

國 立 交 通 大 學

電機學院 IC 設計產業研發碩士班

碩 士 論 文

有效成本控制的三明治型乒乓記憶體

之設計與分析

Study on cost-efficient

Sandwich Ping-Pong Memory

研 究 生：魏文俊

指導教授：董蘭榮 教授

中華民國 九十七 年 十二 月

http://www.cn.nctu.edu.tw/main/user/47

I

有效成本控制的三明治型乒乓記憶體

之設計與分析

Study on cost-efficient Sandwich Ping-Pong Memory

研 究 生：魏 文 俊 Student：Wen-Chun Wei

指導教授：董 蘭 榮 Advisor：Lan-Rong Dung

國 立 交 通 大 學

電機學院 IC 設計產業研發碩士班

碩 士 論 文

A Thesis

Submitted to College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Industrial Technology R & D Master Program on

IC Design

December 2008

Hsinchu, Taiwan, Republic of China

中華民國 九十七 年 十二 月

II

有效成本控制的三明治型乒乓記憶體

之設計與分析

研究生：魏 文 俊 指導教授：董 蘭 榮 博士

國立交通大學電機學院產業研發碩士班

摘要

本研究旨在探討記憶體(緩衝器)的成本與效能上之取捨，我們提出一個適用於

快速資料傳輸上的三明治型乒乓記憶體(緩衝器) ，並驗證其適切性。相對於現行

之乒乓記憶體的而言，此記憶體使用較少的面積，並且在操作頻率上有更多選擇

及彈性的空間。使用者可調整三明治型乒乓記憶體的容量大小，進而決定操作頻

率為何，藉以有效控制成本。此外，為了測試此記憶體，我們也根據現行常用的

測試演算法，發展出專屬於三明治型乒乓記憶體之測試演算法，並經由國家晶片

系統設計中心，成功地完成下線並製作晶片，更進一步利用此測試演算法，偵測

出一般常見的缺陷模型，結果在缺陷包容度上亦達到 100%。在晶片控制單元的設

計上，我們發現能使晶片控制單元所佔的面積能最小之方法。運用此方法，當減

少 500 個記憶體單元面積的同時，亦能使額外的晶片控制單元小於 500 個閘數。

本研究尚依據研究結果，針對三明治型乒乓記憶體(緩衝器)實務方面之應用，

以及未來之研究提出建議。

關鍵詞：乒乓記憶體、轉置緩衝器、記憶體測試演算法、閒置的記憶體

http://www.cn.nctu.edu.tw/main/user/47
http://www.cn.nctu.edu.tw/main/user/47
http://www.cn.nctu.edu.tw/main/user/47
http://www.cn.nctu.edu.tw/main/user/47
http://www.cn.nctu.edu.tw/main/user/47

III

Study on cost-efficient Sandwich Ping-Pong Memory

Student: Wen-Chun Wei Advisor: Dr. Lan-Rong Dung

Industrial Technology R & D Master Program of

Electrical and Computer Engineering College

National Chiao-Tung University

Abstract

This thesis is about memory (buffer) and we present a Sandwich Ping Pong Memory.

The area in the Sandwich Ping Pong Memory is much less than in a Ping Pong Memory.

Besides, it is more flexible on the operation frequency compared with a Ping Pong

Memory. Data are written into the Sandwich Ping Pong Memory row by row and read

from it column by column simultaneously. Based on March C- algorithm, we also

developed the test algorithm for the Sandwich Ping Pong Memory and named it the

modified March C- algorithm. It can detect the stuck-at fault, transition fault, address

fault, and coupling fault. We also successfully taped out a 64-byte Ping Pong Memory

in process 0.35 mμ 2p4m in National Chip Implementation Center (CIC). Finally, we

do the verification and testing. As a result, the fault coverage is at 100% of each fault.

The chip is 1310 x 1100 micro meters squared. In order to design the control unit, the

area overhead is under five hundred gate counts at the range of Common Bar is under

512 unit memory cells.

Keywords：Ping Pong buffer, Transpose buffer, March C- algorithm, Idled memory

IV

Acknowledgement

致謝

回首在交通大學的研究生涯，使我培養了獨立思考及冷靜面對並解決問題的

能力，讓我在各方面都有所成長且有更深切的體會，在此謹向我的指導教授董蘭

榮老師致上最崇高的敬意，由衷的感謝老師的悉心指導，在研究過程及課業方面，

甚至是在台上演說，均給予多方的指導與建議。

 此外，也要感謝中央大學劉建男教授、交通大學黃俊達教授以及范倫達教授，

在論文上的指導與匡正，使本論文更臻完善。

 同時更要感謝實驗室一起相處、努力的同學們，登琦、嘉洋、宇佑、建勛、

展嘉、志恆以及學弟建樺，謝謝你們熱心的協助與指導，使得我在研究過程中遇

到的困境能夠迎刃而解。也因為有你們的陪伴，在我的課閒生活上也增添了許多

歡樂，有個多采多姿的研究生活。

 當然，還要感謝我家人，親愛的外公、外婆、父親、母親，感謝他們的養育

之恩，在我求學生涯中給我最大的鼓勵與支持，使我得以在精神與生活上無後顧

之憂，順利完成學業。適逢母親五十大壽，在此，祝她笑口常開、青春永駐。

 最後，我要感謝毓涵，你的鼓勵一直是我研究的動力所在，謝謝你。

感謝你們，僅以本論文獻給摯愛的大家。

 文俊 于新竹交大

 2008年12月

V

Contents

摘要 ..II
Abstract .. III
Acknowledgement.. IV
Contents... V
List of Figures ...VII
List of Tables.. IX
Chapter 1 Introduction.. 1

1.1 Research Objective... 1
1.2 The Proposed Memory... 2
1.3 Organization ... 2

Chapter 2 Background .. 4
2.1 Ping Pong Buffers for Image Compression ... 5

2.1.1 One-dimensional Discrete Cosine Transform............................... 5
2.1.2 Multidimensional Discrete Cosine Transform 8

2.2 Ping Pong Buffers for Transmission.. 11
Chapter 3 Sandwich Ping-Pong Memory .. 14

3.1 The use of Sandwich Ping-Pong Memory ... 14
3.1.1 The Operation of Ping Pong Memory... 14
3.1.2 Common Bar ... 16
3.1.3 Sandwich Ping Pong Memory... 17

3.2 Read / Write Operation .. 18
3.2.1 Row-column block memory.. 18
3.2.2 Scan line of the Sandwich Ping-Pong memory........................... 20

3.3 Timing Analysis ... 22
3.3.1 The Initially Idle Time .. 22
3.3.2 The Idle Time.. 26
3.3.3 Line Buffer .. 30

3.4 Control Unit Circuit ... 36
Chapter 4 Test Algorithm ... 41

4.1 Fault Models... 42
4.2 March Algorithms .. 43
4.3 A Test Algorithm for Sandwich Ping-Pong Memory 46

4.3.1 March C- Algorithm.. 46
4.3.2 The Modified March C- Algorithm .. 49
4.3.3 Testing of Sandwich Ping-Pong Memory................................... 50

Chapter 5 Chip Implementation... 55

VI

5.1 Chip Implementation of the Sandwich Ping Pong Memory 56
5.1.1 The architecture of a Ping-Pong buffer....................................... 56
5.1.2 The detail design of a Ping-Pong buffer 57
5.1.3 HSPICE Simulation of a Ping-Pong Memory 61

5.2 Layout of the Ping Pong Memory.. 63
5.3 Test Circuit Design .. 68

Chapter 6 Conclusions and Future Works .. 71
6.1 Conclusions .. 71
6.2 Future Works .. 71

Bibliography... 72
Vita ... 74

VII

List of Figures

Figure 1.1 Ping-Pong Memory is on write/read operation.................................... 1
Figure 1.2 Architecture of Sandwich Ping Pong Memory.................................... 2
Figure 2.1 A Ping-Pong Buffer.. 4
Figure 2.2 The generic 2D-DCT architecture ... 10
Figure 2.3 2D-DCT frequencies. ... 11
Figure 2.4 (a) A buffer of capacity M. (b) A Ping-Pong Memory....................... 12
Figure 2.5 System View[4] ... 13
Figure 3.1 The architecture of a Ping-Pong buffer.. 14
Figure 3.2 Ping Pong Memory is on write/read operation 15
Figure 3.3 Common Bar.. 16
Figure 3.4 The architecture of Sandwich Ping Pong Memory............................ 17
Figure 3.5 The architecture of 2-D DCT... 18
Figure 3.6 Row by row on write operation ... 20
Figure 3.7 Column by column on read operation.. 20
Figure 3.8 Coefficients for Sandwich Ping Pong Memory 23
Figure 3.9 The first constraint ... 24
Figure 3.10 The second constraint .. 24
Figure 3.11 The third constraint .. 25
Figure 3.12 The fourth constraint.. 27
Figure 3.13 The fifth constraint... 28
Figure 3.14 Example for Initial and Idle Time .. 29
Figure 3.15 Coefficients for line buffer... 30
Figure 3.16 The first constraint for general form.. 31
Figure 3.17 The second constraint for general form ... 32
Figure 3.18 The third constraint for general form... 33
Figure 3.19 The fourth constraint for general form .. 34
Figure 3.20 The fifth constraint for general form ... 35
Figure 3.21 Signals and addresses for Sandwich Ping Pong Memory................ 37
Figure 3.22 The gate count of control unit for Common Bar 38
Figure 3.23 Common Bar and Area Saved.. 39
Figure 3.24 Area Saved vs. Throughput Reduction .. 40
Figure 4.1 Different types of address decoder faults .. 43
Figure 4.2 A March algorithm example .. 45
Figure 4.3 The procedure for the March algorithm example 45
Figure 4.4 March C- algorithm ... 46
Figure 4.5 Masking of coupling faults .. 48
Figure 4.6 Modified March C- algorithm.. 50

VIII

Figure 4.7 Modified March C- algorithm for block A and block B 50
Figure 4.8 Test flow... 51
Figure 4.9 Addresses of coupling and coupled cells... 52
Figure 4.10 Detecting CFids ... 53
Figure 4.11 Detecting CFins.. 54
Figure 5.1 Design flow for 64-byte Pig Pong Memory 55
Figure 5.2 Components in the Ping-Pong Memory .. 56
Figure 5.3 Six-device SRAM memory cell ... 58
Figure 5.4 The differential SA, Equalization, and Pre-charge circuit 60
Figure 5.5 Using NAND gates to build up address decoders 61
Figure 5.6 Design flow.. 62
Figure 5.7 HSPICE simulation of Ping-pong memory 63
Figure 5.8 Layout of an 8-byte Ping-Pong buffer. .. 64
Figure 5.9 Layout of 64-byte Ping Pong Memory with Pad 64
Figure 5.10 Component introduction on layout .. 65
Figure 5.11 Bonding figure ... 66
Figure 5.12 Photo of the die .. 66
Figure 5.13 Test architecture ... 68
Figure 5.14 TPG.. 69
Figure 5.15 ORA ... 69

IX

List of Tables

Table 3.1 Signals and Addresses for 32bit SPPM with Common Bar 1X4......... 37
Table 3.2 Data sheet for a Sandwich Ping Pong Memory................................... 38
Table 4.1 Test time as a function of memory size ... 41
Table 4.2 Some March algorithms... 45
Table 4.3 Fault coverage of some popular March algorithms 46
Table 4.4 Conditions for detecting address decoder faults.................................. 47
Table 5.1 Specification .. 65
Table 5.2 Pins definition.. 67

-1-

Chapter 1 Introduction

1.1 Research Objective

The Ping Pong Memory (buffer) is widely used in variety of applications and is studied [1],

[2], [3], and [4]. Because it spends less time on waiting the data compared with the single port

memory. Its operation frequency is higher than the single port memory. Additionally, the area

of the Ping Pong Memory is much less than the dual port memory. Therefore, when it comes

to the memory, Ping Pong Memory must be the first one we think about. It can be operated at

the high frequency and the cost of area is pretty less.

