

國 立 交 通 大 學

電機學院 IC 設計產業研發碩士班

碩 士 論 文

藉由改變巨方塊中資料運算的順序

以提升去方塊濾波器的效能

Reordering the data operation of macro-block for

improving the performance of de-blocking filter in H.264/AVC

研 究 生：陳泰霖

 指導教授：鍾崇斌 教授

中 華 民 國 九 十 七 年 十 月

藉由改變巨方塊中資料運算的順序以提升去方塊濾波器的效能

Reordering the data operation of macro-block for

improving the performance of de-blocking filter in H.264/AVC

 研 究 生：陳泰霖 Student：Tai-Lin Chen

 指導教授：鍾崇斌 Advisor：Chung-Ping Chung

國 立 交 通 大 學

電機學院 IC 設計產業研發碩士班

碩 士 論 文

A Thesis

Submitted to College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Industrial Technology R & D Master Program on

IC Design

June 2008

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 七 年 十 月

 i

藉由改變巨方塊中資料運算的順序以提升去方塊濾波器的效能

學生:陳泰霖 指導教授:鍾崇斌

國立交通大學電機學院產業研發碩士班

摘 要

ISO/IEC as MPEG-4 Part 10 Advanced Video Coding(AVC)與 ITU-T 制定之

H.264/AVC 是最新的視訊國際壓縮標準。H.264/AVC 具有較高的視訊壓縮率以及能提供

較佳視訊品質。由於 H.264 是採用方塊(block)模式去做影像處理，所以也同時造成了影

像的失真，當中最明顯的就是方塊雜訊效應(blocking artifact)。為了解決這個問題，在

H.264/AVC 的視訊標準裡有一個功能方塊稱作去方塊濾波器(de-blocking filter)，根據

H.264/AVC 解碼器的複雜度模擬結果中，結果顯示去方塊濾波器是解碼器內最複雜的部

分，大約佔用了 36%的執行時間。由於去方塊濾波器的資料處理過程中有重複存取的現

象產生，因此為了有效提升記憶體存取效能及去方塊濾波之執行速度，我們提出一種新

的架構給 H.264/AVC 的去方塊濾波器使用。首先我們提出了一個新的資料運算順序，

使得濾波的時間以及記憶體的使用較傳統的設計少。並提出一個新的資料存取方式，讓

去方塊濾波器在處理過程中能夠同時存取所需的資料，藉此來減少所需的工作週期。我

們使用硬體描述語言(Verilog Hardware Description Language)來設計此架構, 再利用模擬

軟體(ModelSim)分別驗證其功能，並在台灣積體電路公司(TSMC)所提供的 0.13μm製程

library 及 Synopsys 所提供的合成軟體做合成電路，其合成的結果顯示，在時脈速度為

100MHz 的情況下，所提出的去方塊濾波器架構能夠處理解析度為 720P(1280×720

@60fps)的高解析度視訊影像。

 ii

Reordering the data operation of macro-block for improving the performance of

de-blocking filter in H.264/AVC

Student：Tai-Lin Chen Advisor：Dr. Chung-Ping Chung

Industrial Technology R & D Master Program of

Electrical and Computer Engineering College

National Chiao Tung University

ABSTRACT

 H.264/AVC is a new generation video coding standard and is approved by ITU-T as

Recommendation H.264 and by ISO/IEC as MPEG-4 Part 10 Advanced Video Coding.

H.264/AVC is to achieve higher compression efficiency and provide the better video quality.

Because the H.264 is an adoption block the mode does image processing. However, the most

annoying artifact known as the blocking artifact also comes into existence. In order to solve

this problem, the de-blocking filter is an important component of H.264/AVC to reduce the

block artifacts. In the complexity simulation of H.264/AVC decoder part, the de-blocking

filter is the most complexity part, probably has taken 36% execution time. Because of in the

de-blocking filter data processing process has the repetition access appearance. In order to

improve memory performance and speed up the de-blocking filter, we propose a new

architecture for de-blocking filter in H.264/AVC. First we propose a novel filtering order that

results in significant saving in both filtering time and local memory usage. And we propose a

new data access a method. Let the de-blocking filter can simultaneous access necessity the

data in processing process, we can reduce the working cycles. The proposed architecture is

synthesized with TSMC 0.13μm technology. The synthesized de-blocking filter architecture

could process video in 720P HD (High-definition television, HDTV, 1280×720 pixels/frame,

60 frames/sec video signals) format at 100MHz.

