Y k m . 

         ˆ ˆ( , ) ( , ) ( ) ( , )nl nlE k m E k m a k Y k m≈ ⋅ ˆ                 (3.3.10) 

So, we can find suppression magnitude gain . , , ( , )o p mG k m

( , )ˆ ( , )
( , )
( , ) ( , )               

( , )

BB
opt

EE

EE EnlEnl

EE

S k mG k m
S k m
S k m S k m

S k m

=

−
=

                    (3.3.11) 

 

However, this method has drawback. The property between the nonlinear 

residual error and linear echo is not linear in real system. 

 

3.3.2 Power Filter Model 

We will find a frequency-depend gain  which is cascade the residual 

error from AEC [12]. If the optimum gain is found, the suppressed error will be close 

to the near-end signal. The output 

( , )G k m

( , )Z k m  of the AES with input  reads in the 

frequency domain. 

[ ]e n

        ( , ) ( , ) ( , )Z k m G k m E k m=                            (3.3.17) 

Here, ( , )E k m  denotes the STFT of , where k represents the block time index 

and m represents frequency bin. For the power spectral density, 

[ ]e n

                                    (3.3.18)  ( ) ( ) ( )ZZ EES w G w S w=
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If we want to find optimum value ,  is equal to near-end 

background noise , and  is equal to AEC residual error which includes 

 and the high order nonlinear echo signal . 

( )G w ( )ZZS w

( )BBS w ( )EES w

( )BBS w ( )nlS w

        

( , )( , )
( , )

( , )               
( , ) ( , )
( , ) ( , )               

( , )

ZZ
opt

EE

BB

BB nl

EE nl

EE

S k mG k m
S k m

S k m
S k m S k m
S k m S k m

S k m

=

=
+
−

=

                      (3.3.19) 

In the above equation,  can be obtained from AEC, but  can not. 

We will try to find the approximate the high order nonlinear echo power spectral 

density. This method uses power filter model to replace the loudspeaker nonlinear 

effect. 

( )EES w ( )nlS w

The input/output relation of a pth-order power filter is given by  
1

,
1 0

[ ] ( , )
P N

p
p n

p n
y n h x k m

−

= =

=∑∑                             (3.3.20) 

where  denotes the filter coefficients of the pth channel having input ,p nh [ ]px n . 

Aiming at a frequency-domain implementation of power filters, we give the 

short-time Fourier transfer (STFT) representation of (3.3.20): 

                                   (3.3.21) ,
1

( , ) ( , )
P

p m p
p

Y k m H X k m
=

=∑

Here, ( , )pX k m  denotes the STFT of ( )px k  of length M.  represent kth 

frame and mth frequency bin. 

,k m

,p mH  is the coefficient of the pth power filter 

corresponding to the mth frequency bin. In order to un-correlating the channel inputs, 

we will use equivalent orthogonal structure (EOS) [14].  

The adaptation of the channels  is performed independently for each 

nonlinear channel (p>2) with respect to the channel dependent error signal 

, ,
ˆ ( )o p mH k
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                              (3.3.27) ,
ˆ( , ) ( , ) ( , )o p o pE k m E k m Y k m= − ,

In comparison to the application of adaptive power filters to nonlinear echo 

cancellation, they are not interested in an exact identification of the nonlinear 

components of the echo path , , ( , )o p mH k m  by their adaptive couterparts  

[15]. They are rather aiming at estimates of .  

, ,
ˆ ( , )o p mH k m

,
( , )

o pYS k m

 

3.4 Suppression of nonlinear residual error and background noise 

 

The combined structure from Sec.3.2 can suppress the background noise. If the 

loudspeaker is ideal, the combined structures of AEC and NR could cancel the linear 

echo and suppress the background noise. However, the loudspeaker for mobile 

communication is cheaper and small, so the nonlinear effect is obvious. The methods 

in Sec. 3.3 ignore the background noise, and only cancel the linear echo and suppress 

the nonlinear residual error. In this section, we will suppress the noise first, and then 

use this concept in the NR+AEC structure o Section 3.3.1. 

 

3.4.1 AEC+NR suppression of noise and nonlinear residual error 

The NR+AEC structure to suppress the background noise and nonlinear residual error 

is shown in Fig.3.7. The microphone receives the linear echo, nonlinear echo, 

near-end speech signal, and noise signal. In optimal condition, the AEC can cancel the 

linear echo and suppression gain ANnlG  suppress the nonlinear residual error and the 

background noise in (3.4.1).  

