利用 IR 光譜研究氫鍵的自異結合

學生: 廖培真

指導教授: 陳振興

國立交通大學理學院 IC 製程化學產業研發碩士專班

摘要

我們分別討論 2-乙醯基吡咯在非極性或低極性溶劑中的氫鍵自異結 合現象,透過不同系統更能了解我們新推導的公式實用程度以及自異結 合系統的處理方式,我們可以由這些討論了解氫鍵的性質受到溫度、濃 度和溶劑的影響程度。

探討氫鍵自異結合的現象有很多種方法,我們以FTIR 為主要工具, NMR 為輔助工具。利用 2-乙醯基吡咯在稀薄溶液中氫鍵自異結合的氫 鍵吸收光譜,分別求出單體與雙體的各別吸收度。觀測單、雙體吸收度 隨濃度而變化的數據,代入我們推導出的二個新公式:單體公式 $\frac{[B]_o}{A_m} = \frac{1}{\varepsilon_m b} + \frac{2K}{\varepsilon_m^2 b^2} A_m$ 和雙體公式 $\frac{[B]_o}{A_d} = \frac{2}{\varepsilon_d b} + \frac{1}{\sqrt{K \varepsilon_d b}} \frac{1}{\sqrt{A_d}}$,分別求出單雙體吸收係數和自結合平衡常數Ko把四種不同溫度下求得的平衡常數,以 In K 對 1/T 作 van't Hoff plot,可求得各個系統的標準結合焓 (Δ H^o)和標準結 合熵 (Δ S^o)。兩條公式各別獨立,可以檢驗所得參數的一致性。另外討 論到雙體的形式,根據公式判斷是屬於環狀雙體或是線性雙體,這樣可 以更加了解化合物鍵結的形式。而在異結合系統部分,使用錯體公式 $\frac{[X]_o}{A_x} = \frac{1}{\varepsilon_x} + \frac{\varepsilon_m}{\varepsilon_x K_x} \frac{1}{A_m}$,可以求出錯體的吸收係數 ε_x 和平衡常數K_x。

IR Studies of Self-Association and Hetero-Association

Associated with Hydrogen Bonding

Student: Pei-Chen Liau

Advisor: Dr. Jenn-Shing Chen

Industrial Technology R & D Master Program on IC Chemical Processing

National Chiao Tung University

Abstract

The hydrogen-bonded self-association of 2-acetylpyrrole in some nonpolar and slightly polar solvents at different temperatures has been studied, based on two newly derived equations, using IR spectroscopy with a help of NMR spectroscopy if it is necessary. The NH fundamental stretching exhibited by free monomer and associated dimer are identified and their integrated absorbances A_m and A_d are used to fit the equations $\frac{[B]_o}{A_m} = \frac{1}{\varepsilon_m b} + \frac{2K}{\varepsilon_m^2 b^2} A_m$, and $\frac{[B]_o}{A_d} = \frac{2}{\varepsilon_d b} + \frac{1}{\sqrt{K\varepsilon_d b}} \frac{1}{\sqrt{A_d}}$, respectively, to obtain the absorptivities of monomer (ε_m) and that of dimer (ε_d) , and the dimerization constant K; [B]_o and b being initial solute concentration and optical path length. The dimerization constant thus obtained at different temperatures are then employed to determine the enthalpy and entropy of dimerization by van't Hoff plot. We also go a little bit further to study the heteroassociation of 2-acetylpyrrole with benzene in a nonpolar solvent CCl₄ using the utility equation $\frac{[X]_o}{A_x} = \frac{1}{\varepsilon_x} + \frac{\varepsilon_m}{\varepsilon_x K_x} \frac{1}{A_m}$, where [X]_o is the initial concentration of benzene and A_x is the integrated absorbance of complex AX and K_x is the hetero-association constant, to obtain ε_x and K_x.

In addition, the predominance of monomer-dimer equilibrium over monomer-oligomer equilibrium and the fact that the dimer is in the form of cyclic one are also throughly discussed.

誌謝

在論文完成的同時,碩士班生涯即將結束,心中有說不出的感覺。首 先在此要感謝我的指導教授 陳振興教授給予我碩士兩年加上助理一年的 細心教誨,不斷的提供研究方向及內容使我受益良多。另外也要由衷感謝 口試委員:余艇教授及王念夏教授,有了您們的建議以及指正論文上的修 改,才能夠讓我的論文更加完整,讓學生受益不少。

感謝 NMR 室的張小姐, 幫忙送測 NMR sample。還有高大字學長在實驗技巧和儀器上的教導, 另外還要感謝交大與世界先進的產學合作, 給予我工作和進修的機會。

在交大的三年,認識了很多好朋友。尤其是淑媺給了我最大的鼓勵, 常常陪在我身邊。淑慧學姊、大秉、冷翰、阿川、阿爆、鈺評、阿嚕咪、 霆琪、JC、士宗、松甫、怡碩等同甘苦共患難的好友們,有了你們生活有 趣多了。還有小高學長、吳振豪學長常常麻煩到你們真是不好意思。另外 也要謝謝實驗室之前的學弟妹們,你們讓我的實驗生涯變的很豐富,很不 一樣。

最後要謝謝我的父母,從小到大的栽培,讓我終於可以完成我最後的 學業。有太多太多的感言在心中醞釀,在交大的日子即將結束,謝謝大家 的陪伴,有了你們,我才能夠勇敢的走完這條路。

III

總目錄

中文摘要	I
英文摘要	II
誌謝	III
编日络	IV
圖目錄	VI
表目錄	X
第一章 緒論	1
11 卷之	1
1.1 月 m m m m m m m m m m m m m m m m m m	1
1.2 里, 例 到 疑 的 方 么	2
第二章 理論	5
2.1 摘要	5
2.2 推導	5
2.2.1 第一部分自結合系統	5
2.2.2 第二部分自異結合共存系統	13
第三章 探討 2-乙醯基吡咯在各溶液中的氫鍵自異結合現象	
31 按要	18
3.1 调安	
3.2 頁	20
3.2.2 實驗藥品	21
3.2.3 實驗步驟	
3.3 IR 實驗部份	
3.3.1 2-乙醯基吡咯溶於四氯化碳溶液	
3.3.2 2-乙醯基吡咯溶於四氯乙烯溶液	
3.3.3 2-乙醯基吡咯溶於正辛烷溶液	
3.3.4 2-乙醯基吡咯溶於三氯甲烷 溶液	60
3.3.5 2-乙醯基吡咯和苯溶於四氯化碳溶液	67
3.4 NMR 實驗部分	73
3.4.1 2-乙醯基吡咯溶於氯仿-d1 溶液	76
3.4.2 2-乙醯基吡咯溶於苯-d6 溶液	
3.4.3 2-乙醯基吡咯溶於四氯化碳溶液	
3.4.4 2-乙醯基吡咯溶於四氯乙烯溶液	

3.5 結果	
第四章 结論	
參考文獻	
附錄 1 NMR 圖解法的 MATHEMATICA 計算方法	104

圖目錄

圖 2.1	2-acetylpyrrole 溶於四氯化碳系統於 308K、濃度 0.0250m 的解析曲線。
圖 2.2	2-acetylpyrrole 溶於 Solvent 為四氯化碳, acceptor 為苯(濃度固定為 1m)
圖 2.3	為相同濃度的 2-acetylpyrrole(0.060m)在 T=308K, benzene 濃度由上而 下為 0.8713m、0.478m、及 0m。
圖 3.1	2-acetylpyrrole 於 CCl ₄ 系統在 308K 溫度時所測得之 NH 基的 IR 光譜 圖。濃度由上到下: 0.0561molL ⁻¹ , 0.0450molL ⁻¹ , 0.0384molL ⁻¹ , 0.0301molL ⁻¹ , 0.0228molL ⁻¹ 。
圖 3.2	2-acetylpyrrole 於 CCl ₄ 系統在 308K,濃度為 0.0260 molL ⁻¹ 時所作 之 NH 基解析曲線。
圖 3.3	2-acetylpyrrole 於 CCl ₄ 系統各溫度下的單體位移 U_{NH} 對 $\frac{D-1}{2D+1}$ 作圖。其
圖 3.4	中 D 為四氯化碳的介電常數。
圖 3.5	由公式(11)所得之 2-acetylpyrrole 於 CCl ₄ 系統線性圖。其四 組溫度 分別為: $(-\bullet-)288K$, $(-\circ-)298K$, $(-\bullet-)308K$, $(-\Box-)318K$ 。
圖 3.6	2-acetylpyrrole 於 CCl4 單雙體自結合系統的 $\frac{A_d}{A_m^2}$ 對[B] _o 作圖。其四組
	溫度分別為:(-●-)288K,(-○-)298K,(-■-)308K,(-□-)318K。
圖 3.7	2-acetylpyrrole 於 CCl4 系統之 van't Hoff Plot。其中平衡常數 的數據來 自不同溫度下的單雙體平衡常數的幾何平均值。
圖 3.8	2-acetylpyrrole 於 CCl ₄ 系統之單體吸收面積 A _m 對濃度[B] ₀ 作圖。其四 組溫度分別為:(-●-)288K,(-○-)298K,(-■-)308K,(-□ -)318K。理論線可由公式(F)求得。
圖 3.9	2-acetylpyrrole 於 CCl ₄ 系統之雙體吸收面積 A _d 對濃度[B]作圖。其四 組溫度分別為:(-●-)288K,(-○-)298K,(-■-)308K,(-□ -)318K。理論線可由公式(G)求得。
圖 3.10	2-acetylpyrrole 於 CCl ₄ 單雙體自結合系統的 $\frac{A_m[1+2(KA_d / \varepsilon_d b)^{1/2}]}{[B]_o b}$
	對 $\left(\frac{KA_d}{\varepsilon_d b}\right)^{1/2}$ 作圖。其四組溫度分別為: $(-\bullet-)288K$, $(-\circ-)298K$, $(-\bullet-)298K$, $(-\bullet-)298K$, $(-\bullet-)298K$
	■-)308K , $(-\Box-)318K \circ \dots 36$

圖 3.11	由公式所得之 2-acetylpyrrole 於 CCl ₄ 系統[B] _o A _d ⁻¹ 對 A _m ⁻¹ 作圖。其四 組溫度分為(-●-)288K, (-○-)298K, (-■-)308K, (-□-)318K。
圖 3.12	36 2-acetylpyrrole 於 C ₂ Cl ₄ 系統在 308K 溫度時所測得之 NH 基的 IR 光 譜圖。濃度由上到下: 0.0305molL ⁻¹ , 0.0224molL ⁻¹ , 0.014molL ⁻¹ , 0.009molL ⁻¹ , 0.0082molL ⁻¹ 。 43
圖 3.13	2-acetylpyrrole 於 C ₂ Cl ₄ 系統在 308K,濃度為 0.0866 molL ⁻¹ 時所作之 NH 基解析曲線。
圖 3.14	2-acetylpyrrole 於 C ₂ Cl ₄ 系統各溫度下的單體位移 v_{NH} 對 $\frac{D-1}{2D+1}$ 作圖。
	其中D為四氯乙烯的介電常數。44
圖 3.15	由公式(7)所得之 2-acetylpyrrole 於 C ₂ Cl ₄ 系統線性圖。其四組溫度分
	別為(-●-)288K,(-○-)298K,(-■-)308K,(-□-)318K。45
圖 3.16	由公式(11)所得之 2-acetylpyrrole 於 C ₂ Cl ₄ 系統線性圖。其四組溫度分
	別為(-●-)288K, (-○-)298K, (-■-)308K, (-□-)318K。45
圖 3.17	2-acetylpyrrole 於 C ₂ Cl ₄ 單雙體自結合系統的 $\frac{A_d}{A_m^2}$ 對[B]。作圖。其四組
	溫度分別為:()288K,()298K,()308K,()318K。
圖 3.18	2-acetylpyrrole 於 C2Cl4 系統之 van't Hoff Plot。其中平衡常數的數據
	來自不同溫度下的單雙體平衡常數的幾何平均值。46
圖 3.19	2-acetylpyrrole於 C2Cl4系統之單體吸收面積 Am 對濃度[B]。作圖。其
	四組溫度分為(-●-)288K,(-○-)298K,(-■-)308K,(-□-)318K。
	理論線則可由公式(F)求得。47
圖 3.20	2-acetylpyrrole於 C ₂ Cl ₄ 系統之雙體吸收面積 Ad 對濃度[B]。作圖。其
	四組溫度分為(-●-)288K,(-○-)298K,(-■-)308K,(-□-)318K。
	理論線則可由公式(G)求得。47
圖 3.21	2-acetylpyrrole 於 C_2Cl_4 單雙體自結合系統的 $\frac{A_m[1+2(KA_d / \varepsilon_d b)^{1/2}]}{[B]_o b}$ 對
	$(\frac{KA_d}{\varepsilon_d b})^{1/2}$ 作圖。其四組溫度分別為: $(-\bullet-)288$ K, $(-\circ-)298$ K, $(-\circ-)2988$ K, $(-\circ-)29888$ K, $(-\circ-)29888$ K, $(-\circ-)298888$ K, $(-\circ-)29888888888888888888888888888888888888$
	■-)308K · (-□-)318K ·
圖 3.22	2-acetylpyrrole於 C2Cl4系統之雙體吸收面積[B]oAd-1對 Am-1作圖。其
	四組溫度分為()288K,()298K,()308K,()318K。
圖 3.23	2-acetylpyrrole 於 n-octane 系統在 293K 溫度時所測得之 NH 基的 IR + 並圖 。 濃度中 上到下: 0,0085mall ⁻¹ , 0,007mall ⁻¹ , 0,0046mall ⁻¹
	元 宿 四 ~ 很反田 上 判 下・0.00031101L , 0.00/11101L , 0.00401101L , 0.00401101L , 0.0039moll ⁻¹ , 0.003moll ⁻¹ 。
	34