 iii

誌謝

 終於結束了漫長的碩士求學生涯，這三年來的求學生涯對我來說實在是畢生難忘，

而在此要跟長期陪伴我度過這段時間的所有人說一聲謝謝。

 這篇論文得以完成，首先要感謝的是我的指導教授鍾崇斌老師，鍾老師豊富的研究

經驗且鼓勵我們自發性的學習，且當在我論文研究時，常常提出很好的建議，讓我在研

究所兩年中，學習到解決、發現問題的方法，也學到了許多非常有用的知識。

 並且在這裡感謝單智君老師、邱日清老師、洪士灝老師，在百忙之中願意參加我的

口試，並且在口試過程中提出許多寶貴的意見，使我的論文能夠更加的完善。

 同時感謝蔣昆成學長，這三年來的熱心指導，在研究過程中不斷的提供許多寶貴的

意見，使我能夠更準確的達到研究目的，此外也感謝我週遭的同學與朋友，不管在課業

上或是日常生活上能夠一起扶持與成長。

 最後要感謝我的父母親，願意支持我繼續唸碩士班的決定，並且在我求學的這段時

間內不斷的加油打氣，如果沒有你們的支持，我相信我是無法順利完成學業的，謝謝你

們。

 iv

List of Contents

中文摘要 ……………………………………………………………………………i

英文摘要 ……………………………………………………………………………ii

誌謝 ……………………………………………………………………………iii

目錄 ……………………………………………………………………………iv

表目錄 ……………………………………………………………………………vi

圖目錄 ……………………………………………………………………………viii

一、 Introduction………………………………………………………………1

1.1 Motivation…………………………………………………………………3

1.2 Objective……………………………………………………………………4

二、 Background & Related Work………………………………………………5

2.1 The blocking artifact………………………………………………………5

2.2 De-blocking Filter Algorithm………………………………………………6

 2.2.1 Input of the de-blocking filter………………………………………………7

 2.2.2 De-blocking Filter Processing Order………………………………………8

2.3 Boundary Strength…………………………………………………………11

 2.3.1 Gradient of image samples across the boundary…………………………13

 2.3.2 Derivation process for the thresholds for each block edge………………15

2.4 Filtering Operation………………………………………………………16

 2.4.1 Normal mode : (Bs=1~3) ………………………………………………16

 2.4.2 Stronger mode : (Bs=4) …………………………………………………19

2.5 Related Work……………………………………………………………22

 2.5.1 Basic Processing Order……………………………………………………23

 2.5.2 Advanced Processing Order………………………………………………24

 2.5.3 2-D Processing Order………………………………………………………25

 2.5.4 2-D Simultaneous Processing Order………………………………………26

 2.5.5 SSuummmmaarryy rreellaatteedd wwoorrkk……………………………………………………27

三、 Proposed architecture of de-blocking filter………………………………28

3.1 Overview of the Proposed Architecture……………………………………28

3.2 Filtering Order……………………………………………………………30

 3.2.1 De-blocking filter order of the 4×4 sub-block edge………………………30

 3.2.2 Proposed edge filtering order………………………………………………31

 3.2.3 Divide the luma block……………………………………………………32

3.3 Parallel Memory Unit………………………………………………………33

3.4 Data Buffer ＆ Transpose Buffer …………………………………………34

3.5 Control Unit………………………………………………………………36

 v

四、 Implementation results……………………………………………………46

4.1 The simulation environment………………………………………………46

4.2 Comparison with other architectures………………………………………47

4.3 Future work………………………………………………………………50

五、 Conclusion…………………………………………………………………51

Reference ……………………………………………………………………………52

 vi

List of Figures

Fig 1.1 Block diagram of H.264/AVC…………………………………………………………3

Fig 1.2 Run-time profile of H.264/AVC decoder……………………………………………4

Fig 2.1 Illustration of blocking artifact………………………………………………………6

Fig 2.2 The location of de-blocking filter in H.264/AVC decoder……………………………7

Fig 2.3 Input of the de-blocking filter…………………………………………………………8

Fig 2.4 Horizontal filtering across luma vertical edges………………………………………9

Fig 2.5 Vertical filtering across luma horizontal edges………………………………………10

Fig 2.6 Filtering process of chroma block……………………………………………………10

Fig 2.7 Flowchart of Bs deriving process……………………………………………………11

Fig 2.8 Bs value for horizontal filtering across vertical edges………………………………12

Fig 2.9 Bs value for vertical filtering across horizontal edges………………………………13

Fig 2.10 Gradient of image samples across the boundary……………………………………14

Fig 2.11 Normal mode operations for luminance block……………………………………16

Fig 2.12 Normal mode operations for chrominance block…………………………………17

Fig 2.13 Stronger mode operations for luminance block……………………………………19

Fig 2.14 Stronger mode operations for chrominance block…………………………………20

Fig 2.15 Flow chart of filtering process………………………………………………………21

Fig 2.16 Basic processing order ……………………………………………………………23

Fig 2.17 Advanced processing order…………………………………………………………24

Fig 2.18 2-D processing order………………………………………………………………25

Fig 2.19 2-D simultaneous processing order…………………………………………………26

Fig 3.1 System architecture of the de-blocking filter…………………………………………28

Fig 3.2 De-blocking filter order of the 4×4 sub-block edge…………………………………30

 vii

Fig 3.3 Proposed filtering order………………………………………………………………31

Fig 3.4 Luma block of the filtering order……………………………………………………32

Fig 3.5 Luma block break down upper and the lower two parts……………………………32

Fig 3.6 Memory mapping of 4×4 blocks……………………………………………………33

Fig 3.7 for example a 4×4 block……………………………………………………………34

Fig 3.8 Data buffer operation…………………………………………………………………35

Fig 3.9 Transpose buffer operation…………………………………………………………36

Fig 3.10 Overall architecture of our proposed de-blocking filter……………………………37

Fig 3.11 The data path of storing block of L1 and L2 into data buffer………………………37

Fig 3.12 Horizontal filtering on vertical edge 1………………………………………………38

Fig 3.13 Horizontal filtering on vertical edge 2………………………………………………39

Fig 3.14 Horizontal filtering on vertical edge 3………………………………………………39

Fig 3.15 The data path of storing block of T1 and T2 into data buffer………………………40

Fig 3.16 Vertical filtering on horizontal edge 4………………………………………………41

Fig 3.17 Vertical filtering on horizontal edge 5………………………………………………41

Fig 3.18 The data path of storing block of B2 and B6 into data buffer………………………42

Fig 3.19 Horizontal filtering on vertical edge 6………………………………………………43

Fig 3.20 The data path of storing block of T3 and T4 into data buffer………………………43

Fig 3.21 vertical filtering on horizontal edge 7………………………………………………44

Fig 3.22 vertical filtering on horizontal edge 8………………………………………………45

Fig 4.1 Design flow in our implementation…………………………………………………46

 viii

List of Tables

Table 2.1 Determining of boundary strength…………………………………………………12

Table 2.2 Derivation of indexA and B from offset dependent threshold variable α and β…15

Table 2.3 Value of filter clipping variable 0Ct as a function of indexA and Bs……………18

Table 2.4 comparison of above proposed architecture………………………………………27

Table 3.1 data flow of our proposed architecture……………………………………………45

Table 4.1 Comparison of hardware cost in the main module………………………………47

Table 4.2 Performance comparison of various architectures…………………………………48

Table 4.3 implementation of our proposed…………………………………………………49

 1

Chapter 1

Introduction

The Joint Video Team (JVT) is composed by ITU-T Video Coding Experts Group

(VCEG) and ISO/IEC Moving Picture Experts Group (MPEG). JVT formulates a new video

compression standard is H.264/AVC [1]. The main objectives of H.264/AVC are to develop a

set of high efficient, the network-friendly and error-resilient ability. The video compression

standard provides from the mobile phone to HDTV widespread application and improves

largely rate-distortion efficiency. H.264 was compared to the existing standards such as

MPEG-2, H.263++ (Annexes DFIJT) and MPEG-4, in similar regards under the video

compression quality to be possible to save approximately 50% above bit-rate [3].

Although the encoding efficient of H.264/AVC is higher than the video encoding

standard formerly, but it have the quite complex encoding technology and the mode choice, so

its operation order complexity also far to be higher than the encoding standard actually

formerly. These improved characteristics are due to the application of several new coding

tools within the compression process defined by the standard, such as multi-mode

intra-prediction, multi-frame variable-block-size, variable block-size motion estimation,

quarter-pixel motion compensation, inter-prediction, integer discrete cosine transform (DCT),

context adaptive binary arithmetic coding (CABAC) and in-loop de-blocking filtering. Each

of these new encoding techniques contributes more or less to the total gain of whole

H.264/AVC system in compression ratio, but also increased its operation order complexity.

 2

One of the most special features in H.264/AVC is de-blocking filtering. Because of the

characteristic of H.264/AVC encoding compression calculation method sometimes has

obviously the block artifacts phenomenon, such as block-based motion compensated

prediction, intra prediction, and integer discrete cosine transform [4]. The de-blocking filter

contributes to eliminate or diminish the block artifacts in the decoded video sequence, while

producing the same objective quality as the non-filtered video, that can reduces the bit-rate

typically by 5%~10% [3]. But due to the de-blocking filter operations irregular data access

and uses inner loop of the highly optimized filtering algorithm. Thus the de-blocking

operation accounts consuming one-third of the computational complexity of H.264/AVC

decoder [6].

There are two different schemes of De-blocking filter in video codec, post filter and

in-loop filter. In the case of post filter, the filter is only operation on the display buffer outside

the coding or decoding loop. The decoded data is stored in a data buffer, filtered and then

stored in another video buffer before being forwarded to the display device [5]. Thus the post

filter is not normative in the standardization process. As shown in figure 1.1, the in-loop filter

is placed inside the coding loop. So that the in-loop filter processed frames are used as

reference frames for motion compensation of subsequent coded frames [4]. Thus the in-loop

filter is normative in the standardization process, in order to stay in synchronization with the

encoder.

There are several advantages of in-loop filter over post filter, one the advantage is that no

need for an extra frame buffer in the decoder, and that can improves quality of video streams

and significant reduction in decoder complexity compared to post filtering [4], and the in-loop

filter reduces the bit rate than the post filter.

 3

Figure 1.1: Block diagram of H.264/AVC

1.1 Motivation

The De-blocking Filter of H.264 decoder is an important part of entire system; it can

dominate system performance and quality for video image due to high computing complexity

and real-time application. Figure 1.2 shows the profiling results of a decoding process, the

de-blocking Filter consume 36.05% of total decoding time [7], so the processing time

becomes very important. We can opportunity of processing order of current De-blocking

Filter that many image data would be re-access between external memory and internal SRAM

[8], and it spends many cycles to transpose the image data.

 4

1.21%

8.61%

38.92%

36.05%

5.89%

9.32%

Deblocking Filter

Interprediction

 Inverse Transform and

 Inverse Quantization

Entropy Decoding

Intraprediction

Others

Figure 1.2: Run-time profile of H.264/AVC decoder

1.2 Objective

In order to solve the problem about the number of accesses of the external memory, we

proposed the processing order of de-blocking Filter and an efficient architecture of the filter.

Because of ours design methods that can accelerate filtering process with pipeline technique

for reducing the internal memory size and using fewer the register amounts.

 5

Chapter 2

Background and Related Works

In this chapter, we will describe the block artifacts occur and the algorithm of

de-blocking filter in H.264/AVC. Second, we will introduce some de-blocking filter

processing order to sample processing level.

2.1 The blocking artifact

The majority video compression standard uses that the JPEG related compression

technique to use in spatial the redundancy. In JPEG, divided into many 8×8 block for video

and it uses the discrete cosine transforms (DCT) to make each block the transformation. After

process transformation, the transformed coefficients are quantized then entropy coded. Then it

makes the classification by transformed coefficients use to the quantization table the inside

quantization step. The quantization table design reserves more low frequency coefficient and

less high frequency coefficient. Under the low bit rates condition, the possibility reserve only

one Direct Coefficient (DC) and some Alternate Coefficient (AC) represents a block.

Therefore we may lose the relativity of neighboring block. As a result, the reconstruction

image or video quality will be influenced by obvious factitiousness. This is the blocking

artifact as shown in figure 2.1.

Blocking artifact factors of H.264/AVC :

(1) The intra and inter frame prediction error coding of H.264/AVC use the integer discrete

cosine transforms (DCT). The transform coefficients are too rough that can produce

visually disturbing discontinuities phenomenon at the block boundaries [4].

 6

(2) Second factor is motion compensated prediction. The motion compensated blocks are

produced by copying interpolated pixel data that possible in the different locations of the

different reference frames [4]. Because this reason, therefore we can not find the

appropriate data that have discontinuities phenomenon at the block edge.

Figure 2.1: Illustration of blocking artifact

2.2 De-blocking Filter Algorithm

In H.264/AVC applies in-loop de-blocking filter to used eliminate blocking artifact then

generates a smooth frame as shown in figure 2.2. The intra and inter frame prediction error

coding are transformed then quantized. After decoding procedure, the reconstruction block

has an error with the originally block. Therefore it has not the continual phenomenon then can

again the block edge production. In order to eliminate discontinuity situation, the process is

applied.

First the de-blocking filter divides a frame many macro-block and the de-blocking filter

processing unit is a macro-block. After first a complete processing current macro-block, the

next macro-block is just sent in. After first a complete processing current frame, the next

 7

frame is just sent in. The de-blocking filter is located in decoder part. This will help us to

obtain the smaller vestiges data for reconstruction frames to motion compensated prediction.

