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ABSTRACT

In this thesis, a high-speed and low-complexity design of multi-mode Reed-Solomon
codec is proposed. In the beginning-of deliberating algorithms, the policy is to simplify
the coefficients of equations, so as to construct a simpler structure.

The proposed RS decoder has some major features introduced as following :

1. In the SC block, a simpler t-decoder is exploited to dominate the sixteen cells, so as to
answer to multi-mode applications.

2. In the KES, the “Decision Variations” is proposed to break the main speed bottleneck
of iIBMA in the iterative computation of discrepancies followed by updating the
correction polynomial and to prevent the special-case data hazard in the most serial
structures. Also, for the sake of keeping the critical path in the reusing hardware is
still T, +T,,, +T,,, the assimilative coefficient knack is adopted. Further, we use the

mult xor »
purpose-built address line to simplify the hardware complexity of storage element
3. In Chien’s Search and Forney’s block, fifteen Compensators used to adjust the
starting point of search are reduced to one and combined in the KES block.

After 204.8 hundred-million bits transmission and verification regular, the proposed
RS decoder for multi-mode applications (n<=255, t<=8) is implemented by Xinlinx
VirtexE xcv2000e FPGA and Synopsys DC with UMCO018 library. The design possesses
higher speed and lower gate count than present decoder design. The data rate of the
proposed decoder is 5.84bps at the maximum clock rate of 730MHz with 11596 gates.
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Chapter 1

Introduction

1.1 Background

In the communication system and storage system, the integrity of data
transmission is necessary. But the error probability increases after interference
introduce. Consequently, the correciniess of data transmission is reduced. So, many
digital signaling applications i1 communication sysiem and storage system employ
Forward Error Correction (FEC). FEC is a technique in which redundant information
is added to the signal to allow the recciver to detect and correct errors that may have
occurred i transmission. Figuie 1.1 shows ithe connection of FEC in the

communication system.

_mem‘;d _’. Source ..Chﬂnnel _'_ Modubtor #mw ,_. RF Up-
imattamdice | CO0T | Encoder | | " DA Comversion
Channel

- Output | Source | Channel | g Daschand & [F RF Dows-

- —— — o - :

- transducer Decoder Decoder | | Feainai 1o Conversion

Figure 1.1 * The connection of FEC in the communication system



Many different types of codes have been devised for this purpose. Due to the well
characteristic of error correction capability for both random errors and burst errors,
Reed-Solomon codes [1] have been widespread used for error correction in various
kinds of digital transmission and storage systems. It has been proved to be a good
compromise between efficiency and complexity.

In general, the main categories of error correcting codes are block codes and
convolution codes. Reed-Solomon codes are belonging to a block code, meaning the
message to be transmitted is divided into separate blocks of data and each block has
parity protection information added to it to form a self-contained codeword. It is also
a systematic code, which means the encoding process does not vary the message
symbols. The protection symbols are added as a separate part of the block. Figure 1.2

is a sketch map of this.

. v{:ﬁdml‘d = .l

K Informotion Data 2+ Parity

Figure 1.2 : The Constitution of Reed-Solomon Code.

In Reed-Solomon codes, any two code-words operation produces another
codeword. So, Reed-Solomon code is also a linear code. And because of cyclically
shifting the symbols of a codeword produces another code-word, it is cyclic. The
classification of Reed-Solomon Codes in the FEC is shown in Figurel.3.
Furthermore, it belongs to the family of Bose-Chaudhuri-Hocquenghem (BCH) codes
[2. 3], but is distinguished by having multi-bit symbols. It makes the code particularly
good at dealing with bursts of errors. In virtue of that although a symbol may have all
its bits in error, this counts as only one symbol error in terms of the correction

capacity of the code. It is the important factor in adopting RS code in many practical

4



applications such as digital audio and video [4], magnetic and optical recording [5,6],
computer memory, cable modem[7], xDSL[89], wireless and satellite

communications systems.

Figure 1.3 : The classification of Reed-Solomon Codes in the FEC.

™
Pl =]
e g

It provides different levels af protectior hy,chuﬂsmg different parameters for a

code and affects the comp]exnyaf’imp

tmr Therefore, a RS code can be
expressed as (n, k) code, where K ﬁ"thecgdewdrd length in symbols and £ is the
number of information symbols in the message.

In general, < 2" -1 .Where m is the order of Galois Field.

If m < 2" - 1, this is referred to as a Shortened Code. There are n - k parity
symbols and f symbol errors can be corrected in a block,

where 1= (n-k)/2....... ...for n-k even

ort = (n-k=-1)/2 ........for n-k odd.

Modified RS codes are frequently used for providing different code rates and
correcting capabilities. Shortening and puncturing is the major modification of RS
codes. Ordinary, the standard error-and-erasure decoder is employed to decode the
shortened and punctured RS codes. In this thesis, our design focus on the error-only
decoder for the shorten code.



1.2 Motivation

As mentioned above, for burst errors and random errors, Reed-Solomon codes are
popular to provide data integrity and exploited in numerous digital systems such as
those for deep space, digital subscriber loop (cable modem and xDSL), gigabit
(1000base-T) and 10G Ethernet (Fiber, Copper), digital audio and video broadcast
(DAB/DVB), magnetic and optical recording (CD, DVD), computer memory (HDD),

wireless as well as in satellite communications systems, and etc.

Table 1.1 : Some parameters list of specification with regard to RS codes.

Application tipeciﬁcm ion: (nk
HDD (72, 6d:4) (36, 32, 2)
CD (32, 28:2) (28,24, 2)
DVD (208. 192, 8) (182, 172, 5)
DVB .
(204, 188, 8)
ITU J83(A.B) o
STM-16
(255, 239, 8)
0C-192
CCSDS (15~255, n-16, 8)
x-DSL & Cable modem (=255, n-2t, =1-8)
WiMAX (255, ~239, -8)

The data processing topology in each application is based on different error property.
And because of the difference at processing topology, choosing different parameters
such as the number of bit in a symbol, the number of symbol in a codeword and in a
information data as well as in the redundant data for a code to provide different levels
of protection is necessary. The constitution of parameter is numerous and each

application has its own specification parameters. Tablel.1 shows a list of specification



parameters with regard to Reed-Solomon codes.

The parameter affects the complexity of implementation. For the sake of various
purpose applications or more than one parameter in a system, we must settle on the
suitable VLSI design orientation.

As showing in Figurel.4, the ASIC having the best performance and then is the
reconfigurable hardware. If a design is perfect, the performance of reconfigurable
hardware is very close to ASIC. The remainder, even the processor or the DSP, may
have smaller area but the processing speed of this approach is slow and can only be

dealt with low bit rate data.

F'y

iy
B
Flesitility

Figure 1.4 © The characteristic chart of VLSI design orientation.

The circuit must process large amounts of data within a limited time in order to
handle video and audio signals. Continual demand for ever higher data rates makes it
necessary to devise very high-speed implementations of decoders for Reed—Solomon
codes.

At the same time, we need a system to suit numerous different characters of channel
that have different specification to guarantee the quality on transmission. So, the

multi-mode and high-speed system is preferred. In other words, the system must be
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high-speed enough and we don’t need to redesign from the scratch.

Hitherto, the reported decoder implementations [10, 11, 12] have quoted data rates
of ranging from 144 Mb/s to 3.2 Gb/s. The high throughputs have been achieved by
architectural reformations such as pipelining, parallel processing, and etc. More than
half of the architectures [11, 13, 14, 15] take advantage of the extended Euclidean (eE)
algorithm for computing the greatest common divisor between two polynomials [16]. A
key benefit of the eE algorithm is regularity. Furthermore, the critical path delay in
these architectures is at most Tauh + Tadd + Twwx, where Twun is the delays of the
finite-field multiplier. Similarly, Tudd and Tmux are the delays of adder, and multiplexer
respectively. This is fast enough for most applications. Relatively, fewer architectures
are based on the Berlekamp—Massey (BM) algorithm [16, 17, 18, 19]. Because of the
irregularity and longer critical path delay. the BM algorithm is almost utilized for
low-complexity applications rather than ligh-speed applications.

In this thesis, we show that it is possible 1o exploit the BM algorithm to achieve
extremely high-speed applications. Wonderfully. 1t cannot only operate at higher data

rate, but also has lower gate complexity for multi-mode applications.

1.3 Organization

Although the logic structure of Reed-Solomon codes is simple, the mathematical
foundation is complicated. It is important to have a reasonable understanding of at any
rate what needs to be done, if not why it is done. In this thesis, a brief mathematical
representation as well as schematic architecture of the encoding and decoding
processes will be introduced.

In Chapter 2, we explain some essential background with regard to the Galois

field GF(2"), the process of encoding, and the mathematical representation of

f



decoding. In decoding, we first verify the method of Peterson-Gorenstein-Zierler(PGZ)
algorithm, and the conventional Berlekamp-Massey(BM) algorithm. Then, the

inversion-less Berlekamp-Massey(iBM) algorithm is compared. Further, the serial and

inversion-less Berlekamp-Massey(SiBM) algorithm is proposed. Moreover, we will

verify the Chien’s search and the Forney’s algorithm that are used for calculating the

error locations and magnitudes respectively.

In Chapter 3, we demonstrate the architecture design of the multi-mode
Reed-Solomon codec. The pipeline topology and logic design of each block will be
discussed. It includes the multi-mode syndrome calculator that is the first block of RS
decoder, and the SiBM architecture with high-speed and low-complexity property in
the key equation solver, which is the second block in the RS decoder and is based on
the inversion-less Berlekamp-Massev algorithm. Then we explain how we decrease
the critical path and simplifv the circuit: Moreover, we show the integrated
architecture of the Chien-Search and Foiney’s block, which is the final operation of
the Rees-Solomon decoder for fmdng the error location and error magnitude
simultaneously.

For shorten codes, a common compensator is emploved to adjust the starting point
of search and is combined in the SiBM architecture. In other word, the coefficients of
error locator polynomial and the error evaluator polynonmal that are feed into Chien
Search and Forney Block respectively are adjusted by a common compensator in the
SiBM block. It reduces the penalty of that from single-mode to multi-mode greatly.

Chapter 4 shows the implementations of Xinlinx VirtexE xcv2000e FPGA and
Synopsys DC with UMCOIS8 library. Also, the design flow, the verification step, the
simulation result and the synthesis result are included.

In Chapter 5, we show the advantages of our design and make some comparisons

with conventional design graphically. Also, the comparison with publications of RS

5



decoder will be discussed.

Chapter 6 concludes with a summary of contributions and the future works.



Chapter 2

Mathematic Representation of RS codec

The mathematical foundation of Reed-Solomon codes is complicated, but it is
important to have a reasonable understanding of in any case what needs to be done, if
not why it is done. In this chapter, we will introduce the principle of Reed-Solomon

code with regard to our design mathematically.

2.1 Galois Field GF(2")

The Reed-Solomon code is defined over the finite field. To proceed further
requires some knowledge of the theory of finite ficlds, otherwise known as Galois

fields after the French mathematician.