 The address sequence of writing and reading is different. Figure 1.1 shows data are written

into Ping/Pong Memory row by row and read from Pong/Ping Memory column by column

simultaneously. We found that there were some memory cells in the idled condition when the

Ping Pong Memory was on operation. As a result, we combined these idled memory cells to

make a Common Bar and developed the Sandwich Ping Pong Memory.

Figure 1.1 Ping-Pong Memory is on write/read operation

-2-

1.2 The Proposed Memory

We proposed a Sandwich Ping Pong Memory. The architecture of the Sandwich Ping Pong

Memory is illustrated in figure 1.2. Common Bar is between the Ping and Pong Memory. It

replaces the idled memories when Ping Pong Memory is on operation. Therefore, there is less

area in the Sandwich Ping Pong Memory than in Ping Pong Memory.

It is more flexible on operation frequency because the operation frequency is affected by

the size of the Sandwich Ping Pong Memory, especially the size of the Common Bar. It can

not be operated on fix frequency. Once we decided the size of the Common Bar, we decided

the frequency of the Sandwich Ping Pong Memory.

Figure 1.2 Architecture of Sandwich Ping Pong Memory

1.3 Organization

The rest of this thesis is organized as followed. In Chapter 2, we find the applications of the

Ping Pong Memory. In Chapter 3, we present our proposed the Sandwich Ping Pong Memory,

its read and write operation, the timing analysis, and its control unit circuit. In order to test it,

-3-

we develop its own test algorithm which is based on a previous test algorithm in Chapter 4.

We taped out our design through the National Chip Implementation Center successfully. In

Chapter 5, we introduce the chip implementation. Finally, we give a few conclusions in

Chapter 6.

-4-

Chapter 2 Background

In this chapter, we introduce a simple, and perhaps obvious, technique that eliminates the

need for the two memory operations during each time slot. We call the technique “ping-pong

buffering.” A ping-pong buffer, shown in figure 2.1, uses two conventional single-ported

memories in parallel, so that while “Ping” memory is written “Pong” memory can be read,

and while “Ping” memory is read “Pong” memory can be written. The two memories are

arranged so that from the outside, they appear to be a single buffer. Ping-pong buffering is

widely used including image compression and network communication.

Figure 2.1 A Ping-Pong Buffer

The easiest way to explain how a ping-pong buffer works is to take a real world example. It

is a nice sunny day and you have decided to get the paddling pool out, only you can't find

your garden hose. You'll have to fill the pool with buckets. So you fill one bucket (or buffer)

from the tap, turn the tap off, walk over to the pool, pour the water in, walk back to the tap to

repeat the exercise. This is analogous to single buffering. The tap has to be turned off while

you "process" the bucket of water.

Now consider how you would do it if you had two buckets. You would fill the first bucket

-5-

and then swap the second in under the running tap. You then have the length of time it takes

for the second bucket to fill in order to empty the first into the paddling pool. When you

return you can simply swap the buckets so that the first is now filling again, during which

time you can empty the second into the pool. This can be repeated until the pool is full. It is

clear to see that this technique will fill the pool far faster as there is much less time spent

waiting, doing nothing, while buckets fill. This is analogous to double buffering. The tap can

be on all the time and does not have to wait while the processing is done.

2.1 Ping Pong Buffers for Image Compression

Discrete Cosine Transform (DCT) is a mathematical tool that has a lot of electronics

applications, from audio filters to video compression hardware. DCT transforms the

information from the time or space domains to the frequency domain, such that other tools

and transmission media can be run or used more efficiently to reach application goals:

compact representation, fast transmission, memory savings, and so on.

In image compression, ping-pong buffering (or double buffering) is a widely used

technique especially for the 2-dimensional discrete cosine transform. The discrete cosine

transforms (DCT) are a family of similar transforms closely related to the discrete sine

transform and the discrete Fourier transform. The DCT-II is the most commonly used form

and plays an important role in coding signals and images [5], e.g. in the widely used standard

JPEG compression. The discrete cosine transform was first introduced by Ahmed, Natarajan,

and Rao [6], [7], and [8]. Later Wang and Hunt [9] introduced the complete set of variants.

2.1.1 One-dimensional Discrete Cosine Transform

Formally, the discrete cosine transform is a linear, invertible function F: RN -> RN (where R

-6-

denotes the set of real numbers), or equivalently an invertible N × N square matrix. There are

several variants of the DCT with slightly modified definitions. The N real numbers x0, xN-1 are

transformed into the N real numbers X0, XN-1 according to one of the formulas:

DCT-I

2

0 1
1

1 ((1)) cos 0,..., -1.
2 1

N
k

k N n
n

X x x x nk k N
N

π−

−
=

⎛ ⎞= + − + =⎜ ⎟−⎝ ⎠
∑ (2-1)

Some authors further multiply the x0 and xN-1 terms by 2 , and correspondingly multiply the

X0 and XN-1 terms by 1/ 2 . This makes the DCT-I matrix orthogonal, if one further multiplies

by an overall scale factor of ()2 / 1N − , but breaks the direct correspondence with a real-

even DFT.

The DCT-I is exactly equivalent (up to an overall scale factor of 2), to a DFT of 2N − 2 real

numbers with even symmetry. For example, a DCT-I of N=5 real numbers abcde is exactly

equivalent to a DFT of eight real numbers abcdedcb (even symmetry), divided by two. (In

contrast, DCT types II-IV involve a half-sample shift in the equivalent DFT.)

Note, however, that the DCT-I is not defined for N less than 2. (All other DCT types are

defined for any positive N.)

Thus, the DCT-I corresponds to the boundary conditions: xn is even around n=0 and even

around n=N-1; similarly for Xk.

DCT-II

1

0

1cos 0,..., -1.
2

N

k n
n

X x n k k N
N
π−

=

⎡ ⎤⎛ ⎞= + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ (2-2)

The DCT-II is probably the most commonly used form, and is often simply referred to as "the

-7-

DCT". This transform is exactly equivalent (up to an overall scale factor of 2) to a DFT of 4N

real inputs of even symmetry where the even-indexed elements are zero. That is, it is half of

the DFT of the 4N inputs yn, where y2n = 0, y2n + 1 = xn for 0 n N≤ < , and y4N − n = yn for 0 <

n < 2N. Some authors further multiply the X0 term by 1/ 2 (see below for the corresponding

change in DCT-III). This makes the DCT-II matrix orthogonal, if one further multiplies by an

overall scale factor of 2 / N , but breaks the direct correspondence with a real-even DFT of

half-shifted input.

The DCT-II implies the boundary conditions: xn is even around n=-1/2 and even around

n=N-1/2; Xk is even around k=0 and odd around k=N.

DCT-III

1

0
1

1 1cos 0,..., -1.
2 2

N

k n
n

X x x n k k N
N
π−

=

⎡ ⎤⎛ ⎞= + + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ (2-3)

Because it is the inverse of DCT-II (up to a scale factor, see below), this form is sometimes

simply referred to as "the inverse DCT" ("IDCT"). Some authors further multiply the x0 term

by 2 (see above for the corresponding change in DCT-II), so that the DCT-II and DCT-III

are transposes of one another. This makes the DCT-III matrix orthogonal, if one further

multiplies by an overall scale factor of 2 / N , but breaks the direct correspondence with a

real-even DFT of half-shifted output.

The DCT-III implies the boundary conditions: xn is even around n=0 and odd around n=N; Xk

is even around k=-1/2 and even around k=N-1/2.

DCT-IV

1

0

1 1cos 0,..., -1.
2 2

N

k n
n

X x n k k N
N
π−

=

⎡ ⎤⎛ ⎞⎛ ⎞= + + =⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∑ (2-4)

The DCT-IV matrix becomes orthogonal if one further multiplies by an overall scale factor

-8-

of 2 / N . A variant of the DCT-IV, where data from different transforms is overlapped, is

called the modified discrete cosine transform (MDCT).

The DCT-IV implies the boundary conditions: xn is even around n=-1/2 and odd around

n=N-1/2; similarly for Xk.

DCT V-VIII

DCT types I-IV are equivalent to real-even DFTs of even order (regardless of whether N is

even or odd), since the corresponding DFT is of length 2(N−1) (for DCT-I) or 4N (for

DCT-II/III) or 8N (for DCT-VIII). In principle, there are actually four additional types of

discrete cosine transform (Martucci, 1994), corresponding essentially to real-even DFTs of

logically odd order, which have factors of N ± 1/2 in the denominators of the cosine

arguments.

Equivalently, DCTs of types I-IV imply boundaries that are even/odd around either a data

point for both boundaries or halfway between two data points for both boundaries. DCTs of

types V-VIII imply boundaries that even/odd around a data point for one boundary and

halfway between two data points for the other boundary.

However, these variants seem to be rarely used in practice. One reason, perhaps, is that FFT

algorithms for odd-length DFTs are generally more complicated than FFT algorithms for

even-length DFTs (e.g. the simplest radix-2 algorithms are only for even lengths), and this

increased intricacy carries over to the DCTs as described below.

(The trivial real-even array, a length-one DFT (odd length) of a single number a, corresponds

to a DCT-V of length N=1.)

2.1.2 Multidimensional Discrete Cosine Transform

Multidimensional variants of the various DCT types follow straightforwardly from the

-9-

one-dimensional definitions: they are simply a separable product (equivalently, a composition)

of DCTs along each dimension.

For example, a two-dimensional DCT-II of an image or a matrix is simply the

one-dimensional DCT-II, from above, performed along the rows and then along the columns

(or vice versa). That is, the 2d DCT-II is given by the formula (omitting normalization and

other scale factors, as above):

1 2

1 2 1 2

1 2

1 1

, 1 1 2 2
0 0 1 2

1 2

1 1cos cos
2 2

0,..., -1.

N N

k k n n
n n

X x x n k n k
N N

k or k N

π π− −

= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

=

∑ ∑

 (2-5)

Technically, computing a two- (or multi-) dimensional DCT by sequences of

one-dimensional DCTs along each dimension is known as a row-column algorithm (after the

two-dimensional case). The algorithm used for the calculation of the 2D DCT is based on the

equation (2-5). First, the 1D DCT of the rows are calculated and then the 1D DCT of the

columns are calculated. The 1D DCT coefficients for the rows and columns can be calculated

by separating equation (2-5) into the row part and the column part. As with

multidimensional FFT algorithms, however, there exist other methods to compute the same

thing while performing the computations in a different order (i.e. interleaving/combining the

algorithms for the different dimensions).

In figure 2.2, for the case of 8x8 block region, a 1D 8-point DCT/IDCT followed by an

internal double buffer memory (or ping-ping or transpose buffer), followed by another 1D

8-point DCT provided the 2D DCT architecture. The buffer memory is to store the data

computed from the first 1-D DCT/IDCT part and re-sequence them to the second 1-D

DCT/IDCT part with correct ordering. The double buffer memory performs a matrix transpose

operation and needs to be fast enough to keep up with the data received from the first 1-D

DCT/IDCT part and to supply the data going to the second 1-D DCT/IDCT part. The

-10-

transpose memory has to hold an entire block of N x N data points because the second 1-D

DCT/IDCT part can not start computations until the first 1-D DCT/IDCT part finished an

entire block.