NAL
Entropy

Decoding

Inverse

Quantization

Inverse

Transform

Motion

compensation

Deblocking

filter

Reconstructed

frame

Sub-per

Interpolation

input

output

Reference

frame

Figure 2.2: The location of de-blocking filter in H.264/AVC decoder

2.2.1 Input of the de-blocking filter

Inputs of the de-blocking filter include boundary strength, threshold variables and pixels

as shown in figure 2.3. The Boundary strength (Bs) is derived from the coding information of

the macro-block. The filter depends on the boundary strength to classify. The boundary

Strength (Bs) is assigned an integer value from 0 to 4. Based on the information, we may

select the suitable filter to eliminate the block artifact.

Input pixels have the specific filter ordering, each pixel may be filtered multiple times.

After first the current macro-block is completed to process, the next macro-block is just sent

in. By this analogy, the processing frame order also is so.

Two quantization parameters (QP) are α and β that are threshold values. Their contents

of frame can turn on or turn off the filtering by itself for each individual set of sample.

Because they may distinguish, the block artifact is the true edges or the factitiousness.

 8

Figure 2.3: Input of the de-blocking filter

2.2.2 De-blocking Filter Processing Order

As recommendation in H.264/AVC standard, the de-blocking filter uses one 4×4 pixels

block as unit to process all macro-blocks. This filtering process shall be performed on a

macro-block basis, with all macro-block in a frame processed in order of increasing

macro-block addresses. Prior to the operation of the de-blocking filter process for each

macro-block, the de-blocked samples of the macro-block or macro-block pair above (if any)

and the macro-block or macro-block pair to the left (if any) of the current macro-block shall

be available.

The De-blocking Filter process is invoked for the luma and chroma components

separately. For each luminance macro-block, vertical edges are filtered first, from left to right,

and then horizontal edges are filtered from top to bottom. The luma de-blocking filter process

is performed on four 16-sample edges and the de-blocking filter process for each chroma

components is performed on two 8-sample edges.

 9

Sample values above and the left of the current macro-block that may have already been

modified by the de-blocking filter process operation on previous macro-blocks shall be used

as input to the de-blocking filter process on the current macro-block and they may be

modified during the filtering of the current macro-block further. Sample values modified

during filtering of vertical edges are used as input for the filtering of the horizontal edges for

the same macro-block.

The luma de-blocking filter process is performed on four 16-sample edges. For each

luminance macro-block, vertical edges are filtered first, from left to right, followed by edge 0,

edge 1, edge 2, and edge 3 as shown in figure 2.4.

p3 p2 p1 p0 q0 q1 q2 q3

Edge 0 Edge 1 Edge 2 Edge 3

16 pixels

Figure 2.4: Horizontal filtering across luma vertical edges

The luma de-blocking filter process is performed on four 16-sample edges. The vertical

filtering is performed after the horizontal filtering, and then horizontal edges are filtered from

top to bottom, followed by edge 0, edge 1, edge 2, and edge 3 as shown in figure 2.5.

 10

Edge 0

Edge 1

Edge 2

Edge 3

16 pixels

p0

p1

p2

p3

q0

q1

q2

q3

Figure 2.5: Vertical filtering across luma horizontal edges

The de-blocking filter process for each chroma components is performed on two

8-sample edges. For each chroma block, vertical edges are filtered first, from left to right,

followed by edge 0, and edge 1, and then horizontal edges are filtered from top to bottom,

followed by edge 0, and edge 1 as shown in figure 2.6.

q0 q1 q2 q3

Edge 0 Edge 1

8 pixels

p0p1

Edge 0

Edge 1

p0

p1

q0

q1

q2

q3

8 pixels

Figure 2.6: Filtering process of chroma block

 11

2.3 Boundary Strength

The filter operation is applied to each edge of a 4×4 block. The filter decision depends

on the boundary strength and the gradient of image samples across the boundary. The

boundary Strength (Bs) is assigned an integer value from 0 to 4. The Bs values for filtering of

luminance block edges are to every edge between two 4×4 blocks. But filtering of

chrominance block edges are not calculated independently. Because of the values is copied

for their corresponding luminance edges. When Bs = 4 is strongest filter, it is used one or both

sides of edges are intra coded and the boundary is a macro-block boundary. When Bs = 3 the

one of the neighboring blocks is intra coded but the block boundary is not a macro-block

boundary. Bs = 2 means two adjacent blocks are not intra coded and one of blocks contains

non-zero coefficients. Otherwise Bs = 1 means blocks has different reference frames or

different number of reference frames or different motion vector values. When Bs = 0 means

no filtering is applied on this specific edge as shown in figure 2.7.

Block p or q

is intra coded ?

Block boundary is

Macro-block

boundary ?

Block p or q contain

non-zero coefficients ?

|V(p,x) - V(q,x)|>=1

or

|V(p,y) - V(q,y)|>=1

Block p and q have different

reference frames or different

number of reference frames ?

Block boundary

between

block p and q

Bs=4 Bs=3

Bs=2 Bs=1 Bs=0

YES

YES YES

YES

YES NO

NO

NO

NO

NO

Figure 2.7: Flowchart of Bs deriving process

 12

Table 2.1: Determining of boundary strength

As shown in figure 2.8 and 2.9, the Bs values for chroma edges that the vertical edges 0

and 1 are copied from the corresponding edges of the luma macro-block vertical edges 0 and

2. The Bs values for vertical filtering across horizontal edges are the same.

Bs0

Bs1

Bs2

Bs3

Bs4

Bs5

Bs6

Bs7

Bs8

Bs9

Bs10

Bs11

Bs12

Bs13

Bs14

Bs15

Bs0

Bs1

Bs2

Bs3

Bs8

Bs9

Bs10

Bs11

Bs0

Bs1

Bs2

Bs3

Bs8

Bs9

Bs10

Bs11

Edge 0 Edge 1 Edge 2 Edge 3

Edge 0

Edge 0

Edge 1

Edge 1

luma chroma

Y

U

V

Figure 2.8: Bs value for horizontal filtering across vertical edges

Bs Block Modes and Conditions

4 One of the blocks is intra coded and the block boundary is a macro-block boundary.

3 One of the blocks is intra coded but the block boundary is not a macro-block

boundary.

2 One of the blocks has coded residuals.

1 Have one of the following conditions:

 Motion compensation from different reference frames.

 Different number of reference frames.

 Different motion vector values.

0 No filtering is applied on this specific edge.

 13

Bs'0 Bs'1 Bs'2 Bs'3

Bs'4 Bs'5 Bs'6 Bs'7

Bs'8 Bs'9 Bs'10 Bs'11

Bs'12 Bs'13 Bs'14 Bs'15

Edge 0

Edge 1

Edge 2

Edge 3

Edge 0

Edge 0

Edge 1

Edge 1

luma chroma

Y

U

V
B

s'0

B
s'1

B
s'2

B
s'3

B
s'8

B
s'9

B
s'1

0

B
s'1

1

B
s'0

B
s'1

B
s'2

B
s'3

B
s'8

B
s'9

B
s'1

0

B
s'1

1

Figure 2.9: Bs value for vertical filtering across horizontal edges

2.3.1 Gradient of image samples across the boundary

 On the gradient of image samples across the boundary is a set of eight samples across a

boundary between two 4×4 blocks as shown in figure 2.10. The filtering does not take place

for edges with Bs equal to zero. Sets of samples across this edge are only filtered if the

following conditions are all true. 0Bs

Two quantization parameters (QP) α and β are threshold values. Their contents of frame

can turn on or turn off the filtering by itself for each individual set of sample. The thresholds

α and β are dependant on the average quantization parameter of the two 4×4 blocks p and q.

When QP is small, the gradient across the block boundary have very small change. It is say

the filter must be to turn off, because the block boundary is true edge in the frame not the

blocking artifact. When QP is larger, the gradient across the block boundary have large

change, the filter would be turned on. The samples p0, p1, p2, q0, q1 and q2 are filtered is

determined by using Bs, α, β and content of the frame itself.

 00 qp  01 pp  01 qq

 14

The filtering of p0 and q0 takes place if the following conditions are all true.

0Bs (2.1)

 (2.2)

＆ (2.3)

The filtering of p1 or q1 takes place if the following conditions are satisfied.

 02 pp or  02 qq (2.4)

The filtering of p2 or q2 takes place if the following conditions are satisfied.

( 02 pp or  02 qq) ＆   2200  qp (2.5)

q0
q1 q2

q3

p0p1
p2

p3

α

β

β

Block edge

Block p Block q

Figure 2.10: Gradient of image samples across the boundary

 00 qp

 01 pp  01 qq

 15

2.3.2 Derivation process for the thresholds for each block edge

The qPav be a variable specifying an average quantization parameter of two adjacent

4×4 blocks, it was dominate the threshold α and β.

It is derived as follows.

  11  qP qPqPqPav (2.6)

Let indexA be a variable that is used to access the α table (Table 2.2) as well as the 0Ct

table (Table 2.3), and let indexB be a variable that is used to access the β table (Table 2.2).

