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有效成本控制的三明治型乒乓記憶體 

之設計與分析 
 

研究生：魏 文 俊 指導教授：董 蘭 榮  博士 

國立交通大學電機學院產業研發碩士班 

摘要 

 

本研究旨在探討記憶體(緩衝器)的成本與效能上之取捨，我們提出一個適用於

快速資料傳輸上的三明治型乒乓記憶體(緩衝器) ，並驗證其適切性。相對於現行

之乒乓記憶體的而言，此記憶體使用較少的面積，並且在操作頻率上有更多選擇

及彈性的空間。使用者可調整三明治型乒乓記憶體的容量大小，進而決定操作頻

率為何，藉以有效控制成本。此外，為了測試此記憶體，我們也根據現行常用的

測試演算法，發展出專屬於三明治型乒乓記憶體之測試演算法，並經由國家晶片

系統設計中心，成功地完成下線並製作晶片，更進一步利用此測試演算法，偵測

出一般常見的缺陷模型，結果在缺陷包容度上亦達到 100%。在晶片控制單元的設

計上，我們發現能使晶片控制單元所佔的面積能最小之方法。運用此方法，當減

少 500 個記憶體單元面積的同時，亦能使額外的晶片控制單元小於 500 個閘數。 

本研究尚依據研究結果，針對三明治型乒乓記憶體(緩衝器)實務方面之應用，

以及未來之研究提出建議。 

 

 

 

關鍵詞：乒乓記憶體、轉置緩衝器、記憶體測試演算法、閒置的記憶體 
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Study on cost-efficient Sandwich Ping-Pong Memory 
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National Chiao-Tung University 

Abstract   
 

This thesis is about memory (buffer) and we present a Sandwich Ping Pong Memory. 

The area in the Sandwich Ping Pong Memory is much less than in a Ping Pong Memory. 

Besides, it is more flexible on the operation frequency compared with a Ping Pong 

Memory. Data are written into the Sandwich Ping Pong Memory row by row and read 

from it column by column simultaneously. Based on March C- algorithm, we also 

developed the test algorithm for the Sandwich Ping Pong Memory and named it the 

modified March C- algorithm. It can detect the stuck-at fault, transition fault, address 

fault, and coupling fault. We also successfully taped out a 64-byte Ping Pong Memory 

in process 0.35 mμ  2p4m in National Chip Implementation Center (CIC). Finally, we 

do the verification and testing. As a result, the fault coverage is at 100% of each fault. 

The chip is 1310 x 1100 micro meters squared. In order to design the control unit, the 

area overhead is under five hundred gate counts at the range of Common Bar is under 

512 unit memory cells.  
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Chapter 1   Introduction 
 

1.1 Research Objective 
 

The Ping Pong Memory (buffer) is widely used in variety of applications and is studied [1], 

[2], [3], and [4]. Because it spends less time on waiting the data compared with the single port 

memory. Its operation frequency is higher than the single port memory. Additionally, the area 

of the Ping Pong Memory is much less than the dual port memory. Therefore, when it comes 

to the memory, Ping Pong Memory must be the first one we think about. It can be operated at 

the high frequency and the cost of area is pretty less. 

  The address sequence of writing and reading is different. Figure 1.1 shows data are written 

into Ping/Pong Memory row by row and read from Pong/Ping Memory column by column 

simultaneously. We found that there were some memory cells in the idled condition when the 

Ping Pong Memory was on operation. As a result, we combined these idled memory cells to 

make a Common Bar and developed the Sandwich Ping Pong Memory.  

 

 

Figure 1.1 Ping-Pong Memory is on write/read operation 
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1.2 The Proposed Memory 
 

We proposed a Sandwich Ping Pong Memory. The architecture of the Sandwich Ping Pong 

Memory is illustrated in figure 1.2. Common Bar is between the Ping and Pong Memory. It 

replaces the idled memories when Ping Pong Memory is on operation. Therefore, there is less 

area in the Sandwich Ping Pong Memory than in Ping Pong Memory.  

It is more flexible on operation frequency because the operation frequency is affected by 

the size of the Sandwich Ping Pong Memory, especially the size of the Common Bar. It can 

not be operated on fix frequency. Once we decided the size of the Common Bar, we decided 

the frequency of the Sandwich Ping Pong Memory.  

  

 
Figure 1.2 Architecture of Sandwich Ping Pong Memory 

 

1.3 Organization 
 

The rest of this thesis is organized as followed. In Chapter 2, we find the applications of the 

Ping Pong Memory. In Chapter 3, we present our proposed the Sandwich Ping Pong Memory, 

its read and write operation, the timing analysis, and its control unit circuit. In order to test it, 
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we develop its own test algorithm which is based on a previous test algorithm in Chapter 4. 

We taped out our design through the National Chip Implementation Center successfully. In 

Chapter 5, we introduce the chip implementation. Finally, we give a few conclusions in 

Chapter 6. 
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Chapter 2   Background 
 

In this chapter, we introduce a simple, and perhaps obvious, technique that eliminates the 

need for the two memory operations during each time slot. We call the technique “ping-pong 

buffering.” A ping-pong buffer, shown in figure 2.1, uses two conventional single-ported 

memories in parallel, so that while “Ping” memory is written “Pong” memory can be read, 

and while “Ping” memory is read “Pong” memory can be written. The two memories are 

arranged so that from the outside, they appear to be a single buffer. Ping-pong buffering is 

widely used including image compression and network communication. 

 
Figure 2.1 A Ping-Pong Buffer 

 

The easiest way to explain how a ping-pong buffer works is to take a real world example. It 

is a nice sunny day and you have decided to get the paddling pool out, only you can't find 

your garden hose. You'll have to fill the pool with buckets. So you fill one bucket (or buffer) 

from the tap, turn the tap off, walk over to the pool, pour the water in, walk back to the tap to 

repeat the exercise. This is analogous to single buffering. The tap has to be turned off while 

you "process" the bucket of water. 

Now consider how you would do it if you had two buckets. You would fill the first bucket 
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and then swap the second in under the running tap. You then have the length of time it takes 

for the second bucket to fill in order to empty the first into the paddling pool. When you 

return you can simply swap the buckets so that the first is now filling again, during which 

time you can empty the second into the pool. This can be repeated until the pool is full. It is 

clear to see that this technique will fill the pool far faster as there is much less time spent 

waiting, doing nothing, while buckets fill. This is analogous to double buffering. The tap can 

be on all the time and does not have to wait while the processing is done.  

 

2.1 Ping Pong Buffers for Image Compression  
 

Discrete Cosine Transform (DCT) is a mathematical tool that has a lot of electronics 

applications, from audio filters to video compression hardware. DCT transforms the 

information from the time or space domains to the frequency domain, such that other tools 

and transmission media can be run or used more efficiently to reach application goals: 

compact representation, fast transmission, memory savings, and so on. 

In image compression, ping-pong buffering (or double buffering) is a widely used 

technique especially for the 2-dimensional discrete cosine transform. The discrete cosine 

transforms (DCT) are a family of similar transforms closely related to the discrete sine 

transform and the discrete Fourier transform. The DCT-II is the most commonly used form 

and plays an important role in coding signals and images [5], e.g. in the widely used standard 

JPEG compression. The discrete cosine transform was first introduced by Ahmed, Natarajan, 

and Rao [6], [7], and [8]. Later Wang and Hunt [9] introduced the complete set of variants. 

2.1.1 One-dimensional Discrete Cosine Transform 

Formally, the discrete cosine transform is a linear, invertible function F: RN -> RN (where R 
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denotes the set of real numbers), or equivalently an invertible N × N square matrix. There are 

several variants of the DCT with slightly modified definitions. The N real numbers x0, xN-1 are 

transformed into the N real numbers X0, XN-1 according to one of the formulas: 

 

 

DCT-I 

2

0 1
1

1 ( ( 1) ) cos 0,..., -1.
2 1

N
k

k N n
n

X x x x nk k N
N

π−

−
=

⎛ ⎞= + − + =⎜ ⎟−⎝ ⎠
∑                    (2-1) 

Some authors further multiply the x0 and xN-1 terms by 2 , and correspondingly multiply the 

X0 and XN-1 terms by 1/ 2 . This makes the DCT-I matrix orthogonal, if one further multiplies 

by an overall scale factor of ( )2 / 1N −  , but breaks the direct correspondence with a real- 

even DFT. 

The DCT-I is exactly equivalent (up to an overall scale factor of 2), to a DFT of 2N − 2 real 

numbers with even symmetry. For example, a DCT-I of N=5 real numbers abcde is exactly 

equivalent to a DFT of eight real numbers abcdedcb (even symmetry), divided by two. (In 

contrast, DCT types II-IV involve a half-sample shift in the equivalent DFT.) 

Note, however, that the DCT-I is not defined for N less than 2. (All other DCT types are 

defined for any positive N.) 

Thus, the DCT-I corresponds to the boundary conditions: xn is even around n=0 and even 

around n=N-1; similarly for Xk. 

DCT-II  

1

0

1cos 0,..., -1.
2

N

k n
n

X x n k k N
N
π−

=

⎡ ⎤⎛ ⎞= + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑                            (2-2) 

The DCT-II is probably the most commonly used form, and is often simply referred to as "the 
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DCT". This transform is exactly equivalent (up to an overall scale factor of 2) to a DFT of 4N 

real inputs of even symmetry where the even-indexed elements are zero. That is, it is half of 

the DFT of the 4N inputs yn, where y2n = 0, y2n + 1 = xn for 0 n N≤ <  , and y4N − n = yn for 0 < 

n < 2N. Some authors further multiply the X0 term by 1/ 2  (see below for the corresponding 

change in DCT-III). This makes the DCT-II matrix orthogonal, if one further multiplies by an 

overall scale factor of 2 / N , but breaks the direct correspondence with a real-even DFT of 

half-shifted input. 

The DCT-II implies the boundary conditions: xn is even around n=-1/2 and even around 

n=N-1/2; Xk is even around k=0 and odd around k=N. 

