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摘 要 

本論文探討人工社會當中，因為公利與私益之間的衝突，所造成的困

局。我們利用『囚犯困境』此數學模型，作為研究的基礎模型。本論文

提出一套分析架構，根據人工社會當中代理人之間的互動模式，來分析

兩個以上的代理人之間的關係。此分析架構可以呈現一策略集合當中，

所有策略之間的關係。此關係包含策略侵佔其他策略的能力，以及同種

策略之間形成聚集的強度。以此分析架構以及另一例子說明，我們提出

在研究方法上，於模型的模擬及執行之前，進行模型分析的重要性。本

論文更進一步探討人工社會當中，環境因素對代理人行為以及策略運用

的影響。 
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ABSTRACT 

The author reports on his investigation of the conflict between public 

good and private interest in artificial societies, using the classical model 

known as the Prisoner’s Dilemma. The proposed analytical framework can 

be used to analyze relationships between and among agents in an artificial 

society based on their interaction patterns.  Framework success relies on 

(and emphasizes the importance of) a model analysis being performed prior 

to any simulation or execution of an agent-based computation. A secondary 

issue discussed in this report is the effect of environment on agent actions. 

The results indicate that agents benefit greatly from acknowledging 

environmental factors when determining subsequent moves.  
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Chapter 1.   
 
Introduction 

 

 

1.1 Motivation 

Many computer science researchers are currently focusing on the concept of 

“society.” In addition to “real world” society, they are dealing with an increasing number 

of societies created with computer technologies. Examples include multi-agent systems 

that are available for problem solving and goal achievement. Multiple User Dungeon 

(MUD) systems and online games allow users to fight battles, solve puzzles, converse, and 

establish long-term relationships such as virtual marriages [1, 2], and virtual markets in the 

form of online auction systems are very common.  Participant behavior in these 

societies—described by many as mere abstractions or simplifications of human 

societies—is attracting attention not only from computer science researchers, but also from 

sociologists and scholars in other social sciences. 
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It is important to make a distinction between virtual and artificial societies. Virtual 

environments (e.g., MUDs) are constructed with computer technologies, but they are 

inhabited by individuals who are either human or controlled by humans [3]. In contrast, all 

entities that exist in an artificial society are artificial—both the environment and 

individuals within the environment. Human interference is impossible in artificial societies. 

Unlike virtual societies (whose primary purpose is to provide alternative means for 

human interaction [3] or learning [4, 5]), the motivations for creating an artificial society 

are two-fold: to simulate real-world phenomena [6-9] or to solve problems within a 

societal context. The first motivation is a reflection of the difficulty of performing 

experiments and making observations in real-world societies [6-10].  Since artificial 

societies make it possible to simulate and observe certain phenomena, they are often 

referred to as artificial societies for simulation.  The second motivation involves more 

complex issues—for instance, the use of multiple software-driven agents programmed to 

cooperate in order to solve prescribed problems.  Artificial intelligence (AI) methods that 

incorporate such societies to solve problems include genetic algorithms, ant colony 

systems, artificial immune systems, classifier systems, and artificial neural networks. 

These kinds of societies are referred to as artificial societies for problem solving.  
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In artificial societies created for problem-solving purposes, solutions are arrived at by 

achieving either individual or global (system-level) goals. An example of the first is a 

genetic algorithm whose success is defined in terms of finding a chromosome that 

optimally satisfies specified problem constraints. An example of the second is a 

multi-agent system in which the agents are programmed to work in a cooperative manner. 

Most artificial societies contain a highly correlated mix of individual and global goals.  

Ideally, artificial society design should emphasize consistency between individual and 

global goals, but this ideal is sometimes ignored as systems become more complex.  

For example, in genetic algorithms, the main goal of a chromosome is to achieve a 

higher level of fitness in order to increase the probability of being selected for the next 

generation. On the other hand, if it outperforms other chromosomes too quickly or by too 

much, it increases the danger of premature convergence [11, 12]. In a multi-agent system 

in which all agents share the same system resources, it is reasonable for an agent to hold 

onto a resource as long as possible (since doing so allows it to do more work to achieve its 

goal), but at the expense of adequate resources for other agents.  This scenario is 

advantageous in the short term for the agent holding onto the resource, but long-term 

system performance may suffer from the inability of other agents to finish their tasks. This 

conflict between public good and private interest is a central issue for designers who wish 

to improve the efficiency of artificial societies. 
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1.2 Study Importance 

The public good vs. private interest topic has also attracted real-world interest from 

sociologists, economists, and ecologists. It is usually expressed in terms of a 

mathematically simple but analytically intractable model known as the Prisoner’s Dilemma 

(PD).  Since the research focus is on the same conflict in artificial societies, the PD model 

will also play a central role in this investigation. The primary difference between the 

analytical framework presented in this dissertation and previous PD research is an 

emphasis on interactions between individuals rather than the equilibrium analyses and 

evolutionary simulations that dominate the current PD literature.  

In addition, I will emphasize the importance of model analysis before running 

simulations or models. This is an important topic that is often overlooked by researchers 

who use artificial societies for solving problems or running simulations. A central 

argument to be presented in this dissertation is that appropriate model analysis facilitates 

simulation efficiency. A detailed example will be presented to illustrate that under certain 

circumstances, an analytical approach can outperform evolutionary or agent-based 

computations. 
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1.3 Study Outline 

A review of related studies is presented in the following chapter.  In addition to 

listing popular artificial societies for problem solving and describing them in terms of the 

public good/private interest conflict, I will discuss the development of the PD model and 

common approaches to PD investigations. In Chapter 3, I will present a simple case study 

outlining the importance of performing model analysis before running a simulation or 

solving a problem. In Chapter 4, a description of the analytical framework for analyzing 

PD strategy relationships will be given. An application of the framework to memory-1 

strategies will be described in Chapter 5—including evidence that the framework is useful 

in identifying important PD strategies and simulation phenomena. Chapter 6 contains a 

discussion of framework extension and generalization to models whose strategies are 

encoded in other forms, in spatial PD models, and in biased selection PD models. Also in 

Chapter 6, I will discuss framework methodology and its application to other kinds of 

artificial society analyses. A discussion of the effects of strategic PD environments is 

presented in Chapter 7, and conclusions are given in Chapter 8.  
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Chapter 2.   
 
Related Work 
 

 

2.1 Artificial Society 

2.1.1 Primary Components of Artificial Societies 

According to Actikis and Pitt [13], all artificial societies include a) a set of agents, b) a 

set of societal constraints, c) a language for communication, d) a set of agent roles, e) a set 

of states of affairs that hold at each time at the society, and f) a set of agents (sometimes 

referred to as owners). Tim Doran [14, 15] defined an abstract model of an artificial society 

as a network (or graph) with nodes called sites and links called channels. At any single 

moment, a network is filled with many agents and items located at individual sites.  
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From the two definitions, the three primitive components of an artificial society 

are: 

a) Agents (individuals). Considered basic units of an artificial society, agents have 

their own characteristics and express their own behaviors. Depending on the level of 

sophistication of an artificial society, it can be categorized as homogeneous or 

heterogeneous. Homogeneous agents have similar or equivalent characteristics—for 

example, chromosomes in the simplest form of a genetic algorithm (GA). Even though a 

set of chromosomes may have different gene combinations and fitness values, they have 

the same format and express the same behaviors (e.g., they are evaluated by the same 

function and interact with other chromosomes via such shared mechanisms as crossover 

operators).  

Agents are said heterogeneous if they have completely different characteristics, 

including behaviors, goals, or encodings. Well-known examples of heterogeneous artificial 

societal agents are agents in multi-agent systems. They are purposefully designed with 

completely different goals and behaviors, cooperating and interacting in order to achieve 

system goals.  

b) Environment. Artificial societies must provide environments in which agents can 

perform their functions.  In its simplest form, an environment is a set of agents—for 
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instance, the set of all cells in a cellular automata [16, 17]. The actions of a cell are 

determined by its current status as well as the statuses of its neighboring cells—no other 

factor is involved, unlike the situation for more complex artificial societies. An example of 

a more complex scenario is a classifier system, which consists of four basic parts: input 

interface, classifiers, message lists, and output interface [18]. Messages are read from an 

input interface and added to a message list that all classifiers use to determine which 

messages satisfy their conditions. Results are sent to the output interface. In this example, 

messages are considered the environment that affects all classifiers.  

There are two categories of environments: agent viewpoint and global environment. 

For most artificial societies, these two are distinctly different. Since information can decay 

or be lost through propagation, and since each agent has a limited perception of its 

environment, any environment is usually considered incomplete from an agent’s viewpoint. 

It is important that users know if the environmental information they are working with is 

global or from an individual agent’s viewpoint. 

c) Interaction. The most important component that determines the complexity and 

characteristics of an artificial society is interactions between the basic entities of agent and 

environment. In their absence, artificial societies simply constitute a set of static data.  
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Interactions in artificial societies can be categorized as between agents or between 

agents and environments. The first category is more common.  An example is the 

crossover operator in GAs, in which two chromosomes interact via gene exchange. In 

multi-agent systems, agents can negotiate with, take information from, or give information 

to other agents. Interactions between agents and environments are more common in more 

sophisticated artificial societies—for instance, ant colony systems [19-21]. Ants secrete 

pheromones into their environments, and their actions are determined according to the 

pheromones they encounter. Their interactions are said to be limited to their environment 

instead of with other ants. 

2.1.2 Popular Artificial Societies for Problem Solving 

A list of artificial societies commonly used for problem solving is presented in Table 

2.1, categorized according to their primary component characteristics. 

GAs are considered simple artificial societies that contain chromosomes as 

homogeneous agents; no other environmental factor is involved. Classifier systems are 

more complex than GAs in that they accept external input and generate output, both of 

which can be viewed as environmental factors whose statuses affect the system. 

Furthermore, classifiers can interact with those environmental factors as well as with other 

classifiers. As stated in the preceding section, an ant colony system is considered a special 
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type of artificial society in that there is no interaction between agents, only between agents 

and their environment. Neural networks are considered a particular type in that interactions 

between agents (nodes) are fixed; interaction between two nodes is impossible in the 

absence of a connecting link. 

 

Table 2.1:  Artificial Societies Commonly Used for Problem Solving 

 Agent Environment Interaction 

Genetic Algorithm [22] Homogeneous N/A A-A1

Ant Colony System [19-21] Homogenous Simple A-E2

Classifier System [18] Homogenous Complex A-A, A-E 

Neural Network[23] Homogenous Complex 
A-A, A-E,  
but fixed 

Artificial Immune System 
[24-28] 

Heterogeneous Complex A-A, A-E 

Multi-Agent System [29, 30] Heterogeneous Complex A-A, A-E 

1 interactions between agents. 
2 interactions between agents and environments. 
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2.1.3 The Public Good/Private Interests Conflict in Artificial Societies 

A common real-world conflict is that between the public good and private interests. 

However, it remains to be seen whether this conflict also exists in artificial societies that 

are not inhabited by humans or other living beings—especially artificial societies whose 

primary goal is to solve problems, instead of simulating real-world phenomena.  As 

mentioned in Chapter 1, in problem-solving artificial societies the society concept is used 

to solve problems via either individual achievement or societal achievement of a 

system-level goal. Regardless of the approach, the public good/private interest conflict 

makes an appearance sooner or later. A list of common artificial societies used for problem 

solving is presented in Table 2.2, along with a summary of the goals and issues raised by 

this conflict.  

From Table 2.2, it is clear that even in the artificial societies for problem solving, the 

conflict between private good and public interest is also a crucial issue. I believe that the 

investigation of this conflict will be helpful for efficient use of those models.  
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Table 2.2:  List of Artificial Societies, their Goal Levels, and Conflict between 
Individual Agent and Societal Goal 

 The Level of Goal 
(System/Individual)

Conflict between Agent’s and 
Societal Goals 

Genetic Algorithm Individual 
Premature Convergence, 

 [11, 12] 

Ant Colony System System N/A 

Classifier System System 
Credit Assignment [31, 32],  

Premature Convergence 

Artificial Immune System Individual/System Selection Mechanism [24] 

Neural Network System N/A 

Multi-Agent System Individual/System 

Mechanism Design [33, 34], 
Action Selection [35],  

Resource Management [36], 
Robots Conflict Detection [37] 

 

2.2 The Prisoner’s Dilemma (PD) 

2.2.1 PD and IPD (Iterated Prisoner’s Dilemma) 

The Prisoner’s Dilemma (PD) is a precise mathematical model that is frequently used 

by economists [38], sociologists [39, 40], political scientists [41], biologists [42], and 

psychologists [43] to analyze conflicts of interest [44]. It is considered a powerful tool for 
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explaining human and animal society organization and for promoting cooperation among 

agents in virtual environments [45]. Its simplicity is considered one of its outstanding 

qualities, yet it remains a surprisingly complex problem to analyze. 

