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ABSTRACT

In this thesis, we propose an efficient lossless embedded compression codec engine to reduce
the system bus access without quality‘degradation.

The proposed algorithm can make use-of the intra prediction results to choose the three scan
modes that could enhance compression efficiency of DPCM. The prediction errors after DPCM will
furthermore be compressed by Golomb-Rice coding. In order to prevent infinite expansion of the
compressed bitstream, the compressed segment must be less than 128 bits limitation. If the code
length predictor finds that the compressed segment violates our constraint, it will transfer original
pixels to the system bus. According to the experiment results, the proposed algorithm can achieves
the average of compression ratio more than 2 and no quality will be sacrificed.

The proposed architecture can decode at HDTV@30fps with 120MHz clock rate. Based on
UMC 0.18 um CMOS technology, the proposed architecture needs 22.5K gate counts and power
consumption is 3.3mW. Compared with the amount of the reduced system bus access, the area and

power overhead is small.
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Chapter 1
Introduction

1.1 Overview of H.264/AVC Video Standard

The H.264/AVC is the new generation video coding standard jointly developed as ITU-T
Recommendation H.264 and 1ISO/IEC 14496-10 (MPEG-4 Part 10) Advanced Video Coding (AVC)
[1]-[2]. It supports several powerful coding tools to improve coding efficiency, such as flexible
block size motion estimation, quarter pixel motion compensation, multiple reference frames, spatial
intra prediction, in-loop de-blocking filters and context-based adaptive binary arithmetic coding,
etc. It provides efficient lossy coding .of video_content and saves the bit rate by approximately
30%-70% when compared with previous.video coding standards such as MPEG-4 Part 2 [3], H.263
[4], H.262/MPEG-2 Part 2 [5], etc. Nevertheless.it-preserves-the same or better image quality.

To address the requirement for the most-demanding-professional environments, the JVT (Joint
Video Team: ITU-T Video Coding Experts Group and ISO/IEC Moving Picture Experts Group)
recently completed the new amendment and some extensions to the original standard that are
known as the Fidelity Range Extensions (FRExt) [6]. These extensions [7] enable higher quality
video coding by supporting increased sample bit depth precision and higher-resolution color
information, including sampling structures known as YUV 4:2:2 and YUV 4:4:4. Several other
features are also included in the Fidelity Range Extensions project, such as adaptive switching
between 4x4 and 8x8 integer transforms, encoder-specified perceptual-based quantization

weighting matrices, efficient inter-picture lossless coding, and support of additional color spaces.

Therefore, the H.264/AVC FREXt has been adopted as an industrial standard by consortiums

for digital high-definition television (HDTV) broadcasting and storage applications like HD-DVD
1



and Blu-ray disc.

1.2 Motivation

The H.264/AVC could achieve much higher coding efficiency than those previous standards;
however, it also increases complexity both in a large amount of computation and ultra high memory
bandwidth in the hardware implementation of H.264/AVC HDTV decoder. For platform-based
video systems in which the high computation requirement can be easily solved by increasing the
parallelism of processing elements, the real challenge is the unacceptable bus bandwidth
requirement with limited system resources.

There are four main modules require external memory access in H.264/AVC HDTV decoder
[8], which are reference picture store, de-blecking,.display feeder and motion compensation. In
addition, there some other external memory actess'requirements such as stream store and motion
vector store, as they are much less than the four main modules, they are ignored from consideration.
TABLE 1 lists the memory access ratig of each medule in‘H.264/AVC HDTYV decoder in the worst
case. We can see that motion compensation module ‘is the main memory access bottleneck of
H.264/AVC HDTV decoder. Therefore, minimization of memory access operations is a key

consideration in H.264/AVC HDTYV decoder hardware design.

TABLE 1: Memory access ratio of each H.264/AVC decoder module

(W: frame width, H: frame height)

Module name Max memory access bytes Ratio(x)
Ref. picture store W*H + 2*(W/2)*(H/2) 10%
De-blocking (W/16)*(H/16-1)*16*4*2*2 5%
Display feeder W*H + 2*(W/2)*(H/2) 10%
Motion compensation (W/16)*(H/16)*16*(9*9+2*3*3)*2 75%

2



A block-based embedded compression will compress block-based video data generated by
video coding system before transferring to system bus. It would be monitored by a bus controller
before connecting to memory. Hence embedded compression codec engine could reduce the
bandwidth requirement because the amount of fetched data is compressed. FIG. 1 shows the
presented scheme is integrated with H.264/AVC HDTV decoder to reduce the external memory
access when loading motion compensation and reduce system bus access when displaying.

For the purposed scheme, many algorithms and implementations of embedded compression
for various video coding system are presented [9]-[21] in recent years. Existing embedded
compression algorithms can be divided into two groups: lossy embedded compression algorithms
and lossless embedded compression algorithms. In the following section, we will further discuss on
lossy and lossless embedded compression codec engines about their own advantages and

disadvantages.

BH‘“’"’“"’_ Entropy | | Inverse N ,| Deblocking Display
Decoder Q./T. Filter play
&
T T T T T T s EEEEE ‘: LCD Bus
|
1 Interpolation 1| Display
| Filter l|  Buffer
I Y : &
System Bus ! - 1 > Lossless Embedded
| ¢ | Compression Engine
|
|
___________________________________________________________ )
Frame External Frame

Memory Memaory Memory

FIG. 1. The presented scheme integrated with H.264/AVC HDTYV decoder

1.3 Thesis Organization

This thesis is organized as follows. At first, the reviews of prior works are described in

3



Chapter 2. The lossless embedded compression algorithm integrated with H.264/AVC decoder is
proposed in Chapter 3. Furthermore, the architecture of the proposed algorithm integrated with
H.264/AVC HDTV decoder is proposed in Chapter 4. Some performance evaluation and
implementation results are shown in Chapter 5, moreover, comparison with related works is shown
in this chapter. Finally, the contributions of this thesis and other issues that are worth to have

further discussion and research are made in Chapter 6.



Chapter 2
Reviews of Prior Works

In this section, some literatures are discussed and they are divided into third parts. The first is
to review the existing lossy embedded compression algorithm. The second is to introduce existing
lossless embedded compression algorithm. Finally, the multi-mode embedded compression

algorithm is introduced in the third part.

2.1 Lossy Embedded Compression Algorithm

A popular technique for lossy embedded compression.algorithm is a transform-based approach
in which a frame is decomposed into small blocks that are transformed into a frequency domain by
a simple transform such as DCT, Hadamard-Transform or: Its variations [16]. Then, the frequency
domain coefficients are compressed by quantization followed by variable length encoding such as
Golomb-Rice coding. This approach, in general, requires a large amount of computation to reduce
the quality degradation by compression algorithm. Another approach is a downsampling-based
compression algorithm [17] that requires a relatively small amount of computation, but the quality
may be degraded due to the loss of an edge pattern in the course of downsampling for compression
and upsampling for decompression. Another spatial domain compression based on DPCM is
proposed in [18] and an adaptive vector quantization scheme is presented in [19].

