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Reordering the data operation of macro-block for improving the performance of
de-blocking filter in H.264/AVC

Student : Tai-Lin Chen Advisor : Dr. Chung-Ping Chung

Industrial Technology R & D Master Program of
Electrical and Computer Engineering College
National Chiao Tung University

ABSTRACT

H.264/AVC is a new generation video coding standard and is approved by ITU-T as
Recommendation H.264 and by ISO/IEC as MPEG-4 Part 10 Advanced Video Coding.
H.264/AVC is to achieve higher compression efficiency and provide the better video quality.
Because the H.264 is an adoption block the mode does image processing. However, the most
annoying artifact known as the blocking artifact also comes into existence. In order to solve
this problem, the de-blocking filter is an important component of H.264/AVC to reduce the
block artifacts. In the complexity simulation of H.264/AVC decoder part, the de-blocking
filter is the most complexity part, probably has taken 36% execution time. Because of in the
de-blocking filter data processing process has the repetition access appearance. In order to
improve memory performance and speed up the de-blocking filter, we propose a new
architecture for de-blocking filter in H.264/AVC. First we propose a novel filtering order that
results in significant saving in both filtering time and local memory usage. And we propose a
new data access a method. Let the de-blocking filter can simultaneous access necessity the
data in processing process, we can reduce the working cycles. The proposed architecture is
synthesized with TSMC 0.13um technology. The synthesized de-blocking filter architecture
could process video in 720P HD (High-definition television, HDTV, 1280x720 pixels/frame,

60 frames/sec video signals) format at 100MHz.
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Chapter 1

Introduction

The Joint Video Team (JVT) is composed by ITU-T Video Coding Experts Group
(VCEG) and ISO/IEC Moving Picture Experts Group (MPEG). JVT formulates a new video
compression standard is H.264/AVC [1]. The main objectives of H.264/AVC are to develop a
set of high efficient, the network-friendly and error-resilient ability. The video compression
standard provides from the mobile phone to HDTV widespread application and improves
largely rate-distortion efficiency. H.264 was compared to the existing standards such as
MPEG-2, H.263++ (Annexes DFIJT) and MPEG-4, in similar regards under the video

compression quality to be possible to save approximately 50% above bit-rate [3].

Although the encoding efficient of H.264/AVC is higher than the video encoding
standard formerly, but it have the quite complex encoding technology and the mode choice, so
its operation order complexity also far to be higher than the encoding standard actually
formerly. These improved characteristics are due to the application of several new coding
tools within the compression process defined by the standard, such as multi-mode
intra-prediction, multi-frame variable-block-size, variable block-size motion estimation,
quarter-pixel motion compensation, inter-prediction, integer discrete cosine transform (DCT),
context adaptive binary arithmetic coding (CABAC) and in-loop de-blocking filtering. Each
of these new encoding techniques contributes more or less to the total gain of whole

H.264/AVC system in compression ratio, but also increased its operation order complexity.



One of the most special features in H.264/AVC is de-blocking filtering. Because of the
characteristic of H.264/AVC encoding compression calculation method sometimes has
obviously the block artifacts phenomenon, such as block-based motion compensated
prediction, intra prediction, and integer discrete cosine transform [4]. The de-blocking filter
contributes to eliminate or diminish the block artifacts in the decoded video sequence, while
producing the same objective quality as the non-filtered video, that can reduces the bit-rate
typically by 5%~10% [3]. But due to the de-blocking filter operations irregular data access
and uses inner loop of the highly optimized filtering algorithm. Thus the de-blocking
operation accounts consuming one-third of the computational complexity of H.264/AVC

decoder [6].

There are two different schemes of De-blocking filter in video codec, post filter and
in-loop filter. In the case of post filter, the filter is only operation on the display buffer outside
the coding or decoding loop. The decoded data is stored in a data buffer, filtered and then
stored in another video buffer before being forwarded to the display device [5]. Thus the post
filter is not normative in the standardization process. As shown in figure 1.1, the in-loop filter
is placed inside the coding loop. So that the in-loop filter processed frames are used as
reference frames for motion compensation of subsequent coded frames [4]. Thus the in-loop
filter is normative in the standardization process, in order to stay in synchronization with the

encoder.

There are several advantages of in-loop filter over post filter, one the advantage is that no
need for an extra frame buffer in the decoder, and that can improves quality of video streams
and significant reduction in decoder complexity compared to post filtering [4], and the in-loop

filter reduces the bit rate than the post filter.
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Figure 1.1: Block diagram of H.264/AVC
1.1 Motivation

The De-blocking Filter of H.264 decoder is an important part of entire system; it can
dominate system performance and quality for video image due to high computing complexity
and real-time application. Figure 1.2 shows the profiling results of a decoding process, the
de-blocking Filter consume 36.05% of total decoding time [7], so the processing time
becomes very important. We can opportunity of processing order of current De-blocking
Filter that many image data would be re-access between external memory and internal SRAM

[8], and it spends many cycles to transpose the image data.
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Figure 1.2: Run-time profile of H.264/AVC decoder

1.2 Objective

In order to solve the problem about the number of accesses of the external memory, we
proposed the processing order of de-blocking Filter and an efficient architecture of the filter.
Because of ours design methods that can accelerate filtering process with pipeline technique

for reducing the internal memory size and using fewer the register amounts.



Chapter 2

Background and Related Works

In this chapter, we will describe the block artifacts occur and the algorithm of
de-blocking filter in H.264/AVC. Second, we will introduce some de-blocking filter

processing order to sample processing level.

2.1 The blocking artifact

The majority video compression standard uses that the JPEG related compression
technique to use in spatial the redundancy. In JPEG, divided into many 8x8 block for video
and it uses the discrete cosine transforms (DCT) to make each block the transformation. After
process transformation, the transformed coefficients are quantized then entropy coded. Then it
makes the classification by transformed coefficients use to the guantization table the inside
quantization step. The gquantization table design reserves more low frequency coefficient and
less high frequency coefficient. Under the low bit rates condition, the possibility reserve only
one Direct Coefficient (DC) and some Alternate Coefficient (AC) represents a block.
Therefore we may lose the relativity of neighboring block. As a result, the reconstruction
image or video quality will be influenced by obvious factitiousness. This is the blocking

artifact as shown in figure 2.1.

Blocking artifact factors of H.264/AVC
(1) The intra and inter frame prediction error coding of H.264/AVC use the integer discrete
cosine transforms (DCT). The transform coefficients are too rough that can produce

visually disturbing discontinuities phenomenon at the block boundaries [4].



(2) Second factor is motion compensated prediction. The motion compensated blocks are
produced by copying interpolated pixel data that possible in the different locations of the
different reference frames [4]. Because this reason, therefore we can not find the

appropriate data that have discontinuities phenomenon at the block edge.