In a classic version of a PD game, two players decide whether each move they make 

should be one of cooperation or defection.  A payoff is given to each player according to 

their combined moves.  Table 2.3 shows a typical payoff matrix, including value 

constraints. 

 

Table 2.3:  Prisoner’s Dilemma Payoff Matrix and Constraints 

Player B 

Player A 
Cooperation Defection 

Cooperation 
Reward

 
Reward 

Sucker’s 
 

Temptation 

Defection 
Temptation

 
Sucker’s 

Penalty 
 

Penalty 

Note: Temptation > Reward > Penalty > Sucker’s, and 

2×(Reward) > Temptation + Sucker’s, or simplified: 

T > R > P > S, and 2×R > T+S. 
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If both players know that they will play a PD game one time only, it is to their benefit 

to continually make defection moves in order to achieve a maximum outcome.  If they 

know that they will play many games (a situation referred to as the Iterated Prisoner’s 

Dilemma, or IPD), mutual cooperation is a better strategy for both players.  Since most 

real-world dilemmas are iterated, the IPD is of great interest to researchers [46, 47]. 

2.2.2 Research Topics on IPD 

IPD research falls into two broad categories:  

a) Model Behavior Investigations. Despite its mathematical simplicity, IPD model 

behavior is surprisingly complex. Originally, IPD researchers were interested in 

understanding the behavioral characteristics of this model  (e.g., dynamics of population 

[48, 49], and persistence of cooperation [50]), and of such common strategies as 

Tit-for-Tat (repeat what your opponent does in the previous round) and PAVLOV (a 

win-stay-lose-shift strategy) in various scenarios [46, 51, 52]. Other researchers reported 

on the strengths and weaknesses of strategies encoded in various formats, including 

memory-n strategies [53, 54], finite automata strategies [55], rule-based strategies [56], 

and other formats [57-59]. Evolutionarily Stable Strategies (ESS) have also been the focus 

of numerous studies in terms of properties and their existence in various situations [60-64]. 
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b) Model Sophistication. More recently, researchers have focused on IPD model 

sophistication in an attempt to apply it to a wider range of problems that are more 

representative of the real world. Several have introduced spatial IPD models in which 

agents are positioned in two-dimensional spaces; these agents are limited to interacting 

with neighboring strategies [65-70]  Others have reported that cooperative behavior is 

more likely in PD models where opponent selection is biased [45, 71-73]. In PD games 

with more than two players (known as N-player PDs), emergent cooperative behavior 

differs from that observed in two-person games [74, 75]. In N-choice PD, players may not 

be limited to choosing between cooperation or defection [71, 76, 77]. An extension of 

N-choice PD is the continuous PD model, in which player actions are viewed as an infinite 

set of continuous values instead of a finite set of moves [78-80]. For each of these models, 

the guiding goal is to determine if more realistic factors affect cooperative behavior.  

2.2.3 Methods Used to Investigate PD 

Currently the two predominant approaches to PD research are mathematical analysis 

[60, 62-64, 75, 81, 82] and evolutionary simulation [56, 65, 71, 74, 77, 78, 83-85]. Nowak 

[81] emphasizes the dynamic complexity and unpredictability of PD games despite their 

small number of strategies based on a simple set of rules. Besides, after using a spatial 

model to simulate the evolution of 2×2 matrix games, Lindgren and Nordahl [66] 
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concluded that limited computation resources produce simulation results that are heavily 

dependent upon the parameters involved. For these and additional reasons, PD games are 

usually analyzed under certain restrictions.  For example, Nowak analyzed the dynamics 

of only three kinds of PD strategies [81]. In a separate project [82], he investigated a 

homogeneous population of strategies in an attempt to simulate strategy evolution. 

Clear relationships among strategies (i.e., the specifics of player actions during a PD 

game) must be established prior to studying a PD problem.  Furthermore, artificial society 

component categories underscore the importance of considering agent interactions. 

Although the IPD model is used in this study of the public good/private interest conflict in 

artificial societies, an important distinction is the use of an agent viewpoint of interactions.  

It is also important to note the important role played by simulations, regardless of the 

degree of understanding of model behavior or level of sophistication. Even in analytical 

studies, the majority of researchers have used simulations to collect comprehensive data on 

model behavior [76].  The framework described in this dissertation was used to analyze 

relationships between strategies—a crucial pre-simulation step that is often overlooked. 

Most IPD studies make use of one of the payoff matrices shown in Table 2.4. The 

effect of payoff matrix choice on study results remains unclear. The model used in this 

study is based on the payoff matrix constraint shown in Table 2.3—in other words, it is 

 16



independent of the payoff matrix value. 

 

Table 2.4:  Some Commonly Used Payoff Matrices for the Prisoner’s Dilemma 

Payoff Matrix Values 

 [R, S, T, P] 
Reference 

[3, 0, 5, 1] [45, 46, 55, 65, 66, 68, 86] 

[4, 0, 5, 1] [84] 

[1, -2, 2, -1] [53] 

[3, 1, 4, 2] [87] 
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Chapter 3.   
 
The Importance of Model Analysis 
Prior to Artificial Society Simulation 
and Execution 

 

 

Performing a model analysis prior to model simulation and execution is important 

regardless of the intended purpose of the artificial society in question. In this chapter I will 

offer reasons why it is important and present an illustrative example to show how it 

facilitates the use of artificial societies for problem solving. 

Regarding the model execution/simulation process, common methodologies include 

the following steps: a) model creation (constructing a model based on an existing theory, 

hypothesis, or empirical data); b) model execution (running a model to produce data); and 
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c) model verification (assessing a model’s ability to operate as intended) and validation 

(analyzing data to ensure that a model is working as intended) [88]. 

Although it is rarely included in lists of model execution/simulation methodologies, 

theoretical and statistical model analyses play important roles.  During the creation phase, 

model structures and relationships are mostly based on theories or hypotheses.  

Theoretical variables are defined and quantified, and relationships among them are 

encoded [89].   In the words of Hanneman and Patrick, any model being constructed is 

“one concrete realization of the prior theory” [10].  During the verification phase, the 

simulated results are statistically analyzed for purposes of interpretation and/or explanation 

[6].  

There are few discussions in the literature of useful analytical tasks to be performed 

after a model is created but before simulation begins.  At this point, it is important to 

determine appropriate model parameters or parameter sets based on empirical experience 

or existing data.   The importance of analysis at this phase is the focus of this chapter.  

We believe that pre-simulation model analysis can help reduce simulation complexity as 

well as assist in the identification of appropriate execution/simulation parameters.   
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3.1 Why Analyze before Model Simulation and 

Execution? 

The most important motivation for a pre-execution/simulation model analysis is the 

assumption that the more one knows, the easier it will be to properly simulate or run the 

model.  In this section I will describe how a pre-execution/simulation analysis helps in 

defining model scope, reducing model complexity, and choosing appropriate 

simulation/execution parameters. 

3.1.1 Defining Model Scope 

Even though defining a model’s scope is an important first step toward increasing 

model efficiency, it is surprising how often this step is overlooked by researchers.  

Whenever an execution/simulation run provides significant findings, the data and the 

model clearly need to be inspected in terms of validity. But it is equally important to 

determine the conditions under which a particular model is successful, as well as the 

possibility of achieving success under other conditions. 

Following model construction, concepts and entities are defined as parameters or 

variables.  Prior to each new execution/simulation run, individual parameters must be set 

to specific values to satisfy some condition. An execution/simulation run is not equivalent 
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to a model.  In this paper, a run is defined as an instance of the model.  In theoretical 

terms, the comprehensive understanding of a model requires the execution/simulations of 

all possible model instances, but doing so is usually considered impractical. 

A model M can be defined as 

M=(P1, P2, … , Pn), 

where P1, P2, … , Pn represent n parameters of M.  Letting N denote the number of 

possible model instances and |Pi| denote the number of possible values of parameter Pi, 

then 

N = |P1| • |P2| • … |Pn| 

Each parameter has its own constraints.  Examples of discrete parameters include the 

size of a population in a societal model and the number of nodes in a social network model 

[90].  Here the number of possible values is finite, but other parameters are considered 

continuous and infinite—for instance, tax rates in a simulation of tax and welfare systems.  

Most artificial society models contain both discrete and continuous parameters; even in 

simple models, the number of instances is usually large or infinite.  Each instance 

represents a tiny part of the model.  
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Since it is impossible to execute/simulate all model instances, it is important to choose 

an appropriate single model instance or set of model instances.  I want to emphasize the 

importance of knowing the number of potential choices before making what appears to be 

the most appropriate choice, since the success of one model instance implies overall model 

success, but the failure of one model instance does not imply overall model failure.  It is 

easier to figure out the relationship between a model and a model instance once its scope is 

defined.  

3.1.2 Reducing Model Complexity 

 The second step toward successful execution/simulation involves reducing model 

complexity.  Once the scope of a model is defined, it is no longer necessary to run all 

possible model instances.  Unnecessary instances should be avoided in order to make the 

execution/simulation process more efficient.  The two types of model instances that can 

be skipped are: 

a) Unreasonable instances, meaning that a parameter setting does not match real 

world conditions. These can be further divided into two categories: (1) instances with 

unreasonable parameter values, which are not under the constraints of the corresponding 

parameters; and (2) unreasonable parameter combinations, meaning that individual 

parameter values that are considered reasonable become unreasonable once they are 
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combined with other reasonable parameter values because of their correlational 

relationships. 

b) Equivalent instances, meaning that instances may appear to be completely 

different but nevertheless produce identical simulation results, or have identical meanings 

from the perspective of the model.  An analysis of equivalent instances can provide 

information about whether or not an instance should be executed or simulated.  It may be 

unnecessary to execute/simulate reasonable or important instances in cases where the 

results from equivalent instances are identified.  

 Analyses of unreasonable or equivalent instances reduce the number of potentially 

appropriate model instances.  Using the metaphor of a highway map, the scope of a model 

provides the number of possible ways to get from point A to point B, while reduced model 

complexity provides answers to questions such as: “Which routes will not get us from 

point A to point B?” and “Which individual routes lead to the same destination?” By 

reducing the numbers of unreasonable and equivalent instances, it becomes easier to 

choose the appropriate parameter settings for successful execution/simulation. 
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3.1.3 Choosing Appropriate Model Instances 

The final analytical step before execution/simulation is to determine appropriate 

model instances that resemble most other instances or that otherwise have some significant 

importance.  In the literature, most model instance selections are based on empirical data 

or the testing of hypotheses.  Nevertheless, an execution or simulation instance with 

significant results must still be tested to determine if it is representative of other instances 

and produce identical or similar outcomes.  Answering such questions becomes more 

difficult when model instance determinations are not based on theoretical or statistical 

analyses.  

 

3.2 Case Study 

 The example presented in this section is based on Azuaje’s [91] efforts to use a GA to 

evolve game strategies and cooperation. In my analytical approach the model is greatly 

simplified, which allows optimal solutions to be obtained more quickly and easily.  Even 

though the robustness of artificial societies designed for problem solving (including 

evolutionary approaches) makes them popular among researchers in various disciplines, 

two important considerations are frequently overlooked: the importance of pre-run model 
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analysis, and the need to make a conscious decision between evolutionary and analytical 

approaches to individual problems based on their specific characteristics. 

3.2.1 Model Description 

In [91], Azuaje proposes an approach to the co-evolution of competing virtual 

creatures to model the emergence of cooperation in game strategy. His artificial life model 

considers two kinds of organisms, X and Y. Their individual decisions about whether or not 

to approach a food source are presented in the form of an IPD game. If X approaches a 

food source and Y doesn’t, X gets 5 points and Y 0, and vice versa. If neither organism 

approaches a food source, both X and Y get 3 points, and if both approach the source, they 

each get 1 point. 

