

國 立 交 通 大 學

電機學院 I C 設計產業研發碩士班

碩 士 論 文

Wimax應用之快速傅立葉轉換軟硬體共同

設計

Trade-offs on Harware-Software Co-design

of FFT for Wimax applications

研 究 生：張登琦

指導教授：董蘭榮 教授

中華民國 九十九 年 一 月

http://www.cn.nctu.edu.tw/main/user/47�

I

Wimax 應用之快速傅立葉轉換軟硬體共同
設計

Trade-offs on Hardware-Software Co-design

of FFT for Wimax applications

研 究 生：張 登 琦 Student：Teng-Chi Chang

指導教授：董 蘭 榮 Advisor：Lan-Rong Dung

國立交通大學

電機學院 IC 設計產業研發碩士班

碩 士 論 文

A Thesis

Submitted to College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of Master

in

Industrial Technology R & D Master Program on

IC Design

January 2010

Hsinchu, Taiwan, Republic of China

中華民國 九十九 年 一 月

II

Wimax 應用之快速傅立葉轉換軟硬體共同
設計

研究生：張 登 琦 指導教授：董 蘭 榮 博士

國立交通大學電機學院產業研發碩士班

中文摘要

簡單的說，如果一個處理器有處理 1000 MIPS 的能力，則它願意提供多

少 MIPS 給快速傅立葉轉換運算，然後根據此 MIPS 去決定最適合此運算的

N 點分支傅立葉轉換硬體對於無線和行動通訊系統，傅立葉轉換模組是不可

或缺的部分，特別是當寬頻無線系統需要一個高速且低功率硬體於高速封包

式資料傳輸，這使得傅立葉轉換成為下一代無線系統必要的要求。在經過處

理器運算量分析後，N 點分支傅立葉轉換以硬體系統需要一個高速且低功率

硬體於高速封包式資料傳輸，這使得傅立葉轉換成為下一代無線系統必要的

需求。一般而言，傅立葉轉換模組的設計會針對特定的系統，因此，希望能

去設計一個可以適合不同標準規格的傅立葉轉換模組。在此論文中採用處理

器彈性的特色和硬體具有加速的機制去建立一個傅立葉轉換模組，並且可以

符合 IEEE 802.11n /16e 的規格要求。除此之外，我們提出對於單輸入輸出/

多輸實現於系統中，並且它已 16 位元及 85MHz 產出率(Throughput rate)為規

格。之後，我們有針對是用於系統的傅立葉轉換架構做分析比較。最後，不

只有對 8 點分支傅立葉轉換於 FPGA 上做驗證，並且有針對提出的排程做驗

證是可以滿足 IEEE 802.11n/16e 的規格。

http://www.cn.nctu.edu.tw/main/user/47�

III

Trade-offs on Hardware-Software Co-design of FFT for

Wimax applications

Student: Teng-Chi Chang Advisor: Dr. Lan-Rong Dung

Industrial Technology R & D Master Program of

Electrical and Computer Engineering College

National Chiao-Tung University

Abstract

 Briefly speaking, if a processor can process 1000 MIPS, it will provide which

MIPS for us to operate Fast Fourier Transform (FFT). According to the MIPS it pro-

vides us, we can decide which N-points branch FFT of ASIC is suitable for us. FFT

module is an indispensable part for wireless and mobile communication, especially

when broadband wireless systems require a high speed and low power hardware module

for its packet-based high-speed data transfer. This has made the design of FFT processor

a critical requirement for the next generation wireless systems. In general, FFT module

is designed for specific system. Therefore, it is desirable to design adaptive FFT module

for different standards. This thesis adopts processor flexible characteristic and ASIC

accelerated mechanism to set up a flexible FFT module which can meet IEEE

802.11n/16e standards. Besides, we propose optimized timing schedule for SI-

SO/MIMO systems. After processor computational analysis, 64-points branch FFT of

ASIC can be applied in proposed system and it computes 16-bits input data at a

throughput rate of 85MHz. After that, we compare various pipeline-based FFT archi-

tectures suited to our system. Finally, it not only verifies the 8-points branch FFT on

FPGA, but also checks proposed timing schedule which can satisfy IEEE 802.11n/16e

specification.

IV

誌 謝

首先感謝我的指導教授董蘭榮老師在我碩士班生涯的悉心指導，在於研究學

問的過程上讓我學會了更多以前沒碰過的觀念跟方向，也讓我學會解決問題的能

力與思考，處事態度上有所進步，在這段時間讓我受益良多。

 同時也要感謝學長俊衛，再研究的時候給予的幫忙以及實驗室曾經一起奮鬥

相處的同學們志恆、建勛、宇佑、文俊、展嘉、嘉洋以及學弟建樺，謝謝你們熱

心的協助與指導。因為有你們的陪伴，使我的研究生活增添了許多歡樂愉悅，過

的非常充實。

 最後要感謝我親愛的家人、及女友筱婷全家人，感謝他們的鼓勵、支持和愛

心以及一起經歷我求學生涯所有經過的大大小小事情，使我得以在精神與生活上

非常充實，順利完成學業。

僅以本論文獻給摯愛的大家、最深的謝意。

 登琦 于新竹交大工程五館

 2010年1月

V

Contents

中文摘要 II

Abstract III

誌 謝 IV

Contents V

List of Figures ... VII

List of Tables .. IX

Chapter 1

Introduction .. 1

1.1 Motivation .. 1

1.2 Organization of this Thesis .. 2

Chapter 2

Backgroud ... 3

2.1 OFDM Backgrounds .. 3

2.2 WLAN MIMO-OFDM System .. 4

2.3 Flexible FFT Processor .. 6

2.4 Discrete Fourier Transform .. 7

2.4.1 Decimation-In-Time FFT Algorithm .. 8

2.4.2 Decimation-In-Frequency FFT Algorithm 9

2.5 Variable Length of FFT Architectures.. 11

2.5.1 Memory-Based FFT Architectures .. 12

2.5.2 Pipeline-Based FFT Architectures .. 13

Chapter 3

Co-Design Analysis on ASIC and Processor of FFT 15

3.1 Introduction .. 15

3.2 Complexity Comparison .. 16

VI

3.3 FFT Computational Complexity Analysis 19

3.4 ASIC and Processor Timing Schedule Analysis 24

3.4.1 SISO System Timing ScheduleⅠ ... 25

3.4.2 SISO System Timing ScheduleⅡ ... 26

3.4.3 MIMO System Timing Schedule ... 28

3.5 ASIC and Processor Performance Estimation 31

3.5.1 SISO Ⅰ System Operation Comparison 33

3.5.2 SISO Ⅱ System Operation Comparison 37

3.5.3 MIMO System Operation Comparison 40

Chapter 4

Implementation of the Structure with MicroBlaze Processor 47

4.1 Introduction of the MicroBlaze Processor 47

4.2 Implementation of the Variable-Length FFT 48

4.2.1 Software Design on MicroBlaze Processor 49

4.2.2 Hardware Design on ASIC FFT .. 51

4.2.3 Integrate the Embedded System .. 54

4.3 MIPS of the Variable-Length FFT Implemented by MicroBlaze

Processor .. 58

4.4 Error Analysis ... 61

Chapter 5

Conclusion ... 64

5.1 Conclusion .. 64

5.2 Work of Implementation Environment .. 65

Bibliography ... 66

VII

List of Figures

Fig. 2.1 Traditional bandwidth allocation of a frequency multiplexing system 3

Fig. 2.2 Bandwidth allocation of OFDM ... 4

Fig. 2.3 Block diagram of IEEE 802.11n WLAN 2x2 transmitter system 5

Fig. 2.4 Block diagram of IEEE 802.11n WLAN 2x2 receiver system 5

Fig. 2.5 8-points radix-2 DIT FFT signal flow graph .. 9

Fig. 2.6 The butterfly signal flow graph of radix-2 DIF FFT 10

Fig. 2.7 8-points radix-2 DIF FFT signal flow graph .. 10

Fig. 2.8 Memory-based architecture block diagram ... 12

Fig. 2.9 Projection mapping of radix-2 DIF FFT signal flow graph 13

Fig. 3.1 Complexity comparison of Table 3.3 .. 18

Fig. 3.2 8-points radix-2 DIT FFT signal flow graph .. 19

Fig. 3.3 Radix-2 DIF FFT signal flow graph of a 16-points FFT 19

Fig. 3.4 Different cases of length FFT according to processor operations 24

Fig. 3.5 Time schedule Ⅰof SISO system ... 25

Fig. 3.6 SISO system block diagram of time scheduleⅠ .. 26

Fig. 3.7 Time scheduleⅡ of SISO system ... 27

Fig. 3.8 SISO system block diagram of time scheduleⅡ .. 27

Fig. 3.9 Time schedule of MIMO system .. 29

Fig. 3.10 MIMO system block diagram ... 30

Fig. 3.11 ASIC throughput analysis. ... 32

Fig. 3.12 64-points FFT operation comparison of time scheduleⅠ 33

Fig. 3.13 128-points FFT operation comparison of time scheduleⅠ 34

Fig. 3.14 512-points FFT operation comparison of time scheduleⅠ 34

Fig. 3.15 1024-points FFT operation comparison of time scheduleⅠ 35

Fig. 3.16 2048-points FFT operation comparison of time scheduleⅠ 36

VIII

Fig. 3.17 64-points FFT operation comparison of time scheduleⅡ 37

Fig. 3.18 128-points FFT operation comparison of time scheduleⅡ 38

Fig. 3.19 512-points FFT operation comparison of time scheduleⅡ. 38

Fig. 3.20 1024-points FFT operation comparison of time scheduleⅡ 39

Fig. 3.21 2048-points FFT operation comparison of time scheduleⅡ 40

Fig. 3.22 64-points FFT operation comparison of MIMO time schedule 41

Fig. 3.23 128-points FFT operation comparison of MIMO time schedule 42

Fig. 3.24 512-points FFT operation comparison of MIMO time schedule 43

Fig. 3.25 1024-points FFT operation comparison of MIMO time schedule 44

Fig. 3.26 2048-points FFT operation comparison of MIMO time schedule 45

Fig. 4.1 MicroBlaze core block diagram .. 47

Fig. 4.2 Separate the implementation of 64-points FFT for two parts 49

Fig. 4.3 Structure of MicroBlaze Processor’s programming diagram 50

Fig. 4.4 The butterfly signal flow graph of the radix-23

Fig. 4.5 Implementation hardware of multiplication with

 DIT FFT algorithm 51

22 52

Fig. 4.6 Complex multiplier with four real multiplications and two real additions

 .. 53

Fig. 4.7 Integrate the embedded system design diagram ... 54

Fig. 4.8 The block of Dual-Port RAM (SRAM) ... 55

Fig. 4.9 Control Register .. 56

Fig. 4.10 State Machine ... 57

Fig. 4.11 Simulation of hardware operation ... 58

Fig. 4.12 Processor’s instructions analysis of scheduleⅠin SISO system 60

Fig. 4.13 Processor’s instructions analysis of scheduleⅡ in SISO system 60

Fig. 4.14 Processor’s instructions analysis in MIMO system 61

Fig. 4.15 Noise analysis with different FFT length .. 62

IX

Fig. 4.16 The compare with output data .. 63

 List of Tables

Table 2.1 Comparison of the hardware complexity of the receiver 6

Table 2.2 FFT sizes and sampling rates needed in various communication sys-

tems .. 7

Table 2.3 Comparisons of FFT architectures ... 11

Table 3.1 Multiplication comparison ... 16

Table 3.2 Multiplications and additions comparison ... 17

Table 3.3 Equation of multiplications and additions comparison 17

Table 3.4 Comparison operations of FFT size in IEEE 802.11n/16e standards .. 21

Table 3.5 Comparison of different length ASIC operations of a 64-points FFT . 22

Table 3.6 Comparison of different length ASIC operations of a 2048-points FFT

 .. 23

Table 3.7 Approximately calculation of latency cycles 31

Table 4.1 MIPS of 64-points FFT based on IEEE 802.11n standards 59

1

Chapter 1

Introduction

1.1 Motivation

In digital signal processing and communications, FFT is one of the most utilized oper-

ations. The FFT plays an important role in modern communication systems, so its inverse

transform-IFFT does. It is desired that FFT module can flexibly adjust FFT size to meet vari-

ous standards. Generally speaking, FFT is designed for specific standards such as Ultra-Wide

Band (UWB) system needs high throughput FFT module and Very High Data Rate DSL

(VDSL) system required long length FFT computation. Therefore, it is difficult to design a

FFT module which is suitable for any system specification.