DCT-III  

1

0
1

1 1cos 0,..., -1.
2 2

N

k n
n

X x x n k k N
N
π−

=

⎡ ⎤⎛ ⎞= + + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑                       (2-3) 

Because it is the inverse of DCT-II (up to a scale factor, see below), this form is sometimes 

simply referred to as "the inverse DCT" ("IDCT"). Some authors further multiply the x0 term 

by 2  (see above for the corresponding change in DCT-II), so that the DCT-II and DCT-III 

are transposes of one another. This makes the DCT-III matrix orthogonal, if one further 

multiplies by an overall scale factor of 2 / N , but breaks the direct correspondence with a 

real-even DFT of half-shifted output. 

The DCT-III implies the boundary conditions: xn is even around n=0 and odd around n=N; Xk 

is even around k=-1/2 and even around k=N-1/2. 

DCT-IV 

1

0

1 1cos 0,..., -1.
2 2

N

k n
n

X x n k k N
N
π−

=

⎡ ⎤⎛ ⎞⎛ ⎞= + + =⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∑                       (2-4) 

The DCT-IV matrix becomes orthogonal if one further multiplies by an overall scale factor 
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of 2 / N . A variant of the DCT-IV, where data from different transforms is overlapped, is 

called the modified discrete cosine transform (MDCT). 

The DCT-IV implies the boundary conditions: xn is even around n=-1/2 and odd around 

n=N-1/2; similarly for Xk. 

DCT V-VIII 

DCT types I-IV are equivalent to real-even DFTs of even order (regardless of whether N is 

even or odd), since the corresponding DFT is of length 2(N−1) (for DCT-I) or 4N (for 

DCT-II/III) or 8N (for DCT-VIII). In principle, there are actually four additional types of 

discrete cosine transform (Martucci, 1994), corresponding essentially to real-even DFTs of 

logically odd order, which have factors of  N ± 1/2 in the denominators of the cosine 

arguments. 

Equivalently, DCTs of types I-IV imply boundaries that are even/odd around either a data 

point for both boundaries or halfway between two data points for both boundaries. DCTs of 

types V-VIII imply boundaries that even/odd around a data point for one boundary and 

halfway between two data points for the other boundary. 

However, these variants seem to be rarely used in practice. One reason, perhaps, is that FFT 

algorithms for odd-length DFTs are generally more complicated than FFT algorithms for 

even-length DFTs (e.g. the simplest radix-2 algorithms are only for even lengths), and this 

increased intricacy carries over to the DCTs as described below. 

(The trivial real-even array, a length-one DFT (odd length) of a single number a, corresponds 

to a DCT-V of length N=1.) 

 

2.1.2 Multidimensional Discrete Cosine Transform 

Multidimensional variants of the various DCT types follow straightforwardly from the 
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one-dimensional definitions: they are simply a separable product (equivalently, a composition) 

of DCTs along each dimension. 

For example, a two-dimensional DCT-II of an image or a matrix is simply the 

one-dimensional DCT-II, from above, performed along the rows and then along the columns 

(or vice versa). That is, the 2d DCT-II is given by the formula (omitting normalization and 

other scale factors, as above): 

1 2

1 2 1 2

1 2

1 1

, 1 1 2 2
0 0 1 2

1 2

1 1cos cos
2 2

0,..., -1.

N N

k k n n
n n

X x x n k n k
N N

k or k N

π π− −

= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

=

∑ ∑     

                                 
         (2-5) 

Technically, computing a two- (or multi-) dimensional DCT by sequences of 

one-dimensional DCTs along each dimension is known as a row-column algorithm (after the 

two-dimensional case). The algorithm used for the calculation of the 2D DCT is based on the 

equation (2-5). First, the 1D DCT of the rows are calculated and then the 1D DCT of the 

columns are calculated. The 1D DCT coefficients for the rows and columns can be calculated 

by separating equation (2-5) into the row part and the column part.  As with 

multidimensional FFT algorithms, however, there exist other methods to compute the same 

thing while performing the computations in a different order (i.e. interleaving/combining the 

algorithms for the different dimensions). 

In figure 2.2, for the case of 8x8 block region, a 1D 8-point DCT/IDCT followed by an 

internal double buffer memory (or ping-ping or transpose buffer), followed by another 1D 

8-point DCT provided the 2D DCT architecture. The buffer memory is to store the data 

computed from the first 1-D DCT/IDCT part and re-sequence them to the second 1-D 

DCT/IDCT part with correct ordering. The double buffer memory performs a matrix transpose 

operation and needs to be fast enough to keep up with the data received from the first 1-D 

DCT/IDCT part and to supply the data going to the second 1-D DCT/IDCT part. The 
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transpose memory has to hold an entire block of N x N data points because the second 1-D 

DCT/IDCT part can not start computations until the first 1-D DCT/IDCT part finished an 

entire block. 

 

Figure 2.2 The generic 2D-DCT architecture  

 

Vector processing using parallel multipliers is a method used for implementation of DCT. The 

advantages in the vector processing method are regular structure, simple control and 

interconnect, and good balance between performance and complexity of implementation. 

The inverse of a multi-dimensional DCT is just a separable product of the inverse(s) of the 

corresponding one-dimensional DCT(s) (see above), e.g. the one-dimensional inverses 

applied along one dimension at a time in a row-column algorithm. 

In figure 2.3, the image to the right shows combination of horizontal and vertical frequencies 

for an 8 x 8 (N1 = N2 = 8) two-dimensional DCT. Each step from left to right and top to 

bottom is an increase in frequency by 1/2 cycle. For example, moving right one from the 

top-left square yields a half-cycle increase in the horizontal frequency (goes from white to 

black). Another move to the right yields two half-cycles (white to black to white). A move 

down yields two half-cycles horizontally and a half-cycle vertically. The source data (8x8) is 

transformed to a linear combination of these 64 frequency squares. 
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Figure 2.3 2D-DCT frequencies. 

2.2 Ping Pong Buffers for Transmission  

 

Memory Bandwidth is frequently a limiting factor in the design of high-speed switches and 

routers. A buffering scheme called ping-pong buffering increases memory bandwidth by a 

factor of two. Ping-pong buffering halves the number of memory operations per unit time 

allowing faster buffers to be built from a given type of memory. 

 Figure 2(a) shows a memory buffer with arrival (An) and departure (Dn) processes of cells. 

In each cell time, which we call a time-slot, zero (An = 0) or one (An = 1) new cell may arrive, 

and zero (Dn = 0) or one (Dn = 1) cell may depart from the buffer. This means that two 

independent memory operations are required per cell time: one write, and one read. If 

dual-ported memory is used, it would be possible for both operations to take place 

simultaneously. However, commercial considerations generally dictate that conventional 

single-ported memory be used. As a result, the total memory bandwidth must be at lease twice 
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the line rate. 

Figure 2(b) shows a ping-pong buffer of total capacity M (cells), with the arrival and the 

departure processes denoted as An and Dn, respectively. The main benefit of a ping-pong 

buffer is that using conventional memory devices, it allows the design of buffers operating 

twice as fast. But ping-pong buffer’s benefit comes with a penalty. If the amount of memory is 

not increased, the overflow rate is from a ping-pong buffer is larger than for a conventional 

buffer. In the worst case, half of the memory is wasted. Using simulations, fortunately, the 

problem is eliminated by the addition of just 5% more memory [9].  

 

 
Figure 2.4 (a) A buffer of capacity M. (b) A Ping-Pong Memory  

 

In network communication, a transmission buffering method that involves two buffers: one 

buffer receives transmissions while the second deletes earlier transmissions. The two alternate 

functions, which helps to keep transmissions close to continuous. A ping-pong buffer contains 

two separate buffers; while one buffer is receiving new transmission information the other 

buffer is deleting the previous transmission. 

We can also find ping-pong buffers in a front end system. The system view is illustrated in 
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figure 2.5. For example, a front end interface consists of a number of ping-pong buffers, one 

for each LAN attachment; an internal bus with an arbitrator and a bus interface; a 

microprocessor; and main memory. An incoming frame is placed in one of the ping-pong 

buffers, if a buffer is available. Once the buffer is full or the last bit of the frame is received, 

then a signal is raised to inform the bus arbitrator that a buffer is ready for being emptied. 

Various scheduling policies such as First Come First Served, Served in Fixed Order, or 

non-preemptive priority scheme, are possible to serve multiple ping-pong buffers associated 

with various attachments. If a buffer is not available, then an incoming frame is assumed to be 

lost. An algorithm is developed and used to investigate the performance characteristics of the 

ping-pong buffering scheme [10].Once a permission to transfer is received by a ping-pong 

buffer, the frame is transferred from the ping-pong buffer to the main memory via the internal 

bus. It is further assumed that the main memory is large enough that it does not cause any loss 

of segments. Finally, the transfers from the memory to the front end processor are not 

explicitly considered here. 

 

 

Figure 2.5 System View[4] 
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Chapter 3   Sandwich Ping-Pong Memory   
 

In this chapter, we will propose our design. First of all, we will show the architecture and the 

operation of a double buffer (Ping-Pong or transpose buffer). We will find the two idled area 

in a Ping Pong Memory and develop a Common Bar to replace them. As a result, we develop 

a Sandwich Ping Pong Memory. Second, we introduce the operations of the Sandwich 

Ping-Pong Memory and derive the formula of Initial Time and Idle Time. We find some 

conditions from doing the timing analysis for this design finally. 

 

 

3.1 The use of Sandwich Ping-Pong Memory 

3.1.1 The Operation of Ping Pong Memory   

We have presented a double buffer roughly and realized that its application is in the 2-D DCT 

architecture in chapter 2. We are going to introduce the architecture and the operation of a 

double buffer, also known as, Ping-Pong buffer which is shown in figure 3.1.  

 

 

Figure 3.1 The architecture of a Ping-Pong buffer 
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There are RAMs in figure 3.1 with some signals such as input data, output data, and address 

signals for writing and reading. The Control signal controls the write and read operation of the 

Ping Pong Memory. When RAM1/RAM2 is on read operation, RAM2/RAM1 is on read 

operation. There are address signals for write and read operations. The address sequence of 

writing and reading is different, showed in figure 3.2. We write data into RAM1/RAM2 row 

by row and read data from RAM2/RAM1 column by column simultaneously. There are some 

things we really concern about. Is there any memory cell idled during the write or read 

operation? If so, what could we do? 