_ _

_

BB ANnl avg
ANnl

EE avg

S
G

S
=                              (3.4.1) 
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ˆ[ ]y n

AEC [ ] [ ]y n y nnl+

ANnlG

[ ]x n

 

Fig. 3.5 Block diagram of NR+AEC to suppress noise and nonlinear residual 

error 

 

_E avgS  is the average power spectral density of the residual error from AEC in 

(3.4.2). 

_ _ (1 )E avg E avg ES S Sβ β= × + − ×                    (3.4.2) 

In ideal condition, the  is approximated to . However, we can’t 

know . We can estimate  to replace .  is used 

 to eliminate  and . The background noise N can be 

estimated first when there is no far-end speech signal. 

_ _B ANnnl avgS _B avgS

_B avgS _ _B ANnnl avgS _B avgS _ _B ANnnl avgS

_E avgS _N avgS _Nonlinear avgS

_ _ _ _ _B ANnl avg E avg N avg Nonlinear avgS S S S= − −             (3.4.3) 

_ _ (1 )N avg N avg NS S Sβ β= × + − ×                    (3.4.4) 

_ _ (1 )Nonlinear avg Nonlinear avg NonlinearS S Sβ β= × + − ×        (3.4.5) 

 

3.4.2 NR+AEC suppression of noise and nonlinear residual error 

In Section3.4.1, the combined structure cancels echo first, and suppresses 
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background noise continuous. However, background noise disturbs adaptive filter for 

echo cancellation. So, NR+AEC structure overcomes this disturbance in Fig. 3.6.  

 

ˆ[ ]y n

AEC

'[ ]d n [ ]d n

[ ] [ ]nly n y n+

NAnlG

[ ]x n

 

Fig. 3.6 Block diagram of NR+AEC to suppress noise and nonlinear residual 

error 

 

The suppression gain  is shown to be NAnnlG

'_

_

D avg
NAnnl

D avg

S
G

S
=                                    (3.4.6) 

_D avgS  is the average power spectral density of the signal received from microphone 

in (3.4.7). 

_ _ (1 )D avg D avg DS S Sβ β= × + − ×                       (3.4.7) 

In ideal condition, the '_D avgS  is approximated to  and the average power 

spectral density of linear echo . However, we can’t know  and .  

_B avgS

_y avgS _B avgS _y avgS

We can estimate '_D avgS  which is used _D avgS  to eliminate  and  

to replace optimal 

_N avgS _Nonlinear avgS

'_D avgS  in Eq. (3.4.8).  
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'_D avgS  includes linear echo. The linear echo has been removed from . So, _ _B ANnl avgS

'_D avgS  is larger than , and  will cause larger distortion than _ _B ANnl avgS NAnnlG ANnlG  

for near-end speech signal. 

'_ _ _ _D avg D avg N avg Nonlinear avgS S S S= − −                  (3.4.8) 

NR+AEC structure can suppress background noise before adaptive filter. However, 

the suppression gain will cause distortion for microphone signal. The adaptive filter 

can’t estimate real room impulse response. The AEC will not cancel echo perfect. In  

 

3.5 Volterra structure for NAES 

 

The high order echo basis of the nonlinear acoustic echo suppression can 

estimate the power spectral density of nonlinear residual error. However, the nonlinear 

memory effect maybe arises in some microphone. The nonlinear acoustic echo 

suppression can’t suppress this error and we use the Volterra structure in Section 2.2.3 

to overcome nonlinear memory effect. In this section, we use second order Volterra 

structure to suppress the nonlinear memory effect in frequency domain [22].  