Azuaje stated that Y is represented by a genetic code that determines its sequence of 

moves against X. For example, if a Y organism is encoded as: 

001000, 

that means it will make defection moves in the first two rounds, followed by a single 

cooperation move, followed by three defection moves.  Furthermore, Y cannot recognize 

individuals or store (remember) previous events. In contrast, X is a more sophisticated 
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organism that can perform basic cognitive and memory functions; it follows a Tit-for-Tat 

strategy of mimicking each move that its opponent made in the preceding round.  

 Azuaje used GA approach to evolve his game strategies. In his experiment, all Y 

organisms were randomly produced, and the length of each Y was 30. Each Y organism 

interacted with an X organism to obtain its score, after which GA operators (including 

reproduction, crossover, and mutation) were used with the population of Y organisms.  

His results showed that it was possible for the evolved Y organisms to outperform the 

Tit-for-Tat strategy followed by the X organisms.  After 50 generations, the most 

successful Y organism followed this code: 

    000000000000000000000000000001. 

Its final point total was 92, versus 87 for the X organism. 

According to this model, a) cooperative behavior can emerge from an evolutionary 

and unsupervised learning process, and b) evolving organisms are capable of achieving 

individual success by developing strategies that are more effective than Tit-for-Tat [91]. 
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3.2.2 An Analytical Approach to the Model 

I purpose an analytical approach that is more efficient than the evolutionary approach.  

Y-type organisms evolve according to two basic genetic algorithm (GA) operators: 

crossover and mutation. Even though there are two kinds of organisms, only Y is subject to 

the forces of artificial selection. X, whose primary function is to evaluate Y’s score, cannot 

evolve. It is unnecessary to select “100 fittest individuals from each type of organism to be 

included in the next generation” [91], that selection process can be limited to Y-type 

organisms.  

Azuaje’s model can be formulated to the following problem: find an optimal binary 

string yopt that maximizes F(y), where a) the binary string y represents a Y-type organism; 

b) 0’s encoded in y represent “do not approach food” and 1’s represent “approach food”; 

and c) a fitness function F(y) denotes a y score when it plays with X (the Tit-for-Tat 

strategy) n times, with n equal to the length of y. 

Let y=s1s2s3…sn. y’s moves from round 1 to round n are expressed as: 

s1, s2, s3,…, sn-1, sn

Since X simply repeats its opponent’s preceding moves, its moves are expressed as: 
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0, s1, s2…, sn-2, sn-1

Moves of y and X from round 1 to round n are shown in Table 3.1. 

 

Table 3.1:  Moves of y and X from Round 1 to Round n. 

 1 2 … n 

y s1 s2 … sn

X 0 s1 … sn-1

 

The interaction between y and X during a single round is represented as: 

(aX, ay), 

where aX stands for X’s move, and ay stands for y’s move. There are four possible 

combinations for (aX, ay). For each combination, y receives a score (in IPD terminology, a 

payoff) P(aX, ay). Possible scores are listed in Table 3.2. 

In Table 3.2, [R, S, T, P] denotes four IPD payoff values. In [91]’s model, [R, S, T, P] 

= [3, 0, 5, 1]. 
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Table 3.2:  Potential Scores of y for Each Combination of (aX, ay). 

(aX, ay) (0, 0) (0, 1) (1, 0) (1, 1) 

y’s score 
P(aX, ay) 

R T S P 

 

An interaction history of y and X moves from round 1 to round n is denoted as a 

sequence of (aX, ay) pairs: 

(0, s1), (s1, s2), (s2, s3), (s3, s4), …, (sn-1, sn) 

The problem can be re-formulated as follows: 

Find a binary string y=s1s2s3…sn, to maximize 

)s,s( 1 m

n

mP∑ −
1m=

, 

where s0=0,  

P(0, 0) = 3,  

P(0, 1) = 5,  

P(1, 0) = 0, and 

P(0, 0) = 1 

 To solve this problem, define Bm as a pattern with m consecutive 1’s sandwiched 

between two 0’s, that is: 

B1=010,  
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B2=0110, 

… 

Bn-1=011…10, with (n-1) 1’s 

The longest pattern is represented as Bn-1. Since n is the length of y, after adding s0 at 

the beginning of y, the maximum number of consecutive 1’s must be (n-1) in order to 

satisfy the constraint that it starts and ends with 0. 

 

 

Figure 3.1:  String Combinations Can Be Represented as Bm Patterns Connected by 
Consecutive 0’s. 

BjBi Bk

… 0 0 1 … 1 0 0 … 0 0 1 … 1 0 0 … 0 0 1 … 1 0 0 …  

 

Let the number of B1, B2, … , Bn-1 patterns in y be b1, b2, …. , bn-1. Most strings with 

a random combination of 0’s and 1’s can be represented as the b1, b2, …, and bn-1 of B1, 

B2, … and Bn-1 patterns connected by arbitrary numbers of 0’s (Figure 3.1). Strings that 

start or end with 1 cannot be represented in this form. These cases will be addressed later 

in this section. 

The reason for choosing Bm patterns to represent binary strings is to compute y‘s 

score. In cases of consecutive 0’s, the y score will be the sum of consecutive R’s. At the 
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appearance of the first 1, the score of that round changes from R to T, since (aX, ay) is (0, 1). 

The score of subsequent round will be S if that 1 is followed by a 0 and P if it is followed 

by another 1.  Bm pattern scores for m=1 to (n-1) are listed in Table 3.3.  They can be 

formulated as: PP(Bm)= (T+(m-1)P+S). 

 

Table 3.3:  Bm Scores for m=1 to (n-1). 

Bm B1 B2 B3 … Bn-1

Encoding 010 0110 01110 … 011…10 

Interaction 
History 

(0,1), 
(1,0) 

(0,1), 
(1,1), 
(1,0) 

(0,1), 
(1,1), 
(1,1), 
(1,0) 

 

(0,1), 
(1,1), 
…, 

(1,1), 
(1,0) 

Score T+S T+P+S T+2P+S … T+(n-2)P+S 

 

y‘s score can be computed by adding the scores of consecutive 0’s and the summation 

of Bm patterns’ scores from m=1 to (n-1). However, this kind of representation does not 

work when the string ends with 1, therefore two cases must be considered: 

Case 1: Strings that end with 0 whose regular expressions are: 
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0{1, 0}*0 

Case 2: Strings that end with x number of consecutive 1’s, whose regular expressions 

are: 

0{1, 0}*1+

Note that the cases that strings start with 1 are skipped since s0=0 in problem 

formulation of this section. 

The y score: can be accumulated as follows: )s,s(
1

1 m

n

m
mP∑

=
−

Case 1: The string is divided into two parts: the B1 to Bn-1 patterns and the 

consecutive 0’s that connect them. Thus: 

∑∑

∑∑

∑∑∑

−

=

−

=

−−

−

−

==

=
−

×−−+×−++×=

×−−+++−+++−+
×+−−+++

×+++×+++×+=

××−+−+×=

+=

1

2

1

1

132121

1

321

1

1

1-n

1m

1-n1
1

1

))1(()()2(                       

)))11(...2()...(2((                          
))1)1(((...                          

)2()()(                       

))))1(2(((())((                       

)score s0' eConsecutiv(score) B  to(B)s,s(

n

m
m

n

m
m

nn

n

m

n

m
mm

m

n

m
m

bmRPbRSTRn

Rbnbbbbbn
bSPnT

bSPTbSPTbST

RbmnbBPP

P

 

Case 2: The string includes an additional section consisting of the last x consecutive 

1’s, where . Thus: 1≥x
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Based on constraint of IPD: 2R>T+S and R>P, maximizing  

∑∑
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 requires that b1, b2, …, and bm be 0. The result is: 

Case 1:  RnP m

n

m
m ×=∑

=
− )s,s(

1
1

Case 2:  ))1(()s,s(
1

1 RxSxTRnP m

n

m
m ×−×−++×=∑

=
−

In Case 2, since [R, S, T, P] = [3, 0, 5, 1],  

))1(( RxSxT ×−×−+ =5-3x 

which is greater than 0 if 
3
5

<x .  Since , the optimal y1≥x opt is obtained when x=1: 

yopt = 0000……001 
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with a score of  

)s,s(
1

1 m

n

m
mP∑

=
− = n×R+(T - R) 

If n=30, then: 

yopt = 000000000000000000000000000001 

with a score of 

)s,s(
1

1 m

n

m
mP∑

=
−  =(30×3+(5-3)) = 92. 

This result is exactly the same as that produced by Azuaje’s evolutionary approach [91].  

 

Figure 3.2:  Mathematical Procedure for Obtaining Optimal y Score. 
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The mathematical procedure implemented to obtain optimal y score:  is 

shown in Figure 3.2. 

)s,s(
1

1 m

n

m
mP∑

=
−

3.2.3 Discussion of This Example 

My approach emphasizes an important question: What should be done before using 

evolutionary approach to solve a problem? I believe that too many researchers overlook the 

importance of model analysis. The model in the current example is complex on the surface 

because it contains two kinds of organisms. However, since X cannot evolve, it only serves 

as an evaluation tool for Y—that is, the problem actually addresses only one kind of 

organism. When using an evolutionary approach, only Y organisms need to be selected for 

the next generation, cutting the number of artificial selection operations in half and 

drastically reducing computation time. My main point here is that pre-run analytical work 

can increase one’s understanding of problem scope, reduce model complexity, and help in 

the search for appropriate parameters—in short, increase the efficiency of a search for 

appropriate solutions. 

My result was the same as [91]’s, but my analytical approach was faster and simpler. 

In this model, my approach is appropriate in cases with different Y lengths, but the 

constraints of the evolutionary approach dictate that a GA must be run for each change in 

the length of Y. I am not claiming that an analytical approach is always superior to an 
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evolutionary approach, since they clearly have complementary advantages and 

disadvantages. An analytical approach is much less effective than an evolutionary 

approach when problem spaces exceed a certain size or complexity threshold. This was not 

the case in [91]’s example. 

Next, the model results are discussed from a game theorists’ perspective. In [91], 

Azuaje states that Y was able to achieve individual success “by learning to approach the 

source at the end of a contest.” This strategy was more successful than Tit-for-Tat.  He 

also makes the claim that “information about the length of the games was not provided to 

the creature.”  I believe game length was implied in Y’s encoding, since n is the length of 

Y and Y always plays with X n times.  Thus, the important “shadow of the future” 

assumption of stable cooperation no longer holds; in Axelrod’s words, “if you are unlikely 

to meet the other person again, or if you care little about future payoffs, then you might as 

well defect now and not worry about the consequences for the future” [46]. The behavior 

of an evolved solution for [91]’s model has already been discussed and verified in the 

literature [46].  

Azuaje also wrote that “the emergence of cooperation did not require special 

assumptions about the individuals and the game environment.”  I suggest that the 

emergence of cooperation is actually determined by the X organism, which uses the 
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Tit-for-Tat strategy in his model. The strategy encourages the evolution of Y toward a 

strategy that is equal to or better than Tit-for-Tat, which in turn encourages mutual 

cooperation.  Assuming that X follows an “always defect” strategy (ALLD), then Y will 

also defect, and cooperative behavior will not emerge. 

Furthermore, it is generally accepted that no evolutionarily stable strategy (ESS) 

exists for traditional IPD games,  meaning that no prevalent strategy exists for extended 

IPD interactions [62].  Game theorists are less concerned with finding a dominant IPD 

strategy than with investigating relationships among strategies [92] and identifying 

conditions under which strategies become evolutionarily stable [61]. [91]’s model would 

be very interesting if X used more than one strategy or if X were also capable of evolving.  

Either case would result in complex evolutionary dynamics, underscoring the weaknesses 

of the analytical approach and emphasizing the strengths of the evolutionary approach. 

My analytical approach to the problem described in [91] is a faster and easier 

alternative to the evolutionary approach.  I also emphasized two important considerations 

that are frequently overlooked by users of the evolutionary approach: the importance of 

pre-run model analysis, and the need to make a conscious decision between an 

evolutionary or analytical approach to solving a problem. Some game theory 

considerations regarding the Prisoner’s Dilemma and other two-person matrix games are 
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also addressed. 

