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Abstract

Briefly speaking, if a processor can process 1000 MIPS, it will provide which
MIPS for us to operate Fast Fourier Transform (FFT). According to the MIPS it pro-
vides us, we can decide which N-points branch FFT of ASIC is suitable for us. FFT
module is an indispensable part for wireless and mobile communication, especially
when broadband wireless systems require a high speed and low power hardware module
for its packet-based high-speed data transfer. This has made the design of FFT processor
a critical requirement for the next generation wireless systems. In general, FFT module
is designed for specific system. Therefore, it is desirable to design adaptive FFT module
for different standards. This thesis adopts processor flexible characteristic and ASIC
accelerated mechanism to set up a flexible FFT module which can meet IEEE
802.11n/16e standards. Besides, we propose optimized timing schedule for SI-
SO/MIMO systems. After processor computational analysis, 64-points branch FFT of
ASIC can be applied in proposed system and it computes 16-bits input data at a
throughput rate of 85MHz. After that, we compare various pipeline-based FFT archi-
tectures suited to our system. Finally, it not only verifies the 8-points branch FFT on
FPGA, but also checks proposed timing schedule which can satisfy IEEE 802.11n/16e

specification.
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Chapter 1

Introduction

1.1 Motivation

In digital signal processing and communications, FFT is one of the most utilized oper-
ations. The FFT plays an important role in modern communication systems, so its inverse
transform-IFFT does. It is desired that FFT module can flexibly adjust FFT size to meet vari-
ous standards. Generally speaking, FFT is designed for specific standards such as Ultra-Wide
Band (UWB) system needs high throughput FFT module and Very High Data Rate DSL
(VDSL) system required long length FFT computation. Therefore, it is difficult to design a
FFT module which is suitable for any system specification.

For custom hardware that is often less cost-effective and flexible than general proces-
sors. Therefore, the approaches of ASIC have been added to achieve the high performance on
software or processors. In the thesis, we discuss the ASIC and processor characteristic to de-
sign variable-length FFT modules. ASIC plays an accelerated role in the proposed system and
it executes partial FFT algorithm. Processor can flexibly execute remaining FFT computation
and it takes the performance of processor into consideration. Therefore, the proposed system

can meet in different communication systems by reconfiguring processor computation.



1.2 Organization of this Thesis

In this thesis, the proposed FFT system can process on IEEE 802.11n/16e standards
and it not only proposes optimized timing schedule, but also provides ASIC and processor
analysis which are shown in the following chapters. The list of each chapter we write five
chapters. Chapter 1 is our motivation. Chapter 2 reviews the background that we introduce the
MIMO OFDM system standards, FFT algorithm and comparison of different radix algorithm,
Then, variable-length FFT architectures are described. Chapter 3 presents the Co-design
analysis. First, we analyze FFT computational complexity which can calculate processor per-
formance. After that, the proposed timing schedule and architectures are combined for SI-
SO/MIMO systems. Finally, we can analyze the relationship between ASIC and processor
according to MOPS (Million Operations per Second). Chapter 4 shows the implementation of
the structure with MicroBlaze Processor on FPGA tools. In the implementation domain of
FFT processor, we chose the “MicroBlaze embedded system” which is implemented by FPGA
tools. The MicroBlaze embedded soft core is a Reduced Instruction set Computer (RISC). In
the environment, we will show the MIPS (Million Instructions per Second) of variable-length

FFT based on IEEE 802.11n/16e standards. Chapter 5 is conclusion of this thesis.



Chapter 2

Backgroud

2.1 OFDM Backgrounds

In modern communication systems, the OFDM (Orthogonal Frequency Division
Multiplexing) algorithm is effective in combating the problem of frequency-selective fading,
inter-symbol interference (ISI), and inter-carrier interference (ICI). It is also efficient for wi-
deband data transmission.

Bandwidth allocation of traditional frequency multiplexing is shown in Fig. 2.1. The
conventional systems not only keep all sub-channels away from overlapping each other, but
also allow some guard band bandwidth such that adjacent sub-channels will not introduce in-
ter-channel interference (ICI). This allocation method is inefficient in bandwidth utilization.
However, in Fig. 2.2, OFDM uses orthogonal carriers to modulate signal of sub-channels and

eliminate ICI that allow sub-bands overlap.

Ch.1 Ch.2 Ch.3 Ch4 Ch.10

NONNNNNNNN

Frequency

Fig. 2.1 Traditional bandwidth allocation of a frequency multiplexing system
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Fig. 2.2 Bandwidth allocation of OFDM

2.2 WLAN MIMO-OFDM System

Orthogonal Frequency Division Multiplexing (OFDM) is widely applied in high-speed
Wireless Local Area Network (WLAN) such as IEEE 802.11a/g/n, Hiperlan/2, Wireless Per-
sonal Area Network (WPAN) and Ultra-Wide Band (UWB) system. OFDM is a special case
of multi-carrier transmission, where a single data stream is transmitted over a number of low-
er rate sub-carriers. OFDM can be seen as either a modulation technique or a multiplexing
technique. One of the main reasons to use OFDM is to increase the robustness against fre-
quency selective fading or narrowband interference. To eliminate the banks of sub-carriers
oscillators and coherent demodulators required by frequency division multiplex, Discrete
Fourier Transform (DFT) processor is essential to be implemented.

Multiple-Input Multiple-Output (MIMO) system was instituted by Marconi in 1908.
Channel fading can be suppressed by multiple antennas in both transmitter and receiver,
called MIMO system, have received significant attention in recent years owing to their poten-
tial to increase system capacity.

The High Throughput Task Group which establishes IEEE 802.11n standard is going
to draw up the next-generation WLAN proposal based on the 802.11a/g which is the current
OFDM-based WLAN standards [1]. The IEEE 802.11n standard based on the MIMO OFDM
system provides very high data throughput rate from the original data rate 54 Mb/s to the data
rate in excess of 600 Mb/s because the technique of the MIMO can increase the data rate by
extending an OFDM-based system. A block diagram of the 2x2 transceiver and receiver of
IEEE 802.11n is shown in Fig. 2.3 and Fig. 2.4. Depending on the desired data rate, the mod-

ulation scheme can be Binary Phase Shift Keying (BPSK), Quaternary Phase Shift Keying



(QPSK), or Quadrature Amplitude Modulation (QAM) with 1-6 bits. The encoding rates in
this specification are 1/2, 2/3, 3/4, or 5/6. The number of spatial sequence is supported by 1, 2,
3, or 4. The guard interval period is 400 ns or 800 ns. The bandwidth of the transmitted signal
is 20 or 40 MHz. The FFT (Fast Fourier Transform) size is 64 points or 128 points based on

IEEE 802.11n standard.

] ® Interleaver HQAM mappingH Insert pilot H IFFT |9
gl |2
<3} c
Q a
[ Interleaver HQAM mappingH Insert pilot H IFFT Iﬁ

Insert Surfix j
Insert GI Preamble WindOWing —) Analog & RF

Insert Surfix j
Insert GI Preamble windowing — Analog & RF

Fig. 2.3 Block diagram of IEEE 802.11n WLAN 2x2 transmitter system

| Packet Detection ; Phase Tracking |
| Coarse Fregsyn Equalizer
J | L L
| Symboltiming Soft Bit Soft Bit
\I/ \I/ Demapper Demapper
| Fine Fregsyn \L \l/
\L \L | Deinterleaver | | Deinterleaver |
Remove Guard Interval
\L \L Deparser
FFT \L
Depunture
Channel Estimation \l/
Viterbi Decoder

Fig. 2.4 Block diagram of IEEE 802.11n WLAN 2x2 receiver system

However, the IEEE 802.11n standard also increases the computational and hardware



complexities greatly compared with the current WLAN standards. The FFT/IFFT processor is
one of the highest computational complexity modules in the physical layer of the IEEE
802.11n standard, as shown in Table 2.1 [2]. Multiple FFT processors are added to deal with
multiple data sequences in a MIMO OFDM system. Therefore, FFT causes a large increase in

the hardware complexity and power consumption.

Table 2.1 Comparison of the hardware complexity of the receiver

Multiplier | Adder | Register | Gate Count

(K)

Packet Detection 4 4 50 50

AGC 1 1 1 30

Frequency Offset 4 18 96 80

Frame Detection 8 8 8 50

FFT 1 12 68 160

Channel Estima- 0 0 128 60
tion

2.3 Flexible FFT Processor

OFDM technique plays an important role in wireless and modern communication sys-
tems. The FFT processor is one of the highest computational complexity modules and FFT
sizes, sampling rates are different in various standard requirements that Table 2.2 shows. It is
desired to design a single FFT processor which adapts to various FFT sizes for different

communication standards.