圖 3.24	2-acetylpyrrole 於 n-octane 系統在 293K,濃度為 0.0046 molL ⁻¹ 時所 作之 NH 基解析曲線。
圖 3.25	2-acetylpyrrole 於 n-octane 系統各溫度下的單體位移 $v_{_{NH}}$ 對 $\frac{D-1}{2D+1}$ 作
	圖。其中 D 為正辛烷的介電常數。55
圖 3.26	由公式(7)所得之 2-acetylpyrrole 於 n-octane 系統線性圖。其四組溫度
	分為(-●-)283K, (-○-)293K, (-■-)303K, (-□-)313K。…56
圖 3.27	由公式(11)所得之 2-acetylpyrrole 於 n-octane 系統線性圖。其四組溫
	度分為(-●-)283K,(-○-)293K,(-■-)303K,(-□-)313K。…56
圖 3.28	2-acetylpyrrole 於 n-octane 單雙體自結合系統的 $\frac{A_d}{A_m^2}$ 對[B]。作圖。其
	四組溫度分別為:(-●-)283K,(-○-)293K, (-■-)303K,(-□ -)313K。
圖 3.29	2-acetylpyrrole 於 n-octane 系統之 van't Hoff Plot。其中平衡常數的數
	據來自不同溫度下的單雙體平衡常數的幾何平均值。
圖 3.30	2-acetylpyrrole於n-octane系統之單體吸收面積Am對濃度 [B]。作圖。
	其四組溫度分為(-●-)283K, (-○-)293K, (-■-)303K,
	(-□-)313K。理論線則可由公式(F)求得。
圖 3.31	2-acetylpyrrole於n-octane系統之雙體吸收面積Ad對濃度 [B]。作圖。
	其四組溫度分為(●)283K, (○)293K, (■)303K,
	(-□-)313K。理論線則可由公式(G)求得。
圖 3.32	2-acetylpyrrole 於 n-octane 單雙體自結合系統的
	$A_{m}[1+2(KA_{d}/\varepsilon_{d}b)^{1/2}] + (KA_{d})^{1/2}$ 作员。其现组员在公司为: (一)
	[B] ₀ b 到($\varepsilon_d b$) 作圖。英碼組溫及另別為:(•
	$-)283K , (-\circ -)293K , (-\bullet -)303K , (-\circ -)313K \circ \dots 59$
圖 3.33	由公式所得之 2-acetylpyrrole 於 n-octane 系統[B] _o A _d ⁻¹ 對 A _m ⁻¹ 作圖。
	其四組溫度分為(●)283K, (○)293K, (■)303K,
	(−□−)313K °
圖 3.34	2-乙醯基吡咯(2-acetylpyrrole)溶於三氯甲烷系統於298K、濃度
	0.2640 m 的解析曲線。61
圖 3.35	2-acetylpyrrole 於 CHCl3 系統在 298K 溫度時所測得之 NH 基的 IR 光
	譜圖。濃度由下到上:0.0756molL ⁻¹ ,0.1124molL ⁻¹ ,0.1591molL ⁻¹ ,
	$0.2640 \text{ mol} \text{L}^{-1} \circ 0.3783 \text{ mol} \text{L}^{-1} \circ \dots 64$
圖 3.36	由公式(11)所得之 2-acetylpyrrole 於 CHCl3 系統線性圖。其四組溫度
	分別為:(-●-)293K,(-○-)298K,(-■-)303K,(-□-)313K。
圖 3.37	2-acetylpyrrole 於 CHCl3 系統之雙體吸收面積 Ad 對濃度[B]。作圖。

其四組溫度分別為:(-●-)293K,(-○-)298K, (-■-)303K,(-

	□-)313K。理論線可由公式求得。65
圖 3.38	2-acetylpyrrole 於 CHCl3 系統之 van't Hoff Plot。其中平衡常數的數據
	來自不同溫度下的雙體平衡常數值。
圖 3.39	2-acetylpyrrole 於 CCl4 系統在 308K,濃度為 0.0078 m 時所作之 NH
	基校正曲線。其中含有 Benzene [X] _o =1m。
圖 3.40	由公式(41)所得之 2-acetylpyrrole 於 CCl4(含 acceptor:X) 系統線性
	圖。在四組溫度下[X]。為 1m 和 2m 的十組數據點。
圖 3.41	298K, 2-acetylpyrrole 在氯仿-dl 中,以圖解法求取單體位移與結合
	常數,L1、L2、Q1、Q2、P1 與 P2 所代表的意義見文章內容。.76
圖 3.42	NMR 光譜圖, 298K, c = 0.0171m, 2-acetylpyrrole in CDCl ₃ 。78
圖 3.43	各種溫度下,2-acetylpyrrole 在氯仿-dl 中的觀測位移對 X 之理論線
	與數據點,溫度表示在圖中。
圖 3.44	各種溫度下, 2-acetylpyrrole 在氯仿-dl 中的觀測位移對 f_d 之理論線
	與數據點,溫度標示在圖中。
圖 3.45	各種溫度下, 2-acetylpyrrole 在氯仿-d1 中的觀測位移對[B]。的理論
	線,溫度標示在圖中。
圖 3.46	2-acetylpyrrole 在氯仿-d1 中的 van't Hoff 圖。
圖 3.47	各種溫度下, 2-acetylpyrrole 在 C_6D_6 中的觀測位移對 X 之理論線與
	數據點,溫度表示在圖中。
圖 3.48	各種溫度下,2-acetylpyrrole 在 C_6D_6 中的觀測位移對 f_d 之理論線與
	數據點,溫度標示在圖中。
圖 3.49	各種溫度下,2-acetylpyrrole 在 C_6D_6 中的觀測位移對 $[B]_o$ 的理論線,
	温度標示在圖中。
圖 3.50	2-acetylpyrrole 在 C ₆ D ₆ 中的 van't Hoff 圖
圖 3.51	各種溫度下, 2-acetylpyrrole 在 CCl ₄ 中的觀測位移對 X 之理論線與
	數據點,溫度表示在圖中。87
圖 3.52	各種溫度下, 2-acetylpyrrole 在 CCl_4 中的觀測位移對 f_d 之理論線與
	數據點,溫度標示在圖中。87
圖 3.53	各種溫度下, 2-acetylpyrrole 在 CCl4 中的觀測位移對[B]。的理論線,
	溫度標示在圖中。
圖 3.54	各種溫度下, 2-acetylpyrrole 在 C ₂ Cl ₄ 中的觀測位移對 X 之理論線與
	數據點,溫度表示在圖中。91
圖 3.55	各種溫度下, 2-acetylpyrrole 在 C_2Cl_4 中的觀測位移對 f_d 之理論線與
	數據點,溫度標示在圖中。91
圖 3.56	各種溫度下,2-acetylpyrrole 在 C ₂ Cl ₄ 中的觀測位移對[B]。的理論線,
	溫度標示在圖中。92
圖 3.57	2-acetylpyrrole 於各種溶劑系統下之單體吸收位移對 (D-1)/(2D+1)作
	圖 ,其中•: C_2Cl_4 , o:n-octane , \Box : CCl_4 。

表目錄

表 1.1 為一些氫鍵的熱力學參數參考值 12	2
表 3.1 在不同溫度下, 2-acetylpyrrole 在 CCl4 中於各種濃度時的單、雙體吸	收
位置、吸收面積與半高寬。2	28
表 3.2 2-acetylpyrrole 於 CCl4 系統中,在不同溫度下所求得之單體吸收係對	跂
\mathcal{E}_m 、雙體吸收係數 \mathcal{E}_d 及平衡常數 K 、以及從單體吸收峰與雙體吸收	峰
所求出之反應熵 ΔH^o 及反應焓 ΔS^o 。	60
表 3.3 在不同溫度下, 2-acetylpyrrole 在 C_2Cl_4 中於各種濃度時的單、雙體吸	收
位置、吸收面積與半高寬。4	0
表 3.4 2-acetylpyrrole 於 C_2Cl_4 系統中,在不同溫度下所求得之單體吸收係	數
ε_{m} 、雙體吸收係數 \mathcal{E}_{d} 及平衡常數 K 、以及從單體吸收峰與雙體吸收	峰
所求出之反應熵ΔH°及反應焓ΔS°。錯誤!尚未定義書籖	0
表 3.5 在不同温度下, 2-acetylpyrrole 在 n-octane 中於各種濃度時的單、雙	麷
吸收位置、吸收面積與半高寬。5	51
表 3.6 2-acetylpyrrole 於 n-octane 系統中, 在不同溫度下所求得之單體吸收	係
數 $\mathcal{E}_m、雙體吸收係數 \mathcal{E}_d 及平衡常數 K、以及從單體吸收峰與雙體吸$	收
峰所求出之反應熵ΔH°及反應焓ΔS°。錯誤:尚未定義書籤	0
表 3.7 在不同溫度下, 2-acetylpyrrole 在 $CHCl_3$ 中於各種濃度時的雙體吸收	位
置、吸收面積與半高寬。	52
表 3.8 2-acetylpyrrole 於 $CHCl_3$ 系統中,在不同溫度下所求得之雙體吸收係	數
\mathcal{E}_d 及平衡常數 K、以及從雙體吸收峰所求出之反應熵 ΔH^o 及反應焓	
$\Delta S^{o} \circ \dots 6$	53
表 3.9 在不同温度下, 2-acetylpyrrole 在 CCl ₄ 中(含 X: Benzene)於各種濃)	度
時的單、雙體和錯體吸收面積以及錯體的吸收位置。6	8
表 3.10 2-acetylpyrrole 於 CCl4 系統中(含 X:Benzene), 在不同溫度下所求	得
之單體吸收係數 \mathcal{E}_m 、雙體吸收係數 \mathcal{E}_d 、錯體吸收係數 \mathcal{E}_x 及平衡常數	C
$K \cdot K_x \circ \dots 7$	0'
表 3.11 四組溫度下,2-acetylpyrrole 在氯仿-d1 中的濃度,觀測位移, δ_m ,	$\delta_{_d}$
與平衡常數 K。7	7
表 3.12 四組溫度下,2-acetylpyrrole 在 C_6D_6 中的濃度, 觀測位移, δ_m , δ_d	與
平衡常數 K。	32

表	3.	13	四組溫度下,	2-acetylpyrrole 在	CCl ₄	中的濃度,	觀測位移,	$\delta_{_m}$,	δ_d 與
			平衡常數K。						86
表	3.	14	四組溫度下	, 2-acetylpyrrole 在	C_2Cl_4	+ 中的濃度	,觀測位移	, δ_{m}	, $\delta_{_d}$
			與平衡常數k	C •					90

第一章 緒論

1.1 前言

在化學的世界裡,微觀和巨觀的觀測可以有不同的視野。巨觀的觀 察下,一般的物理性質包括狀態以及溫度和壓力都是可以被測量或直 觀的。站在微觀的角度,卻有著很多不為人知的行為在發生著,整個 世界就像是一個大系統,維持著能量守恆的型式,遵守著熱力學的定 律,能量轉換的形式有很多種,但總是會維持著大環境不變的原則, 原子間透過鍵結形成分子,分子的內能包括移動,振動和轉動的能 量,有時候改變外界溫度,會增加分子活動的能力,也就是給他一個 外加的能量,讓它打斷化學鍵或是產生新的鍵結,這關係著一個反應 式的變化。而構成分子的形狀與鍵結形式和化學鍵有密切的關係,極 性和非極性由對稱性決定,一般來說,極性分子的溶質易溶於極性的 溶劑中,而氫鍵並不屬於化學鍵的一種,它是一種比較微弱的作用 力,可以發生在分子間和分子內,在本篇論文要討論的自結合系統即 為分子間的作用力。氫鍵相關研究在 1920 年已發表¹, 它是一種靜電 吸引力,通常只發生在特殊的幾種原子與氫原子結合的時候 (H 連接 在電負度大的原子上),通常因為產生氫鍵的結果,會改變化合物的 物理性質。若分子間有氫鍵會造成沸點升高,原因在於分子間有很強 的吸引力,要破壞鍵結改變狀態就必須要提供更多的能量,也因此沸 點就提升了。所以一般沒有氫鍵的系統,物理組成皆為常態。一般以 分子量大小就可以判定熔沸點高低,但對於分子量相近但有氫鍵的化 合物來說,就不會有此規律性。而氫鍵還會影響溶解度,和溶劑形成 氫鍵的溶質,溶解度會增加。另外結構,密度和黏滯性也會有所影響。

1.2 量测氫鍵的方法

本實驗室嘗試過許多研究分子間氫鍵作用力的方法,一般來說有核磁共振²⁻⁴、紅外線光譜⁵⁻⁹、紫外光/可見光光譜¹⁰、超音波¹¹等。氫 鍵的強度範圍很廣,下表提供一些氫鍵的熱力學參考值。

Type of H bond	system	Phase or	-∆G [°]	-∆H [°]	-∆S [°]	Method
		Solvent	(kcal/mole)	(kcal/mole)	(e.u.)	
О-Н…О=С-	formic acid	vapor	-	7.4±0.5	18.1±2.0	IR
	acetic acid	vapor	-	7.3±0.5	18.1±2.0	IR
	methanol	vapor	0.95±0.09	7.6±1.4	23±4.5	IR
-N-H…N	Indole-pyridine	CCl ₄	0.81	3.6±1.2	9.6±4.0	IR
	pyrrole-pyridine	CCl ₄	0.54	3.2	8.9	IR
-N-H···O=C-	3,5-dimethypyrazole	CCl ₄	-	4.6±0.4	-	IR
	γ-butyrolactam	CCl ₄	1.66	3.5±0.4	6.2	IR
	2-pyridone	CCl ₄	2.63	4.4±0.4	6.0	IR

表 1.1 為一些氫鍵的熱力學參數參考值 12

我們可以發現在一般的系統下, entropy 和 enthalpy 是負值,形成 氫鍵的過程為放熱反應。亂度減少,相對於分子而言自由度增加,一 般鍵能小於 3 kcal/mol 為弱氫鍵,大於 10 kcal/mol 為強氫鍵。