The variables indexA and indexB are derived as follows.

 etAFilterOffsqPavClipindexA  ,51,03 (2.7)

 etBFilterOffsqPavClipindexB  ,51,03 (2.8)

(FilterOffsetA and FilterOffsetB are used to decide of the filter is weak or strong manually)

Table 2.2: Derivation of indexA and indexB from offset dependent threshold variable α and β

 index A (for α) or index B (for β)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 5 6 7 8 9 10 12 13

β 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 3 3 3 3 4 4 4

 index A (for α) or index B (for β)

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

α 15 17 20 22 25 28 32 36 40 45 50 56 63 71 80 90 101 113 127 144 162 182 203 226 255 255

β 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18

 16

2.4 Filtering Operation

In H.264/AVC, the de-blocking filter that important function is filtering process. The

filtering process can divided into two modes. One mode of filtering that allows for normal

mode is applied when Bs parameter is 1 to 3. Another is stronger mode of filtering when Bs is

equal to 4.

2.4.1 Normal mode : (Bs=1~3)

For luminance blocks:

The filtering unit needs to read 4 samples (p1, p0, q0, and q1) and updates 2 samples (p0 and

q0).

If  02 pp

The filtering unit needs to read 4 samples (p2, p1, p0, and q1) and updates p1 sample.

If  02 qq

The filtering unit needs to read 4 samples (q2, q1, q0, and p0) and updates q1 sample.

p0p1p2p3 q0 q1 q2 q3

Left 4*1 samples right 4*1 samples

edge

Update sample

Read sample

Figure 2.11: Normal mode operations for luminance block

For chrominance blocks:

The filtering unit needs to read 4 samples (p1, p0, q0, and q1) and updates 2 samples (p0 and

q0).

 17

p0p1p2p3 q0 q1 q2 q3

Left 4*1 samples right 4*1 samples

edge

Update sample

Read sample

Figure 2.12: Normal mode operations for chrominance block

Filtering for edges with Bs less than 4

For luminance blocks:

the variables '

3

'

2

'

1

'

0

'

3

'

2

'

1

'

0 ,,,,,,, qqqqpppp are derived by

 (2.9)

     0:1?0:1? 02020   qqpptt CC (2.10)

 (2.11)

 (2.12)

When all of the following conditions hold:

 02 pp

 02 qq

The pixels 1p and 1q will be filtered.

 (2.13)

 (2.14)

 (2.15)

 (2.16)

Otherwise

For chrominance blocks:

The variables '

3

'

2

'

1

'

0

'

3

'

2

'

1

'

0 ,,,,,,, qqqqpppp are derived by

00

'

0  pp

00

'

0  qq

       342,,3 11000  qppqttClip CC

      1111,,3 1002001  pqppttClip CCp

11

'

1 ppp 

      1111,,3 1002001  qqpqttClip CCq

11

'

1 qqq 

3

'

3 pp 2

'

2 pp  2

'

2 qq 
3

'

3 qq 

 18

10  CC tt (2.17)

Otherwise

Clipping Operation

In the filtering operation would result too much low-pass filtering (blurring). A

significant part of the adaptive filter is received by limiting these values. This process is

called clipping. Different sequences for clipping are applied for the internal and edge samples

[4].

The threshold 0Ct is specified in clip Table 2.3 depending on the values of indexA and Bs.

The threshold Ct is determined as follows.

If the edge is luminance blocks:

     0:1?0:1? 02020   qqpptt CC

If the edge is chrominance blocks:

10  CC tt

Table 2.3: Value of filter clipping variable 0Ct as a function of indexA and Bs

 index A

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Bs=1 0 1 1 1

Bs=2 0 1 1 1 1 1

Bs=3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

00

'

0  pp

00

'

0  qq

11 pp 
2

'

2 pp 
3

'

3 pp  1

'

1 qq  2

'

2 qq 
3

'

3 qq 

       342,,3 11000  qppqttClip CC

 19

 index A

 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Bs=1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13

Bs=2 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 5 6 7 8 8 10 11 12 13 15 17

Bs=3 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13 14 16 18 20 23 25

2.4.2 Stronger mode : (Bs=4)

For luminance blocks:

If  02 pp and   2200  qp

The filtering unit needs to read 6 samples (p3, p2, p1, p0, q0, and q1) and updates 3 samples

(p2, p1 and p0).

If  02 qq and   2200  qp

The filtering unit needs to read 6 samples (q3, q2, q1, q0, p0, and p1) and updates 3 samples

(q2, q1 and q0).

p0p1p2p3 q0 q1 q2 q3

Left 4*1 samples right 4*1 samples

edge

Update sample

Read sample

Figure 2.13: Stronger mode operations for luminance block

For chrominance blocks:

The filtering unit needs to read 4 samples (p1, p0, q0, and q1) and updates 2 samples (p0 and

q0).

 20

p0p1p2p3 q0 q1 q2 q3

Left 4*1 samples right 4*1 samples

edge

Update sample

Read sample

Figure 2.14: Stronger mode operations for chrominance block

Filtering for edges with Bs equal to 4

When all of the following conditions hold:

  2200  qp

 02 pp

 02 qq

For luminance blocks:

The variables '

3

'

2

'

1

'

0

'

3

'

2

'

1

'

0 ,,,,,,, qqqqpppp are derived by

 (2.18)

 (2.19)

 (2.20)

 (2.21)

 (2.22)

 (2.23)

For chrominance blocks:

The condition in equation does not hold

The variables '

3

'

2

'

1

'

0

'

3

'

2

'

1

'

0 ,,,,,,, qqqqpppp are derived by

 (2.24)

 (2.25)

  34222 10012

'

0  qqpppp

  222 101

'

0  qppp

  220012

'

1  qpppp

  3432 00123

'

2  qppppp

3

'

3 pp 

  34222 21001

'

0  qqqppq

  222100

'

1  qqqpq

  3432 00123

'

2  pqqqqq

3

'

3 qq 

  222 101

'

0  pqqq

1

'

1 pp  2

'

2 pp 
3

'

3 pp  1

'

1 qq  2

'

2 qq 
3

'

3 qq 

 21

Input 8 pixels (p3, p2, p1, p0, q0, q1, q2, q3), Bs, α and β

 00 qp

 01 pp

 01 qq

0Bs

Is luminance block?

Bs level selection

Bs=4

  2200  qp

 02 pp

 02 qq

Update pixels

p0, p1, p2

 q0, q1, q2

Remain

unchanged

pixels

p3 and q3

Update pixels

p0 and q0

Remain

unchanged

pixels

p1, p2, p3

q1, q2, q3

yes

no

yes

yes

 02 pp

 02 qq

Bs=1~3

Update pixels

p0, p1

q0, q1

Remain

unchanged

pixels

p2, p3

q2, q3

yes

Update pixels

p0 and q0

Remain

unchanged

pixels

p1, p2, p3

q1, q2, q3

no

Bs level selection

Update pixels p0 and q0

Chrominance block

no

Bs=4

  222 101

'

0  qppp

  222 101

'

0  pqqq

Update pixels

p0 and q0

00

'

0  pp

00

'

0  qq

Bs=1~3

no

output

Figure 2.15: Flow chart of filtering process

 22

2.5 Related Work

In H.264/AVC standard, the de-blocking filter processing order is that, the vertical edges

are filtered first, from left to right, and then horizontal edges are filtered, from top to bottom.

The filtering process is performed on the boundary between two 4×4 pixel blocks. A

macro-block contains one luma block and two chroma blocks. The luma block have sixteen 4

×4 pixel blocks, the chroma block have four 4×4 pixel blocks. The filter processing requests

eight the top neighbor 4×4 pixel blocks and eight the left neighbor 4×4 pixel blocks. Therefore

a macro-block filter processing altogether need 40 4×4 pixel blocks.

The de-blocking filter uses one block as unit to process all macro-blocks. Therefore filter

ordering according to this criterion, the 4×4 sub-block edge, left edge is filtered first, right

edge is filtered second, come again the top edge is filtered third, and lower edge is the last one.

Each numeral is an edge of two adjacent 4×4 sub-blocks that equal to the filter unit processing

four times.

 23

2.5.1 Basic Processing Order

In [9], the basic processing order does not make use of data dependence between

neighboring 4×4 pixel blocks as shown in figure 2.16. The example, the filtering operation is

started with vertical edge 1, initially block (L1) and block (B0) are sent to the filter from

internal memory using its two ports. After filtering of vertical edge 1, both the partially

filtered block (L1) and block (B0) are stored into the internal memory. By this analogy, if we

filter the vertical edge 5 in succession according to the basic filtering order. We have to load

block (B0) and block (B1) from the internal memory, after filtering of vertical edge 5 stored

the block (B0) and block (B1) back to the internal memory. The block (B0) is loaded and

stored each two times. Thus it can be seen, the basic processing order does not make use of

data dependence between neighboring 4×4 pixel blocks.

Supposition the memory system is 32-bit data bus, the basic processing order for a

macro-block needs (4×2×2×16+(4×2×2×4)×2)=384 times of memory read and 384 times of

memory write. The number of total memory access is 768 times.

luma chroma

Y

U

V

T1 T2 T3 T4

T5 T6

T7 T8

L1

L2

L3

L4

L5

L6

L7

L8

B0 B1 B2 B3

B4 B5 B6 B7

B8 B9 B10 B11

B12 B13 B14 B15

B16 B17

B18 B19

B20 B21

B22 B23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42

43 44

45 46

47 48

Figure 2.16: Basic processing order

 24

2.5.2 Advanced Processing Order

 In the figure 2.17 is shown the advanced filter processing order. It makes use of

one-dimensional data dependence [9]. The example, the filtering operation is started with

vertical edge 1, initially block (L1) and block (B0) are sent to the filter from internal memory

using its two ports. After filtering of vertical edge 1, the partially filtered block (L1) is stored

into the internal memory but the block (B0) is buffered in the de-blocking filter unit for next

stage filtering. By this analogy, if we filter the vertical edge 2 in succession according to the

filtering order. We have to load block (B1) from the internal memory and the block (B0) is

buffered in the de-blocking filter unit. In this way, all the 4×4 pixel blocks in horizontal

filtering and in vertical filtering can reduced to half access times for internal memory.