Table 2.2 FFT sizes and sampling rates needed in various communication systems

Communication Sys- FFT Size (Sampling Rate)
tem
802.11a 64 (20MHz)
802.11n 64 (20MHz) ~ 128 (40MHz)
802.16e 2048 (20MHz) ~ 1024 (10MHz) ~ 512 (5MHz) -

128 (1.25MHz)

DAB 2048 ~ 1024 ~ 512 ~ 256 (2MHz)
DVB-T 8192 ~ 2048 (8MHz)
DVB-H 4096 (8MHz)
ADSL 512 (2.2MHz)
VDSL 8192 (34.5MHz) - 4096 (17.3MHz) - 2048

(8.6MHz) ~ 1024 (4.3MHz) ~ 512 (2.2MHz)

UWB 128 (528MHz)

2.4 Discrete Fourier Transform

The basic N-point DFT (Discrete Fourier Transform) X(k) of a complex data se-
guence x(n) is defined as:
N—

X (k)= x(nwg*, ke{0,1,.., N-1} (1)

n=|

LN

Where the twiddle factor is

NS
W =e " 2)

Most approaches to improve the efficiency of the computation of the DFT exploit the

symmetry and periodicity properties of the twiddle factor. First, the complex conjunction

7



symmetry is

k(N n)

=W.," =W )’ 3)
Second, the periodicity in n and K is

k(n+N) (k+N)n

W =W, =Wy 4)

According to equation (1), the computational complexity is O (N) through directly
performing the required computation. It needs N? complex multiplications and N (N-1) com-
plex additions. To use the FFT algorithm, the computational complexity can be reduced to
O (Nlog(N), where r means the radix-r FFT. The radix-r FFT can be derived from DFT by
decomposing the N-point DFT into a set of recursively related r-point transform. There are

two types of FFT algorithm are Decimation-in-Time (DIT) and Decimation-in-Frequency

(DIF) FFTs. The computational complexity of these two types is the same.

2.4.1 Decimation-In-Time FFT Algorithm
The DIT algorithm is to decompose x(n) into radix-r module sequence (It is the

same as DIT FFT Radix-2 algorithm).

X (k) = %’jx(n)WNnk
= D XMW"+ D x(mW,"

n:even n : odd

N/2-1 ork N/2-1 oDk (5)
= D X@OW+ D x(2r + )W

r=0 r=0

N/2-1 N/2-1
= D X@rW, +W D x@2r+DW,

r=0 r=0

Fig. 2.5 shows an example of the 8-points DIT FFT radix-2 algorithm according to
equation (5). We can find that order of the input time coefficients is must bit-reversed first in

Fig. 2.5.



x[0] X[0]

x[4] X[1]
x[2] X[2]
x[6] X[3]
x[1] X[4]
x[5] X[5]
x[3] X[6]

x[7] X[7]

Fig. 2.5 8-points radix-2 DIT FFT signal flow graph

2.4.2 Decimation-In-Frequency FFT Algorithm
The DIF algorithm is to decompose X (k) in the same way [3] (It is the same as DIF

FFT Radix-2 algorithm).

X() = x( MW, ked0.1...N-T

=0

>
Z

-1

eventerm : X (2r) =Y x(MW:™, re{0,1,.., N -1}

n=0
N/2-1 N-1
= D XMW+ > XMW"
n=0 n=N/2
NG Ngzt 2(nJr )r
= Y X(MWZ" + Y x(n —)W
n=0 n=0
N/2-1
= {x(n)+x(n+ )} N2
n=0
N/2-1 N =
odd term : X (2r +1) = Zx(n)\/\/n(zrﬂ) Zx(n)wn(Zwl)
n=0 n=N/2
N/2-1
-y {x(n) x(n+ﬁ} W,
n=0 2
N/2-1
) n=0 {X(n) X(n+ 2)}WN/2W (6)

As equation (6) shown, two (N/2)-points DFTs are composed of X (2r) and X (2r+1).



It is well known that can combine these two equations as one basic butterfly (BF)

module as shown in Fig. 2.6, where x(n) and x(n+N/2) are the input data.

X[n] >

—+

> X[n]+x[n+N/2]

x[N+N/2] ——»- {X[n]-x[n+N/2] W

Wy

Fig. 2.6 The butterfly signal flow graph of radix-2 DIF FFT

By recursive decompositions, we can further partition these two small DFTs into
even smaller DFTs, and so on. Finally, the completed N-points radix-2 DIF FFT algorithm
can be obtained. The example of an 8-points radix-2 DIF FFT, in signal flow graph, is shown

in Fig. 2.7.

x[0]
x[1]
x[2]
x[3]

x[4]

x[5]

X[6]

X[7]

Fig. 2.7 8-points radix-2 DIF FFT signal flow graph

We can find that order of the output frequency coefficients is bit-reversed in Fig. 2.7.
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2.5 Variable Length of FFT Architectures

FFT algorithms decompose the fundamental calculation of the DFT with a sequence
of length N into continuously smaller subsequences. In section 2.4, the FFT algorithm is ap-
plied not only in DSP, image processing and digital data transmission systems, but also in
biomedical electronic engineering and home networking. Therefore, FFT processor has va-
riable transform length in different systems. To be able to compute variable FFT length, de-
signer must to implement FFT processor with variable length.

Generally speaking, FFT processor architectures can be divided into two types. One is
pipeline-based architecture [4], [5], [6], [7], [8], [9], [10], and the other is memory-based ar-
chitecture [11], [12], [13], [14], [15], [16], [17]. Different architectures for FFT processors
have different advantages and disadvantages, as listed in Table 2.3. There are advantages and

disadvantages between these two architectures.

Table 2.3 Comparisons of FFT architectures.

Architectures Advantages Disadvantages
Pipeline-based High throughput rate
architectures . High hardware cost
Regularity

Memory-based

architectures Low hardware cost A loss of the throughput rate

11




2.5.1 Memory-Based FFT Architectures

A general memory-based FFT processor structure mainly consists of a butterfly
processing element (PE), a main memory, ROM for twiddle factor storage, and a controller.

The butterfly PE is responsible for the butterfly operations required by FFT operations.
Moreover, the architecture design of PE is dependent on the use of FFT algorithm and gener-
ally dominates the performance of whole processor. The main memory stores processed data.
The controller contains three functional units: data memory address generator, coefficient in-
dex generator, and operation state controller. The data memory address generator follows a
regular pattern to generate several addresses, and then the main memory provides input data
for butterfly PE and stores output data from butterfly PE according to these addresses. The
coefficient index generator provides indices to select coefficients form coefficient ROM or
maps to coefficients through twiddle factor generator [18], [19].

Memory-based FFT architectures are designed to increase the utilization rate of but-
terfly PE’s. Different from the pipeline-based architectures, memory-based FFT processor of-
ten has one or two large memory block(s) that is accessed by all other PE components, instead

of being distributed to many pipelined local arithmetic units.

Processing
Element

Memory

(a) In-place type architecture

Processing

Memory
Element

Memory

(b) Out-of-place type architecture
Fig. 2.8 Memory-based architecture block diagram
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Main memory allocation and access strategy of a memory-based FFT processor can be
classified as two types: in-place type and out-of place type [20], [21], [22]. In Fig. 2.8(a),
in-place architecture, output data of butterfly PE are written back to the original memory bank
with the same addresses as the previously loaded of input data [23]. Alternatively, if output
data are written to another memory block without overwriting input data, this design will be
generally called out-of-place Fig. 2.8(b). Therefore, memory size of the out-of-place design

generally will be twice that of the in-place design.

2.5.2 Pipeline-Based FFT Architectures

The pipeline-based FFT architectures are the most popular FFT processor because they
are designed by emphasizing speed performance and the regularity of data path. The best way
to obtain the pipeline-based FFT architectures is through vertical projection of signal flow
graph (SFG). In Fig. 2.9, we take an example to explain a projection mapping for 8-points ra-

dix-2 DIF FFT.

X[0]
X[1]
x[2]
X[3]
X[4]
x[5]
X[6]

x[7]

Fig. 2.9 Projection mapping of radix-2 DIF FFT signal flow graph.
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In Fig. 2.9, the structure of each stage obtained from the projection mapping is called
the processing element (PE). A processing element contains a basic butterfly (BF) unit for
addition and subtraction between two input data of each stage, a complex multiplier and a
block of buffer are used to store and reorder data for the butterfly unit of next stage.

As the following paragraph that complexity comparison, FFT computational com-
plexity analysis and time schedules will be discussed. SISO I, SISOII and MIMO sche-

dules are the three time schedules we will show in Chapter 3.
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Chapter 3

Co-Design Analysis
on ASIC and Processor of FFT

3.1 Introduction

In recent years, a lot of products with some digital signal processing (DSP) techniques
have become very popular. They are often more cost-effective and less risky than custom
hardware, particularly for low-volume applications, where the development cost of custom
ICs may be prohibitive.