1.3 氫鍵自異結合常見的模式

影響氫鍵自結合主要有三種因素包括濃度,溫度和溶劑效應。所以 在實驗的內容中我們改變濃度和溫度和不同溶劑,去討論自異結合共 存的系統下,或者是單純自結合系統的處理。過去我們研究的系統為 處理單只有單雙體的自結合系統,假設含氫鍵分子具有龐大的立體障 礙時作自結合求平衡常數的研究,其他舊的文獻包括了雙體自結合模 式: Carboxylic Acids¹³、Formic Acids¹⁴以及 2,2-二甲基-3-乙基-3-戊醇 hum ¹⁵的自結合系統中使用過的線性連續自結合模式(MLFHB)求取K。另 外單體雙體多體模式:同樣把自結合當做線性系統, Coggeshall¹⁶等 人利用此模式研究醇類及酚類的IR光譜,發現一般分子若只是用雙體 平衡常數做校正,則當溶質濃度增加時平衡常數值會隨之增加;證明 自結合並不會停留在雙體,一旦濃度增加有可能會產生多體型式。但 是當遇到立體障礙大的分子時,單雙體平衡就不會再隨濃度而改變, 所以尋找立體障礙大的分子可以避免產生多體,簡化複雜的系統。

過去我們除了處理單雙體自結合的系統用NMR成功計算出熱力學

3

常數之外,還嘗試處理與溶劑形成的錯體的異結合共存系統,在數據 處理上克服一些困難之後,得到較為精確的結果17。至於選擇自結合 只有到雙體的其他分子,我們挑選適合的溶質作測試,看其IR光譜和 溶解度許可下,以不會產生多體為主,根據不同的溶質在溶劑中的IR 光譜,選擇2-乙醯基吡咯在四氯化碳、四氯乙烯、正辛烷和三氯甲烷 以及2-乙醯基吡咯和苯在四氯化碳的系統中。上述五組系統是利用N-H…O=C形成氫鍵,觀察結果發現後者會與低極性的溶劑形成錯合 物,因此我們可以計算出錯合物的吸收係數和平衡常數,拿來和原有 系統作比較。前三組系統,由於溶劑為非極性,並不會產生異結合的 現象,僅為單純的單雙體,這與之前的研究頗為相近,僅在線性系統 的公式中做一些改進,以求得到更精確的數據,並且再多導了一條驗 44111111 證的公式,而後再針對雙體的部分是否為環狀雙體或是線性雙體,導 出另外的公式驗證雙體的型式。而在三氯甲烷的部分,則因其IR光譜 在單體部分出現二根peak,經分析應為conformer型式,故先取雙體部 分和NMR結果作比較。

4

第二章 理論

2.1 摘要

在單雙體自結合系統中透過 IR 光譜的單雙體面積(即總吸收度) 可以求出單體吸收係數 *E*_m、雙體吸收係數 *E*_d 及平衡常數 K 值,我們 推導出兩個新的公式,其中雙體部分經由改進可以各別求出,不需藉 由單體的方程式去進行計算,這樣一來可以免去計算過程中產生的誤 差,也可以由原有的雙體方程式去驗證我們的結果是否正確。新的方 法是利用溶劑中化合物單雙體的吸收面積,在一各固定溫度下取十組 不同的濃度來做實驗,利用單體公式求出單體吸收係數和自結合常 數,雙體公式求出雙體吸收係數和自結合常數,自結合常數的部分以 幾何平均值表示。

2.2 推導

2.2.1 第一部分

下式為單雙體自結合系統達到平衡反應

$$B + B \rightleftharpoons B_2 \tag{1}$$

初始濃度[B]。與反應後的單、雙體平衡濃度[B]、[B2]的質量不滅關係為

$$[B]_{o} = [B] + 2[B_{2}]$$
⁽²⁾

平衡常數K表示為

$$K = \frac{\left[B_2\right]}{\left[B\right]^2} \tag{3}$$

K 只跟溫度有關。將式子(3)改為 $K[B] = \frac{[B_2]}{[B]}$,由合比定理知

$$\frac{[B]}{l} = \frac{2[B_2]}{2K[B]} = \frac{[B]_o}{l+2K[B]}$$
(4)
$$\frac{[B]_o}{2K[B]+1} \text{ or, } \frac{[B]}{l} = \frac{100}{100}$$
(5)

$$\frac{[B]_{o}}{[B]} = 2K[B] + 1$$
 or, $\frac{[B]_{o}}{[B]_{o}} = \frac{1}{1 + 2K[B]}$ (5)

$$\frac{[B]_{o}}{[B_{2}]} = 2 + \frac{1}{K[B]} \quad \text{or,} \quad \frac{[B_{2}]}{[B]_{o}} = \frac{K[B]}{1 + 2K[B]} \tag{6}$$

將公式(5) 兩邊同乘 \mathcal{E}_m 整理後得到

$$\frac{[B]_o}{A_m} = \frac{1}{\varepsilon_m b} + \frac{2K}{(\varepsilon_m b)^2} A_m \tag{7}$$

其中 Am 由 Beer-Lamberts law 替换,公式如下

$$A_m = \varepsilon_m \times b \times [B] \tag{8}$$

其中 ε_{m} 為化合物之單體吸收係數, $\tilde{\upsilon}$ 表波數,單位為 cm⁻¹, b 為光徑長度。 利用公式(7) ,將單體數據以 $Y = \frac{[B]_{o}}{A_{m}}$ 對 X = A_m做直線圖,可自截距 $Q_{m} = \frac{1}{\varepsilon_{m}b}$ 及斜率 $P_{m} = \frac{2K}{\varepsilon_{m}^{-2}b^{2}}$ 求得 K 及 ε_{m} 。 再考慮雙體部分。由(3)式和(6)式可以轉換出(9)式,(9)式和(10)式可以導出

(11)式

$$\frac{[B]_o}{[B_2]} = 2 + \frac{1}{\sqrt{K[B_2]}} \tag{9}$$

$$A_{d} = \varepsilon_{d} \times b \times [B_{2}]$$

$$\frac{[B]_{o}}{A_{d}} = \frac{2}{\varepsilon_{d}b} + \frac{1}{\sqrt{K\varepsilon_{d}b}} \frac{1}{\sqrt{A_{d}}}$$
(10)
(11)

利用公式 (11)將雙體實驗數據以 $Y = \frac{[B]_o}{A_d}$ 對 $X = \frac{1}{\sqrt{A_d}}$ 做直線圖自截距

$$Q_{d} = \frac{2}{\varepsilon_{d}b} \mathcal{Q}_{d} \approx P_{d} = \frac{1}{\sqrt{K\varepsilon_{d}b}} \mathcal{R} \mathcal{R} \mathcal{Q}_{d} \circ \mathcal{R} \mathcal{Q} \circ \mathcal{Q} \circ$$

體及雙體 K 值先取其幾何平均值之後再作 van't Hoff plot,

 $lnK = \frac{\Delta S}{R} - \frac{\Delta H}{R} \frac{1}{T} , \text{ \vec{T} of all \vec{P} and \vec{P} an$

經由公式 (7)和公式 (11)我們可以很明確的看出所有的參數皆獨立計 算出,而就雙體部分來討論的話,我們可以證明出其實這和舊的方程式是 互相可以轉換的。以前我們是利用下式求雙體

$$\frac{[B]_o}{A_d} = \frac{\varepsilon_m}{K\varepsilon_d} \frac{1}{A_m} + \frac{2}{\varepsilon_d b}$$
(12)

式(12)是將雙體實驗數據以 $Y = \frac{[B]_o}{A_d}$ 對 $X = \frac{1}{A_m}$ 做直線圖自截距 $\frac{2}{\varepsilon_d b}$ 及斜率 $\frac{\varepsilon_m}{\varepsilon_d K}$ 得K及 ε_d 。我們可以觀察作這樣的線性圖必須牽涉到上一條方程式 的正確程度,難免會有誤差產生。因此,經過證明公式 (11)和公式 (12) 其實是一體的兩面,讓我們在計算時又多出一條可以驗證數據可信度的 線性圖。以下為兩式等價的證明:

$$\frac{[B]_o}{A_d} = \frac{\varepsilon_m}{K\varepsilon_d} \frac{1}{A_m} + \frac{2}{\varepsilon_d b}$$

$$\frac{[B]_o}{A_d} = \frac{2}{\varepsilon_d b} + \frac{1}{\sqrt{K\varepsilon_d b}} \frac{1}{\sqrt{A_d}}$$
(13)

證明如下:

式(6)的原式為

$$\frac{[B_2]}{[B]_a} = \frac{K[B]}{1 + 2K[B]}$$
(15)

取倒數之後為

$$\frac{[B]_o}{[B]_2} = \frac{1}{K[B]} + 2 \tag{16}$$

左右同乘以 Edb 為

$$\frac{[B]_o}{A_d} = \frac{1}{K[B]\varepsilon_d b} + \frac{2}{\varepsilon_d b}$$
(17)

將[B]以 $A_m = \varepsilon_m \times b \times [B]$ 取代並整理後為

$$\frac{[B]_o}{A_d} = \frac{\varepsilon_m}{K\varepsilon_d} \frac{l}{A_m} + \frac{2}{\varepsilon_d b}$$
(18)

公式(18)也由公式(6)導出,而公式(6)也是導出公式(14)的結果 結論:我們知道(13)式和(14)式都是由同一式子推導出可以得到兩式 等價,可以互相驗證結果。

推導公式(7)及(11)時有一些主要假設:

- (1) 該溶液的化合物只以單體(monomer)及氫鍵鍵結之雙體(dimer)形式存在,除了自結合外溶質與溶劑間並無氫鍵作用,且雙體形式只有一種(例如環狀雙體)因此在系統上有所限制。也就是出現單純的兩根 peak,分的越開 fitting 越能準確區分。
- (2) 溶液配置濃度越稀薄越好,越接近理想溶液,即定溫之下平衡常數K 為定值。
- (3) 溶質吸收度遵守 Beer's law,以吸收度不超過 1.5 為主。

若我們的溶質符合上述三項假設,則由單體及雙體兩根吸收峰總吸收度所求得之平衡常數之結果應當一致。

另外為了判斷雙體型式我們導出另一各新公式去確定我們的假設,這部 分已經在 paper 中發表¹⁸,導出公式如下。為了證明雙體型式為環狀雙體 或者線性雙體,我們開始提出一些假設,如果是環狀雙體的型式,所有雙 體的 NH 基都會形成氫鍵鍵結,而未鍵結的部份全部來自單體;所以若是 線性雙體的話,雙體也會提供未鍵結的 stretching 訊號,也就是雙體的終端 基訊號,這在下面會討論到。我們先假設是線性雙體的話,單體面積應改 為公式(19)

$$A_{\rm m}^{\rm a} = \varepsilon_{\rm m} b[B] + \varepsilon_{\rm m}^{\rm i} b[B_2] \tag{19}$$

ε_m 為未鍵結的雙體終端基訊號跟單體的訊號區分開(ε_m)。合併前面單體 的公式會得到

$$\frac{A_{\rm m}^{\rm a}}{[B]_{\rm o}} = \frac{\varepsilon_{\rm m}b + \varepsilon_{\rm m}'bK[B]}{1 + 2K[B]} = \frac{\varepsilon_{\rm m}b + \varepsilon_{\rm m}'b\left(\frac{KA_{\rm d}}{b\varepsilon_{\rm d}}\right)^{1/2}}{1 + 2\left(\frac{KA_{\rm d}}{b\varepsilon_{\rm d}}\right)^{1/2}}$$
(20)

整理之後

$$\frac{A_{\rm m}^{\rm a} \left[1 + 2\left(KA_{\rm d}/b\varepsilon_{\rm d}\right)^{1/2}\right]}{[B]_{\rm o}b} = \varepsilon_{\rm m} + \varepsilon_{\rm m}^{\prime} \left(\frac{KA_{\rm d}}{b\varepsilon_{\rm d}}\right)^{1/2}$$
(21)

K and ε_{d} 在公式 (11) 可以計算, $Y = A_{m}^{a} \left[1 + 2(KA_{d}/b\varepsilon_{d})^{1/2} \right] / [B]_{o}b$ 對 X = $(KA_{d}/b\varepsilon_{d})^{1/2}$ 作圖。線性迴歸得到斜率 $P = \varepsilon_{m}^{i}$, 截距 $Q = \varepsilon_{m}$. 如果雙體為線 性型式,畫出的圖形就為一條有斜率的線,也就是 P 和 Q 都存在。若是 一條水平線,很明顯的就是環狀雙體。在第三章就會討論到實驗的結果。 與之前只用單體來決定平衡常數不同的地方,我們的方法是首先能夠 完整利用單雙體總吸收度的兩個部分來處理自結合系統,前提是溶液系統 只有單一單體和一種形式的雙體(環狀雙體)存在。這也是以IR方法研 究自結合系統上的一大突破,而困難的是在於要尋求只有單純的單雙體吸 收的化合物確實不容易。

目前我們正在積極尋找其他複雜系統的解決方式,包括了自異結合的系統,以下將討論不單只有單雙體系統的研究,在實驗的幾組系統中,我們可以發現結果顯示當 2-乙醯基吡咯在四氯化碳、四氯乙烯及正辛烷中的 IR 光譜圖為我們一開始假設的系統,也就是可以用實驗室先前導出的公式來 求熱力學常數值。而在三氯甲烷和加入 acceptor 的四氯化碳中,觀察 IR 光 譜可以發現有不同的表現,這是因為在三氯甲烷中,該化合物的單體會產 生 cis 和 trans 的異構物,雖然我們還無法區分那一根波峰分別代表了哪種 形式的單體,只能初略的知道二根 peak 有一定的比值。而在後者系統中發 現原來溶質會和 acceptor 形成異結合的形式,也就是 complex,造成和單雙 體競爭。藉由這兩組系統的光譜圖,我們期望在裡頭找到合理的計算方法, 雖然複雜系統的變數相對的增加,但是藉由很多相關係數可以推導出新的 方程式,是我們努力的方向之一。