Figure 2.2 The generic 2D-DCT architecture

Vector processing using parallel multipliers is a method used for implementation of DCT. The

advantages in the vector processing method are regular structure, simple control and

interconnect, and good balance between performance and complexity of implementation.

The inverse of a multi-dimensional DCT is just a separable product of the inverse(s) of the

corresponding one-dimensional DCT(s) (see above), e.g. the one-dimensional inverses

applied along one dimension at a time in a row-column algorithm.

In figure 2.3, the image to the right shows combination of horizontal and vertical frequencies

for an 8 x 8 (N1 = N2 = 8) two-dimensional DCT. Each step from left to right and top to

bottom is an increase in frequency by 1/2 cycle. For example, moving right one from the

top-left square yields a half-cycle increase in the horizontal frequency (goes from white to

black). Another move to the right yields two half-cycles (white to black to white). A move

down yields two half-cycles horizontally and a half-cycle vertically. The source data (8x8) is

transformed to a linear combination of these 64 frequency squares.

-11-

Figure 2.3 2D-DCT frequencies.

2.2 Ping Pong Buffers for Transmission

Memory Bandwidth is frequently a limiting factor in the design of high-speed switches and

routers. A buffering scheme called ping-pong buffering increases memory bandwidth by a

factor of two. Ping-pong buffering halves the number of memory operations per unit time

allowing faster buffers to be built from a given type of memory.

 Figure 2(a) shows a memory buffer with arrival (An) and departure (Dn) processes of cells.

In each cell time, which we call a time-slot, zero (An = 0) or one (An = 1) new cell may arrive,

and zero (Dn = 0) or one (Dn = 1) cell may depart from the buffer. This means that two

independent memory operations are required per cell time: one write, and one read. If

dual-ported memory is used, it would be possible for both operations to take place

simultaneously. However, commercial considerations generally dictate that conventional

single-ported memory be used. As a result, the total memory bandwidth must be at lease twice

-12-

the line rate.

Figure 2(b) shows a ping-pong buffer of total capacity M (cells), with the arrival and the

departure processes denoted as An and Dn, respectively. The main benefit of a ping-pong

buffer is that using conventional memory devices, it allows the design of buffers operating

twice as fast. But ping-pong buffer’s benefit comes with a penalty. If the amount of memory is

not increased, the overflow rate is from a ping-pong buffer is larger than for a conventional

buffer. In the worst case, half of the memory is wasted. Using simulations, fortunately, the

problem is eliminated by the addition of just 5% more memory [9].

Figure 2.4 (a) A buffer of capacity M. (b) A Ping-Pong Memory

In network communication, a transmission buffering method that involves two buffers: one

buffer receives transmissions while the second deletes earlier transmissions. The two alternate

functions, which helps to keep transmissions close to continuous. A ping-pong buffer contains

two separate buffers; while one buffer is receiving new transmission information the other

buffer is deleting the previous transmission.

We can also find ping-pong buffers in a front end system. The system view is illustrated in

-13-

figure 2.5. For example, a front end interface consists of a number of ping-pong buffers, one

for each LAN attachment; an internal bus with an arbitrator and a bus interface; a

microprocessor; and main memory. An incoming frame is placed in one of the ping-pong

buffers, if a buffer is available. Once the buffer is full or the last bit of the frame is received,

then a signal is raised to inform the bus arbitrator that a buffer is ready for being emptied.

Various scheduling policies such as First Come First Served, Served in Fixed Order, or

non-preemptive priority scheme, are possible to serve multiple ping-pong buffers associated

with various attachments. If a buffer is not available, then an incoming frame is assumed to be

lost. An algorithm is developed and used to investigate the performance characteristics of the

ping-pong buffering scheme [10].Once a permission to transfer is received by a ping-pong

buffer, the frame is transferred from the ping-pong buffer to the main memory via the internal

bus. It is further assumed that the main memory is large enough that it does not cause any loss

of segments. Finally, the transfers from the memory to the front end processor are not

explicitly considered here.

Figure 2.5 System View[4]

-14-

Chapter 3 Sandwich Ping-Pong Memory

In this chapter, we will propose our design. First of all, we will show the architecture and the

operation of a double buffer (Ping-Pong or transpose buffer). We will find the two idled area

in a Ping Pong Memory and develop a Common Bar to replace them. As a result, we develop

a Sandwich Ping Pong Memory. Second, we introduce the operations of the Sandwich

Ping-Pong Memory and derive the formula of Initial Time and Idle Time. We find some

conditions from doing the timing analysis for this design finally.

3.1 The use of Sandwich Ping-Pong Memory

3.1.1 The Operation of Ping Pong Memory

We have presented a double buffer roughly and realized that its application is in the 2-D DCT

architecture in chapter 2. We are going to introduce the architecture and the operation of a

double buffer, also known as, Ping-Pong buffer which is shown in figure 3.1.

Figure 3.1 The architecture of a Ping-Pong buffer

-15-

There are RAMs in figure 3.1 with some signals such as input data, output data, and address

signals for writing and reading. The Control signal controls the write and read operation of the

Ping Pong Memory. When RAM1/RAM2 is on read operation, RAM2/RAM1 is on read

operation. There are address signals for write and read operations. The address sequence of

writing and reading is different, showed in figure 3.2. We write data into RAM1/RAM2 row

by row and read data from RAM2/RAM1 column by column simultaneously. There are some

things we really concern about. Is there any memory cell idled during the write or read

operation? If so, what could we do?

Figure 3.2 Ping Pong Memory is on write/read operation

-16-

3.1.2 Common Bar

There are some idled memories in a Ping Pong Memory. The idled memories are showed in

figure 3.3. There are one block of dotted line area in the Ping Memory and one in the Pong

Memory, respectively. The dotted line area means the idled memories in a Ping Pong

Memory.

We combine the two dotted line area into one and named it “Common Bar.” As a result, there

is a block of memory, Common Bar, between the Ping and Pong Memory. That is the

Sandwich Ping Pong Memory.

Figure 3.3 Common Bar

-17-

3.1.3 Sandwich Ping Pong Memory

We develop a Sandwich Ping-Pong Memory based on the double buffer. Figure 3.4 shows the

architecture of the Sandwich Ping-Pong Memory which is built up by adding one single-port

memory between the ping memory and pong memory.

The architecture of the Common Bar is exactly the same as the ping or pong memory, because

they are all the same type of construction. In theory, the double buffer is used in the

architecture of 2-D DCT, so is the Sandwich Ping-Pong Memory. By the result of simulation

and verification on FPGA, we can prove that Sandwich Ping-Pong Memory work as transpose

buffer which is used to connect the two 1-D DCT architectures once the first 1-D DCT

outputs are row-wise and the second 1-D DCT inputs must be column-wise.

Figure 3.4 The architecture of Sandwich Ping Pong Memory

-18-

3.2 Read / Write Operation

Figure 3.5 shows when the first 1-D DCT architecture writes the results row by row in one

memory (ping or pong memory), the second 1-D DCT architecture reads the input values

column by column from the other memory (pong or ping memory). The read and write signal

addresses are generated by a control block and this control block defines, by control signal,

which memory is used to Read/Write at each memory access step.

Figure 3.5 The architecture of 2-D DCT

3.2.1 Row-column block memory

For a given 2-D spatial data sequence { ; , 0,1,..., -1ijX i j N= }, the 2-D DCT data

sequence { ; , 0,1,..., -1pqY i j N= } is defined by:

1 1

0 0

2 1 1cos cos
2 2

N N

pq p q ij
i j

Y E E X i p j q
N N N

π π− −

= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
∑ ∑ (3-1)

where

1 , 0
2

1, 0
x

x
E

x

⎧ =⎪= ⎨
⎪ ≠⎩

The forward and inverse transforms are merely mappings from the spatial domain to the

transform domain and vice versa. The DCT is a separable transform and as such, the

row-column decomposition can be used to evaluate (3-1).

Denoting:

-19-

1cos
2

h l
N
π⎡ ⎤⎛ ⎞+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

By lhc and neglecting the scale factor 2
p qE E

N
, the column transform can be expressed as:

1

0

, , 0,1, 2,..., 1
N

pq pj qj
j

Y Z c p q N
−

=

= = −∑ (3-2)

And the row transform can be expressed as:

1

0
, , 0,1, 2,..., 1

N

pj ij pi
i

Z X c p j N
−

=

= = −∑ (3-3)

In order to compute an N x N-point DCT (where N is even), N row transforms and N column

transforms need to be performed. However, by exploiting the symmetries of the cosine

function, the number of multiplications can be reduced from 2N to 2 / 2N . In this case each

row transform given by (3-3) can be written as matrix-vector multipliers via,

 () ()

/2 1

1
0

1
N

p
pj ij piN i j

i

Z X X c
−

− −
=

⎡ ⎤= + −⎣ ⎦∑ (3-4)

Using a matrix notation, for N=8, (4) can be written as

00 00 7000 01 02 03

20 20 22 23 10 6021

40 40 41 42 43 20 50

60 60 61 62 63 30 40

Z X Xc a c a
Z c c a X Xa
Z c c c a X X
Z c c c a X X

+⎡ ⎤ ⎛ ⎞ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥+⎜ ⎟⎢ ⎥ ⎢ ⎥=
⎜ ⎟⎢ ⎥ ⎢ ⎥+
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ +⎣ ⎦ ⎝ ⎠ ⎣ ⎦

 (3-5)

10 00 7010 11 12 13

30 30 31 31 33 10 60

50 50 51 51 53 20 50

70 70 71 71 73 30 40

Z X Xc a c a
Z c a c a X X
Z c c c a X X
Z c c c a X X

−⎡ ⎤ ⎛ ⎞ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥−⎜ ⎟⎢ ⎥ ⎢ ⎥=
⎜ ⎟⎢ ⎥ ⎢ ⎥−
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ −⎣ ⎦ ⎝ ⎠ ⎣ ⎦

 (3-6)

Equations (3-5) and (3-6) describe the computation of the even and odd coefficients, for the

row transform for N=8, respectively. The computation for the second 1-D DCT i.e. the

column transform described by (3-2) can also be computed using matrix-vector multipliers

-20-

similar to that described by (3-4). Hence both the row and column transform can be

performed using the same architecture.

According to the 2-D DCT algorithm, there should be a row-column block ping pong

memories to access the data. For example, the data of the computation of the even and odd

coefficients should be stored in some memory. In the next section, we will present the scan

line in Sandwich Ping Pong Memory.

3.2.2 Scan line of the Sandwich Ping-Pong memory

According to the 2-D DCT algorithm, the scan line of the write and read operations in

Sandwich Ping Pong Memory are row by row and column by column, shown in figure 3.6 and

3.7, respectively.

Figure 3.6 Row by row on write operation Figure 3.7 Column by column on read
operation

The scan line of writing is as the following step. When write operation starts, data is write in

the Pong/Ping memory and Common Bar in sequence. First, data is written in the Ping/Pong

memory row by row till the Ping/Pong memory is full. After the Ping/Pong memory is fully

occupied, data is written in the single port memory, as know as Common Bar. Finally, data is

-21-

written in the Pong/Ping memory row by row definitely.

On the other hand, when read operation starts, data is read from the Pong/Ping memory and

Common Bar. Data is read from the Pong/Ping memory column by column. However, reading

scan line is a little different from writing scan line. On write operation, we do write data into

the Common Bar until we finish writing them into Ping/Pong memory. However, on the read

operation, we read the data from Pong/Ping memory and Common Bar by turns. Data is read

from the Pong/Ping memory, Common Bar, and back to Pong/Ping memory. Finally, we read

the last data from the last on address of Common Bar; we finished the complete read

operation. We must know that there is data written in the memory, at the same moment, there

is data read from the memory. Write and read operation are took place simultaneously.

