7

Z

s AP bz BIAAF B iRl

LR BT
Study on‘cost-efficient

Sandwich Ping-Pong Memory

R SERE AF
hERE T EFE R

PERR 4Lt & L- 3

http://www.cn.nctu.edu.tw/main/user/47

F oo A dlez Pl E B eha
2 KB AT

Study on cost-efficient Sandwich Ping-Pong Memory

F 4

EAREE A -

1

sk
T

hEYE T E W

Student : Wen-Chun Wei

Advisor . Lan-Rong Dung

B = 2 = 7
T T RICK T AL 7 3 A L 5T
TS R S
A Thesis

Submitted to College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Industrial Technology R &

D Master Program on

IC Design

December

2008

Hsinchu, Taiwan, Republic of China

dEAR 4L

I

£ L= 2

IR SR hsaE: & o

™
11_

M~ BT BT i EmgFmls
2

j&ﬁﬂi‘— '—‘L ‘} %%ﬁ(fﬁ"'s@)m’%\'d\b&”‘{ﬂb F7Bh#£,3\,qﬂﬂ;}-}%4y_fl$i§q+%?
Peig TR @ﬁ%]_* Iz P E E e BABE FR) > T B H M ApH IR

2. ¥ B egilcnm 3 o e R om0 T A EaE S g f
FEP A B cgiiany £) o a2k (047
£ A gt S STETR Y e R AP BRI F
BIRFE 2 FE N RN PSAE S e R RRFEE TS ARG Y
GIREFY s A R TRIEWTL o L HAIF PRIERFEE 0 R
M- A R R B % AR BAR L RET] 100% 0 fdh B i dE A
P A PE AR S P E AT g e o] 2 B o W L R
500 Bre R E G A e BF o YA R 2R end SR A E) 2 500 Rk
A RBATREE A H P ISAF e RM(ETFR)T A R 2R

MERKZ AT RNER -

Miadse t FE M B EHE oRUMPREREZ PR R

11

http://www.cn.nctu.edu.tw/main/user/47
http://www.cn.nctu.edu.tw/main/user/47
http://www.cn.nctu.edu.tw/main/user/47
http://www.cn.nctu.edu.tw/main/user/47
http://www.cn.nctu.edu.tw/main/user/47

Study on cost-efficient Sandwich Ping-Pong Memory

Student: Wen-Chun Wei Advisor: Dr. Lan-Rong Dung

Industrial Technology R & D Master Program of
Electrical and Computer Engineering College

National Chiao-Tung University

Abstract

This thesis is about memory (buffer) and we present a Sandwich Ping Pong Memory.
The area in the Sandwich Ping Pong Memory is much less than in a Ping Pong Memory.
Besides, it is more flexible on the operation frequency compared with a Ping Pong
Memory. Data are written into.the. Sandwich.Ping Pong Memory row by row and read
from it column by column Simultaneously. Based on March C- algorithm, we also
developed the test algorithm for the. Sandwich Ping Pong Memory and named it the
modified March C- algorithm. It can'detect the stuck-at fault, transition fault, address
fault, and coupling fault. We also successfully taped out a 64-byte Ping Pong Memory
in process 0.35 um 2p4m in National Chip Implementation Center (CIC). Finally, we
do the verification and testing. As a result, the fault coverage is at 100% of each fault.
The chip is 1310 x 1100 micro meters squared. In order to design the control unit, the
area overhead is under five hundred gate counts at the range of Common Bar is under

512 unit memory cells.

Keywords * Ping Pong buffer, Transpose buffer, March C- algorithm, Idled memory

I

Acknowledgement

R

VR ARE AT AR AR HILY 2 A ER W EAR S
et O EAN LS GG TR R T LETOME o At e Al R RRE W
FEFRIBAFORE 0 R HEF DT cdg o BTG FFE G
HIE o s 323 53 g ik -

porbo s B LA B2 kIR U AERRERRNE FiRERE
hme tendpiier R A% (%R o

FRUEREHTHRT - LiPe $1HREF > F5% - 24

H
-
{i-
Tmn
&~

BE -~ BN FFEiE MRS e g 0 T AT EARY

s

PIOFIR A S 07 @ 2 o o FILH EACEAR e B gl 4 E L S R 3

F o BER W R RE 2 g A B ek T
LB BARE RS SRRk R AR SR AR A R SR

Z_R mgﬂ——‘r ‘*?i o lﬁg_ﬂrggﬂ L

T

Dt A 2T B S F % AL

Bots o AR HELS o R ai - B A a4 b 0 PR

P RS AT NP - v}*Jc‘/‘%;} i o

q
o
L
St
—
R
“k

A

2008+# 12 %

v

Contents

BB R s II
YN 1] 3 ¢ o1 AR III
ACKNOWIEAZEMENL.....c..coiiiiiiiiiiiiiiceee e v
COMLEILS. ..ottt ettt ettt e et e e et e e sabee e sabaeesnteeesnneeeennee \%
LISt OF FIGUIES ...vviiiiiiieciie ettt ettt e e et e e taeeesnaeenes VIl
LSt Of TADIES....eeeeeieeeie et et ettt IX
Chapter 1 INEFOAUCTIONviiiiiiicee e 1
1.1 Research ODBJECtIVE.....ccueeveiriiiiiiiiiieeieeeee et 1

1.2 The Proposed MEMOTYcccueeuieeiiieeiieeiieeiee et 2

1.3 OTZANIZATIONeeenieeeieeiiie ettt ettt ettt e et e e aeeeeeeeaeeenseeenneeenes 2
Chapter 2 Backgroundocoooiiioie e 4
2.1 Ping Pong Buffers for Image Compressioncoceeveeeverienieneeneennns 5
2.1.1 One-dimensional Discrete Cosine Transform............cccccceveuenneen. 5

2.1.2 Multidimensional Discrete Cosine Transform...........cccccceeeueenneen. 8

2.2 Ping Pong Buffers for, TransSmiSSION..........cccceveeveeeneeneenieenieenieeieeeeenne 11
Chapter 3 Sandwich Ring=Pong Memorycccccevveeevieiecieceeiene, 14
3.1 The use of Sandwich Ping-Pong Memoryccccceeevverviniencnnennne. 14
3.1.1 The Operation of Ping Pong Memory..........ccccceeveeieiienciennenne. 14

3.1.2 Common Barfa i o i 16

3.1.3 Sandwich Ping Pong MemoTy...........ccoeevernieriieniienienicnicnene, 17

3.2 Read / Write OPerationccecveeeeeuiieeiiieeeiieeecieeeeieeeeeireeesveeeesenee e 18
3.2.1 Row-column block memory.............ccccvvieviiiiiiiiiieiieeeieeeiee, 18

3.2.2 Scan line of the Sandwich Ping-Pong memory.........c.cccoceeeenee. 20

3.3 TIMING ANALYSIS c..veviiriiiriiiriieriterieertt ettt st 22
3.3.1 The Initially Idle TImMeccceecveeriieiiieieeeee e 22

3.3.2 The Idle Time.....cc.coevuieeiieeiieeieee e 26

3.33 Line Buffer.....ccoeiieiieeeeee e 30

3.4 Control Unit CIrCUILveeeiieeiieeiieeie ettt iee et et eeeseeeseee e ens 36
Chapter 4 Test AIQOrithm ..o 41
4.1 Fault MOdEIS.....coceiiiieie ettt 42

4.2 March AIGOTItRIMSoeiiiiiiiieie e 43

4.3 A Test Algorithm for Sandwich Ping-Pong Memorycccceeuueeneee. 46
4.3.1 March C- Algorithm..........ccccviriieiiiiiieeee e 46

4.3.2 The Modified March C- Algorithmccccoeeeiiiiiiiiiiiiieene, 49

4.3.3 Testing of Sandwich Ping-Pong Memory..........cccceevvervieriennnnne 50

Chapter 5 Chip Implementation............cccooceeeieeeiieceecceeeeeee e 55

5.1 Chip Implementation of the Sandwich Ping Pong Memory.................. 56

5.1.1 The architecture of a Ping-Pong buffer...........c.ccoccevrviiinnnnn, 56

5.1.2 The detail design of a Ping-Pong bufferccccoeeviieninn, 57

5.1.3 HSPICE Simulation of a Ping-Pong Memorycccoeevunnnn. 61

5.2 Layout of the Ping Pong Memoryccceeeviieeniieeeiieeiie e 63

5.3 Test Circuit DESIZN ...ccceuviieeiiie ettt et eree e sseeeens 68
Chapter 6 Conclusions and Future WOrKScccceevveeeeiiececieeieeeen, 71
6.1 CONCIUSIONS ...ttt 71

6.2 FUtUre WOTKS ...coueiiiiiiii e 71
BiblIOGraphy....ccviieeiiie e e 72
VLA ettt b ettt et e et e eateenee e 74

VI

List of Figures

Figure 1.1 Ping-Pong Memory is on write/read operation............cceeeeeveeveennennee. 1
Figure 1.2 Architecture of Sandwich Ping Pong Memorycccceevvevreieennnnee. 2
Figure 2.1 A Ping-Pong Buffer...........ccocveiiiiiiiiciececeeeeeeeeeee e 4
Figure 2.2 The generic 2D-DCT architectureccoeceevverereerienenieeseeenee. 10
Figure 2.3 2D-DCT freqUENCIES.ccueevieiieieeeieeieeeieesieesieere e ere e eae e eeee s 11
Figure 2.4 (a) A buffer of capacity M. (b) A Ping-Pong Memory............c.......... 12
Figure 2.5 System VIEW[4] ...cviciieiieieeeeceeceeteeee et 13
Figure 3.1 The architecture of a Ping-Pong buffer............cccccvevvveiieiieiinnnen, 14
Figure 3.2 Ping Pong Memory is on write/read operationccecceeeveruvennns 15
Figure 3.3 Common Bar............ccoeviieiiiiieiccieeeeeeeeee e 16
Figure 3.4 The architecture of Sandwich Ping Pong Memory..........c..ccocuene..e. 17
Figure 3.5 The architecture of 2-D DCTcccceeviiriienieieeeeeeee e 18
Figure 3.6 Row by row on Write OPEIationcceeveeveevueeieeieeeeseeeeeenenenens 20
Figure 3.7 Column by column on read Operation..............cceeeveeeeeeeseeseeseenenns 20
Figure 3.8 Coefficients for Sandwich Ping Pong Memoryccccecvevueeruiennnns 23
Figure 3.9 The first CONStraint,fia.....oooiiefieenieieeie et eee et 24
Figure 3.10 The second CONSIrAINT Foiwiviis e i eeeeie e eee et e e sne e 24
Figure 3.11 The third CONSEATALovee it i 25
Figure 3.12 The fourth CONSraint.cii i 27
Figure 3.13 The fifth CONStraint... .l it 28
Figure 3.14 Example for Initial andddieTime.............ccccooveirininineeee, 29
Figure 3.15 Coefficients for line buffer..........c.cccoevvieiieiiniiieiiceeeeeeceece 30
Figure 3.16 The first constraint for general form...........c.ccccoeevevieriienienieniennnn, 31
Figure 3.17 The second constraint for general form..........cccccceevveeierienieniennnnn, 32
Figure 3.18 The third constraint for general form.............cccoecvevievienieneenienenn, 33
Figure 3.19 The fourth constraint for general formccccoevvveviieiiieieenenene, 34
Figure 3.20 The fifth constraint for general formcccoeevevieriiiiicieniee, 35
Figure 3.21 Signals and addresses for Sandwich Ping Pong Memory................ 37
Figure 3.22 The gate count of control unit for Common Barcccccceeeneee. 38
Figure 3.23 Common Bar and Area Saved...........cccceeeveeieeiieieeieeiecieceieeieeens 39
Figure 3.24 Area Saved vs. Throughput Reductioncccceeveeienienieniennnnn, 40
Figure 4.1 Different types of address decoder faultsccccceveevierinienienennen. 43
Figure 4.2 A March algorithm examplecccoeevieiieiiniiieieeieceeceeceeseeiens 45
Figure 4.3 The procedure for the March algorithm example.............ccccverurennen. 45
Figure 4.4 March C- algorithmcccoeviiiiiiiiiiiciececee e 46
Figure 4.5 Masking of coupling faultsc.ccceeevieviieiiieiieeiieieeeeee e 48
Figure 4.6 Modified March C- algorithm...........ccccceviiiiiniinieciecieseeceeeen, 50