.~

Bt fered

Figure 2.1: Hlustration of blocking artifact

2.2 De-blocking Filter Algorithm

In H.264/AVC applies in-loop de-blocking filter to used eliminate blocking artifact then
generates a smooth frame as shown in figure 2.2. The intra and inter frame prediction error
coding are transformed then quantized. After decoding procedure, the reconstruction block
has an error with the originally block. Therefore it has not the continual phenomenon then can
again the block edge production. In order to eliminate discontinuity situation, the process is

applied.

First the de-blocking filter divides a frame many macro-block and the de-blocking filter
processing unit is a macro-block. After first a complete processing current macro-block, the

next macro-block is just sent in. After first a complete processing current frame, the next



frame is just sent in. The de-blocking filter is located in decoder part. This will help us to

obtain the smaller vestiges data for reconstruction frames to motion compensated prediction.

input

NAL Entropy | Inverse | Inverse

" | Decoding | ~ |Quantization| | Transform

Y

Sub-per | Motion
Interpolation " | compensation
A
Reference y
Reconstructed|  frame Deblocking
frame L filter
output

Figure 2.2: The location of de-blocking filter in H.264/AVC decoder

2.2.1 Input of the de-blocking filter

Inputs of the de-blocking filter include boundary strength, threshold variables and pixels
as shown in figure 2.3. The Boundary strength (Bs) is derived from the coding information of
the macro-block. The filter depends on the boundary strength to classify. The boundary
Strength (Bs) is assigned an integer value from 0 to 4. Based on the information, we may

select the suitable filter to eliminate the block artifact.

Input pixels have the specific filter ordering, each pixel may be filtered multiple times.
After first the current macro-block is completed to process, the next macro-block is just sent

in. By this analogy, the processing frame order also is so.

Two quantization parameters (QP) are o and B that are threshold values. Their contents
of frame can turn on or turn off the filtering by itself for each individual set of sample.

Because they may distinguish, the block artifact is the true edges or the factitiousness.
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Figure 2.3: Input of the de-blocking filter

2.2.2 De-blocking Filter Processing Order

As recommendation in H.264/AVC standard, the de-blocking filter uses one 4x4 pixels
block as unit to process all macro-blocks. This filtering process shall be performed on a
macro-block basis, with all macro-block in a frame processed in order of increasing
macro-block addresses. Prior to the operation of the de-blocking filter process for each
macro-block, the de-blocked samples of the macro-block or macro-block pair above (if any)
and the macro-block or macro-block pair to the left (if any) of the current macro-block shall

be available.

The De-blocking Filter process is invoked for the luma and chroma components
separately. For each luminance macro-block, vertical edges are filtered first, from left to right,
and then horizontal edges are filtered from top to bottom. The luma de-blocking filter process
is performed on four 16-sample edges and the de-blocking filter process for each chroma

components is performed on two 8-sample edges.



Sample values above and the left of the current macro-block that may have already been
modified by the de-blocking filter process operation on previous macro-blocks shall be used
as input to the de-blocking filter process on the current macro-block and they may be
modified during the filtering of the current macro-block further. Sample values modified
during filtering of vertical edges are used as input for the filtering of the horizontal edges for

the same macro-block.

The luma de-blocking filter process is performed on four 16-sample edges. For each
luminance macro-block, vertical edges are filtered first, from left to right, followed by edge 0,

edge 1, edge 2, and edge 3 as shown in figure 2.4.

| 8p2]p1 |p0] | 0] a1 42 |43

16 pixels

Edge0 Edgel Edge?2 Edge 3

Figure 2.4: Horizontal filtering across luma vertical edges

The luma de-blocking filter process is performed on four 16-sample edges. The vertical
filtering is performed after the horizontal filtering, and then horizontal edges are filtered from

top to bottom, followed by edge 0, edge 1, edge 2, and edge 3 as shown in figure 2.5.
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Figure 2.5: Vertical filtering across luma horizontal edges

The de-blocking filter process for each chroma components is performed on two
8-sample edges. For each chroma block, vertical edges are filtered first, from left to right,
followed by edge 0, and edge 1, and then horizontal edges are filtered from top to bottom,

followed by edge 0, and edge 1 as shown in figure 2.6.

0| [ 40| q1{q2 |43

FaRN

Edge 0

Edge 1

8 pixels

)

Edge 0  Edgel 8 pixels

Figure 2.6: Filtering process of chroma block



2.3 Boundary Strength

The filter operation is applied to each edge of a 4x4 block. The filter decision depends
on the boundary strength and the gradient of image samples across the boundary. The
boundary Strength (Bs) is assigned an integer value from 0 to 4. The Bs values for filtering of
luminance block edges are to every edge between two 4x4 blocks. But filtering of
chrominance block edges are not calculated independently. Because of the values is copied
for their corresponding luminance edges. When Bs = 4 is strongest filter, it is used one or both
sides of edges are intra coded and the boundary is a macro-block boundary. When Bs = 3 the
one of the neighboring blocks is intra coded but the block boundary is not a macro-block
boundary. Bs = 2 means two adjacent blocks are not intra coded and one of blocks contains
non-zero coefficients. Otherwise Bs = 1 means blocks has different reference frames or
different number of reference frames or different motion vector values. When Bs = 0 means

no filtering is applied on this specific edge as shown in figure 2.7.
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A v

Bs=4 Bs=3

A
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Figure 2.7: Flowchart of Bs deriving process
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Table 2.1: Determining of boundary strength

Block Modes and Conditions

One of the blocks is intra coded and the block boundary is a macro-block boundary.

One of the blocks is intra coded but the block boundary is not a macro-block
boundary.

One of the blocks has coded residuals.

Have one of the following conditions:
> Motion compensation from different reference frames.
»  Different number of reference frames.

>  Different motion vector values.

No filtering is applied on this specific edge.

As shown in figure 2.8 and 2.9, the Bs values for chroma edges that the vertical edges 0
and 1 are copied from the corresponding edges of the luma macro-block vertical edges 0 and

2. The Bs values for vertical filtering across horizontal edges are the same.

| B0 B

Y Bsl B$9
Bs2 B9g10

Bs3 Bgll

BsO Bs4 B8 B4g12

Bkl B$5 B Bd13 \%
5 Bg
B2 B Bg10 Bdld | _ B0 Bpg
Bsl B$9
Bs3 Bs7 Bdll Bd15 [~ _Bp2 Bsl0
B3 Bdll
Edge0 Edgel Edge2 Edge3 Edge 0 Edgel
luma chroma

Figure 2.8: Bs value for horizontal filtering across vertical edges
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IO 1 | = Fo u e ) | = P L, | = Fo g rw ) g | |_\||_\ g
CO|© O|H
| |
| |
luma chroma

Figure 2.9: Bs value for vertical filtering across horizontal edges

2.3.1 Gradient of image samples across the boundary

On the gradient of image samples across the boundary is a set of eight samples across a
boundary between two 4x4 blocks as shown In figure 2.10. The filtering does not take place
for edges with Bs equal to zero. Sets of samples across this edge are only filtered if the

following conditions are all true. Bs =0 |p0 - qol <a |p1 . po| <p \ql - qo\ <p

Two quantization parameters (QP) a and [ are threshold values. Their contents of frame
can turn on or turn off the filtering by itself for each individual set of sample. The thresholds
a and B are dependant on the average quantization parameter of the two 4x4 blocks p and g.
When QP is small, the gradient across the block boundary have very small change. It is say
the filter must be to turn off, because the block boundary is true edge in the frame not the
blocking artifact. When QP is larger, the gradient across the block boundary have large
change, the filter would be turned on. The samples p0, pl, p2, 90, q1 and g2 are filtered is

determined by using Bs, a, B and content of the frame itself.
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The filtering of p0 and q0 takes place if the following conditions are all true.