For custom hardware that is often less cost-effective and flexible than general proces-

sors. Therefore, the approaches of ASIC have been added to achieve the high performance on

software or processors. In the thesis, we discuss the ASIC and processor characteristic to de-

sign variable-length FFT modules. ASIC plays an accelerated role in the proposed system and

it executes partial FFT algorithm. Processor can flexibly execute remaining FFT computation

and it takes the performance of processor into consideration. Therefore, the proposed system

can meet in different communication systems by reconfiguring processor computation.

2

1.2 Organization of this Thesis

In this thesis, the proposed FFT system can process on IEEE 802.11n/16e standards

and it not only proposes optimized timing schedule, but also provides ASIC and processor

analysis which are shown in the following chapters. The list of each chapter we write five

chapters. Chapter 1 is our motivation. Chapter 2 reviews the background that we introduce the

MIMO OFDM system standards, FFT algorithm and comparison of different radix algorithm.

Then, variable-length FFT architectures are described. Chapter 3 presents the Co-design

analysis. First, we analyze FFT computational complexity which can calculate processor per-

formance. After that, the proposed timing schedule and architectures are combined for SI-

SO/MIMO systems. Finally, we can analyze the relationship between ASIC and processor

according to MOPS (Million Operations per Second). Chapter 4 shows the implementation of

the structure with MicroBlaze Processor on FPGA tools. In the implementation domain of

FFT processor, we chose the “MicroBlaze embedded system” which is implemented by FPGA

tools. The MicroBlaze embedded soft core is a Reduced Instruction set Computer (RISC). In

the environment, we will show the MIPS (Million Instructions per Second) of variable-length

FFT based on IEEE 802.11n/16e standards. Chapter 5 is conclusion of this thesis.

3

Chapter 2

Backgroud
2.1 OFDM Backgrounds

In modern communication systems, the OFDM (Orthogonal Frequency Division

Multiplexing) algorithm is effective in combating the problem of frequency-selective fading,

inter-symbol interference (ISI), and inter-carrier interference (ICI). It is also efficient for wi-

deband data transmission.

 Bandwidth allocation of traditional frequency multiplexing is shown in Fig. 2.1. The

conventional systems not only keep all sub-channels away from overlapping each other, but

also allow some guard band bandwidth such that adjacent sub-channels will not introduce in-

ter-channel interference (ICI). This allocation method is inefficient in bandwidth utilization.

However, in Fig. 2.2, OFDM uses orthogonal carriers to modulate signal of sub-channels and

eliminate ICI that allow sub-bands overlap.

Fig. 2.1 Traditional bandwidth allocation of a frequency multiplexing system

4

Fig. 2.2 Bandwidth allocation of OFDM

2.2 WLAN MIMO-OFDM System

 Orthogonal Frequency Division Multiplexing (OFDM) is widely applied in high-speed

Wireless Local Area Network (WLAN) such as IEEE 802.11a/g/n, Hiperlan/2, Wireless Per-

sonal Area Network (WPAN) and Ultra-Wide Band (UWB) system. OFDM is a special case

of multi-carrier transmission, where a single data stream is transmitted over a number of low-

er rate sub-carriers. OFDM can be seen as either a modulation technique or a multiplexing

technique. One of the main reasons to use OFDM is to increase the robustness against fre-

quency selective fading or narrowband interference. To eliminate the banks of sub-carriers

oscillators and coherent demodulators required by frequency division multiplex, Discrete

Fourier Transform (DFT) processor is essential to be implemented.

 Multiple-Input Multiple-Output (MIMO) system was instituted by Marconi in 1908.

Channel fading can be suppressed by multiple antennas in both transmitter and receiver,

called MIMO system, have received significant attention in recent years owing to their poten-

tial to increase system capacity.

 The High Throughput Task Group which establishes IEEE 802.11n standard is going

to draw up the next-generation WLAN proposal based on the 802.11a/g which is the current

OFDM-based WLAN standards [1]. The IEEE 802.11n standard based on the MIMO OFDM

system provides very high data throughput rate from the original data rate 54 Mb/s to the data

rate in excess of 600 Mb/s because the technique of the MIMO can increase the data rate by

extending an OFDM-based system. A block diagram of the 2x2 transceiver and receiver of

IEEE 802.11n is shown in Fig. 2.3 and Fig. 2.4. Depending on the desired data rate, the mod-

ulation scheme can be Binary Phase Shift Keying (BPSK), Quaternary Phase Shift Keying

5

(QPSK), or Quadrature Amplitude Modulation (QAM) with 1-6 bits. The encoding rates in

this specification are 1/2, 2/3, 3/4, or 5/6. The number of spatial sequence is supported by 1, 2,

3, or 4. The guard interval period is 400 ns or 800 ns. The bandwidth of the transmitted signal

is 20 or 40 MHz. The FFT (Fast Fourier Transform) size is 64 points or 128 points based on

IEEE 802.11n standard.

FE
C

 e
nc

or
de

r

Pu
nc

tu
re

Pa
rs

er

Interleaver QAM mapping Insert pilot IFFT

Interleaver QAM mapping Insert pilot IFFT

Insert GI
Insert

Preamble
Surfix

windowing Analog & RF

Insert GI
Insert

Preamble
Surfix

windowing Analog & RF

Fig. 2.3 Block diagram of IEEE 802.11n WLAN 2x2 transmitter system

Packet Detection

Coarse Freqsyn

Symboltiming

Fine Freqsyn

Remove Guard Interval

FFT

Channel Estimation

Phase Tracking

Equalizer

Soft Bit
Demapper

Deinterleaver

Soft Bit
Demapper

Deinterleaver

Deparser

Depunture

Viterbi Decoder

Fig. 2.4 Block diagram of IEEE 802.11n WLAN 2x2 receiver system

However, the IEEE 802.11n standard also increases the computational and hardware

6

complexities greatly compared with the current WLAN standards. The FFT/IFFT processor is

one of the highest computational complexity modules in the physical layer of the IEEE

802.11n standard, as shown in Table 2.1 [2]. Multiple FFT processors are added to deal with

multiple data sequences in a MIMO OFDM system. Therefore, FFT causes a large increase in

the hardware complexity and power consumption.

Table 2.1 Comparison of the hardware complexity of the receiver

 Multiplier Adder Register Gate Count

(K)

Packet Detection 4 4 50 50

AGC 1 1 1 30

Frequency Offset 4 18 96 80

Frame Detection 8 8 8 50

FFT 1 12 68 160

Channel Estima-

tion

0 0 128 60

2.3 Flexible FFT Processor

OFDM technique plays an important role in wireless and modern communication sys-

tems. The FFT processor is one of the highest computational complexity modules and FFT

sizes, sampling rates are different in various standard requirements that Table 2.2 shows. It is

desired to design a single FFT processor which adapts to various FFT sizes for different

communication standards.

7

Table 2.2 FFT sizes and sampling rates needed in various communication systems

Communication Sys-

tem

FFT Size (Sampling Rate)

802.11a 64 (20MHz)

802.11n 64 (20MHz)、128 (40MHz)

802.16e 2048 (20MHz)、1024 (10MHz)、512 (5MHz)、

128 (1.25MHz)

DAB 2048、1024、512、256 (2MHz)

DVB-T 8192、2048 (8MHz)

DVB-H 4096 (8MHz)

ADSL 512 (2.2MHz)

VDSL 8192 (34.5MHz)、4096 (17.3MHz)、2048

(8.6MHz)、1024 (4.3MHz)、512 (2.2MHz)

UWB 128 (528MHz)

2.4 Discrete Fourier Transform

The basic N-point DFT (Discrete Fourier Transform) X(k) of a complex data se-

quence x(n) is defined as:

}1...,,1,0{,)()(
1

0
−∈=∑

−

=

NkWnxkX
N

n

nk
N (1)

Where the twiddle factor is

)2(
N
nkjnk

N eW
π

−
= (2)

 Most approaches to improve the efficiency of the computation of the DFT exploit the

symmetry and periodicity properties of the twiddle factor. First, the complex conjunction

8

symmetry is

 *)()(WWW kn

N

kn

N

nNk

N == −− (3)

Second, the periodicity in n and k is

 WWW nNk

N

Nnk

N

kn

N

)()(++ == (4)

 According to equation (1), the computational complexity is O (N2) through directly

performing the required computation. It needs N2 complex multiplications and N (N-1) com-

plex additions. To use the FFT algorithm, the computational complexity can be reduced to

O (Nlogr

N), where r means the radix-r FFT. The radix-r FFT can be derived from DFT by

decomposing the N-point DFT into a set of recursively related r-point transform. There are

two types of FFT algorithm are Decimation-in-Time (DIT) and Decimation-in-Frequency

(DIF) FFTs. The computational complexity of these two types is the same.

2.4.1 Decimation-In-Time FFT Algorithm

The DIT algorithm is to decompose)(nx into radix-r module sequence (It is the

same as DIT FFT Radix-2 algorithm).

∑∑

∑∑

∑∑

∑

−

=

−

=

−

=

+
−

=

−

=

++=

++=

+=

=

12/

0
2/

12/

0
2/

12/

0

)12(
12/

0

2

1

0

)12()2(

)12()2(

)()(

)()(

N

r

rk
N

k
N

N

r

rk
N

N

r

kr
N

N

r

rk
N

oddn

kn
N

evenn

kn
N

N

n

nk
N

WrxWWrx

WrxWrx

WnxWnx

WnxkX

：：

 (5)

Fig. 2.5 shows an example of the 8-points DIT FFT radix-2 algorithm according to

equation (5). We can find that order of the input time coefficients is must bit-reversed first in

Fig. 2.5.

9

+

+

+

+

+

+

- x

w1
4

+

-

+

-

+

-

+

-

x[0]

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

x

w0
8

-

x

w2
8

-

+

+

x

w1
8

-

x

w3
8

-

x

w0
4

-

x

w0
4

-

- x

w1
4

Fig. 2.5 8-points radix-2 DIT FFT signal flow graph

2.4.2 Decimation-In-Frequency FFT Algorithm

The DIF algorithm is to decompose)(kX in the same way [3] (It is the same as DIF

FFT Radix-2 algorithm).

{ }

∑

∑

∑∑

∑

∑∑

∑∑

∑

∑

−

=

−

=

+

−

=

+
−

=

+

−

=

−

=

+−

=

−

=

−

=

−

=

−

=







 +−=







 +−=

+=+







 ++=

++=

+=

−∈=

−∈=

12/

0
2/

12/

0

)12(

1

2/

)12(
12/

0

)12(

12/

0
2/

12/

0

)
2

(212/

0

2

1

2/

2
12/

0

2

1

0

2

1

0

)
2

()(

)
2

()(

)()()12(

)
2

()(

)
2

()(

)()(

1...,,1,0,)()2(

}1...,,1,0{,)()(

N

n

n
N

nr
N

N

n

rn
N

N

Nn

rn
N

N

n

rn
N

N

n

nr
N

N

n

rNn

N

N

n

nr
N

N

Nn

nr
N

N

n

nr
N

N

n

nr
N

N

n

nk
N

WWNnxnx

WNnxnx

WnxWnxrXtermodd

WNnxnx

WNnxWnx

WnxWnx

NrWnxrXtermeven

NkWnxkX

：

：

 (6)

As equation (6) shown, two (N/2)-points DFTs are composed of X (2r) and X (2r+1).

10

It is well known that can combine these two equations as one basic butterfly (BF)

module as shown in Fig. 2.6, where x(n) and x(n+N/2) are the input data.

+

- x

w n
N

x[n]+x[n+N/2]

x[n+N/2]

x[n]

{x[n]-x[n+N/2]}wn
N

Fig. 2.6 The butterfly signal flow graph of radix-2 DIF FFT

 By recursive decompositions, we can further partition these two small DFTs into

even smaller DFTs, and so on. Finally, the completed N-points radix-2 DIF FFT algorithm

can be obtained. The example of an 8-points radix-2 DIF FFT, in signal flow graph, is shown

in Fig. 2.7.