VII

Figure 4.7 Modified March C- algorithm for block A and block B 50

FIQUIE 4.8 TESt flOW....cuiiiuiiiiiiciieceeeteeeteee ettt ettt e eaae 51
Figure 4.9 Addresses of coupling and coupled cells.........ccceevvreieeieeiiciennienn, 52
Figure 4.10 Detecting CFidSc.cccieiiiiieiieieeeeeeeeeeveeeve e 53
Figure 4.11 Detecting CFiNS..........ccoeviieiieiieieeeeeeteeeeeere ettt 54
Figure 5.1 Design flow for 64-byte Pig Pong Memorycccceeveeieerieereennnn, 55
Figure 5.2 Components in the Ping-Pong Memorycccccoeeeveeieiiecieeniennnnn, 56
Figure 5.3 Six-device SRAM memory cell.........cooooevriiiiiiieiiiiiieieeecieee e, 58
Figure 5.4 The differential SA, Equalization, and Pre-charge circuit................. 60
Figure 5.5 Using NAND gates to build up address decodersc.ccuennennee.e. 61
FIgure 5.6 Desig@n fIoW.......c.ooiiiuiiiiiciiieieecieeeete et e 62
Figure 5.7 HSPICE simulation of Ping-pong memorycccccvevueeveennennee. 63
Figure 5.8 Layout of an 8-byte Ping-Pong buffer.cccocooevieiieiicine, 64
Figure 5.9 Layout of 64-byte Ping Pong Memory with Pad.................cccceeen. 64
Figure 5.10 Component introduction on 1ayoutccccceevveeiieeieecieeieeieennen, 65
Figure 5.11 Bonding figUreccoeeuieoiieiiieiieie ettt 66
Figure 5.12 Photo Of the di€.......cooouieiuieiiiiiiciececeeeceeeee e 66
Figure 5.13 Test architecture ..., ot liihi veeverreeeereieeeeeeste e ere e sae e eeees 68
FIQUIE 5.14 TPG ..ot im s sie e 238 veenvenseereessensesseesaessesseessensensenseas 69
FIQUIE 5.15 ORA ..ot it he e e et e ettt e teesaebesseeneesesseennas 69

VIII

List of Tables

Table 3.1 Signals and Addresses for 32bit SPPM with Common Bar 1X4......... 37
Table 3.2 Data sheet for a Sandwich Ping Pong Memory...........ccceevvevveereennenne. 38
Table 4.1 Test time as a function of MEMOTY SIZEccvevveeriieriiereieiieieeieereene, 41
Table 4.2 Some March algorithms...........cccceeveviieriieniieii e 45
Table 4.3 Fault coverage of some popular March algorithms............................. 46
Table 4.4 Conditions for detecting address decoder faults...........c.cceeeveeirennenne. 47
Table 5.1 SPeCifiCationcceevieieiiieiecieeeecie et 65
Table 5.2 Pins definition.........cccooeeieiiiiirieiesceieeeee e 67

IX

Chapter 1 Introduction

1.1 Research Objective

The Ping Pong Memory (buffer) is widely used in variety of applications and is studied [1],
[2], [3], and [4]. Because it spends less time on waiting the data compared with the single port
memory. Its operation frequency is higher than the single port memory. Additionally, the area
of the Ping Pong Memory is much less than the dual port memory. Therefore, when it comes
to the memory, Ping Pong Memory must be the first one we think about. It can be operated at
the high frequency and the cost of area is pretty less.

The address sequence of writing and reading is, different. Figure 1.1 shows data are written
into Ping/Pong Memory row by row andread from Pong/Ping Memory column by column
simultaneously. We found that there were some memory cells in the idled condition when the
Ping Pong Memory was on operation. As a result, we combined these idled memory cells to

make a Common Bar and developed the Sandwich Ping Pong Memory.

———
@

. Ping Memory
o
/ @ o8

Pong Memory /

Figure 1.1 Ping-Pong Memory is on write/read operation

1.2 The Proposed Memory

We proposed a Sandwich Ping Pong Memory. The architecture of the Sandwich Ping Pong
Memory is illustrated in figure 1.2. Common Bar is between the Ping and Pong Memory. It
replaces the idled memories when Ping Pong Memory is on operation. Therefore, there is less
area in the Sandwich Ping Pong Memory than in Ping Pong Memory.

It is more flexible on operation frequency because the operation frequency is affected by
the size of the Sandwich Ping Pong Memory, especially the size of the Common Bar. It can
not be operated on fix frequency. Once we decided the size of the Common Bar, we decided

the frequency of the Sandwich Ping Pong Memory.

Ping Memory

— Common Bar

Pong Memory

Figure 1.2 Architecture of Sandwich Ping Pong Memory

1.3 Organization

The rest of this thesis is organized as followed. In Chapter 2, we find the applications of the
Ping Pong Memory. In Chapter 3, we present our proposed the Sandwich Ping Pong Memory,

its read and write operation, the timing analysis, and its control unit circuit. In order to test it,

2-

we develop its own test algorithm which is based on a previous test algorithm in Chapter 4.
We taped out our design through the National Chip Implementation Center successfully. In

Chapter 5, we introduce the chip implementation. Finally, we give a few conclusions in

Chapter 6.

Chapter 2 Background

In this chapter, we introduce a simple, and perhaps obvious, technique that eliminates the
need for the two memory operations during each time slot. We call the technique “ping-pong
buffering.” A ping-pong buffer, shown in figure 2.1, uses two conventional single-ported
memories in parallel, so that while “Ping” memory is written “Pong” memory can be read,
and while “Ping” memory is read “Pong” memory can be written. The two memories are
arranged so that from the outside, they appear to be a single buffer. Ping-pong buffering is

widely used including image compression and network communication.

Ping Memory

Pong Memory

Figure 2.1 A Ping-Pong Buffer

The easiest way to explain how a ping-pong buffer works is to take a real world example. It
is a nice sunny day and you have decided to get the paddling pool out, only you can't find
your garden hose. You'll have to fill the pool with buckets. So you fill one bucket (or buffer)
from the tap, turn the tap off, walk over to the pool, pour the water in, walk back to the tap to
repeat the exercise. This is analogous to single buffering. The tap has to be turned off while
you "process" the bucket of water.

Now consider how you would do it if you had two buckets. You would fill the first bucket

and then swap the second in under the running tap. You then have the length of time it takes
for the second bucket to fill in order to empty the first into the paddling pool. When you
return you can simply swap the buckets so that the first is now filling again, during which
time you can empty the second into the pool. This can be repeated until the pool is full. It is
clear to see that this technique will fill the pool far faster as there is much less time spent
waiting, doing nothing, while buckets fill. This is analogous to double buffering. The tap can

be on all the time and does not have to wait while the processing is done.

2.1 Ping Pong Buffers for Image Compression

Discrete Cosine Transform (DCT) is .a;mathematical tool that has a lot of electronics
applications, from audio filters: to. video compression hardware. DCT transforms the
information from the time or space domains to the frequency domain, such that other tools
and transmission media can be ‘run“or used mote" efficiently to reach application goals:
compact representation, fast transmission, memory savings, and so on.

In image compression, ping-pong buffering (or double buffering) is a widely used
technique especially for the 2-dimensional discrete cosine transform. The discrete cosine
transforms (DCT) are a family of similar transforms closely related to the discrete sine
transform and the discrete Fourier transform. The DCT-II is the most commonly used form
and plays an important role in coding signals and images [5], e.g. in the widely used standard
JPEG compression. The discrete cosine transform was first introduced by Ahmed, Natarajan,

and Rao [6], [7], and [8]. Later Wang and Hunt [9] introduced the complete set of variants.

2.1.1 One-dimensional Discrete Cosine Transform

Formally, the discrete cosine transform is a linear, invertible function F: RY > RN (where R

denotes the set of real numbers), or equivalently an invertible N x N square matrix. There are
several variants of the DCT with slightly modified definitions. The N real numbers Xo, Xn.1 are

transformed into the N real numbers Xy, Xn.; according to one of the formulas:

DCT-I

N-2
X, Z%(Xo + (=D X))+ D%, cos(Nﬂ 1nkj k=0,..,N-1. (2-1)
n=l1 -

Some authors further multiply the Xy and Xy.; terms by J2 , and correspondingly multiply the

Xo and Xp.; terms by 1/ \/5 . This makes the DCT-I matrix orthogonal, if one further multiplies

by an overall scale factor of \/2/(N — l) jbut'breaks the direct correspondence with a real-

even DFT.

The DCT-I is exactly equivalent (up to an overall scale factor of 2), to a DFT of 2N — 2 real
numbers with even symmetry. For<gxample, a DCT-I of N=5 real numbers abcde is exactly
equivalent to a DFT of eight real numbers abcdedcb (even symmetry), divided by two. (In
contrast, DCT types II-IV involve a half-sample shift in the equivalent DFT.)

Note, however, that the DCT-I is not defined for N less than 2. (All other DCT types are
defined for any positive N.)

Thus, the DCT-I corresponds to the boundary conditions: X, is even around n=0 and even

around n=N-1; similarly for X.

DCT-II

i pa 1
X, =) X, cos —(n+—jk k=0,.. N-1. (2-2)
o N 2

The DCT-II is probably the most commonly used form, and is often simply referred to as "the

DCT". This transform is exactly equivalent (up to an overall scale factor of 2) to a DFT of 4N
real inputs of even symmetry where the even-indexed elements are zero. That is, it is half of
the DFT of the 4N inputs yn, where Y2, =0, Yon+1 =Xy for 0<n<N ,and yan-—n =Y, for 0 <
n <2N. Some authors further multiply the X, term by 1/ V2 (see below for the corresponding
change in DCT-III). This makes the DCT-II matrix orthogonal, if one further multiplies by an
overall scale factor of ~/2/N , but breaks the direct correspondence with a real-even DFT of
half-shifted input.

The DCT-II implies the boundary conditions: X, is even around n=-1/2 and even around

n=N-1/2; X is even around k=0 and odd around k=N.

DCT-I111

X —lx +EX cos| 2=n k+l k=0,..N-1 (2-3)
k 2 0 — n N 2 gesey .

Because it is the inverse of DCI-II (up‘to.a scale factor, see below), this form is sometimes

simply referred to as "the inverse DCT" ("IDCT"). Some authors further multiply the X, term

by 2 (see above for the corresponding change in DCT-II), so that the DCT-II and DCT-III

are transposes of one another. This makes the DCT-III matrix orthogonal, if one further

multiplies by an overall scale factor of +2/N , but breaks the direct correspondence with a

real-even DFT of half-shifted output.
The DCT-III implies the boundary conditions: X, is even around N=0 and odd around n=N; X

is even around k=-1/2 and even around k=N-1/2.

DCT-IV

N-1
X, =) X, COS|:£(n+lj(k +lﬂ k=0,..,N-1. (2-4)
T NU 2 2

The DCT-IV matrix becomes orthogonal if one further multiplies by an overall scale factor

of ~/2/N . A variant of the DCT-1V, where data from different transforms is overlapped, is
called the modified discrete cosine transform (MDCT).
The DCT-IV implies the boundary conditions: X, is even around n=-1/2 and odd around

n=N-1/2; similarly for X.
DCT V-VIII

DCT types I-1V are equivalent to real-even DFTs of even order (regardless of whether N is
even or odd), since the corresponding DFT is of length 2(N—1) (for DCT-I) or 4N (for
DCT-1I/IIT) or 8N (for DCT-VIII). In principle, there are actually four additional types of
discrete cosine transform (Martucci, 1994), corresponding essentially to real-even DFTs of
logically odd order, which have factors of N=x1/2 in the denominators of the cosine
arguments.

Equivalently, DCTs of types [:IViimply boundaries=that are even/odd around either a data
point for both boundaries or halfway betweenrtwo data points for both boundaries. DCTs of
types V-VIII imply boundaries that even/edd” around a data point for one boundary and
halfway between two data points for the other boundary.

However, these variants seem to be rarely used in practice. One reason, perhaps, is that FFT
algorithms for odd-length DFTs are generally more complicated than FFT algorithms for
even-length DFTs (e.g. the simplest radix-2 algorithms are only for even lengths), and this
increased intricacy carries over to the DCTs as described below.

(The trivial real-even array, a length-one DFT (odd length) of a single number a, corresponds

to a DCT-V of length N=1.)

2.1.2 Multidimensional Discrete Cosine Transform

Multidimensional variants of the various DCT types follow straightforwardly from the

-8-

one-dimensional definitions: they are simply a separable product (equivalently, a composition)
of DCTs along each dimension.

For example, a two-dimensional DCT-II of an image or a matrix is simply the
one-dimensional DCT-II, from above, performed along the rows and then along the columns
(or vice versa). That is, the 2d DCT-II is given by the formula (omitting normalization and

other scale factors, as above):

N,-1 N,—I

T 1 T 1
X :E EXXcos—n+—kcos—n+—k
ki .k, = = n ', {Nl(1 2) 1:| |:N2(2 2) 2:|

k,or k,=0,...,N-1.