In a MIMO OFDM system [24], multiple antennas need multiple FFT and inverse
transform (IFFT) processors in transmitter and receiver shown in Fig. 2.3 and Fig. 2.4. Thus,
it causes a large increase in the hardware complexity and power consumption. Besides, based
on various standards, designers need to re-design different length and throughput of FFT pro-
cessors that shown in Table 2.2. In recent years, applications in processor become very popu-
lar. We use the advantages of processor to propose a new method that the processor and ASIC
co-design can enhance flexibility and utilize time schedule efficiently to reduce ASIC cost.
We provide designers two crucial messages. How many processor’s performance needed in
various environments? How many branch FFT need to be implemented by hardware in vari-

0us processors?
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3.2 Complexity Comparison

From Table 3.1 [25] and Table 3.2 [26] show the multiplication and additions compar-
ison, the multiplication and addition of radix-8 have the lowest complexity compared with
radix-2 and radix-4. In Table 3.1, the constant multiplication can be implemented by shifters
and adders, which the hardware cost is smaller than a real multiplication. Table 3.3 [27] is the

complexity equation of multiplications and additions that the radix-8 type-1 algorithm is the

original radix-8 FFT algorithm. In radix-8 type-2 algorithm, we replace multiplication of W,

into p additions that the W, will be implemented in the next section 4.4.2: “Hardware De-

sign on ASIC FFT”.

Table 3.1 Multiplication comparison [25]

N-point Radix-2 Radix-4 Radix-8
Multiplier | Multiplier | Multiplier | Multiplier | Constant Multiplier
8 2 3 0 2
16 10 8 6 4
32 34 31 20 8
64 98 76 48 32
128 258 215 152 64
256 642 492 376 128
512 1538 1239 824 384
1024 3586 2732 2104 768
2048 8194 6487 4792 1536
4096 18434 13996 10168 4096
8192 40962 32087 23992 8192
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Table 3.2 Multiplications and additions comparison [26]

Real Multiplications Real Additions
N-point All All All All All All
Used by | Used by | Used by | Used by | Used by | Used by
Radix-2 | Radix-4 | Radix-8 | Radix-2 | Radix-4 | Radix-8
16 24 20 152 148
32 88 408
64 264 208 204 1032 976 972
128 720 2054
256 1800 1392 5896 5488
512 4360 3204 13566 12420
1024 10248 7856 30728 28336

Table 3.3 Equation of multiplications and additions comparison[27]

Algorithm Real Multiplication Real Addition
Radix-2 ﬂIogzN—ZN +8 ﬂIogzN—ZN +8
2 2 2 2
Radix-4 Q?NlogzN—iaN +3 %TNlogzN—SN +3
Radix-8 2N (109, N —3)+ 4 BN 1og, N =22 N 4 4
24 24 8
Type-1
RadiX-8 217N|092N_§N +4 Mk}gzN_éN +4
24 8 24 8
Type-2
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According to the hardware area and power consumption of complex number multiplier,
we only focus on the number of real number multiplications. In Fig. 3.1, radix-8 type-2 has
the lowest computational complexity, so we choose radix-8 type-2 as the building block to

implement FFT algorithm.

x10* Complexity Comparison of Real Nurmber Multiplications and Additions
7 T T T T T T T T I
; ; ; ; ; : H 1| —#— Mult Radix-2
—+— Mult Radix-4
H H h i H i i i Mult Radix-5 Type-1
B[ -- oo e e e oo e oo ce oo, 8 MUt Radix-§ Type-2
H H H H : : : Lo e Add Radix2
-==t-- Add Radix-4
| : : : : : : : Add Radied Type-1
Bl I b [ o] e D SRR LD & -- Add Radine8 Type-2
= H
£ :
=] i
T 4 eepe-
S :
E :
2 '
£ |
S ;
23
2 !
z i
£ H
=i '
= |
2 |
il
0 . ; facasscea @it hoss i 1 1 1 i
d 1B 32 B4 128 256 512 1024 2048

N-point FFT

Fig. 3.1 Complexity comparison of Table 3.3
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3.3 FFT Computational Complexity Analysis

As the equation (6) shown in section 2.4.2: “Decimation-In-Frequency FFT Algo-
rithm” is composed by even term X(2r) and odd term X(2r + 1) of two (N/2)-point DFTs. It is
well known that one can combine these two equations as one basic butterfly (BF) module as

shown in Fig. 3.2, where x(n) and x(n+N/2) are the input data.

X[n] > n » X[n]+x[n+N/2]

x[n+N/2] > {X[n]-X[n+N/2] Wy,

Wy

Fig. 3.2 The butterfly signal flow graph of radix-2 DIF FFT

By recursive decompositions, we can further partition small DFTs into even smaller
DFTs, and so on. For example, an 8-points radix-2 DIF FFT, in signal flow graph, is shown in

Fig. 3.3.

x[0] X[0]
x[4] X[1]
x[2] X[2]
x[6] X[3]
x[1] X[4]

x[5] X[5]

x[3] X[el

x[71 X[7]

Fig. 3.3 8-points radix-2 DIT FFT signal flow graph
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Long-length FFT can be decomposed into several branch FFT by different radix algo-
rithm. Take section 3.2: “Complexity Comparison” as a conclusion that radix-8 FFT reduces
the complexity more than other radix. But FFT length is restricted to power of eight only. In
any event, FFT architecture is composed of many butterfly units, and additions and multipli-
cations form butterfly units. Thus, we can analyze FFT computation by calculating number of
additions and multiplications.

Complex addition can be decomposed two real additions, and complex multiplication

can be decomposed two real additions and four real multiplications as shown equation (1).

2nnk)+sin(2n|\?k)*j)

270K)  Imx sin(22K)) + (Rexsin(ZT:\rl]k

(Re+ Im* j) x (cos(

_ (Rexcos( )+ Imx cos(2n—|\r|“<)) y

(1)
Therefore, we try to evaluate different length of FFT computation complexity which is
a little different from section 3.2: “Complexity Comparison”. Because we calculate any com-

putation in terms of processor operations, it doesn’t include any hardware reduce computation,
just like W, can be implemented by shifters and adders. In this article, we take IEEE

802.11n/16e standards into consideration as shown in Table 2.2 of section 2.3: “Flexible FFT
Processor”. FFT length covers from 64-points to 2048-points. We regard real addition or real
multiplication as an operation in the analysis. In IEEE 802.11n/16e standards, 64-points/
2048-points is the critical case separately, because of long-length FFT increase operations
dramatically and symbol durations are the same shown in Table 3.4. Therefore, we analyze
these two cases and assume partial branch FFT which is implemented by hardware as shown
in Table 3.5 and Table 3.6. This analysis can be applied to others standards.

In Table 3.4, the processor operations are added by real additions and real multiplica-

tions. According to equation (2), the processor operations are divided into three parts: Addi-
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tion operations, multiplications operations and operations for radix-8 only. Addition opera-
tions present the all used additions numbers of remaining FFT stages. Multipliers operations

are the all used multiplications numbers of remaining FFT stages. Operations for radix-8 only

mean that because of the radix-8 FFT algorithm just only uses the W, and W, constants

than other radix. Therefore, we must take the operations for radix-8 only when we use the ra-
dix-8 FFT algorithm, the other radix will not be used. This analysis can be applied to others
FFT sizes.

Table 3.4 Comparison operations of FFT size in IEEE 802.11n/16e standards

802.11n FFT Size(Sampling Rate) Processor Operations = Real additions
+Real multiplications
128 (40 MHz) 3142
64 (20 MHz) 1254
802.16e FFT Size(Sampling Rate) Operations = Real additions +Real multip-
lications
2048 (20 MHz) 83462
1024 (10 MHz) 38150
512 (5 MHz) 16518
128 (1.25 MHz) 3142

Processor Operations =

stage
2><N><S+(Z(HRJ-)><( i N —1)><(Rj+1—1))+%><K><2x(2+4)
-0 j=0 HR
. J+1 -
addltl-on for radix-8 only
operations !

multipliers operations

where : R, =1,S = Number of remaining stages,
K = Number of radix -8 groups, Rn =radix - Rn,n ={1,2,3,K} (2)
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Table 3.5 is an example that shows all the remaining stages of the 64-points FFT pro-
cessor operations according to equation (2). If we want to do a radix-8 of 64-points FFT, we
can only choose one stage to perform. Therefore, we choose stage is 1 because we only do
one time radix-8 through the remaining stages; S is 3 because radix-8 reduces 3 stages; N is

64 that is because we choose 64-points FFT to process; K is 1 because we choose radix-8 that

we must consider the constants of W, and W,’. Finally, we can take 2*64*3+7*7*(2+4)+

1*8*2*(2+4) = 774 which 774 is our desired processor operations. By the same way, Table

3.6 is the processor operations of 2048-points FFT according to equation (2).