Lossy embedded compression with fixed compression ratio [10]-[20] can guarantee the size of
compressed data of each block. Thus it is able to reduce not only external memory access but also
the requirement of external memory size. However lossy embedded compression is not suitable for
any kind of applications if the high video quality requirement is necessary. It will lead to quality

degradation due to the error propagation (i.e. drift effect). Therefore it is more suitable for video
5



conferencing or video on mobile hand-held systems where quality is of much less important or

Scalable Video Coding (SVC) systems with motion-compensated temporal filtering scheme.

2.2 Lossless Embedded Compression Algorithm

Lossless embedded compression [9] can guarantee no quality loss of video data, and hence no
drifting effect exists in the video systems. But it will produce uncertain compressed size of each
block. Therefore lossless embedded compression can not reduce the memory size, but it can still

reduce the access power of external memory and bandwidth requirement of the system bus.

2.3  Multi-Mode Embedded Compression Algorithm

A recent researcher proposed as«*multi-mode; compression method by adopting a
Set-Partitioning in Hierarchical Trees (SPIHT) :algorithm [21] to support both lossy and lossless
compression. Because the SPIHT algorithm features to simply reach lossy/lossless compression,
fixed compression ratio, rate and quality control, hence it has been adopted for a purposed of frame
re-compression.

Although the SPIHT algorithm has many good properties that make it suitable for embedded
compression codec engine, there are two main disadvantages for SPIHT in VLSI design. The first
disadvantage of SPIHT algorithm is the large buffer size between DWT and SPIHT. DWT is a
word-level arithmetic process, while the SPIHT engine encodes/decodes coefficients bitplane by
bitplane. Moreover, being different with EBCOT in JPEG 2000, SPIHT requires image-level access.
This means that when coding one bitplane, the entire current bitplane must be available. This
mismatch of the data flow between DWT and SPIHT coding engine makes it necessary to buffer
DWT coefficients of entire image. This also makes the latency between the first input and the first
output to be at least the duration of performing DWT of entire image.

The second disadvantage of SPIHT algorithm is the large buffer inside SPIHT engine. In a

6



straightforward implementation of SPIHT, 6L% x log,L (L is the image width) bits are needed for
the LIS, LIP, and LSP buffers in SPIHT algorithm. This buffer size is even larger than the image
itself. The buffer inside SPIHT engine with size more than a quarter of image size is needed, and
this is also too large for a low-cost design.

Therefore, although researcher presented an efficient architecture, it still cannot reach

high-definition real-time compression and decompression duo to the extensive processing cycles.

2.4 Summary

From the discussion above, we review the existing methods and classify a great diversity of
existing algorithms as well. We could find that those algorithms are stand-alone methods. That
means most of previous methods are performed independently of a video compression standard and
therefore do not take advantage of.the,  information obtained during the processing of the
compression standard.

For the real-time H.264/AVC HDTV. video decoder, the high video quality requirement is
necessary; hence we will desire no quality degradation due to the embedded compression.
Therefore lossless embedded compression codec engine is adopted for our proposed method
integrated with H.264/AVC HDTV decoder. And we might make use of helpful information from
H.264/AVC to achieve high compression efficiency, low complexity and high throughput

architecture for reducing bandwidth requirement of the system bus.



Chapter 3

Lossless Embedded Compression
Algorithm Integrated with H.264/AVC
Decoder

To achieve the requirements of our proposed method integrated with H.264/AVC decoder, the
proposed lossless embedded compression algorithm is presented in this chapter. All those
aforementioned methods are performed independently of the video coding standard and therefore
do not take advantage of the information obtained during the processing of the coding standard.
The recent researcher proposes a new-compression algorithm that makes use of the information
from H.264 intra prediction results [20]."Qur proposed method is bases on this idea and moreover
improves the compression efficiency to.be suttable-for our-lossless compression requirement.

The flowchart of the proposed algorithm is'shown in FIG. 2. In the H.264/AVC decoder, intra
prediction result is the best mode among 9 possible prediction modes for every 4x4 blocks. Since
the selected mode gives information about the characteristic of the 4x4 block, the proposed
algorithm uses this information to select the three kinds of scan modes for the 4x4 block and
performs DPCM along this scan order. The code length predictor could select the shortest code
length among three kinds of the scan modes and further compressed by Golomb-Rice coding. If the
code length predictor calculates the total code length of the 4x4 block exceed 128 bits limit, we will
directly transfer the 4x4 pixels to the system bus. As a result, the proposed algorithm achieves the

average compression ratio of more than 2 without quality degradation.
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FIG. 2. The flowchart of the proposed lossless embedded compression algorithm

3.1 Characterize the Functionalities of Proposed Algorithm

In this section, we would discuss the functionality of each block diagram as shown in FIG. 2.

They are characterized as follows:

3.1.1 Scan Modes Decision

For the compression efficiency of DPCM, the prediction errors between successive data must
be small so that the data can be represented by a small number of bits. The amount of the prediction
errors depend on the image type of a 4x4 block as well as the scan order. For example, if a certain
4x4 block has vertical stripes, a scan order along the vertical direction is more efficient than that
along the horizontal direction. Therefore, it is important to select the scan direction that is suitable
for a given image data.

For the 4 x 4 intra prediction results, there are nine different intra prediction modes that can be

9



chosen, with conceptual prediction directions as illustrated in FIG. 3 (mode 2, not shown in the
figure, is the “DC” averaging mode). The recent researcher [20] presented eight different scan
modes as shown in FIG. 4 in which the arrowed lines show the scan order. These eight modes are
similar to the intra 4x4 prediction modes. Note that H.264/AVC 4x4 intra prediction has nine
different modes and scan_node 2 (the DC mode) is in excluded in FIG. 4 because the DC mode
does not give much information for a scan order selection. The eight modes cover various image
types for DPCM scan. For example, scan_mode O is suitable for an image with vertical stripes
while scan_mode_1 is suitable for horizontal stripes. An image with diagonal stripes may be

suitable for one of the other modes.

6
3 4
A 4
7 0 5
0 {vertical) 1 (horizontal) 2(DC)

MAJE[CIOETF]GH M A[B[CIOJEJF]G[H] N AJB] C]OEJF] G[H]
_l _I _l Bl o
) | J [ [ J [
K K——— K ","‘;L:’
] == L]
3 (diagonal down-laft) 4 {diagonal down-right) & (vertical-right)

M AJE[CIDTE]F] G H]| MAJB]CID[E]F]G]H|

| N 1

) M

K K

1N L]
6 (horizontal-down ) T (vertical-left) 8 (horizontal-up)
M A] B] C]D]E]F[ G]H] M A]B]C]D]EJF[G]H] M AJB|C[D]E]F[ G H]
I 1] /‘ L~
| | |
K K K
15N L] ]

FIG. 3. Nine prediction modes for the intra 4 x 4 prediction in the H.264 standard
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FIG. 4. Eight Kinds,of scan modes

According to aforementioned method, for instance, scan_mode_0 could produce the shortest
code length when the intra prediction result-is:Mode-0 (vertical). The experiment results are shown
in TABLE 2. This table represents that when the intra prediction is given to the 4x4 block, each of
scan modes is able to produce the probability of the shortest code length. Both scan_mode_0 and
scan_mode_1, in general, produce efficient compression results, especially when intra prediction
modes are Mode 5, Mode 6, Mode 7 and Mode 8; Moreover, the contribution of scan_mode 5,
scan_mode_6, scan_mode_7 and scan_mode_8 to lossless compression algorithm achieves little.

