總 目 錄

	良 次	
中文摘要		i
英文摘要		iii
誌謝		V
總目錄		vii
表目錄		хi
圖目錄		xii
第一章 緒論		1
第二章 發光材料與發光基本原理		3
2-1 發光材料簡介		3
2-2 螢光機制與原理		6
2-3 螢光材料的組成與設計 aga / 2-3-1 主體晶格之選擇		9 10
2-3-2 活化劑之選擇		11
2-3-3 發光中心之物裡性質		11
2-3-3-1 孤立發光中心		12
2-3-3-2 複合發光中心		13
2-3-4 抑制劑之選擇		14
2-4 螢光材料的製備方法		15
2-4-1 固態反應法		15
2-4-2 共同沈澱法		16
2-4-3 溶膠-凝膠法		16
2-4-4 化學溶膠法		17

2-4-5 微乳液法	17
2-4-6 氣溶膠熱解法	18
2-4-7 水熱法	18
2-5 螢光體發光特性的測量	19
2-5-1 激發與放射光譜的量測	19
2-5-2 輝度的量測	20
2-5-3 量子效率的量測	20
2-5-4 色度與色調的判別	21
2-5-5 衰減期的測量	22
2-6 奈米粒子簡介	23
2-6-1 奈米粒子 的 定義	23
2-6-2 奈米材料的特性	23
第三章 文獻回顧、研究動機與晶體結構	26
3-1 文獻回顧	26
3-1-1 Zn ₂ GeO ₄ 文獻回顧	26
3-1-2 ZnGa ₂ O ₄ 文獻回顧	28
3-2 研究動機	31
3-2-1 Zn ₂ GeO ₄ 研究動機	31
3-2-2 ZnGa ₂ O ₄ 研究動機	32
3-3 主體結構介紹	32
3-3-1 Zn ₂ GeO ₄ 主體結構介紹	32
3-3-2 ZnGa ₂ O ₄ 主體結構介紹	33
第四章 實驗方法	34

4	4-1	實驗額	藥品	34
۷	4-2	儀器語	设備	35
2	4-3	實驗	步驟與流程	37
		4-3-1	Zn ₂ GeO ₄ :xMn ²⁺ 之固態法合成流程	37
		4-3-2	$Zn_2(Ge_{1-x}Si_x)O_4$:1% Mn^{2+} 之固態法合成流程	38
		4-3-3	(Zn _{1-x} Cd _x) ₂ GeO ₄ 之固態法合成流程	39
		4-3-4	奈米ZnGa2O4:xMn2+螢光體之熱溶劑合成流程	39
		4-3-5	奈米ZnGa2O4:xMn2+螢光體表面修飾包覆流程	40
第五章	章	結果與	到討論	41
4	5-1	微米約	級 Zn ₂ GeO ₄ :xMn ²⁺ 螢光體固態法合成之研究	41
		5-1-1	合成條件與XRD圖譜分析	41
		5-1-2	微米Zn ₂ GeO ₄ 發光特性之研究	42
		5-1-3	微米Zn ₂ GeO ₄ :xMn ²⁺ 發光特性之研究	43
		5-1-4	微米Zn ₂ GeO ₄ :xMn ²⁺ 摻雜濃度效應之研究	44
		5-1-5	微米Zn ₂ GeO ₄ :xMn ²⁺ 輝度與CIE色度座標之研究	45
		5-1-6	微米Zn ₂ GeO ₄ :xMn ²⁺ 螢光衰減期之研究	45
		5-1-7	微米級Zn ₂ GeO ₄ :xMn ²⁺ 之表面微結構分析	46
4	5-2	微米	Zn ₂ (Ge _{1-x} Si _x)O ₄ :1%Mn ²⁺ 螢光體固態法合成之研究	47
		5-2-1	合成條件與XRD的研究	48
		5-2-2	晶格常數	48
		5-2-3	微米 Zn ₂ (Ge _{1-x} Si _x)O ₄ :1%Mn ²⁺ 之發光特性之研究	48
		5-2-4	微米級 Zn ₂ (Ge _{1-x} Si _x)O ₄ :1%Mn ²⁺ 輝度與 CIE 色度之研究	49
		5-2-5	微米 Zn ₂ (Ge _{1-x} Si _x)O ₄ :1%Mn ²⁺ 螢光衰減期之研究	49
		5-2-6	微米 Zn ₂ (Ge ₁ "Si ₂)O ₂ ·1%Mn ²⁺ 之表面微結構分析	50