Table 3.5 Comparison of different length ASIC operations of a 64-points FFT

ASIC length of Operations = Real additions + Real multiplications
64-points FFT
64 0
32 2%64+31*1*(2+4) = 314
16 2*64*2+15*3*(2+4) = 526
8 D*BAXI+THTH(2+4)+1%8*2%(2+4) = 774
4 2*BA*A+31%1%(2+4)+2*3*7*(2+4)+ 1*8*2*(2+4) = 1046
2 2*64*5+15%3%(2+4)+4*1*T*(2+4)+ 1%8*2*(2+4) = 1174
0 D*BAXB+T*T*(2+4)+8*0*T*(2+4)+2*8*2*(2+4) =1254
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Table 3.6 Comparison of different length ASIC operations of a 2048-points FFT

ASIC length of Operations = Real additions + Real multiplications
2048-points FFT
2048 0
1024 2*2048+1023*(2+4) = 10234
512 2*2048*2+511*3*(2+4) = 17390
256 2*2048*3+255%7*(2+4)+256%2%(2+4) = 26070
128 2%2048*4+1023*(2+4)+2*127*7*(2+4)+256*2* (2+4) = 36262
64 74246-2%2048%6-32%T*T*(2+4)+1*256%2*(2+4) = 43334
32 2%2048*6+255*7*(2+4)+8*31*7*(2+4)+2*256*2*(2+4) = 51846
16 74246-2%2048%4+32%15%3%(2+4)-32%T*7*(2+4)+1*256%2*(2+4)
= 60166
8 74246-2*2048*3+2*256*2*(2+4) = 68102
4 2%2048%9+255*7*(2+4)+8*31*7*(2+4)+8*8*3*7*(2+4)+
3*256*2*(2+4) = 75270
2 74246-2*2048+256*1*3%(2+4)+2*256*2*(2+4) = 80902
0 2*2048*2+2*511*3+4*511*3+4*(10882+3332)+3*256*2%(2+4) =
83462

Not only 64-points/2048-points is the critical case in IEEE 802.11n/16e separately but

also we will show the other cases, such as 128-points, 512-points, 1024-points FFT, as shown

in Fig. 3.4.

In Fig. 3.4, the x-axis means which FFT length of ASIC we can choose; the y-axis is
the processor operations we calculate from equation (2). Take an example of IEEE 802.16e
2048-points FFT from Fig. 3.4, if the processor only provides 30000 operations for us to do

FFT, we will choose 256-points ASIC FFT for our branch FFT. It means the processor just
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takes 26070 operations to do software FFT and then the other remaining stages will be
processed by 256-points ASIC FFT. As the following paragraph, users can decide how much
operations they want to provide for software to calculate FFT and then the others can be done
for ASIC FFT by hardware. That is why we conclude the Fig. 3.4 of all these cases according

to equation (2).

x 10" Five kinds of Varible-Length FFT

T T —
—#— 16e 2048-points FFT
L —©— 16e 1024-points FFT
=, —%— 16e 512-points FFT ||

—©— 11n 128-points FFT
—%— 11n 64-points FFT

Number of Proce:

\s\

0 S
2 4 8 16 32 64 128 256 512 1024 2048
FFT Length of ASIC

Fig. 3.4 Different cases of length FFT according to processor operations

3.4 ASIC and Processor Timing Schedule Analysis

In this article, because we need to design a variable-length FFT module in our system,
timing schedules need to be executed independently. The goal is that we try to lower length of

branch FFT and enhance processor and ASIC utilization.
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3.4.1 SISO System Timing Schedule T

In SISO system we proposed two schedules. First in schedule I , we input sequences
and write it into memory which can receive continuous data and reorder data. After that
process data sequences have been ordered within symbol duration, therefore processor and
ASIC utilization are not 100% as shown in Fig. 3.5. In other words, processor has less time to
operate. Because of ASIC occupies part of symbol duration; therefore the processor needs

better operations to performance.

Symbol Duration :  Symbol Duration :  Symbol Duration : Symbol Duration
- > > > -

Processor
Process ASIC

P
rocessor ASIC

Data Process

R Processor
Read 2 | paa Process ASIC
/Writ Output
SRAM = vl Processor ASIC
/\Ij\?a}d 3 | Daa | Process

SRAM rite Output
Rea_d 4 Data
SRAM /Write Output

SRAM

Fig. 3.5 Time schedule I of SISO system
In Fig. 3.6, it shows system block diagram based on time schedule I . This module is
used to communicate On-Chip Peripheral Bus (OPB) handshake signals [28] between soft-
ware and hardware. Software is used to operate FFT software parts with C-language. ASIC
FFT was responsible for branch FFT algorithm if the software parts have been prepared. Con-
trol register and state machine modules are stored control signals which govern entire data

flow.
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Fig. 3.6 SISO system block diagram of time schedule I

In Fig. 3.6, it is the block diagram of SISO I , which is designed according to Fig. 3.5
time schedule. In a symbol duration time, there are three steps must be process. First, step 1 is
the software part, by reading/writing data between memory and software interface we can ac-
complish the software part. Second, in order to do the ASIC N-points branch FFT, step 2 is an
active signal to execute ASIC FFT that the signal is composed by control register and state
machine. Third, step 3 is to do hardware N-points branch FFT. According to these three steps

works in one symbol duration the time schedule I of Fig. 3.5 will be presented.

3.4.2 SISO System Timing Schedule IT

Second, in schedule II, it makes efforts to raise processor skill and ASIC utilization
shown in Fig. 3.7. It not only decreases processor operations per second, but also can cut

down the power consumption because of decreasing clock frequency. Additional buffer is
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used to increase processor and ASIC processing time up to one symbol duration, but it causes

more hardware cost shown in Fig. 3.8.

Symbol Duration Symbol Duration Symbol Duration Symbol Duration
1 Processor Processor Processor Processor Processor
Process Process Process Process Process
Read Read Read Read Read
/Write /Write /Write /Write /Write
1 SrRAM 2 SRAM 3 SRAM 4 SRAM 5 SrRAM
1AsIC 2 ASIC 3ASIC 4 AsSIC
2 3 4
Data Data Data Data
Output Output Output Output
Fig. 3.7 Time schedule IT of SISO system
—  Software
1 2 t 3
MicroBlaze
Rrocessor
Al '
DOPB D1
A2
D2
4
Y
Hardware MUK re—
]]' ASlC ontrol Reg.
AV D1 W2 2V FFT | State Machine |
Memory1l || Memory?2

Fig. 3.8 SISO system block diagram of time schedule I
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In Fig. 3.8, it is the block diagram of SISO II, which is designed according to Fig. 3.7
time schedule. In two symbol duration time, there are four steps must be process. First, step 1
is the software part, by reading/writing data between memory 1 and software interface we can
accomplish the software part. Step 2, we write the final data of software part to memory 2 be-
cause the memory can be used by hardware independently. Third, in order to do the ASIC
N-points branch FFT, step 3 is an active signal to execute ASIC FFT that the signal is com-
posed by control register and state machine. Fourth, step 4 is to do hardware N-points branch
FFT with memory 2 and when the hardware has work with memory 2, at the same time the
processor can return back to memory 1 execute the next event of the next symbol. According
to these fourth steps work, step 1 to step 3 works in first symbol duration and step 4 works in
the next symbol duration. By several of continuous symbol durations, the time schedule II of
Fig. 3.5 will be presented. In conclusion, the hardware N-points branch FFT is executed in the
next symbol duration. Therefore, SISO II not only decreases processor operations per second,
but also can cut down the power consumption because of decreasing clock frequency than

SISO T.

3.4.3 MIMO System Timing Schedule

In general, channel fading can be suppressed by multiple antennas in both transmitter
and receiver in MIMO system, but it also increases hardware area dramatically. Therefore,
time schedule in MIMO system, it tries to minimize hardware area and enhance processor and
ASIC utilization simultaneously. We find that time scheduleII in SISO system which have
many bubbles can be utilized to process others computation. Based on this concept, we pro-
posed a suitable for MIMO system which can eliminate bubbles by processing another anten-

na’s sequences which exchange processor and ASIC processing order as shown in Fig. 3.9.
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Symbol Duration Symbol Duration Symbol Duration
1Processor 2Processor Processor rocessor Processor rocessor
1 Process 1 Process Process Process Process Process
Read Read Read Read Read Read
/Write /Write /Write /Write /Write /Write
118RAM 12 SRAM 218RAM ZZSRAM 315RAM 325RAM
1AsIC ASIC DASIC ASIC gASIC JASIC
1 2 a0
1 1 2 7 3 3
Data Data Data Data Data Data
Output Output Output Output Output Output

Fig. 3.9 Time schedule of MIMO system

ASIC and processor compute different antenna’s sequences by turns within half sym-
bol duration. Therefore, comparison with SISO system, processor need two times operation
performance per second in MIMO system. It can process two antenna’s sequences simulta-
neously, and doesn’t need additional hardware of branch FFT shown in Fig. 3.10.