Therefore in order to reduce hardware complexity and power consumption, moreover, enhance
compression efficiency; the 4x4 intra prediction result is given to the algorithm to decide three scan
modes among the four modes as shown in TABLE 3. Both scan_mode_0 and scan_mode_1 are
always selected as the first and second modes. If intra prediction results are Modes 1, 2, 3, 7, and 8,
then scan_mode_3 is selected as the third mode, or else the other intra prediction results are Modes

0, 4, 5, and 6, then scan_mode_4 is selected as the third mode. Such constitution is able to ensure
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the probability of the shortest code length by more than 70%.

TABLE 2:

The probability of the shortest code length for each intra prediction mode

Unit: (%)
scan0 scanl scan3 scan4 scanS scan6 scan7 scan8
Mode 0 | 65.41 7.42 4.73 5.58 7.24 2.44 5.22 1.96
Mode1 | 17.09 51.48 6.69 5.18 4.41 6.45 2.92 5.78
Mode2 | 36.17 18.04  12.46 9.03 8.13 5.44 6.10 4.63
Mode3 | 2597 1815  30.94 4.39 4.71 3.03 6.57 6.24
Mode 4 | 3265 13.28 4.32 28.40 10.58 591 2.82 2.05
Mode5 | 54.68  4.85 2.23 19.79 13.66 2.07 1.75 0.98
Mode 6 | 18.48  35.73 5.06 19.22 5.95 9.43 2.43 3.70
Mode 7 | 46.86  9.35 19.84 3.09 4.82 2.14 10.59 3.30
Mode 8 | 2546  30.01 18.74 3.90 4.36 4.08 5.34 8.11
TABLE 3:
Scan mode decision
Intra Prediction Result 0 1 2 3 4 5 6 7 8
Scan Mode Decision | 0,1,4 | 0,1,3 | 0,1,3 | 0,1,3 | 0,1,4 | 0,1,4 | 0,1,4 | 0,1,3 | 0,1,3
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3.1.2 Pixel-wise DPCM

A simple and well-known method for spatial prediction is to predict the present pixel value
based on the pervious values and further encode prediction errors by entropy coder. This method is
called DPCM. In general, best predictors are those form the neighboring pixels. In order to achieve
coding efficiency for lossless compression, the selected scan orders are given to the next step that
performs third DPCM operations along the selected scan orders.

The flowchart of the conventional DPCM is shown in FIG. 5. It has a disadvantage in
hardware implementation as each prediction error taking one clock cycle is necessary; hence we
propose a pixel-by-pixel (pixel-wise) DPCM that is more flexible in hardware design as illustrated
in FIG. 6. The prediction errors of the proposed pixel-wise DPCM are still the same as of the
conventional DPCM. In the high working frequency design, the architecture of the conventional
DPCM might become critical path in the circuit] The propesed pixel-wise DPCM can not only be
easily solved by increasing the parallelism of processing elements to be suitable for high working
frequency design, but no major increase. in.computational complexity relative to the conventional

DPCM process.

Prediction Errors

WA

4x4 pixels

| entropy
coder

|

ﬁ Predictor
n (FF) A
t
CLK

FIG. 5. The flowchart of the conventional DPCM for spatial prediction
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FIG. 7. An example of pixel-wise DPCM along scan mode 1

The following is an example of the pixel-wise DPCM. Consider a 4x4 block given as shown in
FIG. 7. Assume that the scan mode is 1. The first_pixel and the prediction errors diff1, diff2... and

diff15 of each pixel PO, P1... and P15 are calculated by pixel-wise DPCM as follows:

first_pixel = PO
diff1 = P1 - PO
diff 2 = P2 - P1
diff 3 = P3 - P2
diff 15 = P12 - P13
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The pixel-wise DPCM always requires each individual decoded pixel to be provided
sequentially prior to the prediction and reconstruction of the next pixel value. As an example, in
order to reconstruct pixel P3, pixel P2 should be reconstructed, in other words, pixel PO and pixel
P1 have been already reconstructed. Therefore we can reconstruct the 4x4 block from the

prediction errors when scan mode is 1 as follows:

PO = first_ pixel

P1 = diff 1 + PO

P2 = diff 1 + diff2 + PO

P3 = diff 1 + diff2 + diff3 + PO

P12 = diff1 + diff2 + ... + diffl5 + PO

And it also could be expressed in matrix form to provide the high throughput architecture in

hardware design as follows:

PO 1 00 0 0°0 0 first _ pixel ]
P1 110000 0 | diff1

P2 | |11 1707070 0 | diff 2
P3| |1 11100 0 | diff 3

P7 | 111110 0 | diff 4
P6 | |11 1111 0 | diff 5

: ; 0f:

P12) (111111 1 1]diff1s |

The first_pixel is the entry pixel of a 4x4 block along the scan order. Suppose that the scan
mode is 1, it is the PO as shown in FIG. 7. The first_pixel should be compressed to achieve coding
efficiency for lossless compression. In our proposed lossless compression algorithm, pixel-wise
DPCM would involve neighboring pixel that is close to the first pixel and produce predicted error

between first pixel and neighboring pixel as shown in FIG. 8.
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FIG. 8. The allocation of first pixels and.neighboring pixels in a macroblock

The H.264/AVC has a block-based ‘coding structure. In-its design, each picture is segmented
into macroblocks, which consist of an“array of 16x16-luma-samples and two associated two arrays
of 4x4 chroma samples. Each sample is further .decomposed into several 4x4 blocks. In the
H.264/AVC decoder, the block 0 that containing 16 pixels is reconstructed first for a macroblock.
Next, the other blocks 1-23 are reconstructed in the order as illustrated in FIG. 8.

In order to simplify hardware design, the first pixels and the neighboring pixels are located in
the fixed position. Therefore, the first_pixel is placed on the up-left corner of a 4x4 block and the
neighboring pixel that is chosen very close to the first pixel as shown in FIG. 8. According to
experiment results, the pixel-wise DPCM involving neighboring pixel could significantly enhance
compression efficiency by approximately 0.1 of compression ratio, but no major increase in

hardware complexity and power consumption.
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3.1.3 Golomb-Rice Coding and Segment Packing

Before talking about code length prediction in section 3.1.4, we should discuss Golomb-Rice
coding first [22]-[23]. Although an arithmetic coding is the best-known lossless coding method, it
requires expensive iterative coding and decoding procedures and consumes large computing power.
On the other hand, the DPCM output, prediction errors, diff, are in [-255, 255]. If they are
compressed by Huffman coding, Huffman code may result in a long codeword and
computationally-intensive coding and decoding. Therefore we adopt Golomb-Rice coding to
translate the prediction error into a codeword for the low-complexity design.