Supposition the memory system is 32-bit data bus, the advanced filter processing order

for a macro-block needs (384-16×4×2)=256 times of memory read and 256 times of memory

write. The number of total memory access is 512 times.

luma chroma

Y

U

V

T1 T2 T3 T4

T5 T6

T7 T8

L1

L2

L3

L4

L5

L6

L7

L8

B0 B1 B2 B3

B4 B5 B6 B7

B8 B9 B10 B11

B12 B13 B14 B15

B16 B17

B18 B19

B20 B21

B22 B23

1

5

9

13

2

6

10

14

3

7

11

15

4

8

12

16

17

19

18

20

21

23

22

24

25 29 33 37

26 30 34 38

27 31 35 39

28 32 36 40

41 43

42 44

45 47

46 48

Figure 2.17: Advanced processing order

 25

2.5.3 2-D Processing Order

In the figure 2.18 is shown the 2-D filter processing order. The filter order conforms to

the de-blocking filter processing standard. It is performed alternately to the horizontal

filtering and the vertical filtering [10]. For example, the filtering operation is started with

vertical edge 1, the block (L1) and block (B0) were sent to the filter from internal memory

using its two ports. After filtering of vertical edge 1, the block (L1) is stored back to the

internal memory, the other block (B0) is buffered in the de-blocking filter unit for next stage

filtering. After the last filtering, the vertical edge 2, the block (B0) is sent to the transpose

buffer wait for the horizontal edge 3 filtering, the block (B1) is buffered in the de-blocking

filter unit for next stage vertical edge 4 filtering.

Supposition the memory system is 32-bit data bus, the 2-D filter processing order for a

macro-block needs (4×12+4×12×2+(4×6+4×2×2)×2)=224 times of memory read and 224 times

of memory write. The number of total memory access is 448 times.

luma chroma

Y

U

V

T1 T2 T3 T4

T5 T6

T7 T8

L1

L2

L3

L4

L5

L6

L7

L8

B0 B1 B2 B3

B4 B5 B6 B7

B8 B9 B10 B11

B12 B13 B14 B15

B16 B17

B18 B19

B20 B21

B22 B23

1

9

17

25

2

10

18

26

4

12

20

28

6

14

22

30

33

37

34

38

41

45

42

46

3 5 7 8

11 13 15 16

19 21 23 24

27 29 31 32

35 36

39 40

43 44

47 48

Figure 2.18: 2-D processing order

 26

2.5.4 2-D Simultaneous Processing Order

In the figure 2.19 is shown the 2-D simultaneous filter processing order. It is performed

alternately and simultaneous processing order of the horizontal filtering of vertical edge and

the vertical filtering of horizontal edge [5]. The figure shows, it was used by one the

horizontal filter unit and one the vertical filter unit to simultaneous processing order. This

method goal is in order to reduce when clock cycles quantity. Supposition the memory system

is dual port RAMs and the data bus is 32-bit.

For example, the filtering operation is started with vertical edge 1, the block (L1) and

block (B0) are sent to the filter from internal memory using its two ports. After filtering of

vertical edge 1, the block (L1) is stored back to the internal memory, the other block (B0) is

buffered in the de-blocking filter unit for next stage filtering. After the last filtering, the

vertical edge 2, the block (B0) is sent to the transpose buffer wait for the horizontal edge 3

filtering, the block (B1) is buffered in the de-blocking filter unit for next stage vertical edge 3

filtering.

luma chroma

Y

U

V

T1 T2 T3 T4

T5 T6

T7 T8

L1

L2

L3

L4

L5

L6

L7

L8

B0 B1 B2 B3

B4 B5 B6 B7

B8 B9 B10 B11

B12 B13 B14 B15

B16 B17

B18 B19

B20 B21

B22 B23

1

5

9

13

2

6

10

14

3

7

11

15

4

8

12

16

17

19

18

20

21

23

22

24

3 4 5 6

7 8 9 10

11 12 13 14

15 16 17 18

19 20

21 22

23 24

25 26

Figure 2.19: 2-D simultaneous processing order

 27

22..55..55 SSuummmmaarryy rreellaatteedd wwoorrkk

Table 2.4: comparison of above proposed architecture

MMeetthhoodd
Basic

[9]

Advanced

[9]

2-D

Simultaneous

[5]

CCyycclleess//MMBB 771122 776600 446600

FFiilltteerriinngg CCyycclleess//MMBB 339922 444400 114400

EExxtteerrnnaall mmeemmoorryy

aacccceessss ccyycclleess
332200 332200 332200

WWoorrkkiinngg ffrreeqquueennccyy 110000 MMHHzz 110000 MMHHzz 110000 MMHHzz

EEddggee FFiilltteerrss 11 11 22

44××44 aarrrraayy 22 22 33

44××44 FFIIFF00 00 00 99

TTeecchhnnoollooggyy ((μμ mm)) 00..2255 00..2255 00..1133

GGaattee ccoouunntt 1188..9911KK 1188..9911KK 3355..9999KK

MMeemmoorryy aarrcchhiitteeccttuurree
OOnnee rreeaadd aanndd oonnee

wwrriittee SSRRAAMM

OOnnee rreeaadd aanndd oonnee

wwrriittee SSRRAAMM

TTwwoo rreeaadd aanndd ttwwoo

wwrriittee SSRRAAMM

SSRRAAMM rreeqquuiirreemmeennttss

ffoorr ppiixxeellss ((bbiittss))

8888××3322

7722××3322
116600××3322

8888××3322

7722××3322

AAllll ggaattee ccoouunnttss ddoonn’’tt iinncclluuddee SSRRAAMM..

TThhee bbaassiicc [[99]] aanndd 2-D Simultaneous [5] are use two SRAM modules and interleaved

memory organization to store the pixel data of a macro-block for efficient access of pixels in

different blocks of the macro-block.

 28

Chapter 3

Proposed architecture of de-blocking filter

In this chapter, we propose our architecture. In section 3.1 we present the main parts of

the architecture for the de-blocking filter. In section 3.2 we show the proposed filtering order

and how it reduces internal memory size. In section 3.3 we describe the internal memory

organization. In section 3.4 we describe the data buffer and transpose buffer about how they

work. In section 3.5 we present our control unit about how it works.

3.1 Overview of the Proposed Architecture

Figure 3.1 shows the main parts of the architecture for the de-blocking filter. It includes

the external memory, internal SRAM, filter unit, data buffer, transpose buffer and control unit.

The following comes to introduce these constructions individually the basic function.

External

memory

Control Unit

Filter

unit

Internal

SRAM

Coding Info.

Data

buffer

Transpose

buffer
Bus

interface

Nonfiltered

pixels

Filtered

pixels

Figure 3.1: System architecture of the de-blocking filter

 29

External Memory:

The purpose of external memory is stored the frame data that processed by decoder. The

external memory provides the unfiltered data to the de-blocking filter and according to the

filter order. When current frame was processed, the next frame is going to send to the external

memory. The reconstruction frame is provided to the motion compensation use.

Internal SRAM:

A macro-block data is loaded to the internal SRAM from the external memory.

Generally speaking, the internal SRAM size is 32-bit×160 because consisted of a 16×16 luma

block, two 8×8 chroma block, and sixteen 4×4 neighbor block. When current macro-block

was processed, the next macro-block is going to send to the internal SRAM.

Filter unit:

The edge filter unit is a parallel-in parallel-out filter, the input end is two 32-bit data bus

and output end is two 32-bit data bus. Its interior has the different operation pattern that may

choose because of the different parameter.

Data Buffer:

In the basic processing order does not make use of data dependence between neighboring

4×4 pixel blocks, therefore does not need data buffer. But after the processing order makes

use of the data dependence, therefore needs data buffer to reduce the memory the access

number of times.

Transpose Buffer:

The transpose buffer function is uses in the vertical filtering across horizontal edges.

When the horizontal filtering across vertical edges of the data processes places in the

transpose buffer to make the transformation afterwards.

 30

Control Unit:

The control unit of de-blocking filter module is to control the signals such as Bs, C0, α, β

the information and so on. Moreover a function is controls the data the input-output.

In our architecture design, first we will find a new filter processing order. By the new

filter processing characteristic we may obtain the data dependence and data reuse strong point.

Because of these merit, we may reduce the number of memory references, decrease the

required memory size and using fewer the register amounts, and speed up the whole filtering

process. Afterwards chapter, we will be able individual to introduce each construction.

Understanding the whole architecture, how realization and operation.

