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藉由改變巨方塊中資料運算的順序以提升去方塊濾波器的效能 

學生:陳泰霖                                      指導教授:鍾崇斌 

 

國立交通大學電機學院產業研發碩士班 

摘       要 

ISO/IEC as MPEG-4 Part 10 Advanced Video Coding(AVC)與 ITU-T 制定之

H.264/AVC 是最新的視訊國際壓縮標準。H.264/AVC 具有較高的視訊壓縮率以及能提供

較佳視訊品質。由於 H.264 是採用方塊(block)模式去做影像處理，所以也同時造成了影

像的失真，當中最明顯的就是方塊雜訊效應(blocking artifact)。為了解決這個問題，在

H.264/AVC 的視訊標準裡有一個功能方塊稱作去方塊濾波器(de-blocking filter)，根據

H.264/AVC 解碼器的複雜度模擬結果中，結果顯示去方塊濾波器是解碼器內最複雜的部

分，大約佔用了 36%的執行時間。由於去方塊濾波器的資料處理過程中有重複存取的現

象產生，因此為了有效提升記憶體存取效能及去方塊濾波之執行速度，我們提出一種新

的架構給 H.264/AVC 的去方塊濾波器使用。首先我們提出了一個新的資料運算順序，

使得濾波的時間以及記憶體的使用較傳統的設計少。並提出一個新的資料存取方式，讓

去方塊濾波器在處理過程中能夠同時存取所需的資料，藉此來減少所需的工作週期。我

們使用硬體描述語言(Verilog Hardware Description Language)來設計此架構, 再利用模擬

軟體(ModelSim)分別驗證其功能，並在台灣積體電路公司(TSMC)所提供的 0.13μm製程

library 及 Synopsys 所提供的合成軟體做合成電路，其合成的結果顯示，在時脈速度為

100MHz 的情況下，所提出的去方塊濾波器架構能夠處理解析度為 720P(1280×720 

@60fps)的高解析度視訊影像。
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Reordering the data operation of macro-block for improving the performance of 

de-blocking filter in H.264/AVC 

 

Student：Tai-Lin Chen                    Advisor：Dr. Chung-Ping Chung 

Industrial Technology R & D Master Program of 

Electrical and Computer Engineering College 

National Chiao Tung University 

 

ABSTRACT 

    H.264/AVC is a new generation video coding standard and is approved by ITU-T as 

Recommendation H.264 and by ISO/IEC as MPEG-4 Part 10 Advanced Video Coding. 

H.264/AVC is to achieve higher compression efficiency and provide the better video quality. 

Because the H.264 is an adoption block the mode does image processing. However, the most 

annoying artifact known as the blocking artifact also comes into existence. In order to solve 

this problem, the de-blocking filter is an important component of H.264/AVC to reduce the 

block artifacts. In the complexity simulation of H.264/AVC decoder part, the de-blocking 

filter is the most complexity part, probably has taken 36% execution time. Because of in the 

de-blocking filter data processing process has the repetition access appearance. In order to 

improve memory performance and speed up the de-blocking filter, we propose a new 

architecture for de-blocking filter in H.264/AVC. First we propose a novel filtering order that 

results in significant saving in both filtering time and local memory usage. And we propose a 

new data access a method. Let the de-blocking filter can simultaneous access necessity the 

data in processing process, we can reduce the working cycles. The proposed architecture is 

synthesized with TSMC 0.13μm technology. The synthesized de-blocking filter architecture 

could process video in 720P HD (High-definition television, HDTV, 1280×720 pixels/frame, 

60 frames/sec video signals) format at 100MHz. 
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Chapter 1  

Introduction 

The Joint Video Team (JVT) is composed by ITU-T Video Coding Experts Group 

(VCEG) and ISO/IEC Moving Picture Experts Group (MPEG). JVT formulates a new video 

compression standard is H.264/AVC [1]. The main objectives of H.264/AVC are to develop a 

set of high efficient, the network-friendly and error-resilient ability. The video compression 

standard provides from the mobile phone to HDTV widespread application and improves 

largely rate-distortion efficiency. H.264 was compared to the existing standards such as 

MPEG-2, H.263++ (Annexes DFIJT) and MPEG-4, in similar regards under the video 

compression quality to be possible to save approximately 50% above bit-rate [3]. 

Although the encoding efficient of H.264/AVC is higher than the video encoding 

standard formerly, but it have the quite complex encoding technology and the mode choice, so 

its operation order complexity also far to be higher than the encoding standard actually 

formerly. These improved characteristics are due to the application of several new coding 

tools within the compression process defined by the standard, such as multi-mode 

intra-prediction, multi-frame variable-block-size, variable block-size motion estimation, 

quarter-pixel motion compensation, inter-prediction, integer discrete cosine transform (DCT), 

context adaptive binary arithmetic coding (CABAC) and in-loop de-blocking filtering. Each 

of these new encoding techniques contributes more or less to the total gain of whole 

H.264/AVC system in compression ratio, but also increased its operation order complexity. 
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One of the most special features in H.264/AVC is de-blocking filtering. Because of the 

characteristic of H.264/AVC encoding compression calculation method sometimes has 

obviously the block artifacts phenomenon, such as block-based motion compensated 

prediction, intra prediction, and integer discrete cosine transform [4]. The de-blocking filter 

contributes to eliminate or diminish the block artifacts in the decoded video sequence, while 

producing the same objective quality as the non-filtered video, that can reduces the bit-rate 

typically by 5%~10% [3]. But due to the de-blocking filter operations irregular data access 

and uses inner loop of the highly optimized filtering algorithm. Thus the de-blocking 

operation accounts consuming one-third of the computational complexity of H.264/AVC 

decoder [6]. 

There are two different schemes of De-blocking filter in video codec, post filter and 

in-loop filter. In the case of post filter, the filter is only operation on the display buffer outside 

the coding or decoding loop. The decoded data is stored in a data buffer, filtered and then 

stored in another video buffer before being forwarded to the display device [5]. Thus the post 

filter is not normative in the standardization process. As shown in figure 1.1, the in-loop filter 

is placed inside the coding loop. So that the in-loop filter processed frames are used as 

reference frames for motion compensation of subsequent coded frames [4]. Thus the in-loop 

filter is normative in the standardization process, in order to stay in synchronization with the 

encoder. 

There are several advantages of in-loop filter over post filter, one the advantage is that no 

need for an extra frame buffer in the decoder, and that can improves quality of video streams 

and significant reduction in decoder complexity compared to post filtering [4], and the in-loop 

filter reduces the bit rate than the post filter. 
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Figure 1.1: Block diagram of H.264/AVC 

1.1 Motivation 

The De-blocking Filter of H.264 decoder is an important part of entire system; it can 

dominate system performance and quality for video image due to high computing complexity 

and real-time application. Figure 1.2 shows the profiling results of a decoding process, the 

de-blocking Filter consume 36.05% of total decoding time [7], so the processing time 

becomes very important. We can opportunity of processing order of current De-blocking 

Filter that many image data would be re-access between external memory and internal SRAM 

[8], and it spends many cycles to transpose the image data. 
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 Inverse Quantization 

Entropy Decoding

Intraprediction 

Others 

 

Figure 1.2: Run-time profile of H.264/AVC decoder 

1.2 Objective 

In order to solve the problem about the number of accesses of the external memory, we 

proposed the processing order of de-blocking Filter and an efficient architecture of the filter. 