Bs=0 (2.1)
[Py — G| < @ 2.2)
|p1_ p0|<ﬁ & |q1_qo|<ﬂ (2.3)
The filtering of p1 or g1 takes place if the following conditions are satisfied.
|p2_po|<ﬂ or |q2_qo|<ﬂ (2-4)
The filtering of p2 or g2 takes place if the following conditions are satisfied.
(P, = po|<B O 0, 0|<B) & [Po—0s|<(a>>2)+2 (2.5)
Block p Block q
100

| :ql _q2 q3‘ B

B 1p 4P K

Block edge

Figure 2.10: Gradient of image samples across the boundary
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2.3.2 Derivation process for the thresholds for each block edge

The gPav be a variable specifying an average quantization parameter of two adjacent
4x4 blocks, it was dominate the threshold o and .

It is derived as follows.

gPav =(qP, +qP, +1)>>1 (2.6)

Let indexA be a variable that is used to access the o table (Table 2.2) as well as the t.,
table (Table 2.3), and let indexB be a variable that is used to access the 3 table (Table 2.2).
The variables indexA and indexB are derived as follows.
indexA= Clip3(0,51, gPav + FilterOffsetA) (2.7)
indexB = Clip3(0,51, gPav + FilterOffstB) (2.8)

(FilterOffsetA and FilterOffsetB are used to decide of the filter is weak or strong manually)

Table 2.2: Derivation of indexA and indexB from offset dependent threshold variable o and 8

index A (for a ) or index B (for B )

25

13

index A (for a ) or index B (for B )

26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 42 43 44 45 46 47 48 49 50

51

15 | 17 | 20 | 22 | 25 | 28 | 32 | 36 | 40 | 45 | 50 [ 56 | 63 [ 71 | 80 [ 90 | 101 | 113 127 | 144 | 162 | 182 203 | 226 255

255

18
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2.4 Filtering Operation

In H.264/AVC, the de-blocking filter that important function is filtering process. The
filtering process can divided into two modes. One mode of filtering that allows for normal
mode is applied when Bs parameter is 1 to 3. Another is stronger mode of filtering when Bs is

equal to 4.

2.4.1 Normal mode : ( Bs=1~3)

For luminance blocks:

The filtering unit needs to read 4 samples (p1, p0, q0, and g1) and updates 2 samples (pO and
q0).

If [p, —po| </

The filtering unit needs to read 4 samples (p2, p1, p0, and q1) and updates p1 sample.

If |a, —qo| <2

The filtering unit needs to read 4 samples (g2, g1, g0, and p0) and updates q1 sample.

Left4*1 samples , right 4*1 samples
p3 | p2 ipd | poiiagd gl q3
edge

[ ] Update sample
[ ] Readsample

Figure 2.11: Normal mode operations for luminance block

For chrominance blocks:

The filtering unit needs to read 4 samples (p1, p0, g0, and g1) and updates 2 samples (p0 and

go).
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Left4*1 samples , right 4*1 samples

p3|p2 |pl p0|iqo0 gl

g2

g3

edge
[ | Update sample
|| Readsample

Figure 2.12: Normal mode operations for chrominance block

Filtering for edges with Bs less than 4

For luminance blocks:

the variables p,, p,, p,, Ps,%.0,.0,.,0, are derived by

A, = Clip3(~tc, te, (0 — po) << 2)+(p, ~ )+ 4)>> 3))
te =teo +((p, — po| < 8)?1:0)+ (01, =5 < B)?1:0)

Po = P +4,

Go = o — Aq

When all of the following conditions hold:

P, = Pol< B

A =G| < 3

The pixels p, and q, will be filtered.

Ay =Clip3(~tey, teo, (p, + (g + 0 +1)>> 1)~ (p, <<1))>>1)
P=p+Ay,

Ay =Clip3(~teg,teo, (@, +(po + 0y +1)>>1)— (g, << 1)) >>1)
G =0+Ag

Otherwise

P,=P, P:=P; U=0, Gy=0,

For chrominance blocks:

The variables p,, p;, P, Ps:0y,0;,0,,0; are derived by

17

(2.9)
(2.10)
(2.11)
(2.12)

(2.13)
(2.14)
(2.15)
(2.16)



Ao = Clip3(—te, tc, (- po) << 2)+ (p, — )+ 4)>> 3))

(ot 41 (2.17)
Po = Py + 4

G = — A

Otherwise

P=P P,=P, Po=P; 0, =0 0=0, Gy=0,

Clipping Operation

In the filtering operation would result too much low-pass filtering (blurring). A
significant part of the adaptive filter is received by limiting these values. This process is
called clipping. Different sequences for clipping are applied for the internal and edge samples
[4].
The threshold t., is specified in clip Table 2.3 depending on the values of indexA and Bs.
The threshold t. is determined as follows.
If the edge is luminance blocks:
te =teo +(( P, — Po| < £)?71:0)+ (g, — 9| < B)?1:0)
If the edge is chrominance blocks:

te =t +1

Table 2.3: Value of filter clipping variable t., asa function of indexA and Bs

index A

25

Bs=1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Bs=2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Bs=3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
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index A

26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48 49

50

51

Bs=1 1 1 1 1 1 1 1 2 2 2 2

11

13

Bs=2 1 1 1 1 1 2 2 2 2 3 3

15

17

Bs=3 1 2 2 2 2 3 3 3 4 4 4

23

25

2.4.2 Stronger mode : ( Bs=4)

For luminance blocks:

If |p,—po|<B and |p, — 0| <[(er >>2)+2]

The filtering unit needs to read 6 samples (p3, p2, p1, p0, g0, and ql) and updates 3 samples

(p2, pl and p0).

If |a,—0o|< B and |p, — 0| <[(e>>2)+2]

The filtering unit needs to read 6 samples (g3, g2, g1, g0, p0, and pl) and updates 3 samples

(92, g1 and qO).