 

 

 

Figure 3.2 Ping Pong Memory is on write/read operation 
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3.1.2 Common Bar   

There are some idled memories in a Ping Pong Memory. The idled memories are showed in 

figure 3.3. There are one block of dotted line area in the Ping Memory and one in the Pong 

Memory, respectively. The dotted line area means the idled memories in a Ping Pong 

Memory.  

We combine the two dotted line area into one and named it “Common Bar.” As a result, there 

is a block of memory, Common Bar, between the Ping and Pong Memory. That is the 

Sandwich Ping Pong Memory.   

 

 

Figure 3.3 Common Bar 
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3.1.3 Sandwich Ping Pong Memory 

We develop a Sandwich Ping-Pong Memory based on the double buffer. Figure 3.4 shows the 

architecture of the Sandwich Ping-Pong Memory which is built up by adding one single-port 

memory between the ping memory and pong memory. 

The architecture of the Common Bar is exactly the same as the ping or pong memory, because 

they are all the same type of construction. In theory, the double buffer is used in the 

architecture of 2-D DCT, so is the Sandwich Ping-Pong Memory. By the result of simulation 

and verification on FPGA, we can prove that Sandwich Ping-Pong Memory work as transpose 

buffer which is used to connect the two 1-D DCT architectures once the first 1-D DCT 

outputs are row-wise and the second 1-D DCT inputs must be column-wise. 

 

 

 
Figure 3.4 The architecture of Sandwich Ping Pong Memory 
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3.2 Read / Write Operation 
 

Figure 3.5 shows when the first 1-D DCT architecture writes the results row by row in one 

memory (ping or pong memory), the second 1-D DCT architecture reads the input values 

column by column from the other memory (pong or ping memory). The read and write signal 

addresses are generated by a control block and this control block defines, by control signal, 

which memory is used to Read/Write at each memory access step. 

Figure 3.5 The architecture of 2-D DCT 

 

3.2.1 Row-column block memory 

For a given 2-D spatial data sequence { ; , 0,1,..., -1ijX i j N= }, the 2-D DCT data 

sequence { ; , 0,1,..., -1pqY i j N= } is defined by: 

    
1 1

0 0

2 1 1cos cos
2 2

N N

pq p q ij
i j

Y E E X i p j q
N N N

π π− −

= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
∑ ∑     (3-1) 

where 

1 , 0
2

1, 0
x

x
E

x

⎧ =⎪= ⎨
⎪ ≠⎩

     
 

         
 

The forward and inverse transforms are merely mappings from the spatial domain to the 

transform domain and vice versa. The DCT is a separable transform and as such, the 

row-column decomposition can be used to evaluate (3-1).  

Denoting: 
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1cos
2

h l
N
π⎡ ⎤⎛ ⎞+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

By lhc  and neglecting the scale factor 2
p qE E

N
, the column transform can be expressed as: 

              
1

0

, , 0,1, 2,..., 1
N

pq pj qj
j

Y Z c p q N
−

=

= = −∑                         (3-2) 

And the row transform can be expressed as: 

           
1

0
, , 0,1, 2,..., 1

N

pj ij pi
i

Z X c p j N
−

=

= = −∑                         (3-3) 

In order to compute an N x N-point DCT (where N is even), N row transforms and N column 

transforms need to be performed. However, by exploiting the symmetries of the cosine 

function, the number of multiplications can be reduced from 2N  to 2 / 2N . In this case each 

row transform given by (3-3) can be written as matrix-vector multipliers via, 

                   ( ) ( )

/2 1

1
0

1
N

p
pj ij piN i j

i

Z X X c
−

− −
=

⎡ ⎤= + −⎣ ⎦∑                (3-4) 

Using a matrix notation, for N=8, (4) can be written as 

                

00 00 7000 01 02 03

20 20 22 23 10 6021

40 40 41 42 43 20 50

60 60 61 62 63 30 40

Z X Xc a c a
Z c c a X Xa
Z c c c a X X
Z c c c a X X

+⎡ ⎤ ⎛ ⎞ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥+⎜ ⎟⎢ ⎥ ⎢ ⎥=
⎜ ⎟⎢ ⎥ ⎢ ⎥+
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ +⎣ ⎦ ⎝ ⎠ ⎣ ⎦ 

   
    
   
    

   (3-5) 

                

10 00 7010 11 12 13

30 30 31 31 33 10 60

50 50 51 51 53 20 50

70 70 71 71 73 30 40

Z X Xc a c a
Z c a c a X X
Z c c c a X X
Z c c c a X X

−⎡ ⎤ ⎛ ⎞ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥−⎜ ⎟⎢ ⎥ ⎢ ⎥=
⎜ ⎟⎢ ⎥ ⎢ ⎥−
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ −⎣ ⎦ ⎝ ⎠ ⎣ ⎦

   
    
   
    

   (3-6) 

Equations (3-5) and (3-6) describe the computation of the even and odd coefficients, for the 

row transform for N=8, respectively. The computation for the second 1-D DCT i.e. the 

column transform described by (3-2) can also be computed using matrix-vector multipliers 
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similar to that described by (3-4). Hence both the row and column transform can be 

performed using the same architecture. 

According to the 2-D DCT algorithm, there should be a row-column block ping pong 

memories to access the data. For example, the data of the computation of the even and odd 

coefficients should be stored in some memory. In the next section, we will present the scan 

line in Sandwich Ping Pong Memory. 

 

3.2.2 Scan line of the Sandwich Ping-Pong memory 

According to the 2-D DCT algorithm, the scan line of the write and read operations in 

Sandwich Ping Pong Memory are row by row and column by column, shown in figure 3.6 and 

3.7, respectively.  

Figure 3.6 Row by row on write operation Figure 3.7 Column by column on read 
operation 

 

The scan line of writing is as the following step. When write operation starts, data is write in 

the Pong/Ping memory and Common Bar in sequence. First, data is written in the Ping/Pong 

memory row by row till the Ping/Pong memory is full. After the Ping/Pong memory is fully 

occupied, data is written in the single port memory, as know as Common Bar. Finally, data is 
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written in the Pong/Ping memory row by row definitely. 

On the other hand, when read operation starts, data is read from the Pong/Ping memory and 

Common Bar. Data is read from the Pong/Ping memory column by column. However, reading 

scan line is a little different from writing scan line. On write operation, we do write data into 

the Common Bar until we finish writing them into Ping/Pong memory. However, on the read 

operation, we read the data from Pong/Ping memory and Common Bar by turns. Data is read 

from the Pong/Ping memory, Common Bar, and back to Pong/Ping memory. Finally, we read 

the last data from the last on address of Common Bar; we finished the complete read 

operation. We must know that there is data written in the memory, at the same moment, there 

is data read from the memory. Write and read operation are took place simultaneously. 

The operation of the transpose memory can be explained if we visualize it as an 8 x 8 array. 

It is actually implemented as a 64-byte SRAM. The first eight bytes of the SRAM correspond 

to the first row of the array, the second eight bytes, to the second row, and so on. Let mode 1 

be a sequence of accesses to locations {0, 1, 2, 3, 4, 5, 6, 7, 8 ...} in that order. This 

corresponds to scanning rows starting at the top left corner. Let mode 2 be accesses to 

locations {0, 8, 16, 24, 32, 40, 48, 56, 1, 9 ...} in that order. This corresponds to scanning 

columns starting at the top left corner. 

 The transposition occurs as follows. Data is read out according to mode 1 for the first 64 

clock cycles. New data (that needs to be transposed) is also written according to mode 1. A 

write always follows a read; i.e., a read from a location is always followed by a write to that 

location. For the next 64 clock cycles, reads and writes occur according to mode 2. The data   

which is read out is the transpose of the data which was written in during the previous 64 

clock cycles. As a result, the latency of the transpose operation is 64 clock cycles. 
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3.3 Timing Analysis 
 

In the section, we will derive the timing analysis about Initially Idle Time and Idle Time and 

some conditions or constraints for the Sandwich Ping Pong Memory. 

 

3.3.1 The Initially Idle Time 

When could we start to read the data from the Sandwich Ping Pong Memory? We have 

already derived when to read, the Initially Idle Time. Let’s see our derivation. 

We make an example for the Sandwich Ping Pong Memory which is a N X M rectangle in size, 

in figure 3.8. There are three coefficients in the derivation: N, M and P. The coefficient N 

represents the cell number of columns of the Sandwich Ping Pong Memory. The coefficient P 

represents the cell number of rows of the Common bar. Hence, the cell number of rows of the 

Ping or Pong Memory is M-P. The individual size of Ping (or Pong) memory and Common 

Bar are ( )M P N− ×  and P N× . 

In addition, we assume that the access time to one the memory cell is one unit time. Therefore, 

the time to write data in Ping/Pong memory is ( )M P N− × , and the time to write data in 

Common Bar is P N× . 

The scan line of writing operation is row by row in the Ping/Pong memory and Common Bar 

in sequence. We should wait for a period of time named Idle Time and continue the next write 

operation. On the other hand, the scan line of reading operation is column by column by turns 

of Pong/Ping memory and Common Bar. In the same manner, we should wait a moment and 

continue the next read operation. First, we derive the Initial Time, and followed by Idle Time. 
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Figure 3.8 Coefficients for Sandwich Ping Pong Memory 

 

 

From the time schedule and the figure 3.8, we know that the data is read in the Ping memory 

column by column by turns of Ping/Pong memory and Common Bar. The first step to operate 

the Sandwich Ping Pong Memory is to write the data into the part of Ping memory and 

Common Bar. After writing, we start to read the data from them. The duration to read the first 

data is defined as “Initially Idle Time”. After the Initially Idle we can read the data from the 

Ping memory and Common Bar, and the Initially Idle is presented as below. We make a time 

schedule to explain the derivation. Some constraints come to us. 

  

After filling in the Ping memory and Common Bar with data, we start to read the data. There 

is the first constraint in Fig.3.9 
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Condition 1:  

Initial nonzero utilization constraint: 1 1
W RT T≥  

Write schedule     1
WT  

↓                  
[(M* N]ping Idle [(M* N]pong Idle ……. 