2.1.1 Galois field element

The construction of a Galois field is a set of elements that are based on a primitive

element, usually denoted «, and take the values

S8 _5

(1] ] 2 L] 27=2
[0, .t ", @@ s S s A s s s (2.1)

to compose a collection of 2" elements. Thus, the field is known as GF(2").

Furthermore, n = 2"- 1, the final element of the 2" collection can be described

m=1

as o



The powers of @ form shown in (2.1) are called the index form, and each field

element can also be represented by a polynomial form

ati—l

I il S gl TR 1R ) S S SR R T (2.2)

where the coefficients ¢, , to g, take the values 0 or 1. So, we can describe a field

m

element using the binary number (g, .4, -.....¢¢,) and the 2" field elements

correspond to the 2" combinations of the m-bit number.

The value of a is ofien chosen to be 2, even if other values can be used. When « is
chosen, higher powers can then be obtained by multiplying by @ at each step. Notice
that the multiplication in a Galois field is different from those that we use in a general

field. This will be described later in Section 2.1 .4.

2.1.2 Primitive Polynomial p(x)

A weighty part of the Galois field, and therefore of a Reed-Solomon code, is the
field primitive polynomial, p(x). This is a polyioinial of degree m which is irreducible,
that is, a polynomial with no proper factors. It forms part of the process of multiplying
two field elements together. For GF(256), the polynomial

= PR T s s et OB
15 rreducible and therefore will be utilized in the following sections. For a Galois
field of a particular size, there is sometimes a choice of adapted polynomials. Notice

that choosing different primitive polynomial will produce different results.

2.1.3 Constructing the Galois Field

Before encoding a Reed-Solomon code, we need to construct the Galois field. Let

10



c¢ be a primitive element in GF( 2" ). As shown in (2.1), the 2" consecutive powers
of @ must be distinct. The nonzero elements in the Galois field can be constructed
by using the principle of that the primitive element @ is a root of the field primitive
polynomial. In other word, p{(a) = 0.

Therefore, we can construct the finite field GF(256) by using p(a) = 0 in (2.3).
Meaning that, we can write " =a'+a' +a’ +1. Multiplying by a at each stage,
using @' +a +a’ +1 to substitute for & and adding the resulting terms can be
used to obtain the complete field as shown in Table 2.1. This shows the field element
values in both index and polynomial forms along with the decimal shorthand versions

of the polynomial representation.

index polynomial form
form 7 6 P W : = decimal
X X X X j X |_ X X X

o ol o aqo 0ol ool o
o 0 0 0 | Joee o 0 I I
o' 0 0 0 0 ' {]_I— 0 | 0 2
o’ 0 | o | o “onie | i ¥ o | 4
= 0, 0 {0} o1 |0} o0 o] 8
o 2.0 0 1 Lo | o 0! o0 | 16
o 9 0 | 1 0 0 0 0 p || 32
o 0 f 1 {0 00! 0o ! 00 |64
o 1 . 0 : 0 i 0 0 ;0 : 0 : 0 |128
o’ 0 0 0 [ 11 0 1 | 29
o’ o | o Fx Ll i ol 1] olfss
o e

Table 2.1 © The construction of the GF(256) elements

If the process shown in Table 2.1 is continued overa™ , it is found that

A ogitepl = ¥t Consequently, the sequence repeats with all

11



the values remaining valid field elements.

2.1.4 The operation of Galois Field

The addition of two elements in the finite field is an exclusive-OR operation.

Meaning that when we add two field elements, we add the two polynomials: (4,

w1

X" ax'F ag) + (b x4 b By) = € X L+ et 6, where
¢, =a @b and “@ " is an exclusive-OR operation.

module (2713 [n

The multiplication of two elements is defined as «'-a’ =a""’
practice, we often do multiplication of two polynomials straightforwardly. If both of
polynomials with degree m-1 results in a polvnomial with degree 2m-2, which is

therefore not a valid element of GF( 27 ). Therefore, multiplication in a Galois field is

defined as the product modulo the field primitive polvnomial p(x).

Multiplicand 1 0 0 0 0 0 0 1

Multiplicator @ 0 0 0 0 0 1 1 0

@lﬂﬂﬂﬂﬂﬂlﬂﬁ

Not Valid Field Element=» | ] 1L 0 0 0 0 0 | | 0

b O 1 |1 20 T

GB" t |2 | Je |¥ o

Finial Result(Valid Field Element) | 0 0 | 0 0 0 0 1

Figure 2.1 : An example of multiplication in Finite Field

Instead of division, the corresponding primitive polynomial is substituting for the



nonzero terms that exceed the degree of the field, and adding the remaining terms as

shown in Figure 2.1.

2.2 Encoding of Reed-Solomon Codes

The RS (n, k, 1) is a code whose codeword are blocks of n<2" -1 symbols, and

each element in GF (2" ) can be represented by /m-bits. Meaning that there are n

symbols and each symbol has m-bits in a codeword.
For the sake of correcting ¢ =[n—k!2j symbol errors, 2 parity symbols are

calculated and appended to & group of miormation symbols during the encoding
process. Therefore, each codeword consists of L information symbols and 21 =n — k

redundant symbols. To procecd further, we have to construct the code generator

polynomial g(x).
2.2.1 Code Generator Polynomial

The Reed-Solomon code is constructed by forming the code generator polynomial
£(x), consisting of 2¢ factors, the roots of which are consecutive elements of the

Galois field which can be calculated by the following equation:

2=
g(x)= l_[{xﬂr“"] =(x4+a" ") x4+ @) (Y e (2.8)

where b is an integer constant which is called the power of the first consecutive root
in g(x), and is typically zero or one. However, other choices sometimes simplify the
decoding process slightly. While each is valid, it results in a completely different code
and requiring changes in both the coder and decoder operation. If the chosen value of

b is near 2"-1, then some of the roots may reach or exceed @’ '. In this case the

13



index values modulo 2"-1 will be substituted. Moreover, the factors are often written
as (x —a'), which emphases that g(x) = 0 when ¥ = &' and those familiar with
Galois fields realize that —a' is exactly the same as «' [20].

It is also, the code generator polynomial takes the form :

21
gx)=2 gx =g, +gx 48, +. 4 gy X H(gy =X (2.5)

i=0

which is often employed to construct a single-mode encoder.

2.2.2 Forming the codeword

Let 1/, [ ,......] 1, } indicate k information symbols and each symbol with

m-bit that are to be passed along a conununication channel or stored in memory.

These symbols are considered as elements of the Galois field, and encoded into a

codeword {C,_,C, ,,......,C, C, f ofn symbels that can correct t = |_n—k / ZJ symbols

n-1,C 0
of errors.

The k information symbols are picierable represented in the form of the
information polynomial 1(x)=1, x*"+ 1 _x* 7+ . +Ix' +1 ..o, (2.6)
Then, will be transformed into a codeword polvnomial, as following shows :

) =€, x4+ Coil™ i s H G R0 nnsvansssammasnss )

At least, there are three kind of process to encode the codeword. To proceed, we
discuss the three kinds of encoding process.
Method 1 = C(x)=1(x)-g(x)
The codeword polynomials C(x) are constructed of that information polynomial
[(x) multiplied by g(x), the generator polvnomial of the code, which is defined as (2.4)

or (2.5).



The concept of this is very simple. Because of the 2t consecutive elements
a' o' e, a" are roots of g(x), and C(x) is a multiple of g(x). Consequently,
Cla"')=0,for 0<i<2r—1land any codeword polynomials C(x).

Method 2 © C(x)=1(x)-x" + p(x) = g(x)g(x)

According to the equation above, the codeword C(x) is consisted of that
information symbols I(x) followed by 2t parity-check (remainder) symbols p(x).
Moreover, C(x) is a multiple of g(x) by multiplying g(x) with a polynomial g(x). In
other words, /(x)-x" =g(x)g(x)+ p(x), where we define q(x) and p(x) as the

quotient and remainder respectively while the polynomial 7(x)-x* is divided by

2(x). Because of the lowest degree term in /(x)-x” is [, -x" and deg [p(x)] < 2t,

the codeword construction as shown in.Figure 2.2 and therefore called a systematic
encoding.
I - _ . e ; . |
' IE!.I.- 2 (g s ' f1 1.4 P8 Pz:-:_ ESEECE ‘Pﬂ
L 1 ] : L 11 . i
o deg n-1 — 2t a a deg 2t-1 -0

Figure 2.2 : The Construction of a Codeword in Systematic Encoding

The advantage of systematic encoding is that we may see the content of a
codeword roughly when the error is not serious, but it i1s not readable by using Method
1. Because of a process in dividing g(x) is needed.

Method 3 © Factorization form of g(x) (or encoder)

The resulting codeword after encoding is the same as Method 2 (ie. C(x) =
I(x)-x" + 1(x) mod g(x)), but the process has some difference in g(x). Method 2 uses
(2.5) to form g(x), i.e. I(x) modulo (2.5). In this case, Method 3 uses (2.4) to form
g(x), that is, I(x) modulo (2.4). In the concept of DSP, we can use the z-transform

I/g(z) as a digital filter to explain it as shown in (2.8).
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I | | |
g(z) l1+a’z’! ol ol

” i - PP |13 |
l+a =z l+a ' =z

It is suitable for multi-mode applications and can reduce the hardware greatly by
combining encoder and syndrome calculator. Unfortunately, there is a little penalty in
increasing the critical path. The schematic of both Method 2 and Method 3 will be

discussed in Chapter 3.

2.3 Decoding of Reed-Solomon Codes

The RS code belongs to a non-binary BCH codes. In the decoding of binary BCH
code, we just need to calculate the error locations and then the error values must be 1.
Nevertheless, a step involving the computation of error values is required in the
decoding of RS codes.

There are various algorithms in decoding the RS codes. Roughly, we could divide
it into three categories, i.e. Time Domain Decoding, Frequency Domain Decoding,

and Transform Approach Domain Decoding, as shown in Figure 2.3 ©

Transformed o Caleulate
Berlekamp | | Error values |
e [Transformed] T Bomgi Transform Approach Domain
J Berlekamp- | = Recursive
M tens
Decoding assey | X S10R
Algorithms
of b2 —+ PBZ =
RS Codes —_———= o
| JSyndrome T — Chien | | _ Time
“Caleulation 7" Euglideon:- = Search I_h _. " Domain
|| Berlekemp- |,
| Massey |
L I Berlekamp- | | Recursive | FT'EJ-']UE“CY
i Massey | ¥ Exctension | o IFFT ' Domain |/

Figure 2.3 : The Categories of Decoding Algorithm in RS Codes

As shown in the vellow mark of Figure 2.3, our design focuses on the
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Berlekamp-Massey algorithms. We will introduce the time domain decoding
mathematically in the following sections.
To proceed further requires the understanding in the constitution of the receiving

codeword. The transmitted code polynomial C(x) has described in (2.7). Then let

be the corresponding received polynomial. Assume that v errors have been induced
by channel noises during transmission, in the form of an error polynomial, E(x). Thus
the received polynomial, R(x), is given by :

o e O ol 0 3 T (2.10)

LA |

where E(x)=¢ X" +-----+ex+e, and ¢ =R @ C, is a m-bit symbol in GF(2")

with the positions of the errors in the codeword being determined by the degree of x

for that term. It is also, the ‘error pattern E(x) contains v errors at locations
XM xt e XM with error values & g -2 the error polynomial E(x) can also
be represented as

B Y S B BT b r s b B R caicisviiaismsmonsin S s e S S (2.11)

Clearly, to determine E(x). we need to know the v pairs {Er.,r"‘]’s. If no more

than t = | n-k /2| of the & values are valid (nonzero), the correction capacity of

the code is not exceeded and the errors are correctable.