參考文獻		
第六章	結論	61
	5-3-5-(6) (2)經表面修飾 ZnGa ₂ O ₄ :Zn ²⁺ 之光致發光光譜	60
	5-3-5-(6) (1)經氧化三辛基膦表面修飾之 ZnGa ₂ O ₄ 之 IR 圖	60
	5-3-5-(6) 表面修飾奈米 ZnGa ₂ O ₄ :2%Mn ²⁺ 發光性質之研究	59
	5-3-5-(5) 反應物濃度對奈米 ZnGa ₂ O ₄ :2%Mn ²⁺ 發光性質之研究	59
	5-3-5-(4) Mn ²⁺ 摻雜量與奈米 ZnGa ₂ O ₄ :xMn ²⁺ 發光性質關係之 研究	59
	研究	
	5-3-5-(2)	58
	$5-3-5-(1)$ 及总温度到示术 $ZnGa_2O_4.2\%Mn^2$ 强光性質效應之研究 $5-3-5-(2)$ 溶劑對奈米 $ZnGa_2O_4:2\%Mn^2$ 發光性質效應之研究	56
	5-3-5-(1) 反應溫度對奈米 ZnGa ₂ O ₄ :2%Mn ²⁺ 發光性質之研究	56
	5-3-5 反應條件對奈米 ZnGa ₂ O ₄ :2%Mn ²⁺ 發光特性之研究	56
	5-3-3 ZnGa ₂ O ₄ 與 ZnGa ₂ O ₄ :xMn ²⁺ 螢光體製程與發光特性之關 聯與比較 5-3-4 奈米 ZnGa ₂ O ₄ :xMn ²⁺ 發光特性之研究	5455
	5-3-2 可能反應機制之探討與表面微結構之分析	52
	5-3-1 合成條件與 XRD 圖譜分析之研究	51
5-3	奈米 ZnGa ₂ O ₄ :xMn ²⁺ 螢光體熱溶劑法合成之研究	51
	5-2-7 微米(Zn _{1-x} Cd _x) ₂ GeO ₄ 螢光體固態法合成之研究	50

表目錄

	身 次
表1週期表中可作為螢光體主體之陰離子團	69
表 2 週期表中可作為螢光體主體之陽離子	70
表3週期表中可作為螢光體活化劑之陽離子	70
表4週期表中可作為螢光體發光抑制劑之陽離子	71
表 5 材料尺度的分類	71
表 6 顆粒粒徑大小和表面原子比例的關係	71
表 7 奈米粒子在光學功能材料的應用	72

圖目錄

		厚	Į,	次
啚	1	激發能在發光材料中的吸收與轉換		73
圕	2	不同波長與頻率之電磁波能譜		74
圕	3	螢光體 H:S,A 發光過程中能量傳遞示意圖		75
啚	4	螢光及磷光發光機制示意圖		76
圕	5	活化劑離子基態與激發態組態示意圖		76
啚	6	組態座標圖(a) $r = 0$, (b) $r > 0$		77
啚	7	螢光體中 R 值對不同電子組態能量傳遞效應示意圖		77
圕	8	Stokes shift 示意圖		78
啚	9	不同耦合作用對放射峰頻寬變化之影響		78
啚	10	螢光體中主體、活化劑與增感劑三者交互作用原理示意	置	79
啚	11	發光效率與活化劑濃度效應相互關係圖		80
啚	12	Eu ³⁺ 發光中心在不同晶體中所佔不同對稱格位置示意圖		80
啚	13	Eu ³⁺ 在不同晶體中所佔不同對稱位置 PL 光譜圖		81
啚	14	ZnS:Cu ⁺ , Cl ⁻ 的能帶結構圖		81
啚	15	微乳液法奈米反應器示意圖		82
啚	16	氣溶膠熱解儀器構造圖		83
啚	17(a)	高壓反應容器		84
啚	17(b)	高壓反應容器側面透視圖		84
啚	18	光致發光光譜儀內部構造簡單示意圖		85
啚	19	1931 CIE 色度座標圖		86
啚	20	CIE 色彩匹配函數圖		87
圕	21	電子組態為 d³與 d⁵過渡金屬離子 Tanabe-Sugano diagran	n	88
圕	22	Zn ₂ GeO ₄ 晶體結構圖		89
啚	23	ZnGa ₂ O ₄ 晶體結構圖		90
啚	24	日本 Mac Science MXP3 型 X 光繞射儀		91
啚	25	美國 Jobin Yvon-Spex Instruments S. A. Inc.公司所製 Spe	X	92
		日本 LAIKO 所製 DT-100 Color Analyzer		92
啚	27	不同燒結溫度下所合成 $Zn_2GeO_4:2\%Mn^{2+}$ 系列樣品 XRD	啚	93
		譜之比較		
啚	28	摻雜不同 Mn²+濃度的 Zn₂GeO₄:x%Mn²+系列樣品 XRD 圖	譜	94
		之比較		
晑	29	1200 所合成 Zn ₂ GeO ₄ 樣品的光致發光光譜:(a)激	廵	95