In Fig. 3.10, we present the MIMO system block diagram. There four memories for us
to execute 2x2 antennas. We use eight steps to perform the MIMO system. First, in the
first-half symbol, step 1 is used to operate software FFT of the first antenna and read-
ing/writing data between memory 1 and software. Step 2, we write the final data of software
part to memory 2 because the memory can be used by hardware independently. Third, in order
to do the ASIC N-points branch FFT of the first antenna, Step 3 is an active signal to execute
ASIC FFT that the signal is composed by control register and state machine. Fourth, step 4 is
to do hardware N-points branch FFT with memory 2 and when the hardware has work with
memory 2, at the same time the processor can change to memory 3 execute the second anten-
na FFT of the second-half symbol. Fifth, in the second-half symbol, step 5 is used to operate

software FFT of the second antenna and reading/writing data between memory 3 and software.
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Step 6, we write the final data of software part to memory 4 because the memory can be used
by hardware independently. Seventh, in order to do the ASIC N-points branch FFT of the
second antenna, Step 7 is an active signal to execute ASIC FFT that the signal is composed by
control register and state machine. Eighth, step 8 is to do hardware N-points branch FFT with
memory 4 and when the hardware has work with memory 4, at the same time the processor
can return back to memory 1 execute the first antenna FFT of the next symbol. In conclusion
we perform the Fig. 3.10, step 1 to step 7 works in first symbol duration, which is divided

two-half. Step 8 works in the next half symbol.

>
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1 2 5 6 t 3
MicroBlaze 7
Rrocessor
) 3
D1
A2 4
D2
| ¢
y
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ASIC Control Reg.
Al D1l Y A2VD2[Y AJJV D1 Y22 b2V FFT |

Memoryl || Memory2 || Memory3 || Memory4
21 A1 1 1
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L L 4
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Fig. 3.10 MIMO system block diagram
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3.5 ASIC and Processor Performance Estimation

Since SISO schedules are proposed, an evaluation model is developed to verify speci-
fication requirements. Bases on IEEE 802.11n/16e standards, we can introduce symbol period
to calculate the performance of processor when different length of FFT is implemented by
hardware. ASIC plays an accelerative role in the system. Increasing ASIC length of branch
FFT can release load of processor. Not only 64-points/2048-points are the critical case in
IEEE 802.11n/16e separately but also we will show the other cases, such as 128-points,
512-points, 1024-points FFT.

Schedule I in SISO system, ASIC occupies some symbol duration shown in Fig. 3.5.
Therefore, we need to calculate ASIC latency cycles approximately shown in Table 3.7 [29]
and assume clock frequency is 50MHz for simulation, according to Fig. 3.4: “Number of
Processor Operations”, we will show some cases of different length FFT shown in Fig. 3.11 ~
3.15. In Table 3.7 we can make sure that the ASIC latency time can be included in a symbol
duration time unit. When FFT length of ASIC is too short, it cannot gain any benefit to the
processor. FFT length of ASIC affects operations of processor directly. More length branch
FFT implemented by hardware will lower processor’s operations, but it increases cost.

Table 3.7 Approximately calculation of latency cycles

FFT Length Latency FFT Length Latency
0 0 64 103
2 2 128 208
4 4 256 336
8 8 512 592
16 26 1024 1616
32 44 2048 2640
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Based on IEEE 802.11n/16e standards, the symbol duration of 64-points is 3.2us and
2048-points is 102.5us. In Table 3.7, the latency cycles of ASIC will be enough to be included
in a symbol duration time unit, if the we choose 85 Mhz for out throughput rate at least. The
throughput rate is shown in Fig. 3.11. It shows all the time schedules of N-points FFT based
on IEEE standards, the throughput rate of 128-points is up to 85 Mhz at least. If we chose 85
Mhz for our throughput rate, we will know that this throughput rate it can be included in a
symbol duration for all kinds of N-points branch FFT according to our time schedules, SI-

SOTI,SISOI and MIMO.

ASIC Throughput Analysis
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Fig. 3.11 ASIC throughput analysis
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3.5.1 SISO I System Operation Comparison

From Fig. 3.12 ~ 3.16, we can analyze the relationship between processor operations and
branch FFT of ASIC. MOPS (Million Operations per Second) imply that processor operations
divided by not needed symbol duration. When our system processes FFT algorithm only by
processor, it shows that IEEE 802.11n need more operations per second. Therefore, we can

calculate processor’s performance probably by MOPS. The time schedule diagram is based on

Fig. 3.5.
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In Fig. 3.12, it shows the 64-points FFT MOPS of radix-2, radix-4 and radix-8 based
on IEEE 802.11n standard, x-axis is what kind of branch ASIC FFT we will decide, if the
processor provide us some restricted MOPS to use shown on y-axis. Take an example, if the
processor just only can provide us 300 MOPS, we will choose 8-points branch FFT as our
ASIC because the two types of radix-4 and radix-8 algorithms are satisfy with the required

MOPS (under 300 MOPS).In the other word, the radix-2 algorithm will be not satisfy the re-

compare 64-points SISO(l)

T T
—+— 11n 64-points FFT(50Mhz)with radix-8
—©— 11n 64-points FFT(50Mhz)with radix-4
—7— 11n 64-points FFT(50Mhz)with radix-2

S

N

8
FFT Length of ASIC

16 32 64

Fig. 3.12 64-points FFT operation comparison of time schedule I

quired 300 MOPS (over 300 MOPS), if we choose 8-points branch FFT as our ASIC.
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compare 128-points SISO(I)
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Fig. 3.13 128-points FFT operation comparison of time schedule I
In Fig. 3.13, it shows the 128-points FFT MOPS of radix-2, radix-4 and radix-8 based
on IEEE 802.11n standard, x-axis is what kind of branch ASIC FFT we will decide, if the
processor provide us some restricted MOPS to use shown on y-axis. According to this figure,
we can know that the radix-4 and radix-8 algorithms are more suitable than radix-2 algorithm

because radix-2 algorithm will cost more MOPS then the other two types.
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200

T T
—+— 16e 512-points FFT(50Mhz)with radix-8
—&— 16e 512-points FFT(50Mhz) with radix-4
180 —— —V— 16e 512-points FFT(50Mhz) with radix-2 [{

160

MOPS
e
1)
3

B° N

~

2 4 8 16 32 64 128 256 512
FFT Length of ASIC

Fig. 3.14 512-points FFT operation comparison of time schedule I
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In Fig. 3.14, it shows the 512-points FFT MOPS of radix-2, radix-4 and radix-8 based
on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if the
processor provide us some restricted MOPS to use shown on y-axis. According to this figure,
we can know that the radix-4 and radix-8 algorithms are more suitable than radix-2 algorithm

because radix-2 algorithm will cost more MOPS then the other two types.
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Fig. 3.15 1024-points FFT operation comparison of time schedule I
In Fig. 3.15, it shows the 1024-points FFT MOPS of radix-2, radix-4 and radix-8
based on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if
the processor provide us some restricted MOPS to use shown on y-axis. According to this
figure, we can know that the radix-4 and radix-8 algorithms are more suitable than radix-2

algorithm because radix-2 algorithm will cost more MOPS than the other two types.
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compare 2048-points SISO(I)
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Fig. 3.16 2048-points FFT operation comparison of time schedule I

In Fig. 3.16, it shows the 2048-points FFT MOPS of radix-2, radix-4 and radix-8
based on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if
the processor provide us some restricted MOPS to use shown on y-axis. According to this
figure, we can know that the radix-4 and radix-8 algorithms are more suitable than radix-2
algorithm because radix-2 algorithm will cost more MOPS then the other two types. In the
other word, for N-points FFT we decide to implement, we can consider radix-8 and radix-2

algorithms first that the performance is better than only radix-2 algorithm.
In schedule I of Fig. 3.12 ~ 3.16, user can design the system which we want. For ex-
ample in IEEE 802.16e standard , if we want the processor used only for 700 MOPS, we will
chose the “2048-points FFT operation comparison of time schedule I ” method of Fig. 3.16,

which we just use the 64-points ASIC FFT to design the system of this standard.
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3.5.2 SISO II System Operation Comparison

ScheduleII in SISO system shown in Fig. 3.17 ~ 3.21, it not only decreases processor op-
erations per second than but also can cut down the power consumption. Therefore, the cost of

MOPS in ScheduleTI is lese than schedule I . The time schedule diagram is based on Fig. 3.7.
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Fig. 3.17 64-points FFT operation comparison of time schedule IT