Golomb codes of parameter m encode a positive integer value by encoding value mod m in
binary followed by an encoding of value div m in unary. When m = 2k the encoding procedure has a
very simple realization and has been referred,to asRice coding in the literature, hence following we
refer to them as Golomb-Rice codes. The Golomb=Rice coding accepts only a non-negative number
as its input when a DPCM result can be a negative-number. Therefore, a DPCM result is converted
into a non-negative number as follows:

value =  2/diff[,"""for diff >0, @

= 2|diff| -1, for otherwise. )

Where diff represents a DPCM result and value represents the input to the Golomb-Rice coding.

The conversion back from value to diff is simple because the LSB of value indicates whether diff is

a negative or not. The mapping value orders prediction residuals, interleaving negative values and

positive values in the sequence 0, -1, 1, -2, 2, ... If the values follow a Laplace distribution centered

at zero, then the distribution of value will be close to (but not exactly) geometric, which can then be
encoded using an appropriate Golomb-Rice code.

The key factor behind the effective use of Golomb-Rice codes is the estimation of the coding
parameter k to be used for a given sample or block of samples. If k is smaller, the code length

increase is too large for a large value. On the other hand, if k is greater, the code length is too large
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for a small value. Weinberger's algorithm [24] exhaustively tries codes with each parameter on a
block of samples and selects the one which results in the shortest code length. The coding
parameter k is computed as follows:
k=min{k’| 2" N .. = A} (3)
The Kk is estimated by maintaining in each context value, the count Nyaue Of the number of times the
context value has been encountered so far and Avae, the accumulated sum of magnitudes of
prediction errors within this context value. This strategy is an approximation to optimal parameter
selection for Golomb-Rice coding.
Based on aforementioned formulation applied in our proposed algorithm, Nyaue and Avaiue

could be written as follows:

Nvalue =16 (4)
15
Avalue = Zvaluen (5)
n=0
The coding parameter k could be computed as follows:
kK = min{k25-162A 4.} )
= min{k"|k.>log, A —4} (7)

Therefore, it also could be expressed in the following priority conditions in hardware

implementation:

k=0, O0<A,,<2%

k=1 2'<A,, <2°%
k=2 2°<A,, <2°
k=3 2°<A,,. <2,
k=4, 2'<A,,.<2°
k=5 2°<A,, <2°,
k=6, 2°<A,, <2"

If the coding parameter k is more than six, the total code length after Golomb-Rice coding will

exceed 128 bits limitation. Therefore k equal to six is the upper bound of the code length limitation.
18



After precise estimation of the coding parameter k, the total number of bits generated by
Golomb-Rice coding for all prediction errors can be reduced.

The parameters and Golomb-Rice codes or 16 pixels of a block are packed as a small than or
equal to 128-bit segment respectively. FIG. 9 (a) shows a compressed segment format and (b) an
uncompressed segment format. In order to differentiate between compressed and uncompressed
segments, we use one bit as a judgment (tag) and stored in the leftmost position, the four scan
modes are coded with 2 bits and the 3-bit k is stored next. The first pixel requires 8 bits stored next

to the k and the remaining bits store the 15 Golomb-Rice codes for the remaining pixels.

tag scan_mode Kk *first_pixel prediction errors

(1 bits) (2 bits) (3 bits) (8 bits) after Golomb-Rice coding

(a) Total less than 128 bits

tag 16 pixels of a block

(1 bits)

(b) Total 128 bits

FIG. 9. (a) A compressed segment format and (b) An uncompressed segment format

3.1.4 Code Length Prediction

In the section 3.1.3, we explicitly discuss the algorithm of Golomb-Rice coding. An example
of Golomb-Rice codeword with k = 3 is shown in TABLE 4. Each value divided by 2* produces a
quotient and a remainder. Then Q indicated quotient is transformed into unary code and R indicated

remainder is transform into fixed-length code.
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TABLE 4:

An example of Golomb-Rice codeword with k = 3

value Q R codeword | value Q R codeword
0 0 0 1000 8 1 0 01000
1 0 1 1001 9 1 1 01001
2 0 2 1010 10 1 2 01010
3 0 3 1011 11 1 3 01011
4 0 4 1100 12 1 4 01100
5 0 5 1101 13 1 5 01101
6 0 6 1110 14 1 6 01110
7 0 7 1111 ib 1 7 01111

Hence we could find Golomb-Rice code is variable length code with a regular construction. It
is constructed in a logical way:
[Prefix][1][Suffix]
Prefix has Q-bit leading zeros and Suffix has a k-bit remainder value. Therefore the code length of a

Golomb-Rice code and of all prediction errors as follows:

value
Length ., =K +1+ X @
15
Length prediction _errors - Z (k + 1+ Va::en ) (9)
n=0

The parameters for each 4x4 block are shown in TABLE 5. The fixed code length of all

parameters is:

Length =13 (10)

parameters
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TABLE 5:

The fixed code length of parameters for each 4x4 block

Parameters Type No. of bits
scan_mode 0
scan_mode_1
scan_mode 2
scan_mode_3
scan_mode 4
k 0~6 3
first_pixel unsigned 8

The pixel-wise DPCM would produce.3 Kinds-of prediction errors for given 3 scan modes.
Code length prediction could decide the shortest code. length among prediction errors and further
compressed by Golomb-Rice coding.-If total code length of a-4x4 block exceeds 128 bits limitation,
we will directly transfer the 4x4 pixels-to. the system-bus./According to (9) and (10), the total code
length limitation condition could be formulated as follows:

Length

= Length +Length ) cgicion_errors = 128 (11)

total parameters

3.2 An Example of The Proposed Algorithm

Consider a 4x4 block given as shown in FIG. 10. Assume that the scan mode is 1. The
compression result is given in TABLE 6 which tag equal to 1 is indicated that the total code length
is less than 128 bits. 1 is chosen for the k-value. Note that k-value more than 6 requires 134 bits
which are not acceptable. The scanned data in the order of scan mode 1 is 48, 51, 48, 48, 49, 49, 48,

48, 45, 45, 46, 46, 42, 44, 42 and 41.
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FIG. 10. An example of 4x4 block with scan mode 1

TABLE 6:

The compressed segment of the block that shown in FIG. 10

Element value Rice-mapping Code
tag 1 N/A 1
scan_mode 1 N/A 01
k 1 N/A 001

*first_pixel 48 N/A 00110000

diff[1] 3 6 00010

diff[2] -3 5 0011

diff[3] 0 6 10

diff[4] 1 2 010

diff[5] 0 0 10

diff[6] -1 1 11

diff[7] 0 0 10

diff[8] 3 6 0011
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diff[9] 0 0 10

diff[10] 1 2 010
diff[11] 0 0 10
diff[12] -4 7 00011
diff[13] 2 4 0010
diff[14] -2 3 011
diff[15] -1 1 11
Total code length 59