+

+

+

+

-

-

-

-

+

+

-

-

+

+

-

-

+

-

+

-

+

-

+

-

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

x

w0
8

x

w1
8

x

w2
8

x

w3
8

x

w0
4

x

w1
4

x

w0
4

x

w1
4

Fig. 2.7 8-points radix-2 DIF FFT signal flow graph

 We can find that order of the output frequency coefficients is bit-reversed in Fig. 2.7.

11

2.5 Variable Length of FFT Architectures

FFT algorithms decompose the fundamental calculation of the DFT with a sequence

of length N into continuously smaller subsequences. In section 2.4, the FFT algorithm is ap-

plied not only in DSP, image processing and digital data transmission systems, but also in

biomedical electronic engineering and home networking. Therefore, FFT processor has va-

riable transform length in different systems. To be able to compute variable FFT length, de-

signer must to implement FFT processor with variable length.

Generally speaking, FFT processor architectures can be divided into two types. One is

pipeline-based architecture [4], [5], [6], [7], [8], [9], [10], and the other is memory-based ar-

chitecture [11], [12], [13], [14], [15], [16], [17]. Different architectures for FFT processors

have different advantages and disadvantages, as listed in Table 2.3. There are advantages and

disadvantages between these two architectures.

Table 2.3 Comparisons of FFT architectures.

Architectures Advantages Disadvantages

Pipeline-based

architectures

High throughput rate

High hardware cost
Regularity

Memory-based

architectures

Low hardware cost

A loss of the throughput rate

12

2.5.1 Memory-Based FFT Architectures

A general memory-based FFT processor structure mainly consists of a butterfly

processing element (PE), a main memory, ROM for twiddle factor storage, and a controller.

 The butterfly PE is responsible for the butterfly operations required by FFT operations.

Moreover, the architecture design of PE is dependent on the use of FFT algorithm and gener-

ally dominates the performance of whole processor. The main memory stores processed data.

The controller contains three functional units: data memory address generator, coefficient in-

dex generator, and operation state controller. The data memory address generator follows a

regular pattern to generate several addresses, and then the main memory provides input data

for butterfly PE and stores output data from butterfly PE according to these addresses. The

coefficient index generator provides indices to select coefficients form coefficient ROM or

maps to coefficients through twiddle factor generator [18], [19].

 Memory-based FFT architectures are designed to increase the utilization rate of but-

terfly PE’s. Different from the pipeline-based architectures, memory-based FFT processor of-

ten has one or two large memory block(s) that is accessed by all other PE components, instead

of being distributed to many pipelined local arithmetic units.

Processing
Element Memory

Processing
Element MemoryMemory

(a) In-place type architecture

(b) Out-of-place type architecture

Fig. 2.8 Memory-based architecture block diagram

13

 Main memory allocation and access strategy of a memory-based FFT processor can be

classified as two types: in-place type and out-of place type [20], [21], [22]. In Fig. 2.8(a),

in-place architecture, output data of butterfly PE are written back to the original memory bank

with the same addresses as the previously loaded of input data [23]. Alternatively, if output

data are written to another memory block without overwriting input data, this design will be

generally called out-of-place Fig. 2.8(b). Therefore, memory size of the out-of-place design

generally will be twice that of the in-place design.

2.5.2 Pipeline-Based FFT Architectures

The pipeline-based FFT architectures are the most popular FFT processor because they

are designed by emphasizing speed performance and the regularity of data path. The best way

to obtain the pipeline-based FFT architectures is through vertical projection of signal flow

graph (SFG). In Fig. 2.9, we take an example to explain a projection mapping for 8-points ra-

dix-2 DIF FFT.

+

+

+

+

-

-

-

-

+

+

-

-

+

+

-

-

+

-

+

-

+

-

+

-

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

x

w0
8

x

w1
8

x

w2
8

x

w3

x

w0
4

x

w1
4

x

w0
4

x

w1
4

B
uf
fe
r

BF x

ROM

B
uf
fe
r

BF x

ROM

B
uf
fe
r

BF x

ROM

Fig. 2.9 Projection mapping of radix-2 DIF FFT signal flow graph.

14

 In Fig. 2.9, the structure of each stage obtained from the projection mapping is called

the processing element (PE). A processing element contains a basic butterfly (BF) unit for

addition and subtraction between two input data of each stage, a complex multiplier and a

block of buffer are used to store and reorder data for the butterfly unit of next stage.

As the following paragraph that complexity comparison, FFT computational com-

plexity analysis and time schedules will be discussed. SISOⅠ, SISOⅡ and MIMO sche-

dules are the three time schedules we will show in Chapter 3.

15

Chapter 3

Co-Design Analysis
on ASIC and Processor of FFT

3.1 Introduction

 In recent years, a lot of products with some digital signal processing (DSP) techniques

have become very popular. They are often more cost-effective and less risky than custom

hardware, particularly for low-volume applications, where the development cost of custom

ICs may be prohibitive.

 In a MIMO OFDM system [24], multiple antennas need multiple FFT and inverse

transform (IFFT) processors in transmitter and receiver shown in Fig. 2.3 and Fig. 2.4. Thus,

it causes a large increase in the hardware complexity and power consumption. Besides, based

on various standards, designers need to re-design different length and throughput of FFT pro-

cessors that shown in Table 2.2. In recent years, applications in processor become very popu-

lar. We use the advantages of processor to propose a new method that the processor and ASIC

co-design can enhance flexibility and utilize time schedule efficiently to reduce ASIC cost.

We provide designers two crucial messages. How many processor’s performance needed in

various environments? How many branch FFT need to be implemented by hardware in vari-

ous processors?

16

3.2 Complexity Comparison

 From Table 3.1 [25] and Table 3.2 [26] show the multiplication and additions compar-

ison, the multiplication and addition of radix-8 have the lowest complexity compared with

radix-2 and radix-4. In Table 3.1, the constant multiplication can be implemented by shifters

and adders, which the hardware cost is smaller than a real multiplication. Table 3.3 [27] is the

complexity equation of multiplications and additions that the radix-8 type-1 algorithm is the

original radix-8 FFT algorithm. In radix-8 type-2 algorithm, we replace multiplication of 1
8W

into p additions that the 1
8W will be implemented in the next section 4.4.2: “Hardware De-

sign on ASIC FFT”.

Table 3.1 Multiplication comparison [25]

N-point Radix-2 Radix-4 Radix-8

Multiplier Multiplier Multiplier Multiplier Constant Multiplier

8 2 3 0 2

16 10 8 6 4

32 34 31 20 8

64 98 76 48 32

128 258 215 152 64

256 642 492 376 128

512 1538 1239 824 384

1024 3586 2732 2104 768

2048 8194 6487 4792 1536

4096 18434 13996 10168 4096

8192 40962 32087 23992 8192

17

Table 3.2 Multiplications and additions comparison [26]

 Real Multiplications Real Additions

N-point All

Used by

Radix-2

All

Used by

Radix-4

All

Used by

Radix-8

All

Used by

Radix-2

All

Used by

Radix-4

All

Used by

Radix-8

16 24 20 152 148

32 88 408

64 264 208 204 1032 976 972

128 720 2054

256 1800 1392 5896 5488

512 4360 3204 13566 12420

1024 10248 7856 30728 28336

Table 3.3 Equation of multiplications and additions comparison[27]

Algorithm Real Multiplication Real Addition

Radix-2 8
2
7log

2
3

2 +− NNN

8
2
7log

2
5

2 +− NNN

Radix-4 33log
8

9
2 +− NNN

33log

8
25

2 +− NNN

Radix-8

Type-1

4)3(log
24

25
2 +−NN

4

8
25log

24
73

2 +− NNN

Radix-8

Type-2

4
8
25log

24
21

2 +− NNN

4
8
25log

24
738

2 +−
+ NNNp

18

 According to the hardware area and power consumption of complex number multiplier,

we only focus on the number of real number multiplications. In Fig. 3.1, radix-8 type-2 has

the lowest computational complexity, so we choose radix-8 type-2 as the building block to

implement FFT algorithm.

Fig. 3.1 Complexity comparison of Table 3.3

19

3.3 FFT Computational Complexity Analysis

 As the equation (6) shown in section 2.4.2: “Decimation-In-Frequency FFT Algo-

rithm” is composed by even term X(2r) and odd term X(2r + 1) of two (N/2)-point DFTs. It is

well known that one can combine these two equations as one basic butterfly (BF) module as

shown in Fig. 3.2, where x(n) and x(n+N/2) are the input data.

+

- x

w n
N

x[n]+x[n+N/2]

x[n+N/2]

x[n]

{x[n]-x[n+N/2]}wn
N

Fig. 3.2 The butterfly signal flow graph of radix-2 DIF FFT

 By recursive decompositions, we can further partition small DFTs into even smaller

DFTs, and so on. For example, an 8-points radix-2 DIF FFT, in signal flow graph, is shown in

Fig. 3.3.

+

+

+

+

+

+

- x

w1
4

+

-

+

-

+

-

+

-

x[0]

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

x

w0
8

-

x

w2
8

-

+

+

x

w1
8

-

x

w3
8

-

x

w0
4

-

x

w0
4

-

- x

w1
4

Fig. 3.3 8-points radix-2 DIT FFT signal flow graph

20

Long-length FFT can be decomposed into several branch FFT by different radix algo-

rithm. Take section 3.2: “Complexity Comparison” as a conclusion that radix-8 FFT reduces

the complexity more than other radix. But FFT length is restricted to power of eight only. In

any event, FFT architecture is composed of many butterfly units, and additions and multipli-

cations form butterfly units. Thus, we can analyze FFT computation by calculating number of

additions and multiplications.

Complex addition can be decomposed two real additions, and complex multiplication

can be decomposed two real additions and four real multiplications as shown equation (1).

j))
N
nk2cos(Im)

N
nk2sin((Re))

N
nk2sin(Im)

N
nk2cos((Re

)j*)
N
nk2sin()

N
nk2(cos()jIm*(Re

∗
π

×+
π

×+
π

×−
π

×=

π
+

π
×+

 (1)

 Therefore, we try to evaluate different length of FFT computation complexity which is

a little different from section 3.2: “Complexity Comparison”. Because we calculate any com-

putation in terms of processor operations, it doesn’t include any hardware reduce computation,

just like 1
8W can be implemented by shifters and adders. In this article, we take IEEE

802.11n/16e standards into consideration as shown in Table 2.2 of section 2.3: “Flexible FFT

Processor”. FFT length covers from 64-points to 2048-points. We regard real addition or real

multiplication as an operation in the analysis. In IEEE 802.11n/16e standards, 64-points/

2048-points is the critical case separately, because of long-length FFT increase operations

dramatically and symbol durations are the same shown in Table 3.4. Therefore, we analyze

these two cases and assume partial branch FFT which is implemented by hardware as shown

in Table 3.5 and Table 3.6. This analysis can be applied to others standards.

 In Table 3.4, the processor operations are added by real additions and real multiplica-

tions. According to equation (2), the processor operations are divided into three parts: Addi-

21

tion operations, multiplications operations and operations for radix-8 only. Addition opera-

tions present the all used additions numbers of remaining FFT stages. Multipliers operations

are the all used multiplications numbers of remaining FFT stages. Operations for radix-8 only

mean that because of the radix-8 FFT algorithm just only uses the 1
8W and 3

8W constants

than other radix. Therefore, we must take the operations for radix-8 only when we use the ra-

dix-8 FFT algorithm, the other radix will not be used. This analysis can be applied to others

FFT sizes.