In Fig. 3.17, it shows the 64-points FFT MOPS of radix-2, radix-4 and radix-8 based
on IEEE 802.11n standard, x-axis is what kind of branch ASIC FFT we will decide, if the
processor provide us some restricted MOPS to use shown on y-axis. This figure is designed
according to time scheduleII of SISOII system. The performance is better than SISO I sys-
tem of Fig. 3.12. Take an example, if the processor provides us for 300 MOPS, we can choose
the 4-points branch FFT of ASIC in SISO II not the 8-points branch FFT of ASIC in SISO I .
Therefore, the cost of ASIC in SISO I will be changed smaller than SISO I , if the processor

only provides 300 MOPS.
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compare 128-points SISO(Il)
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Fig. 3.18 128-points FFT operation comparison of time schedule I
In Fig. 3.18, it shows the 128-points FFT MOPS of radix-2, radix-4 and radix-8 based
on IEEE 802.11n standard, x-axis is what kind of branch ASIC FFT we will decide, if the
processor provide us some restricted MOPS to use shown on y-axis. This figure is designed
according to time scheduleII of SISOII system. The performance is better than SISO I sys-

tem of Fig. 3.13.
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Fig. 3.19 512-points FFT operation comparison of time schedule I
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In Fig. 3.19, it shows the 512-points FFT MOPS of radix-2, radix-4 and radix-8 based
on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if the
processor provide us some restricted MOPS to use shown on y-axis. This figure is designed
according to time scheduleII of SISOII system. The performance is better than SISO I sys-

tem of Fig. 3.14.
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Fig. 3.20 1024-points FFT operation comparison of time schedule II
In Fig. 3.20, it shows the 1024-points FFT MOPS of radix-2, radix-4 and radix-8
based on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if
the processor provide us some restricted MOPS to use shown on y-axis. This figure is de-
signed according to time scheduleII of SISOII system. The performance is better than SI-

SO I system of Fig. 3.15.
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compare 2048-points SISO(I)
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Fig. 3.21 2048-points FFT operation comparison of time schedule II

In Fig. 3.21, it shows the 2048-points FFT MOPS of radix-2, radix-4 and radix-8
based on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if
the processor provide us some restricted MOPS to use shown on y-axis. This figure is de-
signed according to time scheduleII of SISO system. The performance is better than SI-
SO I system of Fig. 3.16.

In “2048-points FFT operation comparison of time schedule II ” method of Fig. 3.21
based on IEEE 802.16e standard, if we chose 64-points ASIC FFT, the processor operations

will be used just only about 450 MOPS.

3.5.3 MIMO System Operation Comparison

Therefore, in MIMO system, processor and ASIC own half a symbol duration to com-
plete operations. It can be expected that processor’s operations per second will be doubled of

scheduleIl in SISO system as shown in Fig. 3.22 ~ 3.26 based on time schedule diagram

40



shown in Fig. 3.9.
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Fig. 3.22 64-points FFT operation comparison of MIMO time schedule
In Fig. 3.22, it shows the 64-points FFT MOPS of radix-2, radix-4 and radix-8 based
on IEEE 802.11n standard, x-axis is what kind of branch ASIC FFT we will decide, if the
processor provide us some restricted MOPS to use shown on y-axis. This figure is designed
according to time schedule of MIMO system. The performance is twice than SISOII system
of Fig. 3.17, but the usage of time schedule in a symbol is improved. In a symbol duration, we

can execute FFT two times and just only use one N-points branch FFT of ASIC well.
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compare 128-points MIMO
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Fig. 3.23 128-points FFT operation comparison of MIMO time schedule
In Fig. 3.23, it shows the 128-points FFT MOPS of radix-2, radix-4 and radix-8 based
on IEEE 802.11n standard, x-axis is what kind of branch ASIC FFT we will decide, if the
processor provide us some restricted MOPS to use shown on y-axis. This figure is designed
according to time schedule of MIMO system. The performance is twice than SISOII system
of Fig. 3.18, but the usage of time schedule in a symbol is improved. In a symbol duration
time unit, we can execute FFT two times and just only use one N-points branch FFT of ASIC

well.
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compare 512-points MIMO
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Fig. 3.24 512-points FFT operation comparison of MIMO time schedule
In Fig. 3.24, it shows the 128-points FFT MOPS of radix-2, radix-4 and radix-8 based
on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if the
processor provide us some restricted MOPS to use shown on y-axis. This figure is designed
according to time schedule of MIMO system. The performance is twice than SISOl system
of Fig. 3.19, but the usage of time schedule in a symbol is improved. In a symbol duration
time unit, we can execute FFT two times and just only use one N-points branch FFT of ASIC

well.
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compare 1024-points MIMO
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Fig. 3.25 1024-points FFT operation comparison of MIMO time schedule
In Fig. 3.25, it shows the 1024-points FFT MOPS of radix-2, radix-4 and radix-8
based on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if
the processor provide us some restricted MOPS to use shown on y-axis. This figure is de-
signed according to time schedule of MIMO system. The performance is twice than SISO II
system of Fig. 3.20, but the usage of time schedule in a symbol is improved. In a symbol du-
ration time unit of 2x2 antennas, we can execute FFT two times and just only use one

N-points branch FFT of ASIC well.
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compare 2048-points MIMO
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Fig. 3.26 2048-points FFT operation comparison of MIMO time schedule

In Fig. 3.26, it shows the 2048-points FFT MOPS of radix-2, radix-4 and radix-8
based on IEEE 802.16e standard, x-axis is what kind of branch ASIC FFT we will decide, if
the processor provide us some restricted MOPS to use shown on y-axis. This figure is de-
signed according to time schedule of MIMO system. The performance is twice than SISO II
system of Fig. 3.21, but the usage of time schedule in a symbol is improved.

In the method of Fig. 3.26: 2048-points FFT operation comparison of MIMO time
schedule. IEEE 802.16e standard, if we chose 64-points ASIC FFT, the processor operations
will be used about 900 MOPS. In the other word, the MOPS of MIMO schedule will be
doubled than the time schedule IT of SISO I .

In this section, we introduce schedule T ~ II in SISO system, and a schedule in MIMO
system. According to time schedule system based on time schedule I of SISO I and time
schedule I of SISO I, the cost of hardware in schedule I is less than scheduleII, but the uti-
lization of schedule I is less than scheduleII. In MIMO system, bad utilization can be im-

proved by changing ASIC and processor order. In 2x2 MIMO systems, it only needs a pro-
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cessor and a branch FFT of ASIC. This schedule not only lower hardware cost, but also in-
crease the utilization of module.

Therefore, we use the equation (2) to calculate the *“Processor Operations” of
64-points, 128-points, 512-points,1024-points and 2048-points FFT and according to IEEE
802.11n/16e standards, we can predict the time of these three schedules (SISOI,SISOII and
MIMO) in a symbol duration. Finally, MOPS (Million Operations per Second) has been eva-
luated by our estimation. In next chapter, we want to implement the processor’s architecture
of SISO I in Fig. 3.6, SISO in Fig. 3.8 and MIMO in Fig. 3.10 with “Micro Blaze Proces-

sor”, which is a embedded system implemented by FPGA tools
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Chapter 4

Implementation of the Structure
with MicroBlaze Processor

4.1 Introduction of the MicroBlaze Processor

In the implementation domain of FFT processor, we chose the “MicroBlaze embedded
system” which is implemented by FPGA tools. The MicroBlaze embedded soft core [30] is a
reduced instruction set computer (RISC) optimized for implementation in Xilinx field pro-

grammable gates arrays (FPGASs) [31]. Fig.4.1 is a block diagram depicting the MicroBlaze

core.
Instruction-side Data-side
bus interface bus interface
Add/Sub DOPB
1oPB Program E: >
<j Counter Shift/L_ogical [{> DXCL_M
IXCL M<j E:> Multiply
- <}:| DXCL_S
sy 7F T 3L
Instruction
[{> MFSL 0.7

Bus

Decoder <j
. . . Bus
IE Instruction Register File IE
counter 32 x32b E

Fig. 4.1 MicroBlaze core block diagram
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From Fig. 4.1 that the MicroBlaze embedded soft core is highly configurable, allow-
ing users to select a specific set of features required by their design. The processors features

set includes the following. There are twenty-two 32-bits general purpose registers, 32-bits in-
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struction word with three operands and two addressing modes, separate 32-bits instruction
and data buses that conform to IBM’s OPB (On-chip Peripheral Bus) specification [28], sepa-
rate 32-bits instruction and data buses with direct connection to on-chip block RAM through a
LMB (Local Memory Bus), 32-bits address bus and instruction/data cache, single issue pipe-
line, hardware debug logic, Fast Simplex Link (FSL) support, hardware multiplier, hardware

exception handling, Dedicated Cache Link interface for enhanced cache performance.

4.2 Implementation of the Variable-Length FFT

In the environment of the MicroBlaze processor, we desire to complete the three time
schedules we have evaluated in section 3.4: “ASIC and Processor Timing Schedule Analysis”.
The three time schedules are SISO I, SISOII and MIMO time schedules we discussed in
Chapter 3, which we emphasize to design with the processor’s tool of MicroBlaze in this sec-
tion. By using the tool of MicroBlaze processor, we can real know the working situations be-
tween hardware and software based on FFT algorithm.