First, get the Fourier transfer of the second order Volterra for far-end speech 

signal. The Fourier transfer for linear far-end speech signal is shown in(3.5.1).  
21

0
( ) [ ]

kwN j
N

k
X w x k e

π− −

=

=∑                          (3.5.1) 

The Fourier transfer of the second order Volterra for far-end speech signal is 

shown in(3.6.2). An second order discrete Volterra filter with input x[k], frequency  

( )Xv w  and memory length L can be described as 

[ ]
21 1 1

0 0

( ) [ ]
kwN L L j

N

k p q i

Xv w x k p x k q e
π− − − −

= = =

= − −∑∑∑             (3.5.2) 

The nonlinear echo basis and Volterra structure is shown in Fig.3.13 
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volterraG

2Ŷv

vm

EESEv_nlS

1̂Y1ˆ [ ]y n
1Ĥ

2
ˆ

vH

3Ŷv
3

ˆ
vH

ˆ
nYv

ˆ
vnH

[ ]x n

[ ]y n

[ ]b n
[ ]d n[ ]e n

[ ]z n

1[ ]xv n2[ ]xv n3[ ]xv n[ ]nxv n

 

Fig. 3.7 The Volterra structure for NAES 

 

The Volterra structure can estimate second order nonlinear residual error , and 

use the value to estimate slope .  is more accurate than  in Eq. 

(3.3.9) to estimate nonlinear residual error, because the second order residual error has 
been removed.  

2Ŷv (k)

vm (k) vm (k) â(k)

b=0 2
v

1

ˆE (k)-Yv (k)m (k)=
Ŷ (k)

                               (3.5.3) 

Then, we will find nonlinear residual error from . The nonlinear residual error 

is equivalent to the linear echo  multiplied the fixed value for every frame 

plus second order Volterra echo.  

vm (k)

1Ŷ (k, )m

vm (k)

                              (3.5.4) 1 v 2
ˆ ˆ(k, ) Y (k, ) m (k)+Yv ( , )nlEv m m k m= ⋅

For finding suppression gain, we use and  are the power spectrum 

density and average from linear residual error  and nonlinear residual error 

. 

avgEvS
avgEnlvS

Ev(k,m)

(k, )nlEv m
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avg avg

avg

Ev

Ev

S -S
G_volterra(k,m)=

S
Enlv                          (3.5.5) 

The suppression error is the power spectrum from instant linear residual error 

instantEvZ(k,m)=G_volterra(k,m) S⋅                        (3.5.6) 

Using Volterra structure for NAES can suppress nonlinear residual error more 

accurate than Hammerstein structure. 

 

3.6 Using high order nonlinear echo to estimate nonlinear residual 

error  

 

In Section 3.3.1, it is assumed that the nonlinear residual errors of orders more 

than two are linearly related with linear echo . In fact, they are not. The assumption 

can be wrong. Fig. 3.8 is a block diagram of Section 3.3.1. However, if we could 

estimate higher order of residual error, the slope  is more accurate to estimate 

nonlinear residual error  

Ŷ

m(k)

⊗

E Enl nlS
2 ⋅

2 ⋅

mG

EES

[ ]x n

[ ]y n

[ ]b n[ ]d n

ˆ[ ]y n

[ ]e n
[ ]z n

[ ]nle n

Fig. 3.8 Block diagram of Sec3.3.1 
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The nonlinear power filter can estimate nonlinear residual error to NAES in 

Section 3.3.2. So, we exploit this ideal to find medium order nonlinear echoes 

accurately and use slope method in Section 3.3.1 to estimate high order nonlinear 

echoes roughly.  

We propose the new method as shown in Fig.3.9. The block diagram includes 

first, and third-order adaptive filters. For finding  first, the difference to 

Section 3.3.1 is removing the third order echo. 

prom (k)

b=0 3
pro

1

ˆE (k)-Y (k)m (k)=
Ŷ (k)

                             (3.6.1) 

The nonlinear residual error includes two part that are third-order echo, and above 

fifth-order echoes.  

3
ˆ ˆ(k, ) Y (k, )+Y(k, ) m (k)nlE m m m= pro⋅                  (3.6.2) 

EnlS EES

prom

proG

[ ]x n

[ ]y n

[ ]b n[ ]d n

[ ]x n3[ ]x n

ˆ[ ]y n3ˆ [ ]y n

[ ]e n

[ ]z n

Fig. 3.9 Block diagram of the proposed method
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For finding suppression gain, we use and  are the power spectrum density 

and average from linear residual error  and nonlinear residual error 

. 

avgES
avgEnlS

E(k,m)

(k, )nlE m

avg avg

avg

E

E

S -S
G_proposed(k,m)=

S
Enl                         (3.5.7) 

The suppression error is the power spectrum from instant linear residual error.  

instantEZ(k,m)=G_proposed(k,m) S⋅                       (3.5.8) 

    The good combined system wants to cancel or suppress echo large and keep the 

near-end speech signal. 