3.3 Simulation Results

The software implementation of the prepesed :algorithm is integrated with JM8.2 reference
software of the H.264/AVC main profile and-the reconstructed frame from de-blocking filter is
compressed by the proposed algorithm. The lossless embedded compression algorithm is evaluated
with 18 test video sequences with CIF{352:x:288)-resolution. For all test sequences, 100 frames are
used with QP = 5, 10 and 15 respectively. FIG. 11 shows the saving bit rate with QP = 5 and
furthermore the compression ratio with different QP values on various test sequences as shown in

TABLE 7.
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The compression ratio with different QP values

TABLE 7:

Seq. | Proposed CR Seq. | Proposed CR Seq. | Proposed CR
QP5 1.9354 S QP5 1.9516 © QP5 2.0942
— 'E c
% QP10 1.9643 El QP10 1.9725 é_ QP 10 2.1614
fra} —_ (4]
= (]
QP 15 2.0090 2 QP 15 2.0331 QP 15 2.2508
QP5 2.4516 QP5 1.6125 QP5 1.8728
= @ S
3' QP10 2.6020 8 QP10 1.6184 g QP 10 1.9126
= e o
S =
QP15 2.7728 QP15 1.6291 QP15 1.9712
QP5 2.1826 QP5 1.9986 - QP5 1.7905
@ @ e
N QP10 2.2463 § QP10 2.0546 a QP 10 1.8096
w —
(4]
QP15 2.3300 QP15 2.1244 ” QP15 1.8626
QP5 2.0397 QP5 1.8114 QPS5 2.6210
o = dl_.)
-_c%‘ QP10 2.1223 if’ QP10 1.8387 'c_E QP10 2.7789
w
QP15 2.3196 QP 15 1.8774 QP15 2.8622
S QP5 1.8252 QP5 1.7107 . QP5 2.0381
b c £
é QP10 1.8728 g QP10 1.7280 _(% QP 10 2.1062
(58] [72] —
(@} (@)
° QP15 1.9026 QP 15 1.7478 QP 15 2.2102
o QP5 1.9707 QP5 1.7959 S QP5 2.0285
e ® -gl
'g QP10 2.0234 9 QP10 1.8181 E QP 10 2.0941
o) = =
° QP15 2.0873 QP15 1.8951 £ QP15 2.1884

24




FIG. 11. The saving bit rate on various test sequences
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3.4 Summary

According to the experiment results mentioned ‘above, we could find the compression
efficiency depending on the picture complexity in-each frame. The distribution of saving bit rate in
each frame is normally average and the proposed lossless embedded compression algorithm

achieves the average of compression ratio more than 2 without quality degradation.
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Chapter 4
Hardware Architecture Design Integrated
with H.264/AVC HDTV Decoder

A lossless embedded compression codec engine is integrated with the SI12 Lab’s H.264/AVC
HDTV decoder and it is embedded in the memory controller as shown in FIG 12. The
reconstructed frame is generated by de-blocking filter and sent to the memory controller with
lossless embedded compression codec engine that compresses and stores the data in the frame
memory. For decompression, the data is read from the frame memory through memory controller,
decompressed and then sent to inter prediction unit for. motion compensation.

In this chapter, proposed memory controller for‘lossless,embedded compression codec engine
is presented in section 4.1. Memory controller-interface and SDRAM organization is presented in
section 4.2. The implementation of lossless.embedded compression and decompression algorithms

are presented in section 4.3 and 4.4 respectively. Finally, summary is described in section 4.5.
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FIG. 12. The block diagram of the S12 Lab’s H.264/AVC HDTYV decoder with lossless

embedded compression-codec engine

4.1  Memory Controller.

FIG. 13 shows the block diagram*of the memory controller with lossless embedded
compression codec engine we propose. The memory controller is placed between system bus and
many clients, i.e. IP blocks. The system bus transfers data after each other for many clients. The
carrying data consists of stream buffering, motion vectors buffering, reference picture store,
de-blocking, display feeder and motion compensation, etc. When image data passes over the bus, a
controller activates the lossless embedded compression codec engine. The compression unit
reduces the amount of data to be transferred; hence, the transfer length is reduced.

The system bus is shared among many clients. Although our proposed scheme is lossless
compression, in other words, any kind of data could be compressed as well as the compressed data
could be converse back original data. But proposed compression algorithm is developed for image

data. We can not guarantee the compression performance for the other non-image data. Hence the
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controller must not only recognize whether data is image type but also decide whether data will be
compressed. If system bus traffic is executed in transactions, the image data needs to be compressed.
Otherwise, the image data are forwarded uncompressed. Although image data could be compressed
by compression unit, however we still need to take a system architect's perspective including bus

arbitration, bus scheduling and the memory access protocols in order to achieve higher system bus

utility.
Interface to IP block Interface to system bus
address N
from MC 20 Address 20 -
address Mapping/Calculation . .
from DF "
5 g 5
length »| = length
L L
“H'T‘H\ Lossless Embedded f-""f'/
Compression Codec Engine
32 ﬁ* " « -k\—“ 32
data = » -+ » data
\j\\* *ﬂ_,..-—‘
setup - » controller .
= memory switch
Memory Controller

FIG. 13. The block diagram of the memory controller with lossless EC codec engine

4.2  Memory Controller Interface and SDRAM Organization
After receiving bitstream from the memory controller, we apply a data packing to send the

packed results into a data word-line on SDRAM. FIG. 14 depicts the SDRAM organization and

each word-length is of size 32-bit. And the memory address from the deblocking filter uses direct
28



mapping method. As an example, assume compression ratio is 2. For a write operation, the
compression unit receives the start address A and 16 bytes of image data. The data will be
compressed to 8 bytes of data, which is stored at the address A. The remainder 8 bytes of address
space is not used. At a read transaction on address A, the signal processing unit requests 16 bytes of
image data. Only 8 bytes of data are actually read from the memory. The compression unit
decompresses this to 16 bytes of image data, which is passed to the requesting bus client. The
address scheme our proposed is uncomplicated but wastes many memory space. Maybe we can

achieve higher memory utility through address mapping, can be made for the further research.

32 bits

SDRAM

FIG. 14. The block diagram of SDRAM organization

Because the motion compensation module requires the reference pixel values in SDRAM, a
compressed pixel is difficult for data addressing from SDRAM. As an example, assume a
integer-pixel compensation, the motion compensation requires the 4x4 reference pixel values
among four compressed segments that are stored in the SDRAM as shown in FIG. 15. We must
decode the four compressed segments first and then transfer 4x4 reference pixel values to the

motion compensation. Consider the worst case, sub-pixel compensation, the motion compensation
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requires 1/2 and 1/4 pixel compensation as shown in FIG. 16. The motion compensation requires
the 9x9 reference pixel values among nine compressed segments as shown in FIG. 17. Hence
motion compensation can not accept the extra latency duo to the decoding many compressed
segments that are stored in the SDRAM. In order to solve this problem, we may increase the

parallelism of processing elements to achieve motion compensation requirements.