Therefore, we separate two parts of variable-length FFT, one is work on processor and
the other is executed by ASIC FFT. According to IEEE 802.11n/16e standards, we take the
implementation of 64-points FFT for an example. First, we do software part on processor
shown in Fig. 4.2 by radix-2° FFT, then complete the remaining part on 8-points ASIC FFT

for eight times. Finally, we integrate these two parts: software and hardware, which we can

48



succeed the embedded system core of hardware and software FFT on MicroBlaze processor.
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Fig. 4.2 Separate the implementation of 64-points FFT for two parts
By the flow we integrate the software and hardware implementation on the example
of 64-poins FFT according to IEEE 802.11n/16e standards. That is just one situation of our
desired cases such as 128-points, 512-points, 1024-points and 2048-points FFT that we have
evaluated the all time schedules in section 3.4 are our desired cases too.
Therefore, in the next 4.2.1, 4.2.2 and 4.2.3 sections we can show how we implement
the example of 64-points FFT, we can learn the concepts and information in Co-Design on

ASIC and Processor of FFT.

4.2.1 Software Design on MicroBlaze Processor

As the following paragraph, we want to design the software parts of variable-length
N-points FFT. From the input data we change the real floating number into fixed 16-bits data.
Thus, we can store all the 16-bits of N-points FFT input data in user’s memory block on Mi-
croBlaze processor. On programming interface in Fig. 4.3 we use the data to read/write in or-

der to perform FFT butterfly. First, we read the initial input data(x[n], x[n+1],..., X[n+7N/8])
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of FFT from memory that we use the data to do butterfly operation shown in Fig. 4.4. Second,
we write the calculated data into memory. According to these two steps, the programming part

of variable-length FFT will be implemented easily.
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Fig. 4.3 Structure of MicroBlaze Processor’s programming diagram

In Fig. 4.3, the big Arrow A and B are the IOPB [28] programming interface, which is
used to communicate the processor with Master signals and Slave signals. Master signals and
Slave signals are the data buses of DOPB which can process data through SRAM (Memory).
Blue Line 1, 2 and 3 are the programming order steps which in step 1 we do programming
part of software FFT, in step 2 the MicroBlaze processor will send an active message to the
Control Register which the message is used to tell the hardware part start to work. Finally, in
step 3 the ASIC FFT of hardware part will execute and catch data from SRAM (Memory).
According to these three steps we can perform the programming implementation of software
part FFT environment.

From the programming environment, we use the radix-2° DIF FFT architecture shown
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in Fig. 4.4 to implement the software part of 64-points FFT of Fig. 4.2. Finally, we write the
first stage data in memory block after performing the software programming architecture. In
the next section 4.2.2, we will use the data of memory block to process the remaining ASIC

FFT part.
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Fig. 4.4 The butterfly signal flow graph of the radix-2° DIT FFT algorithm

4.2.2 Hardware Design on ASIC FFT

We want to implement the hardware part immediately in order to connect the remain-
ing part of software FFT from the previous section 4.2.1. In this section, we implement a sim-
ple ASIC for 8-points FFT by radix-2° DIT FFT algorithm. Thus, we can integrate the whole
process of the 64-points FFT architecture that the example we take as shown in Fig. 4.2.

Because of the FFT ASIC is just simple 8-points FFT, we process it with pipeline flow
that we transmit 8-points input data at the same time and we receive all 8-points output at the

next same time. The 8-points FFT is based on one stage radix-2° butterfly and it needs 3 times

complex multiplications exclude from W,, W, and W, . According to Fig. 4.2 we must do
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8-points FFT ASIC for eight times that N is 8. We use the radix-2 index map to divide the

8-points DFT into three steps. From Fig.4.4 it shows the butterfly of the three-step DIF ra-

dix-8 FFT. The twiddle factors, W, and W, at the second step are trivial complex multip-

lication, because they can be written as /2/2(1— j) and~/2/2(~1- j). Thus, a complex

multiplication with one of the two coefficients and a real multiplication, whose hardware can

be realized by shifters and adders shown in Fig. 4.5.

\J2/2=0.70710678 =2t +22 +2* +2° 428 42°°

sl
B

s

=)
<
=

(R 2

Fig. 4.5 Implementation hardware of multiplication with \/5/2

The multiplication by —j can be realized with no extra hardware cost by simply inter-
changing the real and imaginary part of the product as shown in equation (1).
(@+bj)x(~j)=b-aj @
One complex multiplier can be realized by four real multiplications and two real addi-
tions as shown in Fig. 4.6. Its mathematical form can be expressed as equation (2).

(a+bj)x(c+dj)=(ac—bd)+ jlbc+ad) (2)
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Fig. 4.6 Complex multiplier with four real multiplications and two real additions

Therefore, the hardware block of ASIC FFT architecture based on radix-2® DIT FFT
algorithm of Fig. 4.4 will be implemented which the real part and image part operations are
design according to Fig. 4.5 and Fig. 4.6.

In the next section 4.2.3, we will integrate the software and hardware part clearly,
which we will tell the readers how we integrate the FFT algorithm with software and harware
FFT block that we would add control register, state machine, memory block (SRAM), memo-
ry mapped addressing mode and the simulation figure of result by using the MicroBlaze pro-

Cessor core.
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4.2.3 Integrate the Embedded System

From the introduction of software design and ASIC FFT according to section 4.2.1 and
4.2.2, we desire to integrate the embedded system based on MicroBlaze Processor shown in
Fig. 4.7. In this embedded environment we run programming on the processor and then ex-
ecute the ASIC FFT to process data in memory block. Thus, we can accomplish the FFT im-
plementation of hardware and software embedded system design. In the following paragraph
we will detailed describe each block of Fig. 4.7 such as control register, state machine, and

memory block (SRAM).
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Fig. 4.7 Integrate the embedded system design diagram

In Fig. 4.7, the MUX circuit is used to switch memory block sharing between proces-
sor and ASIC, in software environment it can be changed to Al and D1.1f we switch the MUX
to A2 and D2, hardware environment will be executed. Fig. 4.8 shows the memory block

(SRAM) structure of Fig. 4.7 which is a dual-port memory library of Xilinx field programma-
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ble gates arrays (FPGAs) named RAMB16_S36_36 whose size are 512x32 bits. Part A is used
to connect with processor and port B is hardware part connecting. If we chose software part
programming environment, the MUX will switch to A1 and D1 connecting. In the other word,
if the MUX switched to A2 and D2, the hardware part connecting has been executed. The
signal ENA/B, SSRA/B and WEA/B are control signals that we can decide READ/WRITE
command of the memory block [32], [33], [34], [35].

Because of the size memory block are total 16384 bits, the memory mapped address-
ing range we can add the hardware on MicroBlaze embedded system is from 0x01800000 to
0x018003FF (0x000~0x3FF are total 16384 bits) and the hardware offset is 0x0180000. Since
the mapped addressing of MicroBlaze processor is free defined by users, we can not only put
the memory block on range 0x01800000 but also can put it in other offsets as long as two

hardware devices are not in conflict with the same addressing range .

RAMB16_S36_S36

RANGE
DIA Communicate with
ADDRA — orocessor 0X01800000
ENA —
SSRA — ——DOA l
WEA —— 512x32 bits
CLKA Dual-Port 0x018003FF
Block
DIB e RAM . .
ADDRE — il
ENB —
SSRB — ______DOB
WEB —
CLKB —

Fig. 4.8 The block of Dual-Port RAM (SRAM)
In Fig. 4.9 is the Control Register of Fig. 4.7, which we can define what address of
memory block in Fig. 4.8 we start to work. If we write address on Write register, the hardware
device will go to the memory mapped address and start to catch memory data which at the

same time the hardware device is preparing to work. In the step we write address on Write
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register that the hardware device will send an input enable signal to tell us that the hardware
starts on working. If the hardware device finishes work, it will send an output enable signal
which we can use Read register to read the output enable signal to make sure how the hard-
ware device works successful. These two enable signals input enable and output enable,
which can drive the state machine in Fig. 4.10. The state machine will generate a start signal
to tell hardware device on working and if it works successful, it will send output enable sig-

nal.

0x0000 0001 1000 0000 1 1 00 0000 0000 0000

1

Al5 Al14
Xlo_Out32(Control Reg. , BASEADDR)

input_en=1

(a) Write register

0x0000 0001 1000 0000 x x 00 0000 0000 0000

I

Al5 Al14
Xio_In32(Control Reg. )

output_en=1

(b) Read register

Fig. 4.9 Control Register

56



output_en <='1"

Sl:i:i * BASEADDRES!
S2: Start=1,

S3: Start=0;
CLK
init S1 S2 S3 dong dong dor
baseaddy
START
OUTPUT EN

Fig. 4.10 State Machine

In conclusion, the state machine of Fig. 4.10, we purpose to send a start signal on the
memory mapped address which the MicroBlaze embedded system will drive ASIC FFT start
to work. Therefore, we can complete the software and hardware integrated system based on
MicroBlaze embedded system according to control register and state machine control flow.

