

國立交通大學

電機學院 IC 設計產業研發碩士班

碩 士 論 文

整合於 H.264/AVC HDTV 解碼器的無失真嵌入式壓縮方法

A Lossless Embedded Compression Codec Engine

Integrated with H.264/AVC HDTV Decoder

學生 ： 洪建州

指導教授 ： 李鎮宜 教授

中華民國九十七年一月

整合於 H.264/AVC HDTV 解碼器的無失真嵌入式壓縮方法

A Lossless Embedded Compression Codec Engine

Integrated with H.264/AVC HDTV Decoder

研 究 生：洪建州 Student：Chien-Chou Hung

指導教授：李鎮宜 Advisor：Dr. Chen-Yi Lee

國 立 交 通 大 學
電機學院 IC 設計產業研發碩士班

碩 士 論 文

A Thesis
Submitted to College of Electrical and Computer Engineering

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master

in

Industrial Technology R & D Master Program on
IC Design

January 2008

Hsinchu, Taiwan, Republic of China

 2

中華民國九十七年一月

整合於 H.264/AVC HDTV 解碼器的無失真嵌入式壓縮方法

學生：洪建州 指導教授：李鎮宜 教授

國立交通大學

電機學院產業研發碩士班

摘要

在本論文中，我們提出一個有效的無失真嵌入式壓縮器，在無損畫面品質的要求下來減

少對系統頻寬的存取。

所提出的演算法能夠利用畫面預測的結果來選擇三種掃描模式，以提高 DPCM 的壓縮效

能，經過 DPCM 所產生的預測錯誤將會被更進一步地利用 Golomb-Rice 編碼方法來壓縮；為

了避免被壓縮的檔案無限制的擴展，每一個被壓縮的分割檔案必須小於 128 位元大小的限

制。如果碼長預測器發現分割檔案違反了我們的限制，它將會直接傳送原來的像素值到系統

匯流排而不壓縮它。根據實驗的結果，所提出的演算法能夠實現超過 2 的平均壓縮率而且畫

面品質不會被犧牲。

所提出的硬體架構能夠工作在每秒 30 張畫面的 HDTV 系統裡而工作頻率為 120MHz。

利用 UMC 0.18um 的製程技術，所提出的硬體架構只需要 22.5K 的邏輯閘數目而功率消耗為

3.3mW。與所減少的系統頻寬存取相比較，所消耗的面積與功率是相當的小。

 I

A Lossless Embedded Compression Codec Engine

Integrated with H.264/AVC HDTV Decoder

Student: Chien-Chou Hung Advisor: Dr. Chen-Yi Lee

Industrial Technology R & D Master Program of
Electrical and Computer Engineering College

National Chiao Tung University

ABSTRACT

In this thesis, we propose an efficient lossless embedded compression codec engine to reduce

the system bus access without quality degradation.

The proposed algorithm can make use of the intra prediction results to choose the three scan

modes that could enhance compression efficiency of DPCM. The prediction errors after DPCM will

furthermore be compressed by Golomb-Rice coding. In order to prevent infinite expansion of the

compressed bitstream, the compressed segment must be less than 128 bits limitation. If the code

length predictor finds that the compressed segment violates our constraint, it will transfer original

pixels to the system bus. According to the experiment results, the proposed algorithm can achieves

the average of compression ratio more than 2 and no quality will be sacrificed.

The proposed architecture can decode at HDTV@30fps with 120MHz clock rate. Based on

UMC 0.18 um CMOS technology, the proposed architecture needs 22.5K gate counts and power

consumption is 3.3mW. Compared with the amount of the reduced system bus access, the area and

power overhead is small.