Because of ours design methods that can accelerate filtering process with pipeline technique 

for reducing the internal memory size and using fewer the register amounts. 
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Chapter 2 

Background and Related Works 

In this chapter, we will describe the block artifacts occur and the algorithm of 

de-blocking filter in H.264/AVC. Second, we will introduce some de-blocking filter 

processing order to sample processing level. 

2.1  The blocking artifact 

The majority video compression standard uses that the JPEG related compression 

technique to use in spatial the redundancy. In JPEG, divided into many 8×8 block for video 

and it uses the discrete cosine transforms (DCT) to make each block the transformation. After 

process transformation, the transformed coefficients are quantized then entropy coded. Then it 

makes the classification by transformed coefficients use to the quantization table the inside 

quantization step. The quantization table design reserves more low frequency coefficient and 

less high frequency coefficient. Under the low bit rates condition, the possibility reserve only 

one Direct Coefficient (DC) and some Alternate Coefficient (AC) represents a block. 

Therefore we may lose the relativity of neighboring block. As a result, the reconstruction 

image or video quality will be influenced by obvious factitiousness. This is the blocking 

artifact as shown in figure 2.1. 

Blocking artifact factors of H.264/AVC : 

(1) The intra and inter frame prediction error coding of H.264/AVC use the integer discrete 

cosine transforms (DCT). The transform coefficients are too rough that can produce 

visually disturbing discontinuities phenomenon at the block boundaries [4]. 

 



 

 6 

(2) Second factor is motion compensated prediction. The motion compensated blocks are 

produced by copying interpolated pixel data that possible in the different locations of the 

different reference frames [4]. Because this reason, therefore we can not find the 

appropriate data that have discontinuities phenomenon at the block edge. 

 

Figure 2.1: Illustration of blocking artifact 

2.2  De-blocking Filter Algorithm 

In H.264/AVC applies in-loop de-blocking filter to used eliminate blocking artifact then 

generates a smooth frame as shown in figure 2.2. The intra and inter frame prediction error 

coding are transformed then quantized. After decoding procedure, the reconstruction block 

has an error with the originally block. Therefore it has not the continual phenomenon then can 

again the block edge production. In order to eliminate discontinuity situation, the process is 

applied. 

First the de-blocking filter divides a frame many macro-block and the de-blocking filter 

processing unit is a macro-block. After first a complete processing current macro-block, the 

next macro-block is just sent in. After first a complete processing current frame, the next 
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frame is just sent in. The de-blocking filter is located in decoder part. This will help us to 

obtain the smaller vestiges data for reconstruction frames to motion compensated prediction.  

NAL
Entropy 

Decoding

Inverse 

Quantization

Inverse 

Transform

Motion 

compensation

Deblocking 

filter

Reconstructed

frame

Sub-per 

Interpolation

input

output
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frame

 

Figure 2.2: The location of de-blocking filter in H.264/AVC decoder 

2.2.1 Input of the de-blocking filter 

Inputs of the de-blocking filter include boundary strength, threshold variables and pixels 

as shown in figure 2.3. The Boundary strength (Bs) is derived from the coding information of 

the macro-block. The filter depends on the boundary strength to classify. The boundary 

Strength (Bs) is assigned an integer value from 0 to 4. Based on the information, we may 

select the suitable filter to eliminate the block artifact. 

Input pixels have the specific filter ordering, each pixel may be filtered multiple times. 

After first the current macro-block is completed to process, the next macro-block is just sent 

in. By this analogy, the processing frame order also is so. 

Two quantization parameters (QP) are α and β that are threshold values. Their contents 

of frame can turn on or turn off the filtering by itself for each individual set of sample. 

Because they may distinguish, the block artifact is the true edges or the factitiousness. 
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Figure 2.3: Input of the de-blocking filter 

2.2.2 De-blocking Filter Processing Order 

As recommendation in H.264/AVC standard, the de-blocking filter uses one 4×4 pixels 

block as unit to process all macro-blocks. This filtering process shall be performed on a 

macro-block basis, with all macro-block in a frame processed in order of increasing 

macro-block addresses. Prior to the operation of the de-blocking filter process for each 

macro-block, the de-blocked samples of the macro-block or macro-block pair above (if any) 

and the macro-block or macro-block pair to the left (if any) of the current macro-block shall 

be available. 

The De-blocking Filter process is invoked for the luma and chroma components 

separately. For each luminance macro-block, vertical edges are filtered first, from left to right, 

and then horizontal edges are filtered from top to bottom. The luma de-blocking filter process 

is performed on four 16-sample edges and the de-blocking filter process for each chroma 

components is performed on two 8-sample edges. 
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Sample values above and the left of the current macro-block that may have already been 

modified by the de-blocking filter process operation on previous macro-blocks shall be used 

as input to the de-blocking filter process on the current macro-block and they may be 

modified during the filtering of the current macro-block further. Sample values modified 

during filtering of vertical edges are used as input for the filtering of the horizontal edges for 

the same macro-block. 

The luma de-blocking filter process is performed on four 16-sample edges. For each 

luminance macro-block, vertical edges are filtered first, from left to right, followed by edge 0, 

edge 1, edge 2, and edge 3 as shown in figure 2.4. 

p3  p2  p1  p0 q0  q1  q2  q3

Edge 0 Edge 1 Edge 2 Edge 3

16 pixels

 

Figure 2.4: Horizontal filtering across luma vertical edges 

The luma de-blocking filter process is performed on four 16-sample edges. The vertical 

filtering is performed after the horizontal filtering, and then horizontal edges are filtered from 

top to bottom, followed by edge 0, edge 1, edge 2, and edge 3 as shown in figure 2.5. 
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Edge 0

Edge 1

Edge 2

Edge 3

16 pixels

p0

p1

p2

p3

q0

q1

q2

q3

 

Figure 2.5: Vertical filtering across luma horizontal edges 

The de-blocking filter process for each chroma components is performed on two 

8-sample edges. For each chroma block, vertical edges are filtered first, from left to right, 

followed by edge 0, and edge 1, and then horizontal edges are filtered from top to bottom, 

followed by edge 0, and edge 1 as shown in figure 2.6. 

q0  q1  q2  q3

Edge 0 Edge 1

8 pixels

p0p1

Edge 0

Edge 1

p0

p1

q0

q1

q2

q3

8 pixels
 

Figure 2.6: Filtering process of chroma block 
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2.3  Boundary Strength 

The filter operation is applied to each edge of a 4×4 block. The filter decision depends 

on the boundary strength and the gradient of image samples across the boundary. The 

boundary Strength (Bs) is assigned an integer value from 0 to 4. The Bs values for filtering of 

luminance block edges are to every edge between two 4×4 blocks. But filtering of 

chrominance block edges are not calculated independently. Because of the values is copied 

for their corresponding luminance edges. When Bs = 4 is strongest filter, it is used one or both 

sides of edges are intra coded and the boundary is a macro-block boundary. When Bs = 3 the 

one of the neighboring blocks is intra coded but the block boundary is not a macro-block 

boundary. Bs = 2 means two adjacent blocks are not intra coded and one of blocks contains 

non-zero coefficients. Otherwise Bs = 1 means blocks has different reference frames or 

different number of reference frames or different motion vector values. When Bs = 0 means 

no filtering is applied on this specific edge as shown in figure 2.7. 