過去討論大多認為雙體形式有線性或環狀兩種,三體或四體則以環狀 居多。線性氫鍵大多會形成四體以上。¹⁹⁻²¹而一個形成氫鍵的X-H基(X-H…Y) 和未形成氫鍵的X-H基,其伸張頻率(Stretching frequency)會有不同,所以

會有兩個吸收峰出現。而且形成雙體的氫鍵 X-H 基,其伸張頻率會往低頻 率方向移動,而且其半高寬會比較大,而使吸收峰變寬。我們可藉由上述 各點判別吸收峰為單體或雙體。氫鍵停留在雙體自結合,也有可能在不同 形式的氫鍵訊號。例如線性雙體,除了單體和雙體吸收外,在靠近單體的 地方還有一根雙體的終端基訊號 22-23。有些分子若是有不同的轉動組態的異 構物(rotation isomers),則在紅外線光譜中,也會看到單體或雙體在不同波 數位置有異構物的吸收²⁴。要分辨那些吸收峰為單體的異構物,那些為雙 體的異構物,可利用高斯-勞倫茲混合校正分佈曲線的公式將吸收峰重疊的 部分分離出,利用我們假設的關係式,分析各吸收峰總吸收度之間合乎那 種關係式以辨別各吸收峰。環狀氫鍵就算以雙體自結合,也很容易與化合 物的其他吸收訊號重疊。在某些系統中,雙體會受到倍頻(overtone)的干擾 411111 而無法詳細計算。這也是過去只用單體面積來決定平衡常數的原因²⁵。其 使用公式由 Beer-Lambert's law 透過 K 轉換而來:

$$A_{m} = \frac{2\varepsilon_{m} b[B]_{o}}{\left(1 + 8K[B]_{o}\right)^{1/2} + 1}$$
(22)

其公式計算結果為單體的理論線,表現在圖中。

以上部分會在光譜分析中討論,過去文獻中曾利用勞倫茲-高斯函數, 將乙醇於環已烷自結合氫鍵的 IR 吸收光譜單雙體分離出來²⁶,並求出自結 合常數。至於大部分的理論假設都為一種雙體形式,並利用單體吸收面積 求出兩個平衡常數²⁷。故 IR 光譜分析雖然比 NMR 準確許多,但也只有在 兩根有距離的吸收峰的分離校正比較準確。若是吸收峰很接近則面積不易區分,會造成誤差。

2.2.2 第二部份

圖 2.1 為 2-acetylpyrrole 溶於四氯化碳系統於 308K、濃度 0.0250 m 的解 析曲線。和圖 2.2 為對照組,圖 2.2 為 2-乙醯基吡咯(2-acetylpyrrole)和苯 溶於四氯化碳系統於 308 K、濃度 0.0310 m 的解析曲線。由左而右分別為 單體吸收峰、錯體吸收峰、雙體吸收峰。一開始選定的溶質必須要不受溶 劑訊號的干擾,因此溶劑必須在此範圍內無訊號,我們的溶質是透過 NH...O=C 行自結合。實驗步驟會在第三章詳加討論。而圖 2.2 為對照組。 由於苯的濃度夠稀薄且定量之後,我們發現在原溶劑系統中並不會對原來 單雙體有太大的影響,因此苯在系統中的角色扮演電子的接受者,造成單 雙體的吸收峰降低,但位置不變,也就是強度減弱,不改變原來的電子躍 遷能階。圖 2.3 為相同濃度的[B]。在 T=308K, benzene 濃度由上而下為 0.8713、0.478、0 m。

圖 2.1 2-acetylpyrrole 溶於四氯化碳系統於 308K、濃度 0.0250m 的

圖 2.2 2-acetylpyrrole 溶於 solvent 為四氯化碳, acceptor 為苯(濃度 固定為 1m) 於 308K、濃度 0.0310m 的解析曲線。

Wavenumber/ cm⁻¹

圖 2.3 為相同濃度的 2-acetylpyrrole(0.060m)在 T=308K, benzene 濃度由上而下為 0.8713m、0.478m 及 0 m。

假設 B:溶質(2-acetylpyrrole)

X: Acceptor (benzene)

S : Solvent(carbon tetrachloride)

$$B+X \Leftrightarrow BX \tag{23}$$

X 為 acceptor, BX 為 IR 光譜上 3413cm⁻¹ 位置的訊號, 平衡常數的公式經 過修正可以分別導出另一條線性關係式。

$$K_{x} = \frac{[BX]}{[B][X]} = \frac{[BX]}{[B]([X]_{o} - [BX])}$$
(24)

$$\frac{K_{x}[B]}{l} = \frac{[BX]}{[X]_{o} - [BX]}$$

$$(25)$$

$$\Rightarrow \text{Lic} \neq$$

利用台

$$\frac{K_x[B]}{l+K_x[B]} = \frac{[BX]}{[X]_o}$$
(26)

取倒數(Reciprocal) 整理之後得

$$\frac{[X]_o}{A_x} = \frac{1}{\varepsilon_x} + \frac{\varepsilon_m}{\varepsilon_x K_x} \frac{1}{A_m}$$
(27)

以 Y =
$$\frac{[X]_o}{A_x}$$
, X = $\frac{l}{A_m}$ 作圖,得截距 Q = $\frac{l}{\varepsilon_x}$, 斜率 P = $\frac{\varepsilon_m}{K_x \varepsilon_x}$ 。而另外配

置一組系統為單純的單雙體而無 X 的情況下,該單雙體吸收係數和平衡常 數可以由第一部分的公式求出,而再代入公式 (27),錯體的平衡常數 Kx 即可求得。

所有的數值都是在某定溫下處理自異結合共存系統,有了初始濃度和 IR 光譜上 fitting 出的吸收面積,再搭配上我們的公式很多的複雜系統都可以 尋求解答,當然這需要更多的其他系統來驗證,相信這將是往後的研究對 象之一。

就第一部分來說明,我們所推導出的方法是分別利用溶劑中化合物單雙體的吸收面積,在不同濃度下的改變,分別求出單雙體吸收係 數和自結合常數。此外對於重疊面積的部份,利用 Galactic 公司的 軟體 GRAMS32 AI 將其分離出來,並配合 Gauss-Lorentz 混合校正 分布曲線的公式,如此一來便能完整分析吸收峰的特性。

在 IR 光譜中由於掃瞄的速度夠快,可以直接看到溶質之單體及氫 鍵自結合之不同振動的吸收峰,一旦溶質符合上述的三項假設,平衡 常數分別由單雙體求出的結果應當一致。如果是這些系統的結論應該 也會和 NMR 中計算出的結果一致。在第三章的實驗中會列出和 NMR 實驗比較的結果。

第三章 探討 2-乙醯基吡咯在各溶液中的氫鍵自異結合現象

3.1 摘要

2-乙醯基吡咯(2-acetylpyrrole)的結構式經過測試與有立體障礙結 構的醇類相同有單純的單雙體吸收,透過溶劑效應,官能基拉電子的 強弱,表現在不同的溶劑系統中。我們發現其在不同溶液中會有不同 的結果,在非極性的溶劑中有單純的單雙體出現,這也就是第一部分 的計算。在低極性的溶劑中,由於電子對提供體與電子對接受體之錯 化合物形成,溶劑熱力學的效應就必須考慮其中,氫鍵以及錯化合物 分別有不同的熱力學函數,分析自異結合系統必須透過配置混合溶 液,觀察兩種 IR 光譜得到結論。在3413cm⁻¹ 處很明顯的出現的就 是 complex 的 peak。若固定 acceptor 的濃度,將可以計算出 K_x 以 及 ε_{\circ} 。而使用 N-H 和 C = O 形成氫鍵自結合行為的還有蛋白質的研 究,最早實驗室使用過立體障礙大的醇類做研究,例如:2.2-二甲基 -3-乙基-3-戊醇(2,2-dimethyl-3-ethyl-3-pentanol 簡稱 DMEP)、3-乙基 -2-甲基-3-戊醇(3-ethyl-2-methyl-3-pentanol 簡稱 EMP),發現在一 定的溫度範圍內,這些醇類是以平面的環狀雙體自結合²⁸。本實驗室 之前也曾利用 NMR 的方法研究 2,4-二甲基-3-戊醇

(2,4-dimethyl-3-pentanol 簡稱 DMP)、3-甲基-3-戊醇

(3-methyl-3-pentanol 簡稱 MP)、2,3,4-三甲基-3-3-戊醇

(2,3,4-trimethyl-3-pentanol 簡稱 TMP)等三種立體障礙醇類於各種溶 劑的單雙體自結合系統,並計算其結合常數值²⁹,以及標準結合熵和 標準結合焓。在液態^{30,31}以及 2M 之四氯化碳溶液中^{32,33},已有計算 出 DMEP 分子之間只有雙體之鍵結形式。

目前可以討論的方向包括光譜除了單雙體 peak 以外的部分可以分 別有以下幾種模式分析:

- (1) 單體旁邊有雙體未受氫鍵鍵結的終端基,如果是這種形式的話分子就是線性的雙體結構。作圖的線為水平時可以知道是環狀雙體,反之若有斜率出現代表含有線性雙體,這是因為曝露在外的氫也會提供單體部分的吸收位置,造成我們在fitting上會看到在同一個位置附近有兩根 peak 存在。而我們目前研究的 2-acetylpyrrole 和 DMEP 皆為環狀雙體,這些假設都在稀薄溶液中進行實驗。若分子內有氫鍵的結構,則其含有氫鍵的單體吸收位置也會與雙體的吸收重疊,即分別含有無氫鍵鍵結單體與分子內氫鍵鍵結兩種單體。
- (2) 單體吸收位置有兩根 paek 另外一種可能是在低極性溶劑中形成 錯化合物,這部分會有詳細的解說。
- (3) 雙體吸收位置有兩根 paek 有可能是雙體有兩種形式,包括線性雙

體和環狀雙體,也有可能是因為濃度關係已經形成多體了。

(4) 單體吸收位置有可能是該化合物會形成異構物,自己本身有兩種 形式存在,由於有異構物的形式,而產生 cis 和 trans 的 conformer³⁴。如果可以由 NMR 鑑定出不同的氫譜位置再配合 2D 的碳氫圖就可以確定,這部分由於雙鍵轉動速度過快在常溫下幾 乎看不到,必須往低溫實驗才有可能出現,所以還無法確定真正 的答案。

最後要討論到溶劑的選擇,以非極性或低極性不會與溶質有強作 用力為主。還有一點,就是溶劑在樣品的 NH 基伸張震動的範圍(約 3200-3500cm⁻¹)不能有強吸收。否則樣品掃描的結果在背景無法扣除 乾淨時會對光譜造成干擾。此外,我們可以利用溶劑的介電常數值來 討論氫鍵的溶劑效應。

3.2 實驗

3.2.1 儀器設備

- 使用紅外線光譜儀型號為 Bio-Red Spc. 3200 FTIR,解析度為 2 cm⁻¹,搭配 Thermo NESLAB 液體控溫槽。
- ¹H 核磁共振光譜之測定係使用 Varian Unity-300 (含 VTC-4 溫 度控制裝置)或 Bruker 300 型核磁共振光譜儀。

- CaF₂ 鹽片 (光徑為 1.0mm,0.5mm,0.2mm 及 0.1mm)。此鹽片的優點為不吸水。
- 4. Metter Toledo AB104 電子天平,精密度到小數點第四位。
- 5. Hamilton 微量注射針筒(1mL,0.5mL 及 0.25mL)。
- 6. Vial (小玻璃瓶) 含中孔塑膠蓋子。
- 7. Wilmad WG-5 mm tube, 盛裝樣品以測。

3.2.2 實驗藥品

- 1.2-乙醯基吡咯(2-acetylpyrrole):TCI藥廠,純度99%。
- 2. 正辛烷(n-octane): Aldrich 及 Acros 藥廠, 純度 99+%。
- 3. 四氯乙烯(tetrachloroethylene): Aldrich 藥廠,純度 99.98%。
- 4. 四氯化碳(tetrachloride): Merck 藥廠, 純度 99.8%。
- 5. 苯(benzene): Tedia 藥廠, HPLC/Spectro 級, 純度 99.98%。
- 三氯甲烷(chloroform): Tedia 藥廠, HPLC/Spectro 級, 純度
 99.98%。
- 7. tetramethylsilane (TMS) : Cambridge Isotope Laboratories •
- 8. d-chloroform+1% V/V TMS:Cambrige Isotope Laboratories,純度 99.8%。
- 9. benzene d6: Cambrige Isotope Laboratories, 純度 99.6%。

10.cyclohexane - d12: Cambrige Isotope Laboratories, 純度 99.7%。

3.2.3 實驗步驟

- 1. IR 溶液配置
- (1)用電子天平秤量所需之溶質重,置於4mL的樣品瓶內。若溶質為液體, 則以適當的微量注射針筒配置。
- (2)以1mL之微量注射量針筒吸取適量的溶劑,注射於上一步驟之樣品瓶
 中,並以電子天平秤重,所配置的藥品濃度皆以重量莫耳濃度(m)為單位。並查出各溫度下的溶劑密度轉換為體積莫耳濃度(M)。
 2.實驗操作
- (1) 實驗一開始時先將控溫槽調整至固定的溫度,循環水中的水位要達一定 位置,連接 cell 的部份外接電子溫度計可以直接讀出,由於這中間有 熱損失,所以必須以讀出的部份為基準。操作時必須等到溫度在一定時 間內無變化才可以開始實驗。可以作出控溫槽與電子溫度計之間的線性 關係,可以快速得到所需溫度。
- (2) 溫度平衡後先使用 CaF2 鹽片測純溶劑為背景(background),再測量扣除背景後的吸收光譜。掃描次數根據不同濃度時的雜訊比作調整,範圍由16 次到128 次不等。鹽片光徑範圍為 0.1~1.0mm。選擇光徑厚度的原則為樣品的吸收度不能過高,最好控制在1.5 以下,避免吸收面積隨