(2-5)

Technically, computing a two- (or multi-) dimensional DCT by sequences of
one-dimensional DCTs along each diniensionis§known as a row-column algorithm (after the
two-dimensional case). The algotithm used for the calculation of the 2D DCT is based on the
equation (2-5). First, the 1D DCT of the‘rows. are calculated and then the 1D DCT of the
columns are calculated. The 1D DET coefficients for the rows and columns can be calculated
by separating equation (2-5) into the row part and the column part. As with
multidimensional FFT algorithms, however, there exist other methods to compute the same
thing while performing the computations in a different order (i.e. interleaving/combining the
algorithms for the different dimensions).

In figure 2.2, for the case of 8x8 block region, a 1D 8-point DCT/IDCT followed by an
internal double buffer memory (or ping-ping or transpose buffer), followed by another 1D
8-point DCT provided the 2D DCT architecture. The buffer memory is to store the data
computed from the first 1-D DCT/IDCT part and re-sequence them to the second 1-D
DCT/IDCT part with correct ordering. The double buffer memory performs a matrix transpose
operation and needs to be fast enough to keep up with the data received from the first 1-D

DCT/IDCT part and to supply the data going to the second 1-D DCT/IDCT part. The

transpose memory has to hold an entire block of N x N data points because the second 1-D
DCT/IDCT part can not start computations until the first 1-D DCT/IDCT part finished an

entire block.

—— 1D DCT »| RAM Double
Buffer

1D DCT —

Y

Figure 2.2 The generic 2D-DCT architecture

Vector processing using parallel multipliers is a method used for implementation of DCT. The
advantages in the vector processing! method .are regular structure, simple control and
interconnect, and good balance between performance and complexity of implementation.

The inverse of a multi-dimensional DCT s just a separable product of the inverse(s) of the
corresponding one-dimensional DCT(s) (see above), e.g. the one-dimensional inverses
applied along one dimension at a time in a row-column algorithm.

In figure 2.3, the image to the right shows combination of horizontal and vertical frequencies
for an 8 x 8 (N; = N, = 8) two-dimensional DCT. Each step from left to right and top to
bottom is an increase in frequency by 1/2 cycle. For example, moving right one from the
top-left square yields a half-cycle increase in the horizontal frequency (goes from white to
black). Another move to the right yields two half-cycles (white to black to white). A move
down yields two half-cycles horizontally and a half-cycle vertically. The source data (8x8) is

transformed to a linear combination of these 64 frequency squares.

-10-

Flgure 23 QD DCT frequencws

2.2 Ping Pong Buffers for Transmls’smn =

| _.

. B ;Vs*ib. o

e A%
Memory Bandwidth is frequently ahm“ltlng- factor in the design of high-speed switches and
routers. A buffering scheme called ping-pong buffering increases memory bandwidth by a
factor of two. Ping-pong buffering halves the number of memory operations per unit time
allowing faster buffers to be built from a given type of memory.

Figure 2(a) shows a memory buffer with arrival (An) and departure (Dn) processes of cells.
In each cell time, which we call a time-slot, zero (An = 0) or one (An = 1) new cell may arrive,
and zero (Dn = 0) or one (Dn = 1) cell may depart from the buffer. This means that two
independent memory operations are required per cell time: one write, and one read. If
dual-ported memory is used, it would be possible for both operations to take place

simultaneously. However, commercial considerations generally dictate that conventional

single-ported memory be used. As a result, the total memory bandwidth must be at lease twice

-11-

the line rate.

Figure 2(b) shows a ping-pong buffer of total capacity M (cells), with the arrival and the
departure processes denoted as An and Dn, respectively. The main benefit of a ping-pong
buffer is that using conventional memory devices, it allows the design of buffers operating
twice as fast. But ping-pong buffer’s benefit comes with a penalty. If the amount of memory is
not increased, the overflow rate is from a ping-pong buffer is larger than for a conventional
buffer. In the worst case, half of the memory is wasted. Using simulations, fortunately, the

problem is eliminated by the addition of just 5% more memory [9].

-—M
An D
_— —
(i)
Ping Memory
An D
Pong Memory

(k)

Figure 2.4 (a) A buffer of capacity M. (b) A Ping-Pong Memory

In network communication, a transmission buffering method that involves two buffers: one
buffer receives transmissions while the second deletes earlier transmissions. The two alternate
functions, which helps to keep transmissions close to continuous. A ping-pong buffer contains
two separate buffers; while one buffer is receiving new transmission information the other
buffer is deleting the previous transmission.

We can also find ping-pong buffers in a front end system. The system view is illustrated in

-12-

figure 2.5. For example, a front end interface consists of a number of ping-pong buffers, one
for each LAN attachment; an internal bus with an arbitrator and a bus interface; a
microprocessor; and main memory. An incoming frame is placed in one of the ping-pong
buffers, if a buffer is available. Once the buffer is full or the last bit of the frame is received,
then a signal is raised to inform the bus arbitrator that a buffer is ready for being emptied.
Various scheduling policies such as First Come First Served, Served in Fixed Order, or
non-preemptive priority scheme, are possible to serve multiple ping-pong buffers associated
with various attachments. If a buffer is not available, then an incoming frame is assumed to be
lost. An algorithm is developed and used to investigate the performance characteristics of the
ping-pong buffering scheme [10].0Once a permission to transfer is received by a ping-pong
buffer, the frame is transferred from the .ping—pp;}g buffer to the main memory via the internal
bus. It is further assumed that the_-rr’;;liﬁ qu%IOI’YIS l'.e'{rge enough that it does not cause any loss

of segments. Finally, the trans;f:efs from_-thé : memofy to the front end processor are not

P

explicitly considered here.

Memory

uP Front End

Bus Interface

0000 D0
[LAN1]|[LAN 2] [LANN]

Figure 2.5 System View[4]

-13-

Chapter 3 Sandwich Ping-Pong Memory

In this chapter, we will propose our design. First of all, we will show the architecture and the
operation of a double buffer (Ping-Pong or transpose buffer). We will find the two idled area
in a Ping Pong Memory and develop a Common Bar to replace them. As a result, we develop
a Sandwich Ping Pong Memory. Second, we introduce the operations of the Sandwich
Ping-Pong Memory and derive the formula of Initial Time and Idle Time. We find some

conditions from doing the timing analysis for this design finally.

3.1 The use of Sandwich Ping-Pong Memory

3.1.1 The Operation of Ping-Pong Memory

We have presented a double buffer roughly andrealized that its application is in the 2-D DCT
architecture in chapter 2. We are going to introduce the architecture and the operation of a

double buffer, also known as, Ping-Pong buffer which is shown in figure 3.1.

Input
Input I Input
RAM1 RAM2
Output WE Add Add WE Output
Wad
1 | 0 q
Lg | JJ T Qutput
Rad T
Control

Figure 3.1 The architecture of a Ping-Pong buffer

-14-

There are RAMs in figure 3.1 with some signals such as input data, output data, and address
signals for writing and reading. The Control signal controls the write and read operation of the
Ping Pong Memory. When RAM1/RAM?2 is on read operation, RAM2/RAMI is on read
operation. There are address signals for write and read operations. The address sequence of
writing and reading is different, showed in figure 3.2. We write data into RAM1/RAM?2 row
by row and read data from RAM2/RAMI1 column by column simultaneously. There are some
things we really concern about. Is there any memory cell idled during the write or read

operation? If so, what could we do?

" _’”’—’:
; Ping Memory
o ——
@ = >
Pong Memory

Figure 3.2 Ping Pong Memory is on write/read operation

-15-

3.1.2 Common Bar

There are some idled memories in a Ping Pong Memory. The idled memories are showed in
figure 3.3. There are one block of dotted line area in the Ping Memory and one in the Pong
Memory, respectively. The dotted line area means the idled memories in a Ping Pong
Memory.

We combine the two dotted line area into one and named it “Common Bar.” As a result, there
is a block of memory, Common Bar, between the Ping and Pong Memory. That is the

Sandwich Ping Pong Memory.

Ping Memory Ping Memory

A /N
— | Common Bar | +——

Pong Memory /

Pong Memory

Figure 3.3 Common Bar

-16-

3.1.3 Sandwich Ping Pong Memory

We develop a Sandwich Ping-Pong Memory based on the double buffer. Figure 3.4 shows the
architecture of the Sandwich Ping-Pong Memory which is built up by adding one single-port
memory between the ping memory and pong memory.

The architecture of the Common Bar is exactly the same as the ping or pong memory, because
they are all the same type of construction. In theory, the double buffer is used in the
architecture of 2-D DCT, so is the Sandwich Ping-Pong Memory. By the result of simulation
and verification on FPGA, we can prove that Sandwich Ping-Pong Memory work as transpose
buffer which is used to connect the two 1-D DCT architectures once the first 1-D DCT

outputs are row-wise and the second 1-D DCT inputs must be column-wise.

Ping Memory

—_— Common Bar

Pong Memory

Figure 3.4 The architecture of Sandwich Ping Pong Memory

-17-

3.2 Read / Write Operation

Figure 3.5 shows when the first 1-D DCT architecture writes the results row by row in one
memory (ping or pong memory), the second 1-D DCT architecture reads the input values
column by column from the other memory (pong or ping memory). The read and write signal
addresses are generated by a control block and this control block defines, by control signal,

which memory is used to Read/Write at each memory access step.

—_— 1D DCT »| RAM Double - 1D DCT |
Buffer

Figure 3.5 Thearchitecture of 2-D DCT

3.2.1 Row-column block memory

For a given 2-D spatial data sequence { Xij i, J =0,L..,N-1 }, the 2-D DCT data

sequence {qu;i, 1=0,1,...,N -1} is defined by:

where

The forward and inverse transforms are merely mappings from the spatial domain to the
transform domain and vice versa. The DCT is a separable transform and as such, the

row-column decomposition can be used to evaluate (3-1).

Denoting:

-18-

[y

By ¢, and neglecting the scale factor E,E, % , the column transform can be expressed as:

N-—

Yo, =>.Z,Cq P.q=0,1,2,..,N -1 (3-2)

—_

—

And the row transform can be expressed as:

p=4

-1
Z,= . XiiCpis p,]=0,1,2,...N—1 (3-3)

Il
o

In order to compute an N X N-point DCT (where N is even), N row transforms and N column
transforms need to be performed. However, by exploiting the symmetries of the cosine

function, the number of multiplications can be reduced from N? toN?/2. In this case each
row transform given by (3-3) can beiwritten as matrix-vector multipliers via,
N/2-1 3
Zy=2 [Xij +=1) X(N—l—i)j:| Cpi (3-4)

i1=0

Using a matrix notation, for N=8, (4).can be written as

_Zoo | Coo Qo1 Cop g3 I Xoo + X701

Zyy _ Cro @y Cp ay X0+ Xgo

Ly B Coo Gt Cp 8y X0+ Xs G-9)
_Zso _ Coo Csi Cor @ J| Xy + Xy J
ZIO Co & Cp & _Xoo - X70_

Z3o _ Cyo & Gy 8g XlO - X60

Zso B Cso G G5 8s3 Xzo o Xso 5-6)
Z70 Co G Gy 8 _X30 o ><40_

Equations (3-5) and (3-6) describe the computation of the even and odd coefficients, for the
row transform for N=8, respectively. The computation for the second 1-D DCT i.e. the

column transform described by (3-2) can also be computed using matrix-vector multipliers

-19-

similar to that described by (3-4). Hence both the row and column transform can be

performed using the same architecture.

According to the 2-D DCT algorithm, there should be a row-column block ping pong
memories to access the data. For example, the data of the computation of the even and odd
coefficients should be stored in some memory. In the next section, we will present the scan

line in Sandwich Ping Pong Memory.

3.2.2 Scan line of the Sandwich Ping-Pong memory

According to the 2-D DCT algorithm, the scan line of the write and read operations in
Sandwich Ping Pong Memory are row by row and column by column, shown in figure 3.6 and

3.7, respectively.

Ping Memory Ping Memory .-';
; I ; ;
—
. L ! :
e -L:____(_(lnln—]o—" _Bﬁr______p ll """" C iiiﬁi{i{iﬁEi[r'""""";:.i —
Pong Memory u ~ Pong Mmrvl
Write Operation Read Operation
Figure 3.6 Row by row on write operation Figure 3.7 Column by column on read
operation

The scan line of writing is as the following step. When write operation starts, data is write in
the Pong/Ping memory and Common Bar in sequence. First, data is written in the Ping/Pong
memory row by row till the Ping/Pong memory is full. After the Ping/Pong memory is fully

occupied, data is written in the single port memory, as know as Common Bar. Finally, data is

-20-

written in the Pong/Ping memory row by row definitely.