Block p or q 

is intra coded ?

Block boundary is 

Macro-block 

boundary ? 

Block p or q contain 

non-zero coefficients ?

|V(p,x) - V(q,x)|>=1 

or

|V(p,y) - V(q,y)|>=1

Block p and q have different 

reference frames or different 

number of reference frames ?

Block boundary 

between 

block p and q

Bs=4 Bs=3

Bs=2 Bs=1 Bs=0

YES

YES YES

YES

YES NO

NO

NO

NO

NO

 

Figure 2.7: Flowchart of Bs deriving process 
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Table 2.1: Determining of boundary strength 

 

As shown in figure 2.8 and 2.9, the Bs values for chroma edges that the vertical edges 0 

and 1 are copied from the corresponding edges of the luma macro-block vertical edges 0 and 

2. The Bs values for vertical filtering across horizontal edges are the same. 

Bs0

Bs1

Bs2

Bs3

Bs4

Bs5

Bs6

Bs7

Bs8

Bs9

Bs10

Bs11

Bs12

Bs13

Bs14

Bs15

Bs0

Bs1

Bs2

Bs3

Bs8

Bs9

Bs10

Bs11

Bs0

Bs1

Bs2

Bs3

Bs8

Bs9

Bs10

Bs11

Edge 0 Edge 1 Edge 2 Edge 3

Edge 0

Edge 0

Edge 1

Edge 1

luma chroma

Y

U

V

 

Figure 2.8: Bs value for horizontal filtering across vertical edges 

Bs Block Modes and Conditions 

4 One of the blocks is intra coded and the block boundary is a macro-block boundary. 

3 One of the blocks is intra coded but the block boundary is not a macro-block 

boundary. 

2 One of the blocks has coded residuals. 

1 Have one of the following conditions: 

 Motion compensation from different reference frames. 

 Different number of reference frames. 

 Different motion vector values. 

0 No filtering is applied on this specific edge. 
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Figure 2.9: Bs value for vertical filtering across horizontal edges 

2.3.1 Gradient of image samples across the boundary 

   On the gradient of image samples across the boundary is a set of eight samples across a 

boundary between two 4×4 blocks as shown in figure 2.10. The filtering does not take place 

for edges with Bs equal to zero. Sets of samples across this edge are only filtered if the 

following conditions are all true. 0Bs                                                

Two quantization parameters (QP) α and β are threshold values. Their contents of frame 

can turn on or turn off the filtering by itself for each individual set of sample. The thresholds 

α and β are dependant on the average quantization parameter of the two 4×4 blocks p and q. 

When QP is small, the gradient across the block boundary have very small change. It is say 

the filter must be to turn off, because the block boundary is true edge in the frame not the 

blocking artifact. When QP is larger, the gradient across the block boundary have large 

change, the filter would be turned on. The samples p0, p1, p2, q0, q1 and q2 are filtered is 

determined by using Bs, α, β and content of the frame itself. 

 

 00 qp  01 pp  01 qq
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The filtering of p0 and q0 takes place if the following conditions are all true. 

0Bs                                                                  (2.1) 

                                                                       (2.2) 

＆                                                         (2.3) 

The filtering of p1 or q1 takes place if the following conditions are satisfied. 

 02 pp  or  02 qq                                                (2.4) 

The filtering of p2 or q2 takes place if the following conditions are satisfied. 

(  02 pp  or  02 qq ) ＆   2200  qp                         (2.5) 

q0
q1 q2

q3

p0p1
p2

p3

α

β

β

Block edge

Block p Block q

 

Figure 2.10: Gradient of image samples across the boundary 

 

 

 

 

 

 00 qp

 01 pp  01 qq



 

 15 

2.3.2 Derivation process for the thresholds for each block edge 

The qPav be a variable specifying an average quantization parameter of two adjacent 

4×4 blocks, it was dominate the threshold α and β. 

It is derived as follows. 

  11  qP qPqPqPav                                                  (2.6) 

Let indexA be a variable that is used to access the α table (Table 2.2) as well as the 0Ct  

table (Table 2.3), and let indexB be a variable that is used to access the β table (Table 2.2). 

The variables indexA and indexB are derived as follows. 

 etAFilterOffsqPavClipindexA  ,51,03                                      (2.7) 

 etBFilterOffsqPavClipindexB  ,51,03                                      (2.8) 

(FilterOffsetA and FilterOffsetB are used to decide of the filter is weak or strong manually) 

Table 2.2: Derivation of indexA and indexB from offset dependent threshold variable α and β 

 

 

 index A (for α ) or index B (for β ) 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

α  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 5 6 7 8 9 10 12 13 

β  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 3 3 3 3 4 4 4 

  

 index A (for α ) or index B (for β ) 

 
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

α  15 17 20 22 25 28 32 36 40 45 50 56 63 71 80 90 101 113 127 144 162 182 203 226 255 255 

β  6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 
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2.4  Filtering Operation 

In H.264/AVC, the de-blocking filter that important function is filtering process. The 

filtering process can divided into two modes. One mode of filtering that allows for normal 

mode is applied when Bs parameter is 1 to 3. Another is stronger mode of filtering when Bs is 

equal to 4. 

2.4.1 Normal mode : ( Bs=1~3 ) 

For luminance blocks: 

The filtering unit needs to read 4 samples (p1, p0, q0, and q1) and updates 2 samples (p0 and 

q0). 

If  02 pp  

The filtering unit needs to read 4 samples (p2, p1, p0, and q1) and updates p1 sample. 

If  02 qq  

The filtering unit needs to read 4 samples (q2, q1, q0, and p0) and updates q1 sample. 

p0p1p2p3 q0 q1 q2 q3

Left 4*1 samples right 4*1 samples

edge

Update sample

Read sample  

Figure 2.11: Normal mode operations for luminance block 

For chrominance blocks: 

The filtering unit needs to read 4 samples (p1, p0, q0, and q1) and updates 2 samples (p0 and 

q0). 
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p0p1p2p3 q0 q1 q2 q3

Left 4*1 samples right 4*1 samples

edge

Update sample

Read sample  

Figure 2.12: Normal mode operations for chrominance block 

Filtering for edges with Bs less than 4 

For luminance blocks:  

the variables '

3

'

2

'

1

'

0

'

3

'

2

'

1

'

0 ,,,,,,, qqqqpppp  are derived by 

                                                                       (2.9) 

     0:1?0:1? 02020   qqpptt CC                             (2.10) 

                                                                      (2.11) 

                                                                      (2.12) 

When all of the following conditions hold:  

 02 pp  

 02 qq  

The pixels 1p  and 1q  will be filtered. 