濃度的變化而偏離比爾定律。鹽片為封閉式系統,實驗過程中以環 已烷清洗鹽片,再用氮氣吹乾。

- (3) 將實驗所得的光譜以.SPC 的檔名儲存,由 Galactic 公司的軟體 GRAMS32 AI,利用 Gauss-Lorentz 混合校正分布曲線的公式將-NH 積單雙體之重疊的吸收峰分離出來,並分別求出吸收峰面積、高度、半 高寬等係數。
- (4) 由於 Beer-Lambert's law: A=ε×b×[B] 其中與光徑長度 b 相關的是 單位體積溶液中的溶質量,故最後的濃度要轉換為體積莫耳濃度。
- 2. NMR 溶液配置
- (1) 氘溶液配置:所使用之溶劑為氯仿-d1,四氯化碳與環已烷-d12,因四 氯化碳無氘成分,必須添加大約 4%(V/V) 的環已烷-d12 當作 lock solvent;化學位移以四甲基矽烷(tetramethylsilane,TMS),佔液體體 積1至2%,作為內標 (internal reference),即其化學位移定為 δ =0 Hz。
- (2) 用電子天平秤取所需的溶質重量,置於2mL的樣品瓶內。
- (3) 以 1 mL 之微量注射針筒吸取適量的溶劑,注射於步驟(2)之樣品瓶 中,同時以電子天平秤重,計算濃度以重量莫耳濃度 (m) 為單位。
- (4)將配置好的樣品,以微量注射針筒吸取並迅速注入外徑為 5mm 的 NMR 試管中。以液態氮 trap 住內部的液體,使它暫時不會揮發,並用瓦 斯- 氧焰快速封管。封管的目的為避免空氣中的水氣進入溶液中,以及

避免溶劑揮發造成濃度誤差。

2.核磁共振儀的操作

- (1) 溫度校正: Varian Unity-300 係使用 VTC4 溫控器,低溫時使用甲醇校 正溫度,並放入冰塊降溫,準確度為 ±1K以內。
- (2)每各樣品在相同的溫度下,掃描4的倍數,通常掃64次,解析度不佳時多掃幾次。
- (3) 實驗的溫度範圍為 288-318 K。

3.3 IR 實驗部份

3.3.1 2-乙醯基吡咯溶於四氯化碳溶液

此系統分別在 288 K > 298 K > 308 K 及 318 K 等四個不同溫度下 進行實驗。濃度轉換根據四氯化碳在各種溫度下的密度參考數據³⁵ (273K:1.63195,293K:1.59472,349K:1.48020 g/mL)內插而得。圖 3.1 為 308 K 時,0.0560 × 0.0450 × 0.0384 × 0.0301 × 0.0228molL⁻¹五種濃 度的 NH 的 v_s 吸收。圖 3.2 為 308K,濃度為 0.0260 M 時,將 NH 基的 單、雙體吸收之重疊部分,以 Galatic 出品的 PeakSolve GRAMS32 AI 軟體,利用高斯—勞倫茲混合校正曲線公式所分離之圖形。其中瘦高的 吸收峰為單體,矮胖的吸收峰為雙體。表 3.1 為四種不同溫度下,各測 量十組濃度後所得之單、雙體吸收峰位置、半高寬以及總吸收度。由表 3.1 中的單雙體面積數據可知,NH基的雙體總吸收度於高濃度時較大; 單體面積隨濃度及溫度上升而增加。主要是低溫有利於氫鍵鍵結,總吸 收面積與雙體吸收面積皆會隨溫度降低而增加,而單體面積需與這兩者 相互競爭,所以在不同的濃度範圍內有不同的結果。

關於溶劑效應,根據 KBM 理論^{36,37} 可知,溶質在溶劑中 IR 光譜的 吸收位移與溶劑介電常數的關係:

(A)
$$v_{obs} = v_o - C \frac{D - l}{2D + l}$$

其中U_{obs} 表觀測吸收位移,U_o表溶質在無介質狀態時的吸收位移,C為 常數,D表溶劑的介電常數。將表 3.1 中各溫度下的單體吸收位移作平 均,其結果如下:

	288K 🌗	-298K	308K	318K
(D-1)/(2D+1)	0.2271	0.2250	0.2230	0.2210
$v_{_{obs}}/\mathrm{cm}^{-1}$	$3456.9 \pm 0.0^*$	3457.3 ± 0.1	3457.5 ± 0.0	3457.8 ± 0.0

*十組實驗數據為以平均值為中心,上下各增減一個標準差

查出 CCl₄ 的介電常數 D 對溫度的關係³⁸,再將單體的吸收位移對 (D-1)/(2D+1) 作圖,可得校正曲線 Y=3494.25-191.31X,結果如圖 3.3 所示。其中截距為 3494.25cm⁻¹代表外插到 D=1 的狀態,即 2-乙醯基 吡咯於真空狀態下的 U_{NI} 吸收位移。這是由庫倫定律:

(B)
$$F = \frac{l}{4\pi\varepsilon_o} \frac{q_1 q_2}{r^2}$$
其中 ε_o 為真空介電常數,當介值存在時的介電常數為 ε ,則 $D=\frac{\varepsilon}{\varepsilon_o}$ 。再

其截距 D=1 時, $\varepsilon = \varepsilon_o$,此時的吸收即真空狀態下的溶質位移 v_{NH} 。

以公式計算出單體吸收係數ε_m、雙體吸收係數ε_d及平衡常數 K:我們 利用公式(7)以及(11)計算ε_d,ε_m與 K。

(C)
$$\frac{[B]_o}{A_m} = \frac{1}{\varepsilon_m b} + \frac{2K}{(\varepsilon_m b)^2} A_m$$

(D)
$$\frac{[B]_o}{A_d} = \frac{2}{\varepsilon_d b} + \frac{l}{\sqrt{K\varepsilon_d b}} \frac{l}{\sqrt{A_d}}$$

圖 3.4 為表 3.1 中不同的溫度的單體總吸收度,利用公式(C), $Y = \frac{[B]_o}{A_m}$ 對 X = A_m所繪得圖形。已知 b=1.00 mm,由斜率及截距可以決定 ε_m 及 K 值。圖 3.5 則為表 3.1 中各種不同溫度的雙體總吸收度,利用公式(D), $Y = \frac{[B]_o}{A_d}$ 對 $X = \frac{1}{\sqrt{A_d}}$ 所得之圖形。由斜率及截距可決定 ε_d 及 K 值。所求 出的各個 ε_m , ε_d 及 K 值類列於表 3.2,並利用不同溫度下的 K 值,由 van't

Hoff plot 求出 ΔH° 與 ΔS° :ln K = $\Delta S^{\circ}/R - \Delta H^{\circ}/RT$,並附上各個物理量的標準誤差值³⁸。如圖 3.7 所示。其公式如下:

(E)
$$ln K = \frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{R} \frac{I}{T}$$

從表 3.2 可以看出,由單雙體平衡常數經由幾何平均值求出的 ΔH° 與 ΔS° 值分別為-35.36±8.98 kJmol⁻¹與 -76.78±29.55 Jmol⁻¹K⁻¹。如圖 3.7,由於溫度的升高會使 K 值降低,使我們能確認氫鍵自結合為一種 放熱反應。圖 3.6 則是利用第二章的公式(3)及 Beer's Law,由

平衡常數 K 為定值,不隨濃度改變,則 $\frac{A_d}{A_m^2}$ 與濃度[B]。的關係亦為定值。

圖 3.8 則為單體吸收 Am 總吸收度對濃度[B]。作圖。依據公式(8) 可 得 Am 對[B]。的理論線:

(F)
$$A_m = \frac{2\varepsilon_m b[B]_o}{(1+8K[B]_o)^{1/2}+1}$$

圖 3.9 為雙體總吸收度 A_d 對濃度[B]。作圖。依據公式(B), 兩邊乘以 [B]。並移項可得 $2A_d + \sqrt{\frac{\varepsilon_d b}{K}} \sqrt{A_a} = [B]_{\delta} \varepsilon_d b$, 因次分解後再平方可得 A_d 對[B]。的理論線:

(G)
$$A_d = \frac{\varepsilon_d b[B]_o}{2} \left[\frac{(1+8K[B]_o)^{1/2}-1}{(1+8K[B]_o)^{1/2}+1} \right]$$

圖 3.10 我們利用公式(20) 作線性迴歸,其結果虛線表示,圖中的 實線為單體吸收係數值,實線為一水平線。實線和虛線經過比較之後, 可以看出雖然虛線斜率不為 0,但接近 0,為實驗誤差所致,在截距上 與水平線比較差距很小,故可視為沒有斜率的水平線,雙體為環狀雙 體,沒有雙體終端基。圖 3.11 為用雙體 $\frac{[B]_o}{A_d} = \frac{\varepsilon_m}{K\varepsilon_d} \frac{1}{A_m} + \frac{2}{\varepsilon_d b}$ 之前導出的 公式,由圖的結果可以驗證所有數據的可靠度。 表 3.1 在不同溫度下, 2-acetylpyrrole 在 CCl_4 中於各種濃度時的單、

	-	單體吸收峰		雙體吸收峰		
[B] _o	吸收位置	吸收面積	半高寬	吸收位置	吸收面積	半高寬
(mol dm^{-3})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})
T=288 K						
0.0089	3456.9	2.83	15.4	3284.2	7.84	60.1
0.0176	3456.9	4.32	15.4	3284.2	18.02	60.1
0.0238	3456.9	5.15	15.4	3284.1	25.54	60.2
0.0268	3456.9	5.51	15.3	3284.2	29.29	60.5
0.0319	3456.9	6.08	15.4	3287.5	35.05	53.9
0.0376	3456.9	6.69	15.3	3287.9	42.23	53.4
0.0401	3456.9	6.92	15.3	3287.5	45.19	54.1
0.0470	3456.9	7.54	15.4	3287.6	54.40	53.3
0.0505	3456.9	7.84	15.4	3287.6	58.90	53.5
0.0586	3456.9	8.46	15.4	3287.4	69.00	53.5
		- E -	\$ 1896	23		
T=298K		100		1110		
0.0088	3457.2	3.05	15.5	3285.5	6.52	60.6
0.0173	3457.2	4.74	15.5	3285.4	15.10	60.4
0.0234	3457.2	5.67	15.5	3289.1	21.75	53.4
0.0264	3457.2	6.10	15.5	3288.9	25.02	53.9
0.0313	3457.2	6.69	15.5	3288.9	30.40	54.3
0.0370	3457.2	7.36	15.5	3288.3	36.50	55.3
0.0394	3457.2	7.63	15.4	3288.6	38.98	54.8
0.0462	3457.2	8.33	15.5	3288.6	47.00	54.7
0.0496	3457.2	8.65	15.5	3288.4	50.58	55.1
0.0576	3457.6	9.35	15.5	3286.0	60.40	58.2

雙體吸收位置、吸收面積與半高寬。

	1	單體吸收峰			雙體吸收峰	
$[B]_{o}$	吸收位置	吸收面積	半高寬	吸收位置	吸收面積	半高寬
(mol dm^{-3})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})
T=308 K						
0.0081	3457.5	3.25	15.5	3286.9	4.82	61.4
0.0193	3457.5	5.78	15.6	3286.9	15.40	61.5
0.0231	3457.5	6.50	15.5	3286.7	19.45	60.9
0.0260	3457.5	7.00	15.6	3286.8	22.45	61.2
0.0309	3457.5	7.74	15.5	3286.6	27.60	61.0
0.0365	3457.5	8.59	15.6	3286.7	33.35	61.5
0.0389	3457.5	8.95	15.6	3287.0	36.15	62.0
0.0456	3457.5	9.75	15.6	3286.6	43.31	61.7
0.0490	3457.5	10.25	15.7	3286.7	47.22	62.9
0.0568	3457.5	11.15	15.5	3288.6	55.90	56.8

<u>T=31</u>8 K

1=318 K			ANNI DA			
0.0083	3457.8	3.43	15.6	3288.4	4.40	61.2
0.0190	3457.8	6.02	15.7	3288.2	13.57	61.5
0.0228	3457.8	6.81	15.7	3287.9	17.05	61.0
0.0257	3457.8	7.38	15.7	<mark>32</mark> 87.8	19.88	61.1
0.0301	3457.9	8.18	15.8	3288.0	23.98	61.2
0.0360	3457.8	9.08	15.8	3288.0	30.10	61.6
0.0384	3457.8	9.42	15.8	3288.0	32.46	61.8
0.0450	3457.8	10.43	15.7	3287.9	39.45	61.5
0.0484	3457.8	10.84	15.8	3288.2	42.65	62.6
0.0561	3457.8	11.88	15.7	3290.0	50.98	57.1

	THE REAL PROPERTY AND A DECEMBER OF	111			
55	$\Delta S^{\circ}/J \text{ mol}^{-1} \text{ K}^{-1} = -76.78 \pm 29.5$	35.36±8.98,	es of $\Delta H^{\circ}/k \text{Jmol}^{-1} = -$	Final value	
66.10±2.15	25867.93±108.11	71.17± 0.76	6711.41±69.93	61.39±0.79	318
84.27 ± 2.38	25974.03±247.50	87.30 ± 2.26	7032.35±64.53	81.35±1.21	308
$172.90\pm\!2.80$	26109.66±176.28	175.00 ± 5.64	8130.08±141.45	171.19±8.84	298
244.28 ± 2.93	28571.43±235.68	245.50 ± 12.27	8333.33±96.4	243.00 ± 9.10	288
	$\varepsilon_{\rm d}/{\rm cm}^{-1}~{\rm mol}^{-1}~{\rm dm}^3$	K	$\varepsilon_{\rm m}/{\rm cm}^{-1}{\rm mol}^{-1}{\rm dm}^3$	K	Temp/K
values of K					
Finally determined	tting A_d data to eqn (11)	From Fi	$\log A_{\rm m}$ data to eqn (7)	From Fitti	