The linear AEC slightly cancels the far-end speech and keeps the near-end 

speech signal. The nonlinear AEC hears the noise even louder than the near-end 

speech. This is because the near-end speech would interfere with the adaptive filter to 

estimate the nonlinear and linear channels in the double-talk situation. The linear AEC 

and nonlinear AEC are not using suppression structure, so we don’t discuss Gmin in 

Eq. (3.3.6). The nonlinear AES can greatly suppress the nonlinear residual error. 

However, the near-end speech signal is seriously lossy. That is because the 

suppression gain causes the large disturbance. So, we should set Gmin for suppression 

gain. With Gmin=0.25, the near-end speech is little lossy, in spite of the far-end 

speech is less canceling than Gmin=0.  

 

3.6.1 Basis Selection for proposed slope method 

From Section 3.2, we only estimate the linear echo from linear AEC. So, there is 

only one choice for finding slope basis. The choice is the linear echo. For proposed 

method, there are several bases to be selected, because we use nonlinear AEC to 

estimate linear echo and lower order nonlinear echo. Next, we will discuss selecting 
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basis for proposed method.    

A commonly used function for modeling saturation is a sigmoid function ( )uϕ  in 

(3.5.9) [15]. It’s popular to model nonlinear effect of loudspeaker. Fig.3.10 is used 

parameter 3.5, 1α β= = . We try to fix the sigmoid function by fifth-order polynomial 

function in Eq. (3.5.10).  

  

 2( ) 1
1 e uu αϕ β−

⎛= −⎜ +⎝ ⎠
⎞
⎟

7

                                      (3.5.9) 

3 5( ) 3.4761 3.1740 2.3999 0.8233s x x x x= − + − x        (3.5.10) 
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  Fig. 3.10 Sigmoid function 

 

The nonlinear AEC includes linear and third order adaptive filter. If the nonlinear 

AEC is ideal, the residual error has only fifth and seventh order echoes. We will select 
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first or third echo as basis to estimate summation of fifth and seventh order echoes. 

However, we can’t which order echo is more linear than summation echoes in every 

frequency bin. For selecting basis, we only observe the statistic distribution and ERLE 

in chapter 4. From simulation, we can say the third echo is linear than first echo.  

     In order to accurately estimate the linear property, we define correlation 

mismatch factorε  which is variance of estimate nonlinear residual error and real 

nonlinear residual error. If the correlation mismatch factorε  is less, the order nonlinear 

echo is more linear. 

_nl nl estE Eε = −                                     (3.5.16) 

_
ˆ

nl estE m= ×Y                                     (3.5.17) 

The ε  of third basis is smaller than first basis. So, we will select the highest order 

echo that we can get as basis. 
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Chapter 4 
Computer Simulations 
 

We will show the simulation of chapter 3 to verify the algorithms in this chapter. 

First, we define some parameters and speech signal in Section 4.1. Second, compare 

two combined structures that are AEC+NR and NR+AEC in three conditions. The 

conditions include background noise, nonlinear residual error, and both of two in 

Section 4.2. Third, we use Volterra structure to estimate second order memory echo 

for nonlinear AES. Fourth, comparing six methods in ERLE are linear AEC, linear & 

third order AEC, linear AEC & third order AES, linear AEC & slope1 AES, AEC1  

& third order AES & slope1, and AEC1 & third order AES& slope 3 in Section 4.3. 

Finally, in Section 4.4, we analyze the statistical distributions and correlation 

mismatch factorε  of three slope methods that are discussing in Section 4.3, and 

select nonlinear order echo to as basis.  

 

4.1 Parameters and speech signal of simulations 

 

For nonlinear systems, the sigmoid function is commonly used [15], is shown in 

Fig. 3.10. The sigmoid function is 2( ) 1
1 e uu αϕ β−

⎛= −⎜ +⎝ ⎠
⎞
⎟ . In the following nonlinear 

model for sigmoid function, the parameters are 3.5α = and 1β = . We give a real 

speech signal as far-end signal, and then the output of near-end microphone which we 

get is defined as desired signal in Fig. 4.1.  
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Fig. 4.1 Speech signal 

 

4.2 Compare two combined structures in three conditions  
    
    The two combined structures are AEC+NR, and NR+AEC. NR+AEC structure 

can suppress background noise or nonlinear residual error first that avoid the noise 

disturbing operation of AEC. However, if we use NR first, there is a distortion for 

desired signal. Then, the AEC can’t estimate the real impulse response any more. We 

will discuss the two structures in three different noise conditions.  