The operation of the transpose memory can be explained if we visualize it as an 8 x 8 array.

It is actually implemented as a 64-byte SRAM. The first eight bytes of the SRAM correspond

to the first row of the array, the second eight bytes, to the second row, and so on. Let mode 1

be a sequence of accesses to locations {0, 1, 2, 3, 4, 5, 6, 7, 8 ...} in that order. This

corresponds to scanning rows starting at the top left corner. Let mode 2 be accesses to

locations {0, 8, 16, 24, 32, 40, 48, 56, 1, 9 ...} in that order. This corresponds to scanning

columns starting at the top left corner.

 The transposition occurs as follows. Data is read out according to mode 1 for the first 64

clock cycles. New data (that needs to be transposed) is also written according to mode 1. A

write always follows a read; i.e., a read from a location is always followed by a write to that

location. For the next 64 clock cycles, reads and writes occur according to mode 2. The data

which is read out is the transpose of the data which was written in during the previous 64

clock cycles. As a result, the latency of the transpose operation is 64 clock cycles.

-22-

3.3 Timing Analysis

In the section, we will derive the timing analysis about Initially Idle Time and Idle Time and

some conditions or constraints for the Sandwich Ping Pong Memory.

3.3.1 The Initially Idle Time

When could we start to read the data from the Sandwich Ping Pong Memory? We have

already derived when to read, the Initially Idle Time. Let’s see our derivation.

We make an example for the Sandwich Ping Pong Memory which is a N X M rectangle in size,

in figure 3.8. There are three coefficients in the derivation: N, M and P. The coefficient N

represents the cell number of columns of the Sandwich Ping Pong Memory. The coefficient P

represents the cell number of rows of the Common bar. Hence, the cell number of rows of the

Ping or Pong Memory is M-P. The individual size of Ping (or Pong) memory and Common

Bar are ()M P N− × and P N× .

In addition, we assume that the access time to one the memory cell is one unit time. Therefore,

the time to write data in Ping/Pong memory is ()M P N− × , and the time to write data in

Common Bar is P N× .

The scan line of writing operation is row by row in the Ping/Pong memory and Common Bar

in sequence. We should wait for a period of time named Idle Time and continue the next write

operation. On the other hand, the scan line of reading operation is column by column by turns

of Pong/Ping memory and Common Bar. In the same manner, we should wait a moment and

continue the next read operation. First, we derive the Initial Time, and followed by Idle Time.

-23-

Figure 3.8 Coefficients for Sandwich Ping Pong Memory

From the time schedule and the figure 3.8, we know that the data is read in the Ping memory

column by column by turns of Ping/Pong memory and Common Bar. The first step to operate

the Sandwich Ping Pong Memory is to write the data into the part of Ping memory and

Common Bar. After writing, we start to read the data from them. The duration to read the first

data is defined as “Initially Idle Time”. After the Initially Idle we can read the data from the

Ping memory and Common Bar, and the Initially Idle is presented as below. We make a time

schedule to explain the derivation. Some constraints come to us.

After filling in the Ping memory and Common Bar with data, we start to read the data. There

is the first constraint in Fig.3.9

-24-

Condition 1:

Initial nonzero utilization constraint: 1 1
W RT T≥

Write schedule 1
WT

↓
[(M* N]ping Idle [(M* N]pong Idle …….

Read schedule 1
RT

 ↓
Initially Idle [(M* N]ping Idle ……

1 1 * W RT T M N Initially Idle≥ ⇒ ≥

Figure 3.9 The first constraint

In Fig. 3.9, the time to fill the data in the Ping memory and Common Bar (1
WT) must be great

than the Initially Idle time (1
RT). Because we have to write the data in the Ping memory and

Common Bar first, we read the data from them after the Initially Idle time.

After observing the write operation in detail, we found that data are written into the Ping

memory first and into the Common Bar later. The second constraint comes up in Fig. 3.10.

Condition 2:

Ping memory read contention constraint: 2 2
W RT T≤

Write schedule 2
WT

 ↓
[(M –P)N]ping (PN)ping Idle (M* N)pong Idle ……

Read schedule 2
RT

 ↓
Initially Idle (M* N)ping Idle (M* NX)pong ……

2 2 ()* W RT T M P N Initially Idle≤ ⇒ − ≤

Figure 3.10 The second constraint

-25-

In Fig. 3.10, the time to fill the data in the Ping memory (2
WT) must be shorter than the

Initially Idle time (2
RT). That is because we want to read the data earlier. We can read the data

from the Ping memory and write the others into the Common Bar simultaneously.

In addition, the way we read the data is column by column. Before reading the data from the

Common Bar, the data should already be written into the Ping memory and Common Bar.

Therefore, we have the third constraint in Fig. 3.11

.

Condition 3:

Common Bar - read memory contention constraint: 3 3 W RT T≤

Write schedule 3
WT

 ↓
(M* N)ping Idle (M* N)pong Idle ……

Read schedule 3
RT

 ↓
Initially (M-P)ping [M* N-(M-P)N]ping Idle (M* N)pong ……

 3 3 * ()W RT T M N Initially M P≤ ⇒ ≤ + −

Figure 3.11 The third constraint

In Fig. 3.11, the time to write the data in the Ping memory and Common Bar (3
WT) must be

shorter than the time to read the data from the first column in Ping memory (3
RT). Because

after filling the data into the Common Bar, we could read the data it later.

In conclusion, according condition 1, 2 and 3, we derive the formula (3-7).

-26-

()* *
* ()

M P N Initially Idle M N
M N Initially Idle M P

− ≤ ≤⎧
⎨ ≤ + −⎩

()* *
* ()

>1

M P N Initially Idle M N
M N M P Initially Idle

P N M
PN M P

− ≤ ≤⎧
⇒ ⎨ − − ≤⎩

>
∴ > −
Q I

* () *M N M P Initially Idle M N⇒ − − ≤ ≤ (3-7)

3.3.2 The Idle Time

After deriving the Initially Idle Time, we present the Idle Time or Idle. Again, from the time

schedule and the figure 3.8, we know that the data is written in the Ping memory row by row

in sequence of Ping memory and Common Bar. After the Ping memory is fully occupied by

data, we wait for a period of the time, Idle Time because the Common Bar. The Idle time is

presented with some conditions as below.

On the write schedule, we write the data into the Ping memory and Common Bar and wait for

while, “Idle Time.” Then we write the data into the Pong memory and Common Bar and so on.

Simultaneously, on the read schedule, after the Initially Idle Time, we read the data from the

Ping memory and Common Bar and wait for a while, “Idle Time.” There should be a

constraint to prevent the Sandwich Ping Pong memory from being on null operation.

Therefore, we have the forth constraint in Fig. 3.12.

-27-

Condition 4:

Run-time nonzero-utilization constraint: 4 4
W RT T≤

Write schedule 4
WT

 ↓
(M* N)ping Idle (M* N)pong Idle ……

Read schedule 4
RT

 ↓
Initially (M* N)ping Idle (M* N)pong ……

4 4 * *W RT T M N Idle Initially M N≤ ⇒ + ≤ +

Figure 3.12 The fourth constraint

In Fig. 3.12, during writing the data in the Ping memory, Common Bar and the Idle time

(4
WT) must be shorter than the time to read the data from the Ping memory, Common Bar

(4
RT). Because we have to prevent the Idle time on write operation and on the read operation

from being happened in the meanwhile. If we don not have this constraint, the memory would

be on null operation.

Before we write the data into the Common Bar, the data should already be read from the Ping

memory and Common Bar. We have the fifth constraint in Fig. 3.13.

-28-

Condition 5:

Common Bar: write memory contention constraint: 5 5
W RT T≥

Write schedule 5
WT

 ↓
(M* N)ping Idle [(M-P)N]pong (PN)pong Idle ……

Read schedule 5
RT

 ↓
Initially (M* N)ping Idle [(M-P)N+PN]pong ……

5 5 * ()* *W RT T M N Idle M P N Initially M N≥ ⇒ + + − ≥ +

Figure 3.13 The fifth constraint

In Fig. 3.13, during writing the data in the Ping memory, Common Bar, the Idle time and the

Pong memory (5
WT) must be greater than the time to read the data from the Ping memory,

Common Bar (5
RT). Because after reading the data from the Common Bar, we could write the

data it later.

Therefore, according condition 4, 5, we derive the formula (3-8).

* *
* ()* *

()*

M N Idle Initially M N
M N Idle M P N Initially M N

Initially M P N Idle Initially

+ ≤ +⎧
⎨ + + − ≥ +⎩
⇒ − − ≤ ≤

 (3-8)

We take the minimum of the Initially Idle Time in the formula (3-7), and we derive the

formula (3-8).

* () * ()P N M P Idle M N M P⇒ − − ≤ ≤ − − (3-9)

-29-

In addition, we take the maximum of the Initially Idle Time in the formula (3-7), and we

derive the formula (3-10).

* *P N Idle M N⇒ ≤ ≤ (3-10)

No matter what the data is, they all access to the Sandwich Ping Pong Memory one by one.

In fact, we usually use 8 x 8 block matrix in 2-D Discrete Cosine Transform. Hence, we

should put some conditions and coefficients for formula (3-7) and (3-9).

Here is an example for M=4, N =4 and P=1, shown in figure 3.9.

Figure 3.14 Example for Initial and Idle Time

There are twelve memory cells in Ping and Pong Memory, respectively. There are four cells

in Common Bar. We write data into the Ping Memory, then Common Bar and Pong Memory

row by row. We read from the Ping Memory, then Common Bar and Pong Memory column by

column. According formula (3-7) and (3-9), the Initially Idle Time and Idle Time are 13 and 1

unit time.

-30-

3.3.3 Line Buffer

Many algorithms and VLSI architectures for the fast computation of one-dimensional (1-D)

and two-dimensional (2-D) DCT have been proposed [11]. For and effective VLSI

implementation of an orthogonal transform, the corresponding algorithm should be

numerically stable, and its computational structure should be regular (recursive and repetitive

structure). The experiences with VLSI implementations show that the regularity of the

algorithm is prime concern.[7] Almost all VLSI chips are implemented for fixed 8x8 or 16x16

square block sizes.[8]

Figure 3.15 Coefficients for line buffer

Therefore, we have to put one more coefficient to represent the square block sizes. We choose

X as our coefficient, and further, we modify the two formula (3-7) and (3-9). An example, in

-31-

figure 3.10, is made for the Sandwich Ping Pong Memory and is called ling buffer. We explain

the derivations of the Initially Idle Time formula in general form (3-11) with a general time

schedule as below. After filling in Ping memory and Common Bar with data, we start to read

the data. From Fig., we have the first constraint.

Condition 1 for general form:

Initial nonzero utilization constraint: 1 1
W RT T≥

Write schedule 1
WT

 ↓
[(M* NX]ping Idle [(M* NX]pong Idle …….

Read schedule 1
RT

 ↓
Initially Idle [(M* NX]ping Idle ……

1 1 * W RT T M NX Initially Idle≥ ⇒ ≥

Figure 3.16 The first constraint for general form

In Fig. 3.16, the time to fill the data in the Ping memory and Common Bar (1
WT) must be

great than the Initially Idle time (1
RT). Because we have to write the data in the Ping memory

and Common Bar first, we read the data from them after the Initially Idle time.

After observing the write operation in detail, we found that data are written into the Ping

memory first and into the Common Bar later. The second constraint comes up in Fig. 3.17.