Read schedule    1
RT  

                  ↓              
Initially Idle [(M* N]ping Idle …… 

1 1     *  W RT T M N Initially Idle≥ ⇒ ≥  

Figure 3.9 The first constraint 

In Fig. 3.9, the time to fill the data in the Ping memory and Common Bar ( 1
WT ) must be great 

than the Initially Idle time ( 1
RT ). Because we have to write the data in the Ping memory and 

Common Bar first, we read the data from them after the Initially Idle time. 

After observing the write operation in detail, we found that data are written into the Ping 

memory first and into the Common Bar later. The second constraint comes up in Fig. 3.10.  

Condition 2:  

Ping memory read contention constraint: 2 2
W RT T≤  

Write schedule 2
WT   

              ↓ 
[(M –P)N]ping (PN)ping Idle (M* N)pong  Idle …… 

Read schedule  2
RT   

              ↓                        
Initially Idle (M* N)ping Idle (M* NX)pong …… 

2 2     ( )*  W RT T M P N Initially Idle≤ ⇒ − ≤   

Figure 3.10 The second constraint 
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In Fig. 3.10, the time to fill the data in the Ping memory ( 2
WT ) must be shorter than the 

Initially Idle time ( 2
RT ). That is because we want to read the data earlier. We can read the data 

from the Ping memory and write the others into the Common Bar simultaneously.  

In addition, the way we read the data is column by column. Before reading the data from the 

Common Bar, the data should already be written into the Ping memory and Common Bar. 

Therefore, we have the third constraint in Fig. 3.11 

.  

Condition 3: 

Common Bar - read memory contention constraint: 3 3 W RT T≤  

Write schedule      3
WT   

                   ↓ 
(M* N)ping       Idle (M* N)pong Idle …… 

Read schedule     3
RT     

                   ↓ 
Initially (M-P)ping [M* N-(M-P)N]ping Idle (M* N)pong …… 

 3 3     * ( )W RT T M N Initially M P≤ ⇒ ≤ + −  

Figure 3.11 The third constraint 

 

In Fig. 3.11, the time to write the data in the Ping memory and Common Bar ( 3
WT ) must be 

shorter than the time to read the data from the first column in Ping memory ( 3
RT ). Because 

after filling the data into the Common Bar, we could read the data it later.   

In conclusion, according condition 1, 2 and 3, we derive the formula (3-7). 
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( )*   *
*  ( )

M P N Initially Idle M N
M N Initially Idle M P

− ≤ ≤⎧
⎨ ≤ + −⎩

 

( )*   *
* ( )  

>1  

M P N Initially Idle M N
M N M P Initially Idle

P N M
PN M P

− ≤ ≤⎧
⇒ ⎨ − − ≤⎩

>
∴ > −
Q I  

* ( )  *M N M P Initially Idle M N⇒ − − ≤ ≤               (3-7) 

 
 
 
 

3.3.2 The Idle Time 

After deriving the Initially Idle Time, we present the Idle Time or Idle. Again, from the time 

schedule and the figure 3.8, we know that the data is written in the Ping memory row by row 

in sequence of Ping memory and Common Bar. After the Ping memory is fully occupied by 

data, we wait for a period of the time, Idle Time because the Common Bar. The Idle time is 

presented with some conditions as below. 

 

On the write schedule, we write the data into the Ping memory and Common Bar and wait for 

while, “Idle Time.” Then we write the data into the Pong memory and Common Bar and so on. 

Simultaneously, on the read schedule, after the Initially Idle Time, we read the data from the 

Ping memory and Common Bar and wait for a while, “Idle Time.” There should be a 

constraint to prevent the Sandwich Ping Pong memory from being on null operation. 

Therefore, we have the forth constraint in Fig. 3.12. 
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Condition 4:  

Run-time nonzero-utilization constraint: 4 4
W RT T≤  

Write schedule              4
WT         

                            ↓ 
(M* N)ping       Idle (M* N)pong Idle …… 

Read schedule             4
RT  

                            ↓    
Initially (M* N)ping Idle (M* N)pong …… 

4 4       * *W RT T M N Idle Initially M N≤ ⇒ + ≤ +  

Figure 3.12 The fourth constraint 

 

In Fig. 3.12, during writing the data in the Ping memory, Common Bar and the Idle time 

( 4
WT ) must be shorter than the time to read the data from the Ping memory, Common Bar 

( 4
RT ). Because we have to prevent the Idle time on write operation and on the read operation 

from being happened in the meanwhile. If we don not have this constraint, the memory would 

be on null operation. 

 

Before we write the data into the Common Bar, the data should already be read from the Ping 

memory and Common Bar. We have the fifth constraint in Fig. 3.13. 
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Condition 5: 

Common Bar: write memory contention constraint: 5 5
W RT T≥  

Write schedule                         5
WT  

                                       ↓ 
(M* N)ping      Idle [(M-P)N]pong (PN)pong Idle …… 

Read schedule                        5
RT   

                                       ↓ 
Initially (M* N)ping Idle [(M-P)N+PN]pong …… 

5 5     * ( )* *W RT T M N Idle M P N Initially M N≥ ⇒ + + − ≥ +  

Figure 3.13 The fifth constraint 

 

In Fig. 3.13, during writing the data in the Ping memory, Common Bar, the Idle time and the 

Pong memory ( 5
WT ) must be greater than the time to read the data from the Ping memory, 

Common Bar ( 5
RT ). Because after reading the data from the Common Bar, we could write the 

data it later.    

 

Therefore, according condition 4, 5, we derive the formula (3-8). 

 

* *
* ( )*  *

( )*  

M N Idle Initially M N
M N Idle M P N Initially M N

Initially M P N Idle Initially

+ ≤ +⎧
⎨ + + − ≥ +⎩
⇒ − − ≤ ≤

              (3-8) 

 

We take the minimum of the Initially Idle Time in the formula (3-7), and we derive the 

formula (3-8). 

* ( ) * ( )P N M P Idle M N M P⇒ − − ≤ ≤ − −                (3-9) 
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In addition, we take the maximum of the Initially Idle Time in the formula (3-7), and we 

derive the formula (3-10).  

* *P N Idle M N⇒ ≤ ≤                                         (3-10) 

No matter what the data is, they all access to the Sandwich Ping Pong Memory one by one. 

In fact, we usually use 8 x 8 block matrix in 2-D Discrete Cosine Transform. Hence, we 

should put some conditions and coefficients for formula (3-7) and (3-9). 

Here is an example for M=4, N =4 and P=1, shown in figure 3.9. 

 

 
Figure 3.14 Example for Initial and Idle Time 

 

There are twelve memory cells in Ping and Pong Memory, respectively. There are four cells 

in Common Bar. We write data into the Ping Memory, then Common Bar and Pong Memory 

row by row. We read from the Ping Memory, then Common Bar and Pong Memory column by 

column. According formula (3-7) and (3-9), the Initially Idle Time and Idle Time are 13 and 1 

unit time.  
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3.3.3 Line Buffer 

Many algorithms and VLSI architectures for the fast computation of one-dimensional (1-D) 

and two-dimensional (2-D) DCT have been proposed [11]. For and effective VLSI 

implementation of an orthogonal transform, the corresponding algorithm should be 

numerically stable, and its computational structure should be regular (recursive and repetitive 

structure). The experiences with VLSI implementations show that the regularity of the 

algorithm is prime concern.[7] Almost all VLSI chips are implemented for fixed 8x8 or 16x16 

square block sizes.[8] 

 

Figure 3.15 Coefficients for line buffer 

 

Therefore, we have to put one more coefficient to represent the square block sizes. We choose 

X as our coefficient, and further, we modify the two formula (3-7) and (3-9). An example, in 
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figure 3.10, is made for the Sandwich Ping Pong Memory and is called ling buffer. We explain 

the derivations of the Initially Idle Time formula in general form (3-11) with a general time 

schedule as below. After filling in Ping memory and Common Bar with data, we start to read 

the data. From Fig., we have the first constraint. 

 

Condition 1 for general form:  

Initial nonzero utilization constraint: 1 1
W RT T≥  

Write schedule     1
WT                   

                  ↓ 
[(M* NX]ping Idle [(M* NX]pong Idle ……. 

Read schedule    1
RT   

                  ↓  
Initially Idle [(M* NX]ping Idle …… 

1 1     *  W RT T M NX Initially Idle≥ ⇒ ≥  

Figure 3.16 The first constraint for general form 

 

In Fig. 3.16, the time to fill the data in the Ping memory and Common Bar ( 1
WT ) must be 

great than the Initially Idle time ( 1
RT ). Because we have to write the data in the Ping memory 

and Common Bar first, we read the data from them after the Initially Idle time. 

 

After observing the write operation in detail, we found that data are written into the Ping 

memory first and into the Common Bar later. The second constraint comes up in Fig. 3.17. 
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Condition 2 for general form:  

Ping memory read contention constraint: 2 2
W RT T≤  

Write schedule 2
WT      

              ↓  
[(M –P)NX]ping (PNX)ping Idle (M* NX)pong  Idle …… 

Read schedule 2
RT  

              ↓  
Initially Idle (M* NX)ping Idle (M* NX)pong …… 

2 2     ( )*  W RT T M P NX Initially Idle≤ ⇒ − ≤  

Figure 3.17 The second constraint for general form 

 

In Fig. 3.17, the time to fill the data in the Ping memory ( 2
WT ) must be shorter than the 

Initially Idle time ( 2
RT ). That is because we want to read the data earlier. We can read the data 

from the Ping memory and write the others into the Common Bar simultaneously. 

 Before reading the data from the Common Bar, the data should already be written into the 

Ping memory and Common Bar. Therefore, we have the third constraint in Fig. 3.18. 
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Condition 3 for general form: 

Common Bar - read memory contention constraint: 3 3 W RT T≤  

Write schedule         3
WT    

                      ↓  
(M* NX)ping       Idle (M* NX)pong Idle  

Read schedule        3
RT    

                      ↓ 
Initially [(M-P)X]ping [M* NX-(M-P)NX]ping Idle (M* NX)pong …… 

3 3     * ( )W RT T M NX Initially M P X≤ ⇒ ≤ + −  

Figure 3.18 The third constraint for general form 

 

In Fig. 3.18, the time to write the data in the Ping memory and Common Bar ( 3
WT ) must be 

shorter than the time to read the data from the first column in Ping memory ( 3
RT ). Because 

after filling the data into the Common Bar, we could read the data it later. 