On the other hand, when read operation starts, data is read from the Pong/Ping memory and
Common Bar. Data is read from the Pong/Ping memory column by column. However, reading
scan line is a little different from writing scan line. On write operation, we do write data into
the Common Bar until we finish writing them into Ping/Pong memory. However, on the read
operation, we read the data from Pong/Ping memory and Common Bar by turns. Data is read
from the Pong/Ping memory, Common Bar, and back to Pong/Ping memory. Finally, we read
the last data from the last on address of Common Bar; we finished the complete read
operation. We must know that there is data written in the memory, at the same moment, there
is data read from the memory. Write and read operation are took place simultaneously.

The operation of the transpose memory can be explained if we visualize it as an 8 x 8 array.
It is actually implemented as a 64-byte SRAM: The first eight bytes of the SRAM correspond
to the first row of the array, the second eight bytes, to-the second row, and so on. Let mode 1
be a sequence of accesses to locations {0;"1; 2,3, 4, 5, 6, 7, 8 ...} in that order. This
corresponds to scanning rows starting” at ‘the top left corner. Let mode 2 be accesses to
locations {0, 8, 16, 24, 32, 40, 48, 56, 1, 9 ...} in that order. This corresponds to scanning
columns starting at the top left corner.

The transposition occurs as follows. Data is read out according to mode 1 for the first 64
clock cycles. New data (that needs to be transposed) is also written according to mode 1. A
write always follows a read; i.e., a read from a location is always followed by a write to that
location. For the next 64 clock cycles, reads and writes occur according to mode 2. The data
which is read out is the transpose of the data which was written in during the previous 64

clock cycles. As a result, the latency of the transpose operation is 64 clock cycles.

21-

3.3 Timing Analysis

In the section, we will derive the timing analysis about Initially Idle Time and Idle Time and

some conditions or constraints for the Sandwich Ping Pong Memory.

3.3.1 The Initially Idle Time

When could we start to read the data from the Sandwich Ping Pong Memory? We have
already derived when to read, the Initially Idle Time. Let’s see our derivation.

We make an example for the Sandwich Ping Pong Memory which is a N X M rectangle in size,
in figure 3.8. There are three coefficients;in the derivation: N, M and P. The coefficient N
represents the cell number of columns of the Sandwich Ping Pong Memory. The coefficient P
represents the cell number of rows of the Common bar. Hence, the cell number of rows of the
Ping or Pong Memory is M-P. The individual‘size of Ping (or Pong) memory and Common
Barare (M —P)xN andPxN.

In addition, we assume that the access time to one the memory cell is one unit time. Therefore,
the time to write data in Ping/Pong memory is(M —P)x N, and the time to write data in
Common BarisPx N .

The scan line of writing operation is row by row in the Ping/Pong memory and Common Bar
in sequence. We should wait for a period of time named Idle Time and continue the next write
operation. On the other hand, the scan line of reading operation is column by column by turns
of Pong/Ping memory and Common Bar. In the same manner, we should wait a moment and

continue the next read operation. First, we derive the Initial Time, and followed by Idle Time.

22

1 2 g | e -1 o
Ping Memory
M MEPS| |]
1 -1 i
pl 2 | - | o |
Common Bar
E |] e @ @&
1 2 5 | s -1 i
7 | |
- I
Pong Memory
M-pe |0 &

Figure 3.8 Coefficients forSandwich Ping Pong Memory

From the time schedule and the figure 3.8, we know that the data is read in the Ping memory
column by column by turns of Ping/Pong memory and Common Bar. The first step to operate
the Sandwich Ping Pong Memory is to write the data into the part of Ping memory and
Common Bar. After writing, we start to read the data from them. The duration to read the first
data is defined as “Initially Idle Time”. After the Initially Idle we can read the data from the
Ping memory and Common Bar, and the Initially Idle is presented as below. We make a time

schedule to explain the derivation. Some constraints come to us.

After filling in the Ping memory and Common Bar with data, we start to read the data. There

is the first constraint in Fig.3.9

23-

Condition 1:

.. ce L. . W R
Initial nonzero utilization constraint: 1, =1,

T W
Write schedule 1

[(M* N]ping Idle | [(M* N]pong Idle |

R
Read schedule Tl

Initially Idle [(M* N]ping Idle |......

T">T® = M*N > Initially ldle
Figure 3.9 The first constraint

In Fig. 3.9, the time to fill the data in thé Ping memory and Common Bar (T,") must be great

than the Initially Idle time (T,%)..Because we have to-write the data in the Ping memory and

Common Bar first, we read the data fromithemrafter the Initially Idle time.
After observing the write operation”in|detail, we found that data are written into the Ping

memory first and into the Common Bar later. The second constraint comes up in Fig. 3.10.

Condition 2:

_ _ _ w R
Ping memory read contention constraint: 1, <T,

W
Write schedule T2
!

[(M —P)N]ping | (PN)ping Idle (M* N)pong Idle |......

R
Read schedule T2
!

Initially Idle | (M* N)ping Idle (M*NX)pong |

T <T} = (M -=P)*N < Initially Idle
Figure 3.10 The second constraint

24-

In Fig. 3.10, the time to fill the data in the Ping memory (T,) must be shorter than the

Initially Idle time (T.}). That is because we want to read the data earlier. We can read the data

from the Ping memory and write the others into the Common Bar simultaneously.
In addition, the way we read the data is column by column. Before reading the data from the
Common Bar, the data should already be written into the Ping memory and Common Bar.

Therefore, we have the third constraint in Fig. 3.11

Condition 3:

. . W R
Common Bar - read memory contention constraint: T, <T,

W
Write schedule T3
!
(M* N)ping Idle (M* N)pong Idle |......
R
Read schedule T3
!

Initially | (M-P)ping | [M* N-(M-P)N]ping | Idle (M*N)pong |

TV <TR = M*N< Initially + (M — P)

3 3

Figure 3.11 The third constraint

In Fig. 3.11, the time to write the data in the Ping memory and Common Bar (T,") must be

shorter than the time to read the data from the first column in Ping memory (T,%). Because

after filling the data into the Common Bar, we could read the data it later.

In conclusion, according condition 1, 2 and 3, we derive the formula (3-7).

(M —P)*N < Initially Idle< M *N
M *N < Initially Idle +(M —P)
(M —P)*N < Initially Idle< M *N
M *N —(M —P) < Initially Idle
»P>1 N N>M
~PN>M-P

=M *N —(M —P) < Initially Idle <M *N (3-7)

3.3.2 The Idle Time

After deriving the Initially Idle Time, we present the Idle Time or Idle. Again, from the time
schedule and the figure 3.8, we know'that the data is' written in the Ping memory row by row
in sequence of Ping memory and Common Bar. After the Ping memory is fully occupied by
data, we wait for a period of the time, Idle Time because the Common Bar. The Idle time is

presented with some conditions as below.

On the write schedule, we write the data into the Ping memory and Common Bar and wait for
while, “Idle Time.” Then we write the data into the Pong memory and Common Bar and so on.
Simultaneously, on the read schedule, after the Initially Idle Time, we read the data from the
Ping memory and Common Bar and wait for a while, “Idle Time.” There should be a
constraint to prevent the Sandwich Ping Pong memory from being on null operation.

Therefore, we have the forth constraint in Fig. 3.12.

Condition 4:

Run-time nonzero-utilization constraint: 1, =14

T W
Write schedule 4
b
(M* N)ping Idle (M* N)pong Idle |
R
Read schedule T4
b
Initially | (M* N)ping Idle (M*N)pong |

T <T} = M=*N+Idle<Initially+M *N

Figure 3.12 The fourth constraint

In Fig. 3.12, during writing the data'in the Ping memory, Common Bar and the Idle time

(T,”) must be shorter than the time to read the data from the Ping memory, Common Bar

(T}). Because we have to prevent the Idle time onWrite operation and on the read operation

from being happened in the meanwhile. If we don not have this constraint, the memory would

be on null operation.

Before we write the data into the Common Bar, the data should already be read from the Ping

memory and Common Bar. We have the fifth constraint in Fig. 3.13.

Condition 5:

. . . W R
Common Bar: write memory contention constraint: Tg =T,

w
Write schedule TS
!
(M* N)ping Idle [(M-P)N]pong | (PN)pong Idle |......
R
Read schedule TS
!
Initially | (M* N)ping Idle [(M-P)N+PN]pong |

TV >TF = M*N+Idle+(M —P)*N > Initially + M * N

Figure 3.13 The fifth constraint

In Fig. 3.13, during writing the data'in the Ping memory, Common Bar, the Idle time and the

Pong memory (T.") must be greatet than the time to read the data from the Ping memory,

Common Bar (T}). Because after reading the data from the Common Bar, we could write the

data it later.

Therefore, according condition 4, 5, we derive the formula (3-8).

M *N + Idle < Initially + M *N
M *N + Idle+(M —P)*N > Initially + M *N
= Initially — (M —P)*N < Idle < Initially

(3-8)

We take the minimum of the Initially Idle Time in the formula (3-7), and we derive the

formula (3-8).
=>P*N-(M-P)<Ildle<M*N—-(M -P) (3-9)

-28-

In addition, we take the maximum of the Initially Idle Time in the formula (3-7), and we

derive the formula (3-10).
=P*N<Idle<M *N (3-10)

No matter what the data is, they all access to the Sandwich Ping Pong Memory one by one.
In fact, we usually use 8 x 8 block matrix in 2-D Discrete Cosine Transform. Hence, we
should put some conditions and coefficients for formula (3-7) and (3-9).

Here is an example for M=4, N =4 and P=1, shown in figure 3.9.

1 2 3 4

] s T g

9 10 11 1 b

Ping Memory

[1l2]3]2 —
\
\ Common Bar
A
\
\
i 1 2 £ 4

\ 5 6 T ¥

9 10 11 12

Pong Memory

Figure 3.14 Example for Initial and Idle Time

There are twelve memory cells in Ping and Pong Memory, respectively. There are four cells
in Common Bar. We write data into the Ping Memory, then Common Bar and Pong Memory
row by row. We read from the Ping Memory, then Common Bar and Pong Memory column by
column. According formula (3-7) and (3-9), the Initially Idle Time and Idle Time are 13 and 1

unit time.

3.3.3 Line Buffer

Many algorithms and VLSI architectures for the fast computation of one-dimensional (1-D)
and two-dimensional (2-D) DCT have been proposed [11]. For and effective VLSI
implementation of an orthogonal transform, the corresponding algorithm should be
numerically stable, and its computational structure should be regular (recursive and repetitive
structure). The experiences with VLSI implementations show that the regularity of the
algorithm is prime concern.[7] Almost all VLSI chips are implemented for fixed 8x8 or 16x16

square block sizes.[8]

j el bl RIEET Sl | e LLHE

1..X 123 |23+ B | LM

Common Bar

P.X o®
1.0 | 3HL..20 [2X+1..3X |NX
2.

Pong Memory
(- X &

Figure 3.15 Coefficients for line buffer

Therefore, we have to put one more coefficient to represent the square block sizes. We choose

X as our coefficient, and further, we modify the two formula (3-7) and (3-9). An example, in

figure 3.10, is made for the Sandwich Ping Pong Memory and is called ling buffer. We explain
the derivations of the Initially Idle Time formula in general form (3-11) with a general time
schedule as below. After filling in Ping memory and Common Bar with data, we start to read

the data. From Fig., we have the first constraint.

Condition 1 for general form:

. e) w R
Initial nonzero utilization constraint: T1 ZTI

T W
Write schedule 1

[(M* NX]ping Idle | [(M* NX]pong Ide |

R
Read schedule Tl

Initially Idle [(M* NX]ping fdle' = |......

TV >TR = M*NX > Initially ldle

Figure 3.16 The first constraint for general form

In Fig. 3.16, the time to fill the data in the Ping memory and Common Bar (T,") must be

great than the Initially Idle time (T,}). Because we have to write the data in the Ping memory

and Common Bar first, we read the data from them after the Initially Idle time.

After observing the write operation in detail, we found that data are written into the Ping

memory first and into the Common Bar later. The second constraint comes up in Fig. 3.17.