-32-

Condition 2 for general form:

Ping memory read contention constraint: 2 2
W RT T≤

Write schedule 2
WT

 ↓
[(M –P)NX]ping (PNX)ping Idle (M* NX)pong Idle ……

Read schedule 2
RT

 ↓
Initially Idle (M* NX)ping Idle (M* NX)pong ……

2 2 ()* W RT T M P NX Initially Idle≤ ⇒ − ≤

Figure 3.17 The second constraint for general form

In Fig. 3.17, the time to fill the data in the Ping memory (2
WT) must be shorter than the

Initially Idle time (2
RT). That is because we want to read the data earlier. We can read the data

from the Ping memory and write the others into the Common Bar simultaneously.

 Before reading the data from the Common Bar, the data should already be written into the

Ping memory and Common Bar. Therefore, we have the third constraint in Fig. 3.18.

-33-

Condition 3 for general form:

Common Bar - read memory contention constraint: 3 3 W RT T≤

Write schedule 3
WT

 ↓
(M* NX)ping Idle (M* NX)pong Idle

Read schedule 3
RT

 ↓
Initially [(M-P)X]ping [M* NX-(M-P)NX]ping Idle (M* NX)pong ……

3 3 * ()W RT T M NX Initially M P X≤ ⇒ ≤ + −

Figure 3.18 The third constraint for general form

In Fig. 3.18, the time to write the data in the Ping memory and Common Bar (3
WT) must be

shorter than the time to read the data from the first column in Ping memory (3
RT). Because

after filling the data into the Common Bar, we could read the data it later.

In conclusion, according condition 1, 2 and 3 in general form; we derive the formula (3-11)

()* *

 ()* *
M P NX Initially Idle M NX

Initially Idle M P X M NX
− ≤ ≤⎧

⎨ + − ≥⎩

()* () * *M N M P X Initially Idle M NX⇒ − − ≤ ≤ (3-11)

From the figure 3.10, we know that the data is read column by column in the Ping memory in

M by NX block size. After the Initially Idle Time, we can read the data from the Ping memory

and Common Bar, and the Initially Idle Time is presented in formula (3-11).

-34-

Similarly, we have to modify the formula (3-9) and (3-10) and derive the Idle Time is below.

There should be a constraint to prevent the Sandwich Ping Pong memory from being on null

operation. Therefore, we have the forth constraint in Fig. 3.19

.

Condition 4 for general form:

Run-time nonzero-utilization constraint: 4 4
W RT T≤

Write schedule 4
WT

 ↓
(M* NX)ping Idle (M* NX)pong Idle ……

Read schedule 4
RT

 ↓
Initially (M* NX)ping Idle (M* NX)pong ……

4 4 * *W RT T M NX Idle Initially M NX≤ ⇒ + ≤ +

Figure 3.19 The fourth constraint for general form

In Fig. 3.19, during writing the data in the Ping memory, Common Bar and the Idle time

(4
WT) must be shorter than the time to read the data from the Ping memory, Common Bar

(4
RT). Because we have to prevent the Idle time on write operation and on the read operation

from being happened in the meanwhile. If we don not have this constraint, the memory would

be on null operation.

Before we write the data into the Common Bar, the data should already be read from the Ping

memory and Common Bar. We have the fifth constraint in Fig. 3.20.

-35-

Condition 5 for general form:

Common Bar: write memory contention constraint: 5 5
W RT T≥

Write schedule 5
WT

 ↓
(M* NX)ping Idle [(M-P)NX]pong (P*NX)pong Idle ……

Read schedule 5
RT

 ↓
Initially (M* NX)ping Idle [(M-P)NX+PNX]pong ……

5 5 * ()* *W RT T M NX Idle M P NX Initially M NX≥ ⇒ + + − ≥ +

Figure 3.20 The fifth constraint for general form

In Fig. 3.20, during writing the data in the Ping memory, Common Bar, the Idle time and the

Pong memory (5
WT) must be greater than the time to read the data from the Ping memory,

Common Bar (5
RT). Because after reading the data from the Common Bar, we could write the

data it later.

Therefore, according condition 4, 5, we derive the formula (3-12) and (3-13).

* *
 * * ()*

M NX Idle Initially M NX
Initially M NX M NX Idle M P NX

+ ≤ +⎧
⎨ + ≤ + + −⎩

 ()*Initially M P NX Idle Initially⇒ − − ≤ ≤ (3-12)

We take the minimum and maximum of the Initially Idle Time in the formula (3-12), and we

derive the formula (3-13) and (3-14).

[] []* () * ()P N M P X Idle M N M P X⇒ − − ≤ ≤ − − (3-13)

* *P NX Idle M NX⇒ ≤ ≤ (3-14)

-36-

Generally, for block sizes larger than 16x16, the complexity of derivation of a signal flow

graph for a given algorithm increase. Furthermore, no direct 2-D DCT algorithm has been

shown up to now with its computational structure for a rectangular M x NX block size.

Moreover, there should be some conditions for the coefficients M, N, and X. For instance,

M and N must be equal to or larger than X. Besides, M and N are usually less than 16 [12].

3.4 Control Unit Circuit

We make up the Sandwich Ping Pong Memory with two parts, a Ping Pong Memory and a

Common Bar. We build a control unit circuit to turn the original signals and addresses into

those for Sandwich Ping Pong Memory (SPPM). Saving area is our destination and we do

save the area of Ping Pong Memory actually. We could save the area of Ping Pong Memory;

however, we gained the area of the control unit circuit. Therefore, the less area we used for

control unit circuit, the more area we saved in Sandwich Ping Pong Memory.

Idle WE Addr_W>12 Addr_W>12 WE_Ping WE_Pong WE_CMB

0 0 0 0 0 1 X
0 0 0 1 0 1 0
0 0 1 0 0 1 1
0 0 1 1 X X X
0 1 0 0 1 0 X
0 1 0 1 1 0 0
0 1 1 0 1 0 1
0 1 1 1 X X X
1 0 0 0 X 0 1
1 0 0 1 X 0 1
1 0 1 0 X 0 1
1 0 1 1 X X X
1 1 0 0 0 X 0
1 1 0 1 0 X 0

-37-

1 1 1 0 0 X 0
1 1 1 1 X X X

Table 3.1 Signals and Addresses for 32bit SPPM with Common Bar 1X4

 Table 3.1 shows the signals for 32-bit SPPM with Common Bar 1 X 4. We define the

address for writing or reading is 0 to 15. When they are bigger than 12, the common bar is on

operation. The inputs of it are WE, Addr_W and Addr_R represented the original signals of

Write Enable, Address for Writing and Address for Reading, respectively. Its outputs are the

WE_Ping, WE_Pong and WE_CMB represented the signals of Write Enable for Ping Memory,

Pong Memory and Common Bar. It seems that we are using a Ping Pong Memory. In fact, we

are using a Sandwich Ping Pong Memory. Figure 3.21 shows the signals and addresses

transformed by the control unit circuit.

Figure 3.21 Signals and addresses for Sandwich Ping Pong Memory

-38-

We synthesize a control circuit with HDL. When the size of Common Bar is 1 x 8K, the gate

count of the control circuit is 216 gate counts, shown in figure 3.22.

Figure 3.22 The gate count of control unit for Common Bar

M N P X Total
Size
(bit)

Initially
Idle

(Unit
time)

Idle
Time
(Unit
time)

Throughput
Reduction

(%)

Common
Bar

(gate
count)

Control
Unit
(gate

count)

Area
Saved
(gate

count)
16 512 1 16 128K 130832 7936 5.709 8192 216 7976
16 512 2 16 128K 130848 15872 10.801 16384 230 16154
16 512 3 16 128K 130864 23808 15.371 24576 251 24325
16 512 4 16 128K 130880 31744 19.496 32768 260 32508
16 512 5 16 128K 130896 39680 23.238 40960 264 40696
16 512 6 16 128K 130912 47616 26.647 49152 266 48886
16 512 7 16 128K 130928 55552 29.766 57344 268 57076
16 512 8 16 128K 130944 63488 32.631 65536 283 65253
16 512 9 16 128K 130960 71424 35.271 73728 287 73441
16 512 10 16 128K 130976 79360 37.712 81920 289 81631
16 512 11 16 128K 130992 87296 39.976 90112 283 89829
16 512 12 16 128K 131008 95232 42.081 98304 280 98024
16 512 13 16 128K 131024 103168 44.043 106496 264 106232
16 512 14 16 128K 131040 111104 45.877 114688 238 114450
16 512 15 16 128K 131056 119040 47.594 122880 223 122657
16 512 16 16 128K 131072 126976 49.206 131072 210 130862

Table 3.2 Data sheet for a Sandwich Ping Pong Memory

-39-

Table 3.2 is a data sheet for the Sandwich Ping Pong Memory in size 128K. It shows the

control unit size of the different Common Bar in the Sandwich Ping Pong Memory. Every

control unit is under three hundred gate counts. Figure 3.23 shows the Common Bar and Area

Saved. Figure 3.24 shows the relationship between area saved and throughput reduction of the

Sandwich Ping Pong Memory in the size 128k

Figure 3.23 Common Bar and Area Saved

-40-

Figure 3.24 Area Saved vs. Throughput Reduction

-41-

Chapter 4 Test Algorithm

Semiconductor memories have invented for decades and have been designed, produced, tested

by customers all over the world. The test algorithms have been studied for decade years. [13]~

[23] It has been said that “memory testing is simple.” In fact, it is logistically simple about

memory testing. The complex part of memory testing is the numerous ways that a memory

would fail. Patterns are the essence of memory testing. However, there is no single pattern is

sufficient to test a memory for all defect types. There are many algorithms had been proposed

such as, Zero-One, Checker, March, GALPAT, Butterfly, etc…. Table 4.1 lists the required

test time as a function of the algorithm complexity and the memory size.

Algorithm complexity Size

n n logn n 3/2n 2n

1K 0.0001s 0.001s 0.0033s 0.105s

16K 0.0016s 0.0224s 0.21s 27s

256K 0.0256s 0.46s 13.4s 1.9h

1M 0.102s 2.04s 14.3m 1.27d

16M 1.64s 39.36s 15.25h 326d

256M 26.24s 12.25m 5.1d 229y

s: second; m: minute; h: hour; d: day; y: year

Table 4.1 Test time as a function of memory size

This chapter introduces popular memory fault models and many March algorithms. For

Sandwich Ping-Pong Memory, we show a modified March C- algorithm for testing. The

testing time is shorten and with high fault coverage.

-42-

4.1 Fault Models

This section gives a formal definition for the most popular fault models.[24] First, we

introduce the notation used to represent the fault models are listed here:

0: Denotes that a cell is in logical state 0.

1: Denotes that a cell is in logical state 1.

? : Denotes that a cell is in logical state, which means “don’t care.”

↑ : A raising cell transition or denotes a write 1 operation to a cell containing a 0.

↓ : A falling cell transition or denotes a write 0 operation to a cell containing a 1.

b : Either a rising or falling cell transition.

∀ : denotes any operation; ∀ {0,1, , , }∈ ↑ ↓ b

< I / F >: denotes a fault in a single cell. I describes the condition for sensitizing the fault, F

describes the value of the faulty cell. {0,1, , , }I ∈ ↑ ↓ b , and {0,1}F ∈ .

The most popular fault models are listed as follows:

Stuck-at fault (SAF): The logic value of a stuck-at (SA) cell or line is always 0 (a stuck-at-0

fault, SA0) or 1 (a stuck-at-1 fault, SA1).

Transition fault (TF): The cell or line which fails to transit from 0 to 1 (a /0<↑ > TF) or

from 1 to 0 (a /1<↓ > TF).

Inversion coupling fault (CFin): An transition (↑ or ↓) in one cell inverts the content of

another cell.