Table 3.4 Comparison operations of FFT size in IEEE 802.11n/16e standards

802.11n FFT Size(Sampling Rate) Processor Operations = Real additions

+Real multiplications

 128 (40 MHz) 3142

 64 (20 MHz) 1254

802.16e FFT Size(Sampling Rate) Operations = Real additions +Real multip-

lications

 2048 (20 MHz) 83462

 1024 (10 MHz) 38150

 512 (5 MHz) 16518

 128 (1.25 MHz) 3142

}===
==

+×××+−×−×+××

=

+

+
= ∏

∑ ∏

K{1,2,3,n ,Rn -radix Rn groups, 8-radix ofNumber K
stages, remaining ofNumber S 1,R : where

)4(22K
8
N))1R()1

R

N()R((SN2

OperationsProcessor

0

1ji

1j

stage

0-i 0j
j

addition
operations

 for radix-8 only

multipliers operations

(2)

22

Table 3.5 is an example that shows all the remaining stages of the 64-points FFT pro-

cessor operations according to equation (2). If we want to do a radix-8 of 64-points FFT, we

can only choose one stage to perform. Therefore, we choose stage is 1 because we only do

one time radix-8 through the remaining stages; S is 3 because radix-8 reduces 3 stages; N is

64 that is because we choose 64-points FFT to process; K is 1 because we choose radix-8 that

we must consider the constants of 1
8W and 3

8W . Finally, we can take 2*64*3+7*7*(2+4)+

1*8*2*(2+4) = 774 which 774 is our desired processor operations. By the same way, Table

3.6 is the processor operations of 2048-points FFT according to equation (2).

Table 3.5 Comparison of different length ASIC operations of a 64-points FFT

ASIC length of

64-points FFT

Operations = Real additions + Real multiplications

64 0

32 2*64+31*1*(2+4) = 314

16 2*64*2+15*3*(2+4) = 526

8 2*64*3+7*7*(2+4)+1*8*2*(2+4) = 774

4 2*64*4+31*1*(2+4)+2*3*7*(2+4)+ 1*8*2*(2+4) = 1046

2 2*64*5+15*3*(2+4)+4*1*7*(2+4)+ 1*8*2*(2+4) = 1174

0 2*64*6+7*7*(2+4)+8*0*7*(2+4)+2*8*2*(2+4) =1254

23

Table 3.6 Comparison of different length ASIC operations of a 2048-points FFT

ASIC length of

2048-points FFT

Operations = Real additions + Real multiplications

2048 0

1024 2*2048+1023*(2+4) = 10234

512 2*2048*2+511*3*(2+4) = 17390

256 2*2048*3+255*7*(2+4)+256*2*(2+4) = 26070

128 2*2048*4+1023*(2+4)+2*127*7*(2+4)+256*2*(2+4) = 36262

64 74246-2*2048*6-32*7*7*(2+4)+1*256*2*(2+4) = 43334

32 2*2048*6+255*7*(2+4)+8*31*7*(2+4)+2*256*2*(2+4) = 51846

16 74246-2*2048*4+32*15*3*(2+4)-32*7*7*(2+4)+1*256*2*(2+4)

= 60166

8 74246-2*2048*3+2*256*2*(2+4) = 68102

4 2*2048*9+255*7*(2+4)+8*31*7*(2+4)+8*8*3*7*(2+4)+

3*256*2*(2+4) = 75270

2 74246-2*2048+256*1*3*(2+4)+2*256*2*(2+4) = 80902

0 2*2048*2+2*511*3+4*511*3+4*(10882+3332)+3*256*2*(2+4) =

83462

 Not only 64-points/2048-points is the critical case in IEEE 802.11n/16e separately but

also we will show the other cases, such as 128-points, 512-points, 1024-points FFT, as shown

in Fig. 3.4.

In Fig. 3.4, the x-axis means which FFT length of ASIC we can choose; the y-axis is

the processor operations we calculate from equation (2). Take an example of IEEE 802.16e

2048-points FFT from Fig. 3.4, if the processor only provides 30000 operations for us to do

FFT, we will choose 256-points ASIC FFT for our branch FFT. It means the processor just

24

takes 26070 operations to do software FFT and then the other remaining stages will be

processed by 256-points ASIC FFT. As the following paragraph, users can decide how much

operations they want to provide for software to calculate FFT and then the others can be done

for ASIC FFT by hardware. That is why we conclude the Fig. 3.4 of all these cases according

to equation (2).

2 4 8 16 32 64 128 256 512 1024 2048
0

1

2

3

4

5

6

7

8

9
x 10

4 Five kinds of Varible-Length FFT

FFT Length of ASIC

N
um

be
r o

f P
ro

ce
ss

or
 O

pe
ra

tio
ns

16e 2048-points FFT
16e 1024-points FFT
16e 512-points FFT
11n 128-points FFT
11n 64-points FFT

Fig. 3.4 Different cases of length FFT according to processor operations

3.4 ASIC and Processor Timing Schedule Analysis

 In this article, because we need to design a variable-length FFT module in our system,

timing schedules need to be executed independently. The goal is that we try to lower length of

branch FFT and enhance processor and ASIC utilization.

25

3.4.1 SISO System Timing ScheduleⅠ

 In SISO system we proposed two schedules. First in scheduleⅠ, we input sequences

and write it into memory which can receive continuous data and reorder data. After that

process data sequences have been ordered within symbol duration, therefore processor and

ASIC utilization are not 100% as shown in Fig. 3.5. In other words, processor has less time to

operate. Because of ASIC occupies part of symbol duration; therefore the processor needs

better operations to performance.

Symbol Duration Symbol Duration Symbol Duration Symbol Duration

Processor
Process ASIC

SRAM

Read
/Write

Data
Output

Processor
Process ASIC

SRAM

Read
/Write

Data
Output

Processor
Process ASIC

SRAM

Read
/Write

Data
Output

Processor
Process ASIC

SRAM

Read
/Write

Data
Output

1
2

3
4

Fig. 3.5 Time schedule Ⅰof SISO system

 In Fig. 3.6, it shows system block diagram based on time scheduleⅠ. This module is

used to communicate On-Chip Peripheral Bus (OPB) handshake signals [28] between soft-

ware and hardware. Software is used to operate FFT software parts with C-language. ASIC

FFT was responsible for branch FFT algorithm if the software parts have been prepared. Con-

trol register and state machine modules are stored control signals which govern entire data

flow.

26

MicroBlaze
Processor

Software

MUX

Memory

ASIC
FFT

Control Reg.

State Machine

A1
D1
A2
D2

A D

Hardware

1 2

3

DOPB

Fig. 3.6 SISO system block diagram of time scheduleⅠ

In Fig. 3.6, it is the block diagram of SISOⅠ, which is designed according to Fig. 3.5

time schedule. In a symbol duration time, there are three steps must be process. First, step 1 is

the software part, by reading/writing data between memory and software interface we can ac-

complish the software part. Second, in order to do the ASIC N-points branch FFT, step 2 is an

active signal to execute ASIC FFT that the signal is composed by control register and state

machine. Third, step 3 is to do hardware N-points branch FFT. According to these three steps

works in one symbol duration the time schedule Ⅰof Fig. 3.5 will be presented.

3.4.2 SISO System Timing ScheduleⅡ

 Second, in schedule Ⅱ, it makes efforts to raise processor skill and ASIC utilization

shown in Fig. 3.7. It not only decreases processor operations per second, but also can cut

down the power consumption because of decreasing clock frequency. Additional buffer is

27

used to increase processor and ASIC processing time up to one symbol duration, but it causes

more hardware cost shown in Fig. 3.8.

Symbol Duration Symbol Duration Symbol Duration Symbol Duration

Processor
Process

ASIC

SRAM

Read
/Write

Data
Output

Processor
Process

Processor
Process

Processor
Process

SRAM

Read
/Write

SRAM

Read
/Write

SRAM

Read
/Write

SRAM

Read
/Write

ASIC

Data
Output

ASIC

Data
Output

ASIC

Data
Output

Processor
Process1

1
1

1

2

2

3

3
2

2

4

4
3

3

5

5
4

4

Fig. 3.7 Time scheduleⅡ of SISO system

MicroBlaze
Processor

Software

MUX

Memory2

ASIC
FFT

Control Reg.

State Machine

A1
D1
A2
D2

A2 D2

Hardware

Memory1
A1 D1

1 2 3

4

DOPB

Fig. 3.8 SISO system block diagram of time scheduleⅡ

28

In Fig. 3.8, it is the block diagram of SISOⅡ, which is designed according to Fig. 3.7

time schedule. In two symbol duration time, there are four steps must be process. First, step 1

is the software part, by reading/writing data between memory 1 and software interface we can

accomplish the software part. Step 2, we write the final data of software part to memory 2 be-

cause the memory can be used by hardware independently. Third, in order to do the ASIC

N-points branch FFT, step 3 is an active signal to execute ASIC FFT that the signal is com-

posed by control register and state machine. Fourth, step 4 is to do hardware N-points branch

FFT with memory 2 and when the hardware has work with memory 2, at the same time the

processor can return back to memory 1 execute the next event of the next symbol. According

to these fourth steps work, step 1 to step 3 works in first symbol duration and step 4 works in

the next symbol duration. By several of continuous symbol durations, the time schedule Ⅱof

Fig. 3.5 will be presented. In conclusion, the hardware N-points branch FFT is executed in the

next symbol duration. Therefore, SISOⅡ not only decreases processor operations per second,

but also can cut down the power consumption because of decreasing clock frequency than

SISO Ⅰ.

3.4.3 MIMO System Timing Schedule

 In general, channel fading can be suppressed by multiple antennas in both transmitter

and receiver in MIMO system, but it also increases hardware area dramatically. Therefore,

time schedule in MIMO system, it tries to minimize hardware area and enhance processor and

ASIC utilization simultaneously. We find that time scheduleⅡ in SISO system which have

many bubbles can be utilized to process others computation. Based on this concept, we pro-

posed a suitable for MIMO system which can eliminate bubbles by processing another anten-

na’s sequences which exchange processor and ASIC processing order as shown in Fig. 3.9.

29

Symbol Duration

Processor
Process

ASIC

SRAM

Read
/Write

Data
Output

Processor
Process

SRAM

Read
/Write

11

11

11

12

12

11
ASIC

Data
Output

12

12

Symbol Duration

Processor
Process

ASIC

SRAM

Read
/Write

Data
Output

Processor
Process

SRAM

Read
/Write

21

21

21

22

22

21
ASIC

Data
Output

22

22

Symbol Duration

Processor
Process

ASIC

SRAM

Read
/Write

Data
Output

Processor
Process

SRAM

Read
/Write

31

31

31

32

32

31
ASIC

Data
Output

32

32

Fig. 3.9 Time schedule of MIMO system

 ASIC and processor compute different antenna’s sequences by turns within half sym-

bol duration. Therefore, comparison with SISO system, processor need two times operation

performance per second in MIMO system. It can process two antenna’s sequences simulta-

neously, and doesn’t need additional hardware of branch FFT shown in Fig. 3.10.

 In Fig. 3.10, we present the MIMO system block diagram. There four memories for us

to execute 2x2 antennas. We use eight steps to perform the MIMO system. First, in the

first-half symbol, step 1 is used to operate software FFT of the first antenna and read-

ing/writing data between memory 1 and software. Step 2, we write the final data of software

part to memory 2 because the memory can be used by hardware independently. Third, in order

to do the ASIC N-points branch FFT of the first antenna, Step 3 is an active signal to execute

ASIC FFT that the signal is composed by control register and state machine. Fourth, step 4 is

to do hardware N-points branch FFT with memory 2 and when the hardware has work with

memory 2, at the same time the processor can change to memory 3 execute the second anten-

na FFT of the second-half symbol. Fifth, in the second-half symbol, step 5 is used to operate

software FFT of the second antenna and reading/writing data between memory 3 and software.

30

Step 6, we write the final data of software part to memory 4 because the memory can be used

by hardware independently. Seventh, in order to do the ASIC N-points branch FFT of the

second antenna, Step 7 is an active signal to execute ASIC FFT that the signal is composed by

control register and state machine. Eighth, step 8 is to do hardware N-points branch FFT with

memory 4 and when the hardware has work with memory 4, at the same time the processor

can return back to memory 1 execute the first antenna FFT of the next symbol. In conclusion

we perform the Fig. 3.10, step 1 to step 7 works in first symbol duration, which is divided

two-half. Step 8 works in the next half symbol.

MicroBlaze
Processor

Software

MUX

Memory4

ASIC
FFT

Control Reg.

State Machine

A1
D1
A2
D2

A2 D2

Memory3
A1 D1

1 2 3

4

Memory2
A2 D2

Memory1
A1 D1

11 11 21 21

5 6

7

8

Fig. 3.10 MIMO system block diagram

31

3.5 ASIC and Processor Performance Estimation

 Since SISO schedules are proposed, an evaluation model is developed to verify speci-

fication requirements. Bases on IEEE 802.11n/16e standards, we can introduce symbol period

to calculate the performance of processor when different length of FFT is implemented by

hardware. ASIC plays an accelerative role in the system. Increasing ASIC length of branch

FFT can release load of processor. Not only 64-points/2048-points are the critical case in

IEEE 802.11n/16e separately but also we will show the other cases, such as 128-points,

512-points, 1024-points FFT.