Left 4*1 samples

right 4*1 samples

p? ip1 p0

edge
[ ] Update sample

=

Read sample

Figure 2.13: Stronger mode operations for luminance block

For chrominance blocks:

The filtering unit needs to read 4 samples (p1, p0, 0, and g1) and updates 2 samples (p0 and

q0).
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Left 4*1 samples , right 4*1 samples
p3 |p2 | pl|p0 {0 gl g2|q3
ed'ge
[ | Update sample
[ ] Readsample

Figure 2.14: Stronger mode operations for chrominance block

Filtering for edges with Bs equal to 4
When all of the following conditions hold:
1Py — Q| < (& >>2)+ 2]

P, = Po| < B

9, = Q| <

For luminance blocks:

The variables p,, p,, P,, P50y, 0;,0s,,0; are derived by

P =(p,+2% p,+2%p, +2%q, + 0 +4)>>3 (2.18)
Py = (P, + Py + Py £y +2)>>2 (2.19)
P, = (2% py+3% p, + P+ Py + 0 +4)>>3 (2.20)
0o = (p,+2% p, +2%q, +2%0, +0, +4)>> 3 (2.21)
o =Py + 0 + 0 +0p +2)>>2 (2.22)
O, =(2%0,+3%0, + 0y + 0 + Py +4)>>3 (2.23)
=0  Ps=Ps

For chrominance blocks:

The condition in equation does not hold

The variables p,, p;, P, Ps:0y,0;,0,,0; are derived by

Po=(2*p +p,+q+2)>>2 (2.24)
G =20, +0, + p,+2)>>2 (2.25)
P=p P=P Po=P; G=0 =0, G=0,
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Input 8 pixels ( p3, p2, p1, p0, 0, 1, g2, g3 ), Bs, e and

Is luminance block?

no

Chrominance block

no

Bs level selection

l

Bs level selection

Bs=1~3

BS:AL

Update pixels pO and g0
Po =(2p, + Py 0, +2)>>2

Go =(20, + 0y + p, +2)>>2

Update pixels
p0, p1, p2
q0, g1, g2

Remain
unchanged
pixels
p3and g3

Update pixels
p0 and g0

Remain
unchanged
pixels
pl, p2, p3
ql, 02, g3

Update pixels
p0, p1
90, q1

Remain
unchanged
pixels
p2, p3
g2, q3

Update pixels
p0 and g0

Remain
unchanged
pixels <

Yy

Update pixels
p0 and g0

p(-) =Py +4,
q;) :qo_Ao

pl, p2, p3
ql, 92, g3

l

l

l

|

output

Figure 2.15: Flow chart of filtering process
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2.5 Related Work

In H.264/AVC standard, the de-blocking filter processing order is that, the vertical edges

are filtered first, from left to right, and then horizontal edges are filtered, from top to bottom.

The filtering process is performed on the boundary between two 4x4 pixel blocks. A
macro-block contains one luma block and two chroma blocks. The luma block have sixteen 4
x4 pixel blocks, the chroma block have four 4x4 pixel blocks. The filter processing requests
eight the top neighbor 4x4 pixel blocks and eight the left neighbor 4x4 pixel blocks. Therefore

a macro-block filter processing altogether need 40 4x4 pixel blocks.

The de-blocking filter uses one block as unit to process all macro-blocks. Therefore filter
ordering according to this criterion, the 4x4 sub-block edge, left edge is filtered first, right
edge is filtered second, come again the top edge is filtered third, and lower edge is the last one.

Each numeral is an edge of two adjacent 4x4 sub-blocks that equal to the filter unit processing

four times.
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2.5.1 Basic Processing Order

In [9], the basic processing order does not make use of data dependence between
neighboring 4x4 pixel blocks as shown in figure 2.16. The example, the filtering operation is
started with vertical edge 1, initially block (L1) and block (BO) are sent to the filter from
internal memory using its two ports. After filtering of vertical edge 1, both the partially
filtered block (L1) and block (BO) are stored into the internal memory. By this analogy, if we
filter the vertical edge 5 in succession according to the basic filtering order. We have to load
block (B0) and block (B1) from the internal memory, after filtering of vertical edge 5 stored
the block (BO) and block (B1) back to the internal memory. The block (BO) is loaded and
stored each two times. Thus it can be seen, the basic processing order does not make use of

data dependence between neighboring 4x4 pixel blocks.

Supposition the memory system is 32-bit data bus, the basic processing order for a
macro-block needs (4x2x2x16+(4x2x2x4)x2)=384 times of memory read and 384 times of

memory write. The number of total memory access Is 768 times.

Figure 2.16: Basic processing order
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2.5.2 Advanced Processing Order

In the figure 2.17 is shown the advanced filter processing order. It makes use of
one-dimensional data dependence [9]. The example, the filtering operation is started with
vertical edge 1, initially block (L1) and block (BO) are sent to the filter from internal memory
using its two ports. After filtering of vertical edge 1, the partially filtered block (L1) is stored
into the internal memory but the block (BO) is buffered in the de-blocking filter unit for next
stage filtering. By this analogy, if we filter the vertical edge 2 in succession according to the
filtering order. We have to load block (B1) from the internal memory and the block (BO) is
buffered in the de-blocking filter unit. In this way, all the 4x4 pixel blocks in horizontal

filtering and in vertical filtering can reduced to half access times for internal memory.

Supposition the memory system is 32-bit data bus, the advanced filter processing order
for a macro-block needs (384-16x4x2)=256 times of memory read and 256 times of memory

write. The number of total memory access is 512 times.

chroma

Figure 2.17: Advanced processing order
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2.5.3 2-D Processing Order

In the figure 2.18 is shown the 2-D filter processing order. The filter order conforms to
the de-blocking filter processing standard. It is performed alternately to the horizontal
filtering and the vertical filtering [10]. For example, the filtering operation is started with
vertical edge 1, the block (L1) and block (BO) were sent to the filter from internal memory
using its two ports. After filtering of vertical edge 1, the block (L1) is stored back to the
internal memory, the other block (BO) is buffered in the de-blocking filter unit for next stage
filtering. After the last filtering, the vertical edge 2, the block (BO) is sent to the transpose
buffer wait for the horizontal edge 3 filtering, the block (B1) is buffered in the de-blocking

filter unit for next stage vertical edge 4 filtering.

Supposition the memory system is 32-bit data bus, the 2-D filter processing order for a
macro-block needs (4x12+4x12x2+(4x6+4x2x2)x2)=224 times of memory read and 224 times

of memory write. The number of total memory access is 448 times.

chroma

Figure 2.18: 2-D processing order
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2.5.4 2-D Simultaneous Processing Order

In the figure 2.19 is shown the 2-D simultaneous filter processing order. It is performed
alternately and simultaneous processing order of the horizontal filtering of vertical edge and
the vertical filtering of horizontal edge [5]. The figure shows, it was used by one the
horizontal filter unit and one the vertical filter unit to simultaneous processing order. This
method goal is in order to reduce when clock cycles quantity. Supposition the memory system

is dual port RAMs and the data bus is 32-bit.