表 3.2 2-acetylpyrrole 於 CCl₄ 系統中, 在不同溫度下所求得之單體吸收係數 ϵ_m 、雙體吸收係數 ϵ_d 及平衡常數 K、 以及從單體吸收峰與雙體吸收峰所求出之反應熵 ΔH° 及反應焓 ΔS° 。

圖 3.2 2-acetylpyrrole 於 CCl₄ 系統在 308K,濃度為 0.0260 molL⁻¹ 時所作之 NH 基校正曲線。

圖 3.3 2-acetylpyrrole 於 CCl₄ 系統各溫度下的單體位移 v_{NH} 對 $\frac{D-1}{2D+1}$ 作圖。其中 D 為四氯化碳的介電常數。

由公式(7)所得之 2-acetylpyrrole 於 CCl4 系統線性圖。其四組 圖 3.4 溫度分別為:(-●-)288K,(-○-)298K,(-■-)308K,(-□-)318K ° 0.0021 ALL DA 0.0018 $[B]_{o}A_{d}^{-1}/cm$ mol dm⁻³ 0.0015 0.0012 0.0009 0.0006 0.1 0.2 0.3 0.5 0.4 0.6 A_d^{-1/2}/cm^{1/2}

 圖 3.5 由公式(11)所得之 2-acetylpyrrole 於 CCl₄ 系統線性圖。其四 組溫度分別為:(-●-)288K,(-○-)298K,(-■-)308K, (-□-)318K。

圖 3.7 2-acetylpyrrole 於 CCl₄ 系統之 van't Hoff Plot。其中平衡常數的數據來自不同溫度下的單雙體平衡常數的幾何平均值。

圖 3.8 2-acetylpyrrole 於 CCl₄系統之單體吸收面積 A_m對濃度[B]。
 作圖。其四組溫度分別為: (-●-)288K, (-○-)298K, (■-)308K, (-□-)318K。理論線可由公式(F)求得。

圖 3.9 2-acetylpyrrole 於 CCl₄ 系統之雙體吸收面積 A_d 對濃度[B]作
 圖。其四組溫度分別為: (-●-)288K, (-○-)298K, (-■
 -)308K, (-□-)318K。理論線可由公式(G)求得。

圖 3.10 2-acetylpyrrole 於 CCl4 單雙體自結合系統的

圖 3.11 由公式所得之 2-acetylpyrrole 於 CCl₄ 系統[B]_oA_d⁻¹ 對 A_m⁻¹ 作 圖。其四組溫度分為(-●-)288K, (-○-)298K, (-■-)308K, (-□-)318K。

3.3.2 2-乙醯基吡咯溶於四氯乙烯溶液

此系統分別在 288 K、298 K、308 K 及 318 K 等四個不同溫度下
進行實驗。濃度轉換根據四氯乙烯在各種溫度下的密度參考數據 ³⁵
(283K : 1.6312 , 298K : 1.6112 , 313K : 1.5857 , 328K : 1.5602 g/mL)
內插而得。圖 3.12 為 308 K 時,0.0305,0.0224,0.014,0.009,
0.0082molL ⁻¹ 。五種濃度的 NH 的 v _s 吸收。圖 3.13 為 308K, 濃度為 0.0866
M 時,將 NH 基的單、雙體吸收之重疊部分,以 Galatic 軟體,利用高
斯勞倫茲混合校正曲線公式所分離之圖形·表 3.3 為四種不同溫度下,
各测量十组浓度後所得之單、雙體吸收峰位置、半高寬以及總吸收度。
將表 3.3 中各溫度下的單體吸收位移作平均,其結果如下:

	288K	298K	308K	318K
(D-1)/(2D+1)	0.2340	0.2321	0.2302	0.2283
$v_{_{obs}}/\mathrm{cm}^{-1}$	$3454.1 \pm 0.1^*$	3454.5 ± 0.0	3454.8 ± 0.0	3455.1 ± 0.0

*十組實驗數據為以平均值為中心,上下各增減一個標準差

查出 C₂Cl₄ 的介電常數 D 對溫度的關係³⁸,再將單體的吸收位移對 (D-1)/(2D+1) 作圖,可得校正曲線 Y=3494.4-172.11X,結果如圖 3.14 所示。其中截距為 3494.4cm⁻¹ 代表外插到 D=1 的狀態,即 2-乙醯基吡 咯於真空狀態下的 U_{NH} 吸收位移。

以公式計算出單體吸收係數Em、雙體吸收係數Ed 及平衡常數 K:我們

利用公式(7)以及(11)計算Ed, Em 與 K。圖 3.15 為表 3.3 中不同的溫度的 單體總吸收度,利用公式(C), $Y = \frac{[B]_o}{A}$ 對X=A_m所繪得圖形。已知b=0.5 mm,由斜率及截距可以決定εm及K值。圖 3.16 則為表 3.3 中各種不同 溫度的雙體總吸收度,利用公式(D), $Y = \frac{IBI_o}{A_a}$ 對 $X = \frac{I}{\sqrt{A_a}}$ 所得之圖形。 由斜率及截距可決定 $\epsilon_d \mathcal{D} K$ 值。所求出的各個 ϵ_m , $\epsilon_d \mathcal{D} K$ 值類列於表 3.4, 並利用不同溫度下的 K 值, 由 van't Hoff plot 求出 ΔH° 與 ΔS° : ln K = $\Delta S^{\circ}/R - \Delta H^{\circ}/RT$, 並附上各個物理量的標準誤差值³⁸, 如圖 3.18 所示。 從表 3.4 可以看出,由單雙體平衡常數經由幾何平均值求出的△H° 與ΔS[°]值分別為 -30.40±8.27 kJmol⁻¹與 -66.56±27.22 Jmol⁻¹K⁻¹。由於溫 度的升高會使 K 值降低,使我們能確認氫鍵自結合為一種放熱反應。

圖 3.17 則是利用第二章的公式(3)及 Beer's Law,可知固定溫度下若 平衡常數 K 為定值,不隨濃度改變,則 <u>A_d</u> 與濃度[B]_o的關係亦為定值。

圖 3.19 則為單體吸收面積 Am 對濃度[B]。作圖。依據公式(F),可以 作出數據的校正理論線。圖 3.20 為雙體總吸收度 Ad 對濃度[B]。作圖。 依據公式(G),可得 Ad 對[B]。的理論線。圖 3.21 係利用公式(20) 作線性 迴歸,其結果虛線表示,圖中的實線為單體吸收係數值,實線為一水平 線。實線和虛線經過比較之後,可以看出雖然虛線斜率不為0,但接近 0,應為實驗誤差所致,在截距上與水平線比較差距很小,故可視為沒 有斜率的水平線,可以看出雙體為環狀雙體,沒有雙體終端基,符合我 們假設原則。圖 3.22 為用雙體 [B]_a = ɛ_m 1/A_a + 2/ε_a 之前的公式,這樣也 可以求出我們的數據,只是必須經由第一條公式的結果代入其中,由圖 的結果可以拿來檢查所有數據。當溫度升高時單體吸收面積受到兩個因 素影響,其一是平衡常數K的下降,使的平衡利於單體。其二是根據 Boltzmann 理論,溫度升高時將導致整體吸收度降低。由於兩種因素相 互競爭,使得相同濃度時單體的吸收與溫度並沒有很明顯的關係;而相 同濃度時雙體的吸收則會隨溫度下降而上升。

	-	單體吸收峰			雙體吸收峰	
[B] ₀	吸收位置	吸收面積	半高寬	吸收位置	吸收面積	半高寬
(mol dm^{-3})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})
T=288 K						
0.0048	3454.1	1.43	16.6	3282.3	3.17	54.9
0.0072	3454.5	1.92	16.7	3282.0	5.51	54.9
0.0083	3454.1	2.08	16.6	3281.9	6.69	54.4
0.0092	3454.1	2.26	16.6	3281.9	7.92	54.5
0.0123	3454.1	2.87	16.6	3281.9	12.13	54.0
0.0143	3454.1	3.10	16.7	3281.7	14.58	54.2
0.0224	3454.1	4.03	17.2	3282.5	24.73	54.3
0.0311	3454.1	4.86 💉	16.6	3282.3	36.96	54.3
0.0567	3454.1	6.71	16.7	3282.0	73.44	54.4
0.0883	3454.1	8.51	16.8	3281.6	119.57	54.5
		E	\$ 1896	and the second s		
T=298K		1	44000	Les.		
0.0048	3454.5	1.60	16.6	3283.5	2.41	55.8
0.0071	3454.5	2.16	16.7	3283.4	4.07	55.0
0.0082	3454.5	2.33	16.8	3283.4	4.87	54.9
0.0091	3454.5	2.53	16.8	3283.5	5.65	54.7
0.0122	3454.4	3.26	16.7	3283.2	9.46	54.8
0.0142	3454.5	3.60	16.7	3283.5	11.42	55.0
0.0226	3454.4	4.61	16.7	3283.5	19.37	54.9
0.0308	3454.5	5.80	16.7	3283.5	29.81	55.0
0.0562	3454.5	8.16	16.7	3283.5	61.10	55.1
0.0876	3454.4	10.7	16.7	3283.4	101.98	55.2

雙體吸收位置、吸收面積與半高寬。

		單體吸收峰		雙體吸收峰		
$[B]_{o}$	吸收位置	吸收面積	半高寬	吸收位置	吸收面積	半高寬
$(\text{mol } dm^{-3})$	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})
T=308 K						
0.0047	3454.8	1.57	16.7	3285.0	1.64	56.5
0.007	3454.8	2.27	16.7	3284.6	3.30	56.0
0.0082	3454.8	2.46	17.0	3284.4	3.97	55.4
0.009	3454.8	2.75	17.0	3284.3	4.70	55.6
0.012	3454.8	3.56	16.9	3284.4	7.48	55.3
0.014	3454.8	3.90	16.9	3284.5	8.76	55.4
0.0224	3454.8	5.15	16.8	3284.3	15.99	55.5
0.0305	3454.8	6.20	16.9	3284.3	24.41	55.4
0.0556	3454.8	9.17	16.8	3284.3	52.56	55.7
0.0866	3454.8	11.53	16.8	3284.1	92.71	55.8
			ALL DAY	le.		
T=318 K		S.		1		

1=318 K		S S	FRAN	E			
0.0047	3455.1	1.68	16.8	3286.3	1.35	55.9	-
0.00697	3455.1	2.45	16.7	3286.2	2.79	56.6	
0.0081	3455.1	2.85	16.7	3285.1	3.35	56.6	
0.0089	3455.1	3.16	16.7	3285.2	4.02	56.6	
0.0139	3455.1	4.41	16.7	3285.9	8.12	56.4	
0.0302	3455.1	7.13	16.7	3285.7	21.82	56.3	
0.0339	3455.1	7.72	16.8	3285.5	24.65	56.2	
0.0533	3455.1	10.17	16.8	3285.5	45.50	56.1	
0.055	3455.1	10.47	16.8	3285.4	49.69	56.4	
0.0857	3455.1	14.40	16.8	3285.3	88.24	56.6	

	Intr					+
2	$\Delta S^{\circ}/J \text{ mol}^{-1} \text{ K}^{-1} = -39.76 \pm 27.22$	56±8.27,	$f = \Delta H^{\circ}/k Jmol^{-1} = -22$	Final values o		
41.16 ± 1.80	59970.02±1286.67	40.19±0.47	10324.00±53.36	42.16±0.15	318	
60.51 ± 2.19	60331.82±1394.33	62.15±1.73	10040.20 ± 60.89	58.92 ± 0.32	308	
71.66 ± 2.13	62111.80±530.33	73.33±0.89	9818.36±50.82	70.02 ± 0.41	298	
104.53 ± 2.42	69670.5±929.84	105.44±2.74	9294.98±31.25	103.63±0.57	288	
values of K	$\varepsilon_{\rm d}/{\rm cm}^{-1}{\rm mol}^{-1}{\rm dm}^3$	K	$\varepsilon_{\rm m}/{\rm cm}^{-1}{\rm mol}^{-1}{\rm dm}^3$	K	Temp./K	
Finally determined	tting A_d data to eqn (11)	From Fit	$A_{\rm m}$ data to eqn (7)	From Fitting -		

以及從單體吸收峰與雙體吸收峰所求出之反應熵AH°及反應焓AS°。

2-acetylpyrrole於C₂Cl₄系統中,在不同溫度下所求得之單體吸收係數Em、雙體吸收係數Ed及平衡常數K、

表 3.4

圖 3.13 2-acetylpyrrole 於 C₂Cl₄ 系統在 308K, 濃度為 0.0866 molL⁻¹

圖 3.14 2-acetylpyrrole 於 C_2Cl_4 系統各溫度下的單體位移 v_{NH} 對 $\frac{D-1}{2D+1}$ 作圖。其中 D 為四氯乙烯的介電常數。

圖 3.15 由公式(7)所得之 2-acetylpyrrole 於 C2Cl4 系統線性圖。其四 組溫度分別為(-●-)288K, (-○-)298K, (-■-)308K, (-□ -) 318K • S 0.004 0.003 $[B]_{o}A_{d}^{-1}$ cm mol dm⁻³ 0.002 0.001 0.000 0.2 0.8 0.4 0.6 $A_{d}^{-1/2}/cm^{1/2}$

圖 3.16 由公式(11)所得之 2-acetylpyrrole 於 C₂Cl₄ 系統線性圖。其四 組溫度分別為(-●-)288K,(-○-)298K,(-■-)308K, (-□-)318K。

圖 3.17 2-acetylpyrrole 於 C_2Cl_4 單雙體自結合系統的 $\frac{A_d}{A_m^2}$ 對[B]。作 圖。其四組溫度分別為:(-● -)288K,(−○−)298K,(−■ -)308K , (-□-)318K 4.8 4.6 4.4 • л К 4.2 4.0 3.8 3.6 0.0031 0.0032 0.0033 0.0034 0.0035 1/T