 II

誌 謝

工作一段時間後，沒想到有機會可以重拾往日學生生活，雖然開心，但更多一些近鄉情

怯的感覺。但是隨著研究逐漸地完成，從中所學到的東西與獲得的經驗，讓我更有自信，在

此由衷的感謝曾經幫助我、關心我的人。

首先要感謝的是 李鎮宜 教授。在面對研究上的困境時，能夠在老師的指導下不斷的往

前推進，學習真正的研究方法與知識，讓我在面對問題時，能夠從系統的架構來分析問題的

原因。另外，我也要感謝我的口試委員：蔣迪豪教授、張添烜教授和黃俊達教授，非常感謝

您在百忙之中抽空參與我的口試，並且提供許多寶貴的建議，讓我獲益良多。

接著要感謝的是 mingle 和李曜的大力協助。因為有你們的體諒及幫忙，不厭其煩的指出

我研究中的缺失，且總能在我不知所措時為我解惑，讓研究能夠更完整而嚴謹。另外，實驗

室的韋磬、阿德、昱帆、超人，你們的幫忙及搞笑我銘感在心。

兩年裡的日子，實驗室裡共同的生活點滴，學術上的討論、圖書館外的閒扯、趕作業的

革命情感、因為遲到而遮遮掩掩閃進實驗室會議…，感謝所有 SI2 研究室的學長、同學、學

弟妹的共同砥礪，你們的陪伴讓兩年的研究生活變得多彩多姿。

最後，我要感謝我的爸爸媽媽，因為有您的支持才能順利完成學業。以及我的老婆俸如，

謝謝妳陪伴在我的身邊。

 III

Contents

CHAPTER 1 INTRODUCTION ..1

1.1 OVERVIEW OF H.264/AVC VIDEO STANDARD..1

1.2 MOTIVATION ..2

1.3 THESIS ORGANIZATION ...3

CHAPTER 2 REVIEWS OF PRIOR WORKS...5

2.1 LOSSY EMBEDDED COMPRESSION ALGORITHM...5

2.2 LOSSLESS EMBEDDED COMPRESSION ALGORITHM ...6

2.3 MULTI-MODE EMBEDDED COMPRESSION ALGORITHM ..6

2.4 SUMMARY ..7

CHAPTER 3 LOSSLESS EMBEDDED COMPRESSION ALGORITHM INTEGRATED

WITH H.264/AVC DECODER...8

3.1 CHARACTERIZE THE FUNCTIONALITIES OF PROPOSED ALGORITHM9

3.1.1 Scan Modes Decision ..9

3.1.2 Pixel-wise DPCM ..13

3.1.3 Golomb-Rice Coding and Segment Packing ..17

3.1.4 Code Length Prediction ..19

3.2 AN EXAMPLE OF THE PROPOSED ALGORITHM ..21

3.3 SIMULATION RESULTS ...23

3.4 SUMMARY ..25

 IV

CHAPTER 4 HARDWARE ARCHITECTURE DESIGN INTEGRATED WITH H.264/AVC

HDTV DECODER ...26

4.1 MEMORY CONTROLLER ..27

4.2 MEMORY CONTROLLER INTERFACE AND SDRAM ORGANIZATION28

4.3 THE SYSTEM ARCHITECTURE FOR LOSSLESS EMBEDDED COMPRESSION ALGORITHM 31

4.3.1 The Architecture of Pixel-wise DPCM with Four Scan Modes33

4.3.2 The Architecture of Code Length Predictor ...35

4.3.3 The Architecture of Golomb-Rice Coding with Packing ...37

4.4 THE SYSTEM ARCHITECTURE FOR LOSSLESS EMBEDDED DECOMPRESSION

ALGORITHM...39

4.4.1 The Architecture of Synchronous FIFO with Barrel Shifter40

4.4.2 The Architecture of Golomb-Rice Decoder ..42

4.4.3 The Architecture of Inverse Scan Modes ...43

4.5 SUMMARY ..44

CHAPTER 5 EXPERIMENTAL RESULTS ...46

5.1 PERFORMANCE EVALUATION ..46

5.2 IMPLEMENTATION RESULTS ..47

5.3 COMPARISON WITH RELATED WORKS ...49

5.4 SUMMARY ..50

CHAPTER 6 CONCLUSION AND FUTURE WORK ..51

6.1 CONCLUSION..51

6.2 FUTURE WORK ..51

BIBLIOGRAPHY ..53

 V

List of Figures

FIG. 1. THE PRESENTED SCHEME INTEGRATED WITH H.264/AVC HDTV DECODER3

FIG. 2. THE FLOWCHART OF THE PROPOSED LOSSLESS EMBEDDED COMPRESSION ALGORITHM..............9

FIG. 3. NINE PREDICTION MODES FOR THE INTRA 4 X 4 PREDICTION IN THE H.264 STANDARD.............10

FIG. 4. EIGHT KINDS OF SCAN MODES.. 11

FIG. 5. THE FLOWCHART OF THE CONVENTIONAL DPCM FOR SPATIAL PREDICTION13

FIG. 6. THE FLOWCHART OF THE PROPOSED PIXEL-WISE DPCM..14

FIG. 7. AN EXAMPLE OF PIXEL-WISE DPCM ALONG SCAN MODE 1..14

FIG. 8. THE ALLOCATION OF FIRST PIXELS AND NEIGHBORING PIXELS IN A MACROBLOCK16

FIG. 9. (A) A COMPRESSED SEGMENT FORMAT AND (B) AN UNCOMPRESSED SEGMENT FORMAT...........19

FIG. 10. AN EXAMPLE OF 4X4 BLOCK WITH SCAN MODE 1...22

FIG. 11. THE SAVING BIT RATE ON VARIOUS TEST SEQUENCES..25

FIG. 12. THE BLOCK DIAGRAM OF THE SI2 LAB’S H.264/AVC HDTV DECODER WITH LOSSLESS

EMBEDDED COMPRESSION CODEC ENGINE ...27

FIG. 13. THE BLOCK DIAGRAM OF THE MEMORY CONTROLLER WITH LOSSLESS EC CODEC ENGINE.....28

FIG. 14. THE BLOCK DIAGRAM OF SDRAM ORGANIZATION..29

FIG. 15. THE 4X4 REFERENCE PIXEL VALUES AMONG FOUR COMPRESSED SEGMENTS30

FIG. 16. SUB-PIXEL MOTION COMPENSATION...30

FIG. 17. THE 9X9 REFERENCE PIXEL VALUES AMONG NINE COMPRESSED SEGMENTS30

FIG. 18. A VIRTUAL TO PHYSICAL ADDRESS MAPPING ..31

FIG. 19. THE PIPELINE STAGES OF LOSSLESS EMBEDDED COMPRESSION ENCODER...............................32

 VI

FIG. 20. THE PROPOSED PIPELINING SCHEME FOR ENCODER SCHEDULING...33

FIG. 21. THE ARCHITECTURE OF PIXEL-WISE DPCM WITH FOUR SCAN MODES...................................34

FIG. 22. THE ARCHITECTURE OF CODE LENGTH PREDICTOR...36

FIG. 23. THE ARCHITECTURE OF GOLOMB-RICE CODING WITH PACKING ...38

FIG. 24. THE LOSSLESS EMBEDDED COMPRESSION DECODER ..39

FIG. 25. THE ARCHITECTURE OF SYNCHRONOUS FIFO WITH BARREL SHIFTER41

FIG. 26. THE ARCHITECTURE OF GOLOMB-RICE DECODER..42

FIG. 27. THE ARCHITECTURE OF INVERSE SCAN MODES...43

FIG. 28. THE COMPARISON OF POWER CONSUMPTION IN ORIGINAL WORK AND PROPOSED METHOD49

 VII

List of Tables

TABLE 1: MEMORY ACCESS RATIO OF EACH H.264/AVC DECODER MODULE.......................................2

TABLE 2: THE PROBABILITY OF THE SHORTEST CODE LENGTH FOR EACH INTRA PREDICTION MODE 12

TABLE 3: SCAN MODE DECISION ...12

TABLE 4: AN EXAMPLE OF GOLOMB-RICE CODEWORD WITH K = 3 ...20

TABLE 5: THE FIXED CODE LENGTH OF PARAMETERS FOR EACH 4X4 BLOCK21

TABLE 6: THE COMPRESSED SEGMENT OF THE BLOCK THAT SHOWN IN FIG. 1022

TABLE 7: THE COMPRESSION RATIO WITH DIFFERENT QP VALUES...24

TABLE 8: DESIGN CONCEPTION OF PACKING..37

TABLE 9: DESIGN CONCEPTION OF GOLOMB-RICE DECODING...40

TABLE 10: THE IMPLEMENTATION RESULTS OF THE PROPOSED LOSSLESS EMBEDDED COMPRESSION

CODEC ENGINE ..44

TABLE 11: THE REQUIRED OPERATION FREQUENCY IN DIFFERENT VIDEO FORMATS IN OUR PROPOSED

DESIGN ..45

TABLE 12: THE AVERAGE COMPRESSION RATIO WITH DIFFERENT QP VALUES ON VARIOUS TEST

SEQUENCES ...47

TABLE 13: THE COMPARISON WITH RELATED WORKS ..50

 VIII

Chapter 1
Introduction

1.1 Overview of H.264/AVC Video Standard
The H.264/AVC is the new generation video coding standard jointly developed as ITU-T

Recommendation H.264 and ISO/IEC 14496-10 (MPEG-4 Part 10) Advanced Video Coding (AVC)

[1]-[2]. It supports several powerful coding tools to improve coding efficiency, such as flexible

block size motion estimation, quarter pixel motion compensation, multiple reference frames, spatial

intra prediction, in-loop de-blocking filters and context-based adaptive binary arithmetic coding,

etc. It provides efficient lossy coding of video content and saves the bit rate by approximately

30%–70% when compared with previous video coding standards such as MPEG-4 Part 2 [3], H.263

[4], H.262/MPEG-2 Part 2 [5], etc. Nevertheless it preserves the same or better image quality.

To address the requirement for the most-demanding professional environments, the JVT (Joint

Video Team: ITU-T Video Coding Experts Group and ISO/IEC Moving Picture Experts Group)

recently completed the new amendment and some extensions to the original standard that are

known as the Fidelity Range Extensions (FRExt) [6]. These extensions [7] enable higher quality

video coding by supporting increased sample bit depth precision and higher-resolution color

information, including sampling structures known as YUV 4:2:2 and YUV 4:4:4. Several other

features are also included in the Fidelity Range Extensions project, such as adaptive switching

between 4×4 and 8×8 integer transforms, encoder-specified perceptual-based quantization

weighting matrices, efficient inter-picture lossless coding, and support of additional color spaces.

Therefore, the H.264/AVC FRExt has been adopted as an industrial standard by consortiums

for digital high-definition television (HDTV) broadcasting and storage applications like HD-DVD
 1

and Blu-ray disc.

1.2 Motivation
The H.264/AVC could achieve much higher coding efficiency than those previous standards;

however, it also increases complexity both in a large amount of computation and ultra high memory

bandwidth in the hardware implementation of H.264/AVC HDTV decoder. For platform-based

video systems in which the high computation requirement can be easily solved by increasing the

parallelism of processing elements, the real challenge is the unacceptable bus bandwidth

requirement with limited system resources.

There are four main modules require external memory access in H.264/AVC HDTV decoder

[8], which are reference picture store, de-blocking, display feeder and motion compensation. In

addition, there some other external memory access requirements such as stream store and motion

vector store, as they are much less than the four main modules, they are ignored from consideration.

TABLE 1 lists the memory access ratio of each module in H.264/AVC HDTV decoder in the worst

case. We can see that motion compensation module is the main memory access bottleneck of

H.264/AVC HDTV decoder. Therefore, minimization of memory access operations is a key

consideration in H.264/AVC HDTV decoder hardware design.

TABLE 1: Memory access ratio of each H.264/AVC decoder module

 (W: frame width, H: frame height)

Module name Max memory access bytes Ratio(≈)

Ref. picture store W*H + 2*(W/2)*(H/2) 10%

De-blocking (W/16)*(H/16-1)*16*4*2*2 5%

Display feeder W*H + 2*(W/2)*(H/2) 10%

Motion compensation (W/16)*(H/16)*16*(9*9+2*3*3)*2 75%

 2

 A block-based embedded compression will compress block-based video data generated by

video coding system before transferring to system bus. It would be monitored by a bus controller

before connecting to memory. Hence embedded compression codec engine could reduce the

bandwidth requirement because the amount of fetched data is compressed. FIG. 1 shows the

presented scheme is integrated with H.264/AVC HDTV decoder to reduce the external memory

access when loading motion compensation and reduce system bus access when displaying.

For the purposed scheme, many algorithms and implementations of embedded compression

for various video coding system are presented [9]–[21] in recent years. Existing embedded

compression algorithms can be divided into two groups: lossy embedded compression algorithms

and lossless embedded compression algorithms. In the following section, we will further discuss on

lossy and lossless embedded compression codec engines about their own advantages and

disadvantages.

FIG. 1. The presented scheme integrated with H.264/AVC HDTV decoder

1.3 Thesis Organization
This thesis is organized as follows. At first, the reviews of prior works are described in

 3

Chapter 2. The lossless embedded compression algorithm integrated with H.264/AVC decoder is

proposed in Chapter 3. Furthermore, the architecture of the proposed algorithm integrated with

H.264/AVC HDTV decoder is proposed in Chapter 4. Some performance evaluation and

implementation results are shown in Chapter 5, moreover, comparison with related works is shown

in this chapter. Finally, the contributions of this thesis and other issues that are worth to have

further discussion and research are made in Chapter 6.

 4

Chapter 2
Reviews of Prior Works

In this section, some literatures are discussed and they are divided into third parts. The first is

to review the existing lossy embedded compression algorithm. The second is to introduce existing

lossless embedded compression algorithm. Finally, the multi-mode embedded compression

algorithm is introduced in the third part.