 ScheduleⅠin SISO system, ASIC occupies some symbol duration shown in Fig. 3.5.

Therefore, we need to calculate ASIC latency cycles approximately shown in Table 3.7 [29]

and assume clock frequency is 50MHz for simulation, according to Fig. 3.4: “Number of

Processor Operations”, we will show some cases of different length FFT shown in Fig. 3.11 ~

3.15. In Table 3.7 we can make sure that the ASIC latency time can be included in a symbol

duration time unit. When FFT length of ASIC is too short, it cannot gain any benefit to the

processor. FFT length of ASIC affects operations of processor directly. More length branch

FFT implemented by hardware will lower processor’s operations, but it increases cost.

Table 3.7 Approximately calculation of latency cycles

FFT Length Latency FFT Length Latency

0 0 64 103

2 2 128 208

4 4 256 336

8 8 512 592

16 26 1024 1616

32 44 2048 2640

32

Based on IEEE 802.11n/16e standards, the symbol duration of 64-points is 3.2µs and

2048-points is 102.5µs. In Table 3.7, the latency cycles of ASIC will be enough to be included

in a symbol duration time unit, if the we choose 85 Mhz for out throughput rate at least. The

throughput rate is shown in Fig. 3.11. It shows all the time schedules of N-points FFT based

on IEEE standards, the throughput rate of 128-points is up to 85 Mhz at least. If we chose 85

Mhz for our throughput rate, we will know that this throughput rate it can be included in a

symbol duration for all kinds of N-points branch FFT according to our time schedules, SI-

SOⅠ, SISOⅡ and MIMO.

Fig. 3.11 ASIC throughput analysis

33

3.5.1 SISO Ⅰ System Operation Comparison

 From Fig. 3.12 ~ 3.16, we can analyze the relationship between processor operations and

branch FFT of ASIC. MOPS (Million Operations per Second) imply that processor operations

divided by not needed symbol duration. When our system processes FFT algorithm only by

processor, it shows that IEEE 802.11n need more operations per second. Therefore, we can

calculate processor’s performance probably by MOPS. The time schedule diagram is based on

Fig. 3.5.

2 4 8 16 32 64
0

100

200

300

400

500

600
compare 64-points SISO(I)

FFT Length of ASIC

M
O

P
S

11n 64-points FFT(50Mhz)with radix-8
11n 64-points FFT(50Mhz)with radix-4
11n 64-points FFT(50Mhz)with radix-2

Fig. 3.12 64-points FFT operation comparison of time scheduleⅠ

In Fig. 3.12, it shows the 64-points FFT MOPS of radix-2, radix-4 and radix-8 based

on IEEE 802.11n standard, x-axis is what kind of branch ASIC FFT we will decide, if the

processor provide us some restricted MOPS to use shown on y-axis. Take an example, if the

processor just only can provide us 300 MOPS, we will choose 8-points branch FFT as our

ASIC because the two types of radix-4 and radix-8 algorithms are satisfy with the required

MOPS (under 300 MOPS).In the other word, the radix-2 algorithm will be not satisfy the re-

quired 300 MOPS (over 300 MOPS), if we choose 8-points branch FFT as our ASIC.

34

2 4 8 16 32 64 128 256 512
0

500

1000

1500

2000

2500
compare 128-points SISO(I)

FFT Length of ASIC

M
O

P
S

11n 128-points FFT(50Mhz)with radix-8
11n 128-points FFT(50Mhz)with radix-4
11n 128-points FFT(50Mhz)with radix-2

Fig. 3.13 128-points FFT operation comparison of time scheduleⅠ

In Fig. 3.13, it shows the 128-points FFT MOPS of radix-2, radix-4 and radix-8 based

on IEEE 802.11n standard, x-axis is what kind of branch ASIC FFT we will decide, if the

processor provide us some restricted MOPS to use shown on y-axis. According to this figure,

we can know that the radix-4 and radix-8 algorithms are more suitable than radix-2 algorithm

because radix-2 algorithm will cost more MOPS then the other two types.

2 4 8 16 32 64 128 256 512
0

20

40

60

80

100

120

140

160

180

200
compare 512-points SISO(I)

FFT Length of ASIC

M
O

P
S

16e 512-points FFT(50Mhz)with radix-8
16e 512-points FFT(50Mhz) with radix-4
16e 512-points FFT(50Mhz) with radix-2

Fig. 3.14 512-points FFT operation comparison of time scheduleⅠ

35

In Fig. 3.14, it shows the 512-points FFT MOPS of radix-2, radix-4 and radix-8 based

on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if the

processor provide us some restricted MOPS to use shown on y-axis. According to this figure,

we can know that the radix-4 and radix-8 algorithms are more suitable than radix-2 algorithm

because radix-2 algorithm will cost more MOPS then the other two types.

2 4 8 16 32 64 128 256 512 1024 2048
0

50

100

150

200

250

300

350

400

450

500
compare 1024-points SISO(I)

FFT Length of ASIC

M
O

P
S

16e 1024-points FFT(50Mhz)with radix-8
16e 1024-points FFT(50Mhz)with radix-4
16e 1024-points FFT(50Mhz)with radix-2

Fig. 3.15 1024-points FFT operation comparison of time scheduleⅠ

In Fig. 3.15, it shows the 1024-points FFT MOPS of radix-2, radix-4 and radix-8

based on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if

the processor provide us some restricted MOPS to use shown on y-axis. According to this

figure, we can know that the radix-4 and radix-8 algorithms are more suitable than radix-2

algorithm because radix-2 algorithm will cost more MOPS than the other two types.

36

2 4 8 16 32 64 128 256 512 1024 2048
0

200

400

600

800

1000

1200

1400
compare 2048-points SISO(I)

FFT Length of ASIC

M
O

P
S

16e 2048-points FFT(50Mhz)with radix-8
16e 2048-points FFT(50Mhz) with radix-4
16e 2048-points FFT(50Mhz) with radix-2

Fig. 3.16 2048-points FFT operation comparison of time scheduleⅠ

In Fig. 3.16, it shows the 2048-points FFT MOPS of radix-2, radix-4 and radix-8

based on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if

the processor provide us some restricted MOPS to use shown on y-axis. According to this

figure, we can know that the radix-4 and radix-8 algorithms are more suitable than radix-2

algorithm because radix-2 algorithm will cost more MOPS then the other two types. In the

other word, for N-points FFT we decide to implement, we can consider radix-8 and radix-2

algorithms first that the performance is better than only radix-2 algorithm.

 In scheduleⅠof Fig. 3.12 ~ 3.16, user can design the system which we want. For ex-

ample in IEEE 802.16e standard , if we want the processor used only for 700 MOPS, we will

chose the “2048-points FFT operation comparison of time scheduleⅠ” method of Fig. 3.16,

which we just use the 64-points ASIC FFT to design the system of this standard.

37

3.5.2 SISO Ⅱ System Operation Comparison

ScheduleⅡ in SISO system shown in Fig. 3.17 ~ 3.21, it not only decreases processor op-

erations per second than but also can cut down the power consumption. Therefore, the cost of

MOPS in ScheduleⅡ is lese than scheduleⅠ. The time schedule diagram is based on Fig. 3.7.

2 4 8 16 32 64
0

50

100

150

200

250

300

350

400
compare 64-points SISO(II)

FFT Length of ASIC

M
O

P
S

11n 64-points FFT(50Mhz)with radix-8
11n 64-points FFT(50Mhz)with radix-4
11n 64-points FFT(50Mhz)with radix-2

Fig. 3.17 64-points FFT operation comparison of time scheduleⅡ

In Fig. 3.17, it shows the 64-points FFT MOPS of radix-2, radix-4 and radix-8 based

on IEEE 802.11n standard, x-axis is what kind of branch ASIC FFT we will decide, if the

processor provide us some restricted MOPS to use shown on y-axis. This figure is designed

according to time scheduleⅡ of SISOⅡ system. The performance is better than SISOⅠ sys-

tem of Fig. 3.12. Take an example, if the processor provides us for 300 MOPS, we can choose

the 4-points branch FFT of ASIC in SISO Ⅱ not the 8-points branch FFT of ASIC in SISOⅠ.

Therefore, the cost of ASIC in SISO Ⅱ will be changed smaller than SISOⅠ, if the processor

only provides 300 MOPS.

38

2 4 8 16 32 64 128 256 512
0

100

200

300

400

500

600

700

800

900

1000
compare 128-points SISO(II)

FFT Length of ASIC

M
O

P
S

11n 128-points FFT(50Mhz)with radix-8
11n 128-points FFT(50Mhz)with radix-4
11n 128-points FFT(50Mhz)with radix-2

Fig. 3.18 128-points FFT operation comparison of time scheduleⅡ

In Fig. 3.18, it shows the 128-points FFT MOPS of radix-2, radix-4 and radix-8 based

on IEEE 802.11n standard, x-axis is what kind of branch ASIC FFT we will decide, if the

processor provide us some restricted MOPS to use shown on y-axis. This figure is designed

according to time scheduleⅡ of SISOⅡ system. The performance is better than SISOⅠ sys-

tem of Fig. 3.13.

2 4 8 16 32 64 128 256 512
0

20

40

60

80

100

120

140

160

180
compare 512-points SISO(II)

FFT Length of ASIC

M
O

P
S

16e 512-points FFT(50Mhz)with radix-8
16e 512-points FFT(50Mhz) with radix-4
16e 512-points FFT(50Mhz) with radix-2

Fig. 3.19 512-points FFT operation comparison of time scheduleⅡ

39

In Fig. 3.19, it shows the 512-points FFT MOPS of radix-2, radix-4 and radix-8 based

on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if the

processor provide us some restricted MOPS to use shown on y-axis. This figure is designed

according to time scheduleⅡ of SISOⅡ system. The performance is better than SISOⅠ sys-

tem of Fig. 3.14.

2 4 8 16 32 64 128 256 512 1024 2048
0

50

100

150

200

250

300

350

400
compare 1024-points SISO(II)

FFT Length of ASIC

M
O

P
S

16e 1024-points FFT(50Mhz)with radix-8
16e 1024-points FFT(50Mhz)with radix-4
16e 1024-points FFT(50Mhz)with radix-2

Fig. 3.20 1024-points FFT operation comparison of time scheduleⅡ

In Fig. 3.20, it shows the 1024-points FFT MOPS of radix-2, radix-4 and radix-8

based on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if

the processor provide us some restricted MOPS to use shown on y-axis. This figure is de-

signed according to time scheduleⅡ of SISOⅡ system. The performance is better than SI-

SOⅠ system of Fig. 3.15.

40

2 4 8 16 32 64 128 256 512 1024 2048
0

100

200

300

400

500

600

700

800

900
compare 2048-points SISO(II)

FFT Length of ASIC

M
O

P
S

16e 2048-points FFT(50Mhz)with radix-8
16e 2048-points FFT(50Mhz) with radix-4
16e 2048-points FFT(50Mhz) with radix-2

Fig. 3.21 2048-points FFT operation comparison of time scheduleⅡ

In Fig. 3.21, it shows the 2048-points FFT MOPS of radix-2, radix-4 and radix-8

based on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if

the processor provide us some restricted MOPS to use shown on y-axis. This figure is de-

signed according to time scheduleⅡ of SISOⅡ system. The performance is better than SI-

SOⅠ system of Fig. 3.16.

 In “2048-points FFT operation comparison of time scheduleⅡ” method of Fig. 3.21

based on IEEE 802.16e standard, if we chose 64-points ASIC FFT, the processor operations

will be used just only about 450 MOPS.

3.5.3 MIMO System Operation Comparison

Therefore, in MIMO system, processor and ASIC own half a symbol duration to com-

plete operations. It can be expected that processor’s operations per second will be doubled of

scheduleⅡ in SISO system as shown in Fig. 3.22 ~ 3.26 based on time schedule diagram

41

shown in Fig. 3.9.