 

In conclusion, according condition 1, 2 and 3 in general form; we derive the formula (3-11) 

 

 
( )*   *

 ( )* *
M P NX Initially Idle M NX

Initially Idle M P X M NX
− ≤ ≤⎧

⎨ + − ≥⎩
  

( )* ( ) *  *M N M P X Initially Idle M NX⇒ − − ≤ ≤            (3-11) 

 

From the figure 3.10, we know that the data is read column by column in the Ping memory in 

M by NX block size. After the Initially Idle Time, we can read the data from the Ping memory 

and Common Bar, and the Initially Idle Time is presented in formula (3-11). 
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Similarly, we have to modify the formula (3-9) and (3-10) and derive the Idle Time is below. 

There should be a constraint to prevent the Sandwich Ping Pong memory from being on null 

operation. Therefore, we have the forth constraint in Fig. 3.19 

. 

Condition 4 for general form:  

Run-time nonzero-utilization constraint: 4 4
W RT T≤  

Write schedule              4
WT         

                            ↓ 
(M* NX)ping       Idle (M* NX)pong Idle …… 

Read schedule             4
RT   

                            ↓   
Initially (M* NX)ping Idle (M* NX)pong …… 

4 4       * *W RT T M NX Idle Initially M NX≤ ⇒ + ≤ +  

Figure 3.19 The fourth constraint for general form 

 

In Fig. 3.19, during writing the data in the Ping memory, Common Bar and the Idle time 

( 4
WT ) must be shorter than the time to read the data from the Ping memory, Common Bar 

( 4
RT ). Because we have to prevent the Idle time on write operation and on the read operation 

from being happened in the meanwhile. If we don not have this constraint, the memory would 

be on null operation. 

 

Before we write the data into the Common Bar, the data should already be read from the Ping 

memory and Common Bar. We have the fifth constraint in Fig. 3.20. 
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Condition 5 for general form: 

Common Bar: write memory contention constraint: 5 5
W RT T≥  

Write schedule                         5
WT  

                                       ↓ 
(M* NX)ping      Idle [(M-P)NX]pong (P*NX)pong Idle …… 

Read schedule                        5
RT  

                                       ↓  
Initially (M* NX)ping Idle [(M-P)NX+PNX]pong …… 

5 5     * ( )* *W RT T M NX Idle M P NX Initially M NX≥ ⇒ + + − ≥ +  

Figure 3.20 The fifth constraint for general form 

 
In Fig. 3.20, during writing the data in the Ping memory, Common Bar, the Idle time and the 

Pong memory ( 5
WT ) must be greater than the time to read the data from the Ping memory, 

Common Bar ( 5
RT ). Because after reading the data from the Common Bar, we could write the 

data it later. 

Therefore, according condition 4, 5, we derive the formula (3-12) and (3-13). 

 

* *
 * * ( )*

M NX Idle Initially M NX
Initially M NX M NX Idle M P NX

+ ≤ +⎧
⎨ + ≤ + + −⎩

 

 ( )*Initially M P NX Idle Initially⇒ − − ≤ ≤              (3-12) 

We take the minimum and maximum of the Initially Idle Time in the formula (3-12), and we 

derive the formula (3-13) and (3-14). 

 

[ ] [ ]* ( ) * ( )P N M P X Idle M N M P X⇒ − − ≤ ≤ − −     (3-13)  

* *P NX Idle M NX⇒ ≤ ≤                                   (3-14) 
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Generally, for block sizes larger than 16x16, the complexity of derivation of a signal flow 

graph for a given algorithm increase. Furthermore, no direct 2-D DCT algorithm has been 

shown up to now with its computational structure for a rectangular M x NX block size. 

Moreover, there should be some conditions for the coefficients M, N, and X. For instance, 

M and N must be equal to or larger than X. Besides, M and N are usually less than 16 [12]. 

 

3.4 Control Unit Circuit 
 

We make up the Sandwich Ping Pong Memory with two parts, a Ping Pong Memory and a 

Common Bar. We build a control unit circuit to turn the original signals and addresses into 

those for Sandwich Ping Pong Memory (SPPM). Saving area is our destination and we do 

save the area of Ping Pong Memory actually. We could save the area of Ping Pong Memory; 

however, we gained the area of the control unit circuit. Therefore, the less area we used for 

control unit circuit, the more area we saved in Sandwich Ping Pong Memory.  

 

Idle WE Addr_W>12 Addr_W>12 WE_Ping WE_Pong WE_CMB

0 0 0 0 0 1 X 
0 0 0 1 0 1 0 
0 0 1 0 0 1 1 
0 0 1 1 X X X 
0 1 0 0 1 0 X 
0 1 0 1 1 0 0 
0 1 1 0 1 0 1 
0 1 1 1 X X X 
1 0 0 0 X 0 1 
1 0 0 1 X 0 1 
1 0 1 0 X 0 1 
1 0 1 1 X X X 
1 1 0 0 0 X 0 
1 1 0 1 0 X 0 
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1 1 1 0 0 X 0 
1 1 1 1 X X X 

Table 3.1 Signals and Addresses for 32bit SPPM with Common Bar 1X4 

 

  Table 3.1 shows the signals for 32-bit SPPM with Common Bar 1 X 4. We define the 

address for writing or reading is 0 to 15. When they are bigger than 12, the common bar is on 

operation. The inputs of it are WE, Addr_W and Addr_R represented the original signals of  

Write Enable, Address for Writing and Address for Reading, respectively. Its outputs are the 

WE_Ping, WE_Pong and WE_CMB represented the signals of Write Enable for Ping Memory, 

Pong Memory and Common Bar. It seems that we are using a Ping Pong Memory. In fact, we 

are using a Sandwich Ping Pong Memory. Figure 3.21 shows the signals and addresses 

transformed by the control unit circuit. 

 

 
Figure 3.21 Signals and addresses for Sandwich Ping Pong Memory 
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We synthesize a control circuit with HDL. When the size of Common Bar is 1 x 8K, the gate 

count of the control circuit is 216 gate counts, shown in figure 3.22. 

Figure 3.22 The gate count of control unit for Common Bar 

 

M N P X Total 
Size 
(bit) 

Initially
Idle 

(Unit 
time) 

Idle 
Time 
(Unit 
time) 

Throughput
Reduction 

(%) 

Common 
Bar 

(gate 
count) 

Control
Unit 
(gate 

count) 

Area 
Saved
(gate 

count)
16 512 1 16 128K 130832 7936 5.709 8192 216 7976 
16 512 2 16 128K 130848 15872 10.801 16384 230 16154 
16 512 3 16 128K 130864 23808 15.371 24576 251 24325 
16 512 4 16 128K 130880 31744 19.496 32768 260 32508 
16 512 5 16 128K 130896 39680 23.238 40960 264 40696 
16 512 6 16 128K 130912 47616 26.647 49152 266 48886 
16 512 7 16 128K 130928 55552 29.766 57344 268 57076 
16 512 8 16 128K 130944 63488 32.631 65536 283 65253 
16 512 9 16 128K 130960 71424 35.271 73728 287 73441 
16 512 10 16 128K 130976 79360 37.712 81920 289 81631 
16 512 11 16 128K 130992 87296 39.976 90112 283 89829 
16 512 12 16 128K 131008 95232 42.081 98304 280 98024 
16 512 13 16 128K 131024 103168 44.043 106496 264 106232
16 512 14 16 128K 131040 111104 45.877 114688 238 114450
16 512 15 16 128K 131056 119040 47.594 122880 223 122657
16 512 16 16 128K 131072 126976 49.206 131072 210 130862

Table 3.2 Data sheet for a Sandwich Ping Pong Memory 
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Table 3.2 is a data sheet for the Sandwich Ping Pong Memory in size 128K. It shows the 

control unit size of the different Common Bar in the Sandwich Ping Pong Memory. Every 

control unit is under three hundred gate counts. Figure 3.23 shows the Common Bar and Area 

Saved. Figure 3.24 shows the relationship between area saved and throughput reduction of the 

Sandwich Ping Pong Memory in the size 128k 

 

 
Figure 3.23 Common Bar and Area Saved   
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Figure 3.24 Area Saved vs. Throughput Reduction 
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Chapter 4   Test Algorithm   
 

Semiconductor memories have invented for decades and have been designed, produced, tested 

by customers all over the world. The test algorithms have been studied for decade years. [13]~ 

[23] It has been said that “memory testing is simple.” In fact, it is logistically simple about 

memory testing. The complex part of memory testing is the numerous ways that a memory 

would fail. Patterns are the essence of memory testing. However, there is no single pattern is 

sufficient to test a memory for all defect types. There are many algorithms had been proposed 

such as, Zero-One, Checker, March, GALPAT, Butterfly, etc…. Table 4.1 lists the required 

test time as a function of the algorithm complexity and the memory size. 

 

Algorithm complexity Size 

n  n  logn n  3/2n  2n  

1K 0.0001s 0.001s 0.0033s 0.105s 

16K 0.0016s 0.0224s 0.21s 27s 

256K 0.0256s 0.46s 13.4s 1.9h 

1M 0.102s 2.04s 14.3m 1.27d 

16M 1.64s 39.36s 15.25h 326d 

256M 26.24s 12.25m 5.1d 229y 

s: second; m: minute; h: hour; d: day; y: year  

Table 4.1 Test time as a function of memory size     

This chapter introduces popular memory fault models and many March algorithms. For 

Sandwich Ping-Pong Memory, we show a modified March C- algorithm for testing. The 

testing time is shorten and with high fault coverage. 
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4.1 Fault Models  

 

This section gives a formal definition for the most popular fault models.[24]  First, we 

introduce the notation used to represent the fault models are listed here: 

0: Denotes that a cell is in logical state 0. 

1: Denotes that a cell is in logical state 1. 

? : Denotes that a cell is in logical state, which means “don’t care.” 

↑ : A raising cell transition or denotes a write 1 operation to a cell containing a 0. 