		$(\lambda_{em}=4.5)$	59 nm)與	l(b)放射光譜(λ _{ex} =268 nm)		
啚	30	Zn ₂ Ge0	04之全原	划光譜		96
圕	31	1300	所合成	Zn ₂ GeO ₄ 主體的光致發光光語	뜰:(a)激發	97
		$(\lambda_{em}=4.5)$	53 nm)與	!(b)放射(λ _{ex} =268 nm)		
啚	32	1300	所合成	Zn ₂ GeO ₄ :2%Mn ²⁺ 樣品的光致發:	光與激發光	98
		譜:(a)激發(λ _e	_n =532 nm)與(b)放射圖譜(λ _{ex} =342	nm)	
圕	33	以不同	激發波	長激發 Zn ₂ GeO ₄ :2%Mn ²⁺ 所得的:	光致發光光	99
		` .		nm 與(b) λ_{ex} =268 nm		
啚	34	摻雜不	同 Mn ²⁺	濃度 Zn ₂ GeO ₄ :xMn ²⁺ 樣品的光致 ⁵	發光光譜之	100
		`	$_{\rm ex} = 340 \text{ n}$			
啚	35	摻雜不	同 Mn ²⁺	濃度Zn ₂ GeO ₄ :x Mn ²⁺ 的光致發光	激發光譜之	101
		比較(λ	$_{\rm em} = 530 \rm r$	m)		
啚	36	摻雜不	同 Mn ²⁺	濃度的 Zn ₂ GeO ₄ :xMn ²⁺ 系列樣品 ⁻	發光強度與	102
				=340 nm)		
啚	37	摻雜不	同 Mn ²⁺	濃度 Zn ₂ GeO ₄ :xMn ²⁺ 系列樣品之	輝度與 x 值	103
		關係圖	$(\lambda_{\rm ex}=34)$	0 nm)		
啚	38	摻雜不	同 Mn ²⁺	濃度 Zn ₂ GeO ₄ :xMn ²⁺ 系列樣品之	CIE 座標值	104
啚	39	Zn ₂ Ge0	O ₄ 主體標	樣品的瞬態放射光譜圖(λ _{ex} =266 m	m)	105
啚	40			n^{2+} 樣品的瞬態放射光譜圖 $(\lambda_{ex}=26)$	· · · · · · · · · · · · · · · · · · ·	106
啚	41	Zn ₂ Ge0	O ₄ :6 %M	n^{2+} 樣品的瞬態放射光譜圖 $(\lambda_{ex}=20)$	66 nm)	107
啚	42	以波長	530 nm	監測 Zn ₂ GeO ₄ :xMn ²⁺ 系列樣品螢:	光衰減動力	108
		學 $(\lambda_{ex} =$	266 nm)			
啚	43	Zn ₂ Ge0	O_4 :xMn ²⁻	系列中 Mn ²⁺ 的發光及非發光路	徑之動力學	109
		機制				
啚	44	Zn ₂ Ge0	O_4 :xMn ²	系列樣品在 350 nm 的動力學:	衰減期圖譜	110
_		$(\lambda_{\rm ex}=26$		2+14		
圖	45		所合成	Zn ₂ GeO ₄ :6%Mn ²⁺ 樣品之 SEM 圖	(倍率 2000	111
		倍)	4		1 // 1	
崮	46		所合成	Zn ₂ GeO ₄ :6%Mn ²⁺ 樣品之 SEM 圖	(倍率 2000	111
		倍)		7-4	1./ 1. 1. 1.000	110
固	47		所合成	Zn ₂ GeO ₄ :6%Mn ²⁺ 樣品之 SEM 圖	(倍率 1000	112
	40	倍)	rr 人 +	7 C O COVA C 2+14 C → CD C C		110
卣	48		川台以	Zn ₂ GeO ₄ :6%Mn ²⁺ 樣品之 SEM 圖	1(1台举 2000	112
	10	倍)	ᄄᄉᅷ	フ (C C:)C 10/14 2+万万以辛口	的 VDD 同	112
卣	49	1300	川百以	Zn ₂ (Ge _{1-x} Si _x)O ₄ :1%Mn ²⁺ 系列樣品	in XKD 圖	113