2.3.1 Syndrome Calculation

When receiving a codeword of Reed-Solomon code, we have to check if there 1s
any error in it. As the transmitted codeword C(x) is always divisible by the generator

polynomial g(x) and that this property extends to the individual factors (x+a') of the
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generator polynomial, (2.10) can be denoted as

Rl Y =0l )+ E{a ) =0+ EBLa)) =El") «.c.ovommsennismmmmmrsmmmepens A2 b2}
For eachi=b, b+1,...... ,b+2t-1, the value R( @' ) is defined as the syndrome value. That
is, from (2.9) and fori =b, b+1.......0+21-1

S=R@)=R, ()" +R (@) et Ra&' + Ry oo, (2.13)

This means that each of the syndrome values can also be obtained by substituting
x=a' in the received polynomial. Moreover, in (2.12) and (2.13) between the
syndromes Si and the error polynomial E(x) can be used to produce a set of
simultaneous equations from which the errors can be found. If choosing b=0 and then
substituting a”.a'.--a™' for x into (2.11), the 2t syndrome equations can be

rewritten as +

Sn :R{an]:,g] '[&'u]"l+£. ".,ﬂ"“_ii L B _{.”.]1...
51 = R(HIJ =& '{al}'r'l + &, o }“"'- doeeee g '“.':'FJLJ' v e B
Sy =R@ M) =g (@) g, Ca )" i+, (@)

To clear (2.14), we let §=a" to simplity error-location numbers and substitute it

into corresponding equations in (2.14). Then, the equations can be rewritten as :

-'!IPU=RI:£I”:I=E|-|+£:-]+ ...... +& -1

.'!', If‘:{ﬂl\]:E“!'.‘-J'.l-i'&':ﬁ:l""'"”-i_gq-ﬂ,l {2 15}

S, =R =" " +&p" 4t g

By computing the syndromes, we can determine if we need to correct the
codeword or not. If all the syndrome components are equal to zero, there is no error
occurs and the data is valid. Oppositely, if not all syndromes are equal to zero, we
have to do some process for data recovery. First of all, we need to find error location

polynomial by some algorithms described in next section.



2.3.2 The Key Equation Solver

We define the Key Equation Solver Block including following two steps :
1. Determine the error-location polynomial A(x).
2. Determine the error-value evaluator Q(x) .

The error locator polynomial with v actual errors is defined as :
A(x) = (1+8x)1+8,X)......(1+8.x) = 1+A XA X+ A X" e (2.16)
Then, the error-value evaluator polynomial is

Q(x)= A)S(x)mod x™ =Q+Qx"+ 40 x"' ... (217

where S(x) is defined as S(x) =S, + S’ # 0. TS Ca TP R (2.18)

To find error-location numbers and srror magnitudes, we need to get the
coefficients A "s in (2.17) and € s n (2.18) first. The computation of error locator
polynomial is the most complex block in the whole decoding process. As shown in
Figure 2.3, there are various algonithis o1 this propose.

In this section, we introduce some of the time-domain decoding algorithms with

regard to our design.

2.3.2.1 The Peterson-Gorenstein-Zierler Algorithm

The Peterson-Gorenstein-Zierler decoding algorithm is the first explicit algorithm
developed in 1960 for binary BCH code, and is the basic concept to let us know how
to decode Reed-Solomon codes.

The error-location numbers are the reciprocals of the roots of A(x). Let X, be

one of the error-location number and therefore to substitute the reciprocal X, into
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(2.16), we can derive 1+A X, "+A,X, "+ AA X, =0 (2.19)

Now, let &, be the error magnitude with regard to the error location and then
multiplying £, X, " in the both sides of (2.19), we get
e Xy (A, A+ A X, ) =0
D (X HAX ALK A A X ) =0 (2.20)
Substituting L= {1, 2,... v} into (2.20) and adding the resulting terms, we get
23,[_{}{._4:11}{1"'+ﬁ:x]_'“’+ ...... +AX,"™)=0
=1
> iatle'+m.isﬁxt_"'+ﬁ:i£ﬂx.":+ ...... +A, Y &, X, =0
= = -1
& S+AS +AS +...+AS. =0
P ASHAS o HAS, == EoHEEL OO i AR S (2.21)

Let v =t and substituting j = (1), (t+ s 2t-1¥ into (2.21), we get
S. S5 =8, | [ AT Prdaet
S:l 2 S.‘.l-l "'Sl-l "H"'r +;f"1:1-1
Then, the coefficients A, of error locator polynomial in (2.16) can be solved by
matrix inversion of (2.22). If the error count 1s equal to t, matrix £ is nonsingular.
Otherwise, if there are less than t errors, ¢ is singular. We have to delete the
right-most columns as well as lowest rows repeatedly until the matrix £ s
nonsingular.
As soon as the error-location numbers £, s have been calculated, the error

magnitudes & s can be derive by matrix inversion of (2.23) that is similar to (2.15).



Fﬂl .IB: “‘ﬁ» ] £ S

Lﬁ‘ ﬁ:""ﬂ\‘l_ E" SL'
Now we know the error locations as well as error values, the decoding process is

done. Summarized, the PGZ decoding algorithm including follow 9 steps :
I. Compute the syndrome values S,.S,,......S, ,, where S, =R(e&').

2. Construct the syndrome matrix{ , and compute the determinant of this matrix. If
the determinant is nonzero, go to step 4.
3. Simplify the syndrome matrix by deleting the rightmost colunmn as well as the
bottom row from the original syndrome matrix. Go to step 2.
4. Do matrix inversion operation of (2:22), andwe get A, 's.
5. Construct the error-location polhynomial A (x) such as (2.16), and find its roots. If it
has the same roots or no root, go 1o siep 9.
6. Construct the matrix # and (2.23), do matrix inversion to get the error
magnitudes &, ’s.
7. Correcting the received codeword by adding the error magnitudes with regard to
the corresponding error-location numbers.
8. Finish the decoding process and send the codeword out.
9. Declare a decoding fail or request a resend command.

The PGZ algorithm is uncomplicated in concept, but the hardware complexity of a
T*T matrix 1s increasing cube with T. In order to replace the matrix operation and
decode the RS code more efficient, we will introduce the Berelekamp-Massey

algorithm i the followmng.
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2.3.2.2 The Berlekamp-Massey Algorithm

In this section, we re-derive the equations similar to the expansion of the matrix in
(2.22) and solve it by the Belekamp’s algorithm [21]. Then, the Berelekamp-Massey
algorithm (BMA) and the inversion-less Berelekamp- Massey algorithm [22] (iBMA)
will be introduced. Finally, the Serial and inversion-less Berlekamp—Massey (SiBM)
algorithm will be proposed.

MNote that there are some differences from Lin’s text book [23] or some other
technical literature by choosing different integer constant “b™ which is called the
power of the first consecutive root in g(x) , and different starting point of iteration “i”
By this way, we can optimize our design in the hardware consideration. So, we let b=0

as well as i = (1 ~ 2t) from stem to stern and the advantages will be mentioned in the

end.
4 The Berlekamp’s algorithm *

We can also define the syndrome polynomial S(x) as

S(x)= iﬂ,x’ e L L A ey o L P et o 7227 [

Notice that only the coefficients of the first 2t terms above are known, It is also,
S;=% gl o 0Sife it s (2.25)
L=1

If we extend (2.25) from =0 to 1=(2t-1), we can find that the 2t such S, ’s are simply
the 2t equalities of (2.15). Substituting S, of (2.25) into (2.24), we can put S(x) in

the following form :

SH) =2 %2 E B =D& D ABX) e (226)
il L=} L=1

]
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and where i[ﬂ[_x]i ——

=0 ]-,th { }
That 1s, (2.26) can be re-written as S(x) = i I j;‘ OO 0. §
-1 1= X
Then, we can derive A(x)S(x) in the following form :
A(X)S(x) = {ﬂtl-ﬂtxl}*{zl_‘; x}» - Z,;‘x-l—[“-ﬂm
.1; 1 L=1 L L=l L k=1 {229}
=>& [1 (1-8%
L=1 k=1 k=L

Besides, consider the product A(x)S(x) oftwo polynomials directly, we get

AXISE) =(1+Ax+ AP+ +AXx)(S, +Sx' +...+85, x™+.)

2t-1

=8, +(§ +AS X +(S; +AS, + A S+ HS,, +AS,, + oA S Y
iR v A, Lo AR A AR

Y=

e (2230)
[f (v = t) and assume the coefficients af the terms that greater than x*' are equal to
zero, the coefficients with red mark in (2.30) are similar to the expansion of (2.22).
Fortunately, the assumption above is valid. Why?
Note that if we unfold (2.29), ih¢ ¢quation is jusi a polynomial of degree v-1 and
is equal to (2.30). Meaning that the coefficients of the terms that greater than x*' in
(2.30) are equal to zero. the assumption holds.

Furthermore, as (2.29), (2.30) and the definition of €(x)in (2.17), we can derive

Q(x) = A(x)S(x) mod x™ =S, + (S, + A,;S))x+ (S, + A S, + A,S)x* + (2.31)
+(S,_._] + .ﬁls‘__: + .+ hhlsﬂjxn-l S |-
and Q)= o TT R s 35
L=l k=l k=l

Equation (2.32) will be exploited to derive the error magnitudes in the Forney’s
algorithm later. Now, let us proceed to find the coefficients A,’s of error-location
polynomial A(x).

As mentioned above, the degree of €)(x)is v-1, the coefficient from x" to x !
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in the expansion of A(x)S(x) must be zero. By setting these coefficients to zero, we

have exactly the same set 0f(2.22). That is,

S, +AS,, +..+AS, =0
S, +AS, +..+AS =0
. e (2.33)

S + ﬁISJ!-'_‘ + L) + ﬁ\.'s.'."l-!-r = G

-1

This set of equations is known as the generalized Newton’s identities. Similar to
the operation of the PGZ algorithm m Section 2.3.2.1, find the simplest set of
matrix £ , our objective is to find the minimum-degree polynomial A(x)whose
coefficients satisfy these generalized Newton's identities.