FIG. 16. Sub-pixel motion compensation

v

Z
{ ||:

FIG. 17. The 9x9 reference pixel values among nine compressed segments
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Because the motion compensation module requires the reference pixel values in SDRAM

based on a given decoding index and motion vector, a compressed pixel is difficult for data

addressing from SDRAM. Therefore, we use address direct mapping method mentioned above for

deblocking filter module. That is helpful to simplify hardware design. To facilitate the SDRAM

data addressing, we propose a virtual-to-physical address mapping technique in FIG. 18 for motion

compensation. The address calculation computes the base address under a given virtual address.

However, because we store the compressed pixel data into SDRAM, the calculated address will not

be equal to the real one. Therefore, we need a translation buffer to look-up the offset address for

indicating each physical address on a macro-block level.

Virtual Address from MC

MB_x MB_y MV _x MV _y

Translation
Buffer

FIG. 18. A virtual to physical address mapping

4.3 The System Architecture for Lossless Embedded

Address

Calculation

Address
Mapping

SDRAM

f

Compression Algorithm

Physical Address

According to memory controller mentioned above and the specification of H.264/AVC FRExt

high profile (HiP) level 4.0 for HDTV application, the frame resolution is 1920x1088 and sampling
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structure is YUV 4:2:0. If the frame rate is 30Hz, the time budget assigned to one MB is only about
490 cycles and assigned to one block is only about 20 cycles with working frequency 120MHz. To
assure real-time operating on H.264/AVC HDTV video decoder, lossless embedded compression
encoder engines must be accomplished within the time budget respectively.

The proposed lossless embedded compression algorithm mapped to hardware architecture is
shown as FIG. 19. It is pipelined in four stages. Each pipeline stage requires 16 cycles to process
one 4x4 block. Thus, the first 4x4 block is generated after 52 cycles. From the next block, the
embedded compression encoder requires only 16 cycles to generate the output. To process a single
MB, the total execution time of the embedded compressor for one MB is 420 cycles. Note that this

speed can be achieved when the de-blocking filter can supply data fast enough to avoid any stall of

the pipeline.
I o[ 16 pixels |- I' T
V' 1 1 |2
I r I BE
| -+ scan_mode 0 ]:r Rice Mapping I+ ||
L, 2
| l 1 | § ;
4x4 | e 0 32 bits
pixels /1| + scan_mode 1 |- 1|r Rice Mapping i > I : > segment
M |jr———- _'i: ' E. | g.
I |is/scan mode 3| '+ Rice Mapping Il I ‘E'
I I q I |
I L/ scan mode 4 -+ Rice Mapping selector l T
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FIG. 19. The pipeline stages of lossless embedded compression encoder
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FIG. 20. The proposed pipelining scheme for encoder scheduling

The proposed pipelining scheme for encoder scheduling is shown in FIG. 20. The processing
unit is a block. In order to achieve pipelining schedule, we need a cache consisting of two buffers to
store block data. Hence DPCM s processingithe present block while the cache is storing the next
block in the same pipeline stage. The:size of-catch is. unequal because catch only has 4 latency
cycles and the other blocks have 16 latency cycles. In the following section, we would discuss the

architecture design of each stage as shown in FIG.-19.

4.3.1 The Architecture of Pixel-wise DPCM with Four Scan Modes

The architecture of pixel-wise DPCM with four scan modes is illustrated in FIG. 21. In this
stage, the pixel-wise DPCM are finished, the prediction errors after Rice mapping are latched and
the k-value is calculated at the same time.

The intra 4x4 prediction result chooses three scan modes among four scan modes as shown in
TABLE 3. Therefore scan_en is able to enable pixel-wise DPCM. And selector can choose input
data in the order of different scan modes to register pxl_1. In next cycle, pxl_1 will shift to pxl_0
while input data chosen by selector will store to register pxl_1. The Rice mapping rule is defined as
(1) and (2). It is notable that the positive conversion followed by subtraction of 1 for negative
inputs can be implemented just by bitwise inverting and it is expressed RTL language as shown in
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(8).
mapping = (diff [8]) ?{~ (diff [7:0]),1'b1}: {diff [7 : 0],1'b0} (8)
The k-value could be computed as (7). It also could be expressed in the following priority

conditions in hardware implementation:
k=0, O0<A,, <2%

1, 2" <A,.<2,
2, 2° <A <2°,
3, 2°<A,.<2,
4, 2" <A, <2°,
5
6

! 28 < A\/alue £29’
! 29 = Avalue Szlo

Avae IS indicated the accumulated sum of magnitudes of prediction errors. k = 6 has the highest

~ X X X X =~
I

priority and the next is k = 5, the lowest priority is k = 0.
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FIG. 21. The architecture of pixel-wise DPCM with four scan modes
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4.3.2 The Architecture of Code Length Predictor

The architecture of code length predictor is illustrated in FIG. 22. In this stage, the code length
predictor could select the shortest code length among three scan modes and store the corresponding
Rice mapping values to the register totmapping. If the shortest code length still exceed 128 bits
limit, we will directly transfer the 4x4 pixels to the system bus. According to (9) and (10), the total

code length limitation condition could be formulated as follows:

Length,,.,, = Length +Length giction errors = 128

total parameters

The total code length consists of two parts, one is the length of the header and the other is the
length of the prediction errors after Golomb-Rice coding.

The code length predictor with three scanimodes. is implemented for parallelism. The register
code_length[0]-[2] are the accumulated. sum’ of ithe .code length of Golomb-Rice code.
scan_mode_decision can select the shortest code length among three scan modes and moreover
produce the bitstream of header that.is: consisted of ‘tag, scan_mode, k, and first_pixel. If
scan_mode_decision detects total code length more than 128 bits limitation, Rice mapping values

will be translate into original 15 pixels and the header is only consisted of tag and first_pixel.
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FIG. 22. The architecture of code length predictor
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4.3.3 The Architecture of Golomb-Rice Coding with Packing

Our design conception of packing is shown in TABLE 8. Assume that prediction errors are
packed as a 16 bits wide segment. There are two 16-bits registers, upper register and lower register,
to store the prediction errors compressed by Golomb-Rice coding. The first bitstream 00010 is
stored in the MSB of the upper register, and the following bitstream is stored next. If the
accumulated sum of code length, Acc, is more than or equal to 16, the upper register is full and the
bitstream could be transfer to the system bus. The reminder bits in the lower register will be put on

the MSB of the upper register in the next cycle. And the following bitstream is stored next.

TABLE 8:

Design coneeption of packing

Input Upper reg. Lower reg. Acc. mapping | codeword (k=1)
6 00010 5 0 10
5 000100011 9 1 11
0 00010001110 11 2 010
2 00010001110010 14 3 011
7 0001000111001000 | 011 16+3 4 0010
4 0110010 : 7 5 0011
t | Overflow!
L - - _ 6 00010
7 00011

According to the above design conception, the proposed architecture of Golomb-Rice coding
with packing is illustrated in FIG. 23. In this stage, the prediction errors are further compressed by
Golomb-Rice coding and packed as a 32 bits wide bitstream to system bus.