                                                                      (2.13) 

                                                                      (2.14) 

                                                                      (2.15) 

                                                                      (2.16) 

Otherwise 

 

 

For chrominance blocks:  

The variables '

3

'

2

'

1

'

0

'

3

'

2

'

1

'

0 ,,,,,,, qqqqpppp  are derived by 

00

'

0  pp

00

'

0  qq

       342,,3 11000  qppqttClip CC

      1111,,3 1002001  pqppttClip CCp

11

'

1 ppp 

      1111,,3 1002001  qqpqttClip CCq

11

'

1 qqq 

3

'

3 pp 2

'

2 pp  2

'

2 qq 
3

'

3 qq 
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10  CC tt                                                              (2.17) 

 

 

Otherwise 

                                              

Clipping Operation 

In the filtering operation would result too much low-pass filtering (blurring). A 

significant part of the adaptive filter is received by limiting these values. This process is 

called clipping. Different sequences for clipping are applied for the internal and edge samples 

[4]. 

The threshold 0Ct  is specified in clip Table 2.3 depending on the values of indexA and Bs. 

The threshold Ct  is determined as follows. 

If the edge is luminance blocks: 

     0:1?0:1? 02020   qqpptt CC  

If the edge is chrominance blocks: 

10  CC tt  

Table 2.3: Value of filter clipping variable 0Ct  as a function of indexA and Bs 

 index A 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Bs=1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

Bs=2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 

Bs=3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

  

 

00

'

0  pp

00

'

0  qq

11 pp 
2

'

2 pp 
3

'

3 pp  1

'

1 qq  2

'

2 qq 
3

'

3 qq 

       342,,3 11000  qppqttClip CC
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 index A 

 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

Bs=1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13 

Bs=2 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 5 6 7 8 8 10 11 12 13 15 17 

Bs=3 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13 14 16 18 20 23 25 

 

2.4.2 Stronger mode : ( Bs=4 ) 

For luminance blocks: 

If  02 pp  and   2200  qp  

The filtering unit needs to read 6 samples (p3, p2, p1, p0, q0, and q1) and updates 3 samples 

(p2, p1 and p0). 

If  02 qq  and   2200  qp  

The filtering unit needs to read 6 samples (q3, q2, q1, q0, p0, and p1) and updates 3 samples 

(q2, q1 and q0). 

p0p1p2p3 q0 q1 q2 q3

Left 4*1 samples right 4*1 samples

edge

Update sample

Read sample  

Figure 2.13: Stronger mode operations for luminance block 

For chrominance blocks: 

The filtering unit needs to read 4 samples (p1, p0, q0, and q1) and updates 2 samples (p0 and 

q0). 
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p0p1p2p3 q0 q1 q2 q3

Left 4*1 samples right 4*1 samples

edge

Update sample

Read sample  

Figure 2.14: Stronger mode operations for chrominance block 

Filtering for edges with Bs equal to 4 

When all of the following conditions hold: 

  2200  qp  

 02 pp  

 02 qq  

For luminance blocks:  

The variables '

3

'

2

'

1

'

0

'

3

'

2

'

1

'

0 ,,,,,,, qqqqpppp  are derived by 

                                                                      (2.18) 

                                                                      (2.19) 

                                                                      (2.20) 

                                                                      (2.21) 

                                                                      (2.22) 

                                                                      (2.23) 

 

For chrominance blocks:  

The condition in equation does not hold 

The variables '

3

'

2

'

1

'

0

'

3

'

2

'

1

'

0 ,,,,,,, qqqqpppp  are derived by 

                                                                      (2.24) 

                                                                      (2.25) 

                                              

  34222 10012

'

0  qqpppp

  222 101

'

0  qppp

  220012

'

1  qpppp

  3432 00123

'

2  qppppp

3

'

3 pp 

  34222 21001

'

0  qqqppq

  222100

'

1  qqqpq

  3432 00123

'

2  pqqqqq

3

'

3 qq 

  222 101

'

0  pqqq

1

'

1 pp  2

'

2 pp 
3

'

3 pp  1

'

1 qq  2

'

2 qq 
3

'

3 qq 
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Input 8 pixels ( p3, p2, p1, p0, q0, q1, q2, q3 ), Bs, α and β

 00 qp

 01 pp
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0Bs
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Bs level selection
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  2200  qp
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 02 qq
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Bs=1~3
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Chrominance block
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Bs=4

  222 101

'

0  qppp

  222 101

'

0  pqqq

Update pixels 

p0 and q0 

00

'

0  pp

00

'

0  qq

Bs=1~3

no

output
 

Figure 2.15: Flow chart of filtering process 
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2.5  Related Work 

In H.264/AVC standard, the de-blocking filter processing order is that, the vertical edges 

are filtered first, from left to right, and then horizontal edges are filtered, from top to bottom. 

The filtering process is performed on the boundary between two 4×4 pixel blocks. A 

macro-block contains one luma block and two chroma blocks. The luma block have sixteen 4

×4 pixel blocks, the chroma block have four 4×4 pixel blocks. The filter processing requests 

eight the top neighbor 4×4 pixel blocks and eight the left neighbor 4×4 pixel blocks. Therefore 

a macro-block filter processing altogether need 40 4×4 pixel blocks. 

The de-blocking filter uses one block as unit to process all macro-blocks. Therefore filter 

ordering according to this criterion, the 4×4 sub-block edge, left edge is filtered first, right 

edge is filtered second, come again the top edge is filtered third, and lower edge is the last one. 

Each numeral is an edge of two adjacent 4×4 sub-blocks that equal to the filter unit processing 

four times. 
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2.5.1 Basic Processing Order 

In [9], the basic processing order does not make use of data dependence between 

neighboring 4×4 pixel blocks as shown in figure 2.16. The example, the filtering operation is 

started with vertical edge 1, initially block (L1) and block (B0) are sent to the filter from 

internal memory using its two ports. After filtering of vertical edge 1, both the partially 

filtered block (L1) and block (B0) are stored into the internal memory. By this analogy, if we 

filter the vertical edge 5 in succession according to the basic filtering order. We have to load 

block (B0) and block (B1) from the internal memory, after filtering of vertical edge 5 stored 

the block (B0) and block (B1) back to the internal memory. The block (B0) is loaded and 

stored each two times. Thus it can be seen, the basic processing order does not make use of 

data dependence between neighboring 4×4 pixel blocks. 

Supposition the memory system is 32-bit data bus, the basic processing order for a 

macro-block needs (4×2×2×16+(4×2×2×4)×2)=384 times of memory read and 384 times of 

memory write. The number of total memory access is 768 times. 
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Figure 2.16: Basic processing order 
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2.5.2 Advanced Processing Order 

    In the figure 2.17 is shown the advanced filter processing order. It makes use of 

one-dimensional data dependence [9]. The example, the filtering operation is started with 

vertical edge 1, initially block (L1) and block (B0) are sent to the filter from internal memory 

using its two ports. After filtering of vertical edge 1, the partially filtered block (L1) is stored 

into the internal memory but the block (B0) is buffered in the de-blocking filter unit for next 

stage filtering. By this analogy, if we filter the vertical edge 2 in succession according to the 

filtering order. We have to load block (B1) from the internal memory and the block (B0) is 

buffered in the de-blocking filter unit. In this way, all the 4×4 pixel blocks in horizontal 

filtering and in vertical filtering can reduced to half access times for internal memory. 