My approach can be expanded to solve more sophisticated problems.  For example, 

in cases where X-type organisms use other kinds of strategies, y’s score function may 

change; at a certain level of sophistication for X and y encoding, interactions between them 

may become too complex to be represented as a string. In such cases, a finite state machine 

representation may be useful for representing interactions between the two strategies [92].  

Furthermore, my approach can be applied to other form of two-person matrix games (e.g., 

chicken games), and Prisoner’s Dilemma derivatives (e.g., N-person or N-choice 

Prisoner’s Dilemma).   It is also important to investigate the extent to which the 

analytical approach is useful for non-deterministic strategies (strategies with slight chances 

of deviations in moves).  For those sophisticated models, we believe a combination of 

analytical and evolutionary approaches may be more efficient than relying on either one 

alone.  Further investigation is required to clarify the complementary properties of the 

two approaches. 

 

3.3 Conclusion 

By analyzing various relationships among model components, model scope can be 

defined, model complexity reduced, and appropriate parameter settings identified—all 
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helpful in terms of increasing simulation efficiency.  Theoretical analyses can reduce 

and/or complement the weaknesses of agent-based simulations and computations.  For 

simple models, analysis is required to determine why a simulation is needed and why 

certain parameters should be chosen.  For complex models, analysis reduces unnecessary 

work and guides the direction of a simulation toward discovery.  An analysis of 

relationships between or among model components provides a global view of a model’s 

scope, and helps to establish important strategies and appropriate parameter settings. 

Although I want to emphasize the importance of pre-execution/simulation analysis, I 

am not claiming that analytical approaches can replace simulations, nor that they are 

superior to simulation approaches in any other manner.  In each case, advantages and 

disadvantages are clear.  The integration of simulative and analytical approaches will be 

an increasingly important topic in future execution/simulation studies for artificial 

societies. 
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Chapter 4.   
 
The Analytical Framework for IPD 
Models 

 

 

4.1 Definitions 

In the framework described here, a finite state machine is used to represent 

interactions between deterministic memory-n strategies.  The finite state machines 

(sometimes referred to as finite automata) are dynamic systems that only change their 

behavior at discrete moments under consideration.  The system consists of a finite set of 

internal states and a transition function.  The transition function determines a subsequent 

system state as a function of the current state plus input.  In [93], a formal definition of a 

finite state was given as: 
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Definition 4.1 A finite-state machine (finite automata) consists of a 5-tuple (Q, ∑, q0, δ, A), 

where  

Q is a finite set (whose elements we will think of as states), 

∑ is a finite alphabet set of input symbols, 

q0 ∈ Q (the initial state), 

A ⊆ Q (the set of accepting states), and 

δ is a function from Q × ∑ to Q (the transition function). 

For any element q of Q and any symbol a∈∑, δ(q,a) is interpreted as the state to which the 

finite state machine moves if it is in state q and receives the input a. 

A finite state machine can be represented in terms of a state transition diagram, 

described as: 

Definition 4.2 A finite state machine (Q, ∑, q0, δ, A) can be represented as a state 

transition diagram {V, E}, where 

V is a finite set of vertices, and each vertex represents a state in set Q, 

E is a set of edges,  
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and (qi, qj) ∈ E if δ(qi,a) = qj, where a∈∑. 

The diagram is a directed graph.  The initial state q0 and the set of accepting states A 

are marked with specific notation.  Each edge (qi, qj) is marked with an input symbol a, 

indicating that δ(qi,a) = qj. 

Regarding the memory-n strategies, cooperative or defection moves are determined 

by the historical moves of two players.  A memory-n strategy determines a move in 

correspondence to moves made during the last n round, which is represented as a history 

string (HS). Formally defined, 

Definition 4.3 Let HS be the history string of Si in its interaction with Sj, where Si and Sj 

are memory-n strategies.  Then, 

HS=h2nh2n-1…,hk+1hk,…h2h1. 

The even and odd indices indicate the respective moves of a player and an opponent.  

Here hk∈{C, D}.  C represents a cooperative move and D represents a defection move.  

Note that in this case, HS’ (the history string of Sj,) would be 

HS’=h2n-1h2n…,hkhk+1,…h1h2. 

In other words, the two strategies have different history strings.  In all, there are 22n 

distinct history strings for a memory-n deterministic strategy.  For convenience, the 
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following formal definition of the order of history strings for a memory-n strategy is 

offered. 

Definition 4.4 {HSi/N | 0≤ i <N and N=22n } is the set of all possible history strings for a 

memory-n strategy, where HSi/N is the ith string in the lexicographic order: 

HS0/N = CC…CC,  

HS1/N = CC…CD,  

HS2/N = CC…DC,  

HS3/N = CC…DD,  

… 

HSN-1/N = DD…DD,  

where |HS0/N|=|HS1/N|=…=|HSN-1/N|=2n.  

A memory-n strategy is described in terms of the moves that are made according to 

their history strings. 

Definition 4.5. A memory-n deterministic strategy S is represented as: 

S=(P0, P1, …PN-2, PN-1),  

 43



where Pk∈{C, D}, and N=22n.  Pk represents the move S corresponding to history string 

HSk/N. 

A memory-1 strategy is expressed as (P0, P1, P2, P3), where P0, P1, P2, P3 indicate 

moves when the results of the preceding round are CC, CD, DC, and DD, respectively.  

For example, strategy (C D C D) indicates a cooperative move if the preceding round is 

either CC or DC; a defection move is indicated in all other cases. 

After finishing a round, the history strings of both strategies are updated by deleting 

the two leftmost characters, and adding the result of the next round to the right.  For 

example, if a current history string is CCDDCD and the last round is DC, then the history 

string becomes DDCDDC.  Interactions between player strategies can be viewed as 

history string transitions.  Interactions between two strategies can be expressed as a finite 

state machine, where each state represents a specific history string, and where transitions 

between states are dependent upon transitions between the strategies’ history strings. 

Proposition 4.1 Interactions between two memory-n deterministic strategies can be 

represented as a finite state machine. 

Proof: 

Assume two memory-n deterministic strategies, Si and Sj, represented as 
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Si = (P0, P1, …PN-2, PN-1), and 

Sj = (P0’, P1’, …PN-2’, PN-1’),  

where N=22n and Pk and Pk’ represent the moves of Si and Sj corresponding to history 

string HSk/N. 

Let FSM(Si|Sj) be a finite state machine whose state transition diagram is: 

D(Si|Sj) = {V, E}. 

The set of vertices V and the set of edges E are defined as 

V = {Vk | Vk is a vertex corresponding to history string HSk/N, 0≤k<N, N=22n }, and  

E = {(Vu, Vv) | Vu, Vv ∈ V,  

where Si’s history string may transit from HSu/N to HSv/N when interacting with Sj, 

and 0≤u,v<N } 

In V, Vk is the vertex corresponding to history string HSk/N.  Since there are N 

vertices, all possible history string permutations are contained.  

In E, the edge (Vu, Vv) indicates that the history string of Si will transit from HSu/N to 

HSv/N. All possible transitions are included.  
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Interactions between Si and Sj can be represented by D(Si|Sj) without loss of 

information.  Thus, interactions between two memory-n deterministic strategies can be 

represented as a finite state machine. 

Note that the history strings in V and E refer to the history strings of Si, which are 

different from those of Sj.  D(Si|Sj) represents the interaction between Si and Sj from Si’s 

perspective.  The state transition diagram that represents the interaction between Si and Sj 

from Sj’s perspective is denoted as D(Sj|Si). 

□ 

Definition 4.6 The finite state machine that represents interactions between two memory-n 

deterministic strategies Si and Sj from Si’s perspective is denoted as FSM(Si|Sj).  Its state 

transition diagram is D(Si|Sj).  Thus, 

D(Si|Sj) = {V, E},  

where 

V={Vk | Vk is a vertex corresponding to history string HSk/N, 0≤k<N, and N=22n}, and 

E={(Vu, Vv) | Vu, Vv∈V, where  
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Si’s history string may transit from HSu/N to HSv/N when interacting with Sj for 

0≤u<N }.  

In common finite state machines, state transitions depend on the current state and 

input symbols.  However, the input symbol in FSM(Si|Sj) is ignored; another way of 

saying this is that there is only one kind of input symbol, so the state transition depends 

only on the current state. 

To give a simple example, if Si = (C, D, C, D) and Sj = (C, D, D, C), the interactions 

are represented as a finite state machine FSM(Si|Sj), whose state transition diagram D(Si|Sj) 

is shown as Figure 4.1.  If Si and Sj both made defection moves in the previous round, Si 

will make another defection move and Sj will make a cooperative move, resulting in a 

transition from state DD to state DC. 

 

CC CD DC DD
 

Figure 4.1:  The Interaction between Strategies (C, D, C, D) and (C, D, D, C). 

4.2 Behavior Characteristics of Infinite Duration 

Finite state machines that represent interactions between two strategies have some 

interesting properties that are helpful in determining strategy behavior.  
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Proposition 4.2 Let Si and Sj be two memory-n deterministic strategies.  For the finite 

state machine FSM(Si|Sj), there is only one outgoing link for each state. 

Proof: 

Assume 

Si = (P0, P1, …PN-2, PN-1) and 

Sj = (P0’, P1’, …PN-2’, PN-1’),  

where N=22n.  In FSM(Si|Sj), each state represents a particular history string.  Let the set 

of states be  

Q={qk| qk represents history string HSk/N, and 0≤k<N }. 

The state transition is determined by the transition of history strings.  If the current 

history string of Si is HSk/N, then 

HSk/N=h2nh2n-1…h2h1. 

In the next round the history string of Si will transit to 

h2n-2h2n-3…h2h1PkPk’. 
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Since Pk, Pk’ ∈{C,D}, the history string h2n-2h2n-3…h2h1PkPk’ is also an element in the set 

{HSk/N | 0≤i<N and N=22n }.  Assume that 

HSm/N=h2n-2h2n-3…h2h1PkPk’. 

Each time Si interacts with Sj and Si’s history string is HSk/N, Si’s history string will always 

transit to HSm/N.  This means that in FSM(Si|Sj), if the current state is qk, the next state 

will always be qm.  Thus, there is only one outgoing link for each state in FSM(Si|Sj). 

           □ 

Following proposition 4.2, it is possible to prove that interactions between two 

memory-n deterministic strategies are periodically repeated. 

Proposition 4.3 The behavior of a finite state machine with only one kind of input symbol 

and only one outgoing link for each state is periodically repeated for any initial state; the 

maximum loop length equals the number of total states. 

Proof: 

Assume that FSM is a finite state machine which has only one kind of input symbol 

and one outgoing link for each state.  Let N be the number of states and qs the initial state.  

The sequence of state transition is 
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qsqs+1…qs+N-1qs+N…. 

According to the pigeonhole principle, since there are only N states, then qs+N=qs+k for 

some k which satisfies 0≤k<N.  The state transition sequence is 

qsqs+1…qs+kqs+k+1…qs+N-1qs+N… 

From Proposition 4.2, we have qs+k+1=qs+N+1, qs+k+2=qs+N+2,….  The state transition 

sequence can therefore be expressed as 

qsqs+1…qs+kqs+k+1…qs+N-1qs+kqs+k+1…qs+N-1…. 

The same sequence can be represented as 

qsqs+1…(qs+kqs+k+1…qs+N-1)*, 

where the asterisk indicates that the state transition is a repetition of (qs+kqs+k+1…qs+N-1).  

Thus, the machine behavior is periodically repeated. 

Furthermore, by letting the length of the loop (qs+kqs+k+1…qs+N-1) be l, then l=N-k.  

Since 0≤k<N, l satisfies 0<l≤N, meaning that the maximum length of the loop is N. 

           □ 
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Proposition 4.4 Interactions between two memory-n deterministic strategies are 

periodically repeated for any initial condition; maximum loop length is 22n. 

Proof: 

Let Si and Sj be two memory-n deterministic strategies.  FSM(Si|Sj) represents the 

interaction between Si and Sj from Si’s perspective.  The input symbol in FSM(Si|Sj) is 

ignored, or it can be said that there is only one kind of input symbol.  According to 

Proposition 4.2, there is only one outgoing link for each state, and according to Proposition 

4.3, the behavior of FSM(Si|Sj) is periodically repeated. Furthermore, since the maximum 

number of states in FSM(Si|Sj) is 22n, the maximum loop length is also 22n.  