Each codeword and code length is calculated by using k-value and mapping value as shown in
37



TABLE 4. First we should make quotient Q and remainder R for each mapping value. The header
and R are indicated codeword and k-value and Q are indicated code length. The codeword and code
length will be transmitted to the barrel shifter. The output of the barrel shifter is 64 bits wide
bitstream and store to the output register. If the output register is full, it will transfer the bitstream to

the system bus.
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h
4 9'd14
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| header[14] |
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[63:32]
v
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shift_num >= 32
(32
bitstream[32]
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FIG. 23. The architecture of Golomb-Rice coding with packing
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4.4  The System Architecture for Lossless Embedded

Decompression Algorithm

The proposed lossless embedded decompression algorithm mapped to hardware architecture is
shown as FIG. 24. The embedded de-compressor decodes one symbol by one clock cycle and
outputs the reconstructed pixels requires 4 cycles. Thus, the 4x4 block is generated after 20 cycles.
To process a single MB, the total execution time of the embedded de-compressor for one MB is 480
cycles. Note that this speed can be achieved when the system bus can supply data fast enough to

avoid any stall of the decoder.

{scan mode 0]
{scan mode 1]
[ /- { "y || T
{Ti6pion |

selector

FIG. 24. The lossless embedded compression decoder

In the following section, we would discuss the architecture design of each block as shown in

FIG. 24.
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4.4.1 The Architecture of Synchronous FIFO with Barrel Shifter

Our design conception of Golomb-Rice decoding is shown in TABLE 9. Assume that the
system bus will transfer 16 bits wide bitstream to the decoder. There are two 16-bits registers, upper
register and lower register, to store the bitstream from the bus. The first bitstream is put in the upper
register. The decoder will calculate the codeword and code length. The first code word is 00010 and
the code length is 5. Hence in the next cycle time, upper register will shift left by 5 bits. If the

registers have enough space to store the bitstream, the barrel shifter will cascade input bitstream

and original bitstream stored in the register.

TABLE 9:

Design conception of Golomb-Rice decoding

Upper reg. Lower reg. mapping  shift mapping | codeword
0001000111001000 6 5 0 10
00111001000 0110010110010011 5 4 1 11
100100001100101 10010011 0 2 2 010
010000110010110 010011 2 3 3 011
000110010110010 011 0 5 4 0010
0010110010011 7 4 5 0011

6 00010
7 00011

According to the above design conception, the proposed architecture of synchronous FIFO
with barrel shifter is illustrated in FIG. 25. It can achieve not only the functionality of a FIFO, but
also the functionality of shifting any bit wide. If the FIFO has enough space to store the bitstream,

the embedded compression decoder will accept 32 bits wide bitstream from system bus while it will
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decode a codeword and the FIFO will shift the corresponding code length (i.e. truncate the solved

codeword) at the same cycle time.
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—  7'd32
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7
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v

buffer[64]

I

<]

FIG. 25. The architecture of synchronous FIFO with barrel shifter
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4.4.2 The Architecture of Golomb-Rice Decoder

The Golomb-Rice decoder can fetch the bitstream that is stored in the FIFO. It will decode the
parameters of a segment first and moreover analyze present state. If tag is equal to 1, the bitstream
is indicated a compressed segment, else it is indicated an uncompressed segment. The next step is
to solve a codeword that is calculated as g << k + r. The code length is also calculated as 1 + q + k
at the same time and it will feed back to the synchronous FIFO with barrel shifter for shifting the

requirement bit count. The architecture of Golomb-Rice decoder is illustrated in FIG. 26.

buffer[64]
<]
32
L ¥
ry
E L
¥ l /!
ai
‘ remapping ]4 tag & k[3] {mde_length }
¥ ¥ 9
9
remapping[9] tag scan_mode[2]
<] <] <

FIG. 26. The architecture of Golomb-Rice decoder
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4.4.3 The Architecture of Inverse Scan Modes

The architecture of inverse scan modes is illustrated in FIG. 27. In this stage, the remapping
values are translated to prediction errors diff and return to original pixel values. The conversion
back from remapping to diff is simple because the LSB of value indicates whether diff is a negative
or not. It could be expressed RTL language as shown in (12).

diff = (remapping[0]) ?{1'bl, ~ (remapping[8:1])}:{L' b0, remapping[8:1]}  (12)
After inversing DPCM procedure, all pixel values are reconstructed. Finally they will be packed as

a 32 bits wide bitstream to the output port.

tag remapping[9] scan_mode[2]
ii |
9
*
9

sum[8]

N

8x16

£

v

pxl[16][8]

4 pixels (32 bits)

FIG. 27. The architecture of inverse scan modes
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4.5 Summary

TABLE 10 shows the implementation results of the proposed lossless embedded compression
codec engine and TABLE 11 lists some other required operating frequency in our design. After
synthesizing based on UMC 0.18um CMOS technology, the total gate counts are 22.5K. Working
frequency is 120MHz and power consumption is 3.3mW. Additionally, the processing latency pre

MB are less than 490 cycles to assure real-time operating on H.264/AVC HDTV video decoder.

Therefore, it achieves both low complexity as well as latency requirements.

The implementation results of the proposed lossless embedded compression codec engine

TABLE 10:

Item Specification
Function Compressor De-compressor
Process 0:18um
Supply Woltage 1.2V
Working Frequency 120MHz

Throughput HDTV(1920x1088) (4:2:0)@30fps
Latency/MB 420 cycles 480 cycles
Synthesized Gate Counts 17.9K 4.6K
Power Consumption 2.1mwW 1.2mW
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TABLE 11:

The required operation frequency in different video formats in our proposed design

Required operation
Video format Frame size
frequency
HDTV 1920x1088 120MHz
XGA 1024x768 45MHz
VGA 640x480 20MHz
CIF 352x288 6MHz
QCIF 176x144 1.5MHz
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Chapter 5
Experimental Results

In this chapter the experimental results are presented, it includes the performance evaluation
and implantation results. Furthermore, the comparison with related works proves that our proposed
lossless embedded compression codec engine is more suitable to be integrated with H.264 /AVC

HDTYV decoder.

5.1 Performance Evaluation

The proposed method for the ,*H.264/AVC .HDTV decoder with lossless embedded
compression codec engine is in order-to.reduce the.system bus access when motion compensation
and displaying. Hence we are most concerned-about-compression ratio of proposed method. The
software implementation of the proposed algorithm is-integrated with JM8.2 reference software of
the H.264/AVC main profile and the reconstructed frame from de-blocking filter is compressed by
the proposed algorithm. The lossless embedded compression algorithm is evaluated with 18 test
video sequences with CIF (352 x 288) resolution. For all test sequences, 100 frames are used with
QP =5, 10 and 15 respectively. The compression ratio with different QP values on various test
sequences as shown in TABLE 7. TABLE 12 exhibits a summary the average compression ratio
with different QP values.