2 4 8 16 32 64
0

100

200

300

400

500

600

700

800
compare 64-points MIMO

FFT Length of ASIC

M
O

P
S

11n 64-points FFT(50Mhz)with radix-8
11n 64-points FFT(50Mhz)with radix-4
11n 64-points FFT(50Mhz)with radix-2

Fig. 3.22 64-points FFT operation comparison of MIMO time schedule

In Fig. 3.22, it shows the 64-points FFT MOPS of radix-2, radix-4 and radix-8 based

on IEEE 802.11n standard, x-axis is what kind of branch ASIC FFT we will decide, if the

processor provide us some restricted MOPS to use shown on y-axis. This figure is designed

according to time schedule of MIMO system. The performance is twice than SISOⅡ system

of Fig. 3.17, but the usage of time schedule in a symbol is improved. In a symbol duration, we

can execute FFT two times and just only use one N-points branch FFT of ASIC well.

42

2 4 8 16 32 64 128 256 512
0

200

400

600

800

1000

1200

1400

1600

1800

2000
compare 128-points MIMO

FFT Length of ASIC

M
O

P
S

11n 128-points FFT(50Mhz)with radix-8
11n 128-points FFT(50Mhz)with radix-4
11n 128-points FFT(50Mhz)with radix-2

Fig. 3.23 128-points FFT operation comparison of MIMO time schedule

In Fig. 3.23, it shows the 128-points FFT MOPS of radix-2, radix-4 and radix-8 based

on IEEE 802.11n standard, x-axis is what kind of branch ASIC FFT we will decide, if the

processor provide us some restricted MOPS to use shown on y-axis. This figure is designed

according to time schedule of MIMO system. The performance is twice than SISOⅡ system

of Fig. 3.18, but the usage of time schedule in a symbol is improved. In a symbol duration

time unit, we can execute FFT two times and just only use one N-points branch FFT of ASIC

well.

43

2 4 8 16 32 64 128 256 512
0

50

100

150

200

250

300

350
compare 512-points MIMO

FFT Length of ASIC

M
O

P
S

16e 512-points FFT(50Mhz)with radix-8
16e 512-points FFT(50Mhz) with radix-4
16e 512-points FFT(50Mhz) with radix-2

Fig. 3.24 512-points FFT operation comparison of MIMO time schedule

In Fig. 3.24, it shows the 128-points FFT MOPS of radix-2, radix-4 and radix-8 based

on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if the

processor provide us some restricted MOPS to use shown on y-axis. This figure is designed

according to time schedule of MIMO system. The performance is twice than SISOⅡ system

of Fig. 3.19, but the usage of time schedule in a symbol is improved. In a symbol duration

time unit, we can execute FFT two times and just only use one N-points branch FFT of ASIC

well.

44

2 4 8 16 32 64 128 256 512 1024 2048
0

100

200

300

400

500

600

700

800
compare 1024-points MIMO

FFT Length of ASIC

M
O

P
S

16e 1024-points FFT(50Mhz)with radix-8
16e 1024-points FFT(50Mhz)with radix-4
16e 1024-points FFT(50Mhz)with radix-2

Fig. 3.25 1024-points FFT operation comparison of MIMO time schedule

In Fig. 3.25, it shows the 1024-points FFT MOPS of radix-2, radix-4 and radix-8

based on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if

the processor provide us some restricted MOPS to use shown on y-axis. This figure is de-

signed according to time schedule of MIMO system. The performance is twice than SISOⅡ

system of Fig. 3.20, but the usage of time schedule in a symbol is improved. In a symbol du-

ration time unit of 2x2 antennas, we can execute FFT two times and just only use one

N-points branch FFT of ASIC well.

45

2 4 8 16 32 64 128 256 512 1024 2048
0

200

400

600

800

1000

1200

1400

1600

1800
compare 2048-points MIMO

FFT Length of ASIC

M
O

P
S

16e 2048-points FFT(50Mhz)with radix-8
16e 2048-points FFT(50Mhz) with radix-4
16e 2048-points FFT(50Mhz) with radix-2

Fig. 3.26 2048-points FFT operation comparison of MIMO time schedule

 In Fig. 3.26, it shows the 2048-points FFT MOPS of radix-2, radix-4 and radix-8

based on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if

the processor provide us some restricted MOPS to use shown on y-axis. This figure is de-

signed according to time schedule of MIMO system. The performance is twice than SISOⅡ

system of Fig. 3.21, but the usage of time schedule in a symbol is improved.

In the method of Fig. 3.26: 2048-points FFT operation comparison of MIMO time

schedule. IEEE 802.16e standard, if we chose 64-points ASIC FFT, the processor operations

will be used about 900 MOPS. In the other word, the MOPS of MIMO schedule will be

doubled than the time scheduleⅡof SISOⅡ.

 In this section, we introduce scheduleⅠ、Ⅱ in SISO system, and a schedule in MIMO

system. According to time schedule system based on time scheduleⅠof SISOⅠand time

scheduleⅡ of SISOⅡ, the cost of hardware in scheduleⅠis less than scheduleⅡ, but the uti-

lization of scheduleⅠis less than scheduleⅡ. In MIMO system, bad utilization can be im-

proved by changing ASIC and processor order. In 2x2 MIMO systems, it only needs a pro-

46

cessor and a branch FFT of ASIC. This schedule not only lower hardware cost, but also in-

crease the utilization of module.

 Therefore, we use the equation (2) to calculate the “Processor Operations” of

64-points, 128-points, 512-points,1024-points and 2048-points FFT and according to IEEE

802.11n/16e standards, we can predict the time of these three schedules (SISOI,SISOII and

MIMO) in a symbol duration. Finally, MOPS (Million Operations per Second) has been eva-

luated by our estimation. In next chapter, we want to implement the processor’s architecture

of SISOⅠ in Fig. 3.6, SISOⅡ in Fig. 3.8 and MIMO in Fig. 3.10 with “Micro Blaze Proces-

sor”, which is a embedded system implemented by FPGA tools

47

Chapter 4

Implementation of the Structure
with MicroBlaze Processor

4.1 Introduction of the MicroBlaze Processor

In the implementation domain of FFT processor, we chose the “MicroBlaze embedded

system” which is implemented by FPGA tools. The MicroBlaze embedded soft core [30] is a

reduced instruction set computer (RISC) optimized for implementation in Xilinx field pro-

grammable gates arrays (FPGAs) [31]. Fig.4.1 is a block diagram depicting the MicroBlaze

core.

Program
Counter

Instruction
counter

Instruction
Decoder

Register File
32 x 32b

Add/Sub

Shift/Logical

Multiply

I-C
ac
he

Bus
IF

D
-C
ac
he

Bus
IF

Instruction-side
bus interface

Data-side
bus interface

IOPB

IXCL_M

ILMB

IXCL_S

DXCL_M

DXCL_S

MFSL 0..7

SFSL 0..7

DOPB

DLMB

Fig. 4.1 MicroBlaze core block diagram

From Fig. 4.1 that the MicroBlaze embedded soft core is highly configurable, allow-

ing users to select a specific set of features required by their design. The processors features

set includes the following. There are twenty-two 32-bits general purpose registers, 32-bits in-

48

struction word with three operands and two addressing modes, separate 32-bits instruction

and data buses that conform to IBM’s OPB (On-chip Peripheral Bus) specification [28], sepa-

rate 32-bits instruction and data buses with direct connection to on-chip block RAM through a

LMB (Local Memory Bus), 32-bits address bus and instruction/data cache, single issue pipe-

line, hardware debug logic, Fast Simplex Link (FSL) support, hardware multiplier, hardware

exception handling, Dedicated Cache Link interface for enhanced cache performance.

4.2 Implementation of the Variable-Length FFT

In the environment of the MicroBlaze processor, we desire to complete the three time

schedules we have evaluated in section 3.4: “ASIC and Processor Timing Schedule Analysis”.

The three time schedules are SISOⅠ, SISOⅡ and MIMO time schedules we discussed in

Chapter 3, which we emphasize to design with the processor’s tool of MicroBlaze in this sec-

tion. By using the tool of MicroBlaze processor, we can real know the working situations be-

tween hardware and software based on FFT algorithm.

Therefore, we separate two parts of variable-length FFT, one is work on processor and

the other is executed by ASIC FFT. According to IEEE 802.11n/16e standards, we take the

implementation of 64-points FFT for an example. First, we do software part on processor

shown in Fig. 4.2 by radix-23 FFT, then complete the remaining part on 8-points ASIC FFT

for eight times. Finally, we integrate these two parts: software and hardware, which we can

49

succeed the embedded system core of hardware and software FFT on MicroBlaze processor.

Input 64-points
Data

Do
Software

FFT
On MicroBlaze

For Radix-23

8-points ASIC FFT8

Output

8-points ASIC FFT8

8-points ASIC FFT8

8-points ASIC FFT8

8-points ASIC FFT8

8-points ASIC FFT8

8-points ASIC FFT8

8-points ASIC FFT8

Fig. 4.2 Separate the implementation of 64-points FFT for two parts

 By the flow we integrate the software and hardware implementation on the example

of 64-poins FFT according to IEEE 802.11n/16e standards. That is just one situation of our

desired cases such as 128-points, 512-points, 1024-points and 2048-points FFT that we have

evaluated the all time schedules in section 3.4 are our desired cases too.

 Therefore, in the next 4.2.1, 4.2.2 and 4.2.3 sections we can show how we implement

the example of 64-points FFT, we can learn the concepts and information in Co-Design on

ASIC and Processor of FFT.

4.2.1 Software Design on MicroBlaze Processor

As the following paragraph, we want to design the software parts of variable-length

N-points FFT. From the input data we change the real floating number into fixed 16-bits data.

Thus, we can store all the 16-bits of N-points FFT input data in user’s memory block on Mi-

croBlaze processor. On programming interface in Fig. 4.3 we use the data to read/write in or-

der to perform FFT butterfly. First, we read the initial input data(x[n], x[n+1],…, x[n+7N/8])

50

of FFT from memory that we use the data to do butterfly operation shown in Fig. 4.4. Second,

we write the calculated data into memory. According to these two steps, the programming part

of variable-length FFT will be implemented easily.

MicroBlaze
Processor

Software

MUX

Memory

ASIC
FFT

Control Reg.

State Machine

A1
D1
A2
D2

A D

Hardware

1 2

3

DOPB

Arrow A

Arrow B

Fig. 4.3 Structure of MicroBlaze Processor’s programming diagram

 In Fig. 4.3, the big Arrow A and B are the IOPB [28] programming interface, which is

used to communicate the processor with Master signals and Slave signals. Master signals and

Slave signals are the data buses of DOPB which can process data through SRAM (Memory).

Blue Line 1, 2 and 3 are the programming order steps which in step 1 we do programming

part of software FFT, in step 2 the MicroBlaze processor will send an active message to the

Control Register which the message is used to tell the hardware part start to work. Finally, in

step 3 the ASIC FFT of hardware part will execute and catch data from SRAM (Memory).

According to these three steps we can perform the programming implementation of software

part FFT environment.

 From the programming environment, we use the radix-23 DIF FFT architecture shown

51

in Fig. 4.4 to implement the software part of 64-points FFT of Fig. 4.2. Finally, we write the

first stage data in memory block after performing the software programming architecture. In

the next section 4.2.2, we will use the data of memory block to process the remaining ASIC

FFT part.

+

+

+

+

-

-

-

-

x

x

-j

-j

+

+

-

-

+

+

-

-

x

x

x

-j

w1
8

w1
8

+

-

+

-

+

-

+

-

x

w4n
N

x

w2n
N

x

w6n
N

x

w1n
N

x

w5n
N

x

w3n
N

x

w7n
N

x[n]

x[n+N/8]

x[n+2N/8]

x[n+3N/8]

x[n+4N/8]

x[n+5N/8]

x[n+6N/8]

x[n+7N/8]

X[n]

X[n+N/8]

X[n+2N/8]

X[n+3N/8]

X[n+4N/8]

X[n+5N/8]

X[n+6N/8]

X[n+7N/8]

Fig. 4.4 The butterfly signal flow graph of the radix-23

 DIT FFT algorithm

4.2.2 Hardware Design on ASIC FFT

We want to implement the hardware part immediately in order to connect the remain-

ing part of software FFT from the previous section 4.2.1. In this section, we implement a sim-

ple ASIC for 8-points FFT by radix-23

Because of the FFT ASIC is just simple 8-points FFT, we process it with pipeline flow

that we transmit 8-points input data at the same time and we receive all 8-points output at the

next same time. The 8-points FFT is based on one stage radix-2

 DIT FFT algorithm. Thus, we can integrate the whole

process of the 64-points FFT architecture that the example we take as shown in Fig. 4.2.