Supposition the memory system is 32-bit data bus, the advanced filter processing order 

for a macro-block needs (384-16×4×2)=256 times of memory read and 256 times of memory 

write. The number of total memory access is 512 times. 
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Figure 2.17: Advanced processing order 
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2.5.3 2-D Processing Order 

In the figure 2.18 is shown the 2-D filter processing order. The filter order conforms to 

the de-blocking filter processing standard. It is performed alternately to the horizontal 

filtering and the vertical filtering [10]. For example, the filtering operation is started with 

vertical edge 1, the block (L1) and block (B0) were sent to the filter from internal memory 

using its two ports. After filtering of vertical edge 1, the block (L1) is stored back to the 

internal memory, the other block (B0) is buffered in the de-blocking filter unit for next stage 

filtering. After the last filtering, the vertical edge 2, the block (B0) is sent to the transpose 

buffer wait for the horizontal edge 3 filtering, the block (B1) is buffered in the de-blocking 

filter unit for next stage vertical edge 4 filtering. 

Supposition the memory system is 32-bit data bus, the 2-D filter processing order for a 

macro-block needs (4×12+4×12×2+(4×6+4×2×2)×2)=224 times of memory read and 224 times 

of memory write. The number of total memory access is 448 times. 
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Figure 2.18: 2-D processing order 
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2.5.4 2-D Simultaneous Processing Order 

In the figure 2.19 is shown the 2-D simultaneous filter processing order. It is performed 

alternately and simultaneous processing order of the horizontal filtering of vertical edge and 

the vertical filtering of horizontal edge [5]. The figure shows, it was used by one the 

horizontal filter unit and one the vertical filter unit to simultaneous processing order. This 

method goal is in order to reduce when clock cycles quantity. Supposition the memory system 

is dual port RAMs and the data bus is 32-bit. 

For example, the filtering operation is started with vertical edge 1, the block (L1) and 

block (B0) are sent to the filter from internal memory using its two ports. After filtering of 

vertical edge 1, the block (L1) is stored back to the internal memory, the other block (B0) is 

buffered in the de-blocking filter unit for next stage filtering. After the last filtering, the 

vertical edge 2, the block (B0) is sent to the transpose buffer wait for the horizontal edge 3 

filtering, the block (B1) is buffered in the de-blocking filter unit for next stage vertical edge 3 

filtering.  
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Figure 2.19: 2-D simultaneous processing order 
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22..55..55  SSuummmmaarryy  rreellaatteedd  wwoorrkk  

Table 2.4: comparison of above proposed architecture 

MMeetthhoodd  
Basic 

[9] 

Advanced 

[9] 

2-D  

Simultaneous 

[5] 

 

CCyycclleess//MMBB  771122  776600  446600    

FFiilltteerriinngg  CCyycclleess//MMBB  339922  444400  114400    

EExxtteerrnnaall  mmeemmoorryy  

aacccceessss  ccyycclleess  
332200  332200  332200    

WWoorrkkiinngg  ffrreeqquueennccyy  110000  MMHHzz  110000  MMHHzz  110000  MMHHzz    

EEddggee  FFiilltteerrss  11  11  22    

44××44  aarrrraayy  22  22  33    

44××44  FFIIFF00  00  00  99    

TTeecchhnnoollooggyy  ((μμ mm))  00..2255  00..2255  00..1133    

GGaattee  ccoouunntt  1188..9911KK  1188..9911KK  3355..9999KK    

MMeemmoorryy  aarrcchhiitteeccttuurree  
OOnnee  rreeaadd  aanndd  oonnee  

wwrriittee  SSRRAAMM  

OOnnee  rreeaadd  aanndd  oonnee  

wwrriittee  SSRRAAMM  

TTwwoo  rreeaadd  aanndd  ttwwoo  

wwrriittee  SSRRAAMM  

  

SSRRAAMM  rreeqquuiirreemmeennttss  

ffoorr  ppiixxeellss  ((bbiittss))  

8888××3322  

7722××3322  
116600××3322  

8888××3322  

7722××3322  

  

  

AAllll  ggaattee  ccoouunnttss  ddoonn’’tt  iinncclluuddee  SSRRAAMM..  

TThhee  bbaassiicc  [[99]]  aanndd  2-D Simultaneous [5] are use two SRAM modules and interleaved 

memory organization to store the pixel data of a macro-block for efficient access of pixels in 

different blocks of the macro-block. 
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Chapter 3 

Proposed architecture of de-blocking filter 

In this chapter, we propose our architecture. In section 3.1 we present the main parts of 

the architecture for the de-blocking filter. In section 3.2 we show the proposed filtering order 

and how it reduces internal memory size. In section 3.3 we describe the internal memory 

organization. In section 3.4 we describe the data buffer and transpose buffer about how they 

work. In section 3.5 we present our control unit about how it works. 

3.1  Overview of the Proposed Architecture 

Figure 3.1 shows the main parts of the architecture for the de-blocking filter. It includes 

the external memory, internal SRAM, filter unit, data buffer, transpose buffer and control unit. 

The following comes to introduce these constructions individually the basic function. 

External 

memory

Control Unit

Filter

unit

Internal 

SRAM

Coding Info.

Data

buffer

Transpose

buffer
Bus 

interface

Nonfiltered

pixels

Filtered 

pixels

 

Figure 3.1: System architecture of the de-blocking filter 
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External Memory: 

The purpose of external memory is stored the frame data that processed by decoder. The 

external memory provides the unfiltered data to the de-blocking filter and according to the 

filter order. When current frame was processed, the next frame is going to send to the external 

memory. The reconstruction frame is provided to the motion compensation use. 

Internal SRAM: 

A macro-block data is loaded to the internal SRAM from the external memory. 

Generally speaking, the internal SRAM size is 32-bit×160 because consisted of a 16×16 luma 

block, two 8×8 chroma block, and sixteen 4×4 neighbor block. When current macro-block 

was processed, the next macro-block is going to send to the internal SRAM. 

Filter unit: 

The edge filter unit is a parallel-in parallel-out filter, the input end is two 32-bit data bus 

and output end is two 32-bit data bus. Its interior has the different operation pattern that may 

choose because of the different parameter. 

Data Buffer: 

In the basic processing order does not make use of data dependence between neighboring 

4×4 pixel blocks, therefore does not need data buffer. But after the processing order makes 

use of the data dependence, therefore needs data buffer to reduce the memory the access 

number of times. 

Transpose Buffer: 

The transpose buffer function is uses in the vertical filtering across horizontal edges. 

When the horizontal filtering across vertical edges of the data processes places in the 

transpose buffer to make the transformation afterwards. 
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Control Unit: 

The control unit of de-blocking filter module is to control the signals such as Bs, C0, α, β 

the information and so on. Moreover a function is controls the data the input-output. 

In our architecture design, first we will find a new filter processing order. By the new 

filter processing characteristic we may obtain the data dependence and data reuse strong point. 

Because of these merit, we may reduce the number of memory references, decrease the 

required memory size and using fewer the register amounts, and speed up the whole filtering 

process. Afterwards chapter, we will be able individual to introduce each construction. 

Understanding the whole architecture, how realization and operation. 