↓ : A falling cell transition or denotes a write 0 operation to a cell containing a 1. 

b : Either a rising or falling cell transition. 

∀ : denotes any operation; ∀  {0,1, , , }∈ ↑ ↓ b  

< I / F >: denotes a fault in a single cell. I describes the condition for sensitizing the fault, F 

describes the value of the faulty cell. {0,1, , , }I ∈ ↑ ↓ b , and {0,1}F ∈ . 

 

The most popular fault models are listed as follows: 

Stuck-at fault (SAF ): The logic value of a stuck-at (SA) cell or line is always 0 ( a stuck-at-0 

fault, SA0 ) or 1 ( a stuck-at-1 fault, SA1 ). 

Transition fault ( TF ): The cell or line which fails to transit from 0 to 1 (a /0<↑ >  TF ) or 

from 1 to 0 ( a /1<↓ >  TF ). 

Inversion coupling fault ( CFin ): An transition (↑ or ↓ ) in one cell inverts the content of 

another cell. 

Idempotent coupling fault ( CFid ): An transition (↑ or ↓ ) in one cell forces the content of 

another cell to a certain value , 0 or 1. 

State coupling fault ( CFst ): A coupled cell is forced to a certain value only if the coupling 

cell is in a given state. 
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Stuck-open fault ( SOF ): The cell fails to be accessed or a broken word/bit line. 

Address decoder fault ( AF ): It is a functional fault in the address decoder that results in one 

of the following four cases shown in figure 4.1.   

Fault A: With a certain address, no cell will be accessed. 

Fault B: A certain cell is never accessed. 

Fault C: With a certain address, multiple cells are accessed. 

Fault D: A certain cell can be accessed with multiple addresses. 

 

Figure 4.1 Different types of address decoder faults 

 

4.2 March Algorithms  

The simplest tests which detect SAFs, TFs and CFs are called ‘marches’. A March test is 

composed of a finite sequence of March elements. A March element is a finite sequence of 

write/read operations applied to every cell in memory before proceeding to the next cell. The 

address sequence can be either an increasing (⇑ ) address order (e.g. from address 0 to address 

N-1), or a decreasing ( ⇓ ) address order which is the opposite of the⇑ address order. 

A write/read operation can be ( wa ), ( wa ), ( ra ), and ( ra ) where a  is the background 

pattern and a  is the inverted background pattern; {0,1}a ∈ ; ( wa ) means “write the 

cell/word a ”; ( wa ) means “write the cell/word a ”; ( ra ) means “read a expected cell/word 
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a ”; ( ra ) means “read a expected cell/word a .” A March algorithm example is shown in 

figure 4.2, and its flow is depicted in figure 4.3. Once the fault simulation is complete (all 

faults have been emulated), the fault coverage can be determined for the set of test vectors. 

The fault coverage, FC, is a quantitative measure of the effectiveness of the set of test vectors 

in detecting faults, and in it most basic form is given by: 

DFC
T

=                                       (4-1) 

Where D is the number of detected faults and T is the total number of faults in the fault list. 

For design verification, the fault coverage can not only give the designer a rough quantitative 

measure of how well the design has been exercised, but also the undetected fault list can 

provide valuable information on those sub-circuits that have not been exercised as thoroughly 

as other sub-circuits. 

Although example will be used in which the ⇑  address order goes from address 0, 1, 2. . . 

n-2 to n-1, this is not strictly necessary. It is necessary that the address-orders ⇑  and ⇓  are 

each other’s invert. For instance, when the address-orders ⇑  is chosen for some reason to be: 

1, 0, 7, 5, 6 ,4 ,2 ,3 ; the address order ⇓  has to be:3, 2, 4, 6, 5, 7, 0, 1.This means that the 

march test { ( 1, 0); ( 0, 1)}r w r w⇑ ⇓ has the same fault coverage as the test 

{ ( 1, 0); ( 0, 1)}r w r w⇓ ⇑ . 

In Table 4.2, we show some popular March algorithms. And we also show the fault 

coverage in Table 4.3.  
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Figure 4.2 A March algorithm example  

 

 

Figure 4.3 The procedure for the March algorithm example 

 

 

Name 

Algorithm 

Element  Faults Detected 

MATS++ ( 0); ( 0, 1); ( 1, 0, 0)w r w r w r ⇑ ⇓c  SAF/AF 

March X ( 0); ( 0, 1); ( 1, 0) ( 0)w r w r w r ⇑ ⇓c c  AF/SAF/TF/CFin 

March Y ( 0); ( 0, 1, 1); ( 1, 0, 0) ( 0)w r w r r w r r ⇑ ⇓c c  AF/SAF/TF/CFin 

March C- { ( 0); ( 0, 1); ( 1, 0); ( 0, 1); ( 1, 0); ( 0)}w r w r w r w r w r⇑  ⇑ ⇓ ⇓c c  SAF/AF/TF/CF 

Table 4.2 Some March algorithms 
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Fault MATS++ March X March Y March C- 

SAF 100% 100% 100% 100% 

TF 100% 100% 100% 100% 

SOF 100% 0.2% 100% 0.2% 

AF 100% 100% 100% 100% 

CFin 75.0% 100% 100% 100% 

CFid 37.5% 50.0% 50.0% 100% 

CFst 50.0% 62.5% 62.5% 100% 

Table 4.3 Fault coverage of some popular March algorithms  

 

4.3 A Test Algorithm for Sandwich Ping-Pong Memory 
 

4.3.1 March C- Algorithm 

March C- algorithm in Figure 4.4 satisfies the conditions of detecting simple (unlinked) faults 

such as SAFs, TFs, CFs, AFs, and SOFs [5]. This section shows a modified March C- 

algorithm in Figure 4.5 which is derived from March C- and proofs fault detection 

capabilities. 

 

{ ( 0); ( 0, 1); ( 1, 0); ( 0, 1); ( 1, 0); ( 0)}w r w r w r w r w r⇑  ⇑ ⇓ ⇓c c

     M0        M1         M2          M3          M4        M5   
 

Figure 4.4 March C- algorithm  
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Condition March element 

1 ( ,..., )x x⇑ r w  

2 ( ,..., )x x⇓ r w  

Table 4.4 Conditions for detecting address decoder faults 

 

March C- satisfies the Conditions 1 and 2 for Address Faults in Table 4.4 [2]. When x =0 by 

means of March elements M2 and M5, when x =1 by means of March elements M3 and M4. 

March C- will detect SAFs and TFs because all cells are read in states 0, 1, 0 … Thus, both 

↑  and ↓  transitions, and read operations after them, have taken place. March C- will also 

detect idempotent and inversion coupling faults, with the restriction that these coupling faults 

are unlinked.  

A fault is linked when that fault may influence the behavior of other faults. A fault is unlinked 

when that fault does not influence the behavior of other faults. Here is an example, as shown 

below. 

Example 

Suppose that there are two coupling faults in a memory, as shown in Figure 4.5. The first 

fault is that cell i  is ;1<↑ > coupled to cell j ; the second fault is that cell k  is coupled to 

cell l . The March test { ( 0); ( 0, 1); ( 0, 1); ( 1)}w r w w w r⇑c c c  will detect both faults if i k≠   

(Figure 4.5(a)). The ;1<↑ >  CF will be detected by the ‘r0’ operation of March element, 

when operating on cell i . The ;0<↑ > CF will be detected by the ‘r1’ operation of the last 

March element, when it operates on cell k . 

However, this test will not detect the combination of the faults which occurs when i k≡  

(Figure 4.5(b)). The ‘link’ between the faults (in this case the effect that the coupled cells are 

the same) can cause the test not to find any fault; this effect is called masking. The ‘r0’ 
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operation of the march element ( 0, 1)r w⇑  will not detect the linked CF because when 

operation on cell i  the cell will contain a 0 value due to the ;0<↑ > CF. The ‘r1’ operation 

of the last march element will not detect the linked CF because, when operating on cell i , it 

will contain a 1 value due to the ;1<↑ > CF sensitized by the march element ( 0, 1)w wc  

when it operates on cell j . 

 The following test has been designed to detect the faults of Figures 4.5(a) and 4.5(b): 

{ ( 0); ( 0, 1); ( 0, 1); ( 1, 0, 1)}w r w w w r w w⇑c c c . The ;1<↑ >  CF of Figure 4.5(a) will be 

detected by the ‘r0’ operation of March element ( 0, 1)r w⇑  when it operates on cell i ; the   

CF of Figure 4.5(a) will be detected by the ‘r1’ operation of the last March element when it 

operates on cell k . The linked fault of Figure 4.5(b) will be detected by the ‘r1’ operation of 

the last March element when it operates on cell i . 

 

 

Figure 4.5 Masking of coupling faults 

 

 

The proof that March C- is complete is given below: 

 AFs are detected because the conditions of in Table 4.3. 

 SAF1 faults are detected by the read operations of M1, M2, M4, and M6. 

 SAF0 faults are detected bye the read operations of M3, M5, and M7. 
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 Unlinked /0<↑ >  TFs are detected by M1 followed by M2 or by M3 followed by M4. 

 Unlinked /1<↓ >  TFs are detected by M2 followed by M3 or by M4 followed by M5.  

 Unlinked CFins ;<↑ ↑>  are detected by M3 followed by M4; CFins ;<↓ ↑>  are 

detected by M4 followed by M5. 

 Unlinked CFids ;0<↑ >  are detected by M3 followed by M4; CFids ;1<↑ >  are 

detected by M1; CFids ;0<↓ >  are detected by M2; CFids ;1<↓ >  are detected by M4 

followed by M5. 

 

4.3.2 The Modified March C- Algorithm 

There are two memory arrays which are called Ping memory (or Block A) and Pong memory 

(Block B) in a Ping Pong memory, introduced in Section 3.1.1. We have derived an 

algorithm for testing Ping memory and Pong memory simultaneously. We named this 

algorithm the Modified March C- shown in figure 4.5. In addition, the modified March C- is 

depicted carefully in figure 4.6, the upper sequence is testing the Block A memory array, 

meanwhile, the lower one is testing the Block B memory array.  