譜之比較

- 圖 50 1300 所合成 Zn₂(Ge_{1-x}Si_x)O₄:1%Mn²⁺系列樣品晶格常數 114 (a)與 Si⁴⁺取代量關係圖
- 圖 51 1300 所合成 Zn₂(Ge_{1-x}Si_x)O₄:1%Mn²⁺系列樣品晶格常數 115 (c)與 x (Si⁴⁺)取代量之關係圖
- 圖 52 1300 所合成 Zn₂(Ge_{1-x}Si_x)O₄:1%Mn²⁺系列樣品激發光圖 116 譜之比較
- 圖 53 1300 所合成 $Zn_2(Ge_{1-x}Si_x)O_4:1\%Mn^{2+}$ 系列樣品光致發光 117 光譜之比較 ($λ_{ex}=254$ nm)
- 圖 54 1300 所合成 Zn₂(Ge_{1-x}Si_x)O₄:1%Mn²⁺系列樣品輝度與 x 關 118 係 (λ_{ex}=310 nm)
- 圖 55 1300 所合成 Zn₂(Ge₁-xSi_x)O₄:1%Mn²+系列樣品 CIE 座標值 119 之比較
- 圖 56 以波長 530 nm 監測 Zn₂(Si_{1-x}Ge_x)O₄:4%Mn²⁺系列樣品 Mn²⁺ 120 螢光衰減動力學 (λ_{ex}=266 nm)
- 圖 57 以波長 530 nm 監測 $Zn_2(Si_{0.8}Ge_{0.2})O_4$:4% Mn^{2+} 系列樣品螢光 121 衰減動力學 ($λ_{ex}$ =266 nm)
- 圖 58 Zn₂(Ge_{1-x}Si_x)O₄:4%Mn²⁺系列樣品之衰減期與 Si 取代量(x) 122 關係圖 (λ_{ex}=266 nm)
- 圖 59 1000 所合成 Zn₂(Ge_{0 8}Si_{0 2})O₄:1%Mn²⁺之 SEM 圖 123
- 圖 60 1000 所合成 Zn₂(Ge_{0.6}Si_{0.4})O₄:1%Mn²⁺之 SEM 圖 123
- 圖 61 1000 所合成 Zn₂(Ge_{0.8}Si_{0.2})O₄:1%Mn²⁺之 SEM 圖 123
- 圖 62 1200 所合成(Zn_{1-x}Cd_x)₂GeO₄:1%Mn²⁺系列樣品 XRD 圖譜 124 之比較
- 圖 63 不同溫度下乙二胺中所合成奈米 ZnGa₂O₄:1%Mn²⁺系列樣 125 品 XRD 圖譜之比較
- 圖 64 於 180 不同溶劑所合成奈米 ZnGa₂O₄系列樣品 XRD 圖譜 126 之比較
- 圖 65 甲醇溶劑中所合成奈米 ZnGa₂O₄之 TEM 影像 127
- 圖 66 乙二胺溶劑中所合成奈米 ZnGa₂O₄ 之 TEM 影像 128
- 圖 67 乙二胺和甲醇混合液溶劑中所合成奈米 ZnGa₂O₄ 之 SEM 129 影像
- **圖 68** Zn(NH₂CH₂CH₂NH₂)₂²⁺配位錯合物之示意圖 130
- 圖 69 固態法與與熱溶劑法所合成 ZnGa₂O₄ 樣品光致發光與激發 131 光譜之比較

- 圖 70 固態法與與熱溶劑法所合成 ZnGa₂O₄:1%Mn²⁺樣品光致發 132 光與激發光譜之比較
- 圖 71 熱溶劑法所合成奈米 ZnGa₂O₄:Mn²⁺和 ZnGa₂O₄樣品光致發 133 光與激發光譜之比較
- 圖 72 不同反應溫度所合成奈米 ZnGa₂O₄:2%Mn²⁺系列樣品之光 134 致發光與激發光譜之比較
- 圖 73 不 同 比 例 甲 醇 與 乙 二 胺 混 合 溶 液 所 合 成 奈 米 135 ZnGa₂O₄:2%Mn²+系列樣品光致發光激發光譜之比較
- 圖 74 甲醇與乙二胺混合溶液所合成奈米 ZnGa₂O₄:2%Mn²⁺樣品 136 螢光光譜之比較
- 圖 75 奈米 ZnGa₂O₄:2%Mn²⁺樣品之發光強度與甲醇含量之關係 137
- 圖 77 不同 Mn²⁺摻雜量之奈米 ZnGa₂O₄:xMn²⁺系列樣品之發光與 139 激發光譜之比較
- 圖 78 不同濃度反應物所合成奈米 ZnGa₂O₄:2%Mn²⁺樣品發光與 140 激發光譜之比較
- 圖 79 經 與 未 經 氧 化 三 辛 基 膦 (TOPO) 表 面 修 飾 奈 米 141 ZnGa₂O₄:Mn²⁺之 IR 光譜之比較
- 圖 80 表面修飾對奈米 $ZnGa_2O_4:2\%Mn^{2+}$ 發光光譜效應之比較 142