 

4.2.1 Background noise 

     The input signal is white gauss signal. The loudspeaker is perfect and room 

impulse response is exponential decay with 128 taps in Fig. 4.2. The SNR is 20dB and 

-5dB. The adaptive filter is linear and the length is 128. 
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 As evaluation criterion we use the echo return loss enhancement (ERLE) defined as 

{ }
{ }

2

2

( )
ERLE=10log [ ]

( )

E d k
dB

E z k
                         (4.2.1)     

If the output signal after the cancellation or suppression structures is less correlated 

than input signal, the performance of the structures is better. From Eq. (4.2.1), ERLE 

is large for good cancellation or suppression structures. 
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  Fig. 4.2 Pseudo room impulse response 

 

The Fig. 4.3 and Fig. 4.4 are shown the simulation in SNR = 20dB, and SNR = 

-5dB. In Fig. 4.3, AEC+NR structure is better than NR+AEC structure by 3.5dB in 

SNR = 20dB. However, in Fig. 4.4 AEC+NR structure is worse than NR+AEC 

structure by 1.5dB in SNR = -5dB. This is because using NR first will cause nonlinear 

distortion obviously to disturb AEC in high SNR and using AEC first that the 

background noise will disturb AEC in low SNR. The background noise is large (SNR 

= -5dB) in Fig. 4.4, so the performance is not good in both structures. 
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Fig. 4.3 Combined structures for suppressing background noise (SNR=20dB) 
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Fig. 4.4 Combined structures for suppressing background noise (SNR=-5dB) 
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4.2.2 Nonlinear residual error 

 
     We use two combined structures to suppress nonlinear residual error. The 
environment is same as Section 4.2.1 except for loudspeaker that has nonlinear effect 
and SNR = 50dB. The nonlinear effect uses the sigmoid function in Fig. 3.10 and Eq. 
(3.5.9). In order to estimate nonlinear residual error for NR structure, we use “Based 
on Highly Nonlinear Residual Echo” in Section3.3.1. In Fig.4.5, AEC+NR structure is 
better than NR+AEC structure by 3dB. 
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Fig. 4.5 Combined structures for suppressing nonlinear residual error 

(SNR=20dB) 
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4.2.3 Background noise and nonlinear residual error 

    In Section 3.4, we introduce two combined structures AEC+NR and NR+AEC to 
suppress background noise and nonlinear residual error in simultaneous. The 
simulation result is shown in Fig.4.4. The AEC+NR structure is better than NR+AEC 
structure by 3dB. 
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Fig. 4.6 Combined structures for suppressing nonlinear residual error and 

background noise 

 
4.3 Performance of Volterra Structure for NAES 

 
In Section 3.6, we introduce use the Volterra structure in Section 2.2.3 can cancel 

the nonlinear memory effect. The simulation result is shown in Fig.4.5 and Fig.4.6. 

The linear filter  length is N=64. The second order Volterra filter  of length V 

= 4. For input signal of WGN, the Volterra structure is better than NAEC. However, 

for input signal of speech, the Volterra structure is worse than NAEC. This is because 

1Ĥ 2̂V
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the convergence speed for Volterra structure is slow. The linear filter H  length is 

N=128, and the nonlinear filter is memory polynomial shown in (4.5.1). Volterra 

structure for NAES is not better than power filter, because the Volterra structure needs 

to adaptive too many coefficients. 