           □ 

The next formal definition is for the loop that FSM(Si|Sj) falls into for a specific initial 

state. 

Definition 4.7. FSM(Si|Sj) represents interactions between memory-n strategies Si and Sj.  

Its state transition diagram is D(Si|Sj).   

Let Lk be the loop which D(Si|Sj) will fall into if the initial vertex (initial state) is Vk.  

Then,  
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),...,,( ||,2,1, kLkkkk lllL = ,  

where: 

|Lk| is the length of the loop, and 

lk,m∈V, for 1≤m≤|Lk|. 

If the initial vertex is Vk, the machine will fall into the loop .  ,,...,, 1,||,2,1, kLkkk llll
k

If m≠n, then lk,m≠ lk,n. 

If the initial vertex is Vk, then after a sufficient period the probability that D(Si|Sj) is at 

state lk,m is 1/|Lk|.  Taking all initial states into account, the probability that it is at Vm at 

time t is 

∞→=
∑

∈∀ t
L

PS n
LVk k

m
km  when , 

2
||

1

2
  . 

The traversal probability for each state is expressed as (PS1, PS2, … , PSN). 

Definition 4.8 FSM(Si|Sj) is a finite state machine that represents interactions between 

strategies Si and Sj.  Its state transition diagram is D(Si|Sj).  The traversal probability for 

each state is: 

PS(Si|Sj) = (PS0, PS1, … , PSN-1), where  
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and where Lk is the loop if the initial vertex (initial state) is Vk. 

Recall that each state represents a specific history string whose final two characters 

represent the result of the previous round.  Since these two characters indicate the payoff 

of the previous round, each state is mapped to one of the four payoffs.  The traversal 

probability accumulates to derive the probability of each kind of payoff.  That is,  

FCC = PS0 + PS4 + … + PSN-4 is the probability that the result of the previous game was 

CC; 

FCD = PS1 + PS5 + … + PSN-3 is the probability that the result of the previous game was 

CD; 

FDC = PS2 + PS6 + … + PSN-2 is the probability that the result of the previous game was DC; 

or  

FDD = PS3 + PS7 + … + PSN-1 is the probability that the result of the previous game was 

DD. 

When Si interacts with Sj, the behavior characteristic of Si is defined as 

Definition 4.9 The behavior characteristic between Si and Sj from Si’s perspective is 
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B(Si|Sj) = (FCC, FCD, FDC, FDD), where 

FCC = PS0 + PS4 + … + PSN-4,  

FCD = PS1 + PS5 + … + PSN-3, 

FDC = PS2 + PS6 + … + PSN-2, and 

FDD = PS3 + PS7 + … + PSN-1. 

(PS0, PS1, … , PSN-1) is the traversal probability for each state in FSM(Si|Sj). 

From the behavior characteristic, we can see how the two strategies interact. FCC 

indicates the probability that both will cooperate when they interact; if FCC is high, so is the 

likelihood of cooperation between the two.  

Definition 4.10 The payoff characteristic between Si and Sj from Si’s perspective is 

E(Si|Sj) = FCC×R + FCD×S + FDC×T + FDD×P,  

given that the payoff matrix is [R, S, T, P]. 

The payoff characteristic is the expected payoff when two strategies interact.  In 

previous studies, the expected payoff between stochastic strategies is usually derived via 

the Markov process.  In stochastic strategies, initial conditions (initial moves) do not 
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affect the expected payoff derived by the Markov process.  However, when dealing with 

deterministic strategies, initial moves do affect the expected payoff.  The payoff 

characteristics of deterministic strategies take into account all possible initial moves.  The 

payoff characteristics denote the interaction between two strategies without information 

loss. 

 

4.3 Two Criteria for Investigating Strategy Properties 

Based on the behavior characteristic B(Si|Sj) and the payoff characteristic E(Si|Sj), two 

criteria were established for examining strategy properties: the ability to exploit others and 

the ability to form clone clusters. 

4.3.1 Ability to Exploit Others 

Assume strategies Si and Sj.  Behavior characteristics between them are stated as: 

B(Si|Sj)=(FCC, FCD, FDC, FDD), and 

B(Sj|Si)=(FCC’, FCD’, FDC’, FDD’). 

Their payoff characteristics are: 
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E(Si|Sj)= FCC×R + FCD×S + FDC×T + FDD×P, and 

E(Sj|Si)= FCC’×R + FCD’×S + FDC’×T + FDD’×P. 

The ability to exploit others is determined by the relationship between E(Si|Sj) and 

E(Sj|Si).  

Definition 4.11 When Si interacts with Sj, Sj is said to exploit Si if E(Si|Sj)<E(Sj|Si).  This 

is expressed as: 

Si→Sj if E(Si|Sj)<E(Sj|Si), meaning that Sj exploits Si, and 

Si=Sj if E(Si|Sj)=E(Sj|Si), meaning that Si and Sj receive the same payoff.  

Note that the combination of Si→Sj and Sj→Sk does not imply Si→Sk; the relationship 

between Si and Sk is determined by E(Si|Sk) and E(Sk|Si).  However,  

Si→Sj implies E(Si|Sj) < E(Sj|Si), and 

Sj→Sk implies E(Sj|Sk) < E(Sk|Sj). 

From these two inequalities only, nothing is known about E(Si|Sk) and E(Sk|Si); the 

relationship between Si and Sk remains undetermined.  Si→Sj, Sj→Sk, and Si→Sk denote 

Si→Sj→Sk. 
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The exploitation chain is used to indicate relationships among more than two 

strategies.  

Definition 4.12. An exploitation chain is expressed as: 

kCCC SSS →→→ ...
21

 

Strategy  exploits  if j<i. 
iCS

jCS

4.3.2 Ability to Form Clone Clusters 

The ability of strategies to form clone clusters is determined by their behavior 

characteristics with their clones—i.e., E(Si|Si).  If E(Si|Si) is high, then two players using 

the same strategy Si will receive relatively higher payoffs when they interact.  This effect 

is more apparent in spatial models, in which strategies only interact with their neighbors 

[65-68]. 

According to Smith’s [60] definition, Si will invade Sj if 

E(Si|Si) > E(Sj|Si), or if 

E(Si|Si) = E(Sj|Si) and E(Si|Sj) > E(Sj|Sj). 
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The invasion relationship between the two strategies is determined by E(Si|Si), E(Sj|Sj), 

E(Sj|Si), and E(Si|Sj).  A rather complex analytical task results, since the following are all 

possible: 

Si invades Sj and Sj invades Si,  

Si invades Sj and Sj can’t invade Si, 

Si can’t invade Sj and Sj invades Si, or 

Si can’t invade Sj and Sj can’t invade Si. 

Furthermore, Si’s invasion of Sj and Sj’s invasion of Sk do not imply that Si will invade Sk.  

As the number of strategies increases, relationships among them eventually become too 

complex to analyze. 

According to the proposed framework, the relationships between E(Si|Sj) and E(Sj|Si) 

and between E(Si|Si) and E(Sj|Sj) are investigated separately.  Complex invasion 

relationships can be divided into two categories, which makes it easier to clarify 

relationships among the strategies, and which helps investigators to find and analyze 

hidden properties. 
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4.4 Conclusion 

The three most important properties of the framework are: 

a) It remains independent of payoff matrix values as long as they satisfy the constraint 

of the Prisoner’s Dilemma. 

b) Interactions between strategies can be represented as a finite state machine.  This 

kind of representation also provides an efficient means for deriving the expected payoff 

between deterministic strategies—a task that is difficult by using the Markov process 

because the result of deterministic strategies is sensitive to the initial state.  

c) A strategy’s ability to exploit others and to form clone clusters provides 

stepping-off points for further analysis and simulation. Using these two criteria, relations 

among strategies can be identified.  
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Chapter 5.   
 
Analysis of Memory-1 Deterministic 
Strategies in IPD 
 

 

5.1 Exploitation Relation 

A memory-1 strategy is notated as (P0, P1, P2, P3).  The 24 deterministic strategies are 

named S0, S1, …, S15, representing (C, C, C, C), (C, C, C, D), …, and (D, D, D, D), 

respectively.  The relation among strategies’ ability to exploit others is known as the 

exploitation relation. Exploitation relations between paired memory-1 deterministic 

strategies are listed in Table 5.1.   

Assume an element Tij in row i and column j. 

Tij=0 if Si=Sj,  
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Tij=1 if Sj→Si, and 

Tij=-1 if Si→Sj. 

 

Table 5.1:  Exploitation Relations between Paired Memory-1 Strategies 

 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

S0 0 0 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
S1 0 0 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
S2 1 1 0 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
S3 1 1 1 0 1 0 0 -1 1 0 0 -1 0 -1 -1 -1
S4 0 0 0 -1 0 0 0 -1 0 0 -1 -1 0 0 -1 -1
S5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S6 1 1 1 0 0 0 0 -1 1 1 0 -1 0 0 -1 -1
S7 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 

S8 1 1 1 -1 0 0 -1 -1 0 -1 -1 -1 0 -1 -1 -1
S9 1 1 1 0 0 0 -1 -1 1 0 0 -1 0 0 -1 -1
S10 1 1 1 0 1 0 0 -1 1 0 0 -1 0 -1 -1 -1
S11 1 1 1 1 1 0 1 -1 1 1 1 0 1 0 1 -1
S12 1 1 1 0 0 0 0 -1 0 0 0 -1 0 0 0 -1
S13 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 

S14 1 1 1 1 1 0 1 -1 1 1 1 -1 0 0 0 -1
S15 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 

 

5.1.1 Strategy Classification 

Definition 5.1. Every strategy (Sk) has three sets:  
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WINk = {Si | Si→Sk}, 

LOSEk = {Si | Sk→Si}, and 

DRAWk = {Si | Sk=Si}. 

WINk is a set of strategies exploited by Sk.  LOSEk is a set of strategies that may 

exploit Sk.  DRAWk contains strategies that result in equal payoffs with Sk.  

The exploitation relations among these 16 strategies are constructed by WINk, LOSEk, 

and DRAWk (0≤k≤15).  Strategies are said to be equivalent if they have the same WIN, 

LOSE, and DRAW sets.  There are three sets of equivalent strategies: { S0, S1 }, { S3, 

S10 }, and { S7, S15 }.  The exploitation relations among them form an exploitation chain, 

shown as { S0, S1 }→{ S3, S10 }→{ S7, S15 }. 

Statement 5.1 { S0, S1 }, { S3, S10 }, and { S7, S15 } are sets of equivalent strategies, and 

the exploitation chain they form is { S0, S1 }→{ S3, S10 }→{ S7, S15 }. 

5.1.2 Exploitation Chains 

Based on Statement 5.1: 

Statement 5.2 { S0, S1 }→S2→S8→{ S3, S10 }→S11→S14→{ S7, S15 }. 
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Statement 5.3 S4→{ S3, S10 }→S11→S14→{ S7, S15 }. 

Statement 5.4 { S0, S1 }→S2→S8→{ S3, S10 }→S13.

Statement 5.5 { S0, S1 }→S2→S12→S11→{ S7, S15 }. 

Statement 5.6 { S0, S1 }→S2→S8→S9→S6→S11→S14→{ S7, S15 }. 

 

 

 

 

S2 S8

S3 S10

S4

S12

S9 S6

S14 S11S0 S1

S13

S7 S15

Figure 5.1:  Exploitation Chains of Memory-1 Deterministic Strategies. 

 

Relations among these strategies are shown in Figure 5.1.  In most cases, if a path 

exists from Si to Sj, then Si→Sj.  There is one exception: a path exists from S4 to S13, but 

S4=S13.  This exception is described in the next section. 
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5.1.3 The Draw Case 

All relations not specified in the preceding section are considered draw relations, 

meaning that two interacting strategies will receive the same payoff if no path exists 

between them.  A path does exist from S4 to S13, but to describe the exception that S4=S13, 

a link must be added between the two strategies.  In the case of Si and Sj, that link is Si=Sj. 

The exploitation relation between S4 and S13 is shown below. 

 

S5, which receives the same payoff when it interacts with any other memory-1 

deterministic strategy, is shown as an isolated vertex in Figure 5.2.  This is the 

well-known strategy Tit-for-Tat. 