3

1
8W

 butterfly and it needs 3 times

complex multiplications exclude from , 3
8W and 0

8W . According to Fig. 4.2 we must do

52

8-points FFT ASIC for eight times that N is 8. We use the radix-2 index map to divide the

8-points DFT into three steps. From Fig.4.4 it shows the butterfly of the three-step DIF ra-

dix-8 FFT. The twiddle factors, 1
8W and 3

8W at the second step are trivial complex multip-

lication, because they can be written as ()j−122 and ()j−−122 . Thus, a complex

multiplication with one of the two coefficients and a real multiplication, whose hardware can

be realized by shifters and adders shown in Fig. 4.5.

986431 22222270710678.022 −−−−−− +++++==

Real part

Imaginary parta-b

a+b

2-1

2-3

2-4

2-6

2-8

2-9

Fig. 4.5 Implementation hardware of multiplication with 22

 The multiplication by –j can be realized with no extra hardware cost by simply inter-

changing the real and imaginary part of the product as shown in equation (1).

() ())1(ajbjbja −=−×+

 One complex multiplier can be realized by four real multiplications and two real addi-

tions as shown in Fig. 4.6. Its mathematical form can be expressed as equation (2).

() () () ())2(adbcjbdacdjcbja ++−=+×+

53

Imaginary part

Real part
-

ad

bc

bd

ac

d

c

b

a

Fig. 4.6 Complex multiplier with four real multiplications and two real additions

Therefore, the hardware block of ASIC FFT architecture based on radix-23

 In the next section 4.2.3, we will integrate the software and hardware part clearly,

which we will tell the readers how we integrate the FFT algorithm with software and harware

FFT block that we would add control register, state machine, memory block (SRAM), memo-

ry mapped addressing mode and the simulation figure of result by using the MicroBlaze pro-

cessor core.

 DIT FFT

algorithm of Fig. 4.4 will be implemented which the real part and image part operations are

design according to Fig. 4.5 and Fig. 4.6.

54

4.2.3 Integrate the Embedded System

 From the introduction of software design and ASIC FFT according to section 4.2.1 and

4.2.2, we desire to integrate the embedded system based on MicroBlaze Processor shown in

Fig. 4.7. In this embedded environment we run programming on the processor and then ex-

ecute the ASIC FFT to process data in memory block. Thus, we can accomplish the FFT im-

plementation of hardware and software embedded system design. In the following paragraph

we will detailed describe each block of Fig. 4.7 such as control register, state machine, and

memory block (SRAM).

MicroBlaze
Processor

Software

MUX

Memory

ASIC
FFT

Control Reg.

State Machine

A1
D1
A2
D2

A D

Hardware

1 2

3

DOPB

Arrow A

Arrow B

Fig. 4.7 Integrate the embedded system design diagram

 In Fig. 4.7, the MUX circuit is used to switch memory block sharing between proces-

sor and ASIC, in software environment it can be changed to A1 and D1.If we switch the MUX

to A2 and D2, hardware environment will be executed. Fig. 4.8 shows the memory block

(SRAM) structure of Fig. 4.7 which is a dual-port memory library of Xilinx field programma-

55

ble gates arrays (FPGAs) named RAMB16_S36_36 whose size are 512x32 bits. Part A is used

to connect with processor and port B is hardware part connecting. If we chose software part

programming environment, the MUX will switch to A1 and D1 connecting. In the other word,

if the MUX switched to A2 and D2, the hardware part connecting has been executed. The

signal ENA/B, SSRA/B and WEA/B are control signals that we can decide READ/WRITE

command of the memory block [32], [33], [34], [35].

 Because of the size memory block are total 16384 bits, the memory mapped address-

ing range we can add the hardware on MicroBlaze embedded system is from 0x01800000 to

0x018003FF (0x000~0x3FF are total 16384 bits) and the hardware offset is 0x0180000. Since

the mapped addressing of MicroBlaze processor is free defined by users, we can not only put

the memory block on range 0x01800000 but also can put it in other offsets as long as two

hardware devices are not in conflict with the same addressing range .

512x32 bits
Dual-Port

Block
RAM

DIA
ADDRA

ENA
SSRA
WEA

CLKA

DIB
ADDRB

ENB
SSRB
WEB

CLKB

 RAMB16_S36_S36

DOA

DOB

Communicate with
processor

Communicate with
hardware

0x01800000

0x018003FF

RANGE

~

Fig. 4.8 The block of Dual-Port RAM (SRAM)

 In Fig. 4.9 is the Control Register of Fig. 4.7, which we can define what address of

memory block in Fig. 4.8 we start to work. If we write address on Write register, the hardware

device will go to the memory mapped address and start to catch memory data which at the

same time the hardware device is preparing to work. In the step we write address on Write

56

register that the hardware device will send an input enable signal to tell us that the hardware

starts on working. If the hardware device finishes work, it will send an output enable signal

which we can use Read register to read the output enable signal to make sure how the hard-

ware device works successful. These two enable signals input enable and output enable,

which can drive the state machine in Fig. 4.10. The state machine will generate a start signal

to tell hardware device on working and if it works successful, it will send output enable sig-

nal.

0x0000 0001 1000 0000 1 1 00 0000 0000 0000

A15 A14
XIo_Out32(Control Reg. , BASEADDR)

input_en=1

(a) Write register

0x0000 0001 1000 0000 x x 00 0000 0000 0000

A15 A14
Xio_In32(Control Reg.)

output_en=1

(b) Read register

Fig. 4.9 Control Register

57

Init

S1

S2

S3

Done

input_en <='0'

input_en <='1'

S1:填入BASEADDRESS
S2: Start=1;
S3: Start=0;

output_en <='1'

init S1 S2 S3 done

BASEADDRbaseaddr

CLK

START

OUTPUT_EN

done done

Fig. 4.10 State Machine

 In conclusion, the state machine of Fig. 4.10, we purpose to send a start signal on the

memory mapped address which the MicroBlaze embedded system will drive ASIC FFT start

to work. Therefore, we can complete the software and hardware integrated system based on

MicroBlaze embedded system according to control register and state machine control flow.

 In the Fig. 4.11 shows the simulation wave of hardware device integration which when

the software FFT was done, the remaining part of FFT will be executed by hardware device

including control register, state machine, memory block and ASIC FFT. Therefore, we can get

the whole data of FFT algorithm and combine from software part to hardware part such as Fig.

4.2: “Separate the implementation of 64-points FFT for two parts” shows. First in square 1,

hardware device starts to read the memory mapped addressing data. Second in square 2, pre-

pare to send the read data of memory from square 1 into FFT input port. Third in square 3,

58

input the FFT 16-bits of 8-points FFT input data and active with a start signal. Fourth in

square 4, it shows the output data after doing FFT according to ASIC FFT hardware. Finally

in square 5, to store the result data back to memory mapped addressing block.

Fig. 4.11 Simulation of hardware operation

4.3 MIPS of the Variable-Length FFT Implemented by MicroBlaze Pro-

cessor

 According to time schedules we discussed in section 3.4:“ASIC and Processor Timing

Schedule Analysis”. Our implementation of 64-points FFT can be design for SISOⅠin Fig.

3.5~3.6 ,SISOⅡ in Fig. 3.7~3.8 and MIMO in Fig. 3.9~3.10 schedules. Therefore, we con-

clude these three summary for MIPS (Million Instructions per Second) shown in Table 4.1

based on IEEE 802.11n standards, which 64-points FFT is analyzed by 20Mhz of a symbol

duration and FFT length ASIC is 8-points. In the Table 4.1 the MIPS of MIMO is twice as

SISOⅡ.

59

Table 4.1 MIPS of 64-points FFT based on IEEE 802.11n standards

64-points FFT SISOⅠ SISOⅡ MIMO

MIPS 1632 1110 2220

 In chapter 3, we discussed the MOPS of variable-length FFT according to IEEE

802.11n standards such as 64-points, 128-points, 512-points, 1024-points and 2048-points

FFT that MOPS is implemented by DSP processor. In the other word, we want to implement

the variable-length FFT on MicroBlaze processor environment which is based on RISC, it

provides processor instructions but no processor operations for users. Therefore, MIPS on

MicroBlaze processor is our purposed of variable-length FFT implementation.

 From section 4.2: “Implementation of the Variable-Length FFT”, we use the same way

to perform 2048-points FFT. Because of the IEEE 802.11n/16e standards, 64-points/

2048-points FFT are our desired cases which we have to evaluate all the MISP conditions of

variable-length FFT for three time schedules.

 Fig. 4.12 is the SISOⅠ time schedule we implemented by MIPS, Fig. 4.13 is the SI-

SOⅡ time schedule and Fig. 4.14 is MIMO time schedule. In conclusion, 64-points FFT is

based on IEEE 802.11n standard, 2048-points FFT is based on IEEE 802.16e standard that we

can use to implement wimax applications.

60

Fig. 4.12 Processor’s instructions analysis of scheduleⅠin SISO system

Fig. 4.13 Processor’s instructions analysis of scheduleⅡ in SISO system

2 4 8 16 32 64 128 256 512 1024 2048
0

500

1000

1500

2000

2500
compare with SISO(II)

FFT Length of ASIC

 M
IP

S

16e 2048-points FFT MicroBlaze
11n 64-points FFT MicroBlaze

2 4 8 16 32 64 128 256 512 1024 2048
0

500

1000

1500

2000

2500

3000
compare with SISO(I)

FFT Length of ASIC

 M
IP

S

16e 2048-points FFT MicroBlaze
11n 64-points FFT MicroBlaze

61

Fig. 4.14 Processor’s instructions analysis in MIMO system

4.4 Error Analysis

 In the case of FFT hardware implementation, the finite bit-width must be considered

because of the fixed-point computation. Many statistical error analysis papers on FFT imple-

mentations are proposed [36], [37], [38]. Assume the input sequence of FFT x(n) is a se-

quence of finite-valued and white complex numbers. The variance of x(n) can be expressed as

)3())((1))((1 1

0

2
1

0

22 ∑∑
−

=

−

=

=−=
N

n

N

n
xx nx

N
nx

N
µσ

 where μx is the mean of x(n) andμx

)4(2

2

q

xSQNR
σ
σ

=

=0. The SQNR (Signal to Quantization Noise Ratio)

is defined as

 Where σx
2 is the variance of output andσq

2

2 4 8 16 32 64 128 256 512 1024 2048
0

500

1000

1500

2000

2500

3000

3500

4000

4500
compare with MIMO

FFT Length of ASIC

 M
IP

S

16e 2048-points FFT MicroBlaze
11n 64-points FFT MicroBlaze

 is the variance of the quantization error.

For an N-point FFT module with input of which real and imaginary parts are uniformly dis-

62

tributed in (NN
2

1,
2

1
−), the variance [37] of the output is

)5(
3
12

Nx =σ

 From (4) and (5), the SQNR [38] of the conventional FFT implementation can be car-

ried out：

)6(
345

22

−−
=

mN
SQNR

B

FFT

Where B is the bit-width of the input sequence and m=log2

N.

 In Fig. 4.11, it shows equation (6) with IEEE 802.11n/16e standards which include

five FFT sizes. The more rounding stages, the more noise will be produced. Because

long-length FFT will decrease SQNR, it needs to increase bit-width. It will cause more power

consumption and area cost.

 In this chapter, we introduce various pipeline-based FFT architectures and then com-

pare their characteristic to evaluate our proposed system based on throughput rate and hard-

ware cost analysis. After that, it shows detailed sub-module architectures and analyzes noise

issue finally.

8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

120

140

160

180

200

Wordlength (bits)

S
Q

N
R

 (d
B

)

Word-length Analysis

64 -point FFT
128 -point FFT
512 -point FFT
1024-point FFT
2048-point FFT

Fig. 4.15 Noise analysis with different FFT length

63

 From the example of 64-points FFT in section 4.2 that we take the output of 16-bits

fixed data to compare with the real floating data. We take the SNR is about 144.06 dB shown

in function (7) which 144.06 dB is nearly when compared with 64-points FFT and length

16-bits of Fig. 4.15. The sources of)(fX and)(fX
∧

 shown in Fig. 4.16.