Condition 2 for general form:

_ _ _ w R
Ping memory read contention constraint: 1, <T,

) W
Write schedule T2

|
[(M —P)NX]ping | (PNX)ping | Idle (M* NX)pong Idle |......
Read schedule TzR
!
Initially Idle | (M* NX)ping Idle (M*NX)pong |

-|-2W stR = (M —=P)*NX < Initially Idle

Figure 3.17 The second constraint for general form

In Fig. 3.17, the time to fill the data in the:Ping memory (TZW) must be shorter than the

Initially Idle time (TZR). That is because'we.-want.to read the data earlier. We can read the data

from the Ping memory and write the others-into the Common Bar simultaneously.

Before reading the data from the Common Bar, the data should already be written into the

Ping memory and Common Bar. Therefore, we have the third constraint in Fig. 3.18.

Condition 3 for general form:

. . W R
Common Bar - read memory contention constraint: T, <T;

. TW
Write schedule 3
J
(M* NX)ping Idle | (M* NX)pong Idle
T R
Read schedule 3
y

Initially | [(M-P)X]ping | [M* NX-(M-P)NX]ping | Idle | (M* NX)pong |

T <T® = M*NX < Initially + (M —P)X

Figure 3.18 The third constraint for general form

In Fig. 3.18, the time to write the data in the Ping memory and Common Bar (T,") must be

shorter than the time to read the data from the first column in Ping memory (T,}). Because

after filling the data into the Common Bar, we could-tead the data it later.

In conclusion, according condition 1, 2 and 3 in general form; we derive the formula (3-11)

(M —P)*NX < Initially Idle< M *NX
Initially 1dle+ (M —P)* X > M * NX

= (M *N—(M -P))*X <Initially ldle <M *NX (3-11)

From the figure 3.10, we know that the data is read column by column in the Ping memory in
M by NX block size. After the Initially Idle Time, we can read the data from the Ping memory

and Common Bar, and the Initially Idle Time is presented in formula (3-11).

Similarly, we have to modify the formula (3-9) and (3-10) and derive the Idle Time is below.
There should be a constraint to prevent the Sandwich Ping Pong memory from being on null

operation. Therefore, we have the forth constraint in Fig. 3.19

Condition 4 for general form:

Run-time nonzero-utilization constraint: 1, =14

T w
Write schedule 4
b
(M* NX)ping Idle (M* NX)pong Idle |
R
Read schedule T4
|
Initially | (M* NX)ping Idle (M* NX)pong |

T <T} = M*NX +Idle <lInitially+M *NX

4 4

Figure 3.19°The fourth constraint for general form

In Fig. 3.19, during writing the data in the Ping memory, Common Bar and the Idle time

(T,') must be shorter than the time to read the data from the Ping memory, Common Bar

(T}). Because we have to prevent the Idle time on write operation and on the read operation

from being happened in the meanwhile. If we don not have this constraint, the memory would

be on null operation.

Before we write the data into the Common Bar, the data should already be read from the Ping

memory and Common Bar. We have the fifth constraint in Fig. 3.20.

Condition 5 for general form:

. . . W R
Common Bar: write memory contention constraint: Tg =T,

W
Write schedule TS
!
(M* NX)ping Idle [(M-P)NX]pong | (P*NX)pong | Idle |
R
Read schedule TS
!
Initially | (M* NX)ping Idle [(M-P)NX+PNX]pong |

TY>T8 = M*NX+Idle+(M —P)*NX > Initially + M * NX

5 5

Figure 3.20 The fifth constraint for general form

In Fig. 3.20, during writing the data:in the Ping memory, Common Bar, the Idle time and the

Pong memory (T,") must be gredter than the time to réad the data from the Ping memory,

Common Bar (T.*). Because after.reading the data ftom the Common Bar, we could write the

data it later.

Therefore, according condition 4, 5, we derive the formula (3-12) and (3-13).

M *NX + Idle < Initially + M * NX
Initially +M *NX <M *NX + Idle + (M — P)* NX

= Initially —(M —P)*NX < Idle < Initially (3-12)

We take the minimum and maximum of the Initially Idle Time in the formula (3-12), and we

derive the formula (3-13) and (3-14).

=[P*N-(M-P)]X <ldle<[M*N-(M-P)|X 53

= P*NX <ldle<M *NX (3-14)

-35-

Generally, for block sizes larger than 16x16, the complexity of derivation of a signal flow

graph for a given algorithm increase. Furthermore, no direct 2-D DCT algorithm has been

shown up to now with its computational structure for a rectangular M x NX block size.
Moreover, there should be some conditions for the coefficients M, N, and X. For instance,

M and N must be equal to or larger than X. Besides, M and N are usually less than 16 [12].

3.4 Control Unit Circuit

We make up the Sandwich Ping Pong Memory with two parts, a Ping Pong Memory and a
Common Bar. We build a control unit circuit to turn the original signals and addresses into
those for Sandwich Ping Pong Memory.(SPPM). Saving area is our destination and we do
save the area of Ping Pong Memory actually. We could save the area of Ping Pong Memory;
however, we gained the area of-the control tinit circuit. Therefore, the less area we used for

control unit circuit, the more area we sayed i Sandwich Ping Pong Memory.

Idle | WE | Addr W>12 | Addr W>12 WE Ping | WE Pong | WE _CMB
0 0 0 0 0 1 X
0 0 0 1 0 1 0
0 0 1 0 0 1 1
0 0 1 1 X X X
0 1 0 0 1 0 X
0 1 0 1 1 0 0
0 1 1 0 1 0 1
0 1 1 1 X X X
1 0 0 0 X 0 1
1 0 0 1 X 0 1
1 0 1 0 X 0 1
1 0 1 1 X X X
1 1 0 0 0 X 0
1 1 0 1 0 X 0

1 1 1 0 0 X 0
1 1 1 1 X X

Table 3.1 Signals and Addresses for 32bit SPPM with Common Bar 1X4

Table 3.1 shows the signals for 32-bit SPPM with Common Bar 1 X 4. We define the
address for writing or reading is 0 to 15. When they are bigger than 12, the common bar is on
operation. The inputs of it are WE, Addr W and Addr R represented the original signals of
Write Enable, Address for Writing and Address for Reading, respectively. Its outputs are the
WE Ping, WE Pong and WE CMB represented the signals of Write Enable for Ping Memory,
Pong Memory and Common Bar. It seems that we are using a Ping Pong Memory. In fact, we
are using a Sandwich Ping Pong Memory. Figure 3.21 shows the signals and addresses

transformed by the control unit circuit:

Addr R
- Addr W PE2
— Aﬂdl'_CB] OUT
s WE Ping
s WE Pong
- WE CB
Common
Bar
: IN 7 [N IN
Ping Memory = g Pong Memory
= WE CB
ouT WE Ping ADDR. T OUT WE Pong ADDR.
- i ouT =
o N el S S SR e S S
1 -tl)

=2

Figure 3.21 Signals and addresses for Sandwich Ping Pong Memory

-37-

We synthesize a control circuit with HDL. When the size of Common Bar is 1 x 8K, the gate

count of the control circuit is 216 gate counts, shown in figure 3.22.

Device Thhzation Summary

Logic Thlization Tsed
Mumber of 4 input LU Ts 30
Logic Distribution

Mumber of occupied Slices 13
Wwmber of 3lices containing only related logic 18

Mumber of Slices containing wnrelated logic

Total Number of 4 input LUTs
Mumber of bonded [0Bs

Total equivalent gate count for design -

Additional JTAG gate count for I0Bz

0
36

Available
7,168

3,584

15
15

7,168

172

Utilization
1%

1%
100%
0%
1%
42%

Note(s)

Figure 3.22 The gate count of control unit for Common Bar

M N P X Total Initially ¢ Idle . Throughput Common Control Area
Size Idle Time: “Reduction Bar Unit Saved
(bit) (Unit (Unit (%) (gate (gate (gate
time) time) count) count) count)
16 512 1 16 128K 1308327936 5.709 8192 216 7976
16 512 2 16 128K 130848 15872 10.801 16384 230 16154
16 512 3 16 128K 130864 23808 15.371 24576 251 24325
16 512 4 16 128K 130880 31744 19.496 32768 260 32508
16 512 5 16 128K 130896 39680 23.238 40960 264 40696
16 512 6 16 128K 130912 47616 26.647 49152 266 48886
16 512 7 16 128K 130928 55552 29.766 57344 268 57076
16 512 8 16 128K 130944 63488 32.631 65536 283 65253
16 512 9 16 128K 130960 71424 35.271 73728 287 73441
16 512 10 16 128K 130976 79360 37.712 81920 289 81631
16 512 11 16 128K 130992 87296 39.976 90112 283 89829
16 512 12 16 128K 131008 95232 42.081 98304 280 98024
16 512 13 16 128K 131024 103168 44.043 106496 264 106232
16 512 14 16 128K 131040 111104 45.877 114688 238 114450
16 512 15 16 128K 131056 119040 47.594 122880 223 122657
16 512 16 16 128K 131072 126976 49.206 131072 210 130862

Table 3.2 Data sheet for a Sandwich Ping Pong Memory

-38-

Table 3.2 is a data sheet for the Sandwich Ping Pong Memory in size 128K. It shows the
control unit size of the different Common Bar in the Sandwich Ping Pong Memory. Every
control unit is under three hundred gate counts. Figure 3.23 shows the Common Bar and Area
Saved. Figure 3.24 shows the relationship between area saved and throughput reduction of the

Sandwich Ping Pong Memory in the size 128k

a0 T T T T T T T i
: : : : 2 4
e . . IR . W S . S N UL N N R
: : : -4
: . : g p$.
: : : 2 : |
: : 3 E £ : > Area Saved
s : : : : :
8 - T -
= : : : :
o : : :
3o g 4
2 B -
5 e i
a 25 4
5 -
5 . . X
o : i
= : :
=15 N, - RTINS JTIN RTINS NS TN TSNS FNINIS AN NI WA W A
151 e o, 4
1 |
5 X | i | I i 1 i | i 1 | i
o 1 2 3 4 8 51 7 8 9 10 1 12 13 14
Area (gate count) x10°

Figure 3.23 Common Bar and Area Saved

-39-

Throughput Reduction (%)

a0

45

)
i)

w
=

)
il

[N)
[=]

2 4 3] 10 12
Area Saved (gate count)

Figure 3.24 Area Savedws: Throughput Reduction

-40-

Chapter 4 Test Algorithm

Semiconductor memories have invented for decades and have been designed, produced, tested
by customers all over the world. The test algorithms have been studied for decade years. [13]~
[23] It has been said that “memory testing is simple.” In fact, it is logistically simple about
memory testing. The complex part of memory testing is the numerous ways that a memory
would fail. Patterns are the essence of memory testing. However, there is no single pattern is
sufficient to test a memory for all defect types. There are many algorithms had been proposed
such as, Zero-One, Checker, March, GALPAT, Butterfly, etc.... Table 4.1 lists the required

test time as a function of the algorithm complexity and the memory size.

Size Algorithm complexity
n n nlogn n3'2 n?
IK 0.0001s 0.001s 0.0033s 0.105s
16K 0.0016s 0.0224s 0.21s 27s
256K 0.0256s 0.46s 13.4s 1.9h
IM 0.102s 2.04s 14.3m 1.27d
16M 1.64s 39.36s 15.25h 326d
256M 26.24s 12.25m 5.1d 229y

s: second; m: minute; h: hour; d: day; y: year

Table 4.1 Test time as a function of memory size
This chapter introduces popular memory fault models and many March algorithms. For
Sandwich Ping-Pong Memory, we show a modified March C- algorithm for testing. The

testing time is shorten and with high fault coverage.

4.1 Fault Models

This section gives a formal definition for the most popular fault models.[24] First, we
introduce the notation used to represent the fault models are listed here:

0: Denotes that a cell is in logical state 0.

1: Denotes that a cell is in logical state 1.

? : Denotes that a cell is in logical state, which means “don’t care.”

1 A raising cell transition or denotes a write 1 operation to a cell containing a 0.

{4 : A falling cell transition or denotes a write 0 operation to a cell containing a 1.

T : Either a rising or falling cell transition.
V : denotes any operation; V € {0, I,T,i, 43
<1/ F >: denotes a fault in a single cell. Idescribes the condition for sensitizing the fault, F

describes the value of the faulty cell. |je {O,I,T,i,@ ,and F € {0,1} .

The most popular fault models are listed as follows:

Stuck-at fault (SAF): The logic value of a stuck-at (SA) cell or line is always 0 (a stuck-at-0
fault, SAO) or 1 (a stuck-at-1 fault, SAL).

Transition fault (TF): The cell or line which fails to transit from 0to 1 (a <T/0> TF) or
from1to0(a < /1> TF).

Inversion coupling fault (CFin): An transition (T or) in one cell inverts the content of
another cell.