Instead of the complex matrix inversion, we can compute the error location
polynomial A(x) iteratively in the 2t iterations of Berlekamp’s algorithm. Suppose we
have just finished the i-th step and found the solution

AP =AY + A x4+ A AT B ..o eenennenss (2.34)
that is the minimum-degree polviiomial whose coeflicients satisty the first i Newton'’s
identities of (2.33) and where Ji is the degree of A'(x). To determine A“""(x), we
have to check whether the coefficient of A" (x) satisfy the next generalized Newton’s
identity. We compute the following quantity :

A =S HAYS, F L FAS s (2.35)
This quantity A, is called the i-th discrepancy. If A, =0, the coefficients of A" (x)
satisfy the (i+1)th Newton’s identity. In this event, we set A""(x)=A"(x). On the
contrary, A, # 0, we must add a correction term to A" (x) to obtain A""(x) . To

make this correction, we go back to the step prior to the i-th step and determine a

polynomial C(x) which is the minimum-degree polynomial at the y -th step of iteration

such that the y-th discrepancy A, # Oand y - &, has the largest value. Then,
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A¥P(x) = A(x) + %-C[x]-x["“ .................................................... (2.36)

¥

which is the solution at the (i+1)-th step of the iteration process and the coefficients
satisfy the first i+1 Newton’s identities. Continue the foregoing process until 2t steps
have been completed, we get A(x)=A'""'(x) is the true error-location polynomial
whose coefficients satisfy the set of the generalized Newton’s identities given by
(2.33).

In the beginning, the initial condition of A(x)and A, is shown as bright yellow
mark of Table 2.2. To carry out the iteration of finding A(x), we proceed to fill out the
table form i=1 to i=2t by determining A, in (2.35) and computing A"""(x)as (2.36)
that have described above. After 2t iterations, the error-location polynomial A(x)is
equal to A'*’(x). Then, we can derive the coefficients of €(x)by substituting S, s

as well as A, ’s into (2.31) and caleulatingat.

i A" (x) - A | 0, i- g
. _
% 1 =C(x) n 0 ]
. f.‘

0 /l L;,- S, 0 0
| |4S,x =t S +AS, ; ;
2

3

2t

Table 2.2 : Iterative procedure for finding the error-location polynomial A(x)

Having calculated the coefficient values of A(x) and €)(x). it is possible to find

the error-location numbers and error magnitudes by Chien’s Search algorithm and



Forney’s algorithm respectively. Nevertheless, we stop a story at a climax to keep the
listeners in suspense for the moment and proceed to discuss the Berlekamp-Massey

algorithm.

4 Conventional Berlekamp-Massey algorithm (BMA) :

After one year, in 1968, the Berlekamp’s algorithm was re-explained by Massey
with shortest linear feedback shift register (LFSR) concept that has regular property
for decoding key equation and is so-called Berlekamp-Massey algorithm.

By Berlekamp-Massey algorithm, (2.22) or (2.33) is just an autoregressive filter

and the A,’s are regarded as tap coefficients. As Figure 2.4 shows, it can be
implemented by a so-called LF'SR and the discrepancy A, is employed to verify the

LFSR to generate the corresponding syndrome sequence at each step.

— e D
@q— A. (%)q- @4— Al(é)q— A,
4
! L%
Sia

A

Figure 2.4 : The LFSR Structure of Berlekamp-Massey algorithm.

At the i-th step, we get §: and the discrepancy

&

A=S =(-8)= JAUS e (2.37)

j=i

If you are attentive, you could easily find the extension of (2.37) is exactly equal to
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(2.35). Now, let us eliminate the discrepancy, i.e. calculating A"""(x) that satisfy

.J\I

=0

As aresult of A +A, =0, we can derive

En‘”s + . & Zn‘ S s e (2.39)

= .“' =

and can be re-written as

Zm“' B ﬁ”" IS =0 i (2.40)

Jr=F) 1
=0

Compare with (2.38) and (2.40), we can get

N;‘”=M”+ﬂ' s A S AR AR A R G 7 (2.41)
and can be re-explained as
A"V (x)=A"(x)+ i—\.]h}x‘{Ziﬂ}

In fact, (2.42) is equivalent o (2,36} by seiting A'7'(x)=C(x) and C(x) is the
so-called correction polynomial

As Berlekamp’s algorithm, setting the initial condition followed by calculating
(2.37) and (2.41) iteratively from i=1 to i=2t, we can get the error-location polynomial.

Summarized, the entire BMA is shown as:

. Setting the initial condition:

%=0, AP(x)=1, A, =5,

C"x)=A"x)=1, A.=A,=1

=
2. For (=1 to 2t)

hm{x] = nu-l][x) 4+ E‘CL'M[X]'K
A
&
= Zﬂ.lfl}sl-j = hﬂ[l]sl + JII'|"I|:I]S|~I +ot ﬁ.iutlisl..f:

=0




If A,,=00r iL2-6, .

5=5

i-12

CPx)=C*""(x)- x, Ac=A..
Else.

5 =1-0,, CP%=A""®, A=A, .

1 1

where ¢ is the an auxiliary degree variable, A"(x) is the i-th dummy

error-location polynomial, and A, is the i-th dummy discrepancy. Besides, C"(x)
is the correction polynomial for A"(x), and A_. is a previous nonzero discrepancy.

If the discrepancy A, is equal to zero, it represent that we don’t update the
error-location polynomial A"V(x)at step (i+1). After 2t iterations, the error-location
polynomial A(x) is equivalent to the dummy polynomial A®(x).

So, we can say that the BM A is just a shortesi-LESR version of the Berlekamp’s
algorithm. If there is something confusmg, please refer to Table 2.2 of the

Berlekamp’s algorithm.

4+ The inversion-less Berlekamp-Massey algorithm (iBMA) :

Why an inversion-less version is needed? Let us look back to (2.42), the
equation used for updating the error-location polynomial, the conventional BMA is
including a division operation in the finite field that 1s more complex and very
time-consuming. In contrast with the conventional Berlekamp-Massey algorithm, the
inversion-less Berlekamp-Massey algorithm needs no divider or inverse ROM for
updating the polynomial. To avoid the division operation, the inversion-less
Berlekamp-Massey algorithm (iBMA) is essential.

[t should be noted that the iBMA finds the multiple of A(x) instead of A (x) and



therefore A, #1 anymore, we need to store the coefficient A, when we using the

iIBMA. Then, this algorithm is described as follows:

1. Setting the initial condition:

5,=0[A"x =1, [&,]s,
[COlxy=APe)=1, [A]=a,=1

2. Fori=(1-2t)

(A% = [A ] (A0 + [A,]- €)%

A= [A9]s, =IAC]s +[A2] s, + .. +|A°] Ses
0

If [A,JF Oor i< 2-4,

8, =5, [C¥lx)=[C"Joxusrt A ALY
Else

d=i-4,, (x}= E:m i_ﬁ_.sg..

= [AR

where (x] represents a multiple of - A"(x)and is similarly to |4, |, {x}

and |A_|. Furthermore, the error magnitude polynomial Q(x) could be calculated

with A(x) simultaneously or substituting S, s as well as A ’s into (2.31) and
calculating it after the 2t iteration above.

For computing €(x) with A(x) simultaneously, we need to set the initial

condition (x]=l and |#'"|(x) =0, then calculate

fori=1-2t

ﬂini[x}= ﬁ:. ‘1n{|-li (x]+ ﬁh—| : y“'”{x}-x

if [ Foor i<2:5, & [/0=]r""|x- x

[J(} — 1{1{;-1; (K}

i

=




where

A .| as well as |A, | are the same with the iteration of A(x)and x} is

¢

a multiple of Q"(x). It is also, h[x]={x} and ﬂ{x}=[x] :

In

the iBMA, the finite filed inverter is replaced by a multiplier and it can be

proved that it doesn’t have any influence on computing the correct result by induction.

2.3.2.3 Proposed Serial and inversion-less Berlekamp-Massey algorithm (SiBM) :

Most implementations of Reed-Solomon decoder choose the iBMA for their

error-location updating block in the past. By this algorithm, the parallel architecture is

formed and always require 2t~3t finite field multipliers [24.25]. If we do some

transformation mathematically. similar to the form of (2.41), we can get different

equati

on set which is so-called S1BM algorichm and 15 helpful for implementation.

Then, the equation of error-location pelvnomial [x] at i-th step can be

re-written as

AP =18l IAT |+ [ALRICH"| for J= 1008 cviicmnissnnonsinsc (2.43)
where [A{"™"] is the j-th term of the (i-1)-th iteration, and so is |C{,’|. Notice that
C'y"|= 0, when j=0. Similarly, the error magnitude polynomial 'x} can be
represented as

QF | = [A QP |+ [Au] TR Jor J=0m8. i (244)

and the discrepancy |A, | can be re-written as

8 &+
1A | =2 |AP|S,; =0+ Z. 1 RSO RNSRRIM . |
ke

=

Why we change above equation fromi= (0~ )toi=(1~0 +1)? This is the critical
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path consideration. At j=0 sub-iteration, we must calculate |A;’

first, so as to get the

first term of 1&_] i.e. |A{'|. To reduce the timing path, we let [A{’| to be calculated

at j= | and re-write (2.45) as

AR =A% H|AD Sy Jor J=T~8 e

L |

e (2.46)

Notice that in the reason of we excessive emphasis [Al[=|Al"|S

;» we must

let |AY| = [A] + |AY]-S,., =0.

Summarized, the entire SiBM is shown as

|. Setting the initial condition:

5,=0,[A%) =1, [a”] =[a,] =S5,
[l =A"x)=1, [A ]|=A, =i
2% =1, [*"Jx =0

2. fori=(1~2t)

a%] = [e*] = [&7] =0

for j=(0~5)

hilr = 51_' . ﬂ(jl-“ 4 ﬁii-n I Cl:_-lll

n:ﬂ — ﬁc il n?—l} i ﬁ{l—li il ‘riil*ll}

A% =[a%]+[Aa0] s

el

forj=(a+1) > [A"[=|A7|=|A5.[+[AE)]S

a -1

if [A“"]=0 or i< 2.4,

5,=0,, [Cle=[c™)- x, [Ac][Ac], [0 =]l %
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else

6, =i-6,, [Cx)=[A"x), [a.[F[A. ], [POle =12 kx)

The j = (&, +1) sub-iteration can be combined into the j=0 of the next i-th iteration.

Alternatively, the shadow mark above can be deleted and calculated by (2.47) after

the 2t*( 0, +1+1) iterations for computing A s finished.

QO= AP, for i=0~(Fe1), k= (0~i) vvrreeoneremrererereeeerenen (2.47)

k=0

where Q" is the i-th coefficient of €(x). Recently, a decomposed architecture
which only use three finite field multipliers has been proposed to reduce the hardware

complexity significantly in [26~28], and this architecture is based on the iIBMA.

Once the coefficient values of Afx) and £2(x) has been calculated, it is possible to
find the error-location numbers and error magnitudes by Chien’s Search algorithm

and Forney's algorithm respectively.