 

 

 

 

S13S4

S2 S8

S3 S10

S4 S13

S12

S9 S6

S14 S11

S5

S0 S1 S7 S15

Figure 5.2:  The Exploitation Relation among Memory-1 Deterministic Strategies. 
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The exploitation relation of all memory-1 deterministic strategies is shown in Figure 

5.2.  The principle for determining the ability of Si and Sj to exploit others is: 

Si→Sj if there is a traversal path from Si to Sj; 

Sj→Si if there is a traversal path from Sj to Si; and  

Si=Sj if there is no path from Si to Sj, or if there is a ‘=’ link between them. 

 

5.2 Clustering Relation 

The relation of the ability of strategies to form clone clusters is known as the 

clustering relation. Strategy Si’s ability to cluster is determined by E(Si|Si), the payoff 

characteristic resulting from interactions with its clones.  Table 5.2 presents a list of 

E(Si|Si) for all memory-1 deterministic strategies.  

Recall that R, S, T, and P in the payoff matrix of the Prisoner’s Dilemma satisfy 

T>R>P>S, and that 2R>S+T.  According to this constraint, the clustering relations of all 

memory-1 deterministic strategies are:  

If S+T > R+P: 

S9, S15 < S7 < S11, S13< S14, S8< S3, S5, S10, S12 < S1 < S2, S4 < S0, S6. 
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If S+T < R+P: 

S9, S15 < S11, S13 < S7 < S3, S5, S10, S12 < S14, S8 < S2, S4 < S1 < S0, S6. 

If S+T = R+P: 

S9, S15 < S7, S11, S13 < S3, S5, S8, S10, S12, S14 < S1, S2, S4 < S0, S6. 

 

Table 5.2:  B(Si|Si) and E(Si|Si) for Memory-1 Deterministic Strategies 
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The relations between {S1} and {S2, S4}, {S8, S14} and {S3, S5, S10, S12,}, and {S7} 

and {S11, S13} are determined by the value of (S+T) and (R+P).  In this chapter, the focus 

is on relations that are independent of the value of the payoff matrix; thus, {S1} and {S2, S4} 

are viewed as one set of strategies, as are {S8, S14} and {S3, S5, S10, S12,}, and {S7} and 

{S11, S13} (Figure 5.3).   

 

S14

S8

 

 

S13

S11

S7

S15

S9 < 

S1

S6

S0< < < 

S4

S2

S10 S12

S5S3

Figure 5.3:  The Ability to Form Clone Cluster for Memory-1 Deterministic Strategies. 

 

It can be argued that the use of a value-independent analysis contradicts one of our 

stated reasons for performing a pre-simulation analysis in Chapter 3—that is, defining 

model scope—since model scope may depend on the payoff matrix value. The payoff 

matrix values indeed may affect the analytical result of relation between strategies.  

However, I firmly believe that neglecting to perform an analysis of relations that are 

independent of payoff matrix values would make it difficult to determine whether results 

were the consequence of the IPD problem nature or payoff matrix values.  In short, a 
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value-independent analysis highlights relations based on the native properties of the IPD 

model, while a value-dependent analysis emphasizes how different values affect 

exploitation and clustering relations. 

 

5.3 Properties of Memory-1 Deterministic Strategies 

5.3.1 Relation among Memory-1 Deterministic Strategies 

Before examining the important strategies revealed in Figure 5.2 and 5.3,  relations 

between the two criteria are considered. A good strategy should exploit others in order to 

receive a higher payoff, and its clone cluster should be strong enough to prevent invasion 

of others. These two criteria are equally important. Strategies that easily exploit others but 

fail to form strong clone clusters will likely spread throughout an environment, but when 

that environment is saturated with those strategies, they will become susceptible to 

invasion by other strategies. For example, S15 (always defects, regardless of the opponent’s 

move, also referred as ALLD) is a typical strategy of this kind.  Furthermore, strategies 

with a strong ability to from clone clusters but that are easily exploited by others cannot 

survive, since their being exploited by others usually occurs before their clone clusters are 

formed; S0 (always cooperates, regardless of the opponent’s move, also referred as ALLC) 

is one of this kind of strategies.  
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The order of strategies in Figure 5.2 is almost perfectly opposite to that in Figure 5.3, 

showing that strategies that exploit others tend to have difficulty getting along with their 

clones; on the other hand, a strategy that gets along well with its clones has a higher chance 

of being exploited. In memory-1 strategies, strength in one criterion usually implies 

weakness in the other. Thus, mid-order strategies in both Figure 5.2 and 5.3 are considered 

important because they show a certain degree of strength in both criteria. These strategies 

have attracted the greatest attention from Prisoner’s Dilemma researchers [53]; their names 

are listed in Table 5.3. 

 

Table 5.3:  Some Commonly Discussed Memory-1 Deterministic Strategies 

Strategy Name Representation Description 

S3 Stubborn (C, C, D, D) 
Repeats the first round move regardless of 
the opponent’s move. 

S5 Tit-for-Tat (C, D, C, D) Repeats the opponent’s previous move. 

S10 Bully (D, C, D, C) 
Defects against a cooperator, but 
cooperates if punished. 

S12 Fickle (D, D, C, C) 
Changes the strategy each round 
regardless of the opponent’s move. 
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In addition to their greater survival potential, these mid-order strategies serve as a 

dividing line between nice and non-nice strategies. For instance, S3, S5, S10, and S12 are 

located in the middle of the two orders shown in Figures 5.2 and 5.3. These strategies 

divide the two lists into perfectly symmetric parts. Most of the strategies on the left side of 

Figure 5.2 and the right side of Figure 5.3 will cooperate in instances where the last round 

is CC—an indication that they are “nice” strategies that will never be the first to defect 

[46]. Most strategies on the right side of Figure 5.2 and left side of Figure 5.3 are non-nice.  

Some exceptions can be found in Figure 5.2 and 5.3. S7 is a nice strategy, but is 

located on the right side of Figure 5.2 and the left side of Figure 5.3. S6 and S9 are located 

in mid-order in Figure 5.2, but in Figure 5.3, S6 is on the right side and S9 the left. Because 

each of them has at least one special property, those exceptional strategies have become 

targets of numerous and extensive investigations. S6 is the well-known strategy PAVLOV 

[51], and S7 is the strategy known as RETALIATOR [65].  

5.3.2 Discussion of Well-Known Strategies 

Information concerning relations among memory-1 strategies is presented in Figure 

5.2 and 5.3. In this section, I will discuss two memory-1 strategies that are located in 

particular positions within our proposed framework: Tit-for-Tat and PAVLOV. The 
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purpose of this section is to show that the properties of important strategies are explained 

well by the framework.  

Tit-for-Tat: 

S5 is the strategy: Tit-for-Tat.  Its isolation from other strategies in Figure 5.2 means 

that it can’t exploit other strategies, nor is it easily exploited by others.  According to the 

proposed framework, the success of Tit-for-Tat strategy results from its a) ability to attain 

equal chances of survival with any other strategy, and b) strong ability to cluster.  This is 

similar to Axelrod’s conclusion [46] that Tit-for-Tat strategy can increase in frequency 

among predominantly ALLD strategies (that is, the strategy that always defects regardless 

of the opponent’s move), and resist invasion by most of defective strategies (see also [86]). 

PAVLOV: 

S6 is the well-studied strategy known as PAVLOV [51].  Among all memory-1 

deterministic strategies, it is the only one whose exploitation and clustering abilities are 

both higher than average. According to Nowak [51], PAVLOV’s advantage over 

Tit-for-Tat is the result of two features: a) it can correct occasional mistakes and b) it 

resists invasion by strict cooperators. From the information in Figure 5.2 and 5.3, the first 

property is not observable, because occasional mistakes cannot occur in deterministic 

strategies. However, the second property is obvious because S6’s ability to exploit others is 
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higher than that found in most nice strategies. At the same time, its ability to form clone 

clusters is the strongest among all memory-1 deterministic strategies, which explains why 

it can resist invasion by strict cooperators.  Another important property for PAVLOV is 

that it loses against ALLD, which distinguishes it from Tit-for-Tat, which draws with all 

other strategies. The reason for this is that PAVLOV alternates between cooperation and 

defection [51]. This is explained well in Figure 5.2. 

Figure 5.2 and Figure 5.3 shows significant information about the properties of 

memory-1 deterministic strategies. The properties of important strategies and particular 

evolutionary phenomenon are well explained. In the investigation of Prisoner’s Dilemma, 

before further analysis and simulation is taken, the purposed framework should be used in 

advance to understand the properties of strategies, and the relationship among strategies.  

The identification of important strategies and common phenomena by this proposed 

framework underscores the point of Chapter 3: some simulations are not necessary if 

appropriate analytical procedures are followed.  This is not to say that analysis can 

completely replace simulation, which is required in order to verify predicted phenomena.  

The key word here is verification and not discovery, the difference being the amount of 

required simulation work.  If the purpose of simulation is to verify certain properties, 

fewer model instances are needed; if the purpose is to discover unknown phenomena, more 
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model instances are needed to reflect as many conditions as possible.  In either case, 

theoretical analysis helps reduce unnecessary simulation efforts and provides guidance 

toward anticipated results. 
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Chapter 6.   
 
Application of This Framework  
 

 

6.1 Cyclic Relation among Three Strategies 

An important property of the framework proposed in this dissertation is its directed 

graph representation of exploitation relations.  In this section I will discuss the relations 

among cyclical strategy sets.  

Assume three strategies—A, B, and C; their cyclical exploitation relationships are 

shown in Figure 6.1  

 

 

Figure 6.1:  Cyclical Exploitation Relationships among 3 Strategies. 

A B 

C 
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In environments consisting of A and B only, B will always exploit A. If C appears in 

the same environment, B will become less dominant because C can exploit it.  Since A 

can exploit C, the arrival of C increases A’s and decreases B’s survival potential. 

Note that no cycle exists within any subset of the 16 memory-1 strategies. However, 

the “=” exploitation relationship between certain strategies allows them to form various 

types of “semi-cycles.” For strategy A→B, assume that for any other strategy C there are 

32 possible combinations (Fig. 6.2). 

 

 

 

 

 

 

 

 (9)(8)(7) 

(6)(5)(4) 

(3)(2)(1) 

A B

C

A B

C

A B 

C

A B 

C 

A B 

A B 

A B

C

A B 

C 

A B 

C

C

C 

Figure 6.2:  32 Possible Combinations of Strategy Relationships between A, B, and C, 
Given A→B. 

 

The effect of C can be categorized as follows: 
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a) The appearance of C increases the possibility of A invading B.  In the figure, 

examples of this type are cases 2, 5, and 6. 

b) The appearance of C affects the amount of time required for the invasion, but it 

does not prevent B’s invasion of A. Cases 1, 4, 7, 8, and 9 are examples of this type. 

The three cases in the first category form “semi-cycles.” In terms of behavior, they 

share certain commonalties with strategies that form complete cycles, that is, invasion 

relationships between strategies are altered. Cases 2 and 6 appear to be intuitive. In case 2, 

A’s survival capability increases due to its ability to exploit C. In case 6, B’s survival 

capability is decreased because it can be exploited by C. One of the most well-know 

example in case 5 is the relation between ALLC, ALLD, and Tit-for-Tat.  The relations 

between them are: ALLC→ALLD / ALLD = Tit-For-Tat / Tit-For-Tat = ALLC.  In the 

literature, it is well known that the appearance of Tit-for-Tat prevents ALLC from being 

invaded by ALLD. When dealing with strategies, it is important to know whether the 

appearance of another strategy will affect the invasion relation among strategies that 

already exist in the environment. 
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6.2 Framework Generalization 

6.2.1 Analyses of Other Deterministic Strategies 

The framework described in this dissertation can be applied to deterministic strategies 

encoded in other forms, such as finite automata [55, 74] and rule sets [56].   The key step 

is deriving an appropriate finite state machine to represent interactions between the two 

strategies.  

Proposition 6.1 Interactions between two deterministic strategies can be represented as a 

finite state machine whose behavior is periodically repeated. 

