總目錄

	頁》	欠
中文摘要		i
英文摘要		iii
誌謝		V
總目錄		vii
表目錄		xi
圖目錄		xii
第一章 緒論		1
第二章 發光材料與發光基本原理		3
2-1 發光材料簡介		3
2-2 螢光機制與原理		6
2-3 螢光材料的組成與設計 1996		9
		10
2-3-2 活化劑之選擇		11
2-3-3 發光中心之物裡性質		11
2-3-3-1 孤立發光中心		12
2-3-3-2 複合發光中心		13
2-3-4 抑制劑之選擇		14
2-4 螢光材料的製備方法		15
2-4-1 固態反應法		15
2-4-2 共同沈澱法		16
2-4-3 溶膠-凝膠法		16
2-4-4 化學溶膠法		17

2-4-5 微乳液法	17
2-4-6 氣溶膠熱解法	18
2-4-7 水熱法	18
2-5 螢光體發光特性的測量	19
2-5-1 激發與放射光譜的量測	19
2-5-2 輝度的量測	20
2-5-3 量子效率的量測	20
2-5-4 色度與色調的判別	21
2-5-5 衰減期的測量	22
2-6 奈米粒子簡介	23
2-6-1 奈米粒子的定義	23
2-6-2 奈米材料的特性	23
第三章 文獻回顧、研究動機與晶體結構	26
3-1 文獻回顧	26
3-1-1 Zn2GeO4文獻回顧	26
3-1-2 ZnGa2O4文獻回顧	28
3-2 研究動機	31
3-2-1 Zn2GeO4研究動機	31
3-2-2 ZnGa2O4研究動機	32
3-3 主體結構介紹	32
3-3-1 Zn2GeO4主體結構介紹	32
3-3-2 ZnGa2O4主體結構介紹	33
第四章 實驗方法	34

4-1	實驗藥品	34
4-2	儀器設備	35
4-3	實驗步驟與流程	37
	4-3-1 Zn ₂ GeO ₄ :xMn ²⁺ 之固態法合成流程	37
	4-3-2 Zn ₂ (Ge _{1-x} Si _x)O ₄ :1%Mn ²⁺ 之固態法合成流程	38
	4-3-3 (Zn _{1-x} Cd _x) ₂ GeO ₄ 之固態法合成流程	39
	4-3-4 奈米ZnGa ₂ O ₄ :xMn ²⁺ 螢光體之熱溶劑合成流程	39
	4-3-5 奈米ZnGa ₂ O ₄ :xMn ²⁺ 螢光體表面修飾包覆流程	40
第五章	結果與討論	41
5-1	微米級 Zn2GeO4:xMn2+螢光體固態法合成之研究	41
	5-1-1 合成條件與XRD圖譜分析	41
	5-1-2 微米Zn ₂ GeO ₄ 發光特性之研究	42
	5-1-3 微米Zn ₂ GeO ₄ :xMn ²⁺ 發光特性之研究	43
	5-1-4 微米Zn2GeO4:xMn2+摻雜濃度效應之研究	44
	5-1-5 微米Zn ₂ GeO ₄ :xMn ²⁺ 輝度與CIE色度座標之研究	45
	5-1-6 微米Zn ₂ GeO ₄ :xMn ²⁺ 螢光衰減期之研究	45
	5-1-7 微米級Zn ₂ GeO ₄ :xMn ²⁺ 之表面微結構分析	46
5-2	微米 Zn ₂ (Ge _{1-x} Si _x)O ₄ :1%Mn ²⁺ 螢光體固態法合成之研究	47
	5-2-1 合成條件與XRD的研究	48
	5-2-2 晶格常數	48
	5-2-3 微米 Zn ₂ (Ge _{1-x} Si _x)O ₄ :1%Mn ²⁺ 之發光特性之研究	48
	5-2-4 微米級 Zn ₂ (Ge _{1-x} Si _x)O ₄ :1%Mn ²⁺ 輝度與 CIE 色度之研究	49
	5-2-5 微米 Zn ₂ (Ge _{1-x} Si _x)O ₄ :1%Mn ²⁺ 螢光衰減期之研究	49
	5-2-6 微米 Zn ₂ (Ge _{1-x} Si _x)O ₄ :1%Mn ²⁺ 之表面微結構分析	50