There are two more March elements (M1 and M6) in this algorithm than in March C- 

algorithm. However, the fault coverage of this algorithm is the same as the one of March C- 

algorithm. Because these two March elements (M1 and M5) are nop (no operation) 

operations needed to be inserted into the March algorithm. As a result, the total operations 

increase.  

There are eight operations within the algorithm, the test length of the modified March C- is 

eight, i.e. total 8N read and write operations are need to apply the algorithm (N is the 

memory size).  

The modified March C- will detect CFins and CFids as shown below.  
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{ ( 0); ( 0); ( 0, 1); ( 1, 0); ( 0, 1); ( 1, 0); ( 0); ( 0)}w r r w r w r w r w r w ⇑   ⇑   ⇓ ⇓c c c c

     M0       M1       M2          M3           M4          M5        M6     M7    
 

Figure 4.6 Modified March C- algorithm 

0 1 0 1 0 0 1 1 0 0 1 1 1 1 1
0 0 0 0 0 1 0 1 1 0 1 0 1 0 0

0 1 0 1 0 0 0 1 1 0 0 1
? ? 0 0 0 0 1 0 1 1 0 1

:{( ,...., ); ( ,... ); ( , , ..., , ); ( , , , ..., , ); ( ,

:{( , .... ); ( ,..., , ); ( , ,..., , ); ( , , ,

N N N N N N N

N N N N

A w w r r r w r w r w r w r w r

B r r w w w r w r w r w r

− − − − − − −

− − − −

,           

  ,       1 1
1 0

1 0 0 1 1 0 0 0 1 1 0 1
1 0 1 1 0 1 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0
0 1 0 1 1 0 1 0 0 0 0

. . . . , );

,... , , ); ( , ,..., , ); ( , , ...., ); ( ,..., )}

( , ,..., , ); ( , ,..., , , ,..., ); ( ,

N N

N N N N N

N N N N

r w

w r w r w r w r r r w w

r w r w r w r w w w r

− −

− − − − −

− − − −

         ,  

            

        1
0.... )}Nr −, 

Figure 4.7 Modified March C- algorithm for block A and block B  

memory arrays 

 

4.3.3 Testing of Sandwich Ping-Pong Memory 
 

We will present how to test the Sandwich Ping-Pong Memory in this section. It is the 

modified March C- algorithm that we use for testing because it shows the high fault coverage. 

It can test the most popular the faults such as: SAFs, TFs, AFs, CFins, CFids, and CFsts and 

its fault coverage was already presented in table 4.2.  

When testing the Sandwich Ping-Pong Memory, the basic and simple way is to separate it 

into two parts: one is ping-pong memory and another is single port memory, in figure 4.8. 

There is no doubt that the modified March C- algorithm can test not only the Ping Pong 

memory but also the Common Bar.  
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Figure 4.8 Test flow 

 

Modified March C- satisfies the conditions 1 and 2 for AFs of Table 4.3: when x = 0 by 

means of March elements M2 and M5, when x =1 by means of March elements M3 and M4. 

Modified March C- will detect SAFs and unlinked TFs because all cells are read in states 0, 1, 

0, . .. . Thus, both ↑  and ↓  transitions, and read operations after them, have taken place. 

Modified March C- will also detect idempotent and inversion coupling faults, with the 

restriction that these coupling fault are unlinked. The detection capabilities for idempotent and 

inversion coupling faults are proved below. 

 

Idempotent coupling faults 

The proof that the modified March C- detects CFids is split into two cases: 1. faults with the 

addresses of the coupling cells lower than the coupled cell, and 2. faults with the address of 

the coupling cells higher than the coupled cell. The coupled cell will be denoted by iC , and 

(one of) the coupling cells with iC . As a reminder of the notation: iC  is coupled to jC  means 

that an ↑  transition in jC  causes a o value in iC . 
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Figure 4.9 Addresses of coupling and coupled cells 

 

Case 1:  

Let iC  be coupled to any number of cells with address lower than i, and let jC  be the 

highest of those cells (j<i), see figure 4.8. Four cases, corresponding to the four different 

types of CFids, can be distinguished: a. ;0<↑ > , b. ;1<↑ > , c. ;0<↓ > , and d. ;1<↓ >  . These 

cases are proved below. 

(a) If iC  is ;0<↑ >  coupled to jC , then the fault will be detected in march element M4 

followed by M5. See in figure 4.10 (a).  

 In M4 a 1 is written in jC and due to the ;0<↑ >  coupling fault iC  will contain a  

0. 

 In M5 a read operation is performed on iC  and a 0 instead of a 1 is read. 

 Linked CFids will not be detected. For example, iC  must not be ;1<↑ >  coupled 

to cells with a lower address than j, because M4 operates on them after jC . In that 

case a 1 would be read in M5 which is the expected value. Thus, the fault would not 

be detected. 

(b) If iC  is ;1<↑ >  coupled to jC  then the March element M2 will detect the fault. See in 

figure 4.10 (b). 
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 First a 0 will be read from jC , then a 1 will be written. Due to the ;1<↑ >  coupling 

fault iC  will be forced to contain a 1. 

 A 1 instead of a 0 is read when M2 operates on iC . 

(c) If iC  is ;0<↓ >  coupled to jC  then he march element M3 will detect the fault. The 

proof is similar to above. 

(d) If iC  is ;1<↓ >  coupled to jC  then the March elements M5 followed by M6 will 

detect the fault. iC  must not be ;1<↓ >  coupled to cells with addresses lower than j. The 

proof is similar to above. 

Figure 4.10 Detecting CFids   

 

Case 2: 

Let iC  be coupled to any number of cells with addresses higher than i and let jC  be the 

lowest addressed cell of them (j>i). The proof is similar to Case1, whereby M2 should be 

replaced by M4, M3 by M5, M4 by M2, M5 by M3 and M6 by M4. 

Above it has been shown that modified March C- will detect CFids. The CFids must be 

unlinked, because not all combinations of faults are allowed, as proved above. 

 

Inversion coupling faults 

Case 1: 

Let iC  be coupled to any number of cells with addresses lower than i and let jC  be the 
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highest of those cells (j<i). Then, there are two cases, corresponding to eh two different types 

of CFins: ;<↑ >b  and ;<↓ >b . These cases are proven below. 

(a) iC  is ;<↑ >b  coupled to jC ; then M1 will detect the fault, as well as M4 followed 

by M4. 

 M4 operates on jC , making an ↑  transition and inverting the contents of iC ; 

when M5 is operated on iC  a 0 instead of a 1 will be read. 

 

Figure 4.11 Detecting CFins  

 

(b) iC  is ;<↓ >b   coupled to jC ; then M3 as well as M4 followed by M6 will detect 

the fault. The proof is similar to above.   

Case 2: 

The proof for j>i is similar to above. 

 

As a result, we can use the modified March C- algorithm to test the Sandwich Ping Pong 

Memory. The fault coverage is at 100% for the stuck-at fault, transition fault, address fault, 

and coupling fault.  
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Chapter 5   Chip Implementation 
 

We implement our Ping Pong memory in Full-Custom Design by specifying the layout of 

each individual transistor and the interconnections. Figure 5.1 shows the design flow for 

64-byte Ping Pong Memory.  

 

 

Figure 5.1 Design flow for 64-byte Pig Pong Memory 

 

In order to be more flexible, we also complete the part of the Sandwich Ping Pong Memory, 
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Common Bar, and the test circuit by means of HDL (Hardware Description Language) which 

could synthesize the circuit we want. We show the results on Sparan-3 Starter board which 

provides a powerful, self-contained development platform. It features a 200K gate Sparten-3, 

on-board I/O devices, and two large memory chips. 

 

5.1 Chip Implementation of the Sandwich Ping Pong Memory 

5.1.1 The architecture of a Ping-Pong buffer  

We have presented a double buffer roughly and realized that its application is in the 2-D DCT 

architecture in chapter 2. In this section, we are going to introduce the architecture of a double 

buffer, also known as, Ping-Pong buffer which is shown in figure 5.2. 

 

 

Figure 5.2 Components in the Ping-Pong Memory   
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5.1.2 The detail design of a Ping-Pong buffer  

A Ping-Pong buffer consists of the following kinds of component: 

Memory cell  

From the begging of introducing a Ping-Pong buffer, we talk about the basic component – the 

memory cell [27]. A memory cell can be implemented as SRAM, DRAM, and Flash. We take 

a six-device SRAM memory cell, also called CMOS SRAM cell shown in figure 5.3, as our 

memory cell. The load devices are PMOS enhancement mode transistors Q2 and Q4. 

Comparing to the depletion mode NMOS as the load devices, this further reduces the power 

requirements of the cell; except for some small leakage current, no power will be dissipated 

during the time the cell retains the stored logic value. The transistors Q5 and Q6 work as 

switches and are named access transistors. When the gate of Q5 and Q6 are activated, they are 

turned-on and the memory cell work. 

The operations of a memory cell are the following steps. When some word line is chosen, the 

access transistors are on and connect the two bit lines Q  andQ . At this moment, we can 

write/read some data into/from the memory cell. On the operation of writing, it is easy to 

understand that the data (the voltage on bit lines) can be stored and latched between two 

back-to-back CMOS. On the opposite, the operation of reading, we turn down the voltage of 

word line after the data (voltage on the gate of CMOS) is passed to the bit lines from the 

memory cell. Finally, the data (voltage on the bit lines) is forward to the next component. 
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Figure 5.3 Six-device SRAM memory cell 

 

 

Sense Amplifier, Equalization, and Pre-charge circuit 

When the data (voltage) is on the bit lines, they will bump into the next component - Sense 

Amplifiers. Memory cells are composed by CMOS, so are the sense amplifiers. In figure 5.4, 

we show the differential sense Amplifier, equalization, and pre-charge circuit. 

The sense amplifier is the most critical component in a memory chip. Sense amplifiers are 

essential to the proper operation of Drams, and their use in Scrams results in speed and area 

improvements. Here, we describe a differential sense amplifier that employs positive feedback. 