3.2  Filtering Order 

3.2.1 De-blocking filter order of the 4×4 sub-block edge 

The de-blocking filter uses one 4×4 pixels block as unit to process all macro-blocks. The 

de-blocking filter in H.264/AVC is performed in the vertical edge first, and then the 

horizontal edge. Therefore filter ordering according to this criterion, the 4×4 sub-block edge, 

left edge is filtered first, right edge is filtered second, come again the top edge is filtered third, 

and lower edge is the last one as shown in figure 3.2. 

macro-block

1 2

3

4

 

Figure 3.2: De-blocking filter order of the 4×4 sub-block edge 
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3.2.2 Proposed edge filtering order 

Our filtering order is illustrated in figure 3.3. It is a macro-block filtering to need the data, 

the blocks B0 to B23 are the current macro-block, the blocks T1 to T8 are the top neighbor 

block that were provided the vertical filtering across horizontal edges to use, the blocks L1 to 

L8 are the left neighbor block that were provided the horizontal filtering across vertical edges 

to use. In our proposed de-blocking filter architecture is to use two edge filter units, the goal 

is reduce the filter processing cycles, which support real-time de-blocking of HDTV with 

higher resolution. 

luma chroma
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T5 T6
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B0 B1 B2 B3

B4 B5 B6 B7

B8 B9 B10 B11

B12 B13 B14 B15

B16 B17

B18 B19

B20 B21

B22 B23

1

1

9

9

2

2

10
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3

3

11

11

6

6

14

14

17

17

18

18

21

21

22

22

4 4 7 7

5 5 8 8

12 12 15 15

13 13 16 16

19 19

20 20

23 23

24 24

 

Figure 3.3: Proposed filtering order 

The figure 3.3 shows the two edge filter units are simultaneous processing and we 

indicated the horizontal filtering across vertical edges by the red circle, the vertical filtering 

across horizontal edges by green circle. In circle numeral is expressed of filter order. Each 

numeral is an edge of two adjacent blocks that equal to the filter unit processing four times.  
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3.2.3 Divide the luma block 

According to the filter order, we may divide into luma block two parts. The processing 

order 1 to 8 and 9 to 16 are same filtering order. As shown in Figure 3.4. 

processing order (1, 9) processing order(2, 10) processing order(3, 11) processing order (4, 12)

processing order (5, 13) processing order (6, 14) processing order(7, 15) processing order (8, 16)
 

Figure 3.4: Luma block of the filtering order  

About the luma block may open the solution after ours filter order to become two parts, 

as shown in Figure 3.5. After luma block upper half was filtered, the blocks B4, B5, B6, and 

B7 were passed through the transpose buffer to make the transformation then stored to the 

internal SRAM. When the luma block lower half was filtered, the blocks B4 to B7 may use 

directly, but does not have again to pass through the transformation. 

T1 T2 T3 T4

L1

L2

B0 B1 B2 B3

B4 B5 B6 B7

L3

L4

B4 B5 B6 B7

B8 B9 B10 B11

B12 B13 B14 B15

+

luma

Y T1 T2 T3 T4

L1

L2

L3

L4

B0 B1 B2 B3

B4 B5 B6 B7

B8 B9 B10 B11

B12 B13 B14 B15

=

 

Figure 3.5: Luma block break down upper and the lower two parts 
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Because of ours filtering order can reduce the size of the internal SRAM, decreases the 

transpose buffer use quantity, improves the throughput of filtering operations, and the amount 

of reduction of the external memory accesses. 

3.3  Parallel Memory Unit 

Because we simultaneously use two edge filter units to make the operation, therefore 

these input ends of two edge filter units also must simultaneously obtain the pixel data. So we 

use two 32-bits×48 dual ports SRAM to store the pixels data needed. As shown in Figure 3.6, 

we divide the pixels data within one macro-block into the form of the interlocking type, have 

corresponding internal SRAM individually pixels data its. 

    We use their purposes of the way of the interlocking type to be to take place for the 

phenomenon of preventing the memory from conflicting. The pixels data needed can do 

parallel access at we are making the horizontal filtering across vertical edges and making the 

vertical filtering across horizontal edges. 

Figure 3.6: Memory mapping of 4×4 blocks 
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As shown in Figure 3.6, the T1', T2', T3', T4', T5', T6', T7', and T8' are the 4×4 block 

pixel data got after the transpose buffer to make the transformation afterwards to putting after  

dealing with by the horizontal filtering across vertical edges first. So they can be used directly 

that the blocks T1' to T8' needn't to make the transformation afterwards and put when doing 

the vertical filtering across horizontal edges. The interleaving nature of data organization 

allows for simultaneous writing and reading of data to and from the internal SRAM. 

3.4 Data Buffer ＆ Transpose Buffer 

Data buffer 

As shown in Figure 3.7, the 4×4 block B0 have sixteen pixel (b00~b33), each pixel can 

be stored 8-bits. Input and output of the de-blocking filter regard four pixels (32-bits) as a unit. 

So need to spend four cycles (one block cycle) to finish to one edge of the 4×4 block. 

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

4*4 block B0

16*16 macro-block

L1 B0 B11 2

1 2
Filtering order

 

Figure 3.7: for example a 4×4 block 

As shown in Figure 3.7 and 3.8, the 4×4 blocks L1, B0, and B1 are the neighboring three 

blocks. Now we must first de-blocking filter block L1 and the block B0 middle vertical edge 

then again make between block B0 and the block B1 the vertical edge. Therefore we input L1 

to the filter unit of p (p0~p3) input end, input B0 to the filter unit of q (q0~q3) input end, 
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causes both to make the filtering order 1 the movement. After the filtering order 1 completes, 

processing from now on pixels of the block B0 will be able to deposit in data buffer in order 

to next the filtering order 2 use. Therefore because of the data buffer use, we may reduce from 

internal SRAM read data number of times. 

p3 p2 p1 p0 q3q2q1q0

Filter unit

b00' b01' b02' b03'

b10' b11' b12' b13'

b20' b21' b22' b23'

b30' b31' b32' b33'

Data buffer

p3 p2 p1 p0

Output to transpose buffer 

or internal SRAM 

4 pixel (32-bit)4 pixel (32-bit)

 

Figure 3.8: Data buffer operation 

Transpose Buffer 

In our proposed de-blocking filter architecture to use two 32-bits×8 transpose registers to 

transpose the pixels which obtains by way of the horizontal filtering across vertical edges. As 

shown in Figure 3.9 this is group of two 32-bits×4 transpose registers. Every small square 

represents 1 pixel (8-bits) register. The solid line of arrows expresses the input data path while 

the dotted line of arrows expresses the output data path. And the data bus input and outputted 

are all 4 pixels (32-bits). For example, it needs to spend four cycles to store the sixteen pixels 

to transpose a 4×4 block. When processing the vertical filtering across horizontal edges, we 

can output the pixels data that we need with the selector. 