Proof: 

Deterministic strategies can be notated as (P1, P2,…, Pn), where each Pk refers to 

moves corresponding to specific conditions. For example, history strings in the case of 

memory-n strategies.  Assume two strategies Si and Sj; then, 

Si=(P1, P2,…, Pn) and 

Sj=(Q1, Q2,…, Qm), 
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where Pk is the Si move if its condition satisfies , and Q
kPCond k is the Sj move if its 

condition satisfies .  Since S
kQCond i and Sj are deterministic strategies, n and m are finite 

numbers. 

For a finite state machine FSM(Si|Sj) whose state transition diagram is D(Si|Sj), 

D(Si|Sj)=(V,E), where 

V={Vs,t | Vs,t represents the condition that Si satisfies  and S
sPCond j satisfies 

, when 1≤s≤n and 1≤t≤m }, and 
tQCond

E = {(Vs,t , Vu,v) | Vs,t, Vu,v ∈ V, if the current Si and Sj satisfy  and , 

respectively, then in the next round they will satisfy  and }. 

sPCond
tQCond

uPCond
vQCond

Since n and m are finite numbers, the number of vertices (states) in V is finite.  The 

E set of edges indicates the transition between vertices;  all possible transitions between 

conditions are included in E. When Si interacts with Sj, it is possible to observe how Si and 

Sj decide their moves from the state transition diagram D(Si|Sj).  Interactions between 

deterministic strategies Si and Sj can therefore be represented without loss of information.  

These interactions can also be represented as a finite state machine, FSM(Si|Sj), whose 

state transition diagram is D(Si|Sj). 
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Since D(Si|Sj) represents interactions between Si and Sj, the input symbol of D(Si|Sj) is 

ignored—in other words, there is only one type of input symbol.  Also, since Si and Sj are 

deterministic strategies, each vertex has only one outgoing link.  From Proposition 4.3, 

the behavior of D(Si|Sj) is periodically repeated for each initial vertex (state). 

□ 

According to Proposition 6.1, the traversal probability of each state can be derived 

once FSM(Si|Sj) is constructed.  Since each state represents one of the four payoffs, the 

behavior characteristic can be derived from the traversal probability of each state.  The 

framework can therefore be used to analyze relations among deterministic strategies that 

are encoded in different forms.   

6.2.2 Analyses of Other 2 × 2 matrix games 

The framework can also be applied to other 2 × 2 matrix games—for example, 

“chicken games” that are very similar to the Prisoner’s Dilemma except for slight 

differences in their payoff matrix value constraints (i.e., T>R>S>P).  
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6.2.3 Application of Spatial and Biased Selection IPD Models 

The framework can also be applied to spatial IPD models, which have different 

emergence behaviors than non-spatial models due to an opponent selection bias—that is, 

players must be neighbors. Assume an environment restricted to ALLC and ALLD players.  

For all ALLC players in a non-spatial model, the probabilities of meeting another ALLC 

player are equal.  In contrast, in a spatial model containing clusters of ALLC players, the 

probability of a player in the center of a cluster to meet an ALLC player would be 100%, 

since all of its neighbors would be ALLC players.  The purposed framework addresses 

interaction patterns between two players regardless of the spatial/non-spatial status of the 

model in question. It can be applied to spatial models to better understand interaction 

patterns between strategies, but more research is required on how players contact and 

select their opponents. 

6.2.4 Application on Other Artificial Society Models 

The framework’s methodology is summarized as follows: (1) identify interaction 

patterns between two agents, (2) use these patterns to determine the expected payoff for 

each agent, (3) identify relationships between the agents according to their expected 

payoffs, and (4) construct strategy relations based on pair-wise relations.  The primary 
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purpose of this methodology is: to analyze a model from the perspective of interactions 

between two individuals.  While it can be applied to other types of agent-based and macro 

simulations, interaction patterns may be very different from those observed in the 

Prisoner’s Dilemma. For multi-agent systems whose agents have deterministic behaviors, 

our finite state machine representation for pattern interaction is applicable.  For 

non-deterministic multi-agent systems, it would be inappropriate (or impossible) to use our 

finite state machine representation at step (1).  However, regardless of how two agents 

interact, the status of either agent changes following an interaction. The change of agent 

status may be transformed into the expected payoff after interaction.  Once the expected 

payoff is identified, steps (3) and (4) can proceed. 
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Chapter 7.   
 
Effect of Environment on Artificial 
Societies 

 

 

7.1 Introduction 

Recall Table 2.1 in Chapter 2, where popular artificial societies for problem solving 

are listed according to their characteristics of artificial societies’ three primary components. 

With few exceptions, every type of artificial society is strongly affected by its environment: 

in classifier systems, agents take information from their environments, ants in ant colony 

systems leave information in their environments, and agents in multi-agent systems do 

both. In the absence of environmental considerations, it is impossible for problem-solving 

artificial societies to accomplish their goals. 
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Nevertheless, environmental factors are rarely mentioned in the IPD literature. 

Researchers who study the most popular strategies (e.g., Tit-for-Tat and PAVLOV) tend to 

limit their efforts to player status, thereby ignoring overall system or individual agent 

relationships with their environments when predicting or determining player moves. The 

effect of environment on IPD model strategy design is the focus of this chapter, based on 

the assumption that a better understanding of the relationship between environment and 

strategy design will be beneficial when applying IPD models in artificial societies used for 

problem solving. 

 

7.2 Model Description 

To address the issue of how environmental factors affect IPD strategy, I used a spatial 

PD model to compare the performances of strategies that do and do not acknowledge and 

consider environmental conditions. The spatial PD model consists of a N×N matrix in 

which each cell contains an agent that can be represented by its position within the 

environment (e.g., Ai,j and its neighbors, as shown in Figure 7.1).  During each generation, 

an agent interacts with each of its eight neighbors T times; an agent score represents the 

sum of eight payoffs. If PT(As|At) is defined as the average payoff of As from T interactions 

with At, the score of Ai,j S(Ai,j) can be expressed as: 
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S(Ai,j)= ( PT(Ai,j|Ai-1,j-1)+ PT(Ai,j|Ai,j-1)+ PT(Ai,j|Ai+1,j-1)+ PT(Ai,j|Ai,j-1)+ PT(Ai,j|Ai,j+1)+ 

PT(Ai,j|Ai+1,j+1)+ PT(Ai,j|Ai,j+1)+ PT(Ai,j|Ai+1,j+1)) /8 

In a conventional spatial PD model, an agent A is replaced by its neighbors B if S(B) 

> S(A). 

 

 

 

 

Ai-1,j-1

Ai,j

Ai+1,j-1

Ai,j-1

Ai+1,j+1Ai,j+1Ai-1,j+1

Ai,j+1

Ai,j-1

Figure 7.1:  Agent Representation in a Two-Dimensional Matrix in a Spatial IPD Model. 

 

In our model, a player’s neighbors are considered an environmental factor with the 

potential to influence the player’s moves. For strategy Ai,j, the neighbor_payoff of Ai,j is 

defined as:  

neighbor_payoff(Ai,j)= (S(Ai-1,j-1)+ S(Ai,j-1)+ S(Ai+1,j-1)+ S(Ai-1,j)+ S(Ai+1,j)+ 

S(Ai-1,j+1)+ S(Ai,j+1)+ S(Ai+1,j+1))/8 
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Next, a set of strategies was defined that considers the average payoff of neighbors as 

well as its previous moves and those of its opponent. The strategies are encoded as [V0, V1, 

V2, V3, V4], where: 

if neighbor_payoff < 1, the V0 strategy is followed; 

if 1 ≦ neighbor_payoff < 2, the V1 strategy is followed; 

if 2 ≦ neighbor_payoff < 3, the V2 strategy is followed; 

if 3 ≦ neighbor_payoff < 4, the V3 strategy is followed; 

if 4 ≦ neighbor_payoff ≦ 5, the V4 strategy is followed, and 

V0, V1, V2, V3, V4 belong to the set of memory-1 deterministic strategies.  

A GA was used to find strategies that survive the evolutionary process. The GA 

parameters include a N×N matrix and a strategy residing in each cell in the matrix. Initially, 

strategies are randomly produced and distributed. For each generation, assume B is a 

neighbor of Ai,j and that it has the highest score among all of Ai,j’s neighbors.  Ai,j is 

replaced by B if S(Ai,j) < S(B).  Crossover and mutation operators are applied after 

reproduction. Crossovers occur between an agent and one of its eight neighbors.  For each 

strategy there is a slight chance that a gene will mutate to one of 16 memory-1 

deterministic strategies. 
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Strategies with the potential to survive the evolutionary process were identified and 

inserted into the spatial PD model consisting of 16 memory-1 deterministic strategies.  

The performance of an individual strategy compared to memory-1 deterministic strategies 

was then observed. 

 

7.3 Results 

GA model execution consisted of 3,000 generations per run.  During each run, the 

amount of each kind of strategy was recorded, and the 10 most dominant strategies were 

identified.  Thus, 50 runs produced 500 strategies with the greatest potential to survive the 

evolutionary process.  The following observations were made for those 500 strategies 

a) V0 strategies are mostly non-nice, especially S15 or S14. 

b) V4 strategies are mostly nice, especially S0 or S1. 

c) V1, V2, and V3 are the combinations of S5, S6, and S7. 

Next, strategy performance was verified and compared with memory-1 strategies. 

After inserting all of the memory-1 deterministic strategies into the environment, 10 runs 

of 100 generations each were executed.  The results show that PAVLOV (S6), Tit-for-Tat 
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(S5), and Retaliator (S7) outperformed all other strategies, with PAVLOV being dominant 

in the later stages of each run (Figure 7.2).  

Evolved strategies were placed in the spatial PD model consisting of 16 memory-1 

deterministic strategies.  Again, 10 runs of 100 generations each were executed.  

According to these results, the evolved strategies outperformed most of the memory-1 

strategies, with a few outperforming the best memory-1 strategies. In the rest of this 

section I will give details on three examples. 

 

 

 

 

 

 

[6, 6, 6, 6, 6] (PAVLOV) 

[5, 5, 5, 5, 5] (Tit-for-Tat) 

[7, 7, 7, 7, 7] 

(RETALIATOR) 

Figure 7.2:  Amount-versus-Generation Graph for 16 Memory-1 Deterministic Strategies. 
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An amount-versus-generation graph for a spatial model consisting of [15, 6, 6, 6, 0] 

and 16 deterministic memory-1 strategies is shown in Figure 7.3. In this case, the evolved 

strategy [15, 6, 6, 6, 0] outperformed all memory-1 deterministic strategies.  Even 

PAVLOV, considered the best of all memory-1 deterministic strategies in the model, could 

not invade the [15, 6, 6, 6, 0] strategy. 

 

  

 

 

 

 

 

[6, 6, 6, 6, 6] (PAVLOV) 

[15, 6, 6, 6, 0] 

Figure 7.3:  Amount-versus-Generation Graph for Memory-1 Deterministic Strategies and 
[15, 6, 6, 6, 0]. 
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A slight change in strategy encoding affected the simulation results.  Results from a 

simulation consisting of [15, 5, 6, 7, 1] and 16 deterministic memory-1 strategies are 

shown in Figure 7.4.  The [15, 5, 6, 7, 1] strategy performed well during the early stages 

of evolution, but as its numbers increased within the environment, PAVLOV gained 

dominance because of its strong clustering capability. Even though the number of [15, 5, 6, 

7, 1] strategies was larger than the number of PAVLOV strategies, they were susceptible to 

invasion 

 

 

 

 

 

 

[6, 6, 6, 6, 6] (PAVLOV) 

[15, 5, 6, 7, 1] 

Figure 7.4:  Amount-versus-Generation Graph for Memory-1 Deterministic Strategies and 
[15, 5, 6, 7, 1]. 
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The distribution of strategy number versus payoff values during strategy evolution is 

presented in Figure 7.5.  The figure underscores the rarity of agents with payoffs larger 

than 3 and smaller than 1, meaning that strategies V0 and V4 in a strategy set encoded as 

[V0, V1, V2, V3, V4] will be used rarely compared to the V1, V2, and V3 strategies.  

However, Figure 7.3 shows that [15, 6, 6, 6, 0] outperformed PAVLOV (represented as [6, 

6, 6, 6, 6])—the best performing of all memory-1 deterministic strategies in the model. In 

other words, even though V0 and V4 are rarely used, they exert a critical influence on 

strategy survival.  
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Figure 7.5:  Distribution of Strategy Number versus Payoff Values. 