5-3-1 合成條件與 XRD 圖譜分析之研究 51

5-3-3 ZnGa₂O₄與 ZnGa₂O₄:xMn²⁺螢光體製程與發光特性之關 54 聯與比較

5-3-5 反應條件對奈米 ZnGa₂O₄:2%Mn²⁺發光特性之研究 56

5-3-5-(1) 反應溫度對奈米 ZnGa₂O₄:2%Mn²⁺發光性質之研究 56

5-3-5-(2) 溶劑對奈米 ZnGa₂O₄:2%Mn²⁺發光性質效應之研究 56

5-3-5-(5) 反應物濃度對奈米 ZnGa₂O₄:2%Mn²⁺發光性質之研 59 究

5-3-5-(6) 表面修飾奈米 ZnGa₂O₄:2%Mn²⁺發光性質之研究 59

第六章 結論

參考文獻

63

61

表目錄

	頁 次
表 1 週期表中可作為螢光體主體之陰離子團	69
表 2 週期表中可作為螢光體主體之陽離子	70
表 3 週期表中可作為螢光體活化劑之陽離子	70
表 4 週期表中可作為螢光體發光抑制劑之陽離子	71
表 5 材料尺度的分類	71
表 6 顆粒粒徑大小和表面原子比例的關係	71
表 7 奈米粒子在光學功能材料的應用	72

晑	餯

			頁	次
啚	1	激發能在發光材料中的吸收與轉換		73
啚	2	不同波長與頻率之電磁波能譜		74
啚	3	螢光體 H:S,A 發光過程中能量傳遞示意圖		75
啚	4	螢光及磷光發光機制示意圖		76
啚	5	活化劑離子基態與激發態組態示意圖		76
啚	6	組態座標圖(a) r=0,(b) r >0		77
啚	7	螢光體中 R 值對不同電子組態能量傳遞效應示意圖		77
啚	8	Stokes shift 示意圖		78
啚	9	不同耦合作用對放射峰頻寬變化之影響		78
啚	10	螢光體中主體、活化劑與增感劑三者交互作用原理示意	圖	79
啚	11	發光效率與活化劑濃度效應相互關係圖		80
啚	12	Eu ³⁺ 發光中心在不同晶體中所佔不同對稱格位置示意圖		80
圕	13	Eu ³⁺ 在不同晶體中所佔不同對稱位置 PL 光譜圖		81
圕	14	ZnS:Cu ⁺ , Cl ⁻ 的能帶結構圖		81
啚	15	微乳液法奈米反應器示意圖		82
啚	16	氣溶膠熱解儀器構造圖、1896人、		83
啚	17(a)	高壓反應容器		84
啚	17(b)	高壓反應容器側面透視圖		84
啚	18	光致發光光譜儀內部構造簡單示意圖		85
啚	19	1931 CIE 色度座標圖		86
啚	20	CIE 色彩匹配函數圖		87
啚	21	電子組態為 d ³ 與 d ⁵ 過渡金屬離子 Tanabe-Sugano diagra	m	88
啚	22	Zn2GeO4 晶體結構圖		89
啚	23	ZnGa ₂ O ₄ 晶體結構圖		90
啚	24	日本 Mac Science MXP3 型 X 光繞射儀		91
啚	25	美國 Jobin Yvon-Spex Instruments S. A. Inc.公司所製 Spe	ex	92
啚	26	日本 LAIKO 所製 DT-100 Color Analyzer		92
啚	27	不同燒結溫度下所合成 Zn2GeO4:2%Mn2+系列樣品 XRD	圖	93
		譜之比較		
啚	28	摻雜不同Mn ²⁺ 濃度的Zn ₂ GeO ₄ :x%Mn ²⁺ 系列樣品XRD區	副譜	94
		之比較		
啚	29	1200 所合成 Zn ₂ GeO ₄ 樣品的光致發光光譜: (a) 激	数發	95