 

{
}

3[ ]+0.05 [n]+
       0.1 [ 1] [ 2] [ 1] [ 3] [ ] [ 4]

      [ 2] [ 3] [ 2] [ 4] [ 3] [ 4]
      

S x n x
x n x n x n x x x n x x

x n x x x n x x x n x n

=

− − + − − + −

− − + − − + − −

+
       (4.5.1) 
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Fig. 4.7 The Volterra structure for NAES using WGN 
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4.4 Simulation of Highly Nonlinear Residual Errors  

 

4.4.1 Single talk 

The linear AEC is only used to cancel the linear echo only. The nonlinear residual 

echo of more than two orders is not cancelled at all. The Nonlinear AEC method can 

cancel the high orders’ residual echo. The performance of NAEC is dependent on the 

adaptive filter number you used. We implement the third order NAEC. We use two 

concepts of “slope” and ”power filter” in Section 3.3.1 and Section 3.3.2 and use the 

proposed method in Section 3.5 to run the simulation. We arrange the six algorithms’ 

notation in Table 4.1. 

 

Table 4.1 Notation of six algorithms  

 notation comment Reference 

1 AEC1 AEC [1] 

2 AEC13 NAEC [3] 

3 AEC1/AES3 AEC/NAES [9] 

4 AEC1/slope1 3+ AEC/ slope(linear echo) [10] 

5 AEC1/AES3/slope1 5+ AEC/ NAES/ slope(linear echo) Proposed 

6 AEC1/AES3/slope3 5+ AEC/ NAES/ slope(third echo) Proposed 

 

AEC1 uses linear AEC to cancel the linear echo that can’t cancel the nonlinear 

residual error anymore. AEC13 uses linear AEC and third-order nonlinear AEC to 

cancel linear echo and third echo that still exists the nonlinear residual error more than 

fifth-order nonlinear residual error. The performance of AEC13 is better than AEC1. 

AEC1/AES3 uses linear AEC to cancel the linear echo and suppress third-order 
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nonlinear residual error by “power filter” method in Section 3.2.2. The performance 

of AEC1/AES3 is better than AEC1/AEC3. That is because the convergence speed of 

AEC1/AES3 is quicker than AEC1/AEC3. AEC1/slope1 3+ uses linear AEC to 

cancel linear echo and suppress all order nonlinear error by “slope” method of linear 

echo basis in Section 3.2.1. If the total high order nonlinear residual error is larger 

than the third-order nonlinear echo, the performance of AEC1/slope1 3+ is better 

than AEC1/AEC3. AEC1/AES3/slope1 5+ and AEC1/AES3/slope3 5+ use linear 

AEC to cancel the linear echo, third-order suppression to suppress third echo, and 

suppress more than fifth-order nonlinear residual error by “slope” method of linear 

echo or third-order echo basis. AEC1/AES3/slope1 5+ and AEC1/AES3/slope3 5+ 

are better than AEC1/AES3 and AEC1/slope1 3+, because AEC1/AES3/slope1 5+ 

and AEC1/AES3/slope3 5+ can suppress third-order echo accurately and suppress 

more than fifth-order nonlinear residual error. For real speech signal to loudspeaker, 

the high order nonlinear residual error is more linearly with the third-order echo. 

In Fig. 4.8, we use the real speech signal and real system. The nonlinear effect is 

of the total more than fifth-order nonlinear residual error is larger than third-order 

echo. So, AEC1/slope1 is better than AEC1/AES3. AEC13/AES3/slope1 can suppress 

third-order echo accurately than AEC1/slope1, so the performance is better. The 

nonlinear residual error that is more than fifth-order echo is more linearly with the 

third-order echo than first-order echo. So, AEC13/AES3/slope3 is better than 

AEC13/AES3/Slope1.   

 

 

In Fig. 4.9, we use speech signal as far-end signal and nonlinear system is 

polynomial function 3 5( ) 3.4761 3.1740 2.3999 0.8233 7s x x x x= − + − x .The 
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proposed method is the best than the others. 

In Fig. 4.10, we use white gauss noise as far-end signal and nonlinear system is 

polynomial function 3 5( ) 3.4761 3.1740 2.3999 0.8233 7s x x x x= − + − x . The 

third-order echo is large. If we can’t estimate third-order echo accurately, the ERLE 

will bad. So, AEC1/AES3 is better than AEC1/slope1. The proposed method is the 

best than the others. 
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Fig. 4.8 ERLE for speech signal & real system  

 43



0 0.5 1 1.5 2 2.5

x 104

-5

0

5

10

15

20

25
speech + polynomial system

iterations

E
R

LE
[d

B
]

 

 

far-end(speech)
AEC1
AEC13
AEC13/AES3
AEC1/slope1
AEC13/AES3/slope1
AEC13/AES3/slope3