3.2 Filtering Order

3.2.1 De-blocking filter order of the 4×4 sub-block edge

The de-blocking filter uses one 4×4 pixels block as unit to process all macro-blocks. The

de-blocking filter in H.264/AVC is performed in the vertical edge first, and then the

horizontal edge. Therefore filter ordering according to this criterion, the 4×4 sub-block edge,

left edge is filtered first, right edge is filtered second, come again the top edge is filtered third,

and lower edge is the last one as shown in figure 3.2.

macro-block

1 2

3

4

Figure 3.2: De-blocking filter order of the 4×4 sub-block edge

 31

3.2.2 Proposed edge filtering order

Our filtering order is illustrated in figure 3.3. It is a macro-block filtering to need the data,

the blocks B0 to B23 are the current macro-block, the blocks T1 to T8 are the top neighbor

block that were provided the vertical filtering across horizontal edges to use, the blocks L1 to

L8 are the left neighbor block that were provided the horizontal filtering across vertical edges

to use. In our proposed de-blocking filter architecture is to use two edge filter units, the goal

is reduce the filter processing cycles, which support real-time de-blocking of HDTV with

higher resolution.

luma chroma

Y

U

V

T1 T2 T3 T4

T5 T6

T7 T8

L1

L2

L3

L4

L5

L6

L7

L8

B0 B1 B2 B3

B4 B5 B6 B7

B8 B9 B10 B11

B12 B13 B14 B15

B16 B17

B18 B19

B20 B21

B22 B23

1

1

9

9

2

2

10

10

3

3

11

11

6

6

14

14

17

17

18

18

21

21

22

22

4 4 7 7

5 5 8 8

12 12 15 15

13 13 16 16

19 19

20 20

23 23

24 24

Figure 3.3: Proposed filtering order

The figure 3.3 shows the two edge filter units are simultaneous processing and we

indicated the horizontal filtering across vertical edges by the red circle, the vertical filtering

across horizontal edges by green circle. In circle numeral is expressed of filter order. Each

numeral is an edge of two adjacent blocks that equal to the filter unit processing four times.

 32

3.2.3 Divide the luma block

According to the filter order, we may divide into luma block two parts. The processing

order 1 to 8 and 9 to 16 are same filtering order. As shown in Figure 3.4.

processing order (1, 9) processing order(2, 10) processing order(3, 11) processing order (4, 12)

processing order (5, 13) processing order (6, 14) processing order(7, 15) processing order (8, 16)

Figure 3.4: Luma block of the filtering order

About the luma block may open the solution after ours filter order to become two parts,

as shown in Figure 3.5. After luma block upper half was filtered, the blocks B4, B5, B6, and

B7 were passed through the transpose buffer to make the transformation then stored to the

internal SRAM. When the luma block lower half was filtered, the blocks B4 to B7 may use

directly, but does not have again to pass through the transformation.

T1 T2 T3 T4

L1

L2

B0 B1 B2 B3

B4 B5 B6 B7

L3

L4

B4 B5 B6 B7

B8 B9 B10 B11

B12 B13 B14 B15

+

luma

Y T1 T2 T3 T4

L1

L2

L3

L4

B0 B1 B2 B3

B4 B5 B6 B7

B8 B9 B10 B11

B12 B13 B14 B15

=

Figure 3.5: Luma block break down upper and the lower two parts

 33

Because of ours filtering order can reduce the size of the internal SRAM, decreases the

transpose buffer use quantity, improves the throughput of filtering operations, and the amount

of reduction of the external memory accesses.

3.3 Parallel Memory Unit

Because we simultaneously use two edge filter units to make the operation, therefore

these input ends of two edge filter units also must simultaneously obtain the pixel data. So we

use two 32-bits×48 dual ports SRAM to store the pixels data needed. As shown in Figure 3.6,

we divide the pixels data within one macro-block into the form of the interlocking type, have

corresponding internal SRAM individually pixels data its.

 We use their purposes of the way of the interlocking type to be to take place for the

phenomenon of preventing the memory from conflicting. The pixels data needed can do

parallel access at we are making the horizontal filtering across vertical edges and making the

vertical filtering across horizontal edges.

Figure 3.6: Memory mapping of 4×4 blocks

32 bits

48´32

SRAM 0

L1

B4

B1

B6

B3

T1'

T3'

L5

B18

B17

T5'

T7'

L2

B0

B5

B2

B7

T2'

T4'

L6

B16

B19

T6'

T8'

32 bits

(words)

48 48

(words)

48´32

SRAM 1

luma chroma

Y

U

V

32

bits

32

bits

32

bits

32

bits

32

bits

32

bits

32

bits

32

bits

20

words

12

words

12

words

L1

T1 T2 T3

B0 B1 B2 B3

B4 B5

T4

B6 B7

B8 B9 B10 B11

B12 B13 B14 B15

L3

L4

L2

L5 B16 B17

L6 B18 B19

T5 T6

T7 T8

L7

L8

B20 B21

B22 B23

 34

As shown in Figure 3.6, the T1', T2', T3', T4', T5', T6', T7', and T8' are the 4×4 block

pixel data got after the transpose buffer to make the transformation afterwards to putting after

dealing with by the horizontal filtering across vertical edges first. So they can be used directly

that the blocks T1' to T8' needn't to make the transformation afterwards and put when doing

the vertical filtering across horizontal edges. The interleaving nature of data organization

allows for simultaneous writing and reading of data to and from the internal SRAM.

3.4 Data Buffer ＆ Transpose Buffer

Data buffer

As shown in Figure 3.7, the 4×4 block B0 have sixteen pixel (b00~b33), each pixel can

be stored 8-bits. Input and output of the de-blocking filter regard four pixels (32-bits) as a unit.

So need to spend four cycles (one block cycle) to finish to one edge of the 4×4 block.

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

4*4 block B0

16*16 macro-block

L1 B0 B11 2

1 2
Filtering order

Figure 3.7: for example a 4×4 block

As shown in Figure 3.7 and 3.8, the 4×4 blocks L1, B0, and B1 are the neighboring three

blocks. Now we must first de-blocking filter block L1 and the block B0 middle vertical edge

then again make between block B0 and the block B1 the vertical edge. Therefore we input L1

to the filter unit of p (p0~p3) input end, input B0 to the filter unit of q (q0~q3) input end,

 35

causes both to make the filtering order 1 the movement. After the filtering order 1 completes,

processing from now on pixels of the block B0 will be able to deposit in data buffer in order

to next the filtering order 2 use. Therefore because of the data buffer use, we may reduce from

internal SRAM read data number of times.

p3 p2 p1 p0 q3q2q1q0

Filter unit

b00' b01' b02' b03'

b10' b11' b12' b13'

b20' b21' b22' b23'

b30' b31' b32' b33'

Data buffer

p3 p2 p1 p0

Output to transpose buffer

or internal SRAM

4 pixel (32-bit)4 pixel (32-bit)

Figure 3.8: Data buffer operation

Transpose Buffer

In our proposed de-blocking filter architecture to use two 32-bits×8 transpose registers to

transpose the pixels which obtains by way of the horizontal filtering across vertical edges. As

shown in Figure 3.9 this is group of two 32-bits×4 transpose registers. Every small square

represents 1 pixel (8-bits) register. The solid line of arrows expresses the input data path while

the dotted line of arrows expresses the output data path. And the data bus input and outputted

are all 4 pixels (32-bits). For example, it needs to spend four cycles to store the sixteen pixels

to transpose a 4×4 block. When processing the vertical filtering across horizontal edges, we

can output the pixels data that we need with the selector.

 36

4 pixels (32-bits)

4 pixels (32-bits)

Figure 3.9: Transpose buffer operation

3.5 Control Unit

Figure 3.10 shows the overall architecture of our proposed de-blocking filter and the data

bus is all 32-bits. It includes the internal SRAM size is 32-bit×96, two parallel-in parallel-out

filter unit, two data buffer of 32-bits×4 FIFO register, four transpose register and a control

unit. Some of control unit that is very important component, it is to control the signals such as

Bs, C0, α, β the information and so on. Moreover a function is controls the data the

input-output. So we explain next how the controller controls the flow of pixel data with the

part of upper part of Luma block. We make necessary pixels data from external memory load

to internal SRAM at first.

 37

F
il

te
r

u
n

it
F

il
te

r
u

n
it

F
IF

O
F

IF
O

Internal

SRAM

Transpose

buffer

Figure 3.10: Overall architecture of our proposed de-blocking filter

Step 1: block cycle 1 (clock cycle 1~4)

At first, we load L1 and L2 of the left neighbor block from the internal SRAM then input

them in two data buffer separately, use for horizontal filtering on vertical edge 1 after offering

to. As shown in Figure 3.11.

F
il

te
r

u
n
it

F
il

te
r

u
n
it

F
IF

O
F

IF
O

L2³

B0

B5

B2

B7

T2³

T4³

L6³

B16

B19

T6³

T8³

L1³

B4

B1

B6

B3

T1³

T3³

L5³

B18

B17

T5³

T7³

L1³

L2³

Figure 3.11: The data path of storing block of L1 and L2 into data buffer

 38

Step 2: block cycle 2 (clock cycle 5~8)

Figure 3.12 shows the horizontal filtering on vertical edge 1 treating processes.