For example, the filtering operation is started with vertical edge 1, the block (L1) and
block (BO) are sent to the filter from internal memory using its two ports. After filtering of
vertical edge 1, the block (L1) is stored back to the internal memory, the other block (BO) is
buffered in the de-blocking filter unit for next stage filtering. After the last filtering, the
vertical edge 2, the block (BO) is sent to the transpose buffer wait for the horizontal edge 3
filtering, the block (B1) is buffered in the de-blocking filter unit for next stage vertical edge 3

filtering.

U T5 T6

19 20

L5( 17 )B16{ 18 )B17
21 22

L6( 19 )B18( 20 )B19

Figure 2.19: 2-D simultaneous processing order
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2.5.5 Summary related work

Table 2.4: comparison of above proposed architecture

2-D
Methoad Basic Advanced Simultaneous
[9] [9] [5]
Cycles/MB 712 760 460
Filtering Cycles/MB 392 440 140
External memory
320 320 320
access cycles
Working frequency 100 MHz 100 MHz 100 MHz
Edge Filters 1 1 2
4x4 array 2 2 3
4x4 FIFQ 0 0 9
Technology (u m) 0.25 0.25 0.13
Gate count 18.91K 18.91K 35.99K
) One read and one| One read and one|Two read and two
Memory architecture i ' )
write SRAM write SRAM write SRAM
SRAM requirements 88x32 88x32
. . 160x32
for pixels (bits) 72x32 72x32

All gate counts don’t include SRAM.

The basic [9] and 2-D Simultaneous [5] are use two SRAM modules and interleaved
memory organization to store the pixel data of a macro-block for efficient access of pixels in

different blocks of the macro-block.
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Chapter 3

Proposed architecture of de-blocking filter

In this chapter, we propose our architecture. In section 3.1 we present the main parts of
the architecture for the de-blocking filter. In section 3.2 we show the proposed filtering order
and how it reduces internal memory size. In section 3.3 we describe the internal memory
organization. In section 3.4 we describe the data buffer and transpose buffer about how they

work. In section 3.5 we present our control unit about how it works.

3.1 Overview of the Proposed Architecture

Figure 3.1 shows the main parts of the architecture for the de-blocking filter. It includes
the external memory, internal SRAM, filter unit, data buffer, transpose buffer and control unit.

The following comes to introduce these constructions individually the basic function.

Coding Info. »| Control Unit
T
FE e NN E ————— -
| y Nonfiltered ¥
Internal pixels Filter o
SRAM unit
External -—p> : AFlltered { f
memory | pixels
| Data
y buffer
Transpose I
-
buffer
Bus
interface |

Figure 3.1: System architecture of the de-blocking filter
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External Memory:

The purpose of external memory is stored the frame data that processed by decoder. The
external memory provides the unfiltered data to the de-blocking filter and according to the
filter order. When current frame was processed, the next frame is going to send to the external

memory. The reconstruction frame is provided to the motion compensation use.

Internal SRAM:

A macro-block data is loaded to the internal SRAM from the external memory.
Generally speaking, the internal SRAM size is 32-bitx160 because consisted of a 16x16 luma
block, two 8x8 chroma block, and sixteen 4x4 neighbor block. When current macro-block

was processed, the next macro-block is going to send to the internal SRAM.

Filter unit:
The edge filter unit is a parallel-in parallel-out filter, the input end is two 32-bit data bus
and output end is two 32-bit data bus. Its interior has the different operation pattern that may

choose because of the different parameter.

Data Buffer:

In the basic processing order does not make use of data dependence between neighboring
4x4 pixel blocks, therefore does not need data buffer. But after the processing order makes
use of the data dependence, therefore needs data buffer to reduce the memory the access

number of times.

Transpose Buffer:
The transpose buffer function is uses in the vertical filtering across horizontal edges.
When the horizontal filtering across vertical edges of the data processes places in the

transpose buffer to make the transformation afterwards.
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Control Unit:
The control unit of de-blocking filter module is to control the signals such as Bs, CO, a,

the information and so on. Moreover a function is controls the data the input-output.

In our architecture design, first we will find a new filter processing order. By the new
filter processing characteristic we may obtain the data dependence and data reuse strong point.
Because of these merit, we may reduce the number of memory references, decrease the
required memory size and using fewer the register amounts, and speed up the whole filtering
process. Afterwards chapter, we will be able individual to introduce each construction.

Understanding the whole architecture, how realization and operation.

3.2 Filtering Order
3.2.1 De-blocking filter order of the 4x4 sub-block edge

The de-blocking filter uses one 4x4 pixels block as unit to process all macro-blocks. The
de-blocking filter -in H.264/AVC is performed in the vertical edge first, and then the

horizontal edge. Therefore filter ordering according to this criterion, the 4x4 sub-block edge,
left edge is filtered first, right edge is filtered second, come again the top edge is filtered third,

and lower edge is the last one as shown in figure 3.2.

macro-block
©,
ONO,

Figure 3.2: De-blocking filter order of the 4x4 sub-block edge
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3.2.2 Proposed edge filtering order

Our filtering order is illustrated in figure 3.3. It is a macro-block filtering to need the data,
the blocks BO to B23 are the current macro-block, the blocks T1 to T8 are the top neighbor
block that were provided the vertical filtering across horizontal edges to use, the blocks L1 to
L8 are the left neighbor block that were provided the horizontal filtering across vertical edges
to use. In our proposed de-blocking filter architecture is to use two edge filter units, the goal
is reduce the filter processing cycles, which support real-time de-blocking of HDTV with

higher resolution.

Figure 3.3: Proposed filtering order

The figure 3.3 shows the two edge filter units are simultaneous processing and we
indicated the horizontal filtering across vertical edges by the red circle, the vertical filtering
across horizontal edges by green circle. In circle numeral is expressed of filter order. Each

numeral is an edge of two adjacent blocks that equal to the filter unit processing four times.
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3.2.3 Divide the luma block

According to the filter order, we may divide into luma block two parts. The processing

order 1 to 8 and 9 to 16 are same filtering order. As shown in Figure 3.4.

processing order (1, 9) processing order(2, 10) processing order(3, 11) processing order (4, 12)

|
processing order (5, 13) processing order (6, 14) processing order(7, 15) processing order (8, 16)

Figure 3.4: Luma block of the filtering order

About the luma block may open the solution after ours filter order to become two parts,
as shown in Figure 3.5. After luma block upper half was filtered, the blocks B4, B5, B6, and
B7 were passed through the transpose buffer to make the transformation then stored to the
internal SRAM. When the luma block lower half was filtered, the blocks B4 to B7 may use

directly, but does not have again to pass through the transformation.