圖 3.18 2-acetylpyrrole 於 C₂Cl₄ 系統之 van't Hoff Plot。其中平衡常 數的數據來自不同溫度下的單雙體平衡常數的幾何平均值。

 圖 3.19 2-acetylpyrrole 於 C₂Cl₄ 系統之單體吸收面積 A_m 對濃度[B]₀ 作圖。其四組溫度分為(-●-)288K, (-○-)298K, (-■-)308K, (-□-)318K。理論線則可由公式(F)求得。

 圖 3.20 2-acetylpyrrole 於 C₂Cl₄ 系統之雙體吸收面積 A_d 對濃度[B]₀ 作圖。其四組溫度分為(-●-)288K, (-○-)298K, (-■-)308K, (-□-)318K。理論線則可由公式(G)求得。

圖 3.21 2-acetylpyrrole 於 C₂Cl4 單雙體自結合系統的 $\frac{A_{m}[1+2(KA_{d}/\varepsilon_{d}b)^{1/2}]}{[B]_{o}b} 對 \left(\frac{KA_{d}}{\varepsilon_{d}b}\right)^{1/2}$ 作圖。其四組溫度分別為: (-■-)308K · (-□-)318K · ●-)288K [,] (-○-)298K [,] (-0.0035 0.0030 0.0030 0.0025 0.0020 0.0020 0.0015 0.0010 0.0010 0.0005 0.2 0.3 0.4 0.5 0.7 0.1 0.6 0.0 A_m⁻¹/cm

圖 3.22 2-acetylpyrrole 於 C₂Cl₄ 系統之雙體吸收面積[B]_oA_d⁻¹ 對 A_m⁻¹ 作圖。其四組溫度分為(-●-)288K, (-○-)298K, (-■-)308K, (-□-)318K。

3.3.3 2-乙醯基吡咯溶於正辛烷溶液

此系統分別在 283 K、293 K、303 K 及 313 K 等四個不同溫度下
進行實驗。濃度轉換根據正辛烷在各種溫度下的密度參考數據 ³⁵
(288K:0.707,298K:0.701,308K:0.699 g/mL)內插而得:283K:
0.7127、293K:0.7057、303K:0.6987、313K:0.6917。圖 3.23 為
293 K 時,0.0085、0.007、0.0046、0.0039、0.003molL ⁻¹ 五種濃度的
NH 的 v _s 吸收,範圍為 3200-3600 cm ⁻¹ 。圖 3.24 為 293K,濃度為 0.0046
M 時,將 NH 基的單、雙體吸收之重疊部分,以 Galactic 軟體利用高
斯—勞倫茲混合校正曲線公式所分離之圖形。表 3.5 為四種不同溫度
下,各測量十組濃度後所得之單、雙體吸收峰位置、半高寬以及總吸
收度。 將表 3.5 中各溫度下的單體吸收位移作平均,其結果如下:

	283K	293K	303K	313K
(D-1)/(2D+1)	0.1952	0.1936	0.1920	0.1903
$\upsilon_{_{obs}}/\mathrm{cm}^{-1}$	$3462.1 \pm 0.0^*$	3462.2 ± 0.0	3462.2 ± 0.0	3462.3 ± 0.0

*十組實驗數據為以平均值為中心,上下各增減一個標準差

查出正辛烷的介電常數 D 對溫度的關係³⁸,再將單體的吸收位移對 (D-1)/(2D+1) 作圖,可得校正曲線 Y=3470.48-43.05X,結果如圖 3.25 所示。其中截距為 3470.48cm⁻¹代表外插到 D=1 的狀態,即 2-乙醯基 吡咯於真空狀態下的 U_{NH} 吸收位移。

以公式計算出單體吸收係數
$$\varepsilon_m$$
、雙體吸收係數 ε_d 及平衡常數 K,圖 3.26
為表 3.5 中不同的溫度的單體總吸收度,利用公式(C), $Y = \frac{\int B_{l_o}}{A_m}$ 對
X=A_m所繪得圖形。已知 b=1.00 mm,由斜率及截距可以決定 ε_m 及K值。
圖 3.27 則為表 3.5 中各種不同溫度的雙體總吸收度,利用公式(D),
 $Y = \frac{\int B_{l_o}}{A_d}$ 對 $X = \frac{1}{\sqrt{A_d}}$ 所得之圖形。由斜率及截距可決定 ε_d 及K值。所求
出的各個 ε_m , ε_d 及K值類列於表 3.6,並利用不同溫度下的K值,由 van't
Hoff plot 求出 Δ H[°]與 Δ S[°]:ln K = Δ S[°]/R - Δ H[°]/RT,並附上各個物理量的
標準誤差值³⁸,如圖 3.29 所示。從表 3.6 可以看出,由單雙體平衡常數
經由幾何平均值求出的 Δ H[°]與 Δ S[°]值分別為 -46.42±9.07 kJmol⁻¹與
-112.51±30.33 Jmol⁻¹K⁻¹。如圖 3.29 確認氫鍵自結合為一種放熱反應。

圖 3.28 則是利用第二章的公式(3)及 Beer's Law,可知固定溫度下若 平衡常數 K 為定值,不隨濃度改變,則 <u>A_d</u> 與濃度[B]_o的關係亦為定值。

圖 3.30 則為單體吸收 Am總吸收度對濃度[B]。作圖。依據公式(F) 可 得 Am 對[B]。的理論線;圖 3.31 為雙體總吸收度 Ad 對濃度[B]。作圖,依 據公式(G)可得 Ad 對[B]。的理論線。圖 3.32 利用公式(20) 作線性迴歸, 其結果虛線表示,圖中的實線為單體吸收係數值。實線和虛線經過比較 之後,可以看出虛線斜率不為0,但接近0,應為實驗誤差所致。故可 視為沒有斜率的水平線。圖 3.33 為公式(12)作線性迴歸圖。 表 3.5 在不同温度下, 2-acetylpyrrole 在 n-octane 中於各種濃度時的

	單體吸收峰			雙體吸收峰				
[B] _o	吸收位置	吸收面積	半高寬	吸收位置	吸收面積	半高寬		
(mol dm^{-3})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})		
T=283 K								
0.0019	3462.1	0.80	10.5	3283.8	2.95	44.8		
0.0025	3462.1	0.97	10.5	3283.7	4.53	43.5		
0.0030	3462.1	1.10	10.5	3283.6	5.58	43.4		
0.0036	3462.1	1.22	10.5	3283.8	7.09	42.5		
0.0048	3462.0	1.46	10.5	3283.5	10.00	42.4		
0.0052	3462.1	1.52	10.5	3283.8	10.87	42.0		
0.0057	3462.1	1.62	10.6	3284.0	12.05	41.9		
0.0067	3462.1	1.78	10.6	3284.1	14.56	41.5		
0.0079	3462.1	1.99	10.7	3284.2	18.14	41.7		
0.0111	3462.0	2.39	10.6	3283.6	27.65	41.3		
1896								
T=293K				1110				
0.0030	3462.2	1.12	10.8	3285.4	3.51	45.1		
0.0039	3462.2	1.32	10.7	3285.7	5.13	43.9		
0.0046	3462.1	1.50	10.8	3285.1	6.55	43.2		
0.0051	3462.1	1.62	10.8	3285.2	7.36	43.0		
0.0059	3462.1	1.78	10.8	3285.1	9.03	42.9		
0.0070	3462.1	1.99	10.8	3285.0	11.10	42.7		
0.0085	3462.1	2.20	10.8	3285.0	14.00	42.2		
0.0141	3462.2	3.05	10.8	3285.0	26.18	42.1		
0.0142	3462.2	3.07	10.9	3285.0	26.50	42.1		
0.0219	3462.2	3.85	10.8	3284.9	42.98	42.1		

單、	雙體吸收位置	`	吸收面積與半高寬	0
----	--------	---	----------	---

	單體吸收峰			雙體吸收峰			
$[B]_{o}$	吸收位置	吸收面積	半高寬	吸收位置	吸收面積	半高寬	
(mol dm^{-3})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	
T=303K							
0.0024	3462.2	0.89	10.9	3285.9	1.88	44.9	
0.0029	3462.2	0.98	10.9	3286.1	2.42	44.4	
0.0038	3462.3	1.19	11.1	3286.3	3.57	44.3	
0.0048	3462.2	1.41	11.1	3286.2	4.99	43.9	
0.0059	3462.2	1.63	11.1	3286.4	6.67	43.8	
0.0069	3462.2	1.81	11.0	3285.9	8.26	43.6	
0.0122	3462.2	2.65	WIII TON	3286.1	17.81	43.5	
0.0178	3462.2	3.40	11.1	3286.0	28.76	43.3	
0.0227	3462.2	3.93	1112	3286.0	38.67	43.5	
0.0335	3462.2	4.89	11.1	3286.0	59.24	43.1	
		E	\$ 1896				
T=313 K		100		1110			
0.0048	3462.3	1.65	11.3	3288.0	3.78	49.1	
0.0064	3462.3	2.08	11.3	3286.9	5.94	47.5	
0.0066	3462.3	2.13	11.3	3287.3	6.20	46.1	
0.0070	3462.2	2.22	11.4	3287.5	6.73	45.9	
0.0083	3462.3	2.50	11.3	3287.2	8.53	46.3	
0.0089	3462.3	2.62	11.3	3287.4	9.36	46.5	
0.0154	3462.3	3.81	11.3	3287.1	19.58	45.0	
0.0219	3462.3	4.78	11.5	3287.6	30.80	44.6	
0.0232	3462.2	4.95	11.3	3286.7	32.99	44.5	
0.0350	3462.3	6.40	11.4	3287.4	56.02	44.2	
	1						

÷							
		313	303	293	283	Temp./K	
THE REAL PROPERTY OF THE PROPE	Final values of	75.00±0.15	127.55±208	248.61±9.67	491.38±14.5	Κ	From Fitting.
	of $\Delta H^{\circ}/k \text{Jmol}^{-1} = -4($	5000.00±44.24	5076.14±97.51	6838.72±197.69	8298.76±155.97	$\varepsilon_{\rm m}/{\rm cm}^{-1}{\rm mol}^{-1}{\rm dm}^3$	$A_{\rm m}$ data to eqn (7)
	5.42±9.07, <i>L</i>	75.85±1.31	127.97±3.18	246.18±9.66	496.52±41.32	K	From Fitt
	$\Delta S^{\circ}/J \text{ mol}^{-1} \text{ K}^{-1} = -112.51 \pm 30$	48661.80±753.93	51150.90±1056.53	$51282.05{\pm}1094.19$	62500.00 ± 2130.28	$\varepsilon_{\rm d}/{\rm cm}^{-1}~{ m mol}^{-1}~{ m dm}^3$	$\inf A_d$ data to eqn (11)
).33	75.42±2.17	127.76 ± 2.55	247.39 ± 2.91	493.95 ± 3.20	values of K	Finally determined

表 3.6 2-acetylpyrrole 於 n-octane 系統中,在不同溫度下所求得之單體吸收係數 Em、雙體吸收係數 Ed 及平衡常數

K、以及從單體吸收峰與雙體吸收峰所求出之反應熵 ΔH° 及反應焓 ΔS° 。

圖 3.23 2-acetylpyrrole 於 n-octane 系統在 293K 溫度時所測得之 NH 基的 IR 光譜圖。濃度由上到下: 0.0085molL⁻¹, 0.007molL⁻¹, 0.0046molL⁻¹, 0.0039molL⁻¹, 0.003molL⁻¹。

圖 3.24 2-acetylpyrrole 於 n-octane 系統在 293K,濃度為 0.0046 molL⁻¹時所作之 NH 基解析曲線。

圖 3.25 2-acetylpyrrole 於 n-octane 系統各溫度下的單體位移 v_{NH} 對 $\frac{D-1}{2D+1}$ 作圖。其中 D 為正辛烷的介電常數。

圖 3.27 由公式(11)所得之 2-acetylpyrrole 於 n-octane 系統線性圖。 其四組溫度分為(-●-)283K, (-○-)293K, (-■-)303K, (-□-)313K。

圖 3.29 2-acetylpyrrole 於 n-octane 系統之 van't Hoff Plot。其中平衡 常數的數據來自不同溫度下的單雙體平衡常數的幾何平均 值。

圖 3.30 2-acetylpyrrole 於 n-octane 系統之單體吸收面積 A_m對濃度
 [B]。作圖。其四組溫度分為(-●-)283K, (-○-)293K, (-■-)303K, (-□-)313K。理論線則可由公式(F)求得。

圖 3.31 2-acetylpyrrole 於 n-octane 系統之雙體吸收面積 Ad 對濃度
 [B]。作圖。其四組溫度分為(-●-)283K, (-○-)293K, (-■-)303K, (-□-)313K。理論線則可由公式(G)求得。

圖 3.32 2-acetylpyrrole 於 n-octane 單雙體自結合系統的 $\frac{A_{m}[1+2(KA_{d}/\varepsilon_{d}b)^{1/2}]}{[B]_{o}b}對(\frac{KA_{d}}{\varepsilon_{d}b})^{1/2}$ 作圖。其四組溫度分別為:(-●-)283K , (-○-)293K , (-■-)303K , (-□-)313K 。 0.0018 0.0015 $[B]_{o}A_{d}^{-1}$ cm mol dm⁻³ 0.0012 0.0009 0.0006 0.0003 0.0000 0.3 0.6 1.2 0.9 0.0 A_m⁻¹/cm

圖 3.33 由公式所得之 2-acetylpyrrole 於 n-octane 系統[B]_oA_d⁻¹對 A_m⁻¹ 作圖。其四組溫度分為(-●-)283K, (-○-)293K, (-■-)303K, (-□-)313K。