In the Fig. 4.11 shows the simulation wave of hardware device integration which when
the software FFT was done, the remaining part of FFT will be executed by hardware device
including control register, state machine, memory block and ASIC FFT. Therefore, we can get
the whole data of FFT algorithm and combine from software part to hardware part such as Fig.
4.2: “Separate the implementation of 64-points FFT for two parts” shows. First in square 1,
hardware device starts to read the memory mapped addressing data. Second in square 2, pre-

pare to send the read data of memory from square 1 into FFT input port. Third in square 3,
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input the FFT 16-bits of 8-points FFT input data and active with a start signal. Fourth in
square 4, it shows the output data after doing FFT according to ASIC FFT hardware. Finally

in square 5, to store the result data back to memory mapped addressing block.

11700 ns |D ns ?|3 146| ns 21| 9 29?i ns
st . I I|_| I I I I I I I I
2N opb_rst 0 —|
A count_ns [ 180 Jop[z[s[4s[6]7[a[a [to]t]12[1a]14][1a]16][17[1a[19][20]21[22[23]24[ 252627 [26]26]30]
A count a0 | 160 [ofifalalaTalalrlala roft1]12[1a[14]1a] 161718192021 22]23]24[25]26]27[28] 24
F LG 00000000 5000000065
1@Ldeete o (Coanammma MAE@EOD 0 ETzrz7r273 OB (R R OB (B O
Mt ssra i | [
@jlt_wea 1] _J— 1 —| 5
IgtdoaEto] 0 I OO I IO (O
1@ldinn0Eto 101 { 3ZhUUUUUUUY b 1013167432
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flen 0
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Fig. 4.11 Simulation of hardware operation

4.3 MIPS of the Variable-Length FFT Implemented by MicroBlaze Pro-
cessor

According to time schedules we discussed in section 3.4:“ASIC and Processor Timing
Schedule Analysis”. Our implementation of 64-points FFT can be design for SISO I in Fig.
3.5~3.6 ,SISOTI in Fig. 3.7~3.8 and MIMO in Fig. 3.9~3.10 schedules. Therefore, we con-
clude these three summary for MIPS (Million Instructions per Second) shown in Table 4.1
based on IEEE 802.11n standards, which 64-points FFT is analyzed by 20Mhz of a symbol
duration and FFT length ASIC is 8-points. In the Table 4.1 the MIPS of MIMO is twice as

SISOTII.
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Table 4.1 MIPS of 64-points FFT based on IEEE 802.11n standards

64-points FFT SISO I SISOII MIMO

MIPS 1632 1110 2220

In chapter 3, we discussed the MOPS of variable-length FFT according to IEEE
802.11n standards such as 64-points, 128-points, 512-points, 1024-points and 2048-points
FFT that MOPS is implemented by DSP processor. In the other word, we want to implement
the variable-length FFT on MicroBlaze processor environment which is based on RISC, it
provides processor instructions but no processor operations for users. Therefore, MIPS on
MicroBlaze processor is our purposed of variable-length FFT implementation.

From section 4.2: “Implementation of the Variable-Length FFT”, we use the same way
to perform 2048-points FFT. Because of the IEEE 802.11n/16e standards, 64-points/
2048-points FFT are our desired cases which we have to evaluate all the MISP conditions of
variable-length FFT for three time schedules.

Fig. 4.12 is the SISO I time schedule we implemented by MIPS, Fig. 4.13 is the SlI-
SOTI time schedule and Fig. 4.14 is MIMO time schedule. In conclusion, 64-points FFT is
based on IEEE 802.11n standard, 2048-points FFT is based on IEEE 802.16e standard that we

can use to implement wimax applications.
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compare with SISO(l)
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Fig. 4.12 Processor’s instructions analysis of schedule I in SISO system
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Fig. 4.13 Processor’s instructions analysis of schedule I in SISO system
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compare with MIMO
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Fig. 4.14 Processor’s instructions analysis in MIMO system

4.4 Error Analysis

In the case of FFT hardware implementation, the finite bit-width must be considered
because of the fixed-point computation. Many statistical error analysis papers on FFT imple-
mentations are proposed [36], [37], [38]. Assume the input sequence of FFT x(n) is a se-

guence of finite-valued and white complex numbers. The variance of x(n) can be expressed as
5 1 N-1 ) 1 N-1 5
oy == > (x(n) = 1,)* == (x(n)) ©)
N n=0 N n=0
where Lk is the mean of x(n) andux=0. The SQNR (Signal to Quantization Noise Ratio)

is defined as

2
O-x

SONR =

(4)

N

Oq

Where o4 is the variance of output anda,’ is the variance of the quantization error.

For an N-point FFT module with input of which real and imaginary parts are uniformly dis-
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. . 1 1 . .
tributed in (———= N,—=N), the variance [37] of the output is
J2 2
5 1
o2 =_—_ 5
* 3N ®)

From (4) and (5), the SQNR [38] of the conventional FFT implementation can be car-
ried out :

228
SONRerr = 5N —am 3 ©)

Where B is the bit-width of the input sequence and m=Ilog,N.

In Fig. 4.11, it shows equation (6) with IEEE 802.11n/16e standards which include
five FFT sizes. The more rounding stages, the more noise will be produced. Because
long-length FFT will decrease SQNR, it needs to increase bit-width. It will cause more power
consumption and area cost.

In this chapter, we introduce various pipeline-based FFT architectures and then com-
pare their characteristic to evaluate our proposed system based on throughput rate and hard-
ware cost analysis. After that, it shows detailed sub-module architectures and analyzes noise

issue finally.

Word-length Analysis
200

T
—6—64  -point FFT
—*—128 -point FFT
—+—512 -point FFT {

&~ 1024-point FFT |4

/7/ —A— 2048-point FFT [{
160

180

140

L
)
\

120

100

SQNR (dB)

//‘

8 9 10 1 12 13 15 16 17 18 19 20

14
Wordlength (bits)

Fig. 4.15 Noise analysis with different FFT length
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From the example of 64-points FFT in section 4.2 that we take the output of 16-bits
fixed data to compare with the real floating data. We take the SNR is about 144.06 dB shown

in function (7) which 144.06 dB is nearly when compared with 64-points FFT and length

16-bits of Fig. 4.15. The sources of X (f) and )A((f) shown in Fig. 4.16.
FFT (floating point of 64 - points FFT) : X (f)

FFT (16 - bits fixed point of 64 - points FFT) : )A( (1)
> X?(f)=2048

2

3 (X(f)—X(f)) =0.00012836

D XA(f)
SNR = 201og >~ =144.06 dB (7)
D (X(F)=X(f))
Matlab output
Floating 64-points |———» X (f)
FFT ¢
compare
MicroBlaze output R ﬁ
Fixed 64-points —» X (f)
FFT

Fig. 4.16 The compare with output data
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Chapter 5

Conclusion

5.1 Conclusion

Since processor is popular in recent years, we intend that the FFT module can combine
processor with ASIC to form the flexible system. ASIC plays an accelerator role in the pro-
posed system. Based on FFT computational complexity analysis, it shows different length
branch FFT of ASIC which affects processor performance. Therefore, it can provide user two
anticipation as below. First of all that processor needs to spare how much computational per-
formance at least for proposed system. Second, because of our processor computational per-
formance, we can decide the branch FFT length of ASIC.

In our implementation environment that the processor can contribute the range of
MIPS in this thesis based on IEEE 802.11n/16e standards. Users can decide which condition
of MIPS they want on processor. After that they accomplish the branch FFT according to the
restriction of MIPS. The variable-length FFT implemented by MicroBlaze Processor has
16-bits word-length and its SNR is near 140 dB shown in Fig. 4.15.

Finally, we not only verify the 64-point branch FFT on FPFA of our example in sec-
tion 4.2: Implementation of the Variable-Length FFT, but also check proposed timing sche-
dule which covers 64-points, 128-points, 512-points, 1024-points and 2048-points FFT algo-

rithm in SISO/MIMO systems based on IEEE 802.11n/16e standards.
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5.2 Work of Implementation Environment

The processor is implemented by embedded system which we provide one method to
setup up proposed system. In Xilinx Spartn-3 FPGA [30], [31], [32], [33], [34], [35], it has an
embedded processor which is MicroBlaze processor of IBM [28]. Therefore, the processor
can be entirely built by writing C-language and the N-points branch FFT can be loaded to
FPGA as an accelerator.

In this thesis, the processor performance analysis is based on radix-2/4/8 algorithms.
Because of the processor performance is based on instructions, we can try to use higher radix
algorithm but it requires more high frequency clock cycles. Hence, the resource cost will be
reduced while keeping specification requirements and the shift registers is another issue. For a
bigger N, the shift registers will cause more power consumption and area cost than using
memory access. Therefore, how to improve the efficiency and simplify the memory access

scheme in the long length branch FFT module is left for our future work.
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