2.1 Lossy Embedded Compression Algorithm
A popular technique for lossy embedded compression algorithm is a transform-based approach

in which a frame is decomposed into small blocks that are transformed into a frequency domain by

a simple transform such as DCT, Hadamard Transform or its variations [16]. Then, the frequency

domain coefficients are compressed by quantization followed by variable length encoding such as

Golomb-Rice coding. This approach, in general, requires a large amount of computation to reduce

the quality degradation by compression algorithm. Another approach is a downsampling-based

compression algorithm [17] that requires a relatively small amount of computation, but the quality

may be degraded due to the loss of an edge pattern in the course of downsampling for compression

and upsampling for decompression. Another spatial domain compression based on DPCM is

proposed in [18] and an adaptive vector quantization scheme is presented in [19].

Lossy embedded compression with fixed compression ratio [10]-[20] can guarantee the size of

compressed data of each block. Thus it is able to reduce not only external memory access but also

the requirement of external memory size. However lossy embedded compression is not suitable for

any kind of applications if the high video quality requirement is necessary. It will lead to quality

degradation due to the error propagation (i.e. drift effect). Therefore it is more suitable for video
 5

conferencing or video on mobile hand-held systems where quality is of much less important or

Scalable Video Coding (SVC) systems with motion-compensated temporal filtering scheme.

2.2 Lossless Embedded Compression Algorithm
Lossless embedded compression [9] can guarantee no quality loss of video data, and hence no

drifting effect exists in the video systems. But it will produce uncertain compressed size of each

block. Therefore lossless embedded compression can not reduce the memory size, but it can still

reduce the access power of external memory and bandwidth requirement of the system bus.

2.3 Multi-Mode Embedded Compression Algorithm
A recent researcher proposed a multi-mode compression method by adopting a

Set-Partitioning in Hierarchical Trees (SPIHT) algorithm [21] to support both lossy and lossless

compression. Because the SPIHT algorithm features to simply reach lossy/lossless compression,

fixed compression ratio, rate and quality control, hence it has been adopted for a purposed of frame

re-compression.

Although the SPIHT algorithm has many good properties that make it suitable for embedded

compression codec engine, there are two main disadvantages for SPIHT in VLSI design. The first

disadvantage of SPIHT algorithm is the large buffer size between DWT and SPIHT. DWT is a

word-level arithmetic process, while the SPIHT engine encodes/decodes coefficients bitplane by

bitplane. Moreover, being different with EBCOT in JPEG 2000, SPIHT requires image-level access.

This means that when coding one bitplane, the entire current bitplane must be available. This

mismatch of the data flow between DWT and SPIHT coding engine makes it necessary to buffer

DWT coefficients of entire image. This also makes the latency between the first input and the first

output to be at least the duration of performing DWT of entire image.

The second disadvantage of SPIHT algorithm is the large buffer inside SPIHT engine. In a

 6

straightforward implementation of SPIHT, 6L2 × log2L (L is the image width) bits are needed for

the LIS, LIP, and LSP buffers in SPIHT algorithm. This buffer size is even larger than the image

itself. The buffer inside SPIHT engine with size more than a quarter of image size is needed, and

this is also too large for a low-cost design.

Therefore, although researcher presented an efficient architecture, it still cannot reach

high-definition real-time compression and decompression duo to the extensive processing cycles.

2.4 Summary
From the discussion above, we review the existing methods and classify a great diversity of

existing algorithms as well. We could find that those algorithms are stand-alone methods. That

means most of previous methods are performed independently of a video compression standard and

therefore do not take advantage of the information obtained during the processing of the

compression standard.

For the real-time H.264/AVC HDTV video decoder, the high video quality requirement is

necessary; hence we will desire no quality degradation due to the embedded compression.

Therefore lossless embedded compression codec engine is adopted for our proposed method

integrated with H.264/AVC HDTV decoder. And we might make use of helpful information from

H.264/AVC to achieve high compression efficiency, low complexity and high throughput

architecture for reducing bandwidth requirement of the system bus.

 7

Chapter 3
Lossless Embedded Compression
Algorithm Integrated with H.264/AVC
Decoder

To achieve the requirements of our proposed method integrated with H.264/AVC decoder, the

proposed lossless embedded compression algorithm is presented in this chapter. All those

aforementioned methods are performed independently of the video coding standard and therefore

do not take advantage of the information obtained during the processing of the coding standard.

The recent researcher proposes a new compression algorithm that makes use of the information

from H.264 intra prediction results [20]. Our proposed method is bases on this idea and moreover

improves the compression efficiency to be suitable for our lossless compression requirement.

The flowchart of the proposed algorithm is shown in FIG. 2. In the H.264/AVC decoder, intra

prediction result is the best mode among 9 possible prediction modes for every 4x4 blocks. Since

the selected mode gives information about the characteristic of the 4x4 block, the proposed

algorithm uses this information to select the three kinds of scan modes for the 4x4 block and

performs DPCM along this scan order. The code length predictor could select the shortest code

length among three kinds of the scan modes and further compressed by Golomb-Rice coding. If the

code length predictor calculates the total code length of the 4x4 block exceed 128 bits limit, we will

directly transfer the 4x4 pixels to the system bus. As a result, the proposed algorithm achieves the

average compression ratio of more than 2 without quality degradation.

 8

FIG. 2. The flowchart of the proposed lossless embedded compression algorithm

3.1 Characterize the Functionalities of Proposed Algorithm
In this section, we would discuss the functionality of each block diagram as shown in FIG. 2.

They are characterized as follows:

3.1.1 Scan Modes Decision

For the compression efficiency of DPCM, the prediction errors between successive data must

be small so that the data can be represented by a small number of bits. The amount of the prediction

errors depend on the image type of a 4x4 block as well as the scan order. For example, if a certain

4x4 block has vertical stripes, a scan order along the vertical direction is more efficient than that

along the horizontal direction. Therefore, it is important to select the scan direction that is suitable

for a given image data.

For the 4 x 4 intra prediction results, there are nine different intra prediction modes that can be

 9

chosen, with conceptual prediction directions as illustrated in FIG. 3 (mode 2, not shown in the

figure, is the “DC” averaging mode). The recent researcher [20] presented eight different scan

modes as shown in FIG. 4 in which the arrowed lines show the scan order. These eight modes are

similar to the intra 4x4 prediction modes. Note that H.264/AVC 4x4 intra prediction has nine

different modes and scan_node_2 (the DC mode) is in excluded in FIG. 4 because the DC mode

does not give much information for a scan order selection. The eight modes cover various image

types for DPCM scan. For example, scan_mode_0 is suitable for an image with vertical stripes

while scan_mode_1 is suitable for horizontal stripes. An image with diagonal stripes may be

suitable for one of the other modes.

FIG. 3. Nine prediction modes for the intra 4 x 4 prediction in the H.264 standard

 10

FIG. 4. Eight kinds of scan modes

According to aforementioned method, for instance, scan_mode_0 could produce the shortest

code length when the intra prediction result is Mode 0 (vertical). The experiment results are shown

in TABLE 2. This table represents that when the intra prediction is given to the 4x4 block, each of

scan modes is able to produce the probability of the shortest code length. Both scan_mode_0 and

scan_mode_1, in general, produce efficient compression results, especially when intra prediction

modes are Mode 5, Mode 6, Mode 7 and Mode 8; Moreover, the contribution of scan_mode_5,

scan_mode_6, scan_mode_7 and scan_mode_8 to lossless compression algorithm achieves little.

Therefore in order to reduce hardware complexity and power consumption, moreover, enhance

compression efficiency; the 4x4 intra prediction result is given to the algorithm to decide three scan

modes among the four modes as shown in TABLE 3. Both scan_mode_0 and scan_mode_1 are

always selected as the first and second modes. If intra prediction results are Modes 1, 2, 3, 7, and 8,

then scan_mode_3 is selected as the third mode, or else the other intra prediction results are Modes

0, 4, 5, and 6, then scan_mode_4 is selected as the third mode. Such constitution is able to ensure

 11

the probability of the shortest code length by more than 70%.

TABLE 2:

The probability of the shortest code length for each intra prediction mode

Unit: (%)

 scan 0 scan 1 scan 3 scan 4 scan 5 scan 6 scan 7 scan 8

Mode 0 65.41 7.42 4.73 5.58 7.24 2.44 5.22 1.96

Mode 1 17.09 51.48 6.69 5.18 4.41 6.45 2.92 5.78

Mode 2 36.17 18.04 12.46 9.03 8.13 5.44 6.10 4.63

Mode 3 25.97 18.15 30.94 4.39 4.71 3.03 6.57 6.24

Mode 4 32.65 13.28 4.32 28.40 10.58 5.91 2.82 2.05

Mode 5 54.68 4.85 2.23 19.79 13.66 2.07 1.75 0.98

Mode 6 18.48 35.73 5.06 19.22 5.95 9.43 2.43 3.70

Mode 7 46.86 9.35 19.84 3.09 4.82 2.14 10.59 3.30

Mode 8 25.46 30.01 18.74 3.90 4.36 4.08 5.34 8.11

TABLE 3:

Scan mode decision

Intra Prediction Result 0 1 2 3 4 5 6 7 8

Scan Mode Decision 0,1,4 0,1,3 0,1,3 0,1,3 0,1,4 0,1,4 0,1,4 0,1,3 0,1,3

 12

3.1.2 Pixel-wise DPCM

A simple and well-known method for spatial prediction is to predict the present pixel value

based on the pervious values and further encode prediction errors by entropy coder. This method is

called DPCM. In general, best predictors are those form the neighboring pixels. In order to achieve

coding efficiency for lossless compression, the selected scan orders are given to the next step that

performs third DPCM operations along the selected scan orders.