Idempotent coupling fault (CFid): An transition (Tor) in one cell forces the content of

another cell to a certain value , O or 1.

State coupling fault (CFst): A coupled cell is forced to a certain value only if the coupling

cell is in a given state.

Stuck-open fault (SOF): The cell fails to be accessed or a broken word/bit line.
Address decoder fault (AF): It is a functional fault in the address decoder that results in one
of the following four cases shown in figure 4.1.

Fault A: With a certain address, no cell will be accessed.

Fault B: A certain cell is never accessed.

Fault C: With a certain address, multiple cells are accessed.

Fault D: A certain cell can be accessed with multiple addresses.

Ax“‘{ x| s Cx | Az® Cx

Ax“' }7' Cx

Ay®——* [y | Ay * l*‘Cy LAye—* Cy

Fault A Fault B Fault C Fault D

Figure 4.1 Different types-ofaddress decoder faults

4.2 March Algorithms

The simplest tests which detect SAFs, TFs and CFs are called ‘marches’. A March test is
composed of a finite sequence of March elements. A March element is a finite sequence of
write/read operations applied to every cell in memory before proceeding to the next cell. The
address sequence can be either an increasing (1) address order (e.g. from address 0 to address
N-1), or a decreasing (U) address order which is the opposite of the I address order.

A write/read operation can be (wa), (Wa), (ra), and (ré) where a is the background

pattern and a is the inverted background pattern; ae{0,1}; (wa) means “write the

cell/word a”; (ng) means “write the cell/word 5”; (ra) means “read a expected cell/word

a’; (ra) means “read a expected cell/word a.” A March algorithm example is shown in
figure 4.2, and its flow is depicted in figure 4.3. Once the fault simulation is complete (all
faults have been emulated), the fault coverage can be determined for the set of test vectors.
The fault coverage, FC, is a quantitative measure of the effectiveness of the set of test vectors

in detecting faults, and in it most basic form is given by:

D
FC=— 4-1
T (4-1)

Where D is the number of detected faults and T is the total number of faults in the fault list.
For design verification, the fault coverage can not only give the designer a rough quantitative
measure of how well the design has been exercised, but also the undetected fault list can
provide valuable information on those sub-circuits that have not been exercised as thoroughly
as other sub-circuits.

Although example will be used'in which the . address order goes from address 0, 1, 2. . .
n-2 to Nn-1, this is not strictly necessary. Itis necessary: that the address-orders 11 and | are
each other’s invert. For instance, when. the address-orders 1 is chosen for some reason to be:
1,0,7,5,6.,4 2.3 the address order U has to be:3, 2, 4, 6, 5, 7, 0, 1.This means that the
march test {1 (rLwO);U (ro,wl)} has the same fault coverage as the test
U (r1, wo); Tt (ro,wi)} .

In Table 4.2, we show some popular March algorithms. And we also show the fault

coverage in Table 4.3.

read operation

March element: M2

—

e

March test

Figure 4.2 A March algorithm example

MO for (1=0;1=N;i=1+1) {
write @ into cell 1;

1

Mlifor (i=0,;i<N,i=i+1) {
read expected a from cell 1;

write @ into cell 1

1

M2 for (i=H-1;i>-1;i=1i-1) {
read expected a from cell i

write @ into cell 1;

X

1} () 1 Geg.oumn Uil wz2)

Figure 4.3 The procedure for the March algorithm example

Name Element Faults Detected
Algorithm
MATS++ | § (wo0); 1T (ro,wl); U (r1,wo, ro) SAF/AF
March X | § (wo0); N1 (ro,wi); U (r1,wo) § (r0) AF/SAF/TF/CFin
MarchY | § (w0); T (ro,wi,ri); U (ri,wo,r0) § (ro) AF/SAF/TF/CFin
March C- | {{ (w0); T (r0, wi); ! (r1,w0); U (ro,wi); U (r1,w0); § (r0)} | SAF/AF/TE/CF

Table 4.2 Some March algorithms

Fault MATS++ March X March Y March C-
SAF 100% 100% 100% 100%
TF 100% 100% 100% 100%
SOF 100% 0.2% 100% 0.2%
AF 100% 100% 100% 100%
CFin 75.0% 100% 100% 100%
CFid 37.5% 50.0% 50.0% 100%
CFst 50.0% 62.5% 62.5% 100%

4.3 A Test Algorithm for Sandwich Ping-Pong Memory

4.3.1 March C- Algorithm

March C- algorithm in Figure 4.4 satisfies the conditions of detecting simple (unlinked) faults
such as SAFs, TFs, CFs, AFs, and SOFs [5]. This section shows a modified March C-

algorithm in Figure 4.5 which is derived from March C- and proofs fault detection

capabilities.

Table 4.3 Fault coverage of some popular March algorithms

(¢ (wo); 11 (ro, wi); 1 (r1, wo); U (ro,wi); U (r1, w0); { (r0)}

M1

M4

Figure 4.4 March C- algorithm

M5

Condition March element

L M (rx,...,wx)

2 U(rx,...,wx)

Table 4.4 Conditions for detecting address decoder faults

March C- satisfies the Conditions 1 and 2 for Address Faults in Table 4.4 [2]. When x =0 by
means of March elements M2 and M5, when X =1 by means of March elements M3 and M4.
March C- will detect SAFs and TFs because all cells are read in states 0, 1, 0 ... Thus, both
T and | transitions, and read operations after them, have taken place. March C- will also
detect idempotent and inversion coupling faults, with the restriction that these coupling faults
are unlinked.
A fault is linked when that fault may influence the behavior of other faults. A fault is unlinked
when that fault does not influence the behavior of other faults. Here is an example, as shown
below.

Example

Suppose that there are two coupling faults in a memory, as shown in Figure 4.5. The first
fault is that cell i is <T;1>coupled to cell j; the second fault is that cell k is coupled to
celll. The March test {{ (w0); T (r0,wl); (w0, wl); (r1)} will detect both faults if ik
(Figure 4.5(a)). The <T;1> CF will be detected by the ‘r0’ operation of March element,
when operating on celli. The <T;0>CF will be detected by the ‘rl” operation of the last
March element, when it operates on cellk .

However, this test will not detect the combination of the faults which occurs when i=k
(Figure 4.5(b)). The ‘link’ between the faults (in this case the effect that the coupled cells are

the same) can cause the test not to find any fault; this effect is called masking. The ‘r0’

operation of the march element f1(r0,wl) will not detect the linked CF because when
operation on cell i the cell will contain a 0 value due to the <T;0>CF. The ‘rl’ operation
of the last march element will not detect the linked CF because, when operating on cell i, it
will contain a 1 value due to the <T;1>CF sensitized by the march element { (W0, wl)
when it operates on cell j.

The following test has been designed to detect the faults of Figures 4.5(a) and 4.5(b):
{8 (wo); M (ro,wl); § (wo,wl); § (rL, wo,wl)} . The <T:;1> CF of Figure 4.5(a) will be
detected by the ‘r0’ operation of March element 1l (r0,wl) when it operates on celli; the
CF of Figure 4.5(a) will be detected by the ‘r1’ operation of the last March element when it
operates on cellk . The linked fault of Figure 4.5(b) will be detected by the ‘r1’ operation of

the last March element when it operates on eelli .

—

0 0)

J i / k j ! i=k
(a)Unlinked faults (b) linked faults

Figure 4.5 Masking of coupling faults

The proof that March C- is complete is given below:
® AFs are detected because the conditions of in Table 4.3.
® SAFI faults are detected by the read operations of M1, M2, M4, and M6.

® SAFO faults are detected bye the read operations of M3, M5, and M7.

® Unlinked <T/0> TFs are detected by M1 followed by M2 or by M3 followed by M4.

® Unlinked <{ /1> TFs are detected by M2 followed by M3 or by M4 followed by M5.

® Unlinked CFins <T;T> are detected by M3 followed by M4; CFins <{;T> are
detected by M4 followed by MS5.

® Unlinked CFids <T:0> are detected by M3 followed by M4; CFids <M1> are
detected by M1; CFids ;0> are detected by M2; CFids <d:1> are detected by M4

followed by MS5.

4.3.2 The Modified March C- Algorithm

There are two memory arrays which are called Ping memory (or Block A) and Pong memory
(Block B) in a Ping Pong memory,,intitoduced in Section 3.1.1. We have derived an
algorithm for testing Ping memory and Pong memory simultaneously. We named this
algorithm the Modified March C- shown in figure 4.5. In addition, the modified March C- is
depicted carefully in figure 4.6, the*upper-sequence is testing the Block A memory array,
meanwhile, the lower one is testing the' Block B memory array.

There are two more March elements (M1 and M6) in this algorithm than in March C-
algorithm. However, the fault coverage of this algorithm is the same as the one of March C-
algorithm. Because these two March elements (M1 and MS5) are nop (no operation)
operations needed to be inserted into the March algorithm. As a result, the total operations
increase.

There are eight operations within the algorithm, the test length of the modified March C- is
eight, i.e. total 8N read and write operations are need to apply the algorithm (N is the
memory size).

The modified March C- will detect CFins and CFids as shown below.

{8 (w0); 3 (r0); 71 (ro,wi); 1 (r1,wo); U (ro,wh); ¥ (r1,w0); § (r0); (w0)}
MO M1 M2 M3 M4 M5 M6 M7

Figure 4.6 Modified March C- algorithm

A: {(W(())a'-'-9W(;\|_1);(r()09"-9 roN_l);(rooa \N109 Has) r()N_lawlN_l);(rloa W(())a rllaw(l)--'a rlN_law(g\I_]);(roN_la

. 0 N-1y. 0 N-1 0y. 0 0 N-1 N-1y. 0 0 .1 N-1 N-1y.
Bi{(r, s) (W Wy Wy)5 (1, Wy e, By W)5 (WL e o Wy);
N-1 0 0y. N-1 N-1 0 0. 0 1 N-1y. 0 N-1
W W) (T, W e 1 WY)i (1, Ty Ty)5 (W e, Wy)}
oW W) (n W e W W W); (1, 1)

Figure 4.7 Modified March C- algorithm for block A and block B

memory arrays

4.3.3 Testing of Sandwich Ping-Pong Memeory

We will present how to test the Sandwich Ping-Pong Memory in this section. It is the
modified March C- algorithm thatwe use for testing because it shows the high fault coverage.
It can test the most popular the faults such as: SAFs, TFs, AFs, CFins, CFids, and CFsts and
its fault coverage was already presented in table 4.2.

When testing the Sandwich Ping-Pong Memory, the basic and simple way is to separate it
into two parts: one is ping-pong memory and another is single port memory, in figure 4.8.
There is no doubt that the modified March C- algorithm can test not only the Ping Pong

memory but also the Common Bar.

-50-

‘N Ping Pong :D Common

Memaory Bar
Test start @ X
Sandwich
Ping Pong

Memaory

Common Ping Pong
B Memory

Figure 4.8 Test flow

Modified March C- satisfies the conditions 1 and 2 for AFs of Table 4.3: when X = 0 by
means of March elements M2 and M5, when X =1 by means of March elements M3 and M4.
Modified March C- will detect SAFs and unlinked TFs because all cells are read in states 0, 1,
0, .. .Thus, both T and 4 transitionsyrand-read operations after them, have taken place.
Modified March C- will also detect idempotent and inversion coupling faults, with the
restriction that these coupling fault are unlinked. The detection capabilities for idempotent and

inversion coupling faults are proved below.

Idempotent coupling faults
The proof that the modified March C- detects CFids is split into two cases: 1. faults with the

addresses of the coupling cells lower than the coupled cell, and 2. faults with the address of

the coupling cells higher than the coupled cell. The coupled cell will be denoted byC,, and

(one of) the coupling cells withC; . As a reminder of the notation: C; is coupled to C; means

thatan T transitionin C ; causes a o value inC;.

-51-

0 cell address Cx Cy &) Ci n-1

Figure 4.9 Addresses of coupling and coupled cells

Case 1:

Let C; be coupled to any number of cells with address lower than i, and let C; be the

highest of those cells (j<i), see figure 4.8. Four cases, corresponding to the four different
types of CFids, can be distinguished: a. <T;0 >, bi<T1>, c.<l;0>,and d. <l;1> . These

cases are proved below.

(@If C is <T:0> coupled to .C ;2 thenthe fault will be detected in march element M4
followed by M5. See in figure 4.10 (a).
® InM4aliswrittenin C;and due to the <T:0> coupling fault C, will contain a

0.

® [n M5 aread operation is performed on C, and a 0 instead of a 1 is read.
® Linked CFids will not be detected. For example, C, must not be <T:1> coupled
to cells with a lower address than j, because M4 operates on them after C;. In that

case a 1 would be read in M5 which is the expected value. Thus, the fault would not

be detected.