 

 36 

 

4 pixels (32-bits)

4 pixels (32-bits)

 

Figure 3.9: Transpose buffer operation 

 

3.5  Control Unit 

Figure 3.10 shows the overall architecture of our proposed de-blocking filter and the data 

bus is all 32-bits. It includes the internal SRAM size is 32-bit×96, two parallel-in parallel-out 

filter unit, two data buffer of 32-bits×4 FIFO register, four transpose register and a control 

unit. Some of control unit that is very important component, it is to control the signals such as 

Bs, C0, α, β the information and so on. Moreover a function is controls the data the 

input-output. So we explain next how the controller controls the flow of pixel data with the 

part of upper part of Luma block. We make necessary pixels data from external memory load 

to internal SRAM at first. 
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Figure 3.10: Overall architecture of our proposed de-blocking filter 

Step 1: block cycle 1 (clock cycle 1~4) 

At first, we load L1 and L2 of the left neighbor block from the internal SRAM then input 

them in two data buffer separately, use for horizontal filtering on vertical edge 1 after offering 

to. As shown in Figure 3.11. 
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Figure 3.11: The data path of storing block of L1 and L2 into data buffer 
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Step 2: block cycle 2 (clock cycle 5~8) 

Figure 3.12 shows the horizontal filtering on vertical edge 1 treating processes. 

Therefore we load the block B0 and B4 from internal SRAM at the same time, lets two filter 

units make the use. After horizontal filtering on vertical edge 1 completes that the blocks L1 

and L2 are stored to internal SRAM, the blocks B0 and B4 are stored to the data buffer, 

waiting next filtering order uses. 
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Figure 3.12: Horizontal filtering on vertical edge 1 

Step 3: block cycle 3 (clock cycle 9~12) 

Figure 3.13 shows the horizontal filtering on vertical edge 2 treating processes. 

Therefore we load the block B1 and B5 from internal SRAM at the same time to give two 

filter units uses separately. After the horizontal filtering on vertical edge 2 processing 

completes, the blocks B1 and B5 are stored up to the data buffer, the blocks B0 and B4 are 

transmitted the transpose buffer to make the transformation (B0 and B4) that to wait for 

vertical filtering. 
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Figure 3.13: Horizontal filtering on vertical edge 2 

Step 4: block cycle 4 (clock cycle 13~16) 

Figure 3.14 shows the horizontal filtering on vertical edge 3 treating processes. This step 

is the same as process of step 3. After the horizontal filtering on vertical edge 3 processing 

completes, the blocks B1 and B5 are transmitted the transpose buffer to make the 

transformation (B1 and B5) that to wait for vertical filtering. The thing that should look out is 

that the blocks B0 and B1 can't be placed on the same group of the transpose buffers, 

otherwise will cause the conflict of the data. So the blocks B4 and B5 are the same situation. 

F
il

te
r 

u
n
it

F
il

te
r 

u
n
it

F
IF

O
F

IF
O

L2*

B0

B5

B2

B7

T2³

T4³

L6³

B16

B19

T6³

T8³

L1*

B4

B1

B6

B3

T1³

T3³

L5³

B18

B17

T5³

T7³

B2¹

B6¹

B0²

B4²

B1²

B5²

 

Figure 3.14: Horizontal filtering on vertical edge 3 
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Step 5: block cycle 5 (clock cycle 17~20) 

As shown in Figure 3.15. We load T1 and T2 of the top neighbor block from the internal 

SRAM then input them in two data buffer separately, use for vertical filtering on horizontal 

edge 4 after offering to. Does not act in this stage of two filter unit, therefore the blocks B2 

and B6 pixels data has not been changed on is stored directly the internal SRAM. 
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Figure 3.15: The data path of storing block of T1 and T2 into data buffer 

Step 6: block cycle 6 (clock cycle 21~24) 

Figure 3.16 shows the vertical filtering on horizontal edge 4 treating processes. 

Therefore we load the block B0 and B1 from transpose buffer at the same time, lets two filter 

units make the vertical filtering. After the vertical filtering on horizontal edge 4 processing 

completes, the blocks T1 and T2 are stored to transpose buffer make the transformation (T1 

and T2), after in order to store the internal SRAM. 
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Figure 3.16: Vertical filtering on horizontal edge 4 

Step 7: block cycle 7 (clock cycle 25~28) 

Figure 3.17 shows the vertical filtering on horizontal edge 5 treating processes. This step 

is the same as process of step 6. After the vertical filtering on horizontal edge 5 processing 

completes, the blocks B0 and B1 are stored to transpose buffer make the transformation (B0 

and B1) that to wait for storing the internal SRAM. 
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Figure 3.17: Vertical filtering on horizontal edge 5 
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Step 8: block cycle 8 (clock cycle 29~32) 

This stage of two filter unit is not act. We load the blocks B2 and B6 from the internal 

SRAM then input them in two data buffer separately, use for the horizontal filtering on 

vertical edge 6 after offering to. The blocks T1 and T2 are stored to the internal SRAM, the 

blocks B4 and B5 are stored to transpose buffer but not make the transformation as shown in 

figure 3.18. 
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Figure 3.18: The data path of storing block of B2 and B6 into data buffer 

Step 9: block cycle 9 (clock cycle 33~36) 

Figure 3.19 shows the horizontal filtering on vertical edge 6 treating processes. 

Therefore we load the block B3 and B7 from internal SRAM at the same time to give two 

filter units uses separately. After the horizontal filtering on vertical edge 6 processing 

completes, the blocks B3 and B7 are stored up to the data buffer, the blocks B2 and B6 are 

transmitted the transpose buffer to make the transformation (B2 and B6) that to wait for 

vertical filtering and the blocks B0 and B1 are stored to the internal SRAM simultaneously. 
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Figure 3.19: Horizontal filtering on vertical edge 6 

Step 10: block cycle 10 (clock cycle 37~40) 

As shown in Figure 3.20. We load T3 and T4 of the top neighbor block from the internal 

SRAM then input them in two data buffer separately, use for the vertical filtering on 

horizontal edge 7 after offering to. Does not act in this stage of two filter units, therefore the 

blocks B3 and B7 pixels data have not been changed and to store directly the transpose buffer. 

And the blocks B4 and B5 are stored to the internal SRAM simultaneously. 

F
il

te
r 

u
n
it

F
il

te
r 

u
n
it

F
IF

O
F

IF
O

L2*

B0*

B5³

B2¹

B7

T2*

T4³

L6³

B16

B19

T6³

T8³

L1*

B4³

B1*

B6¹

B3

T1*

T3³

L5³

B18

B17

T5³

T7³

T3³

T4³

B7¹

B6²

B3¹

B2²

 

Figure 3.20: The data path of storing block of T3 and T4 into data buffer 



 

 44 

Step 11: block cycle 11 (clock cycle 41~44) 

Figure 3.21 shows the vertical filtering on horizontal edge 7 treating processes. 