Therefore we load the block B0 and B4 from internal SRAM at the same time, lets two filter

units make the use. After horizontal filtering on vertical edge 1 completes that the blocks L1

and L2 are stored to internal SRAM, the blocks B0 and B4 are stored to the data buffer,

waiting next filtering order uses.

F
il

te
r

u
n

it
F

il
te

r
u

n
it

F
IF

O
F

IF
O

L2*

B0

B5

B2

B7

T2³

T4³

L6³

B16

B19

T6³

T8³

L1*

B4

B1

B6

B3

T1³

T3³

L5³

B18

B17

T5³

T7³

B0¹

B4¹

Figure 3.12: Horizontal filtering on vertical edge 1

Step 3: block cycle 3 (clock cycle 9~12)

Figure 3.13 shows the horizontal filtering on vertical edge 2 treating processes.

Therefore we load the block B1 and B5 from internal SRAM at the same time to give two

filter units uses separately. After the horizontal filtering on vertical edge 2 processing

completes, the blocks B1 and B5 are stored up to the data buffer, the blocks B0 and B4 are

transmitted the transpose buffer to make the transformation (B0 and B4) that to wait for

vertical filtering.

 39

F
il

te
r

u
n

it
F

il
te

r
u

n
it

F
IF

O
F

IF
O

L2*

B0

B5

B2

B7

T2³

T4³

L6³

B16

B19

T6³

T8³

L1*

B4

B1

B6

B3

T1³

T3³

L5³

B18

B17

T5³

T7³

B1¹

B5¹

B0²

B4²

Figure 3.13: Horizontal filtering on vertical edge 2

Step 4: block cycle 4 (clock cycle 13~16)

Figure 3.14 shows the horizontal filtering on vertical edge 3 treating processes. This step

is the same as process of step 3. After the horizontal filtering on vertical edge 3 processing

completes, the blocks B1 and B5 are transmitted the transpose buffer to make the

transformation (B1 and B5) that to wait for vertical filtering. The thing that should look out is

that the blocks B0 and B1 can't be placed on the same group of the transpose buffers,

otherwise will cause the conflict of the data. So the blocks B4 and B5 are the same situation.

F
il

te
r

u
n
it

F
il

te
r

u
n
it

F
IF

O
F

IF
O

L2*

B0

B5

B2

B7

T2³

T4³

L6³

B16

B19

T6³

T8³

L1*

B4

B1

B6

B3

T1³

T3³

L5³

B18

B17

T5³

T7³

B2¹

B6¹

B0²

B4²

B1²

B5²

Figure 3.14: Horizontal filtering on vertical edge 3

 40

Step 5: block cycle 5 (clock cycle 17~20)

As shown in Figure 3.15. We load T1 and T2 of the top neighbor block from the internal

SRAM then input them in two data buffer separately, use for vertical filtering on horizontal

edge 4 after offering to. Does not act in this stage of two filter unit, therefore the blocks B2

and B6 pixels data has not been changed on is stored directly the internal SRAM.

F
il

te
r

u
n
it

F
il

te
r

u
n
it

F
IF

O
F

IF
O

L2*

B0

B5

B2¹

B7

T2³

T4³

L6³

B16

B19

T6³

T8³

L1*

B4

B1

B6¹

B3

T1³

T3³

L5³

B18

B17

T5³

T7³

T1³

T2³

B0²

B4²

B1²

B5²

Figure 3.15: The data path of storing block of T1 and T2 into data buffer

Step 6: block cycle 6 (clock cycle 21~24)

Figure 3.16 shows the vertical filtering on horizontal edge 4 treating processes.

Therefore we load the block B0 and B1 from transpose buffer at the same time, lets two filter

units make the vertical filtering. After the vertical filtering on horizontal edge 4 processing

completes, the blocks T1 and T2 are stored to transpose buffer make the transformation (T1

and T2), after in order to store the internal SRAM.

 41

F
il

te
r

u
n

it
F

il
te

r
u

n
it

F
IF

O
F

IF
O

L2*

B0

B5

B2¹

B7

T2³

T4³

L6³

B16

B19

T6³

T8³

L1*

B4

B1

B6¹

B3

T1³

T3³

L5³

B18

B17

T5³

T7³

B0³

B1³

T1*

B4²

T2*

B5²

Figure 3.16: Vertical filtering on horizontal edge 4

Step 7: block cycle 7 (clock cycle 25~28)

Figure 3.17 shows the vertical filtering on horizontal edge 5 treating processes. This step

is the same as process of step 6. After the vertical filtering on horizontal edge 5 processing

completes, the blocks B0 and B1 are stored to transpose buffer make the transformation (B0

and B1) that to wait for storing the internal SRAM.

F
il

te
r

u
n
it

F
il

te
r

u
n
it

F
IF

O
F

IF
O

L2*

B0

B5

B2¹

B7

T2³

T4³

L6³

B16

B19

T6³

T8³

L1*

B4

B1

B6¹

B3

T1³

T3³

L5³

B18

B17

T5³

T7³

B4³

B5³

T1*

B0*

T2*

B1*

Figure 3.17: Vertical filtering on horizontal edge 5

 42

Step 8: block cycle 8 (clock cycle 29~32)

This stage of two filter unit is not act. We load the blocks B2 and B6 from the internal

SRAM then input them in two data buffer separately, use for the horizontal filtering on

vertical edge 6 after offering to. The blocks T1 and T2 are stored to the internal SRAM, the

blocks B4 and B5 are stored to transpose buffer but not make the transformation as shown in

figure 3.18.

F
il

te
r

u
n

it
F

il
te

r
u

n
it

F
IF

O
F

IF
O

L2*

B0

B5

B2¹

B7

T2*

T4³

L6³

B16

B19

T6³

T8³

L1*

B4

B1

B6¹

B3

T1*

T3³

L5³

B18

B17

T5³

T7³

B2¹

B6¹

B4³

B0*

B5³

B1*

Figure 3.18: The data path of storing block of B2 and B6 into data buffer

Step 9: block cycle 9 (clock cycle 33~36)

Figure 3.19 shows the horizontal filtering on vertical edge 6 treating processes.

Therefore we load the block B3 and B7 from internal SRAM at the same time to give two

filter units uses separately. After the horizontal filtering on vertical edge 6 processing

completes, the blocks B3 and B7 are stored up to the data buffer, the blocks B2 and B6 are

transmitted the transpose buffer to make the transformation (B2 and B6) that to wait for

vertical filtering and the blocks B0 and B1 are stored to the internal SRAM simultaneously.

 43

F
il

te
r

u
n

it
F

il
te

r
u

n
it

F
IF

O
F

IF
O

L2*

B0*

B5

B2¹

B7

T2*

T4³

L6³

B16

B19

T6³

T8³

L1*

B4

B1*

B6¹

B3

T1*

T3³

L5³

B18

B17

T5³

T7³

B3¹

B7¹

B4³

B6²

B5³

B2²

Figure 3.19: Horizontal filtering on vertical edge 6

Step 10: block cycle 10 (clock cycle 37~40)

As shown in Figure 3.20. We load T3 and T4 of the top neighbor block from the internal

SRAM then input them in two data buffer separately, use for the vertical filtering on

horizontal edge 7 after offering to. Does not act in this stage of two filter units, therefore the

blocks B3 and B7 pixels data have not been changed and to store directly the transpose buffer.

And the blocks B4 and B5 are stored to the internal SRAM simultaneously.

F
il

te
r

u
n
it

F
il

te
r

u
n
it

F
IF

O
F

IF
O

L2*

B0*

B5³

B2¹

B7

T2*

T4³

L6³

B16

B19

T6³

T8³

L1*

B4³

B1*

B6¹

B3

T1*

T3³

L5³

B18

B17

T5³

T7³

T3³

T4³

B7¹

B6²

B3¹

B2²

Figure 3.20: The data path of storing block of T3 and T4 into data buffer

 44

Step 11: block cycle 11 (clock cycle 41~44)

Figure 3.21 shows the vertical filtering on horizontal edge 7 treating processes.

Therefore we load the block B2 and B3 from transpose buffer at the same time, lets two filter

units make the vertical filtering. After the vertical filtering on horizontal edge 7 processing

completes, the blocks T3 and T4 are stored to transpose buffer make the transformation (T3

and T4), after in order to store the internal SRAM.

F
il

te
r

u
n
it

F
il

te
r

u
n
it

F
IF

O
F

IF
O

L2*

B0*

B5³

B2¹

B7

T2*

T4³

L6³

B16

B19

T6³

T8³

L1*

B4³

B1*

B6¹

B3

T1*

T3³

L5³

B18

B17

T5³

T7³

B2³

B3²

B7¹

B6²

T4*

T3*

Figure 3.21: vertical filtering on horizontal edge 7

Step 12: block cycle 12 (clock cycle 45~48)

Figure 3.22 shows the vertical filtering on horizontal edge 8 treating processes. This step

is the same as process of step 11. After the vertical filtering on horizontal edge 8 processing

completes, the blocks B2 and B3 are stored to transpose buffer make the transformation (B2

and B3) that to wait for storing the internal SRAM.