Because the circuit is differential, it can be employed directly in Scrams where the SRAM cell 

utilizes both the B  and B  lines. We assume that the memory cell whose output is to be 

amplified develops a difference output voltage between the B  and B  lines. This signal,  

which can range between 30 mV and 500 mV depending on the memory type and cell design, 

will be applied to the input terminals of the sense amplifier. The sense amplifier in turn 
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responds by providing a full logic-swing (0 to DDV ) signal at its output terminals. The 

particular amplifier circuit we shall discuss has a rather unusual property: Its output and input 

terminals are the same! 

The sense amplifier is nothing but the familiar latch formed by cross-coupled two CMOS 

inverters: one inverter is implemented by transistors Q1 and Q2, and the other by transistors 

Q3 and Q4. The transistors Q5 and Q6 work as switches that connect the sense amplifier to 

ground and DDV  only when data-sensing action is required. Otherwise, sφ  is low and the 

sense amplifier is turned off. This conserves power, an important consideration since usually 

there is one sense amplifier per column, resulting in thousands of sense amplifiers per chip. 

Note again that terminals x and y are both the input and the output terminals of the amplifier. 

As indicated, these I/O terminals are connected to the B  and B  lines. The amplifier is 

required to detect a small signal appearing between B  and B , and to amplify it to provide a 

full-swing signal at B  and B . For instance, if during a read operation, the cell had a stored 

1, then a small positive voltage will develop between B  and B , with BV  higher than BV . 

The amplifier will then cause BV  to rise to DDV  and BV  to fall to 0 V. This 1 output is then 

directed to the chip I/O pin by the column decoder and at the same time is used to rewrite a 1 

in the memory cell. 

Figure 5.4 shows the pre-charge and equalization circuit. Operation for this circuit is 

straightforward: When sφ  goes high prior to a read operation, all three transistors conduct. 

While Q8 and Q9 pre-charge the B  and B  lines to DDV  /2, transistor Q7 helps speed up 

this process by equalizing the voltages on the two lines. This equalization is critical to the 

proper operation of the sense amplifier: Any voltage difference present between B  and B  

prior to commencement of the read operation can result in erroneous interpretation by the 

sense amplifier of its input signal. We show only one of the cells in this particular column 

namely, the cell whose word line is activated. The cell can be either an SRAM or a DRAM 
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cell. All other cells in this column will not be connected to the B  and B  lines. 

 

 

      Figure 5.4 The differential SA, Equalization, and Pre-charge circuit 

 

Address Decoder  

Address decoders are composed by 4-intput NAND gates and the circuit is in figure 5.5. We 
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design a 3-input NAND gate for a address decoder to control 8 different word lines of a 

memory array in the beginning. In order to control the specific memory array, we put one 

more NAND input for a address decoders as the memory enable (ME) signal. The reason that 

we design address decoder by NAND gates is to speed up the circuit with less layout area. So 

we can build up a 64 bytes Ping-Pong memory in 1310 X 1100 micro meter squared by using 

0.35um process. 

    Figure 5.5 Using NAND gates to build up address decoders 

 

5.1.3 HSPICE Simulation of a Ping-Pong Memory  

Here we show the design flow, shown in figure 5.6, and explain the HSPICE simulation result 

of Ping-pong memory. During the signal of read enable is off, the memory array is on write 

operation. The data is written into specific memory cells one by one. After 80ns, 8 bits data in 

one word line is finished the operation of writing. On other hand, during the signal of read 

enable is on, the memory array is on read operation. The data is read from specific memory 

cells gradually. Of course after 80ns, one byte in one word line is totally read. Therefore, the 
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read and write operation is supposed be completed in the period of 160ns. However, we put a 

signal of “Memory Enable” (ME) to control the different memory array. The period of read 

cycle is not 160ns. It is the memory enable cycle that 160ns belongs to it. Therefore, the 

period of read cycle is 320ns. In figure 5.7, due to the access time of a specific memory cell is 

10ns and we have 8 bits data on one word line, the period of read (write) enable and memory 

enable is 320ns and 160ns respectively.  

 

 

 
Figure 5.6 Design flow 
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Figure 5.7 HSPICE simulation of Ping-pong memory 

 
 
 

5.2 Layout of the Ping Pong Memory 

The Ping Pong Memory is implemented on TSMC 0.35um 2p4m 3.3v process by full-custom 

design [28] ~ [33]. In figure 5.8, we show the layout of an 8-bytes Ping-Pong buffer. To save 

more area, the layout is utilized by Common-Centriod Layout illustrated in figure 5.9. Hence, 

the total layout area with pads is 1380 x 1095 2m mμ μ . The difference between figure 5.9 and 

figure 5.10 is the global decoder. We turn the 64-bit memory into a 64-byte memory because 

we want to make a larger memory and make the most of the area in this chip. The global 

decoder controls the signal of the memory-enable (me). When memory-enable is 1, the 

specific memory array is on. We can turn on the eight memory array in turns by means of the 

global decoder. 

 



 

-64- 

 

Figure 5.8 Layout of an 8-byte Ping-Pong buffer. 

 
Figure 5.9 Layout of 64-byte Ping Pong Memory with Pad 
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Figure 5.10 Component introduction on layout 

 

The pins definition is in table 5.1 and the specification is in table 5.2. Figure 5.11 shows the 

bonding of the chip. Figure 5.12 shows the photography of the die.  

 

Architecture Ping-Pong SRAM Memory 
Supply  voltage(V) 3.3V 

MAX  Frequency(Hz) 100MHz 
Power  27mW 

Technology TSMC  0.35  2P4M 
Core Size 1070*840 2mμ  

Total Chip Area 1310*1100 2mμ  

Total Transistors 9830 

Table 5.1 Specification 
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Figure 5.11 Bonding figure 

 

 
Figure 5.12 Photo of the die 
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Pin Number   Pin Name  Function Description 
1 Out[3] 4th output data 
2 Out[0] 1stoutput data 
3 PE[20] Signal 20 for local decoder  
4 PE[10] Signal 10 for local decoder 
5 In[0] 1st input data             
6 In[2] 3rd input data 
7 In[3] 4th input data               
8 In[1] 2nd input data              
9 In[5] 6th input data              

10 In[7] 8th input data             
11 In[4] 5th input data             
12 In[6] 7th input data           
13 PE[22] Signal 22 for local decoder 
14 PE[12] Signal 12 for local decoder 
15 Out[4] 5th output data 
16 Out[6] 7th output data 
17 VDD! Power line 
18 N/A N/A 
19 PV Pre-charge line 
20 WE Write Enable 
21 Out[7] 8th output data 
22 G[0] Signal 0 for global decoder 
23 G[1] Signal 1 for global decoder 
 24 G[2] Signal 2 for global decoder  
25 G[3] Signal 3 for global decoder 
26 Out[5] Signal 5 for global decoder 
27 Out[2] Signal 2 for global decoder 
28 Out[1] Signal 1 for global decoder 
29 N/A N/A 
30 VSS! Ground line 
31 PE[11] Signal 11 for local decoder 
32 PE[21] Signal 21 for local decoder 

Table 5.2 Pins definition 
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5.3 Test Circuit Design 

In this section, we are going to implement the test circuit. After finishing the layout of the 

Ping Pong Memory, we consider about the test circuit to make sure the chip meet our 

specifications. The functional test based upon the reduced functional fault models that were 

discussed in chapter 4, such as the stuck-at, transition, and coupling faults.  

  The test circuit includes two essential functions as well as two additional functions that are 

necessary to facilitate execution of the testing feature. The two essential functions illustrated 

in figure 5.13 include the test pattern generator (TPG) and output response analyzer (ORA). 

While the TPG produces a sequence of patterns for testing the circuit under test (CUT), the 

ORA compacts the output responses of the CUT into some type of Pass/Fail indication.  

 

 
Figure 5.13 Test architecture 

 

The TPG circuit illustrated in figure in 5.14 consists of Counters, Algorithm and Counter Sets 

circuit. The Counter circuit outputs a sequence number call ‘Qin’ as a primary time unit. Qin 

sequence is passed to the Algorithm and the ORA circuit. The Algorithm circuit outputs 

control signal to the Counter Sets circuit and the signals of write enable (WE) and Common 
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Bar write enable (CBWE) to the Ping Pong Memory and Common Bar, respectively. When 

the Counter Sets circuit gets the signals from the Algorithm circuit, it outputs the Test Data 

and Address for the Ping Pong Memory and Common Bar, composed the Sandwich Ping 

Pong Memory. 

 

Figure 5.14 TPG  

 

 
Figure 5.15 ORA 

 

After the Sandwich Ping Pong Memory access the Test Data, it outputs the Memory Data to 

the ORA circuit. The ORA circuit is composed with a set of logic gates such as “OR gate” and 

“Exclusive NOR gate”, shown in figure 5.15. It can compare the Memory Data with the Test 
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Data in appropriate time applied by Qin. If these two data are the same, it means fault-free in 

the Sandwich Ping Pong Memory. If these two data are different, it means fault and the chip 

would be fail. Using software like Xilinx-ISE, we write the HDL-verilog, and synthesize the 

total circuits.  
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Chapter 6  Conclusions and Future Works 
 

6.1 Conclusions 
 

The proposed Sandwich Ping Pong Memory is a trade-off between memory area and 

operation frequency. It can save a significant amount of memory compared with the 

conventional Ping Pong Memory. In order to design the control unit, the area overhead is 

under five hundred gate counts at the range of Common Bar is under 512 unit memory cells. 

The operation frequency is affected by the Idle Time. Table 5.3 shows the Idle Time and 

control unit area.   

Based on the March C- algorithm, we also developed the test algorithm for the Sandwich 

Ping Pong Memory and named it the modified March C- algorithm. The fault coverage is at 

100% for the stuck-at fault, transition fault, address fault, and coupling fault. In addition, we 

successfully taped out a 64-byte Ping Pong Memory in process 0.35 mμ  2p4m in National 

Chip Implementation Center (CIC). The chip is 1310 x 1100 micro meters squared. Finally, 

we built the test platform by FPGA.     

 

6.2 Future Works 
 

Due to the area limitation of educational chip in National Chip Implementation Center, we 

only design a 64-byte Ping Pong Memory in process 0.35um. Maybe we should design a 

bigger memory like 128-byte or 1 Giga-byte and try more experiment. Make the Table 3.2 

more complete and the relative between area and operation frequency would be clearer.  
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