The flowchart of the conventional DPCM is shown in FIG. 5. It has a disadvantage in

hardware implementation as each prediction error taking one clock cycle is necessary; hence we

propose a pixel-by-pixel (pixel-wise) DPCM that is more flexible in hardware design as illustrated

in FIG. 6. The prediction errors of the proposed pixel-wise DPCM are still the same as of the

conventional DPCM. In the high working frequency design, the architecture of the conventional

DPCM might become critical path in the circuit. The proposed pixel-wise DPCM can not only be

easily solved by increasing the parallelism of processing elements to be suitable for high working

frequency design, but no major increase in computational complexity relative to the conventional

DPCM process.

FIG. 5. The flowchart of the conventional DPCM for spatial prediction

 13

FIG. 6. The flowchart of the proposed pixel-wise DPCM

FIG. 7. An example of pixel-wise DPCM along scan mode 1

The following is an example of the pixel-wise DPCM. Consider a 4x4 block given as shown in

FIG. 7. Assume that the scan mode is 1. The first_pixel and the prediction errors diff1, diff2... and

diff15 of each pixel P0, P1... and P15 are calculated by pixel-wise DPCM as follows:

131215

233
122
011

0_

PPdiff

PPdiff
PPdiff
PPdiff

Ppixelfirst

−=

−=
−=
−=

=

#

 14

The pixel-wise DPCM always requires each individual decoded pixel to be provided

sequentially prior to the prediction and reconstruction of the next pixel value. As an example, in

order to reconstruct pixel P3, pixel P2 should be reconstructed, in other words, pixel P0 and pixel

P1 have been already reconstructed. Therefore we can reconstruct the 4x4 block from the

prediction errors when scan mode is 1 as follows:

0152112

03213
0212

011
_0

PdiffdiffdiffP

PdiffdiffdiffP
PdiffdiffP

PdiffP
pixelfirstP

++++=

+++=
++=

+=
=

…
#

And it also could be expressed in matrix form to provide the high throughput architecture in

hardware design as follows:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

15

5
4
3
2
1

_

11111111
0
0111111
0011111
0001111
0000111
0000011
0000001

12

6
7
3
2
1
0

diff

diff
diff
diff
diff
diff

pixelfirst

P

P
P
P
P
P
P

#%#

…

#

The first_pixel is the entry pixel of a 4x4 block along the scan order. Suppose that the scan

mode is 1, it is the P0 as shown in FIG. 7. The first_pixel should be compressed to achieve coding

efficiency for lossless compression. In our proposed lossless compression algorithm, pixel-wise

DPCM would involve neighboring pixel that is close to the first pixel and produce predicted error

between first pixel and neighboring pixel as shown in FIG. 8.

 15

FIG. 8. The allocation of first pixels and neighboring pixels in a macroblock

The H.264/AVC has a block-based coding structure. In its design, each picture is segmented

into macroblocks, which consist of an array of 16x16 luma samples and two associated two arrays

of 4x4 chroma samples. Each sample is further decomposed into several 4x4 blocks. In the

H.264/AVC decoder, the block 0 that containing 16 pixels is reconstructed first for a macroblock.

Next, the other blocks 1-23 are reconstructed in the order as illustrated in FIG. 8.

In order to simplify hardware design, the first pixels and the neighboring pixels are located in

the fixed position. Therefore, the first_pixel is placed on the up-left corner of a 4x4 block and the

neighboring pixel that is chosen very close to the first pixel as shown in FIG. 8. According to

experiment results, the pixel-wise DPCM involving neighboring pixel could significantly enhance

compression efficiency by approximately 0.1 of compression ratio, but no major increase in

hardware complexity and power consumption.

 16

3.1.3 Golomb-Rice Coding and Segment Packing

Before talking about code length prediction in section 3.1.4, we should discuss Golomb-Rice

coding first [22]-[23]. Although an arithmetic coding is the best-known lossless coding method, it

requires expensive iterative coding and decoding procedures and consumes large computing power.

On the other hand, the DPCM output, prediction errors, diffn are in [-255, 255]. If they are

compressed by Huffman coding, Huffman code may result in a long codeword and

computationally-intensive coding and decoding. Therefore we adopt Golomb-Rice coding to

translate the prediction error into a codeword for the low-complexity design.

Golomb codes of parameter m encode a positive integer value by encoding value mod m in

binary followed by an encoding of value div m in unary. When m = 2k the encoding procedure has a

very simple realization and has been referred to as Rice coding in the literature, hence following we

refer to them as Golomb-Rice codes. The Golomb-Rice coding accepts only a non-negative number

as its input when a DPCM result can be a negative number. Therefore, a DPCM result is converted

into a non-negative number as follows:

(1)

.,12
,0,2

otherwisefordiff
difffordiffvalue

−=
≥=

(2)

Where diff represents a DPCM result and value represents the input to the Golomb-Rice coding.

The conversion back from value to diff is simple because the LSB of value indicates whether diff is

a negative or not. The mapping value orders prediction residuals, interleaving negative values and

positive values in the sequence 0, -1, 1, -2, 2, … If the values follow a Laplace distribution centered

at zero, then the distribution of value will be close to (but not exactly) geometric, which can then be

encoded using an appropriate Golomb-Rice code.

The key factor behind the effective use of Golomb-Rice codes is the estimation of the coding

parameter k to be used for a given sample or block of samples. If k is smaller, the code length

increase is too large for a large value. On the other hand, if k is greater, the code length is too large

 17

for a small value. Weinberger's algorithm [24] exhaustively tries codes with each parameter on a

block of samples and selects the one which results in the shortest code length. The coding

parameter k is computed as follows:

(3) }2|min{ valuevalue
k ANkk ≥⋅′= ′

The k is estimated by maintaining in each context value, the count Nvalue of the number of times the

context value has been encountered so far and Avalue, the accumulated sum of magnitudes of

prediction errors within this context value. This strategy is an approximation to optimal parameter

selection for Golomb-Rice coding.

Based on aforementioned formulation applied in our proposed algorithm, Nvalue and Avalue

could be written as follows:

∑
=

=

=
15

0

16

n
nvalue

value

valueA

N (4)

(5)

The coding parameter k could be computed as follows:

(6)

}4log|min{
}162|min{

2 −≥′′=
≥⋅′= ′

value

value
k

Akk
Akk

(7)

Therefore, it also could be expressed in the following priority conditions in hardware

implementation:

If the coding parameter k is more than six, the total code length after Golomb-Rice coding will

exceed 128 bits limitation. Therefore k equal to six is the upper bound of the code length limitation.

109

98

87

76

65

54

4

22,6

,22,5

,22,4

,22,3

,22,2

,22,1

,20,0

≤<=

≤<=

≤<=

≤<=

≤<=

≤<=

≤≤=

value

value

value

value

value

value

value

Ak

Ak

Ak

Ak

Ak

Ak

Ak

 18

After precise estimation of the coding parameter k, the total number of bits generated by

Golomb-Rice coding for all prediction errors can be reduced.

The parameters and Golomb-Rice codes or 16 pixels of a block are packed as a small than or

equal to 128-bit segment respectively. FIG. 9 (a) shows a compressed segment format and (b) an

uncompressed segment format. In order to differentiate between compressed and uncompressed

segments, we use one bit as a judgment (tag) and stored in the leftmost position, the four scan

modes are coded with 2 bits and the 3-bit k is stored next. The first pixel requires 8 bits stored next

to the k and the remaining bits store the 15 Golomb-Rice codes for the remaining pixels.

tag

(1 bits)

scan_mode

(2 bits)

k

(3 bits)

*first_pixel

(8 bits)

prediction errors

after Golomb-Rice coding

(a) Total less than 128 bits

tag

(1 bits)

16 pixels of a block

(b) Total 128 bits

FIG. 9. (a) A compressed segment format and (b) An uncompressed segment format

3.1.4 Code Length Prediction

In the section 3.1.3, we explicitly discuss the algorithm of Golomb-Rice coding. An example

of Golomb-Rice codeword with k = 3 is shown in TABLE 4. Each value divided by 2k produces a

quotient and a remainder. Then Q indicated quotient is transformed into unary code and R indicated

remainder is transform into fixed-length code.