 

Fig. 4.9 ERLE for speech signal & polynomial system  
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Fig. 4.10 ERLE for WGN & polynomial system  
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4.4.2 Double Talk 

In order to avoid severe degradation of near-end speech signals during 

double-talk situations, the actual values of are usually limited to a desired 

level of attenuation . We set 

( , )G k m

minG min 0.25G dB= , implying a maximum attenuation of 

about 12dB. The simulation result is shown in Table 4.3. AEC1 can cancel the linear 

echo in spite of the near-end speech signal disturbs AEC. We hear a slightly low level 

of echo from the near-end speech signal. Using AEC13, we hear the loud noise that is 

almost covered the near-end speech signal. This is because the near-end speech is 

critically disturbing the nonlinear AEC. For suppression structures, we only discuss 

, because  is critically distorting the near-end speech. 

AEC1/slope1 can suppress the echo better than AEC1, but the near-end speech signal 

is poorly disturbed than AEC1. AEC13/AES3/slope1 and AEC13/AES3/slope3 can 

suppress the nonlinear residual error better than AEC1/slope1. 

min 0.25G = min 0G =

 

Table 4.2 Simulation of double-talk 

 Gmin = 0  Gmin = 0.25 (-12dB) 
Echo: slightly cancelled AEC1 

DT: not distortion 

 

Echo: mismatch noise AEC13 
DT: not distortion 

 

Echo: almost cancelled Echo: little cancelled AEC1/slope1 
DT: lossy DT: little lossy 

Echo: almost cancelled Echo: moderately cancelled AEC1/AES3 
/slope1  DT: almost silent DT: slightly lossy 

Echo: almost cancelled Echo: moderately cancelled AEC1/AES3 
/slope3  DT: almost silent DT: slightly lossy 

In double-talk situation, we want to cancel or suppress the echo large and keep the 

near-end speech signal. From Table 4.2, the near-end speech of AEC1/AES3/slope1 and 
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AEC1/AES3/slope3 for Gmin = 0.25 is better than the others except AEC1 and AEC13. 

However, AEC1 and AEC13 can slightly cancel the echo only or cause the adaptive 

filter mismatch. The AEC13/AES3/slope1 or AEC13/AES3/slope3 is the better choice 

than the others. 

 

4.5 Statistics Distribution of Higher-Order Nonlinear Residual Errors  
 

    In Section 4.4.1, we discuss the ERLE for six methods and the “slope” method in 

Section 3.3.1 has been used in AEC1/slope1, AEC1/AES3/slope1, and 

AEC1/AES3/slope2. In order to analyze the three methods, we will observe statistical 

distributions. If the residual error is linearly than which order echo, the residual error 

is closer than estimate value. The straight line is estimated nonlinear residual error 

 and the point is real nonlinear residual error . n̂lY nlY

 

(1) speech signal + real system: 

First, we input speech signal and real system that is real loudspeaker and real 

room impulse response. 
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Fig. 4.11 Statistic distribution of AEC1/slope1 in speech signal + real system 
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Fig. 4.12 Statistic distribution of AEC13/AES3/slope1 in speech signal + real system
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Fig. 4.13 Statistic distribution of AEC13/AES3/slope3 in speech signal + real 

system 

 
   The point is closer than straight line in Fig. 4.13 than Fig. 4.11 and Fig. 4.12. 
 

(2) WGN signal + polynomial system: 

Second, we input white gauss noise signal and the pseudo system includes two 

parts that are polynomial function in Fig. 3.10 and exponential function in Fig. 

4.2. 
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Fig. 4.14 Statistic distribution of AEC1/slope1 in WGN signal + polynomial system
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Fig. 4.15 Statistic distribution of AEC13/AES3/slope1 in WGN signal + 

polynomial system 
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Fig. 4.16 Statistic distribution of AEC13/AES3/slope3 in WGN signal + 

polynomial 

 
The point is closer than straight line in Fig. 4.16 than Fig. 4.14 and Fig. 4.15. 