2.3.3 The Chien’s Search

We can determine the roots of A(x) in GF(2") by substituting the elements of

GF(2") into A(x)cyclically. If A(e')=0 ,then ILst. 1+ a =0,ie f=a'=

i | & -
a" """ is an error-location number.

Since the first symbol of the codeword corresponds to the x™' term, the search
begins with the value

a®™ =g forn= 2"-1(i0=0)

£2-1} Iy I

or o a“-a forn= 2"-1-io

- - - 3 iy » e
where 10 means index offset, then '™ '=&¢"a” =&"", and continuesto @' = @~ .

which corresponds to the last symbol of the code word.



The roots of A(x), and hence the numbers £ ~£ of error-location, are found by
trial and error, known as the Chien’s search [29], in which all the possible values of
the roots (the field elements &', io+1 <i< 2™-/) are substituted into (2.16) and the

results are evaluated.

2.3.4 The Forney’s algorithm

Once the error-location numbers f,~/, have been found by Chien’s Search, the
next step is to find the corresponding error magnitudes & ~ & . Recall the PGZ
algorithm in Section 2.3.2.1, when the error locations f,~/,, are substituted into
(2.23), the first v equations can be solved by matrix inversion to produce the error
values g ~ &, .

There is an alternative means, according to Forney’s algorithm [27], the error

magnitude of location f, can be caleulated as follow

Hb-1) -1 i o 05
g= B MA) _ AQS TN e (2.48)
AB) Aya(B)

How the equation above is derived from? Let us go back to (2.32) and S, is one of

the error-location numbers, then (2.32) can be rewritten as

¥

0= 36 [T (BB oo (2.49)

L= k=] k=l
and the derivative of error-location polynomial A(x) shownin(2.16)is

K@= %nf”ﬁm =3 4 [1 0+88=5 1 (+A5")... 250)
k=1 i=1 k=1.k=1 k=1 k=L

Moreover, the formal derivative polynomial can be described as

Ax)=A +2A,x+3Ax7 + L +vA X" = A +3AX7 + .. = A,/ x... (251)

Le.
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N BT A Bl oo eeeenanrene e (2.52)

From (2.49) to (2.52), the error magnitude & at the position f, can be obtained

by

1 A
g LMD _ A s (2.53)
AB) AB)

If b=0 is substituting into (2.48), the (2.48) will be equivalent to (2.53). There is a

little convenient for computing the error magnitude & in that €)( B is divided by

the sum of odd terms of  A(x) directly without multiplying 4, anymore. Therefore,

this is why we let b=0 from stem to stern.

The alternative form of error-value evaluator s shightly different and defined as

ZE)=AX)+X-LUX) o A TR R e b s (2.54)
and hence,
iy
o= i) NGRS i (2.55)
[T a+88™"
k=1 k=l

This description for evaluating & was derived by Berlekamp.
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Chapter 3

Schematic-view of Proposed RS CODEC

Architecture

The architecture of RS codec is separated into encoder and decoder. All of them
are based on finite field arithmetic. As mentioned in Chapter 2, the RS decoder

consists of syndrome calculator (Sec. 2.3.1), key-equation solver (Sec. 2.3.2),

Chien-search block (Sec. 2.3.3) and error-value evaluator (Sec. 2.3.4).
=
—
PR
= — Encoder i _1

=g~ Error Locator

ey 4 _ Syndrome : Error Evaluator Chiens
A ~ Caleulation Shorten '-":':: Search 1
? o g e g
- Controller = Forney
Block
D

— SRAM I
. Merﬁnry
* i Can‘hé'oller
- SRAM II

Figure 3.1 : System overview of RS codec design
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After long deliberation, we decided to adopt the three stage pipeline strategy and
those will be described later. As shown in Figure 3.1, the first block, the syndrome
calculator computes the syndrome vector and feed into the key equation solver (KES)
which is the second block of RS decoder.

In the third block, the error locations are calculated by Chien’s search and the
error values are evaluated simultaneously according to Forney's algorithm.
Meanwhile, the FIFO buffer used to keeps the received codeword is adding by the
corresponding error magnitude and the output data are corrected in successive clock
period.

For the shorten code, a common compensator employed to adjust the index offset
which has been described in section 2.3.3 is combined in the KES block and shown in
section 3.6 schematically.

Additionally, there is a block between encoder and decoder, called noise model, is
designed for random patterns (or svimbols) simulation and will be introduced in the
next chapter. In this chapter, we focus on the entire architecture of multi-mode RS

encoder and decoder design.

3.1 Pipeline Topology

In general, the pipeline topology of RS decoder is divided into two stages and

three stages.

% | n I | n
Coleword 1 g =

[T 1 T KEST] CSEE T

| s | KES™ CSEE

L “-"“‘-\\\_‘_‘_-_-_-_'_'_._,_,-r-"" n 11 A |1 n L2

! odeword 2| 5 N TRES CSEE.

! ! o

pr—r —— e e i R e
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Figure 3.2 : The two-stage pipeline

The two-stage pipeline is often used in parallel structure [19], thus in Figure 3.2,
the second block is performed in the first stage after the first block finished the

calculating of the syndrome values, and just occupies 2t clock cycles.

n 11 n 1] n

;(w.ln.-mml | .' e - WES - T~IT +

[ ! \.\‘_—____J__/x [0 |1 n J1] n L

i_(mh.\\mi 2“ SC s T > TSEE -

|Codeward 3 | p, STHGEEC s L = NLX, R
| s | KES SEE |

Figure 3.3 : The three-stage pipeline

Figure 3.3 shows the three-stage pipeline, the second block is performed in the
second stage and is often using the serial structure 1o reduce the hardware complexity.

For the mass data transmission, the strategv of two-stage pipeline costs more time
to wait the second block finish. For example. for 10K bytes (40 code-words)
transmission and (n=255, t=8), the two-stage pipeline needs (255+1+2%8+1)
*40+255=11175 clock cycles but the three-stage one only has (255+1)*40+
255+1+4255=10751 cycles. In other words, the decoding speed of three-stage pipeline
is fast than the two-stage one in the ratio 4%. Similarly, for 25K bytes transmission,
the ratio i1s 5.5% fast, and that for higher data transmission with higher ratio.

Deservedly, the three-stage pipeline is adopted for our high efficient design.

3.2 The t-Decoder
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For multi-mode applications, we must to dominate sixteen cells of encoder and
those of SC block taking effect or not by determining if a codeword has been

transmitted n symbols and which correction capability “t"” is required.

n_value ——s  Main Controler == octive

LS " on_tmea [ Cell 0 [+{ Cell 1|
—t2[& s 0n_2—es{ Cecll 2 || Cecll 3
—t3[& }— on_3——Cell 4 F+{Cell 5 |
t_valug ——— -ﬂ.ﬂﬂﬂdﬂ _*4m_" ON_Ae—ne] Cell 6.—."__(-’_‘“" i

_tsm—a. nn_ﬁ——-:_(:cll B Cell 2|
_gﬁm—u- On_ ST el 10M~Cell 11
—t7 [ & J— en_7——iCell 12/~Cell 13]
—tam—bnn_ﬂr——r'_i:cil 14{Cell 15|

Figure 3.4 : The connection of 16 cells in the encoder or SC block

As Figure 3.4 shows, the signal en 1:4s ANDing “active” by “t1” and is used for
dominating the cell 0 as well as the call 1, and these extend to en_2 ..., en_8 for cell
2~cell 15. The waveform of “active” is true in the n symbols input period and the
t1-18 is outputted from the “t-decoder. When =8, the output of “t-decoder” is setting

to 11111111, and that in {t, output} = {7, 01111111}, {6, 00111111}, ...... , {1,

00000001 ;. In this manner, there are eight comparators and one 8-to-1 multiplexer
required. However, a design only occupies 1/5 times the size above is proposed as

below.

| B ]

——{ e
—{
-
—
——{e—

: D s 2

shift ¢ times

;

nEEH33%

B'b11111111 ——p

-

Figure 3.5 : The simpler “t-decoder™ design.
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As Figure 3.5 shows, there are just one shift register and eight 1-bit NOT-gates in
the “t-decoder™ design. Each bit of the output value is connecting to t1-t8 paralleled

to dominate the 16 cells in the encoder or SC block.

3.3 Encoder Architecture

Recall in Chapter 2, the n codeword symbols are generated form the & information
symbols to utilize the generator polynomial g(x) described as (2.4) or (2.5). As shown
in Figure 2.2, a codeword can be obtained in a systematic form by adding 2/
parity-check symbols. In general therc are two dilferent architectures in encoding as

described in Method 2 and Method 3 of Section 2.2.2.

feedback
b
) AT o,
T e
P‘-..‘I
Input o )
Control

g(x) = x'%+50¢" + 136" + 104x" + 189x" + 68¢" + 209+ + 30¢°

+ 848 + 16377 + 65x° + 41° + 220+ + 98¢’ + 507 + 36x + 59, | 04N o

Figure 3.6 : The structure of RS encoder formed by Method 2.

Figure 3.6 shows the pipelined calculation (division) performed by using Method
2. The tap-coefficient of the 2t stage LFSR is corresponding to the coefficient of g(x)

formed in (2.5) and rewritten in the bottom of Figure 3.6 by setting b=0 and t=8. All
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the data paths shown above provided for 8-bit values. Over the message input period,
the selector passes the input values directly to the output and the AND gate is enabled
by the control signal. After £ calculation steps have been completed (in £ consecutive
clock periods), the remainder is contained in the D-type register. The control
waveform then changes so that the AND gate prevents further feedback to the
multipliers and the 2¢ remainder symbol values are clocked out of the registers and
routed to the output by the selector.

An alternative structure, the fractional form according to Method 3, is constructed
by using &' as its tap-coefficients and where ¢' is the 2t successive power of &

as shown in (2.4) or (2.8). Figure 3.7 shows the «'-based structure.

LhL ik S | 4S5 e % PR [ —
i i . e i i i
1 t-__i-_-tll fs :' b4 “-22 R () :+ B (e .':4--_1 | ~:4__:
Yoo o ¥ & § o v i Ya| ¥ d Vg
8 | | ([ [enz] [ent
& - e = _ :
S L by e vn e e e e
L] AL -I| v L] ¥ L] ¥ T
] 4 L0 S | D S | AN {1 il |
i i i i i i i i
B TH_out

Figure 3.7 © The «'-based structure of RS encoder formed by Method 3.

Comparing Method 2 with Method 3, Method 2 is suitable for single-mode
application and Method 3 is suitable for multi-mode application. For multi-mode
applications, the tap-coefficients of Method 2 can not be simplified to const
multipliers and additional registers is required to store different set coefficients of g(x).

On the contrary, in the Method 3, we only need to enable or disable the branch
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(register), then the «'-based encoder can be employed for the multi-mode application.
But the critical path of the «'-base encoder is increasing with / and is slower than
those in Method 2.