 19

TABLE 4:

An example of Golomb-Rice codeword with k = 3

value Q R codeword value Q R codeword

0 0 0 1000 8 1 0 01000

1 0 1 1001 9 1 1 01001

2 0 2 1010 10 1 2 01010

3 0 3 1011 11 1 3 01011

4 0 4 1100 12 1 4 01100

5 0 5 1101 13 1 5 01101

6 0 6 1110 14 1 6 01110

7 0 7 1111 15 1 7 01111

Hence we could find Golomb-Rice code is variable length code with a regular construction. It

is constructed in a logical way:

[Prefix][1][Suffix]

Prefix has Q-bit leading zeros and Suffix has a k-bit remainder value. Therefore the code length of a

Golomb-Rice code and of all prediction errors as follows:

kGolomb
valuekLength

2
1++=

(8)

)
2

1(
15

0
_ k

n

n
errorsprediction

valuekLength ++= ∑
=

(9)

The parameters for each 4x4 block are shown in TABLE 5. The fixed code length of all

parameters is:

(10) 13=parametersLength

 20

TABLE 5:

The fixed code length of parameters for each 4x4 block

Parameters Type No. of bits

scan_mode

scan_mode_0

scan_mode_1

scan_mode_3

scan_mode_4

2

k 0~6 3

first_pixel unsigned 8

The pixel-wise DPCM would produce 3 kinds of prediction errors for given 3 scan modes.

Code length prediction could decide the shortest code length among prediction errors and further

compressed by Golomb-Rice coding. If total code length of a 4x4 block exceeds 128 bits limitation,

we will directly transfer the 4x4 pixels to the system bus. According to (9) and (10), the total code

length limitation condition could be formulated as follows:

(11) 128_ ≥+= errorspredictionparameterstotal LengthLengthLength

3.2 An Example of The Proposed Algorithm
Consider a 4x4 block given as shown in FIG. 10. Assume that the scan mode is 1. The

compression result is given in TABLE 6 which tag equal to 1 is indicated that the total code length

is less than 128 bits. 1 is chosen for the k-value. Note that k-value more than 6 requires 134 bits

which are not acceptable. The scanned data in the order of scan mode 1 is 48, 51, 48, 48, 49, 49, 48,

48, 45, 45, 46, 46, 42, 44, 42 and 41.

 21

FIG. 10. An example of 4x4 block with scan mode 1

TABLE 6:

The compressed segment of the block that shown in FIG. 10

Element value Rice-mapping Code

tag 1 N/A 1

scan_mode 1 N/A 01

k 1 N/A 001

*first_pixel 48 N/A 00110000

diff[1] 3 6 00010

diff[2] -3 5 0011

diff[3] 0 6 10

diff[4] 1 2 010

diff[5] 0 0 10

diff[6] -1 1 11

diff[7] 0 0 10

diff[8] 3 6 0011

 22

diff[9] 0 0 10

diff[10] 1 2 010

diff[11] 0 0 10

diff[12] -4 7 00011

diff[13] 2 4 0010

diff[14] -2 3 011

diff[15] -1 1 11

Total code length 59

3.3 Simulation Results
The software implementation of the proposed algorithm is integrated with JM8.2 reference

software of the H.264/AVC main profile and the reconstructed frame from de-blocking filter is

compressed by the proposed algorithm. The lossless embedded compression algorithm is evaluated

with 18 test video sequences with CIF (352 x 288) resolution. For all test sequences, 100 frames are

used with QP = 5, 10 and 15 respectively. FIG. 11 shows the saving bit rate with QP = 5 and

furthermore the compression ratio with different QP values on various test sequences as shown in

TABLE 7.

 23

TABLE 7:

The compression ratio with different QP values

Seq. Proposed CR Seq. Proposed CR Seq. Proposed CR

QP 5 1.9354 QP 5 1.9516 QP 5 2.0942

QP 10 1.9643 QP 10 1.9725 QP 10 2.1614

tre
vo

r

QP 15 2.0090 ha
ll_

m
on

ito
r

QP 15 2.0331

ca
rp

ho
ne

QP 15 2.2508

QP 5 2.4516 QP 5 1.6125 QP 5 1.8728

QP 10 2.6020 QP 10 1.6184 QP 10 1.9126

m
is

s_
am

QP 15 2.7728

m
ob

ile

QP 15 1.6291
fo

re
m

an

QP 15 1.9712

QP 5 2.1826 QP 5 1.9986 QP 5 1.7905

QP 10 2.2463 QP 10 2.0546 QP 10 1.8096

su
zi

e

QP 15 2.3300

ne
w

s

QP 15 2.1244

sa
le

sm
an

QP 15 1.8626

QP 5 2.0397 QP 5 1.8114 QP 5 2.6210

QP 10 2.1223 QP 10 1.8387 QP 10 2.7789

ak
iy

o

QP 15 2.3196

si
le

nt

QP 15 1.8774

cl
ai

re

QP 15 2.8622

QP 5 1.8252 QP 5 1.7107 QP 5 2.0381

QP 10 1.8728 QP 10 1.7280 QP 10 2.1062

co
as

tg
ua

rd

QP 15 1.9026

st
ef

an

QP 15 1.7478

gr
an

dm
a

QP 15 2.2102

QP 5 1.9707 QP 5 1.7959 QP 5 2.0285

QP 10 2.0234 QP 10 1.8181 QP 10 2.0941

co
nt

ai
ne

r

QP 15 2.0873

ta
bl

e

QP 15 1.8951 m
ot

he
r_

da
u.

QP 15 2.1884

 24

FIG. 11. The saving bit rate on various test sequences

0

10

20

30

40

50

60

70

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Frame Number

sa
vi

n
g

 b
it

s
(%

)

mo_daughter
grandmother
claire
salesman
foreman
carphone
akiyo
container
coastguard
hall_monitor
news
silent
table
suzie
miss_am
trevor

3.4 Summary
According to the experiment results mentioned above, we could find the compression

efficiency depending on the picture complexity in each frame. The distribution of saving bit rate in

each frame is normally average and the proposed lossless embedded compression algorithm

achieves the average of compression ratio more than 2 without quality degradation.

 25

Chapter 4
Hardware Architecture Design Integrated
with H.264/AVC HDTV Decoder

A lossless embedded compression codec engine is integrated with the SI2 Lab’s H.264/AVC

HDTV decoder and it is embedded in the memory controller as shown in FIG. 12. The

reconstructed frame is generated by de-blocking filter and sent to the memory controller with

lossless embedded compression codec engine that compresses and stores the data in the frame

memory. For decompression, the data is read from the frame memory through memory controller,

decompressed and then sent to inter prediction unit for motion compensation.

In this chapter, proposed memory controller for lossless embedded compression codec engine

is presented in section 4.1. Memory controller interface and SDRAM organization is presented in

section 4.2. The implementation of lossless embedded compression and decompression algorithms

are presented in section 4.3 and 4.4 respectively. Finally, summary is described in section 4.5.

 26

FIG. 12. The block diagram of the SI2 Lab’s H.264/AVC HDTV decoder with lossless

embedded compression codec engine

4.1 Memory Controller
FIG. 13 shows the block diagram of the memory controller with lossless embedded

compression codec engine we propose. The memory controller is placed between system bus and

many clients, i.e. IP blocks. The system bus transfers data after each other for many clients. The

carrying data consists of stream buffering, motion vectors buffering, reference picture store,

de-blocking, display feeder and motion compensation, etc. When image data passes over the bus, a

controller activates the lossless embedded compression codec engine. The compression unit

reduces the amount of data to be transferred; hence, the transfer length is reduced.

The system bus is shared among many clients. Although our proposed scheme is lossless

compression, in other words, any kind of data could be compressed as well as the compressed data

could be converse back original data. But proposed compression algorithm is developed for image

data. We can not guarantee the compression performance for the other non-image data. Hence the

 27

controller must not only recognize whether data is image type but also decide whether data will be

compressed. If system bus traffic is executed in transactions, the image data needs to be compressed.

Otherwise, the image data are forwarded uncompressed. Although image data could be compressed

by compression unit, however we still need to take a system architect's perspective including bus

arbitration, bus scheduling and the memory access protocols in order to achieve higher system bus

utility.

FIG. 13. The block diagram of the memory controller with lossless EC codec engine

4.2 Memory Controller Interface and SDRAM Organization
After receiving bitstream from the memory controller, we apply a data packing to send the

packed results into a data word-line on SDRAM. FIG. 14 depicts the SDRAM organization and

each word-length is of size 32-bit. And the memory address from the deblocking filter uses direct

 28

mapping method. As an example, assume compression ratio is 2. For a write operation, the

compression unit receives the start address A and 16 bytes of image data. The data will be

compressed to 8 bytes of data, which is stored at the address A. The remainder 8 bytes of address

space is not used. At a read transaction on address A, the signal processing unit requests 16 bytes of

image data. Only 8 bytes of data are actually read from the memory. The compression unit

decompresses this to 16 bytes of image data, which is passed to the requesting bus client. The

address scheme our proposed is uncomplicated but wastes many memory space. Maybe we can

achieve higher memory utility through address mapping, can be made for the further research.