(λ_{em}=459 nm)與(b)放射光譜(λ_{ex}=268 nm)

- 圖 30 Zn₂GeO₄ 之全反射光譜
- 圖 31 1300 所合成 Zn₂GeO₄ 主體的光致發光光譜: (a)激發 97 (λ_{em}=453 nm)與(b)放射(λ_{ex}=268 nm)

96

- 圖 36 摻雜不同 Mn²⁺濃度的 Zn₂GeO₄:xMn²⁺系列樣品發光強度與 102 x 值關係圖(λ_{ex}=340 nm)
- 圖 37 掺雜不同 Mn²⁺濃度 Zn₂GeO₄:xMn²⁺系列樣品之輝度與 x 值 103 關係圖 (λ_{ex}=340 nm)
- 圖 39 Zn₂GeO₄ 主體樣品的瞬態放射光譜圖(λ_{ex}=266 nm) 105
- 圖 40 $Zn_2GeO_4:2\%Mn^{2+}$ 樣品的瞬態放射光譜圖($\lambda_{ex}=266 \text{ nm}$) 106
- 圖 41 Zn₂GeO₄:6 %Mn²⁺樣品的瞬態放射光譜圖(λ_{ex}=266 nm) 107
- 圖 42 以波長 530 nm 監測 Zn₂GeO₄:xMn²⁺系列樣品螢光衰減動力 108 學(λ_{ex}=266 nm)
- 圖 43 Zn₂GeO₄:xMn²⁺系列中 Mn²⁺ 的發光及非發光路徑之動力學 109 機制
- 圖 44 Zn₂GeO₄:xMn²⁺系列樣品在 350 nm 的動力學衰減期圖譜 110 (λ_{ex}=266 nm)
- 圖 45 1000 所合成 Zn₂GeO₄:6%Mn²⁺樣品之 SEM 圖(倍率 2000 111 倍)
- 圖 46 1100 所合成 Zn₂GeO₄:6%Mn²⁺樣品之 SEM 圖(倍率 2000 111 倍)
- 圖 47 1300 所合成 Zn₂GeO₄:6%Mn²⁺樣品之 SEM 圖(倍率 1000 112 倍)
- 圖 48 1300 所合成 Zn₂GeO₄:6%Mn²⁺樣品之 SEM 圖(倍率 2000 112 倍)
- 圖 49 1300 所合成 Zn₂(Ge_{1-x}Si_x)O₄:1%Mn²⁺系列樣品的 XRD 圖 113