(b) If C, is <T:1> coupledto C ; then the March element M2 will detect the fault. See in

figure 4.10 (b).

-52-

® First a 0 will be read fromC;, then a 1 will be written. Due to the <T:1> coupling

fault C, will be forced to contain a 1.

® A1 instead of a 0 is read when M2 operates onC, .
(c)If C 1s <$:0> coupled to C ; then he march element M3 will detect the fault. The
proof is similar to above.

(d) If C, is <¥:1> coupled to C, then the March elements M5 followed by M6 will

detect the fault. C, must not be <¥:1> coupled to cells with addresses lower than j. The

proof is similar to above.

Mdoper OnCf | Cf | C7 | M4: U ¢ro,wi) M2 oper on Cf G| Ci| M2z T (r0,wl)
10 R 10 0
wl 1 o | <ho- CRd wl 1 1] <Mi> crid
M3 oper On i | ¢ | ¢ | M5: U (rLw0) Mloperon (i | Ci | Ci | M2: T(r0,ul)
1l 1 |o 10 -

(2))]

Figure 4.10-Detecting CFids

Case 2:

Let C; be coupled to any number of cells with addresses higher than i and let C; be the

lowest addressed cell of them (j>i). The proof is similar to Casel, whereby M2 should be
replaced by M4, M3 by M5, M4 by M2, M5 by M3 and M6 by M4.
Above it has been shown that modified March C- will detect CFids. The CFids must be

unlinked, because not all combinations of faults are allowed, as proved above.

Inversion coupling faults

Case 1:

Let C; be coupled to any number of cells with addresses lower than i and let C; be the

-53-

highest of those cells (j<i). Then, there are two cases, corresponding to eh two different types

of CFins: <T; > and <»L;$> . These cases are proven below.

(a) C, 1is <T:7> coupledto C ;> then M1 will detect the fault, as well as M4 followed
by M4.
® M4 operates on C;, making an T transition and inverting the contents of C;

when M5 is operated on C, a 0 instead of a 1 will be read.

M4 oper on Cf Ci | G| Md: I (r0,wl)
0 0

wl 1|0 | <ML> CFin
M35 oper. on Cf Cf | Ci | M3: U (1, w0)
rl - 0

Figure 4.11 Detecting CFins

(b) C, is <:T> coupledto ‘C ;5 then*M3 as well as M4 followed by M6 will detect

the fault. The proof is similar to above.
Case 2:

The proof for j>i is similar to above.
As a result, we can use the modified March C- algorithm to test the Sandwich Ping Pong

Memory. The fault coverage is at 100% for the stuck-at fault, transition fault, address fault,

and coupling fault.

-54-

Chapter 5 Chip Implementation

We implement our Ping Pong memory in Full-Custom Design by specifying the layout of

each individual transistor and the interconnections. Figure 5.1 shows the design flow for

64-byte Ping Pong Memory.

Mative

Crood

&d-bit Pmz Pong Memornr model

Zood
v

Analyze and estimate with H3PICE

H d
Crood Higee

¥

Modifyr the model and re-analyze

Crood

¥
Simulate 8 models which bult a 84
byte Pmg Pong Memonr model

Good

¥
Carve layout according to schematic

DEC & LV3 error |
L4 ﬁ
DRC & Find errors and revise =
LV 35 Ok D
DRC & LV3 0K A
¥ ¥ 1]
| Consider for testing E
DEC &
V3 OE ¥
Al done

Figure 5.1 Design flow for 64-byte Pig Pong Memory

In order to be more flexible, we also complete the part of the Sandwich Ping Pong Memory,

-55-

Common Bar, and the test circuit by means of HDL (Hardware Description Language) which
could synthesize the circuit we want. We show the results on Sparan-3 Starter board which
provides a powerful, self-contained development platform. It features a 200K gate Sparten-3,

on-board I/O devices, and two large memory chips.

5.1 Chip Implementation of the Sandwich Ping Pong Memory

5.1.1 The architecture of a Ping-Pong buffer

We have presented a double buffer roughly and realized that its application is in the 2-D DCT
architecture in chapter 2. In this section, we are going to introduce the architecture of a double

buffer, also known as, Ping-Pong buffer which is'shewn in figure 5.2.

Memory Cell

Memory

m]
m]
' Array

Input @ WE
@ Switch
>
ol
o,
.
S
&
S
o
<

Sense Amplifier
ME Output @

Figure 5.2 Components in the Ping-Pong Memory

-56-

5.1.2 The detail design of a Ping-Pong buffer

A Ping-Pong buffer consists of the following kinds of component:

Memory cell

From the begging of introducing a Ping-Pong buffer, we talk about the basic component — the
memory cell [27]. A memory cell can be implemented as SRAM, DRAM, and Flash. We take
a six-device SRAM memory cell, also called CMOS SRAM cell shown in figure 5.3, as our
memory cell. The load devices are PMOS enhancement mode transistors Q2 and Q4.
Comparing to the depletion mode NMOS as the load devices, this further reduces the power
requirements of the cell; except for some small leakage current, no power will be dissipated
during the time the cell retains the stored:logic value. The transistors Q5 and Q6 work as
switches and are named access transistors. When. the gate of Q5 and Q6 are activated, they are
turned-on and the memory cell work.

The operations of a memory cell are the:following steps. When some word line is chosen, the
access transistors are on and connect the two bit lines Q anda. At this moment, we can

write/read some data into/from the memory cell. On the operation of writing, it is easy to
understand that the data (the voltage on bit lines) can be stored and latched between two
back-to-back CMOS. On the opposite, the operation of reading, we turn down the voltage of
word line after the data (voltage on the gate of CMOS) is passed to the bit lines from the

memory cell. Finally, the data (voltage on the bit lines) is forward to the next component.

-57-

Word ling
i T

Q2 Q4
— —
Qs *j : Q6

AT

— —

- >

— —
Ql Q3

Memory Cell

Eit — — Eit

Figure 5.3:Six-device SRAM memory cell

Sense Amplifier, Equalization, and Pre-charge circuit

When the data (voltage) is on the bit lines, they will bump into the next component - Sense
Amplifiers. Memory cells are composed by CMOS, so are the sense amplifiers. In figure 5.4,
we show the differential sense Amplifier, equalization, and pre-charge circuit.

The sense amplifier is the most critical component in a memory chip. Sense amplifiers are
essential to the proper operation of Drams, and their use in Scrams results in speed and area
improvements. Here, we describe a differential sense amplifier that employs positive feedback.
Because the circuit is differential, it can be employed directly in Scrams where the SRAM cell
utilizes both the B and B lines. We assume that the memory cell whose output is to be

amplified develops a difference output voltage between the B and B lines. This signal,
which can range between 30 mV and 500 mV depending on the memory type and cell design,

will be applied to the input terminals of the sense amplifier. The sense amplifier in turn

-58-

responds by providing a full logic-swing (0 to V) signal at its output terminals. The
particular amplifier circuit we shall discuss has a rather unusual property: Its output and input
terminals are the same!

The sense amplifier is nothing but the familiar latch formed by cross-coupled two CMOS
inverters: one inverter is implemented by transistors Q1 and Q2, and the other by transistors
Q3 and Q4. The transistors Q5 and Q6 work as switches that connect the sense amplifier to
ground and V,, only when data-sensing action is required. Otherwise, ¢, is low and the
sense amplifier is turned off. This conserves power, an important consideration since usually
there is one sense amplifier per column, resulting in thousands of sense amplifiers per chip.
Note again that terminals x and y are both the input and the output terminals of the amplifier.
As indicated, these I/O terminals are, connected to the B and B lines. The amplifier is
required to detect a small signal appearing between B and B, and to amplify it to provide a

full-swing signal at B and B .-For instance, if during a read operation, the cell had a stored

1, then a small positive voltage will develop between B and E, with Vg higher than V;.

The amplifier will then cause V; torise to Vy, and V; to fall to 0 V. This 1 output is then
directed to the chip I/O pin by the column decoder and at the same time is used to rewrite a 1
in the memory cell.

Figure 5.4 shows the pre-charge and equalization circuit. Operation for this circuit is

straightforward: When ¢, goes high prior to a read operation, all three transistors conduct.
While Q8 and Q9 pre-charge the B and B lines to Voo /2, transistor Q7 helps speed up

this process by equalizing the voltages on the two lines. This equalization is critical to the

proper operation of the sense amplifier: Any voltage difference present between B and B
prior to commencement of the read operation can result in erroneous interpretation by the
sense amplifier of its input signal. We show only one of the cells in this particular column

namely, the cell whose word line is activated. The cell can be either an SRAM or a DRAM

-59-

cell. All other cells in this column will not be connected to the B and B lines.

| |
Word I I
[T L
| '|' '|' Cell L|
bl
|_
4 Q6
'J:‘és J|—
02 Q4}J
L [
== —
- —
_‘_i
¥
|—in Q3
_ Qs
P
Q7 hdl
Q9 ‘
_|
-
— 08
} Vdd / 2 }
Bit| | Bit |

Figure 5.4 The differential SA, Equalization, and Pre-charge circuit

Address Decoder

Address decoders are composed by 4-intput NAND gates and the circuit is in figure 5.5. We

design a 3-input NAND gate for a address decoder to control 8 different word lines of a
memory array in the beginning. In order to control the specific memory array, we put one
more NAND input for a address decoders as the memory enable (ME) signal. The reason that
we design address decoder by NAND gates is to speed up the circuit with less layout area. So
we can build up a 64 bytes Ping-Pong memory in 1310 X 1100 micro meter squared by using

0.35um process.

-

[]

Address Decoder }J }J
'_
| > |
ﬂ_/ i t:‘

Word Line

Input Cutput Input |

Address Line
Address Word —
Line Line ‘I—i

Input 2

Input 3

Figure 5.5 Using NAND gates to build up address decoders

5.1.3 HSPICE Simulation of a Ping-Pong Memory

Here we show the design flow, shown in figure 5.6, and explain the HSPICE simulation result
of Ping-pong memory. During the signal of read enable is off, the memory array is on write
operation. The data is written into specific memory cells one by one. After 80ns, 8 bits data in
one word line is finished the operation of writing. On other hand, during the signal of read
enable is on, the memory array is on read operation. The data is read from specific memory

cells gradually. Of course after 80ns, one byte in one word line is totally read. Therefore, the

-61-

read and write operation is supposed be completed in the period of 160ns. However, we put a
signal of “Memory Enable” (ME) to control the different memory array. The period of read
cycle is not 160ns. It is the memory enable cycle that 160ns belongs to it. Therefore, the
period of read cycle is 320ns. In figure 5.7, due to the access time of a specific memory cell is
10ns and we have 8 bits data on one word line, the period of read (write) enable and memory

enable is 320ns and 160ns respectively.

| Maotive |

Good

| £54-bit Pmg Pong Memony model

Good
¥
| Analyze and estimate with HSPICE |

Cood Mo good

r
| Modify the model and re-analyze P

Good
r
Simmulate 8 models which built a 64
byte Pmg Pong Memory model

Good

,.| Carve layout according to schematic |

DRC & LVS error

-
] A
DRC & | Vit e i revise S
L¥S OK c
DRC & LVS OK o
ﬂ Consider for testing ! E
DRC &
VS OK i

| Al dome

Figure 5.6 Design flow

-62-

Al 5| B | 2l el el 2| R o R
]

DOt | |
BD0:v (vdd))
D0:te0i sy
D00l (o)

D0l)

D00 (34 10)

k2
Lo | m—

D0 6w (ot

DOt (]

Figure 5.7 HSPICE simulation of Ping-pong memory

5.2 Layout of the Ping Pong/ Memory

The Ping Pong Memory is implemented on-EFSMC 0.35um 2p4m 3.3v process by full-custom
design [28] ~ [33]. In figure 5.8, we ‘show: the layout of an 8-bytes Ping-Pong buffer. To save

more area, the layout is utilized by Common-Centriod Layout illustrated in figure 5.9. Hence,

the total layout area with pads is 1380 x 1095 zm’um. The difference between figure 5.9 and

figure 5.10 is the global decoder. We turn the 64-bit memory into a 64-byte memory because
we want to make a larger memory and make the most of the area in this chip. The global
decoder controls the signal of the memory-enable (me). When memory-enable is 1, the
specific memory array is on. We can turn on the eight memory array in turns by means of the

global decoder.