T1 T2 T3 T4

Y TL | T2 | T3 [ T4 L1 | BO | BL | B2 | B3
L1 | BO | BL | B2 | B3 L2 | B4 | B5 | B6 | B7
L2 | B4 | B5 | B6 | BT | = +
L3 | B8 | B9 | B10 | B11 B4 | B5 | B6 | B7
L4 | B12 | B13 | B14 | B15 L3 | B8 | B9 | B10 | Bl1

luma L4 | B12 | B13 | B14 | B15

Figure 3.5: Luma block break down upper and the lower two parts
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Because of ours filtering order can reduce the size of the internal SRAM, decreases the
transpose buffer use quantity, improves the throughput of filtering operations, and the amount

of reduction of the external memory accesses.

3.3 Parallel Memory Unit

Because we simultaneously use two edge filter units to make the operation, therefore
these input ends of two edge filter units also must simultaneously obtain the pixel data. So we
use two 32-bitsx48 dual ports SRAM to store the pixels data needed. As shown in Figure 3.6,
we divide the pixels data within one macro-block into the form of the interlocking type, have

corresponding internal SRAM individually pixels data its.

We use their purposes of the way of the interlocking type to be to take place for the
phenomenon of preventing the memory from conflicting. The pixels data needed can do
parallel access at we are making the horizontal filtering across vertical edges and making the

vertical filtering across horizontal edges.

32 bits 32 bits
- -
32 32 32 L L
I‘bits“bits“bits‘ B4 BO
2 3R 3R 2 R B1 B5
I‘bits;‘bits=‘bits=‘bit57=bits= U 15| 16 _1[ B6 B2
-
48 15 48 12
L1 |Bo|B1|B2| B3| L6 |BI8 B3 | : T3 T4
— (words) (words)
2 |12|palBs|Be|B7| VI|T7|T8] LS L
words B18 B16
)
L3 | BS | B9 |B10|B11|| L7 |B20|B2L |words B17 B19
T5' T6'
N L4 ({B12|B13|B14|B15|| L8 | B22 | B23 1 T IEYY
luma chroma 48x32 48%x32

SRAM 0 SRAM 1

Figure 3.6: Memory mapping of 4x4 blocks
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As shown in Figure 3.6, the T1', T2', T3, T4', TS5, T6', T7', and T8' are the 4x4 block
pixel data got after the transpose buffer to make the transformation afterwards to putting after
dealing with by the horizontal filtering across vertical edges first. So they can be used directly
that the blocks T1' to T8' needn't to make the transformation afterwards and put when doing
the vertical filtering across horizontal edges. The interleaving nature of data organization

allows for simultaneous writing and reading of data to and from the internal SRAM.

3.4 Data Buffer & Transpose Buffer

Data buffer
As shown in Figure 3.7, the 4x4 block BO have sixteen pixel (b00~b33), each pixel can
be stored 8-bits. Input and output of the de-blocking filter regard four pixels (32-bits) as a unit.

So need to spend four cycles (one block cycle) to finish to one edge of the 4x4 block.

Ll@BO@Bl Filtering order

b00 { b0l | b02 | b03

b10 | b1l | b12 | b13

b20 | b21 | b22 | b23

b30 | b31 | b32 | b33

4*4 block BO

16*16 macro-block

Figure 3.7: for example a 4x4 block

As shown in Figure 3.7 and 3.8, the 4x4 blocks L1, B0, and B1 are the neighboring three
blocks. Now we must first de-blocking filter block L1 and the block BO middle vertical edge
then again make between block BO and the block B1 the vertical edge. Therefore we input L1

to the filter unit of p (pO~p3) input end, input BO to the filter unit of q (q0~qg3) input end,
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causes both to make the filtering order 1 the movement. After the filtering order 1 completes,
processing from now on pixels of the block BO will be able to deposit in data buffer in order
to next the filtering order 2 use. Therefore because of the data buffer use, we may reduce from

internal SRAM read data number of times.

4 pixel (32-bit) 4 pixel (32-bit)
p3 p2 pl pO q0 gl 92 o3
Filter unit

A / ¢ ¢

b30"| b31'| b32'| b33

| b20' | b21'| b22" | b23'

= —Y--{ Y ¥ | |b10"|b11'|b12' | b13'
Output to transpose buffer |
or internal SRAM 0'| b01'| b02' | bO3' I
| ata buffer
p3 p2 IO1 D

Figure 3.8: Data buffer operation

Transpose Buffer

In our proposed de-blocking filter architecture to use two 32-bitsx8 transpose registers to
transpose the pixels which obtains by way of the horizontal filtering across vertical edges. As
shown in Figure 3.9 this is group of two 32-bitsx4 transpose registers. Every small square
represents 1 pixel (8-bits) register. The solid line of arrows expresses the input data path while
the dotted line of arrows expresses the output data path. And the data bus input and outputted
are all 4 pixels (32-bits). For example, it needs to spend four cycles to store the sixteen pixels
to transpose a 4x4 block. When processing the vertical filtering across horizontal edges, we

can output the pixels data that we need with the selector.
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Figure 3.9: Transpose buffer operation

3.5 Control Unit

Figure 3.10 shows the overall architecture of our proposed de-blocking filter and the data
bus is all 32-bits. It includes the internal SRAM size is 32-bitx96, two parallel-in parallel-out
filter unit, two data buffer of 32-bitsx4 FIFO register, four transpose register and a control
unit. Some of control unit that is very important component, it is to control the signals such as
Bs, CO, a, B the information and so on. Moreover a function is controls the data the
input-output. So we explain next how the controller controls the flow of pixel data with the
part of upper part of Luma block. We make necessary pixels data from external memory load

to internal SRAM at first.
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Figure 3.10: Overall architecture of our proposed de-blocking filter
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Step 1: block cycle 1 (clock cycle 1~4)

At first, we load L1 and L2 of the left neighbor block from the internal SRAM then input

them in two data buffer separately, use for horizontal filtering on vertical edge 1 after offering

to. As shown in Figure 3.11.