)7(06.144
))()((

)(
log20

00012836.0))()((

2048)(
)(:)FFT points-64 ofpoint fixed bits-16(

)(:)FFT points-64 ofpoint floating(

2

2

2

2

dB
fXfX

fX
SNR

fXfX

fX
fXFFT

fXFFT

=
−

=

=−

=

∑
∑

∑

∑

∧

∧

∧

Matlab
Floating 64-points

FFT

MicroBlaze
Fixed 64-points

FFT

output

output

)(fX

)(fX
∧

compare

Fig. 4.16 The compare with output data

64

Chapter 5

Conclusion

5.1 Conclusion

 Since processor is popular in recent years, we intend that the FFT module can combine

processor with ASIC to form the flexible system. ASIC plays an accelerator role in the pro-

posed system. Based on FFT computational complexity analysis, it shows different length

branch FFT of ASIC which affects processor performance. Therefore, it can provide user two

anticipation as below. First of all that processor needs to spare how much computational per-

formance at least for proposed system. Second, because of our processor computational per-

formance, we can decide the branch FFT length of ASIC.

 In our implementation environment that the processor can contribute the range of

MIPS in this thesis based on IEEE 802.11n/16e standards. Users can decide which condition

of MIPS they want on processor. After that they accomplish the branch FFT according to the

restriction of MIPS. The variable-length FFT implemented by MicroBlaze Processor has

16-bits word-length and its SNR is near 140 dB shown in Fig. 4.15.

 Finally, we not only verify the 64-point branch FFT on FPFA of our example in sec-

tion 4.2: Implementation of the Variable-Length FFT, but also check proposed timing sche-

dule which covers 64-points, 128-points, 512-points, 1024-points and 2048-points FFT algo-

rithm in SISO/MIMO systems based on IEEE 802.11n/16e standards.

65

5.2 Work of Implementation Environment

 The processor is implemented by embedded system which we provide one method to

setup up proposed system. In Xilinx Spartn-3 FPGA [30], [31], [32], [33], [34], [35], it has an

embedded processor which is MicroBlaze processor of IBM [28]. Therefore, the processor

can be entirely built by writing C-language and the N-points branch FFT can be loaded to

FPGA as an accelerator.

 In this thesis, the processor performance analysis is based on radix-2/4/8 algorithms.

Because of the processor performance is based on instructions, we can try to use higher radix

algorithm but it requires more high frequency clock cycles. Hence, the resource cost will be

reduced while keeping specification requirements and the shift registers is another issue. For a

bigger N, the shift registers will cause more power consumption and area cost than using

memory access. Therefore, how to improve the efficiency and simplify the memory access

scheme in the long length branch FFT module is left for our future work.

66

Bibliography
[1] Mujtaba et al., TGn Sync Proposal Tech. Specification for IEEE 802.11 Task Group

2005, IEEE 802.11-04/0889r3.

[2] Bing-Juo Chuang, “Design and Implementation of IEEE 802.11n Based Receiver,” De-

partment of Communication Engineering, National Chiao Tung University, July 2005.

[3] A.V. Oppenheim R.W. Schafer, and John R. Buck, Discrete Time Signal Processing,

Second Edition, Prentice Hall Inc, 1999.

[4] Shousheng He and Mats Torkelson, “A New Approach to Pipeline FFT Processor,” Pa-

rallel Processing Symposium, The 10th

[5] Shousheng He and Mats Torkelson, “Designing Pipeline FFT Processor for OFDM

(De)Modulation,” in Proc. ISSSE, pp. 257-262, 1998.

 International, pp. 766-770, 1996.

[6] Shousheng He and Mats Torkelson, “Design and Implementation of A 1024-point FFT

Processor,” in Proc. IEEE Custom Integrated Circuit Conference, pp. 131-134, 1998.

[7] E. H. World and A. M. Design, “Pipeline and Parallel Pipeline FFT Processors for VLSI

Implementation,” IEEE Transactions on Computers, Vol. 33 No. 5, pp. 414-426, May

1984.

[8] A. M. Despain, “Fast Fourier Transform using CORDIC iterations,” IEEE Trans. Com-

put., Vol. C-23 No. 10 pp. 933-1001, Oct. 1974.

[9] G. Bi and E. V. Jones, “A Pipelined FFT Processor for Word Sequential Data,” IEEE

Trans. Acoust., Speech, Signal Processing, Vol. 37 No. 12, pp. 1982-1985, Dec. 1989.

[10] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Pren-

tice-Hall Inc., 1975.

[11] Chung-Ping Hung, Sau-Gee Chen and Kun-Lung Chen, “Design of An Efficient Varia-

ble-Length FFT Processor,” IEEE ISCA, Vol. 2, pp. 833-836, May 2004.

67

[12] L. G. Johnson, “Conflict Free Memory Addressing for Delicate FFT Hardware,” IEEE

Transactions on Circuit and System-II: Analog and Digital Signal Processing, Vol. 39

No. 5, pp. 312-316, May 1992.

[13] Hsin-Fu Lo, Ming-Der Shieh, and Chien-Ming Wu, “Design of An Efficient FFT Pro-

cessor for DAB System,” IEEE International Symposium on Circuit and Systems, Vol. 4,

pp. 645-657, 2001.

[14] Yutai Ma, “An Effective Memory Addressing Scheme for FFT Processors,” IEEE

Transactions on Signal Processing, Vol. 47 Issue: 3, pp. 907-911, Mar. 1999.

[15] Yutai Ma and Lars Wanhammar, “A Hardware Efficient Control of Memory Addressing

for High-Performance FFT Processors,” IEEE Transactions on Signal Processing, Vol.

48 Issue: 3, pp. 917-921, Mar. 2000.

[16] C. H. Chang, C. L. Wang and Y. T. Chang, “Efficient VLSI Architectures for Fast

Computation of the Discrete Fourier Transform and its Inverse,” IEEE Transactions on

Signal Processing, Vol. 48 Issue: 11, pp. 3206-3216, Nov. 2000.

[17] C. L. Wang and C. H. Chang, “A New Memory-Based FFT Processor for VSDL Tran-

sceivers,” IEEE International Symposium on Circuit and Systems, Vol. 4, pp.670-673,

2001.

[18] M. Hasan, T. Aralan, “FFT Coefficient Memory Reduction Technique for OFDM Ap-

plications,” IEEE International Conference on Acoustics, Speed, and Signal Processing,

Vol. 1, pp. I1085-I1088, May 2002.

[19] Li-Yun Lin, “Implementation of A Variable Length FFT Processor for VDSL system,”

Department of Communication Engineering, National Chiao Tung University, June

2004.

68

[20] B. S. Kim and L. S. Kim, “Low Power Pipelined FFT Architecture for Synthetic Aper-

ture Radar Signal Processing,” in Proc. IEEE Midwest Symposium on Circuits and Sys-

tems, Vol. 3, pp. 1367-1370, 1996.

[21] M. M. Jamali, S. C. Kwatra and D. H. Shetty, “Module Generation Based VLSI Imple-

mentation of A Demultiplexer for Satellite Communications,” in Proc. IEEE Internation-

al Symposium on Circuits and Systems, Vol.4, pp 364-367, 1996.

[22] A. Delaruelle, j. huisken, J. van Loon, F. Welten, “A Channel Demodulator IC for Digi-

tal Audio Broadcasting” in Proc. IEEE Custom Integrated Circuits Conference, pp. 47-50,

1994.

[23] “Supplement to IEEE Standard for Information Technology Telecommunications and

Information Exchange between Systems-Specific Requirements. Part 11: Wireless LAN

Medium Access Control and Physical Layer,” IEEE 802.11a. 1999.

[24] T. Sansaloni, “Efficient Pipeline FFT Processors for WLAN MIMO-OFDM Systems,”

IEE electronics letters 15th

[25] Chih-Wei Liu, “Introduce to FFT Processors,” VLSI Signal Processing Lab Department

of Electronics Engineering, National Chiao Tung University.

, Vol. 41 No. 19, September 2005.

[26] Shousheng He and Mats Torkelson, “Designing Pipeline FFT Processor for OFDM

(De)modulation”, in Proc. URSI Int. Symposium on Signals, Systems, and Electronics,

Vol. 29, pp. 257-262, Oct. 1998.

[27] Ray Andraka, Andraka Consulting Group, Inc., 16 Arcadia Drive, North Kingstown, RI

“A Survey of CORDIC Algorithm for FPGA Based Computers” ACM Press, 1998, New

York, USA.

[28] “On-Chip Peripheral Bus Architectures Specifications,” a complete description of the

bus by IBM, its inventor.

69

[29] S. Sukhsawas and K. Benkird, “A High-Level Implementation of A High Performance

Pipeline FFT on Virtex-E FPGAs,” School of Computer Science, Queen’s University

Belfast, United Kingdom, 2004.

[30] “MicroBlaze Processor Reference Guide: Embedded Development Kit EDK 6.3i,”

UG081 (v4.0) August 24, 2004.

[31] “Xilinx ISE 6 Software Manuals,” UG000 (v3.4.1) February 25, 2003.

[32] “Xilinx Embedded Development Kit (EDK documents): Getting Started with the EDK

6.3i,” August 24, 2004.

[33] “Xilinx Embedded Development Kit (EDK documents): Xilinx Platform Studio User

Guide,” UG113 (v3.0), August 20, 2004.

[34] “Xilinx Embedded Development Kit (EDK documents): Tools and IP Reference Guides:

Embedded System Tools Reference Manual,” UG111 (v3.0), August 20, 2004.

[35] “Xilinx Embedded Development Kit (EDK documents): MicroBlaze Processor Refer-

ence Guide,” UG081 (v4.0), August 24, 2004.

[36] P.D. Welch, “A Fixed-Point Fast Fourier Transform Error Analysis,” IEEE trans. on au-

dio and electroacoustics, Vol. AU-17, No. 2, pp. 151-157, Jun. 1969.

[37] A.V. Oppenheim and C. J. Weinstein, “Effects of Finite Register Length in Digital Fil-

tering and the Fast Fourier Transform,” pro. of the IEEE, Vol. 60, No.8, pp. 957-976,

Aug. 1972.

[38] M. Sundaramurthy and V. U. Reddy, “Some Results in Fixed-Point Fast Fourier Trans-

form Error Analysis,” IEEE trans. on computers, pp. 305-308, Mar. 1997.

	中文摘要
	Abstract
	誌 謝
	Contents
	List of Figures
	List of Tables
	Chapter 1
	Introduction
	Motivation
	1.2 Organization of this Thesis

	Chapter 2
	Backgroud
	OFDM Backgrounds
	2.2 WLAN MIMO-OFDM System
	2.3 Flexible FFT Processor
	2.4 Discrete Fourier Transform
	2.4.1 Decimation-In-Time FFT Algorithm
	2.4.2 Decimation-In-Frequency FFT Algorithm

	2.5 Variable Length of FFT Architectures
	2.5.1 Memory-Based FFT Architectures
	2.5.2 Pipeline-Based FFT Architectures

	Chapter 3
	Co-Design Analysis
	on ASIC and Processor of FFT
	Introduction
	Complexity Comparison
	FFT Computational Complexity Analysis
	ASIC and Processor Timing Schedule Analysis
	3.4.1 SISO System Timing ScheduleⅠ
	3.4.2 SISO System Timing ScheduleⅡ
	MIMO System Timing Schedule

	ASIC and Processor Performance Estimation
	SISO Ⅰ System Operation Comparison
	SISO Ⅱ System Operation Comparison
	MIMO System Operation Comparison

	Chapter 4
	Implementation of the Structure with MicroBlaze Processor
	4.1 Introduction of the MicroBlaze Processor
	4.2 Implementation of the Variable-Length FFT
	4.2.1 Software Design on MicroBlaze Processor
	4.2.2 Hardware Design on ASIC FFT
	4.2.3 Integrate the Embedded System

	4.3 MIPS of the Variable-Length FFT Implemented by MicroBlaze Processor
	4.4 Error Analysis

	Chapter 5
	Conclusion
	5.1 Conclusion
	5.2 Work of Implementation Environment

	Bibliography