 

The values of V0 and V4 were changed in an attempt to further validate their 

importance.  Results of strategy [0, 6, 6, 6, 0] are shown in Figure 7.6.  Although it 
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clearly outperformed most memory-1 deterministic strategies, it was incapable of invading 

PAVLOV strategies in the same manner as [15, 6, 6, 6, 1].  
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[6, 6, 6, 6, 6] (PAVLOV)

[15, 6, 6, 6, 15] 

Figure 7.7:  Amount-versus-Generation Graph for Memory-1 Deterministic Strategies and 
[15, 6, 6, 6, 15]. 

 

 
[6, 6, 6, 6, 6] (PAVLOV)

 

[15, 6, 6, 6, 15]  

 

 

Figure 7.8:  Amount-versus-Generation Graph for Memory-1 Deterministic Strategies and 
[15, 6, 6, 6, 15]. 
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7.4 Conclusion 

According to the results produced by the evolutionary model, strategies that take into 

account simple environmental factors (e.g., their neighbors’ average scores) when deciding 

their subsequent moves have greater potential to outperform strategies that only consider 

the historical moves of two players.  Three characteristics were observed in the evolved 

strategies: 

a) When the average neighbor score ranges between 1 and 3, then PAVLOV, 

Tit-for-Tat, or Retaliator strategies should be used to improve chances for survival. 

b) When the average neighbor score is below 1, the environment is assumed to be full 

of defecting agents, which encourages the use of non-nice strategies (e.g., ALLD). 

c) When the average neighbor score is above 1, the environment is assumed to be full 

of cooperating agents, which encourages the use of nice strategies (e.g., ALLC). 

One other important characteristic is that some decisions based on rare/unusual 

circumstances can have a critical impact on strategy survival. Even though average 

neighbor scores were rarely below 1 or above 3, the use of appropriate strategies under 

these circumstances should not be overlooked.  
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Chapter 8.   
 
Conclusion 

 

 

The conflict between public good and private interest is very common in both human 

and animal societies.  It is interesting to note that it also occurs in artificial societies, even 

when they are designed for problem solving instead of real world simulation. The purpose 

of this dissertation was to investigate the private interest/public good conflict as it 

specifically occurs in artificial societies designed for problem solving. 

The Iterated Prisoner’s Dilemma (IPD) that was used as an abstract model is 

commonly employed in investigations of real-world simulations.  The proposed analytical 

framework for investigating the IPD model made use of interaction patterns between 

agents to construct inter-agent relationships.  Existing strategy properties and well-known 

phenomena were discovered without having to invest a large amount of simulation time or 
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resources.  It was also useful in identifying interesting IPD model properties, such as the 

cyclic exploration relationships among strategies.  

The proposed framework highlights an important methodological issue in simulations 

and the use of artificial societies for problem solving: what work should be done prior to 

execution?  Although considered important, pre-simulation or pre-execution model 

analysis is generally overlooked by researchers in either area. A simple yet typical example 

involving GA was presented, and the proposed analytical framework provided further 

evidence in support of performing an initial model analysis.  Furthermore, simulative and 

analytical approaches have complementary advantages and disadvantages; I expect that 

their integration will become an important topic in future research, and that the first studies 

will focus on clarifying their complementary properties. 

Also discussed was the effect of environment on the IPD model—another important 

factor that has generally been ignored in the IPD model literature. The results show that 

strategies that take the environmental factor into account tend to perform well.  
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Appendix A 
 
 
Behavior Characteristics of memory-1 Deterministic Strategies: 

 S0 S1 S2 S3 S4 S5 S6 S7

S0 (1,0,0,0) (1,0,0,0) (3/4,1/4,0,0) (1/2,1/2,0,0) (1,0,0,0) (1,0,0,0) (1/2,1/2,0,0) (1/4,3/4,0,0) 

S1 (1,0,0,0) (3/4,0,0,1/4) (3/4,1/4,0,0) (1/2,1/4,0,1/4) (1,0,0,0) (3/4,0,0,1/4) (1/4,3/4,0,0) (1/4,1/2,0,1/4)

S2 (3/4,0,1/4,0) (3/4,0,1/4,0) (1/2,1/4,1/4,0) (1/4,1/2,1/4,0) (1,0,0,0) (1,0,0,0) (3/4,1/4,0,0) (1/4,3/4,0,0) 

S3 (1/2,0,1/2,0) (1/2,0,1/4,1/4) (1/4,1/4,1/2,0) (1/4,1/4,1/4,1/4) (1/2,0,1/4,1/4) (1/2,0,0,1/2) (1/4,1/4,1/4,1/4) (1/4,1/4,0,1/2)

S4 (1,0,0,0) (1,0,0,0) (1,0,0,0) (1/2,1/4,0,1/4) (1/2,1/4,1/4,0) (1/4,3/8,3/8,0) (1,0,0,0) (1/4,3/8,0,3/8)

S5 (1,0,0,0) (3/4,0,0,1/4) (1,0,0,0) (1/2,0,0,1/2) (1/4,3/8,3/8,0) (1/4,1/4,1/4,1/4) (1/4,1/4,1/4,1/4) (1/4,0,0,3/4) 

S6 (1/2,0,1/2,0) (1/4,0,3/4,0) (3/4,0,1/4,0) (1/4,1/4,1/4,1/4) (1,0,0,0) (1/4,1/4,1/4,1/4) (1,0,0,0) (1/4,3/8,0,3/8)

S7 (1/4,0,3/4,0) (1/4,0,1/2,1/4) (1/4,0,3/4,0) (1/4,0,1/4,1/2) (1/4,0,3/8,3/8) (1/4,0,0,3/4) (1/4,0,3/8,3/8) (1/4,0,0,3/4) 

S8 (1/2,0,1/2,0) (1/2,0,1/2,0) (3/8,1/4,3/8,0) (1/4,1/2,1/4,0) (1/3,1/3,1/3,0) (1/3,1/3,1/3,0) (0,1,0,0) (0,1,0,0) 

S9 (1/2,0,1/2,0) (3/8,0,3/8,1/4) (3/8,1/4,3/8,0) (1/4,1/4,1/4,1/4) (1/3,1/3,1/3,0) (1/4,1/4,1/4,1/4) (0,1,0,0) (0,3/4,0,1/4) 

S10 (0,0,1,0) (0,0,1,0) (0,1/4,3/4,0) (0,1/2,1/2,0) (1/3,0,1/3,1/3) (1/4,1/4,1/4,1/4) (1/4,1/4,1/4,1/4) (0,1,0,0) 

S11 (0,0,1,0) (0,0,3/4,1/4) (0,1/4,3/4,0) (0,1/4,1/2,1/4) (0,0,1/2,1/2) (0,0,0,1) (0,1/4,3/8,3/8) (0,1/4,0,3/4) 

S12 (1/2,0,1/2,0) (1/2,0,1/2,0) (1/2,0,1/2,0) (1/4,1/4,1/4,1/4) (0,1/2,1/2,0) (0,1/2,1/2,0) (1/4,1/4,1/4,1/4) (0,1/2,0,1/2) 

S13 (1/2,0,1/2,0) (3/8,0,3/8,1/4) (1/2,0,1/2,0) (1/4,0,1/4,1/2) (0,1/2,1/2,0) (0,3/8,3/8,1/4) (0,1/3,1/3,1/3) (0,0,0,1) 

S14 (0,0,1,0) (0,0,1,0) (0,0,1,0) (0,1/4,1/2,1/4) (1/3,0,1/3,1/3) (0,1/3,1/3,1/3) (1/3,0,1/3,1/3) (0,1/2,0,1/2) 

S15 (0,0,1,0) (0,0,3/4,1/4) (0,0,1,0) (0,0,1/2,1/2) (0,0,1/2,1/2) (0,0,0,1) (0,0,1/2,1/2) (0,0,0,1) 

 

 

 

 109



Behavior Characteristics of memory-1 Deterministic Strategies (Continued): 

 S8 S9 S10 S11 S12 S13 S14 S15

S0 (1/2,1/2,0,0) (1/2,1/2,0,0) (0,1,0,0) (0,1,0,0) (1/2,1/2,0,0) (1/2,1/2,0,0) (0,1,0,0) (0,1,0,0) 

S1 (1/2,1/2,0,0) (3/8,3/8,0,1/4) (0,1,0,0) (0,3/4,0,1/4) (1/2,1/2,0,0) (3/8,3/8,0,1/4) (0,1,0,0) (0,3/4,0,1/4) 

S2 (3/8,3/8,1/4,0) (3/8,3/8,1/4,0) (0,3/4,1/4,0) (0,3/4,1/4,0) (1/2,1/2,0,0) (1/2,1/2,0,0) (0,1,0,0) (0,1,0,0) 

S3 (1/4,1/4,1/2,0) (1/4,1/4,1/4,1/4) (0,1/2,1/2,0) (0,1/2,1/4,1/4) (1/4,1/4,1/4,1/4) (1/4,1/4,0,1/2) (0,1/2,1/4,1/4) (0,1/2,0,1/2) 

S4 (1/3,1/3,1/3,0) (1/3,1/3,1/3,0) (1/3,1/3,0,1/3) (0,1/2,0,1/2) (0,1/2,1/2,0) (0,1/2,1/2,0) (1/3,1/3,0,1/3) (0,1/2,0,1/2) 

S5 (1/3,1/3,1/3,0) (1/4,1/4,1/4,1/4) (1/4,1/4,1/4,1/4) (0,0,0,1) (0,1/2,1/2,0) (0,3/8,3/8,1/4) (0,1/3,1/3,1/3) (0,0,0,1) 

S6 (0,0,1,0) (0,0,1,0) (1/4,1/4,1/4,1/4) (0,3/8,1/4,3/8) (1/4,1/4,1/4,1/4) (0,1/3,1/3,1/3) (1/3,1/3,0,1/3) (0,1/2,0,1/2) 

S7 (0,0,1,0) (0,0,3/4,1/4) (0,0,1,0) (0,0,1/4,3/4) (0,0,1/2,1/2) (0,0,0,1) (0,0,1/2,1/2) (0,0,0,1) 

S8 (1/2,0,0,1/2) (1/3,1/3,0,1/3) (3/8,1/4,0,3/8) (0,1,0,0) (1/2,0,0,1/2) (1/3,1/3,0,1/3) (1/4,1/2,0,1/4) (0,1,0,0) 

S9 (1/3,0,1/3,1/3) (0,0,0,1) (1/4,1/4,1/4,1/4) (0,1/4,0,3/4) (1/4,1/4,1/4,1/4) (0,0,0,1) (0,1,0,0) (0,1/2,0,1/2) 

S10 (3/8,0,1/4,3/8) (1/4,1/4,1/4,1/4) (1/4,1/4,1/4,1/4) (0,3/4,1/4,0) (1/2,0,0,1/2) (1/3,1/3,0,1/3) (3/8,1/4,0,3/8) (0,1,0,0) 

S11 (0,0,1,0) (0,0,1/4,3/4) (0,1/4,3/4,0) (0,1/4,1/4,1/2) (0,0,1/2,1/2) (0,0,0,1) (0,1/4,3/8,3/8) (0,1/4,0,3/4) 

S12 (1/2,0,0,1/2) (1/4,1/4,1/4,1/4) (1/2,0,0,1/2) (0,1/2,0,1/2) (1/4,1/4,1/4,1/4) (0,1/2,1/2,0) (1/2,0,0,1/2) (0,1/2,0,1/2) 

S13 (1/3,0,1/3,1/3) (0,0,0,1) (1/3,0,1/3,1/3) (0,0,0,1) (0,1/2,1/2,0) (0,1/4,1/4,1/2) (0,1/3,1/3,1/3) (0,0,0,1) 

S14 (1/4,0,1/2,1/4) (0,0,1,0) (3/8,0,1/4,3/8) (0,3/8,1/4,3/8) (1/2,0,0,1/2) (0,1/3,1/3,1/3) (1/2,0,0,1/2) (0,1/2,0,1/2) 

S15 (0,0,1,0) (0,0,1/2,1/2) (0,0,1,0) (0,0,1/4,3/4) (0,0,1/2,1/2) (0,0,0,1) (0,0,1/2,1/2) (0,0,0,1) 
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