} 4 B o
Li3| [L23 e L2 5 _ L _
B4 | [BO > — |
Bl | | B5 2 —>
B6 | [ B2 T > r —
B3| [B7
T13| [T23 — [}
T33| [T43 —
53| [L63 .
B18| [B16 = 2
B17| [B19 7S | L13| 2 1]
T53| [T63 - ,_,'_’
T73| [T83 p ™
LT >
% — - 4 -

Figure 3.11: The data path of storing block of L1 and L2 into data buffer
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Step 2: block cycle 2 (clock cycle 5~8)

Figure 3.12 shows the horizontal filtering on vertical edge 1 treating processes.
Therefore we load the block BO and B4 from internal SRAM at the same time, lets two filter
units make the use. After horizontal filtering on vertical edge 1 completes that the blocks L1

and L2 are stored to internal SRAM, the blocks BO and B4 are stored to the data buffer,

waiting next filtering order uses.

|
[ |
| N ‘
> =Ly n
L1*] [L2* c T i _
B4 | [ BO - ——
Bl | [ B5 2 —™
B6 | [.B2 T > ’ —
B3 | [ BY
T13| [T22 — [}
T33| [T4° —
L53| [L6= -
B18| [B16 o= e
B17| [B19 > | BO* = 1]
=) —
T53| [T6= = o
T3 [T8° = e
T >
% o = 4 o

Figure 3.12: Horizontal filtering on vertical edge 1

Step 3: block cycle 3 (clock cycle 9~12)

Figure 3.13 shows the horizontal filtering on vertical edge 2 treating processes.
Therefore we load the block B1 and B5 from internal SRAM at the same time to give two
filter units uses separately. After the horizontal filtering on vertical edge 2 processing
completes, the blocks B1 and B5 are stored up to the data buffer, the blocks BO and B4 are

transmitted the transpose buffer to make the transformation (BO and B4) that to wait for

vertical filtering.
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Figure 3.13: Horizontal filtering on vertical edge 2
Step 4: block cycle 4 (clock cycle 13~16)

Figure 3.14 shows the horizontal filtering on vertical edge 3 treating processes. This step
is the same as process of step 3. After the horizontal filtering on vertical edge 3 processing
completes, the blocks B1 and B5 are transmitted the transpose buffer to make the
transformation (B1 and B5) that to wait for vertical filtering. The thing that should look out is
that the blocks BO and Bl can't be placed on the same group of the transpose buffers,

otherwise will cause the conflict of the data. So the blocks B4 and B5 are the same situation.

% i O
| [ > S| B6*|E _ B1= 5 _
B4 | [BO > — l
Bl | [ B5 ] — >
B6 B2 T > B42 I —o
B3 | [ B7
T13| [T23 — [}
T32| [T43 — 3
L53| [L63 ]
B18| [B16 _ = O B52
B17]| |B19 - g" B2 ! L)
753| [T6° = —
T73| [T83 2 I
o = B02
% — o |4 o

Figure 3.14: Horizontal filtering on vertical edge 3
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Step 5: block cycle 5 (clock cycle 17~20)

As shown in Figure 3.15. We load T1 and T2 of the top neighbor block from the internal
SRAM then input them in two data buffer separately, use for vertical filtering on horizontal
edge 4 after offering to. Does not act in this stage of two filter unit, therefore the blocks B2

and B6 pixels data has not been changed on is stored directly the internal SRAM.

% _ —y
- o
= 3 2
5| [L2F = %-> T2 't " Bl M B
B4 | [BO = —
Bl | [ B5 2 — >
B61| [B2% Lyt T > o [T -
B3 | [ BY 4
T13| [T23 — [}
T33| [T43 B
L53| [L63 ]
o 2
B18]| [B16 > 2| T13| 2 B5 _L>
B17| [B19 = o "
T53| [T63 = . =1
[<5]
T73| [T83 = _|->
T = B02
% o I L4 o

Figure 3.15: The data path of storing block of T1 and T2 into data buffer

Step 6: block cycle 6 (clock cycle 21~24)

Figure 3.16 shows the vertical filtering on horizontal edge 4 treating processes.
Therefore we load the block B0 and B1 from transpose buffer at the same time, lets two filter
units make the vertical filtering. After the vertical filtering on horizontal edge 4 processing
completes, the blocks T1 and T2 are stored to transpose buffer make the transformation (T1

and T2), after in order to store the internal SRAM.
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Figure 3.16: Vertical filtering on horizontal edge 4

Step 7: block cycle 7 (clock cycle 25~28)

Figure 3.17 shows the vertical filtering on horizontal edge 5 treating processes. This step
is the same as process of step 6. After the vertical filtering on horizontal edge 5 processing
completes, the blocks BO and B1 are stored to transpose buffer make the transformation (BO

and B1) that to wait for storing the internal SRAM.

| &
[ |
¢ ¢ ] : -
LT*] [L2% | B _ T2 L -
B4 | [ BO t —>
Bl | [B5 2 — >
B6%| | B2 —ri > BO* I —
B3 | [ BY
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Figure 3.17: Vertical filtering on horizontal edge 5

41



Step 8: block cycle 8 (clock cycle 29~32)

This stage of two filter unit is not act. We load the blocks B2 and B6 from the internal
SRAM then input them in two data buffer separately, use for the horizontal filtering on
vertical edge 6 after offering to. The blocks T1 and T2 are stored to the internal SRAM, the
blocks B4 and B5 are stored to transpose buffer but not make the transformation as shown in

figure 3.18.

Ee

L1*| [L2*
B4 BO
Bl B5
B61| |.B21 =
B3 B7
T1* | | T2*
T33| | T43
L53| [ L62
B18| | B16
B17]| |B19
T53| | T63
T73) | 188

= iy

Figure 3.18: The data path of storing block of B2 and B6 into data buffer
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Step 9: block cycle 9 (clock cycle 33~36)

Figure 3.19 shows the horizontal filtering on vertical edge 6 treating processes.
Therefore we load the block B3 and B7 from internal SRAM at the same time to give two
filter units uses separately. After the horizontal filtering on vertical edge 6 processing
completes, the blocks B3 and B7 are stored up to the data buffer, the blocks B2 and B6 are
transmitted the transpose buffer to make the transformation (B2 and B6) that to wait for

vertical filtering and the blocks B0 and B1 are stored to the internal SRAM simultaneously.
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Figure 3.19: Horizontal filtering on vertical edge 6

Step 10: block cycle 10 (clock cycle 37~40)

As shown in Figure 3.20. We load T3 and T4 of the top neighbor block from the internal
SRAM then input them in two data buffer separately, use for the vertical filtering on
horizontal edge 7 after offering to. Does not act in this stage of two filter units, therefore the
blocks B3 and B7 pixels data have not been changed and to store directly the transpose buffer.

And the blocks B4 and B5 are stored to the internal SRAM simultaneously.
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Figure 3.20: The data path of storing block of T3 and T4 into data buffer
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Step 11: block cycle 11 (clock cycle 41~44)

Figure 3.21 shows the vertical filtering on horizontal edge 7 treating processes.
Therefore we load the block B2 and B3 from transpose buffer at the same time, lets two filter
units make the vertical filtering. After the vertical filtering on horizontal edge 7 processing
completes, the blocks T3 and T4 are stored to transpose buffer make the transformation (T3

and T4), after in order to store the internal SRAM.