 45

F
il

te
r

u
n
it

F
il

te
r

u
n
it

F
IF

O
F

IF
O

L2*

B0*

B5³

B2¹

B7

T2*

T4³

L6³

B16

B19

T6³

T8³

L1*

B4³

B1*

B6¹

B3

T1*

T3³

L5³

B18

B17

T5³

T7³

B6³

B7²

B3³

B2*

T4*

T3*

Figure 3.22: vertical filtering on horizontal edge 8

Table 3.1: data flow of our proposed architecture

state
Block cycle

1 2 3 4 5 6 7 8 9 10 11 12

FIFO 1 L1 B0 B1 B2 T1 B0 B4 B2 B3 T3 B2 B6

FIFO 2 L2 B4 B5 B6 T2 B1 B5 B6 B7 T4 B3 B7

Array 1 B0 B0 B0 T1 T1 B4 B4 B7 B7 B3

Array 2 B5 B5 B5 B1 B1 B2 B2 T3 T3

Array 3 B4 B4 B4 B4 B0 B0 B6 B6 B6 B2

Array 4 B1 B1 T2 T2 B5 B5 B3 T4 T4

Filter unit H 1 H 2 H 3 V 4 V 5 H 6 V 7 V 8

SRAM 0

(load)

SRAM 1

L1 B4 B1 B6 T1 B6 B3 T3

L2 B0 B5 B2 T2 B2 B7 T4

SRAM 0

(store)

SRAM 1

 L1 B6 T1 B1 B4

 L2 B2 T2 B0 B5

 46

Chapter 4

Implementation results

Chapter 4 is the simulation results of our design and it is composed of three paragraphs.

The simulation environment is introduced shortly in the first paragraph. And the results are

presented in detail in the next paragraph. Here some advantages of our hardware would be

accentuated by comparing with other architectures. At last, some improvements which can

make our hardware more efficient are discussed for future work.

4.1 The simulation environment

The module we proposed is written in programs of the language of Verilog1995 and

simulated in Modelsim 6.1 environments. For the procedure of synthesis, all programs are

compiled with Verilog-XL in Synposys system. Our design is implemented with TSCM 0.13

μm technology for estimations of gate counts and maximum operating frequency.

Specification

development

RTL Code

development

RTL

simulation

(Modelsim 6.1)

Synthesis

Timing

verification

Design flow

Gate-level

simulation

(Verilog XL)

specification

RTL design

Gate-level

synthesis

Figure 4.1: Design flow in our implementation

 47

4.2 Comparison with other architectures

The main comparisons of our research are the hardware design and cost. Here we will

talk about the main modified parts in detail.

 In [9], the internal SRAM of the basic processing order is organized in the form of an

interleaved memory and 2 two port (one read port and one write port) SRAM’s. For

horizontal filtering, the interleaving nature of data organization allows for simultaneous

writing and reading of data to and from the memory. The internal SRAM of the advanced

processing order didn't change according to the traditional memory structure. In [5], the

internal SRAM of the 2-D simultaneous processing order is to use 2 dual port (two read port

and two write port) SRAM’s. For horizontal and vertical filtering, the interleaving nature of

data organization allows for simultaneous writing and reading of data to and from the memory.

In our proposed, the internal SRAM is to use 2 two port SRAM’s. Because of improvement

the processing order, we can reduce the size of the SRAM.

Table 4.1: Comparison of hardware cost in the main module

MMeetthhoodd
Basic

[9]

2-D

Simultaneous

[5]

proposed

Filter units 1 2 2

arrays (16 pixels) 2 3 4

FIF0s (4×32 bit) 0 9 2

Memory architecture
One read and

one write

Two read and

two write

One read and

one write

SRAM requirements for

pixels (bits)

88×32

72×32

88×32

72×32

48×32

48×32

 48

Table 4.2 shows the Performance comparison of various architectures. The total

cycles/Macro-Block includes filtering cycles/Macro-Block and external memory access

cycles/Macro-Block two parts. The filtering cycles/Macro-Block is processes 1 Macro-Block

need of cycles. The external memory access cycles/Macro-Block spends 160 cycles to load

unfiltered pixels from external memory to internal SRAM and spends 160 cycles to store

filtered pixels from internal SRAM to external memory.

Compared with [9] and [5], our external memory access cycles/Macro-Block is faster

because of having consideration pixel data not repeat the method of access.

Table 4.2: Performance comparison of various architectures

MMeetthhoodd
Basic

[9]

2-D

Simultaneous

[5]

proposed

Filtering Cycles/MB 392 140 144

External memory

access cycles/MB
320 320 256

Total Cycles/MB 712 460 400

Working frequency 100MHz 100MHz 100MHz

Filtering Cycles/Macro-Block (MB):

The related works and our proposed of computation are the same so the working frequency

are 100MHz.

External memory access cycles/Macro-Block (MB):

The access time is one cycle for 32-bit data.

 49

Table 4.3 shows the implementation of our proposed. We described our architecture by

Verilog HDL and synthesized the circuit using TSMC 0.13um technology library by

Synopsys Design Analyer with critical path constraint set to 10 ns (100MHz).

Table 4.3: implementation of our proposed

MMeetthhoodd

GGaattee ccoouunntt

Basic

[9]

2-D

Simultaneous

[5]

proposed

TTeecchhnnoollooggyy ((μμ mm)) 00..1133 00..1133 00..1133

Working frequency 100 MHz 100 MHz 100 MHz

array 3.87K 4.74K 6.32K

FIFO 0 11.88K 3.18K

Control unit 4.07K 4.11K 3.77K

(not Filter unit)

Area
7.94K 20.73K 13.27K

Filter unit 6.67K 13.34K 13.34K

Total area 14.61K 34.07K 26.61K

SRAM is not included in total area

Filter unit: 6.67K gate count [5]

 50

4.3 Future work

The De-blocking Filter of H.264 decoder is an important part of entire system; it can

dominate system performance and quality for video image. But for high computing

complexity and real-time application, the de-blocking Filter may become a bottleneck of

hardware implementation. We can analyze the power and performance of realistic decoder

system in both hardware and software realizations and then present a general model of

de-blocking architecture. We will work on reducing the power consumption of our design.

 51

Chapter 5

Conclusion

In this paper, we present the architecture to accelerate the operations of de-blocking filter

for H.264/AVC. The major idea is to reduce the execution cycles by propose a processing

order of De-blocking Filter. Because of the novel processing order of De-blocking Filter, we

may reduce the number of memory references. The novel processing order can break down

two parts of macro-block, so we may reduce the internal memory size and using fewer the

register amounts to store the data. Making good use of the data dependence between

neighboring 4×4 blocks, in both horizontal direction and vertical direction. Next we are to use

interleaved memory organization allows for simultaneous writing and reading of data to and

from the internal SRAM. Finally as a result of the De-blocking Filter needs many image data

to again access in the external memory, therefore we reduce to external memory access times

that performance improvement is achieved by an efficient use of internal SRAM. The

synthesized results indicate that our design may support real-time de-blocking filter of HDTV

(1280×720, 60fps) H.264/AVC video.

 52

References

[1] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, "Draft ITU-T

recommendation and final draft international standard of joint video specification

(ITU-T Rec. H.264/ISO/IEC 14 496-10 AVC”, JVTG050, 2003.

[2] Soon-kak Kwon, A. Tamhankar, K.R. Rao：“Overview of H.264 / MPEG-4 Part 10”, to

appear 5th WSEAS International Conference on MULTIMEDIA, INTERNET and

VIDEO TECHNOLOGIES, Corfu Island, Greece, August 17-19, 2005.

[3] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra, “Overview of the

H.264/AVC video coding standard”, IEEE Trans. on Circuits and Systems for Video

Technology, vol. 13, pp. 560-576, 2003.

[4] P. List, A. Joch, J. Lainema, G. Bjntegaard, and M. Karczewicz, “Adaptive deblocking

filter,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 13, pp.

614-619, 2003.

[5] V. Venkatraman, S. Krishnan, and N. Ling, “Architecture for de-blocking filter in

H.264,” Picture Coding Symposium, 2004.

[6] M. Sima, Y. h. Zhou, and W. Zhang, “An efficient architecture for adaptive deblocking

filter of H.264/AVC video coding,” IEEE Trans. Consum. Electron, vol. 50, no.1, pp.

292-296, Feb. 2004.

[7] Ville Lappalainen, Antti Hallapuro, and Timo D.Hamalainen, ”Complexity of

Optimized H.26L Video Decoder Implementation”, Circuits and Systems for Video

Technonlogy, IEEE Transactions, July 2003.

[8] K. Denolf, C. Blanch, G. Lafruit, and J. Bormans, “Initial memory complexity analysis

of the AVC codec,” IEEE Workshop on Signal Processing Systems, pp. 222-227, Oct.

2002.

[9] Y. W. Huang, T. W. Chen, B. Y Hsieh, T. C. Wang, T. H. Chang, and L. G. Chen,

“Architecture Design for De-blocking Filter in H.264/JVT/AVC,” Proc. IEEE Conf. on

Multimedia and Expo, pp.693-696, 2003.

 53

[10] B. Sheng, W. Gao and D. Wu, “An Implemented Architecture of De-blocking Filter for

H.264/AVC,” IEEE International Conference on Image Processing (ICIP’04), Vol.1,

24-27, pp.665-668, Oct 2004.