FIG. 14. The block diagram of SDRAM organization

Because the motion compensation module requires the reference pixel values in SDRAM, a

compressed pixel is difficult for data addressing from SDRAM. As an example, assume a

integer-pixel compensation, the motion compensation requires the 4x4 reference pixel values

among four compressed segments that are stored in the SDRAM as shown in FIG. 15. We must

decode the four compressed segments first and then transfer 4x4 reference pixel values to the

motion compensation. Consider the worst case, sub-pixel compensation, the motion compensation

 29

requires 1/2 and 1/4 pixel compensation as shown in FIG. 16. The motion compensation requires

the 9x9 reference pixel values among nine compressed segments as shown in FIG. 17. Hence

motion compensation can not accept the extra latency duo to the decoding many compressed

segments that are stored in the SDRAM. In order to solve this problem, we may increase the

parallelism of processing elements to achieve motion compensation requirements.

FIG. 15. The 4x4 reference pixel values among four compressed segments

FIG. 16. Sub-pixel motion compensation

FIG. 17. The 9x9 reference pixel values among nine compressed segments

 30

Because the motion compensation module requires the reference pixel values in SDRAM

based on a given decoding index and motion vector, a compressed pixel is difficult for data

addressing from SDRAM. Therefore, we use address direct mapping method mentioned above for

deblocking filter module. That is helpful to simplify hardware design. To facilitate the SDRAM

data addressing, we propose a virtual-to-physical address mapping technique in FIG. 18 for motion

compensation. The address calculation computes the base address under a given virtual address.

However, because we store the compressed pixel data into SDRAM, the calculated address will not

be equal to the real one. Therefore, we need a translation buffer to look-up the offset address for

indicating each physical address on a macro-block level.

FIG. 18. A virtual to physical address mapping

4.3 The System Architecture for Lossless Embedded

Compression Algorithm
According to memory controller mentioned above and the specification of H.264/AVC FRExt

high profile (HiP) level 4.0 for HDTV application, the frame resolution is 1920x1088 and sampling

 31

structure is YUV 4:2:0. If the frame rate is 30Hz, the time budget assigned to one MB is only about

490 cycles and assigned to one block is only about 20 cycles with working frequency 120MHz. To

assure real-time operating on H.264/AVC HDTV video decoder, lossless embedded compression

encoder engines must be accomplished within the time budget respectively.

The proposed lossless embedded compression algorithm mapped to hardware architecture is

shown as FIG. 19. It is pipelined in four stages. Each pipeline stage requires 16 cycles to process

one 4x4 block. Thus, the first 4x4 block is generated after 52 cycles. From the next block, the

embedded compression encoder requires only 16 cycles to generate the output. To process a single

MB, the total execution time of the embedded compressor for one MB is 420 cycles. Note that this

speed can be achieved when the de-blocking filter can supply data fast enough to avoid any stall of

the pipeline.

FIG. 19. The pipeline stages of lossless embedded compression encoder

 32

FIG. 20. The proposed pipelining scheme for encoder scheduling

The proposed pipelining scheme for encoder scheduling is shown in FIG. 20. The processing

unit is a block. In order to achieve pipelining schedule, we need a cache consisting of two buffers to

store block data. Hence DPCM is processing the present block while the cache is storing the next

block in the same pipeline stage. The size of catch is unequal because catch only has 4 latency

cycles and the other blocks have 16 latency cycles. In the following section, we would discuss the

architecture design of each stage as shown in FIG. 19.

4.3.1 The Architecture of Pixel-wise DPCM with Four Scan Modes

The architecture of pixel-wise DPCM with four scan modes is illustrated in FIG. 21. In this

stage, the pixel-wise DPCM are finished, the prediction errors after Rice mapping are latched and

the k-value is calculated at the same time.

The intra 4x4 prediction result chooses three scan modes among four scan modes as shown in

TABLE 3. Therefore scan_en is able to enable pixel-wise DPCM. And selector can choose input

data in the order of different scan modes to register pxl_1. In next cycle, pxl_1 will shift to pxl_0

while input data chosen by selector will store to register pxl_1. The Rice mapping rule is defined as

(1) and (2). It is notable that the positive conversion followed by subtraction of 1 for negative

inputs can be implemented just by bitwise inverting and it is expressed RTL language as shown in

 33

(8).

}0'1],0:7[{:}1'1]),0:7[(?{~])8[(bdiffbdiffdiffmapping = (8)

The k-value could be computed as (7). It also could be expressed in the following priority

conditions in hardware implementation:

Avalue is indicated the accumulated sum of magnitudes of prediction errors. k = 6 has the highest

priority and the next is k = 5, the lowest priority is k = 0.

109

98

87

76

65

54

4

22,6

,22,5

,22,4

,22,3

,22,2

,22,1

,20,0

≤=

≤=

≤=

≤=

≤=

≤=

≤≤=

value

value

value

value

value

value

value

Ak

Ak

Ak

Ak

Ak

Ak

Ak

≺
≺
≺
≺
≺
≺

FIG. 21. The architecture of pixel-wise DPCM with four scan modes

 34

4.3.2 The Architecture of Code Length Predictor

The architecture of code length predictor is illustrated in FIG. 22. In this stage, the code length

predictor could select the shortest code length among three scan modes and store the corresponding

Rice mapping values to the register totmapping. If the shortest code length still exceed 128 bits

limit, we will directly transfer the 4x4 pixels to the system bus. According to (9) and (10), the total

code length limitation condition could be formulated as follows:

128_ ≥+= errorspredictionparameterstotal LengthLengthLength

The total code length consists of two parts, one is the length of the header and the other is the

length of the prediction errors after Golomb-Rice coding.

The code length predictor with three scan modes is implemented for parallelism. The register

code_length[0]-[2] are the accumulated sum of the code length of Golomb-Rice code.

scan_mode_decision can select the shortest code length among three scan modes and moreover

produce the bitstream of header that is consisted of tag, scan_mode, k, and first_pixel. If

scan_mode_decision detects total code length more than 128 bits limitation, Rice mapping values

will be translate into original 15 pixels and the header is only consisted of tag and first_pixel.

 35

FIG. 22. The architecture of code length predictor

 36

4.3.3 The Architecture of Golomb-Rice Coding with Packing

Our design conception of packing is shown in TABLE 8. Assume that prediction errors are

packed as a 16 bits wide segment. There are two 16-bits registers, upper register and lower register,

to store the prediction errors compressed by Golomb-Rice coding. The first bitstream 00010 is

stored in the MSB of the upper register, and the following bitstream is stored next. If the

accumulated sum of code length, Acc, is more than or equal to 16, the upper register is full and the

bitstream could be transfer to the system bus. The reminder bits in the lower register will be put on

the MSB of the upper register in the next cycle. And the following bitstream is stored next.

TABLE 8:

Design conception of packing

Input Upper reg. Lower reg. Acc. mapping codeword (k=1)

6 00010 5 0 10

5 000100011 9 1 11

0 00010001110 11 2 010

2 00010001110010 14 3 011

7 0001000111001000 011 16+3 4 0010

4 0110010 7 5 0011

 6 00010

 7 00011

Overflow!

According to the above design conception, the proposed architecture of Golomb-Rice coding

with packing is illustrated in FIG. 23. In this stage, the prediction errors are further compressed by

Golomb-Rice coding and packed as a 32 bits wide bitstream to system bus.

Each codeword and code length is calculated by using k-value and mapping value as shown in
 37

TABLE 4. First we should make quotient Q and remainder R for each mapping value. The header

and R are indicated codeword and k-value and Q are indicated code length. The codeword and code

length will be transmitted to the barrel shifter. The output of the barrel shifter is 64 bits wide

bitstream and store to the output register. If the output register is full, it will transfer the bitstream to

the system bus.

FIG. 23. The architecture of Golomb-Rice coding with packing

 38

4.4 The System Architecture for Lossless Embedded

Decompression Algorithm
The proposed lossless embedded decompression algorithm mapped to hardware architecture is

shown as FIG. 24. The embedded de-compressor decodes one symbol by one clock cycle and

outputs the reconstructed pixels requires 4 cycles. Thus, the 4x4 block is generated after 20 cycles.

To process a single MB, the total execution time of the embedded de-compressor for one MB is 480

cycles. Note that this speed can be achieved when the system bus can supply data fast enough to

avoid any stall of the decoder.

FIG. 24. The lossless embedded compression decoder

In the following section, we would discuss the architecture design of each block as shown in

FIG. 24.