% ™ —y
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Figure 3.21: vertical filtering on horizontal edge 7

Step 12: block cycle 12 (clock cycle 45~48)

Figure 3.22 shows the vertical filtering on horizontal edge 8 treating processes. This step
is the same as process of step 11. After the vertical filtering on horizontal edge 8 processing
completes, the blocks B2 and B3 are stored to transpose buffer make the transformation (B2

and B3) that to wait for storing the internal SRAM.
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Figure 3.22: vertical filtering on horizontal edge 8

Table 3.1: data flow of our proposed architecture

Block cycle
state =
1 2 3 4 5 6 7 8 9 10 | 11 | 12
FIFO 1 L1 | BO | BL | B2 | T1 | B0 | B4 | B2 | B3| T3 | B2 | B6
FIFO 2 L2 | B4 | B5 | B6 | T2 | B1 | B5 | B6 | B7 | T4 | B3 | B7
Array 1 BO | BO | BO | T1 | TL | B4 | B4 | B7 | B7 | B3
Array 2 B5 | B5 | B5 | Bl | BL | B2 | B2 | T3 | T3
Array 3 B4 | B4 | B4 | B4 | BO | BO| B6 | B6 | B6 | B2
Array 4 Bl | BL | T2 | T2 | B5 | B5 | B3 | T4 | T4
Filter unit H1|H2 | H3 V4| V5 H 6 V7|V8
SRAMO | L1 | B4 | Bl | B6 | T1 B6 | B3 | T3
(load)
SRAM1 | L2 | BO | B5 | B2 | T2 B2 | B7 | T4
SRAM 0 L1 B6 T1 | BL | B4
(store)
SRAM 1 L2 B2 T2 | BO | B5

45




Chapter 4

Implementation results

Chapter 4 is the simulation results of our design and it is composed of three paragraphs.
The simulation environment is introduced shortly in the first paragraph. And the results are
presented in detail in the next paragraph. Here some advantages of our hardware would be
accentuated by comparing with other architectures. At last, some improvements which can

make our hardware more efficient are discussed for future work.

4.1 The simulation environment

The module we proposed is written in programs of the language of Verilog1995 and
simulated in Modelsim 6.1 environments. For the procedure of synthesis, all programs are
compiled with Verilog-XL in Synposys system. Our design is implemented with TSCM 0.13

um technology for estimations of gate counts and maximum operating frequency.

Design flow
A Specification
specification development
‘ RTL
) RTL : i
RTL design develoﬁr?:iit - simulation
(Modelsim 6.1)
\
Gate-level
_I I . - -
f;;eth::ii Synthesis |«— simulation
(Verilog XL)

A
Timing
verification

'

Figure 4.1: Design flow in our implementation
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4.2 Comparison with other architectures

The main comparisons of our research are the hardware design and cost. Here we will

talk about the main modified parts in detail.

In [9], the internal SRAM of the basic processing order is organized in the form of an
interleaved memory and 2 two port (one read port and one write port) SRAM’s. For
horizontal filtering, the interleaving nature of data organization allows for simultaneous
writing and reading of data to and from the memory. The internal SRAM of the advanced
processing order didn't change according to the traditional memory structure. In [5], the
internal SRAM of the 2-D simultaneous processing order is to use 2 dual port (two read port
and two write port) SRAM’s. For horizontal and vertical filtering, the interleaving nature of
data organization allows for simultaneous writing and reading of data to and from the memory.
In our proposed, the internal SRAM is to use 2 two port SRAM’s. Because of improvement

the processing order, we can reduce the size of the SRAM.

Table 4.1: Comparison of hardware cost in the main module

2-D
Basic _
Method Simultaneous proposed
[9]

[5]
# Filter units 1 2 2
# arrays (16 pixels) 2 3 4
# FIFOs (4x32 bit ) 0 9 2

Memory architecture

One read and

Two read and

One read and

one write two write one write
SRAM requirements for 88x32 88x32 48x32
pixels (bits) 72%x32 72x32 48x32
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Table 4.2 shows the Performance comparison of various architectures. The total
cycles/Macro-Block includes filtering cycles/Macro-Block and external memory access
cycles/Macro-Block two parts. The filtering cycles/Macro-Block is processes 1 Macro-Block
need of cycles. The external memory access cycles/Macro-Block spends 160 cycles to load
unfiltered pixels from external memory to internal SRAM and spends 160 cycles to store

filtered pixels from internal SRAM to external memory.

Compared with [9] and [5], our external memory access cycles/Macro-Block is faster

because of having consideration pixel data not repeat the method of access.

Table 4.2: Performance comparison of various architectures

2-D
Basic :
Method Simultaneous proposed
[9]
[5]
Filtering Cycles/MB 392 140 144
External memory
320 320 256
access cycles/MB
Total Cycles/MB T2 460 400
Working frequency 100MHz 100MHz 100MHz

Filtering Cycles/Macro-Block (MB):

The related works and our proposed of computation are the same so the working frequency
are 100MHz.

External memory access cycles/Macro-Block (MB):

The access time is one cycle for 32-bit data.
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Table 4.3 shows the implementation of our proposed. We described our architecture by

Verilog HDL and synthesized the circuit using TSMC 0.13um technology library by

Synopsys Design Analyer with critical path constraint set to 10 ns (L00MHz).

Table 4.3: implementation of our proposed

2-D
Method Basic i
Simultaneous proposed
Gate count 9]
[5]
Technology (b m) 0.13 0.13 0.13
Working frequency 100 MHz 100 MHz 100 MHz
array 3.87K 4.74K 6.32K
FIFO 0 11.88K 3.18K
Control unit 4.07K 4.11K 3.77K
(not Filter unit)
7.94K 20.73K 13.27K
Area
Filter unit 6.67K 13.34K 13.34K
Total area 14.61K 34.07K 26.61K

SRAM is not included in total area

Filter unit: 6.67K gate count [5]
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4.3  Future work

The De-blocking Filter of H.264 decoder is an important part of entire system; it can
dominate system performance and quality for video image. But for high computing
complexity and real-time application, the de-blocking Filter may become a bottleneck of
hardware implementation. We can analyze the power and performance of realistic decoder
system in both hardware and software realizations and then present a general model of

de-blocking architecture. We will work on reducing the power consumption of our design.
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Chapter 5

Conclusion

In this paper, we present the architecture to accelerate the operations of de-blocking filter
for H.264/AVC. The major idea is to reduce the execution cycles by propose a processing
order of De-blocking Filter. Because of the novel processing order of De-blocking Filter, we
may reduce the number of memory references. The novel processing order can break down
two parts of macro-block, so we may reduce the internal memory size and using fewer the
register amounts to store the data. Making good use of the data dependence between
neighboring 4x4 blocks, in both horizontal direction and vertical direction. Next we are to use
interleaved memory organization allows for simultaneous writing and reading of data to and
from the internal SRAM. Finally as a result of the De-blocking Filter needs many image data
to again access in the external memory, therefore we reduce to external memory access times
that performance improvement is achieved by an efficient use of internal SRAM. The
synthesized results indicate that our design may support real-time de-blocking filter of HDTV

(1280%720, 60fps) H.264/AVC video.
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