Therefore we load the block B2 and B3 from transpose buffer at the same time, lets two filter 

units make the vertical filtering. After the vertical filtering on horizontal edge 7 processing 

completes, the blocks T3 and T4 are stored to transpose buffer make the transformation (T3 

and T4), after in order to store the internal SRAM. 
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Figure 3.21: vertical filtering on horizontal edge 7 

Step 12: block cycle 12 (clock cycle 45~48) 

Figure 3.22 shows the vertical filtering on horizontal edge 8 treating processes. This step 

is the same as process of step 11. After the vertical filtering on horizontal edge 8 processing 

completes, the blocks B2 and B3 are stored to transpose buffer make the transformation (B2 

and B3) that to wait for storing the internal SRAM. 
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Figure 3.22: vertical filtering on horizontal edge 8 

Table 3.1: data flow of our proposed architecture 

state 
Block cycle 

1 2 3 4 5 6 7 8 9 10 11 12 

FIFO 1 L1 B0 B1 B2 T1 B0 B4 B2 B3 T3 B2 B6 

FIFO 2 L2 B4 B5 B6 T2 B1 B5 B6 B7 T4 B3 B7 

Array 1   B0 B0 B0 T1 T1 B4 B4 B7 B7 B3 

Array 2    B5 B5 B5 B1 B1 B2 B2 T3 T3 

Array 3   B4 B4 B4 B4 B0 B0 B6 B6 B6 B2 

Array 4    B1 B1 T2 T2 B5 B5 B3 T4 T4 

Filter unit  H 1 H 2 H 3  V 4 V 5  H 6  V 7 V 8 

SRAM 0 

(load) 

SRAM 1 

L1 B4 B1 B6 T1   B6 B3 T3   

L2 B0 B5 B2 T2   B2 B7 T4   

SRAM 0 

(store) 

SRAM 1 

 L1   B6   T1 B1 B4   

 L2   B2   T2 B0 B5   
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Chapter 4 

Implementation results 

Chapter 4 is the simulation results of our design and it is composed of three paragraphs. 

The simulation environment is introduced shortly in the first paragraph. And the results are 

presented in detail in the next paragraph. Here some advantages of our hardware would be 

accentuated by comparing with other architectures. At last, some improvements which can 

make our hardware more efficient are discussed for future work. 

4.1 The simulation environment 

The module we proposed is written in programs of the language of Verilog1995 and 

simulated in Modelsim 6.1 environments. For the procedure of synthesis, all programs are 

compiled with Verilog-XL in Synposys system. Our design is implemented with TSCM 0.13 

μm technology for estimations of gate counts and maximum operating frequency. 

Specification 

development

RTL Code 

development 

RTL  

simulation

(Modelsim 6.1) 

Synthesis  

Timing 

verification

Design flow

Gate-level  

simulation

(Verilog XL) 

specification

RTL design

Gate-level

synthesis 

 

Figure 4.1: Design flow in our implementation 
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4.2 Comparison with other architectures 

The main comparisons of our research are the hardware design and cost. Here we will 

talk about the main modified parts in detail. 

 In [9], the internal SRAM of the basic processing order is organized in the form of an 

interleaved memory and 2 two port (one read port and one write port) SRAM’s. For 

horizontal filtering, the interleaving nature of data organization allows for simultaneous 

writing and reading of data to and from the memory. The internal SRAM of the advanced 

processing order didn't change according to the traditional memory structure. In [5], the 

internal SRAM of the 2-D simultaneous processing order is to use 2 dual port (two read port 

and two write port) SRAM’s. For horizontal and vertical filtering, the interleaving nature of 

data organization allows for simultaneous writing and reading of data to and from the memory. 

In our proposed, the internal SRAM is to use 2 two port SRAM’s. Because of improvement 

the processing order, we can reduce the size of the SRAM. 

Table 4.1: Comparison of hardware cost in the main module 

MMeetthhoodd  
Basic 

[9] 

2-D 

Simultaneous 

[5] 

proposed 

# Filter units 1 2 2 

# arrays (16 pixels) 2 3 4 

# FIF0s (4×32 bit ) 0 9 2 

Memory architecture 
One read and 

one write 

Two read and 

two write 

One read and 

one write 

SRAM requirements for 

pixels (bits) 

88×32 

72×32  

88×32 

72×32 

48×32 

48×32 
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Table 4.2 shows the Performance comparison of various architectures. The total 

cycles/Macro-Block includes filtering cycles/Macro-Block and external memory access 

cycles/Macro-Block two parts. The filtering cycles/Macro-Block is processes 1 Macro-Block 

need of cycles. The external memory access cycles/Macro-Block spends 160 cycles to load 

unfiltered pixels from external memory to internal SRAM and spends 160 cycles to store 

filtered pixels from internal SRAM to external memory. 

Compared with [9] and [5], our external memory access cycles/Macro-Block is faster 

because of having consideration pixel data not repeat the method of access. 

Table 4.2: Performance comparison of various architectures 

MMeetthhoodd  
Basic 

[9] 

2-D 

Simultaneous 

[5] 

proposed 

Filtering Cycles/MB 392 140 144 

External memory 

access cycles/MB 
320 320 256 

Total Cycles/MB 712 460 400 

Working frequency 100MHz 100MHz 100MHz 

 

Filtering Cycles/Macro-Block (MB): 

The related works and our proposed of computation are the same so the working frequency 

are 100MHz. 

External memory access cycles/Macro-Block (MB): 

The access time is one cycle for 32-bit data. 
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Table 4.3 shows the implementation of our proposed. We described our architecture by 

Verilog HDL and synthesized the circuit using TSMC 0.13um technology library by 

Synopsys Design Analyer with critical path constraint set to 10 ns (100MHz). 

Table 4.3: implementation of our proposed 

MMeetthhoodd  

GGaattee  ccoouunntt  

Basic 

[9] 

2-D 

Simultaneous 

[5] 

proposed 

TTeecchhnnoollooggyy  ((μμ mm))  00..1133  00..1133  00..1133 

Working frequency 100 MHz 100 MHz 100 MHz 

array 3.87K 4.74K 6.32K 

FIFO 0 11.88K 3.18K 

Control unit 4.07K 4.11K 3.77K 

(not Filter unit) 

Area 
7.94K 20.73K 13.27K 

Filter unit 6.67K 13.34K 13.34K 

Total area 14.61K 34.07K 26.61K 

 

SRAM is not included in total area 

Filter unit: 6.67K gate count [5] 
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4.3  Future work 

The De-blocking Filter of H.264 decoder is an important part of entire system; it can 

dominate system performance and quality for video image. But for high computing 

complexity and real-time application, the de-blocking Filter may become a bottleneck of 

hardware implementation. We can analyze the power and performance of realistic decoder 

system in both hardware and software realizations and then present a general model of 

de-blocking architecture. We will work on reducing the power consumption of our design.  
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Chapter 5 

Conclusion 

In this paper, we present the architecture to accelerate the operations of de-blocking filter 

for H.264/AVC. The major idea is to reduce the execution cycles by propose a processing 

order of De-blocking Filter. Because of the novel processing order of De-blocking Filter, we 

may reduce the number of memory references. The novel processing order can break down 

two parts of macro-block, so we may reduce the internal memory size and using fewer the 

register amounts to store the data. Making good use of the data dependence between 

neighboring 4×4 blocks, in both horizontal direction and vertical direction. Next we are to use 

interleaved memory organization allows for simultaneous writing and reading of data to and 

from the internal SRAM. Finally as a result of the De-blocking Filter needs many image data 

to again access in the external memory, therefore we reduce to external memory access times 

that performance improvement is achieved by an efficient use of internal SRAM. The 

synthesized results indicate that our design may support real-time de-blocking filter of HDTV 

(1280×720, 60fps) H.264/AVC video. 
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