-63-

Figure 5.9 Layout of 64-byte Ping Pong Memory with Pad

-64-

um <601

Figure 5.10 Component introduction on layout

The pins definition is in table 5.1 and the specification is in table 5.2. Figure 5.11 shows the

bonding of the chip. Figure 5.12 shows the photography of the die.

Architecture Ping-Pong SRAM Memory
Supply voltage(V) 3.3V
MAX Frequency(Hz) 100MHz
Power 27mW
Technology TSMC 0.35 2P4M
Core Size 1070%840 um’
Total Chip Area 13101100 zm?

Total Transistors

9830

Table 5.1 Specification

-65-

(1) .;a

"I ll’an

H

E,‘,‘ | "mlmL

l"l -

]——~||l

A7l

Figure 5.12 Photo of the die

-66-

Pin Number Pin Name Function Description

1 Out[3] 4t output data

2 Out[0] 1*output data

3 PE[20] Signal 20 for local decoder

4 PE[10] Signal 10 for local decoder

5 In[0] 1* input data

6 In[2] 3" input data

7 In[3] 4 input data

8 In[1] 2" input data

9 In[5] 6" input data

10 In[7] 8™ input data

11 In[4] 5™ input data

12 In[6] 7™ input data

13 PE[22] Signal 22 for local decoder
14 PE[12] Signal 12 for local decoder
15 Out[4] 5™ output data

16 Out[6] ok output data

17 VDD! Power line

18 N/A N/A

19 PV Pre-charge line
20 WE Write Enable
21 Out[7] 8™ output data
22 G[0] Signal 0 for global decoder
23 G[1] Signal 1 for global decoder
24 G[2] Signal 2 for global decoder
25 G[3] Signal 3 for global decoder
26 Out[5] Signal 5 for global decoder
27 Out[2] Signal 2 for global decoder
28 Out[1] Signal 1 for global decoder
29 N/A N/A

30 VSS! Ground line

31 PE[11] Signal 11 for local decoder
32 PE[21] Signal 21 for local decoder

Table 5.2 Pins definition

5.3 Test Circuit Design

In this section, we are going to implement the test circuit. After finishing the layout of the
Ping Pong Memory, we consider about the test circuit to make sure the chip meet our
specifications. The functional test based upon the reduced functional fault models that were
discussed in chapter 4, such as the stuck-at, transition, and coupling faults.

The test circuit includes two essential functions as well as two additional functions that are
necessary to facilitate execution of the testing feature. The two essential functions illustrated
in figure 5.13 include the test pattern generator (TPG) and output response analyzer (ORA).
While the TPG produces a sequence of patterns for testing the circuit under test (CUT), the

ORA compacts the output responses of the;CUT into some type of Pass/Fail indication.

Start testing Test Controller Test Done
Test Pattern & a Output Response
Generator (TP3) Analyzer (ORA)

A
> Circuit Under .
Test (C
—_— con System Output-
System Input / Input Isolation Circuitry

Figure 5.13 Test architecture

The TPG circuit illustrated in figure in 5.14 consists of Counters, Algorithm and Counter Sets
circuit. The Counter circuit outputs a sequence number call ‘Qin’ as a primary time unit. Qin
sequence is passed to the Algorithm and the ORA circuit. The Algorithm circuit outputs

control signal to the Counter Sets circuit and the signals of write enable (WE) and Common

-68-

Bar write enable (CBWE) to the Ping Pong Memory and Common Bar, respectively. When
the Counter Sets circuit gets the signals from the Algorithm circuit, it outputs the Test Data
and Address for the Ping Pong Memory and Common Bar, composed the Sandwich Ping

Pong Memory.

Counter

——N Algorithm

{‘H_\\’h>

Figure 5.14 TPG
Mem.
Data
—— 1 Comparator >
Qin
PASS
or
Test Fail
Data u

Figure 5.15 ORA

After the Sandwich Ping Pong Memory access the Test Data, it outputs the Memory Data to
the ORA circuit. The ORA circuit is composed with a set of logic gates such as “OR gate” and

“Exclusive NOR gate”, shown in figure 5.15. It can compare the Memory Data with the Test

Data in appropriate time applied by Qin. If these two data are the same, it means fault-free in
the Sandwich Ping Pong Memory. If these two data are different, it means fault and the chip
would be fail. Using software like Xilinx-ISE, we write the HDL-verilog, and synthesize the

total circuits.

Chapter 6 Conclusions and Future Works

6.1 Conclusions

The proposed Sandwich Ping Pong Memory is a trade-off between memory area and
operation frequency. It can save a significant amount of memory compared with the
conventional Ping Pong Memory. In order to design the control unit, the area overhead is
under five hundred gate counts at the range of Common Bar is under 512 unit memory cells.
The operation frequency is affected by the Idle Time. Table 5.3 shows the Idle Time and
control unit area.

Based on the March C- algorithmswe also ‘developed the test algorithm for the Sandwich
Ping Pong Memory and named it the modified March C- algorithm. The fault coverage is at
100% for the stuck-at fault, tranSition fault;"address fault, and coupling fault. In addition, we
successfully taped out a 64-byte Ping Pong Memory in process 0.35 #m 2p4m in National
Chip Implementation Center (CIC). The chip is 1310 x 1100 micro meters squared. Finally,

we built the test platform by FPGA.

6.2 Future Works

Due to the area limitation of educational chip in National Chip Implementation Center, we
only design a 64-byte Ping Pong Memory in process 0.35um. Maybe we should design a
bigger memory like 128-byte or 1 Giga-byte and try more experiment. Make the Table 3.2

more complete and the relative between area and operation frequency would be clearer.

Bibliography

[1] P. Adde, M. Jezequel, “Ping-pong Supervisor for Synchronous Links”, In Proc. Euro ASIC pp.
364-367, 1992.

[2] Zhongfeng Wang, Keshab Parhi, “Efficient interleaver memory architectures for serial turbo
decoding”, In Proceedings, ICASSP IEEE, vol 2, pp 629-632, April 2003.

[3] Y. M. Joo, N. Mckeown, “Doubling Memory Bandwidth for Network Buffers”, INFOCOM '98.
Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 2, pp. 808-815, April 1998.

[4] R. O. Onvural, “On performance Characteristics of LAN Interfaces with Ping-Pong Buffers”, In
Proc. Local Computer Networks, 16" conference, pp. 562-558, 1991.

[5] A.K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989.

[6] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform”, IEEE Trans. Comput., vol.
C-23, pp. 90-93, 1974.

[71 K. R. Rao, and P. Yip, Discrete Cosine Transform: Algorithms, Advantages and Applications.
Boston, MA: Academic, 1990.

[8] Vladimir Britanak, K. R. Rao, *Two-dimensional. DCT/DST universal computational structure for
2™x2" block sizes,” In Signal Processing, IEEE Transactions, vol. 48, Issue 11, pp.3250 -
3255 Nov. 2000.

[9] Z. Wang and B. R. Hunt, “The discrete W transform”, Appl. Math. Comput., vol. 16, pp. 19-48,
1985.

[10] D. Legall, “A video compression standard for multimedia applications”, Commun. ACM, 34, (4), pp
46-58, 1991.

[11] S.C. Hsia, B. D. Liu, J. F. Yang, and B. L. Bai, “VLSI implementation of parallel
coefficient-by-coefficient two-dimentional IDCT processor”, IEE Trans. Circuits Syst. Video
Techno. 5, (5), pp. 396-406, 1995.

[12] S. Uramoto et al , “A 100 MHz 2-D discrete cosine transform core processor”, IEEE J. Solid-State
Circiuts. vol. 27, pp. 492-499, Apr. 1992.

[13] R. Dekker, F. Beeker, L. Thijssen, “Fault Modeling and Test Algorithm Development for Static
Random Access Memories”, ITC, 1988.

[14] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu, “Simulation-based test algorithm generation
for random access memories”, in Proc. IEEE VLSI Test Symp. (VTS), Montreal, pp. 291-296, Apr.
2000.

[15] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: a fast memory fault simulator”, in Proc. Int.
Symp. Defect and Fault Tolerance in VLSI Systems (DFT), Albuquerque, pp. 165-173, Nov. 1999.

[16] A.J. van de Goor, G.N. Gaydadjiev, “March U: a test for unlinked memory faults”, in Proc. IEE

-72-

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5315
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5315
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5315

Circuits, Devices and Systems, pp 155 — 160, June 1997.

[17] J. F. Li, K.L. Cheng, C. T. Huang, and C. W. Wu, “March-based RAM diagnostic algorithms for
stuck-at and coupling faults”, Proc. IEEE ITC, pp. 758-767, 2001.
[18] A.J. van de Goor, “Using March Test to test SRAMs”, IEEE Design of Computers, 1993.

[19] D. S. Suk and S. M. Reddy, “A March Test for Functional Faults in Semiconductor Random
Access Memories”, IEEE Transactions on Computers, vol. C-30, No 12, Dec 1981.

[20] V.A Vardanian, Y. Zorian, “A March-Based Fault Location Algorithm For Static Random
Access Memories”, IEEE International Workshop MTDT 2002.

[21] V.N Yarmolik, Y.V Klimets, A. J. van de Goor, S.N. Demidenko, “RAM Diagnostic Tests”, ITC
1996.

[22] R. Dedkker, F. Beeker, “A Realistic Fault Model and Test Algorithms For Static Random Access
Memories”, IEEE Transactions on Computers Aided Design, vol. 9, No 6, June 1990.

[23] R. Nair, S.M. Thatte and J.C. Abraham, “Efficient Algorithm for Testing Semiconductor
Random-Access Memories”, IEEE Transactions on Computers, Vol. C-27, No 6, June 1978.

[24] A.J. van de Goor, Testing Semiconductor Memories: Theory and Practice, John Wiley & Sons,
Chichester, England, 1991.

[25] Charles E. Stroud, A designer’s-guide to built<in.self-test, Kluwer Academic Publishers, Boston,
England, 2002.

[26] Wikipedia , the free encyclopedia..

[27] Sedra and Smith, Microelectronic Circuits fourth edition, Oxford, 1998.

[28] Tegze P. Haraszti, CMOS MEMORY ‘CIRCUITS; Kluwer Academic Publishers, 2000.

[29] Weste and Harris, CMOS VLSI Design A Circuits and Systems Perspective third edition, Addison
Wesley, 2005.

[30] Wayne Wolf, Modern VLSI design system-on-chip design third edition, PEARSION Prentice Hall,
2002.

[31] Smith, Application-Specific Integrated Circuits, Addison Wesley, 2004.

[32] A ligw, 2 = VLSl Z*feamez# 7, % = ,2001.

[33] +r4, %% %, Verilog FPGA 4 #zc74, 2 #,2004.

-73-

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2190

"F‘?}}:,l
pd 4
4
A N ¥
£ *
B
i

2006.2 ~ 2008.12
1999.9 ~ 2003.7
1996.9 ~ 1999.7

)ﬁ‘ .

2003.8 ~ 2005.3

PR R70£103p

#~ % (Wen-Chun Wei)

3
TR

aly
IWI 1

SEURE
AR
B =¥ F %
PR

-74-

::&lf' g_‘ﬁx/}*q"’k’ ‘—-/{)Jj -, -.':
ﬁfﬂé&p”

	Abstract
	Acknowledgement
	
	List of Figures
	
	List of Tables
	Chapter 1 Introduction
	1.1 Research Objective
	1.2 The Proposed Memory
	1.3 Organization
	Chapter 2 Background
	2.1 Ping Pong Buffers for Image Compression
	2.1.1 One-dimensional Discrete Cosine Transform
	2.1.2 Multidimensional Discrete Cosine Transform

	2.2 Ping Pong Buffers for Transmission

	Chapter 3 Sandwich Ping-Pong Memory
	3.1 The use of Sandwich Ping-Pong Memory
	3.2 Read / Write Operation
	3.2.1 Row-column block memory
	3.2.2 Scan line of the Sandwich Ping-Pong memory

	3.3 Timing Analysis
	3.3.1 The Initially Idle Time
	3.3.2 The Idle Time
	3.3.3 Line Buffer

	3.4 Control Unit Circuit

	Chapter 4 Test Algorithm
	4.1 Fault Models
	4.2 March Algorithms
	4.3 A Test Algorithm for Sandwich Ping-Pong Memory
	4.3.1 March C- Algorithm
	4.3.2 The Modified March C- Algorithm
	4.3.3 Testing of Sandwich Ping-Pong Memory

	Chapter 5 Chip Implementation
	5.1 Chip Implementation of the Sandwich Ping Pong Memory
	5.2 Layout of the Ping Pong Memory
	5.3 Test Circuit Design

	Chapter 6 Conclusions and Future Works
	6.1 Conclusions
	6.2 Future Works

	Bibliography
	Vita