Idempotent coupling fault (CFid): An transition (↑ or ↓) in one cell forces the content of

another cell to a certain value , 0 or 1.

State coupling fault (CFst): A coupled cell is forced to a certain value only if the coupling

cell is in a given state.

-43-

Stuck-open fault (SOF): The cell fails to be accessed or a broken word/bit line.

Address decoder fault (AF): It is a functional fault in the address decoder that results in one

of the following four cases shown in figure 4.1.

Fault A: With a certain address, no cell will be accessed.

Fault B: A certain cell is never accessed.

Fault C: With a certain address, multiple cells are accessed.

Fault D: A certain cell can be accessed with multiple addresses.

Figure 4.1 Different types of address decoder faults

4.2 March Algorithms

The simplest tests which detect SAFs, TFs and CFs are called ‘marches’. A March test is

composed of a finite sequence of March elements. A March element is a finite sequence of

write/read operations applied to every cell in memory before proceeding to the next cell. The

address sequence can be either an increasing (⇑) address order (e.g. from address 0 to address

N-1), or a decreasing (⇓) address order which is the opposite of the⇑ address order.

A write/read operation can be (wa), (wa), (ra), and (ra) where a is the background

pattern and a is the inverted background pattern; {0,1}a ∈ ; (wa) means “write the

cell/word a ”; (wa) means “write the cell/word a ”; (ra) means “read a expected cell/word

-44-

a ”; (ra) means “read a expected cell/word a .” A March algorithm example is shown in

figure 4.2, and its flow is depicted in figure 4.3. Once the fault simulation is complete (all

faults have been emulated), the fault coverage can be determined for the set of test vectors.

The fault coverage, FC, is a quantitative measure of the effectiveness of the set of test vectors

in detecting faults, and in it most basic form is given by:

DFC
T

= (4-1)

Where D is the number of detected faults and T is the total number of faults in the fault list.

For design verification, the fault coverage can not only give the designer a rough quantitative

measure of how well the design has been exercised, but also the undetected fault list can

provide valuable information on those sub-circuits that have not been exercised as thoroughly

as other sub-circuits.

Although example will be used in which the ⇑ address order goes from address 0, 1, 2. . .

n-2 to n-1, this is not strictly necessary. It is necessary that the address-orders ⇑ and ⇓ are

each other’s invert. For instance, when the address-orders ⇑ is chosen for some reason to be:

1, 0, 7, 5, 6 ,4 ,2 ,3 ; the address order ⇓ has to be:3, 2, 4, 6, 5, 7, 0, 1.This means that the

march test { (1, 0); (0, 1)}r w r w⇑ ⇓ has the same fault coverage as the test

{ (1, 0); (0, 1)}r w r w⇓ ⇑ .

In Table 4.2, we show some popular March algorithms. And we also show the fault

coverage in Table 4.3.

-45-

Figure 4.2 A March algorithm example

Figure 4.3 The procedure for the March algorithm example

Name

Algorithm

Element Faults Detected

MATS++ (0); (0, 1); (1, 0, 0)w r w r w r ⇑ ⇓c SAF/AF

March X (0); (0, 1); (1, 0) (0)w r w r w r ⇑ ⇓c c AF/SAF/TF/CFin

March Y (0); (0, 1, 1); (1, 0, 0) (0)w r w r r w r r ⇑ ⇓c c AF/SAF/TF/CFin

March C- { (0); (0, 1); (1, 0); (0, 1); (1, 0); (0)}w r w r w r w r w r⇑ ⇑ ⇓ ⇓c c SAF/AF/TF/CF

Table 4.2 Some March algorithms

-46-

Fault MATS++ March X March Y March C-

SAF 100% 100% 100% 100%

TF 100% 100% 100% 100%

SOF 100% 0.2% 100% 0.2%

AF 100% 100% 100% 100%

CFin 75.0% 100% 100% 100%

CFid 37.5% 50.0% 50.0% 100%

CFst 50.0% 62.5% 62.5% 100%

Table 4.3 Fault coverage of some popular March algorithms

4.3 A Test Algorithm for Sandwich Ping-Pong Memory

4.3.1 March C- Algorithm

March C- algorithm in Figure 4.4 satisfies the conditions of detecting simple (unlinked) faults

such as SAFs, TFs, CFs, AFs, and SOFs [5]. This section shows a modified March C-

algorithm in Figure 4.5 which is derived from March C- and proofs fault detection

capabilities.

{ (0); (0, 1); (1, 0); (0, 1); (1, 0); (0)}w r w r w r w r w r⇑ ⇑ ⇓ ⇓c c

 M0 M1 M2 M3 M4 M5

Figure 4.4 March C- algorithm

-47-

Condition March element

1 (,...,)x x⇑ r w

2 (,...,)x x⇓ r w

Table 4.4 Conditions for detecting address decoder faults

March C- satisfies the Conditions 1 and 2 for Address Faults in Table 4.4 [2]. When x =0 by

means of March elements M2 and M5, when x =1 by means of March elements M3 and M4.

March C- will detect SAFs and TFs because all cells are read in states 0, 1, 0 … Thus, both

↑ and ↓ transitions, and read operations after them, have taken place. March C- will also

detect idempotent and inversion coupling faults, with the restriction that these coupling faults

are unlinked.

A fault is linked when that fault may influence the behavior of other faults. A fault is unlinked

when that fault does not influence the behavior of other faults. Here is an example, as shown

below.

Example

Suppose that there are two coupling faults in a memory, as shown in Figure 4.5. The first

fault is that cell i is ;1<↑ > coupled to cell j ; the second fault is that cell k is coupled to

cell l . The March test { (0); (0, 1); (0, 1); (1)}w r w w w r⇑c c c will detect both faults if i k≠

(Figure 4.5(a)). The ;1<↑ > CF will be detected by the ‘r0’ operation of March element,

when operating on cell i . The ;0<↑ > CF will be detected by the ‘r1’ operation of the last

March element, when it operates on cell k .

However, this test will not detect the combination of the faults which occurs when i k≡

(Figure 4.5(b)). The ‘link’ between the faults (in this case the effect that the coupled cells are

the same) can cause the test not to find any fault; this effect is called masking. The ‘r0’

-48-

operation of the march element (0, 1)r w⇑ will not detect the linked CF because when

operation on cell i the cell will contain a 0 value due to the ;0<↑ > CF. The ‘r1’ operation

of the last march element will not detect the linked CF because, when operating on cell i , it

will contain a 1 value due to the ;1<↑ > CF sensitized by the march element (0, 1)w wc

when it operates on cell j .

 The following test has been designed to detect the faults of Figures 4.5(a) and 4.5(b):

{ (0); (0, 1); (0, 1); (1, 0, 1)}w r w w w r w w⇑c c c . The ;1<↑ > CF of Figure 4.5(a) will be

detected by the ‘r0’ operation of March element (0, 1)r w⇑ when it operates on cell i ; the

CF of Figure 4.5(a) will be detected by the ‘r1’ operation of the last March element when it

operates on cell k . The linked fault of Figure 4.5(b) will be detected by the ‘r1’ operation of

the last March element when it operates on cell i .

Figure 4.5 Masking of coupling faults

The proof that March C- is complete is given below:

 AFs are detected because the conditions of in Table 4.3.

 SAF1 faults are detected by the read operations of M1, M2, M4, and M6.

 SAF0 faults are detected bye the read operations of M3, M5, and M7.

-49-

 Unlinked /0<↑ > TFs are detected by M1 followed by M2 or by M3 followed by M4.

 Unlinked /1<↓ > TFs are detected by M2 followed by M3 or by M4 followed by M5.

 Unlinked CFins ;<↑ ↑> are detected by M3 followed by M4; CFins ;<↓ ↑> are

detected by M4 followed by M5.

 Unlinked CFids ;0<↑ > are detected by M3 followed by M4; CFids ;1<↑ > are

detected by M1; CFids ;0<↓ > are detected by M2; CFids ;1<↓ > are detected by M4

followed by M5.

4.3.2 The Modified March C- Algorithm

There are two memory arrays which are called Ping memory (or Block A) and Pong memory

(Block B) in a Ping Pong memory, introduced in Section 3.1.1. We have derived an

algorithm for testing Ping memory and Pong memory simultaneously. We named this

algorithm the Modified March C- shown in figure 4.5. In addition, the modified March C- is

depicted carefully in figure 4.6, the upper sequence is testing the Block A memory array,

meanwhile, the lower one is testing the Block B memory array.

There are two more March elements (M1 and M6) in this algorithm than in March C-

algorithm. However, the fault coverage of this algorithm is the same as the one of March C-

algorithm. Because these two March elements (M1 and M5) are nop (no operation)

operations needed to be inserted into the March algorithm. As a result, the total operations

increase.

There are eight operations within the algorithm, the test length of the modified March C- is

eight, i.e. total 8N read and write operations are need to apply the algorithm (N is the

memory size).

The modified March C- will detect CFins and CFids as shown below.

-50-

{ (0); (0); (0, 1); (1, 0); (0, 1); (1, 0); (0); (0)}w r r w r w r w r w r w ⇑ ⇑ ⇓ ⇓c c c c

 M0 M1 M2 M3 M4 M5 M6 M7

Figure 4.6 Modified March C- algorithm

0 1 0 1 0 0 1 1 0 0 1 1 1 1 1
0 0 0 0 0 1 0 1 1 0 1 0 1 0 0

0 1 0 1 0 0 0 1 1 0 0 1
? ? 0 0 0 0 1 0 1 1 0 1

:{(,....,); (,...); (, , ..., ,); (, , , ..., ,); (,

:{(,); (,..., ,); (, ,..., ,); (, , ,

N N N N N N N

N N N N

A w w r r r w r w r w r w r w r

B r r w w w r w r w r w r

− − − − − − −

− − − −

,

 , 1 1
1 0

1 0 0 1 1 0 0 0 1 1 0 1
1 0 1 1 0 1 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0
0 1 0 1 1 0 1 0 0 0 0

. . . . ,);

,... , ,); (, ,..., ,); (, ,,); (,...,)}

(, ,..., ,); (, ,..., , , ,...,); (,

N N

N N N N N

N N N N

r w

w r w r w r w r r r w w

r w r w r w r w w w r

− −

− − − − −

− − − −

 ,

 1
0....)}Nr −,

Figure 4.7 Modified March C- algorithm for block A and block B

memory arrays

4.3.3 Testing of Sandwich Ping-Pong Memory

We will present how to test the Sandwich Ping-Pong Memory in this section. It is the

modified March C- algorithm that we use for testing because it shows the high fault coverage.

It can test the most popular the faults such as: SAFs, TFs, AFs, CFins, CFids, and CFsts and

its fault coverage was already presented in table 4.2.

When testing the Sandwich Ping-Pong Memory, the basic and simple way is to separate it

into two parts: one is ping-pong memory and another is single port memory, in figure 4.8.

There is no doubt that the modified March C- algorithm can test not only the Ping Pong

memory but also the Common Bar.

-51-

Figure 4.8 Test flow

Modified March C- satisfies the conditions 1 and 2 for AFs of Table 4.3: when x = 0 by

means of March elements M2 and M5, when x =1 by means of March elements M3 and M4.

Modified March C- will detect SAFs and unlinked TFs because all cells are read in states 0, 1,

0, Thus, both ↑ and ↓ transitions, and read operations after them, have taken place.

Modified March C- will also detect idempotent and inversion coupling faults, with the

restriction that these coupling fault are unlinked. The detection capabilities for idempotent and

inversion coupling faults are proved below.