According to the simulation results, approximately 50% data compression ratio when motion
compensation and displaying can be saved and no quality will be sacrificed. The size of encoded

block is not guaranteed, so the external memory size for one block has to be unchanged.
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TABLE 12:

The average compression ratio with different QP values on various test sequences

QP Values Compression Ratio
average CRof QP =5 1.9851
average CR of QP =10 2.0402
average CR of QP = 15 2.1152
total average 2.046

5.2 Implementation Results

For the real-time H.264/AVC HDTYV video decoder, the high video quality requirement is
necessary; hence we will desire no quality-degradation due to the embedded compression codec
engine. Therefore lossless embedded compression  codec: engine is adopted for our proposed
method integrated with H.264/AVC HDTV decoder.

TABLE 10 shows the implementation results of the‘proposed lossless embedded compression
codec engine. It is integrated with the SI2 Lab’s 'H.264/AVC HDTYV decoder and embedded in the
memory controller as shown in FIG. 12. This decoder can process the high-definition (L080HD)
video decoding demands at the speed of 30 frames per second with the operating clock frequency
of 120 MHz. Assume SDRAMs only give linear address, if the compressed data are stored in line
per page, according to simulation results, it can save 29% ~ 57% of memory access.

Eqg. (13) and (14) shows the relationship between bandwidth and accesses. The original
bandwidth can be calculated as 94MB/S in the 1080HD mode. The bandwidth requirement is
reduced because the amount of fetched data is reduced. Therefore the required bandwidth can be
reduced to 66.7 ~ 40.4MB/S. However, on the external memory, the miss rate increment also leads
to the throughput degradation and additional requirement of external bandwidth. Therefore the miss

rate in 1L080HD video resolution should be made for the further analysis.
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# of 4x4 block accesses bytes frame
x16 X

Bandwidth(Bytes/sec) = Pa— x4 block < sec

(13)

#of 4x4 block accesses = # of wirte accesses + # of read accesses (14)
The access frequency is related to the access power consumption of external memory shown in Eq.
(15). Therefore, we have to reduce the access bandwidth and thus reduce power consumption on
internal and external memory.

To analyze the power reduction duo to less memory access, we describe the power modeling
to estimate power consumption of external memory. The external memory, two SDRAMs [25] are
allowed for writing and reading reciprocally at the same time. However, the power modeling
becomes more complicated. Not only data access but also 10 and background power (e.g.
pre-charge, active etc) should be concerned in the power calculation of external memory. We
choose the system-power calculator [26].@as:external memory power model. The power
consumption of external memory can be considered-as a summation of access, 10 and background
power in Eq. (15).

P

external _ mem

AE

access

8% + Pys (15)

From our simulation, we choose CAS latency =2, BL = 1, 'CK=7ns as our SDRAM model
configuration [25] and then operated at 1080HD applications and then according to the
system-power calculator, the original power of SDRAM is 474.2mW. At the same condition, if the
memory access can save 29%~57%, the power consumption of external memory is 365.8mW ~
388.5mW as shown in FIG. 28.

The SI2 Lab’s H.264/AVC HDTV decoder without the proposed codec engine module is
fabricated as a chip using UMC 0.18 um CMOS technology. The logic gate count is about 303.78K
excluding external memory and core power consumption of high-definition decoding is 102.3mW.
And our codec engine gate count is about 22.5K and power consumption is 3.3mW. According to
the power consumption of external memory mentioned above, the overall power consumption is

reduced to 14.3%~28.7% of original power consumption.
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FIG. 28. The comparison of power consumption in original work and proposed method

5.3 Comparison with Related Works

TABLE 13 is the comparison with related works, reference [21] makes use of SPIHT-based
compression algorithm and reference [20] makes use of DPCM-based compression algorithm. Both
SPIHT and DPCM have their own unique advantages. Due to the inherent properties of SPIHT, it
can support both lossy and lossless compression. But this algorithm is the numerous memory cost
and computational power. DPCM is easy to design and implementation. But we are concerned
about its compression ratio. The H.264/AVC provides efficient lossy coding of video content. And
QP values dominate the most video quality. Therefore we experiment the compression ratio on
different QP values under the equivalent condition. Further the implementation results of references

[20] and [21] are to be listed in TABLE 13 as well.
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TABLE 13:

The comparison with related works

SIPS 05 [21] ISCAS 07 [20] Proposed Method
Method SPIHT-based DPCM-based DPCM-based

average CRof QP =5 1.7889 N/A 1.9851
average CRof QP =10 | 1.8939 N/A 2.0402
average CRof QP =15 | 1.9880 N/A 2.1152
lossless CR 1.890 N/A 2.046

2/1.1dB
lossy CR 2/1.03dB N/A

4/4.2dB
Process 0.18um 0/18um 0.18um
Processing Resolution VGA QCIE 1080HD
Working Frequency 30MHz 14MHz 120MHz
Gate Counts 27K 28K 22.5K
Power Consumption 3.36mwW N/A 3.3mwW

5.4 Summary

Although SPIHT can support both lossless and lossy compression, we desire no quality
degradation due to the embedded compression algorithm, especially high-quality video content is
necessary. Our proposed method can not only achieve lossless compression but also operate high
resolution video system. According to the experimental results mentioned above, our codec engine
gate count is about 22.5K and power consumption is 3.3mW. Additionally, it can save 29% ~ 57%
of memory access. The overall power consumption is reduced to 14.3%~28.7% of original power

consumption.
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Chapter 6
Conclusion and Future Work

6.1 Conclusion

In this thesis, we propose an efficient lossless embedded compression codec engine to reduce
the system bus access without quality degradation. It can save 29% ~ 57% of memory access. The
overall power consumption is reduced to 14.3%~28.7% of original power consumption. Moreover,
our proposed architecture can not only be operated on high resolution applications but also achieve
less power consumption. Therefore, the propesed lossless embedded compression codec engine is
more suitable to be integrated with H.264 /AVC HDTV.decader.

The proposed embedded compression algorithm makes use of the information given by the
H.264/AVC decoder. Although this thesis shows'an.example that integrates the proposed method
with H.264/AVC decoder, the proposed algorithm can also be integrated with any other video
encoding standard. Moreover, the design conception of lossless EC embedded with memory

controller can be further analyzed and modified to the other video system.

6.2 Future Work

While the memory controller methods had been discussed in Chapter 4.1, there are many
challenges left to be solved. Besides the characteristics of data accessing, the properties of the
SDRAMs have to be taken into account. When determining how the data should be stored in the
memory, we can see that more page breaks, more active command and latency are needed with
SDRAMs. Although controller can arrange the SDRAMSs access command in some schedule to
reduce the bubble in data bus, the schedule cannot meet various block size requirements. In
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addition, more SDRAMs command lead to more power consumption. So the key point of memory
access is to avoid breaking page frequently. Therefore how the SDRAM controller is designed to

reduce additional page-active cycle in reading and writing access should be further explored.
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