譜之比較

- 圖 50 1300 所合成 Zn₂(Ge_{1-x}Si_x)O₄:1%Mn²⁺系列樣品晶格常數 114 (a)與 Si⁴⁺取代量關係圖
- 圖 51 1300 所合成 Zn₂(Ge_{1-x}Si_x)O₄:1%Mn²⁺系列樣品晶格常數 115 (c)與 x (Si⁴⁺)取代量之關係圖
- 圖 52 1300 所合成 Zn₂(Ge_{1-x}Si_x)O₄:1%Mn²⁺系列樣品激發光圖 116 譜之比較
- 圖 53 1300 所合成 Zn₂(Ge_{1-x}Si_x)O₄:1%Mn²⁺系列樣品光致發光 117 光譜之比較 (λ_{ex}=254 nm)
- 圖 54 1300 所合成 Zn₂(Ge_{1-x}Si_x)O₄:1%Mn²⁺系列樣品輝度與 x 關 118 係 (λ_{ex}=310 nm)
- 圖 55 1300 所合成 Zn₂(Ge_{1-x}Si_x)O₄:1%Mn²⁺系列樣品 CIE 座標值 119 之比較
- 圖 56 以波長 530 nm 監測 Zn₂(Si_{1-x}Ge_x)O₄:4%Mn²⁺系列樣品 Mn²⁺120 螢光衰減動力學 (λ_{ex}=266 nm)
- 圖 57 以波長 530 nm 監測 Zn₂(Si_{0.8}Ge_{0.2})O₄:4%Mn²⁺系列樣品螢光 121 衰減動力學 (λ_{ex}=266 nm)
- 圖 58 Zn₂(Ge_{1-x}Si_x)O₄:4%Mn²⁺系列樣品之衰減期與 Si 取代量(x) 122 關係圖 (λ_{ex}=266 nm)
- 圖 59 1000 所合成 Zn₂(Ge_{0.8}Si_{0.2})O₄:1%Mn²⁺之 SEM 圖 123
- 圖 60 1000 所合成 Zn₂(Ge_{0.6}Si_{0.4})O₄:1%Mn²⁺之 SEM 圖 123
- 圖 61 1000 所合成 Zn₂(Ge_{0.8}Si_{0.2})O₄:1%Mn²⁺之 SEM 圖 123
- 圖 62 1200 所合成(Zn_{1-x}Cd_x)₂GeO₄:1%Mn²⁺系列樣品 XRD 圖譜 124 之比較
- 圖 63 不同溫度下乙二胺中所合成奈米 ZnGa₂O₄:1%Mn²⁺系列樣 125 品 XRD 圖譜之比較
- 圖 64 於 180 不同溶劑所合成奈米 ZnGa₂O₄系列樣品 XRD 圖譜 126 之比較
- 圖 65 甲醇溶劑中所合成奈米 ZnGa₂O₄ 之 TEM 影像 127
- 圖 66 乙二胺溶劑中所合成奈米 ZnGa₂O₄ 之 TEM 影像 128
- 圖 67 乙二胺和甲醇混合液溶劑中所合成奈米 ZnGa₂O₄ 之 SEM 129 影像
- 圖 68 Zn(NH₂CH₂CH₂NH₂)₂²⁺配位錯合物之示意圖 130
- 圖 69 固態法與與熱溶劑法所合成 ZnGa₂O₄ 樣品光致發光與激發 131 光譜之比較

- 圖 70 固態法與與熱溶劑法所合成 ZnGa₂O₄:1%Mn²⁺樣品光致發 132 光與激發光譜之比較
- 圖 71 熱溶劑法所合成奈米 ZnGa₂O₄:Mn²⁺和 ZnGa₂O₄ 樣品光致發 133 光與激發光譜之比較
- 圖 72 不同反應溫度所合成奈米 ZnGa₂O₄:2%Mn²⁺系列樣品之光 134 致發光與激發光譜之比較
- 圖 73 不 同 比 例 甲 醇 與 乙 二 胺 混 合 溶 液 所 合 成 奈 米 135 ZnGa₂O₄:2%Mn²⁺系列樣品光致發光激發光譜之比較
- 圖 74 甲醇與乙二胺混合溶液所合成奈米 ZnGa₂O₄:2%Mn²⁺樣品 136 螢光光譜之比較
- 圖 75 奈米 ZnGa₂O₄:2%Mn²⁺樣品之發光強度與甲醇含量之關係 137
- 圖 76 奈米 ZnGa₂O₄:2%Mn²⁺樣品光致發光光譜之比較與 Urea 量 138 /Zn(CH₃COO)₂計量關係
- 圖 77 不同 Mn²⁺摻雜量之奈米 ZnGa₂O₄:xMn²⁺系列樣品之發光與 139 激發光譜之比較
- 圖 78 不同濃度反應物所合成奈米 ZnGa₂O₄:2%Mn²⁺樣品發光與 140 激發光譜之比較
- 圖 79 經 與 未 經 氧 化 三 辛 基 膦 (TOPO) 表 面 修 飾 奈 米 141 ZnGa₂O₄:Mn²⁺之 IR 光譜之比較
- 圖 80 表面修飾對奈米 ZnGa₂O₄:2%Mn²⁺發光光譜效應之比較 142