Additionally, the major advantage of «'-base architecture is that the hardware
can be shared in the both encoding processes and syndrome calculation, discussed in
the next section. For the timing comparison outcome, the result suggests to choose
Method 2. For area comparison results, the «'-base architecture is the better choice.

For convenience, we choose the «'-base encoding in our design in virtue of its

elastic property.

3.4 Syndrome Calculator (SC)

According to the decoding algorithi snentioned in Section 2.3, we need to
determine if the series of symbols contained i a data block form a valid codeword for
the particular RS code chosen, by finding the syndrome values first. The SC block
accepts the received symbols transmitted over a noise channel from encoder and
outputted to the KES block. The syndrome values Si can be defined as R(«'). By
Homer’s rule, (2.13) can be re-written as :

Si= (0 (Ruaed HBua Y o, v R Y0+ Rosiiiiiiiiviiiinivanvienad31)
In the main, the process turns out to begin with multiplying the first coefficient R,
by @' Then each subsequent coefficient is added to the previous product and the
resulting sum multiplied by o' until finally R, is added. This has the advantage that the
multiplication is always by the same value a at each stage. The calculation can be
completed by using GF constant multipliers, exclusive-or gates, and registers. As

Figure 3.8 shows, the SC block diagram, the pervious partial syndrome value is
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multiplied by &' in each clock period and accumulates with the received symbol.

T W[l [l rrrirxri
ol @t W v W ve| e e
@I oAl oAl ad Al ad Al
] : I]‘j .llj f Il? i} q Il.'_
nm:‘ = L »
] 1 1 } 1 1 1
[ =8 | | = [ =8 [ 54 [ s | = [ | so
- . ¥ + v + - + *
Key Equation Solver Block

Figure 3.8 © Syndrome calculator block

If you are penetrative, you can find that Figure 3.7 and 3.8 are similarly except the
additional exclusive-or gates at the top of Figure 3.7. So, we can combine them by

inserting multiplexers between (wo exclusive-or cates.

| = oo
4+ i +

Key Equation Solver Block |

-5

1—:+'d:-l—*‘

Figure 3.9 © Combined Multi-Mode Encoder & SC Architecture

Thus in 3.9, the combined architecture can not only for encoder purpose but also




for syndrome calculation.

The SC block makes it possible to compute the syndromes within n symbol period
and the syndrome symbols, Si( 0~15), are outputted parallel to the KES block.

When the syndrome values are all equal to zero, the following decoding procedure
will be terminated. If not, the error-locator polynomial as well as the error-evaluator

will be calculated in the second block.

3.5 Key Equation Solver (KES)

According to the proposed SiBM algorithm mentioned in Section 2.3.2.3, the

SiBM architecture will be proposed in this section. The A(x) can be obtained by
(2.43) and can be performed by using the arrangement of Figure 3.10 in which all data

paths are 8 bits wide.

Storage Elemenis
1
= ! l
lA ™ < l'l’“ ﬂuu'”' “— SO

A "* @—P?q— = C0

A [u)

i

e v O P 8

Figure 3.10  The Structure of computing A(x) by using SiBM algorithm

The concept is too simple to interpret anymore for us. By this arrangement, the

critical path delay is just 7, +7,,, +7,, at most if the output terminal A" is

mnli

followed by a FIFO register.
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It is also, according to (2.45), the circuit for computing i‘-.;'_', at step j of iteration i

is shown in Figure 3.11.

(i)
AJ'
g?—r- v lg—0
- .
E i _._®l i ’_lrﬂ{il . o AGD
. | w J ESH____
. i _ i i}
S15-p) ﬂi-l = 5-1'-3 + h_t;'-l Si-jli

Figure 3.11 © The decomposed architecture for computing i-th discrepancy

For j =1~& of each iteration, A"’ is fed and multiplied by a corresponding

syndrome value §, ,, which s outputted {rom SC block and selected by a

multiplexer. Then, the product 15 added by the pervious partial discrepancy
A, which is stored in the register and initialize to zero when j=1. Finally, the

discrepancy of the i-th iteration, i.e. A", is calculated and summed up in the step
=& +1 which is combined in the first step of next iteration. In other word, the
discrepancy A" is finished in the step =0 and outputted while j=1 of the (i+1)th
iteration,

In general, the serial architecture of iBMA[12, 26~28] needs 2t iterations and each
iteration needs (1+1) steps to compute A(x), €(x) and A" . In practice, they can be
calculated simultaneously and five finite field multipliers (FFM) are needed. That is,
totally 2t*(t+1) steps (cycles) is required if five FFMs is used. But the FFM is more
complex and cost a lot of area. Alternatively, we can use (2.47) to compute €)(x) as
soon as A(x)have been calculated after 2t merations. Then, we can not only save
much power consumption on iteratively computing the medium solution of Q(x) but
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also reduce two FFMs.
Suppose we have just finished the computation of A(x), that is, AL" has just

been calculated in the finial step of the 2t iteration. For calculating £2(x) by (2.47)

and sharing the hardware that is shown in Figure 3.10 and 3.11, we must let the inputs

of the FFM in Figure 3.11 corresponding to A" and S, , of(2.47). Fortunately, it

is not difficult to achieve. For the corresponding A}, we let A.=1 and C!"=0 in

Figure 3.10 during the computation of £2(x). Then, the value of the position hj["”
2t

is equal to that of the position A", that is, AJ,A[",---,A]" is fed into Figure 3.11 in

proper order and answer to A" of (2.47). Coincidentally, the position S, , of

Figure 3.11 also fit in with 5., of (247) and ()(x) can be calculated after

additional &, ( 8, + 1)/ 2 eycles,

Lessimilathvie edefTicient

1= Sub <=

Figure 3.12 : The control circuit of selection line to select the syndrome values

Figure 3.12 shows the control circuit of the selection line in which the multiplexer

of Figure 3.11 is using to select the syndrome values. The initial coefficient of

(e oM

syndrome is exactly the iteration number * i " and is decreasing by one in each
successive clock period, even if the circuit i1s performed the computation of A(x)

or Q(x).

45



In fact, this coincidence is artificiality by setting the computation of A(x) from
i=1 to i=2t, the power of the first consecutive root in g(x) equal to zero (b=0), and
some retiming skills. The artificial modification is an example of my so-called the
“assimilative coefficient™ skill.

If n is small enough than 2t*(t+1), the input data must stall for waiting the KES
block finish. Actually, only & +1 steps is valid at each iteration (recall that &, is the
degree of i iteration), the rest of -4, steps resulted in zero. It stands to reason that
we can save many steps if we skip them, but how we can evaluate the degree before
the iteration ending and determine the ending step without increasing the critical path

delay is very difficult.

Recall the summation in Section 2323 if =0 or i< 2.8

1-

. » the degree
of the i-th iteration &, is equal 10 pervipus degice ¢ . else 6, =i-d_,. According to
the schematic of Figure 3.11, the (i-1)-th discrepancy is finished in the first cycle of

i-th iteration and updated in the second eveie (=1 ). Thus for keeping the critical path

is still Ty +7,,, +7T,, atmost, the decision (if [A"'|=0 or i< 2.4, ) must be

T

performed in the j=1.

— SR —pCom paralor—

L W -l
t o4y AT
1 1 1=0
) 5,
i = Sub —p
— 8 v
170 Decision

Figure 3.13 : The arbiter and evaluator for evaluating the degree of i-th iteration

As Figure 3.13 shows, the waveform of “Decision” has transition only when j=1.
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Then, the degree & can be evaluated at the same cycle and three registers are

inserted to keep the critical path delay not exceeding 7, +7, , +7_,,.

minls
In general, when j=¢, , the finial step of the i-th iteration, we must set i= i+1 and
reset j=0 in the next cycle by determining if j is equal to &,. But the degree of i-th
iteration o, is evaluated in the j=1 in our design, there are two exception may cause
some unexpected results. One is when j=0, &, is still equal to zero, but &, is no
longer equal to zero in the next cycle, the iteration will be terminated and gone to the
next iteration. The other is when {j,d }={0,0} is ignored, then {j, & }={1.0} is

happened, the iteration ought to stop but never stop in the following cycle.

To perform next iteration at next cycle. To omit j=38, =0, we let “if j=0,
welet“if j2 8, ; 1<=i+], j<=07. next eyele =17,

R —

i=] LM i=3

BN 0 ?Ir_-n \ Bl [i=2]|=3[i0[i1 2253

Degree( 6 1) 0 f 4. S B

Ai 0(if $0=0) T suz0)|s2|s2[s2

Decision 1 T | ) T I

Figure 3.14 © Iteration control to prevent the special case hazard

As Figure 3.14 shows, we have to control the flow to go to next iteration at next
cycle when j=8 or {j,d }={1,0}, but ignore {j,d }={0,0} even though the j=4,
holds.

Figure 3.15 shows the storage element for storing and providing all data required
in Figure 3.10 and 3.11. By retiming the decision (Figure 3.13) and controlling the
iteration (Figure 3.14) mentioned above, the critical path bottleneck in the iterative
computation of discrepancies followed by evaluating the degree and updating of the

error-locator correction polynomial C(x) can be fetched through.
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Figure 3.15 : Dataflow controller and storage element design

In the i-th iteration, the computation result of Figure 3.10, the coefficients A"’s

are stored in the Part A and outputted in the next iteration as the f\l“'” ’s in turn. For

computing A(x), the Part C is storing the correction polynomial. Otherwise, for
calculating €(x), the Part C is storing the Q2"’s to save 8 registers. Deservedly, the
Part B is used to do this selection and to decide which one is the proper correction
polynomial coefficient by the waveform of “Decision”.

Note that the additional register in the Part B and the register in the Part C with
the same yellow mark indicate that they are both used for matching the “Decision”

variation and preventing the special-case data hazard of serial architecture. In the
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conventional design, the “Decision™ waveform has original transition in the j=0 and
the additional register does not exist, the special case data hazard always arises in that

the “Decision” waveform of previous iteration is true, the degree of correction

polynomial C""(x) is &, if the “Decision” waveform is still true in this iteration,
6,=6,, and C"(x)=C""(x)- x, the degree of C"(x)must be & +1. Then, when
j=0 in the next iteration, the C§"" is just outputted from Part C and feedback to the

multiplexer of Part B, the serial architecture have to store Cj" in the position C{',
of Part C. At the same time, if the “Decision” waveform is false, the multiplexer select
the value A,“" and store in the position C}, the data of C\,, is empty. Even if the

“Decision” waveform is true, the data """ s storing in the position C, not the

expecting position C'.,. In other words, the data hazard is happened when the degree
of C"(x) is exceeding the degree ¢

Fortunately, if we control ilie datailow and do “Decision” vanation, the special
case data hazard will be eliminated. That is, the “Decision™ waveform has transition

in the =1, when =0 and the “Decision” waveform 1s “true”, the multiplexer

selecting Cf,!l'_l“ and storing in the position Cf;l'_, in the next cycle. If the waveform
change to false in the j=1, the multiplexer selecting the value A,"" and storing in
the position C”. Oppositely, if the waveform keep true in the j=1, we let the value in

the register of the Part C with yellow mark be equal to zero and C" be stored in the

position C!" for answering to C"(x)=C""(x)- x.
To store the data in the proper position, the purpose-built address line is used in

the Part A and Part C as drawn in red. By these address lines, the storage element can
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not only insert the data stream more flexibility but also save many comparators and
multiplexers. Therefore, the shorten code compensator can be combined in the KES

block easily by this arrangement.