(3) speech signal + polynomial system: 

Third, we input speech signal and the pseudo system includes two parts that are 

polynomial function in Fig. 3.10 and exponential function in Fig. 4.2. 
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Fig. 4.17 Statistic distribution of AEC1/slope1 in speech signal + polynomial 

system 
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Fig. 4.18 Statistic distribution of AEC13/AES3/slope1 in speech signal + 

polynomial system 
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Fig. 4.19 Statistic distribution of AEC13/AES3/slope3 in speech signal + 

polynomial system 

 
The point is closer than straight line in Fig. 4.19 than Fig. 4.17 and Fig. 4.18. 

(4) WGN signal + real system: 

Fourth, we input white gauss noise signal and real system that is real 

loudspeaker and real room impulse response. 
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Fig. 4.20 Statistic distribution of AEC1/slope1 in WGN signal + real system  
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Fig. 4.21 Statistic distribution of AEC13/AES3/slope1 in WGN signal + real 
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Fig. 4.22 Statistic distribution of AEC13/AES3/slope1 in WGN signal + real 

system 

 
The point is closer than straight line in Fig. 4.22 than Fig. 4.20 and Fig. 4.21. 

From the above statistical distribution, we can find roughly the 

AEC13/AES3/slope3 is more linear than the AEC13/AES3/slope1 and AEC1/slope1. 

In order to accurately find which one can suppress nonlinear residual error more, we 

define correlation mismatch factorε  which is variance of estimate nonlinear residual 

error and real nonlinear residual error. If the correlation mismatch factorε  is less, the 

method is more linear. 

real estimateEnl Enlε = −                                 (4.5.1) 

( )ˆ
estimate n avg

Enl m Y= ⋅                                 (4.5.2) 
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Table 4.3 Correlation mismatch factor ε  

 AEC1/slope1 AEC1/AES3/slope1 AEC1/AES3/slope3 

Speech & Real 5.4690e-004 5.0143e-004 5.0079e-004 

WGN & Polynomial 0.0121 0.0123 0.0058 

Speech & polynomial 3.8030e-004 3.1465e-004 3.1465e-004 

WGN & Real 3.4303e-005 3.3021e-005 2.3639e-005 

 

The correlation mismatch factor ε  of AEC1/AES/slope3 is less than AEC1/slope1 

and AEC/AES/slope1 and AEC1/AES/slope3 can suppress more nonlinear residual 

error than the others. Table 4.3 can prove the ERLE of AEC1/AES/slope3 is the best 

than the others in Section 4.4.1. 
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Chapter 5 
Conclusion 
 

    In this thesis, we introduce different structures for estimating the nonlinear 

residual error and near-end speech signal. However, the method using the linear echo 

to estimate the nonlinear residual error in Section 3.3.1 is not accurate. The method 

using the NAEC to estimate the nonlinear residual error needs large computational 

operation in Section 3.3.2. We integrate the two methods to propose the new method 

that can estimate the nonlinear residual error more accurate and save the calculating 

operation. From the simulation results in Fig. 4.8-11, we know the new method is 

better than the others methods. Besides, the statistics distribution and correlation 

mismatch factor can prove the proposed method better than the others. We provide the 

input signal of WGN or speech signal and the system of polynomial or real 

loudspeaker for the simulation, and the new method are better than the others 

methods.  

    In addition, we introduce the other suppression structure which is NR+AEC 

structure. In low SNR condition, the NR+AEC structure is better than AEC+NR 

structure. The first NR suppresses the large noise, so the noise has less affect on AEC. 

The AEC can estimate the echo path accurately. In high SNR condition, the NR+AEC 

structure is worse than AEC+NR structure. This is because the NR+AEC structure 

causes the nonlinear disturbance by the NR. So, AEC can’t estimate the accurate echo 

path. We also extend the NAES to other nonlinear adaptive filter which is Volterra 

model. Volterra model can estimate nonlinear memory residual error that the 

loudspeaker is time-variant. So, the performance is better than Hammerstein model 

that can estimate memoryless residual error only. 
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 The simulation result shows the Volterra model is better than Hammerstein 

model for steady input signal, but the input signal is real speech model for 

communication that the performance is worse than Hammerstein model. This is 

because the convergence speed of Volterra structure is too slow. When the length of 

input signal period isn’t enough to adaptive the nonlinear channel, the performance 

will come down.  

    Using higher-order nonlinear echoes as bases to estimate nonlinear residua error 

is not only can estimate lower-order nonlinear echoes accurately, but also estimate 

high-order nonlinear echoes roughly.  
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