 39

4.4.1 The Architecture of Synchronous FIFO with Barrel Shifter

Our design conception of Golomb-Rice decoding is shown in TABLE 9. Assume that the

system bus will transfer 16 bits wide bitstream to the decoder. There are two 16-bits registers, upper

register and lower register, to store the bitstream from the bus. The first bitstream is put in the upper

register. The decoder will calculate the codeword and code length. The first code word is 00010 and

the code length is 5. Hence in the next cycle time, upper register will shift left by 5 bits. If the

registers have enough space to store the bitstream, the barrel shifter will cascade input bitstream

and original bitstream stored in the register.

TABLE 9:

Design conception of Golomb-Rice decoding

Upper reg. Lower reg. mapping shift mapping codeword

0001000111001000 6 5 0 10

00111001000 0110010110010011 5 4 1 11

100100001100101 10010011 0 2 2 010

010000110010110 010011 2 3 3 011

000110010110010 011 0 5 4 0010

0010110010011 7 4 5 0011

 6 00010

 7 00011

According to the above design conception, the proposed architecture of synchronous FIFO

with barrel shifter is illustrated in FIG. 25. It can achieve not only the functionality of a FIFO, but

also the functionality of shifting any bit wide. If the FIFO has enough space to store the bitstream,

the embedded compression decoder will accept 32 bits wide bitstream from system bus while it will
 40

decode a codeword and the FIFO will shift the corresponding code length (i.e. truncate the solved

codeword) at the same cycle time.

FIG. 25. The architecture of synchronous FIFO with barrel shifter

 41

4.4.2 The Architecture of Golomb-Rice Decoder

The Golomb-Rice decoder can fetch the bitstream that is stored in the FIFO. It will decode the

parameters of a segment first and moreover analyze present state. If tag is equal to 1, the bitstream

is indicated a compressed segment, else it is indicated an uncompressed segment. The next step is

to solve a codeword that is calculated as q << k + r. The code length is also calculated as 1 + q + k

at the same time and it will feed back to the synchronous FIFO with barrel shifter for shifting the

requirement bit count. The architecture of Golomb-Rice decoder is illustrated in FIG. 26.

FIG. 26. The architecture of Golomb-Rice decoder

 42

4.4.3 The Architecture of Inverse Scan Modes

The architecture of inverse scan modes is illustrated in FIG. 27. In this stage, the remapping

values are translated to prediction errors diff and return to original pixel values. The conversion

back from remapping to diff is simple because the LSB of value indicates whether diff is a negative

or not. It could be expressed RTL language as shown in (12).

]}1:8[,0'1{:])}1:8[(~,1'1?{])0[(remappingbremappingbremappingdiff = (12)

After inversing DPCM procedure, all pixel values are reconstructed. Finally they will be packed as

a 32 bits wide bitstream to the output port.

FIG. 27. The architecture of inverse scan modes

 43

4.5 Summary
TABLE 10 shows the implementation results of the proposed lossless embedded compression

codec engine and TABLE 11 lists some other required operating frequency in our design. After

synthesizing based on UMC 0.18um CMOS technology, the total gate counts are 22.5K. Working

frequency is 120MHz and power consumption is 3.3mW. Additionally, the processing latency pre

MB are less than 490 cycles to assure real-time operating on H.264/AVC HDTV video decoder.

Therefore, it achieves both low complexity as well as latency requirements.

TABLE 10:

The implementation results of the proposed lossless embedded compression codec engine

Item Specification

Function Compressor De-compressor

Process 0.18um

Supply Voltage 1.2 V

Working Frequency 120MHz

Throughput HDTV(1920x1088) (4:2:0)@30fps

Latency/MB 420 cycles 480 cycles

Synthesized Gate Counts 17.9K 4.6K

Power Consumption 2.1mW 1.2mW

 44

TABLE 11:

The required operation frequency in different video formats in our proposed design

Video format Frame size
Required operation

frequency

HDTV 1920x1088 120MHz

XGA 1024x768 45MHz

VGA 640x480 20MHz

CIF 352x288 6MHz

QCIF 176x144 1.5MHz

 45

Chapter 5
Experimental Results

In this chapter the experimental results are presented, it includes the performance evaluation

and implantation results. Furthermore, the comparison with related works proves that our proposed

lossless embedded compression codec engine is more suitable to be integrated with H.264 /AVC

HDTV decoder.

5.1 Performance Evaluation
The proposed method for the H.264/AVC HDTV decoder with lossless embedded

compression codec engine is in order to reduce the system bus access when motion compensation

and displaying. Hence we are most concerned about compression ratio of proposed method. The

software implementation of the proposed algorithm is integrated with JM8.2 reference software of

the H.264/AVC main profile and the reconstructed frame from de-blocking filter is compressed by

the proposed algorithm. The lossless embedded compression algorithm is evaluated with 18 test

video sequences with CIF (352 x 288) resolution. For all test sequences, 100 frames are used with

QP = 5, 10 and 15 respectively. The compression ratio with different QP values on various test

sequences as shown in TABLE 7. TABLE 12 exhibits a summary the average compression ratio

with different QP values.

According to the simulation results, approximately 50% data compression ratio when motion

compensation and displaying can be saved and no quality will be sacrificed. The size of encoded

block is not guaranteed, so the external memory size for one block has to be unchanged.

 46

TABLE 12:

The average compression ratio with different QP values on various test sequences

QP Values Compression Ratio

average CR of QP = 5 1.9851

average CR of QP = 10 2.0402

average CR of QP = 15 2.1152

total average 2.046

5.2 Implementation Results
For the real-time H.264/AVC HDTV video decoder, the high video quality requirement is

necessary; hence we will desire no quality degradation due to the embedded compression codec

engine. Therefore lossless embedded compression codec engine is adopted for our proposed

method integrated with H.264/AVC HDTV decoder.

TABLE 10 shows the implementation results of the proposed lossless embedded compression

codec engine. It is integrated with the SI2 Lab’s H.264/AVC HDTV decoder and embedded in the

memory controller as shown in FIG. 12. This decoder can process the high-definition (1080HD)

video decoding demands at the speed of 30 frames per second with the operating clock frequency

of 120 MHz. Assume SDRAMs only give linear address, if the compressed data are stored in line

per page, according to simulation results, it can save 29% ~ 57% of memory access.

Eq. (13) and (14) shows the relationship between bandwidth and accesses. The original

bandwidth can be calculated as 94MB/S in the 1080HD mode. The bandwidth requirement is

reduced because the amount of fetched data is reduced. Therefore the required bandwidth can be

reduced to 66.7 ~ 40.4MB/S. However, on the external memory, the miss rate increment also leads

to the throughput degradation and additional requirement of external bandwidth. Therefore the miss

rate in 1080HD video resolution should be made for the further analysis.

 47

sec
frame

block4x4
bytes16

frame
accessesblock 4x4 of #Bytes/sec)Bandwidth(××= (13)

accesses read of # accesses wirteof # accessesblock 4x4 of # += (14)

The access frequency is related to the access power consumption of external memory shown in Eq.

(15). Therefore, we have to reduce the access bandwidth and thus reduce power consumption on

internal and external memory.

To analyze the power reduction duo to less memory access, we describe the power modeling

to estimate power consumption of external memory. The external memory, two SDRAMs [25] are

allowed for writing and reading reciprocally at the same time. However, the power modeling

becomes more complicated. Not only data access but also IO and background power (e.g.

pre-charge, active etc) should be concerned in the power calculation of external memory. We

choose the system-power calculator [26] as external memory power model. The power

consumption of external memory can be considered as a summation of access, IO and background

power in Eq. (15).

BGIOaccessmemexternal PPPP ++=_ (15)

From our simulation, we choose CAS latency = 2, BL = 1, tCK=7ns as our SDRAM model

configuration [25] and then operated at 1080HD applications and then according to the

system-power calculator, the original power of SDRAM is 474.2mW. At the same condition, if the

memory access can save 29%~57%, the power consumption of external memory is 365.8mW ~

388.5mW as shown in FIG. 28.

The SI2 Lab’s H.264/AVC HDTV decoder without the proposed codec engine module is

fabricated as a chip using UMC 0.18 um CMOS technology. The logic gate count is about 303.78K

excluding external memory and core power consumption of high-definition decoding is 102.3mW.

And our codec engine gate count is about 22.5K and power consumption is 3.3mW. According to

the power consumption of external memory mentioned above, the overall power consumption is

reduced to 14.3%~28.7% of original power consumption.