3.6 Shorten Code Compensator

Recall in Section 2.3.3, for the shorten code applications, the codeword length “n”

is not always equal to 2-1. For skipping the non-valid cycles, the search must begins
with the position X™', that is, we must check if A(a™") is equal to zero or not

initially. Suppose n = 2"-1- io. where “io” is called the index offset and then ™"

= " -a'. In other words, for ¢hecking Afx)is equal to zero or not, all the
coefficients in A(x) must multipliecd by a compensative value ()" firstly, then
multiplied by (a')" in each successive clock period, and these procedures extend to
the coefficients of Q(x)for finding the error magnitude. Note that P is the power
corresponding to the coefficient.

It turns out to be 15 FFMs needed for multiplying 15 coefficients at one cycle,
when the compensator is locating in the CSEE block. Alternatively, we can use 2
FFMs, one for multiplying (¢”)" with corresponding coefficient and the other for

10

producing the proper value (a")" by multiplying «" each cycle, there will be
additional 15 cycles required.

However, there is a better choice, combining the compensator into KES block and
taking effect as soon as the coefficient 15 vahd. As Figure 3.16 shows, the common

compensator with dim yellow mark for multiplying all coefficients is merged with

overall KES block.
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Figure 3.16 : The common compensator and its connection with whole KES block

Initially, the compensative value is set to 1 for multiplying A, or €,. Then,
() is set to multiply A, or €, and this property extend to (&) ... (¢)™ in
turn. Note that since € is not outputted continuously, we must keep the
compensative value not to change until next €, is valid. Where a” is calculated in
the beginning and before the KES block taking effect.

By this arrangement, we can not only save more than 4000 gates but also reduce

many processing cycles and the critical path delay is still 7, +7 , +7,,, at most. It

is also, the Chien’s search and the Forney’s block can be performed as normal

condition in that we have adjusted the starting point from X* " to X™'.



3.7 Chien’s Search and Error Evaluator(CSEE) Block

According to Section 2.3.3, to try the first position X™' in the codeword, we need
to substitute x=a ™" =&" -¢' into the error locator polynomial A(x). Recall in
Section 3.6, the coefficients of A(x) and €(x) are multiplied by appropriate power
of & and stored in the storage element. Then, as shown in the purple mark of

Figure 3.17, the value of each term is calculated by loading A (") and

multiplying it by the appropriate &'.

Chien's Search _.._j

FINE,

'{ﬂlu}l

. ‘{Mm]:

M (-

(@)’




Figure 3.17 : The CSEE Block

Adding the value of the individual terms together produces the value of A(a™").
For subsequent position, the power of & to be substituted will advance by one for
the x term and by two for the x’ term, similar to the other terms. So, at each
successive clock period, the next value of the term is produced by multiplying the
previous result by the appropriate power of @ and adding the wvalues of the
individual terms together produces the value of A(x) for each position in turn.

Detecting zero values of the sum identifies the error positions and then using the
Forney's Algorithm to calculate the corresponding error values. According to (2.53),

these value is obtained by computing the quotient of two polynomials, Q(x)

and A, (x), that is, multiplied ©{x) by and hence one finite field inverter

T,

(FFI) is needed, as drawn in the yellow bottam color and where the value of (}(x) is

calculated from the cyan mark in the vight hand.

For the critical path consideration three register is inserted. When detecting the

K|
error position, the error value s calculated by hﬂL’:{] and outputted form the

odd
decoder. Otherwise, two inputs in the multiplier are setting to zero and hence the
output value is zero. Note that the value of (8 ") is calculated after the error
position S, detected by one clock period for matching the effect of inserting three
registers. That is why the hardware of computing €£(x) is quite different to that of
computing A(x).

The outputted values from decoder, the error magnitudes from CSEE block, will
be added with the FIFO buffer that is employed to keep the received codeword. Then,

the codeword are corrected in successive clock periods.
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Chapter 4

Implementation & Verification

This chapter will show the design flow and the verification step of our design.
Besides, the simulation result, synthesis result, performance and comparison will be

discussed.

4.1 Design Flow

As soon as the specification 6f our multi-mode RS code is determined, we begin

to design our circuit. The design {low and veridications are illustrated in Figure 4.1.

| Specifications |
|Behavior C Model| Functional
» Verifications :
|Bit accurate C Model| [ Random-pattern
il Simulation
Synthesizable RTL Code
3 Special-Case
! Simulations
+ Synthesis
L 3
FPGA | Pre-layout Simulation | __
Prototyping + Timing,
[Prime Time / Prime Power | Area, Power
L Checking
|Equivu|=n1' Checking |
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Figure 4.1 ° Design Flow and verifications

In the beginning, the behavior C model is used to make sure the understanding of
whole encoding and decoding step. Secondly, a bit accurate C model based on the

decided architecture is built and output some useful data to file as Figure 4.2 shows.

1
L

Figure 4.2 : Parts of putput file of bit-accurate C model.

Then the synthesizable RTL code wiitien by Verilog Hardware Description
Language (HDL) is simulated and compared with the output file of bit-accurate C
model. The results of simulation must ensure that they are the same as those of the C
program. After all functions have been verified, the hardware is implemented by
Xinlinx VirtexE xcv2000e FPGA and synthesized by UMC 0.18um cell library.
Because the equivalent checking is regular, we get some valid information about

timing, area and power.

4.2 Functional Verifications

As soon as the results of synthesizable RTL code are verified by comparing with
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the bit-accurate C model, the next step is to do functional verifications. To make sure

all functionality regular, we perform the random simulation and special-case

simulation.

4.2.1 Random Simulation

For random simulation, the block diagram of overall system can be connected as
the arrangement of Figure 3.1. The codeword is outputted from encoder and interfered
by the noise model, and then the impure information is fed into decoder as well as

FIFO buffer. The noise model can be implemented as shown in Figure 4.3.

——»  Encoder Random
In_Ctrl
Error count
<+—— Decoder |4

Figure 4.3 : The Noise Model

Thus in Figure 4.3, the data symbol that fed into decoder is coming from the
output of encoder directly or added by a random error magnitude. For example, as (n,
t) = (255, 8) and the SNR is setting to 11111, if random (location) value is exactly
equal to 11111 as well as the error count is less than the error capability t during the n
input period, the output symbol of encoder will be added by a random wvalue.

Otherwise, the output of encoder will be fed into decoder directly. The error

probability is about 256x%:8 times per codeword and the additional control
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signal (Error count < t) is using to make sure the error count not exceed the correction
capability t. After | hundred-million code-words (204.8 hundred-million bits)
transmission, a flag used to count the number of decode-fail is equal to zero in our
design. Meaning that the functionality in (255, 239, 8) of our design is regular, and so

is for other coding rate.

4.2.2 Special-Case Simulation

Because of the hardware sharing in the serial structure, some combinations of
error magnitudes as well as error locations may cause unforeseen data hazard.
Especially when the discrepancy of SiBM algorithm caused continuous zero, the
degree of correction polynomial is increasing by one in each the iteration. Then, the
valid data may appear at the same time and is selecied by a multiplexer, that is, one
data must be loss in the selection. For example, if So=0, the initial discrepancy is
setting to So=0; then as S1=0 exactly, the discréepancy of this iteration is also equal to
zero, the data hazard will occur during the next iteration. So, the special-case

simulation is performed as following :

Codeword 1 : 8 arbitrarily errors
Codeword 2 : 4 errors, So=0 + S1=0

Ex: The continuous error valuesare 1,2,0,0,0,0, 1,2
Codeword 3 : no errors
Codeword 4 : 8 errors, So=0

Ex: The 8 errors with the same values : 1,1, 1,1, 1,1, 1,1
Codeword 5 : 2 errors, So=0

Ex: The 2 errors with the same values : 0, 1,0,1,0,0,0,0
Codeword 6 : 2 arbitrarily errors
Codeword 7 : | arbitrarily errors

The special-case simulation is performed before and after synthesis, the results are the
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same in our design. Figure 4.4 shows one of the results in the gate-level simulation.

MNext codeword

Figure 4.4 * Gate-level simulation

4.3 FPGA prototyping

Test Environment :

Hardware Description Langue * verilog
Compiler and Simulation Tools : Xilinx ISE 7.1i
FPGA Chip * Xilinx VirtexE xcv2000e

FPGA Board : BG560-7

Pattern Generator © Agilent 16522A

Logic Analyzer  Agilent 16557D

The input patterns are stored in the pattern generator and sent to FPGA. Then, we
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check the result of logic analyzer by the waveform or dump the resulting file for
checking. Also, the random simulation and special-case simulation are included.
Figure 4.5 shows the connection of FPGA board, pattern generator, and logic

analyzer.

Figure 4.5: The connection of FPGA Board, pattern generator, and logic analyzer

The synthesis report of Xilinx ISE is tabulated in Table 4.1 and Figure 4.6 shows

one of the simulation results in the special-case simulation.

Table 4. 1 : The Synthesis Report
Total equivalent gate count for design | 13531
Clock period 8.763ns
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Figure 4.6 : One of the simulation results in the special-case simulation.
4.4 Synthesis Result
We use SYNOPSYS design commiler to synthesize the register-level Verilog file

with UMCOI18 library. The gate counts and the power of each module are shown in

Table 4.2 while the clock period is setting to 1.37ns.

Table 4.2 © The performance of each synthesized module.

Module Name | Timing(ns) | Area(gates) | Power(mW)

SC Block 1.37ns 3817.0 349314
KES 1.37ns 5794.5 273

CSEE 1.37ns 38399 24,9064

RX Controller 1.37ns 278.0 2.3808

Total 1.37ns 11596.8 749115
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Chapter 5

Comparisons

After the detailed description of our design shown in the previous chapter, you
may have some doubts and be interested in what the diversity is in our design. This
chapter will show wyou the clear comparisons in algorithm, architecture, and

performance with regard to our decoder design graphically.

5.1 Algorithm Compare

Our design is based on the iBM algoiithin and do some modifications, then the
SiBM algorithm is proposed. So, we show the difference between the conventional
iBMA and the proposed iBMA, followed by the comparison of the proposed SIBMA

with proposed iBMA in this section.
5.1-1 Conventional iBMA versus Proposed iBMA

Figure 5.1 shows the comparison of iBMA, the conventional algorithm with cyan
bottom color and the proposed algorithm with pink bottom color. Then, the
differences between these two algorithms are signed in red. Thus in Figure 5.1, the

major advantage of our design is that we make the selection of the syndromes (S,~S,;)
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in the computation of A, the same condition as in the computation of Q"'; it can not

only save the hardware complexity but also reduce the critical path delay. However, in

the conventional algorithm, the selection is different in the formof S, and S,

as shown.