Idempotent coupling faults

The proof that the modified March C- detects CFids is split into two cases: 1. faults with the

addresses of the coupling cells lower than the coupled cell, and 2. faults with the address of

the coupling cells higher than the coupled cell. The coupled cell will be denoted by iC , and

(one of) the coupling cells with iC . As a reminder of the notation: iC is coupled to jC means

that an ↑ transition in jC causes a o value in iC .

-52-

Figure 4.9 Addresses of coupling and coupled cells

Case 1:

Let iC be coupled to any number of cells with address lower than i, and let jC be the

highest of those cells (j<i), see figure 4.8. Four cases, corresponding to the four different

types of CFids, can be distinguished: a. ;0<↑ > , b. ;1<↑ > , c. ;0<↓ > , and d. ;1<↓ > . These

cases are proved below.

(a) If iC is ;0<↑ > coupled to jC , then the fault will be detected in march element M4

followed by M5. See in figure 4.10 (a).

 In M4 a 1 is written in jC and due to the ;0<↑ > coupling fault iC will contain a

0.

 In M5 a read operation is performed on iC and a 0 instead of a 1 is read.

 Linked CFids will not be detected. For example, iC must not be ;1<↑ > coupled

to cells with a lower address than j, because M4 operates on them after jC . In that

case a 1 would be read in M5 which is the expected value. Thus, the fault would not

be detected.

(b) If iC is ;1<↑ > coupled to jC then the March element M2 will detect the fault. See in

figure 4.10 (b).

-53-

 First a 0 will be read from jC , then a 1 will be written. Due to the ;1<↑ > coupling

fault iC will be forced to contain a 1.

 A 1 instead of a 0 is read when M2 operates on iC .

(c) If iC is ;0<↓ > coupled to jC then he march element M3 will detect the fault. The

proof is similar to above.

(d) If iC is ;1<↓ > coupled to jC then the March elements M5 followed by M6 will

detect the fault. iC must not be ;1<↓ > coupled to cells with addresses lower than j. The

proof is similar to above.

Figure 4.10 Detecting CFids

Case 2:

Let iC be coupled to any number of cells with addresses higher than i and let jC be the

lowest addressed cell of them (j>i). The proof is similar to Case1, whereby M2 should be

replaced by M4, M3 by M5, M4 by M2, M5 by M3 and M6 by M4.

Above it has been shown that modified March C- will detect CFids. The CFids must be

unlinked, because not all combinations of faults are allowed, as proved above.

Inversion coupling faults

Case 1:

Let iC be coupled to any number of cells with addresses lower than i and let jC be the

-54-

highest of those cells (j<i). Then, there are two cases, corresponding to eh two different types

of CFins: ;<↑ >b and ;<↓ >b . These cases are proven below.

(a) iC is ;<↑ >b coupled to jC ; then M1 will detect the fault, as well as M4 followed

by M4.

 M4 operates on jC , making an ↑ transition and inverting the contents of iC ;

when M5 is operated on iC a 0 instead of a 1 will be read.

Figure 4.11 Detecting CFins

(b) iC is ;<↓ >b coupled to jC ; then M3 as well as M4 followed by M6 will detect

the fault. The proof is similar to above.

Case 2:

The proof for j>i is similar to above.

As a result, we can use the modified March C- algorithm to test the Sandwich Ping Pong

Memory. The fault coverage is at 100% for the stuck-at fault, transition fault, address fault,

and coupling fault.

-55-

Chapter 5 Chip Implementation

We implement our Ping Pong memory in Full-Custom Design by specifying the layout of

each individual transistor and the interconnections. Figure 5.1 shows the design flow for

64-byte Ping Pong Memory.

Figure 5.1 Design flow for 64-byte Pig Pong Memory

In order to be more flexible, we also complete the part of the Sandwich Ping Pong Memory,

-56-

Common Bar, and the test circuit by means of HDL (Hardware Description Language) which

could synthesize the circuit we want. We show the results on Sparan-3 Starter board which

provides a powerful, self-contained development platform. It features a 200K gate Sparten-3,

on-board I/O devices, and two large memory chips.

5.1 Chip Implementation of the Sandwich Ping Pong Memory

5.1.1 The architecture of a Ping-Pong buffer

We have presented a double buffer roughly and realized that its application is in the 2-D DCT

architecture in chapter 2. In this section, we are going to introduce the architecture of a double

buffer, also known as, Ping-Pong buffer which is shown in figure 5.2.

Figure 5.2 Components in the Ping-Pong Memory

-57-

5.1.2 The detail design of a Ping-Pong buffer

A Ping-Pong buffer consists of the following kinds of component:

Memory cell

From the begging of introducing a Ping-Pong buffer, we talk about the basic component – the

memory cell [27]. A memory cell can be implemented as SRAM, DRAM, and Flash. We take

a six-device SRAM memory cell, also called CMOS SRAM cell shown in figure 5.3, as our

memory cell. The load devices are PMOS enhancement mode transistors Q2 and Q4.

Comparing to the depletion mode NMOS as the load devices, this further reduces the power

requirements of the cell; except for some small leakage current, no power will be dissipated

during the time the cell retains the stored logic value. The transistors Q5 and Q6 work as

switches and are named access transistors. When the gate of Q5 and Q6 are activated, they are

turned-on and the memory cell work.

The operations of a memory cell are the following steps. When some word line is chosen, the

access transistors are on and connect the two bit lines Q andQ . At this moment, we can

write/read some data into/from the memory cell. On the operation of writing, it is easy to

understand that the data (the voltage on bit lines) can be stored and latched between two

back-to-back CMOS. On the opposite, the operation of reading, we turn down the voltage of

word line after the data (voltage on the gate of CMOS) is passed to the bit lines from the

memory cell. Finally, the data (voltage on the bit lines) is forward to the next component.

-58-

Figure 5.3 Six-device SRAM memory cell

Sense Amplifier, Equalization, and Pre-charge circuit

When the data (voltage) is on the bit lines, they will bump into the next component - Sense

Amplifiers. Memory cells are composed by CMOS, so are the sense amplifiers. In figure 5.4,

we show the differential sense Amplifier, equalization, and pre-charge circuit.

The sense amplifier is the most critical component in a memory chip. Sense amplifiers are

essential to the proper operation of Drams, and their use in Scrams results in speed and area

improvements. Here, we describe a differential sense amplifier that employs positive feedback.

Because the circuit is differential, it can be employed directly in Scrams where the SRAM cell

utilizes both the B and B lines. We assume that the memory cell whose output is to be

amplified develops a difference output voltage between the B and B lines. This signal,

which can range between 30 mV and 500 mV depending on the memory type and cell design,

will be applied to the input terminals of the sense amplifier. The sense amplifier in turn

-59-

responds by providing a full logic-swing (0 to DDV) signal at its output terminals. The

particular amplifier circuit we shall discuss has a rather unusual property: Its output and input

terminals are the same!

The sense amplifier is nothing but the familiar latch formed by cross-coupled two CMOS

inverters: one inverter is implemented by transistors Q1 and Q2, and the other by transistors

Q3 and Q4. The transistors Q5 and Q6 work as switches that connect the sense amplifier to

ground and DDV only when data-sensing action is required. Otherwise, sφ is low and the

sense amplifier is turned off. This conserves power, an important consideration since usually

there is one sense amplifier per column, resulting in thousands of sense amplifiers per chip.

Note again that terminals x and y are both the input and the output terminals of the amplifier.

As indicated, these I/O terminals are connected to the B and B lines. The amplifier is

required to detect a small signal appearing between B and B , and to amplify it to provide a

full-swing signal at B and B . For instance, if during a read operation, the cell had a stored

1, then a small positive voltage will develop between B and B , with BV higher than BV .

The amplifier will then cause BV to rise to DDV and BV to fall to 0 V. This 1 output is then

directed to the chip I/O pin by the column decoder and at the same time is used to rewrite a 1

in the memory cell.

Figure 5.4 shows the pre-charge and equalization circuit. Operation for this circuit is

straightforward: When sφ goes high prior to a read operation, all three transistors conduct.

While Q8 and Q9 pre-charge the B and B lines to DDV /2, transistor Q7 helps speed up

this process by equalizing the voltages on the two lines. This equalization is critical to the

proper operation of the sense amplifier: Any voltage difference present between B and B

prior to commencement of the read operation can result in erroneous interpretation by the

sense amplifier of its input signal. We show only one of the cells in this particular column

namely, the cell whose word line is activated. The cell can be either an SRAM or a DRAM

-60-

cell. All other cells in this column will not be connected to the B and B lines.

 Figure 5.4 The differential SA, Equalization, and Pre-charge circuit

Address Decoder

Address decoders are composed by 4-intput NAND gates and the circuit is in figure 5.5. We

-61-

design a 3-input NAND gate for a address decoder to control 8 different word lines of a

memory array in the beginning. In order to control the specific memory array, we put one

more NAND input for a address decoders as the memory enable (ME) signal. The reason that

we design address decoder by NAND gates is to speed up the circuit with less layout area. So

we can build up a 64 bytes Ping-Pong memory in 1310 X 1100 micro meter squared by using

0.35um process.

 Figure 5.5 Using NAND gates to build up address decoders

5.1.3 HSPICE Simulation of a Ping-Pong Memory

Here we show the design flow, shown in figure 5.6, and explain the HSPICE simulation result

of Ping-pong memory. During the signal of read enable is off, the memory array is on write

operation. The data is written into specific memory cells one by one. After 80ns, 8 bits data in

one word line is finished the operation of writing. On other hand, during the signal of read

enable is on, the memory array is on read operation. The data is read from specific memory

cells gradually. Of course after 80ns, one byte in one word line is totally read. Therefore, the

-62-

read and write operation is supposed be completed in the period of 160ns. However, we put a

signal of “Memory Enable” (ME) to control the different memory array. The period of read

cycle is not 160ns. It is the memory enable cycle that 160ns belongs to it. Therefore, the

period of read cycle is 320ns. In figure 5.7, due to the access time of a specific memory cell is

10ns and we have 8 bits data on one word line, the period of read (write) enable and memory

enable is 320ns and 160ns respectively.

Figure 5.6 Design flow

-63-

Figure 5.7 HSPICE simulation of Ping-pong memory

5.2 Layout of the Ping Pong Memory

The Ping Pong Memory is implemented on TSMC 0.35um 2p4m 3.3v process by full-custom

design [28] ~ [33]. In figure 5.8, we show the layout of an 8-bytes Ping-Pong buffer. To save

more area, the layout is utilized by Common-Centriod Layout illustrated in figure 5.9. Hence,

the total layout area with pads is 1380 x 1095 2m mμ μ . The difference between figure 5.9 and

figure 5.10 is the global decoder. We turn the 64-bit memory into a 64-byte memory because

we want to make a larger memory and make the most of the area in this chip. The global

decoder controls the signal of the memory-enable (me). When memory-enable is 1, the

specific memory array is on. We can turn on the eight memory array in turns by means of the

global decoder.

-64-

Figure 5.8 Layout of an 8-byte Ping-Pong buffer.

Figure 5.9 Layout of 64-byte Ping Pong Memory with Pad

-65-

Figure 5.10 Component introduction on layout

The pins definition is in table 5.1 and the specification is in table 5.2. Figure 5.11 shows the

bonding of the chip. Figure 5.12 shows the photography of the die.