 48

Core Power
102.3

Core Power
102.3

EC
3.3

SDRAM
474.2 SDRAM

388.5~365.8

0

100

200

300

400

500

600

Original Proposed

Po
w

er
 C

on
su

m
pt

io
n

(m
W

FIG. 28. The comparison of power consumption in original work and proposed method

5.3 Comparison with Related Works
TABLE 13 is the comparison with related works, reference [21] makes use of SPIHT-based

compression algorithm and reference [20] makes use of DPCM-based compression algorithm. Both

SPIHT and DPCM have their own unique advantages. Due to the inherent properties of SPIHT, it

can support both lossy and lossless compression. But this algorithm is the numerous memory cost

and computational power. DPCM is easy to design and implementation. But we are concerned

about its compression ratio. The H.264/AVC provides efficient lossy coding of video content. And

QP values dominate the most video quality. Therefore we experiment the compression ratio on

different QP values under the equivalent condition. Further the implementation results of references

[20] and [21] are to be listed in TABLE 13 as well.

 49

TABLE 13:

The comparison with related works

 SIPS 05 [21] ISCAS 07 [20] Proposed Method

Method SPIHT-based DPCM-based DPCM-based

average CR of QP = 5 1.7889 N/A 1.9851

average CR of QP = 10 1.8939 N/A 2.0402

average CR of QP = 15 1.9880 N/A 2.1152

lossless CR 1.890 N/A 2.046

lossy CR
2 / 1.1dB

4 / 4.2dB
2 / 1.03dB N/A

Process 0.18um 0.18um 0.18um

Processing Resolution VGA QCIF 1080HD

Working Frequency 30MHz 14MHz 120MHz

Gate Counts 27K 28K 22.5K

Power Consumption 3.36mW N/A 3.3mW

5.4 Summary
Although SPIHT can support both lossless and lossy compression, we desire no quality

degradation due to the embedded compression algorithm, especially high-quality video content is

necessary. Our proposed method can not only achieve lossless compression but also operate high

resolution video system. According to the experimental results mentioned above, our codec engine

gate count is about 22.5K and power consumption is 3.3mW. Additionally, it can save 29% ~ 57%

of memory access. The overall power consumption is reduced to 14.3%~28.7% of original power

consumption.

 50

Chapter 6
Conclusion and Future Work

6.1 Conclusion

In this thesis, we propose an efficient lossless embedded compression codec engine to reduce

the system bus access without quality degradation. It can save 29% ~ 57% of memory access. The

overall power consumption is reduced to 14.3%~28.7% of original power consumption. Moreover,

our proposed architecture can not only be operated on high resolution applications but also achieve

less power consumption. Therefore, the proposed lossless embedded compression codec engine is

more suitable to be integrated with H.264 /AVC HDTV decoder.

The proposed embedded compression algorithm makes use of the information given by the

H.264/AVC decoder. Although this thesis shows an example that integrates the proposed method

with H.264/AVC decoder, the proposed algorithm can also be integrated with any other video

encoding standard. Moreover, the design conception of lossless EC embedded with memory

controller can be further analyzed and modified to the other video system.

6.2 Future Work
While the memory controller methods had been discussed in Chapter 4.1, there are many

challenges left to be solved. Besides the characteristics of data accessing, the properties of the

SDRAMs have to be taken into account. When determining how the data should be stored in the

memory, we can see that more page breaks, more active command and latency are needed with

SDRAMs. Although controller can arrange the SDRAMs access command in some schedule to

reduce the bubble in data bus, the schedule cannot meet various block size requirements. In

 51

addition, more SDRAMs command lead to more power consumption. So the key point of memory

access is to avoid breaking page frequently. Therefore how the SDRAM controller is designed to

reduce additional page-active cycle in reading and writing access should be further explored.

 52

Bibliography

[1] ITU-T Recommendation H.264 and ISO/IEC 14496-10, Advanced Video Coding for Generic

Audiovisual Services, May 2003.

[2] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the H.264/AVC
video coding standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 560–576,
Jul. 2003.

[3] ISO/IEC 14496-2, Information Technology—Coding of Audio-Visual Objects Part 2: Visual,
Dec. 1998.

[4] ITU-T Video Coding Experts Group (VCEG), Video Codec Test Model Near-Term, Version
10 (TMN10) Draft 1, Apr. 1998.

[5] ITU-T Recommendation H.262 and ISO/IEC 13818-2, Information Technology—Generic
Coding of Moving Pictures and Associated Audio Information: Video, Jul. 1995.

[6] G. J. Sullivan, T. McMahon, T. Wiegand, and A. Luthra, Eds., Draft Text of H.264/AVC
Fidelity Range Extensions Amendment to ITU-T Rec. H.264 j ISO/IEC 14496-10 AVC,
ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Joint Video Team document JVT-L047, Jul.
2004.

[7] H. Yu, Ed., Draft Text of H.264/AVC Advanced 4:4:4 Profile Amendment to ITU-T Rec.
H.264 j ISO/IEC 14496-10 AVC, ISO/IEC JTC1/SC29/WG11 and ITU-T Q6/SG16 Joint
Video Team document JVT-Q209, Oct. 2005.

[8] M. Li, R. Wang and W. Wu, "The High Throughput and Low Memory Access Design of
Sub-pixel Interpolation for H.264/AVC HDTV Decoder," IEEE SIPS'05, pp. 296-301, May
2005.

[9] R. Manniesing, R. Kleihorst1, R. V. Vleuten1, and E. Hendriks, “Implementation of lossless
coding for embedded compression,” IEEE ProRISC, 1998.

 53

[10] H. Shim, N. Chang, and M. Pedram, “A compressed frame buffer to reduce display power
consumption in mobile systems,” in Proceedings of the Asia and South Pacific Design
Automation Conference, 2004, pp. 819–824.

[11] U. Bayazit, L. Chen, and R. Rozploch, “A novel memory compression system for MPEG2
decoders,” in IEEE International Conference of Consumer Electronics, 1998, pp. 56–57.

[12] M. Schaar-Mitrea and P. With, “Near-lossless embedded compression algorithm for cost
reduction in DTV receivers,” in IEEE International Conference of Consumer Electronics,
1999, pp. 112–113.

[13] S. Lei, “A quad-tree embedded compression algorithm for memory-saving DTV decoders,” in
IEEE International Conference of Consumer Electronics, 1999, pp. 120–121.

[14] E. G. T. Jaspers and P. H. N. With, “Embedded compression for memory resource reduction in
MPEG systems,” in IEEE Benelux Signal Processing Symposium, 2002.

[15] G. M. Callico, A. Nunez, R. P. Llopis, and R. Sethuraman, “Low-cost and real-time
super-resolution over a video encoder ip,” IEEE, 2003.

[16] T. Y. Lee, “A New Frame-Recompression Algorithm and its Hardware Design for MPEG-2
Video Decoders,” IEEE Trans. CSVT, vol. 13, no. 6, pp. 529-534, June 2003.

[17] R. Dugad and N. Ahuja, “A Fast Scheme for Image Size Change in the Compressed Domain,”
IEEE Trans. CSVT, vol. 11, no. 4, pp. 461-474, April 2001.

[18] D. Pau et al., “MPEG-2 Decoding with a Reduced RAM Requisite by ADPCM
Recompression before Storing MPEG Decompressed Data,” U.S. patent 5838597, Nov. 1998.

[19] R. Bruni et al., “A novel adaptive vector quantization method for memory reduction in
MPEG-2 HDTV decoders,” in Proc. Int. Conf. Consumer Electronics, 1998, pp. 58-59.

[20] Yongie Lee, et al, "A New Frame Recompression Algorithm Integrated with H.264 Video
Compression," IEEE Circuits Sys. ISCAS Vol. 6, pp.6110-6113, May 2007.

[21] C. C. Cheng, P. C. Tseng, C. T. Huang, and L. G. Chen, "Multi-Mode Embedded
Compression Codec Engine for Power-Aware Video Coding System," in IEEE, SIPS 2005.

 54

[22] S. Golomb, “Run-length encodings,” IEEE Trans. Inform. Theory, vol. IT-21, pp. 399–401,
July 1966.

[23] R. Rice, “Some practical universal noiseless coding techniques—Part I–III,” Jet Propulsion
Laboratory, Pasadena, CA, Tech. Rep. JPL-79-22, JPL-83-17 and JPL-91-3, Mar. 1979, Mar.
1983, Nov. 1991.

[24] M. Weinberger, G. Seroussi, and G. Sapiro LOCOI: A low complexity context-based lossless
image compression a1gorithm, Proc. 1996 Data Comp. Conf., pp140-149, 1996.

[25] Micron® Technology Inc. MT48LC2M32B2 64Mb SDRAM. [Online Available]:
http://www.micron.com/products/dram/

[26] Micron® Technology Inc. The Micron® System-Power Calculator: SDRAM. [Online
Available]: http://www.micron.com/products/dram/syscalc.html

 55

作 者 簡 歷

 姓名 ：洪建州

 戶籍地 ：台灣省台中市

 出生日期：1980. 09. 25

 學歷： 1995. 09 ~ 1998. 06 國立台中高工 電子科

 1998. 09 ~ 2002. 06 國立台北科技大 電子工程學系

 2006. 02 ~ 2008. 01 國立交通大學 IC 設計產業研發碩士班

 56