Fritialize:

D=0, 7" 1,37 =s, 7 (=1 o1 RGNS  conventioos]

40 .Mn}—h#afﬂm—ﬁ*"mrh-%fl W
for (i=0to 24-1) for (1=1 1o 2r)
8

E'“-n[x} - _'.'I-Er_“(x} — ﬂ"ﬂ* ‘x]w:

& A + 8.3+ 45 7 s ] v@@I@ﬂs vt s

if (A" =0or zn"‘“- —_ = il w@;u:;
D =D, ) =xr (x), 3 fﬁ“m b (G- =, B ]
el

else

D‘"D“"i f =0 (x.8-A } o= k. B BL]

=3 W' L-;a,} oration

conventional |

by Lin's text book ; i _j n* ¥ ‘-..; for i-ﬂutﬁ..}}’ k= {ﬁ..i’}
| = .
1

o L E ﬂ-l:I for i= n-u{ﬁl.ljl k= (0~1)
[

Figure 5.1: The differences between the conventional iBMA and the proposed iBMA.

5.1-2 Proposed iBMA versus Proposed SiBMA

In order to construct the serial structure of the proposed iBMA, the SIBMA is

proposed. It should be noted that Figure 5.2 shows that each terms of the discrepancy

in the SiIBMA calculated after the calculation of |[A'"| by one clock cycle as well as

the ‘Decision Retiming’ skill are both used to reduce the critical path delay. Then, the

data stream for updating the correction polynomial C(x) is controlled to prevent




special-case data hazard of serial structure. The comparison between proposed iBMA

and SiBMA are shown in Figure 5.2,

Proposed iBMA Proposed SiBMA

Jor (i=11 21) =+ for (i=11t0 )

for =0~ &)
9 O s » [~ B - EEE]

B ~ for G=1~4-1) Da
O P [
&=a [h0=[T0 =, [k Be] = a=a,[cf]-o.[cTHeT] ek e
8=i-8,. 600 -0, [feF[AG] - &siedf
after 2t iteration after 21 iteration /‘
ﬁ-Zﬁ*"sw for i = 0~(§-1), k= (0~} g S SACS L for dw OEe ) ke (10T

R e T

Figure 5.2:The comparison hehfqeﬁ, the pm‘pq;édfiﬂf\'lh and the proposed SiBMA.
5.2 Architecture Compare

In this section, the architecture of our design will be compared with conventional
ones. The traditional parallel to serial skill and the simpler design in our creative work
are both used to reduce the hardware complexity. Also, the critical path bottleneck of
conventional BM series structure will be shown and be compared with our design to

illustrate the speed-up rate.

5.2-1 Parallel to Serial

As many serial structures in the publications, our design also takes the advantage
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of traditional VLSI skill to transform the parallel structure into serial structure to
reduce the hardware complexity. Figure 5.3 shows the computation of error-locator
polynomial A(x), our design save more than 2t FFMs (additional 4t register, and t
XOR gates are needed), it counts as 4800(=2*8*300) gates at least. In other words,

we save 88%(=8/9) hardware complexity in our design.

Jor (i=110 21) — for (i=1t0 20
for (j=0~8&)
ATk = [} A%y + ] [€ ko > [AF]-Ed AT+ EEHET

ey | Storage Elements | |

[ 1

T =
]

: - t+1 cells = 1 cell
< Save 2t FFMs

- P 16*300 = 4800 gate |
at least

Figure 5.3 : The cumpmspu of the error-locators.

for =1~G+1)
=375, - &8, + (a5
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: 2 8*300 = 2400 gates
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; ,

Figure 5.4 : The comparison of the discrepancy calculator.




The computation of discrepancy is shown in Figure 5.4, and the reduced hardware

is also in the ratio 88%.

As the comparison of Figure 5.5, the hardware complexity of the error-evaluator
for evaluating €(x) in the serial structure is 1/8 times the size of that in the parallel
structure. If we further combine the error-evaluator into the circuit that we design to
calculate the discrepancy, the hardware cost will be additional control circuit at most.

Thus, we save 99%(=79/80) hardware complexity in our design.

fori=1-~2t after 2t iteration
'J-I:

— 1 P = ==} —={i} =
£ (x) = §-8) g A . T ik - -
) (9 + &%27"t) QU= Y AFS,,., for i=0-(5-1), k=(1-i+1)
=]

1/10

Figure 5.5 : The comparison of the error-evaluators.

5.2-2 Speed up

Some publications shown the critical path delay is 7, +7,, +7 +1 . . as

drawn at the top of Figure 5.6. The control circuit of selection line must settle on a
proper initial value in the j=0, and decrease by one in successive clock period.

Meaning that one register in the control circuit is needed and then the initial value is
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valid while j=1. If additional register is following the 16-to-1 multiplexer, the initial
syndrome value cannot be multiplied by A, while j=1. The timing mismatch can be
solved by some modifications. The middle of Figure 5.6 shows the efficient design
and the reduced critical path is in the ratio 25% (=1.97/1.57). Nevertheless, there is a
little longer than desirable cycle time, so the *Assimilative Coefficient’ is adopted as
shown at the bottom of Figure 5.6. Then, the overall speed-up rate is 45%

(=1.97/1.37).
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E ;,: ‘-%:‘}—r fi_;—‘_l_. AW Al
2] ERD s agyfa | - [ER]
] Critical path B 1 37 = 1.97ns

éﬁuq;m:nmmmmnh 1.57nd \1
i+2 —l-[ 1 I

Ty PR ———
pi|
i N

Assimilnrive coefMicient

' ®_’|\$—|’ SEL

Ll Critical path : 0.5+0.2+0.6+007=13Tns

|

Figure 5.6 : The comparison of the control circuits for syndrome selection.

In the normal condition, the decision of the degree in the i-th iteration and the data
stream for updating C(x) must be determined in the first cycle of the i-th iteration. It

will increase the critical path delay, so the ‘Decision Variation® is adopted to fetch
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through this bottleneck. As illustrated in the figure 5.7, the normal condition drawn
with yellow bottom-color is having the critical path delay about 2.17ns. However, the
structure in our elaborate design keeping the maximum path delay is still 1.37ns as

shown in the right side with mauve bottom-color. In other words, we have speed up

the clock rate in the ratio 58%.

Speed up: 58 %
(2.17/1.37 =1.58)

Critical poth : 137+0240.1502503 =217 . (11 A =0 riSd-d,

Figure 5.7: The comparison between the normal condition and the “Decision Variation™,

5.2-3 Simpler Design

In this section, we list some of our simpler design that have never remarked in
other technical literature. Especially, the common compensator and the purpose-built

address line are employed to reduce the hardware complexity greatly.

The t-decoder

As mentioned in Section 3.2, for multi-mode applications, the t-decoder is
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exploited to dominate the sixteen cells in the encoder or in the syndrome calculator.

We make some comparisons between conventional and our design as shown in Figure

5.8. The hardware complexity is greatly reduced in the ratio 80%. It is also, the RTL

code shown that our design is just occupying one line.

g'uinnnm
R EERRAE
g'e0011111
8'b000L1111
8'000001111
8600000111
8600000011
8600000001

eight 4-bit compamtors &

one 8-to-1 multiplexer
I

/ »
n
th

= 15,17 16,1514 13 12 11

= o
|

&
!

-2

one 8-bit shift register &
eight 1-bit NOT-gates

ot = ~(8*bll111111 t_value): —

F B'511111111 —p

| f

shift t times

Figure 5.8 : The comparison of the t-decoders.

The common compensator

Recall in Section 3.6, the common compensator is emploved to adjust starting

point of Chien’s Search and to evaluate the corresponding error value. Thus in Figure

5.9, there are (15+1) FFMs in the conventional compensator design but only 2 FFMs

in the common-compensator design. In other words, we reduce the hardware

complexity in the ratio 88% (=14/16).
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Figure 5.9 : The comparison between the conventional design and the common compensators.
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Figure 5.10 : The comparison of the storage element with and without purpose-built address line.
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The storage element shown in Figure 5.10 is the lowest hardware complexity in
the multi-mode design that | have tried. The purpose-built address line is utilized to
reduce the hardware cost and to increase the flexibility of inserting data stream. If the
register with yellow mark is controlled by the purpose-built address line, the hardware
cost will be about half of the without one as shown in the left side of this picture. The
overall storage element design can be reduced in the ratio of 40%, and any data
stream can be stored into this element easily by setting this address line in a proper
condition. It is why the output data stream of common compensator described in

Section 3.6 and shown in Figure 5.9 can be inserted in this element.

5.3 Performance Compare

Fortunately, our design can not only operate at higher clock rates but also have
lower hardware complexity fof multi-mode applications. Table 5.1 shows the
comparison with other design of publications. li this table, the hardware complexity
of our decoder design is the lowest, and clock rate is the fastest except the third

column synthesized in the more advanced technology and with huge area.

Table 5.1 : The comparison with publications.

m=8
[30] 131] 132] [33] [12] [12]
Publications IEEE 2005 Proposed
IEE2001 | IEEE 2003 | IEEE2003 ISCAS2006 | ISCAS2006
PrME
KES Unit 43100 44700 102500 1 7000 9566 10405 57945
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NA 54000 115500 24600 20224 22931 115968
(w/o FIFO)
Clock Rate
300 300 770 625 400 400 730
(MHz)
Technology 016 0.13 0.13 0.13 018 0.18 0.15
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Chapter 6

Conclusions & Future work

6.1 Summary

The main characters of our design focus on the high performance multi-mode
systems. In this work, a SIBM algorithon for solving the key equations is proposed.
Then, a propose SiBM architecture is presented and many VLSI knacks are employed
to reduce the hardware complexity as well as the critical path delay. For instance, a
simpler t-decoder, a common coiipeinsaio, and the assimilative coefficient skill as
well as the purpose-built address line are employed in the multi-mode system, the
hardware complexity is reduced. For speeding up the critical path delay, the “Decision
Variation” is exploited in the KES block.

All functionalities of our design are verified by one hundred-million random
code-words and special patterns simulation. Furthermore, the FPGA simulations are
also regular, that is, our design can work well in the real world. For comparing with
other designs, we must evaluate the performance by the design complier. For the valid
estimation, the gate-level simulation 1s performed. After check all functionalities of
synthesized gate-level hardware, the report shows the clock period is 1.37ns with

11596 gates. That is, the data rate can reach 5.84Gbps at maximum clock rate
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T30MHz.

6.2 Future Works

To make a comprehensive survey of our design, the contributions almost focus on
the architecture design. This is just because we too take the gate-count to heart in the
beginning of research to disregard other good ideas, such as reconfigurable property,
universal architecture or a well-designed soft decision decoding. In fact, these
contributions are greater than the low-complexity ones while the technology with
giant strides. So, we should make more efforts in the research and design of

innovating algorithms in the future.
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