Architecture Ping-Pong SRAM Memory
Supply voltage(V) 3.3V

MAX Frequency(Hz) 100MHz
Power 27mW

Technology TSMC 0.35 2P4M
Core Size 1070*840 2mμ

Total Chip Area 1310*1100 2mμ

Total Transistors 9830

Table 5.1 Specification

-66-

Figure 5.11 Bonding figure

Figure 5.12 Photo of the die

-67-

Pin Number Pin Name Function Description
1 Out[3] 4th output data
2 Out[0] 1stoutput data
3 PE[20] Signal 20 for local decoder
4 PE[10] Signal 10 for local decoder
5 In[0] 1st input data
6 In[2] 3rd input data
7 In[3] 4th input data
8 In[1] 2nd input data
9 In[5] 6th input data

10 In[7] 8th input data
11 In[4] 5th input data
12 In[6] 7th input data
13 PE[22] Signal 22 for local decoder
14 PE[12] Signal 12 for local decoder
15 Out[4] 5th output data
16 Out[6] 7th output data
17 VDD! Power line
18 N/A N/A
19 PV Pre-charge line
20 WE Write Enable
21 Out[7] 8th output data
22 G[0] Signal 0 for global decoder
23 G[1] Signal 1 for global decoder
 24 G[2] Signal 2 for global decoder
25 G[3] Signal 3 for global decoder
26 Out[5] Signal 5 for global decoder
27 Out[2] Signal 2 for global decoder
28 Out[1] Signal 1 for global decoder
29 N/A N/A
30 VSS! Ground line
31 PE[11] Signal 11 for local decoder
32 PE[21] Signal 21 for local decoder

Table 5.2 Pins definition

-68-

5.3 Test Circuit Design

In this section, we are going to implement the test circuit. After finishing the layout of the

Ping Pong Memory, we consider about the test circuit to make sure the chip meet our

specifications. The functional test based upon the reduced functional fault models that were

discussed in chapter 4, such as the stuck-at, transition, and coupling faults.

 The test circuit includes two essential functions as well as two additional functions that are

necessary to facilitate execution of the testing feature. The two essential functions illustrated

in figure 5.13 include the test pattern generator (TPG) and output response analyzer (ORA).

While the TPG produces a sequence of patterns for testing the circuit under test (CUT), the

ORA compacts the output responses of the CUT into some type of Pass/Fail indication.

Figure 5.13 Test architecture

The TPG circuit illustrated in figure in 5.14 consists of Counters, Algorithm and Counter Sets

circuit. The Counter circuit outputs a sequence number call ‘Qin’ as a primary time unit. Qin

sequence is passed to the Algorithm and the ORA circuit. The Algorithm circuit outputs

control signal to the Counter Sets circuit and the signals of write enable (WE) and Common

-69-

Bar write enable (CBWE) to the Ping Pong Memory and Common Bar, respectively. When

the Counter Sets circuit gets the signals from the Algorithm circuit, it outputs the Test Data

and Address for the Ping Pong Memory and Common Bar, composed the Sandwich Ping

Pong Memory.

Figure 5.14 TPG

Figure 5.15 ORA

After the Sandwich Ping Pong Memory access the Test Data, it outputs the Memory Data to

the ORA circuit. The ORA circuit is composed with a set of logic gates such as “OR gate” and

“Exclusive NOR gate”, shown in figure 5.15. It can compare the Memory Data with the Test

-70-

Data in appropriate time applied by Qin. If these two data are the same, it means fault-free in

the Sandwich Ping Pong Memory. If these two data are different, it means fault and the chip

would be fail. Using software like Xilinx-ISE, we write the HDL-verilog, and synthesize the

total circuits.

-71-

Chapter 6 Conclusions and Future Works

6.1 Conclusions

The proposed Sandwich Ping Pong Memory is a trade-off between memory area and

operation frequency. It can save a significant amount of memory compared with the

conventional Ping Pong Memory. In order to design the control unit, the area overhead is

under five hundred gate counts at the range of Common Bar is under 512 unit memory cells.

The operation frequency is affected by the Idle Time. Table 5.3 shows the Idle Time and

control unit area.

Based on the March C- algorithm, we also developed the test algorithm for the Sandwich

Ping Pong Memory and named it the modified March C- algorithm. The fault coverage is at

100% for the stuck-at fault, transition fault, address fault, and coupling fault. In addition, we

successfully taped out a 64-byte Ping Pong Memory in process 0.35 mμ 2p4m in National

Chip Implementation Center (CIC). The chip is 1310 x 1100 micro meters squared. Finally,

we built the test platform by FPGA.

6.2 Future Works

Due to the area limitation of educational chip in National Chip Implementation Center, we

only design a 64-byte Ping Pong Memory in process 0.35um. Maybe we should design a

bigger memory like 128-byte or 1 Giga-byte and try more experiment. Make the Table 3.2

more complete and the relative between area and operation frequency would be clearer.

-72-

Bibliography
[1] P. Adde, M. Jezequel, “Ping-pong Supervisor for Synchronous Links”, In Proc. Euro ASIC pp.

364-367, 1992.

[2] Zhongfeng Wang, Keshab Parhi, “Efficient interleaver memory architectures for serial turbo

decoding”, In Proceedings, ICASSP IEEE, vol 2, pp 629-632, April 2003.

[3] Y. M. Joo, N. Mckeown, “Doubling Memory Bandwidth for Network Buffers”, INFOCOM '98.

Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies.

Proceedings. IEEE, vol. 2, pp. 808-815, April 1998.

[4] R. O. Onvural, “On performance Characteristics of LAN Interfaces with Ping-Pong Buffers”, In

Proc. Local Computer Networks, 16th conference, pp. 562-558, 1991.

[5] A.K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989.

[6] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform”, IEEE Trans. Comput., vol.

C-23, pp. 90-93, 1974.

[7] K. R. Rao, and P. Yip, Discrete Cosine Transform: Algorithms, Advantages and Applications.

Boston, MA: Academic, 1990.

[8] Vladimir Britanak, K. R. Rao, ”Two-dimensional DCT/DST universal computational structure for

2m×2n block sizes,” In Signal Processing, IEEE Transactions, vol. 48, Issue 11, pp.3250 -

3255 Nov. 2000.

[9] Z. Wang and B. R. Hunt, “The discrete W transform”, Appl. Math. Comput., vol. 16, pp. 19-48,

1985.

[10] D. Legall, “A video compression standard for multimedia applications”, Commun. ACM, 34, (4), pp

46-58, 1991.

[11] S.C. Hsia , B. D. Liu, J. F. Yang, and B. L. Bai, “VLSI implementation of parallel

coefficient-by-coefficient two-dimentional IDCT processor”, IEE Trans. Circuits Syst. Video

Techno. 5, (5), pp. 396-406, 1995.

[12] S. Uramoto et al , “A 100 MHz 2-D discrete cosine transform core processor”, IEEE J. Solid-State

Circiuts. vol. 27, pp. 492-499, Apr. 1992.

[13] R. Dekker, F. Beeker, L. Thijssen, “Fault Modeling and Test Algorithm Development for Static

Random Access Memories”, ITC, 1988.

[14] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu, “Simulation-based test algorithm generation

for random access memories”, in Proc. IEEE VLSI Test Symp. (VTS), Montreal, pp. 291–296, Apr.

2000.

[15] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: a fast memory fault simulator”, in Proc. Int.

Symp. Defect and Fault Tolerance in VLSI Systems (DFT), Albuquerque, pp. 165-173, Nov. 1999.

[16] A.J. van de Goor, G.N. Gaydadjiev, “March U: a test for unlinked memory faults”, in Proc. IEE

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5315
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5315
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5315

-73-

Circuits, Devices and Systems, pp 155 – 160, June 1997.

[17] J. F. Li, K.L. Cheng, C. T. Huang, and C. W. Wu, “March-based RAM diagnostic algorithms for
stuck-at and coupling faults”, Proc. IEEE ITC, pp. 758-767, 2001.

[18] A.J. van de Goor, “Using March Test to test SRAMs”, IEEE Design of Computers, 1993.

[19] D. S. Suk and S. M. Reddy, “A March Test for Functional Faults in Semiconductor Random

Access Memories”, IEEE Transactions on Computers, vol. C-30, No 12, Dec 1981.

[20] V.A Vardanian, Y. Zorian, “A March-Based Fault Location Algorithm For Static Random

Access Memories”, IEEE International Workshop MTDT 2002.

[21] V.N Yarmolik, Y.V Klimets, A. J. van de Goor, S.N. Demidenko, “RAM Diagnostic Tests”, ITC

1996.

[22] R. Dedkker, F. Beeker, “A Realistic Fault Model and Test Algorithms For Static Random Access

Memories”, IEEE Transactions on Computers Aided Design, vol. 9, No 6, June 1990.

[23] R. Nair, S.M. Thatte and J.C. Abraham, “Efficient Algorithm for Testing Semiconductor

Random-Access Memories”, IEEE Transactions on Computers, Vol. C-27, No 6, June 1978.

[24] A.J. van de Goor, Testing Semiconductor Memories: Theory and Practice, John Wiley & Sons,

Chichester, England, 1991.

[25] Charles E. Stroud, A designer’s guide to built-in self-test, Kluwer Academic Publishers, Boston,

England, 2002.

[26] Wikipedia , the free encyclopedia..

[27] Sedra and Smith, Microelectronic Circuits fourth edition, Oxford, 1998.

[28] Tegze P. Haraszti, CMOS MEMORY CIRCUITS, Kluwer Academic Publishers, 2000.

[29] Weste and Harris, CMOS VLSI Design A Circuits and Systems Perspective third edition, Addison

Wesley, 2005.

[30] Wayne Wolf, Modern VLSI design system-on-chip design third edition, PEARSION Prentice Hall,

2002.

[31] Smith, Application-Specific Integrated Circuits, Addison Wesley, 2004.

[32] 唐經洲, 王立洋, VLSI 設計概論與實習, 高立, 2001.

[33] 林灶生, 劉紹漢, Verilog FPGA 晶片設計, 全華, 2004.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2190

-74-

Vita

作者簡介

個人資料：

姓 名：魏文俊 (Wen-Chun Wei)

生 日：民國70年1月3日

出 生 地：臺灣

專 長：數位電路分析與設計

類比電路分析與設計

學 歷：

2006.2 ~ 2008.12 交通大學IC設計產業研發碩士專班

1999.9 ~ 2003.7 義守大學電機工程學系

1996.9 ~ 1999.7 國立桃園高中

經 歷：

2003.8 ~ 2005.3 服役

	Abstract
	Acknowledgement
	
	List of Figures
	
	List of Tables
	Chapter 1 Introduction
	1.1 Research Objective
	1.2 The Proposed Memory
	1.3 Organization
	Chapter 2 Background
	2.1 Ping Pong Buffers for Image Compression
	2.1.1 One-dimensional Discrete Cosine Transform
	2.1.2 Multidimensional Discrete Cosine Transform

	2.2 Ping Pong Buffers for Transmission

	Chapter 3 Sandwich Ping-Pong Memory
	3.1 The use of Sandwich Ping-Pong Memory
	3.2 Read / Write Operation
	3.2.1 Row-column block memory
	3.2.2 Scan line of the Sandwich Ping-Pong memory

	3.3 Timing Analysis
	3.3.1 The Initially Idle Time
	3.3.2 The Idle Time
	3.3.3 Line Buffer

	3.4 Control Unit Circuit

	Chapter 4 Test Algorithm
	4.1 Fault Models
	4.2 March Algorithms
	4.3 A Test Algorithm for Sandwich Ping-Pong Memory
	4.3.1 March C- Algorithm
	4.3.2 The Modified March C- Algorithm
	4.3.3 Testing of Sandwich Ping-Pong Memory

	Chapter 5 Chip Implementation
	5.1 Chip Implementation of the Sandwich Ping Pong Memory
	5.2 Layout of the Ping Pong Memory
	5.3 Test Circuit Design

	Chapter 6 Conclusions and Future Works
	6.1 Conclusions
	6.2 Future Works

	Bibliography
	Vita