3.3.4 2-乙醯基吡咯溶於三氯甲烷 溶液

由圖 3.34 我們發現單體部分有兩根 peak,經由初步分析應為單體 出現順反的形式,曾經有人提出 2-acetylpyrrole 有 conformation 的形 式³⁴,由於順式的比例比較多會形成雙體穩定的結構,故反式的比例 較少。就單體的 peak 去比較會發現彼此存在一定的比例,這說明了 雨者之間也存在一個平衡關係。目前嘗試由 NMR 去分析出,但由於 溫度和濃度的關係還無法做出。不過在過去的文獻中有人做過相關的 實驗,它就有提到 2-acetylpyrrole 有 cis 及 trans 兩種構形,所以這部 分只有處理雙體的平衡常數和吸收係數。表 3.7 為雙體吸收峰在不同 温度下的數據。表 3.8 為在不同溫度下所求得之雙體吸收係數 ε,及平 衡常數 K、以及從雙體吸收峰所求出之反應熵 ΔH° 及反應焓 ΔS° 。 圖 3.34 為在 298K 溫度時所測得之 NH 基的 IR 光譜圖。 圖 3.35 為 2-乙醯基吡咯在 298K 時的 IR 光譜疊圖。圖 3.36 為由公式(11)所得之 2-acetylpyrrole於CHCl3系統線性圖。圖 3.37 為雙體吸收面積的實驗 數據點和理論線作圖。而圖 3.38 則為 van't Hoff Plot。

圖 3.34 2-乙醯基吡咯(2-acetylpyrrole)溶於三氯甲烷系統於 298K、

表 3.7	在不同溫度下	, 2-acetylpyrrole 在	CHCl3 中於各種濃度時的
-------	--------	---------------------	----------------

	雙體吸收峰			(the second seco	雙體吸收峰		
$[B]_o$	吸收位置	吸收面積	半高寬	[B] _o	吸收位置	吸收面積	半高寬
(mol dm^{-3})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(mol dm^{-3})	(cm^{-1})	(cm^{-1})	(cm^{-1})
					·		
T=293 K				T=298K			
0.0082	3285.5	0.44	60.1	0.0088	3284.2	0.42	60.6
0.0136	3285.4	1.15	60.1	0.0097	3284.2	0.50	60.4
0.0217	3289.1	2.85	60.2	0.0122	3284.1	0.80	53.4
0.0265	3288.9	3.95	60.5	0.0164	3284.2	1.42	54.0
0.0315	3288.9	5.34	53.9	0.0190	3287.5	1.83	54.3
0.0338	3288.3	6.40	53.4	0.0263	3287.9	3.23	55.3
0.0437	3288.6	9.21	54.1	0.0467	3287.5	9.18	54.8
0.0600	3288.6	16.96 🔬	53.3	0.0503	3287.6	10.35	54.7
0.0789	3288.4	25.91	53.5 E	0.0543	3287.6	11.81	55.1
0.1018	3286.0	38.70	53.5	0.0681	3287.4	17.32	58.2
		111	1.2	396			
T=303K		7	11000	T=313K			
0.0089	3286.9	0.34	61.4	0.0094	3285.5	0.34	61.2
0.0123	3286.9	0.66	61.5	0.0110	3285.4	0.50	61.5
0.0177	3286.7	1.25	60.9	0.0136	3289.1	0.72	61.0
0.0222	3286.8	1.93	61.2	0.0177	3288.9	1.22	61.1
0.0261	3286.6	2.64	61.0	0.0245	3288.9	2.05	61.2
0.0312	3286.7	3.84	61.5	0.0271	3288.3	2.60	61.6
0.0467	3287.0	7.64	62.0	0.0466	3288.6	7.15	61.8
0.0588	3286.6	11.02	61.7	0.0548	3288.6	9.42	61.5
0.0726	3286.9	15.78	62.9	0.0637	3288.4	12.03	62.6
0.1027	3288.6	28.03	56.8	0.0937	3286.0	22.59	57.1

雙體吸收位置、吸收面積與半高寬。

表 3.8 2-acetylpyrrole於 CHCl₃系統中,在不同溫度下所求得之雙 體吸收係數 ε_d 及平衡常數 K、以及從雙體吸收峰所求出之反 應熵ΔH^o及反應焓ΔS^o。

From Fitting A_d data to eqn (11)					
Temp/K	K	$\mathcal{E}_{\rm d}/{\rm cm}^{-1}{\rm mol}^{-1}{\rm dm}^{3}$			
293	2.46 ± 0.02	5744.85±36.44			
298	2.26 ± 0.18	5189.45±42.64			
303	1.96 ± 0.20	4735.32±49.93			
313	1.82 ± 0.38	4674.93±98.73			
Final values of $\Delta H^{\circ}/\text{kJmol}^{-1} = -11.86 \pm 4.17$, $\Delta S^{\circ}/\text{J mol}^{-1} \text{K}^{-1} = -33.13 \pm 13.72$					

Wavenumber / cm⁻¹

圖 3.35 2-acetylpyrrole 於 CHCl₃系統在 298K 溫度時所測得之 NH 基的 IR 光譜圖。濃度由下到上: 0.0756molL⁻¹, 0.1124molL⁻¹, 0.1591molL⁻¹, 0.2640molL⁻¹, 0.3783molL⁻¹。

由公式(11)所得之 2-acetylpyrrole 於 CHCl3系統線性圖。其 圖 3.36 四組溫度分別為: (-●-)293K, (-○-)298K, (-■ −)303K , (−□−)313K 5 S 40 35 30 25 ⁻ ²⁰ ^P ¹⁵ 10 5 0 0.06 0.03 0.09 0.00 0.12 $[B]_{o}$ / mol dm⁻³

圖 3.37 2-acetylpyrrole 於 CHCl₃ 系統之雙體吸收面積 A_d對濃度
 [B]_o作圖。其四組溫度分別為:(-●-)293K, (-○-)298K, (-■-)303K, (-□-)313K。理論線可由公式求得。

圖 3.38 2-acetylpyrrole 於 CHCl3 系統之 van't Hoff Plot。其中平衡常 數的數據來自不同溫度下的雙體平衡常數值。

3.3.5 2-乙醯基吡咯和苯於四氯化碳溶液

關於此部分的系統比較跟前三組不同,由圖 3.39 可以看到表現的光譜 圖有三根 peak,所以無法由三條相依的方程式中求出五個未知數 ,假設條 件不足再加上如果一定要求出結果的話,可能會影響到結果的真實性。於 是我們設計一組系統,在第二章第二部分推導已經詳細解說過,這裡就不 再贅述。表 3.9 為各溫度下單雙體吸收位置和錯體吸收位置,其中錯體吸 收位置在 3425 cm⁻¹ 處。表 3.10 表示在同樣的四組溫度可以求出我們要的 單體吸收係數,雙體吸收係數,錯體吸收係數,單雙體平衡常數K以及錯 體平衡常數 Kx。圖 3.40 為公式(41) Y = [X]₀/Ax 對 X = 1/A_m 作圖,透過這 張圖可以求出錯體的平衡常數和吸收係數,由表 3.10 看的出來錯體的吸收 面積會和單雙體相互競爭,原有四氯化碳系統的部分再加上透過公式(41) 求出 ΔH_x° 與 ΔS_x° 值分別為 -39.70±6.31 kJmol⁻¹與 -110.40±20.66 $Jmol^{-1}K^{-1}$,而改變 accetpor 的濃度[X]。數據點還是都在該條線上,代表[X]。 濃度夠稀薄,其 activity 可以當作1來看。

表 3.9 在不同溫度下, 2-acetylpyrrole 在 CCl4 中(含 X: benzene)於

各種濃度時的單、雙體和錯體的吸收面積以及錯體的吸收

位置。

		單體吸收峰	錯體吸收峰*	雙體吸收峰
[B] _o	[X] _o	吸收面積	吸收面積	吸收面積
(mol dm^{-3})	(mol dm^{-3})	(cm^{-1})	(cm^{-1})	(cm^{-1})
	·			
T=288 K				
0.0073	1.0	0.99	0.23	7.84
0.0148	1.0	1.72	0.36	18.02
0.0183	1.0	1.90	0.40	25.54
0.0222	1.0	2.22	0.47	29.29
0.0302	1.0	2.75	0.54	35.05
0.0108	2.0	1.18	0.53	42.23
0.0150	2.0	1.52	0.66	45.19
0.0233	2.0	2.08 ^E	0.83	54.40
0.0301	2.0	2.57	0.97	58.90
0.0389	2.0	3.12 1890	1.07	69.00
		Thomas	LULL .	
T=298K			-	
0.0156	1.0	1.85	0.52	4.43
0.0188	1.0	2.35	0.64	6.64
0.0282	1.0	2.78	0.70	10.04
0.0377	1.0	3.13	0.81	14.17
0.0625	1.0	4.23	0.96	26.75
0.0166	2.0	1.79	1.01	4.11
0.0297	2.0	2.60	1.36	8.67
0.0331	2.0	3.10	1.57	11.24
0.0395	2.0	3.41	1.68	13.28
0.0663	2.0	4.71	2.00	25.86

	F 7 7 7	單體吸收峰	錯體吸收峰*	雙體吸收峰					
$[B]_{0}$	$[X]_0$	吸收面積	吸收面積	吸收面積					
$(mol dm^2)$	(mol dm°)	(cm^{-1})	(cm^{-1})	(cm^{-1})					
· · / /									
T=308K									
0.0078	1.0	1.25	0.25	1.57					
0.0159	1.0	2.12	0.43	4.31					
0.0198	1.0	2.50	0.51	6.15					
0.0239	1.0	2.90	0.57	8.36					
0.0326	1.0	3.59	0.67	11.87					
0.0124	2.0	1.55	0.62	2.33					
0.0173	2.0	2.02	0.78	3.84					
0.0270	2.0	2.79	1.05	7.06					
0.0349	2.0	3.37	1.17	10.22					
0.0497	2.0	4.27	1.31	16.59					
		ANNIEL CO.							
T=318 K		, units	Les.						
0.0078	1.0	1.30 E S N	0.25	1.26					
0.0159	1.0	2.28	0.43	3.64					
0.0198	1.0	E 2.72	0.52	4.93					
0.0239	1.0	3.28	0.62	6.86					
0.0326	1.0	4.03	0.74	10.77					
0.0124	2.0	1.67	0.60	1.98					
0.0173	2.0	2.08	0.75	3.37					
0.0270	2.0	3.11	1.08	6.03					
0.0349	2.0	3.78	1.25	8.95					
0.0497	2.0	4.96	1.51	14.74					

* 錯體 Peak 位置在 3425 cm⁻¹ 處

表 3.10 2-acetylpyrrole 於 CCl4 系統中(含 X:benzene),在不同溫

度下所求得之單體吸收係數 ε_m 、雙體吸收係數 ε_d 、錯體吸

收係數 \mathcal{E}_x 及平衡常數 $K \cdot K_x$ 。

	From Fittin	ng $A_{\rm m}$ data to eqn (7)	From Fitti	ng A_d data to eqn (11)	
Temp/K	K	$\mathcal{E}_{\rm m}/{\rm cm}^{-1}{\rm mol}^{-1}{\rm dm}^3$	K	$\mathcal{E}_{\rm d}/{\rm cm}^{-1}~{\rm mol}^{-1}~{\rm dm}^{3}$	
288	243.00±9.10	8333.33±96.4	245.50 ± 12.27	28571.43±235.68	
298	171.19±8.84	8130.08±141.45	175.00 ± 5.64	26109.66±176.28	
308	81.35±1.21	7032.35±64.53	87.30 ± 2.26	25974.03±247.50	
318	61.39±0.79	6711.41±69.93	71.17 ± 0.76	25867.93±108.11	
Final values of $\Delta H^{\circ}/\text{kJmol}^{-1} = -35.36 \pm 8.98$, $\Delta S^{\circ}/\text{J} \text{ mol}^{-1} \text{ K}^{-1} = -76.78 \pm 29.55$					

From Fitting A	x data to eqn(41)		
Temp/K	K_x	$\mathcal{E}_{x}/\mathrm{cm}^{-1}\mathrm{mol}^{-1}\mathrm{dm}^{3}$	Finall value
288	22.58±3.75	96.07±2.53	$\Delta H_x^{o}/\text{kJmol}^{-1} =$
298	19.81±1.46	141.53±3.34	-39.70±6.31,
308	9.43±1.58	165.99±7.04	$\Delta S_x^{o}/J \text{ mol}^{-1} \text{ K}^{-1} =$
318	5.31±0.99	253.08±9.45	-110.40 ± 20.66

圖 3.39 2-acetylpyrrole 於 CCl₄ 系統在 308K,濃度為 0.0078 m 時所 作之 NH 基解析曲線。其中含有 benzene [X]₀=1m。

圖 3.40 由公式(41)所得之 2-acetylpyrrole 於 CCl₄(含 acceptor:X) 系 統線性圖。在四組溫度下[X]。為 1m 和 2m 的十組數據點。

3.4 NMR 實驗部分

依照 Gutowsky 及 Saika⁴⁰所提,在單雙體快速轉換下,所觀測到的位 移δ_{at}是單體位移和雙體位移的加權平均

(H)
$$\delta_{obs} = \delta_d - (\frac{\delta_d - \delta_m}{2K})^{1/2} (\frac{\delta_{obs} - \delta_m}{[B]_o})^{1/2} = \delta_d - (\frac{\delta_d - \delta_m}{2K})^{1/2} X$$

(I) $\delta_{obs} = \delta_m + f_d (\delta_d - \delta_m) = \delta_m + \frac{(1 + 8K[B]_o)^{1/2} - 1}{(1 + 8K[B]_o)^{1/2} + 1} (\delta_d - \delta_m)$

其中
$$f_d = \frac{(1+8K[B]_o)^{1/2}-1}{(1+8K[B]_o)^{1/2}+1}$$

透過這兩個數據可以得到單體位移 δ_m 與結合常數 K,然後再求出雙體位移 δ_d 。在 T=298K 時,此三各數值分別為 2746.45 Hz、2.728 Kgmol⁻¹、3440.62 Hz。利用相同的程序求出其餘三各溫度的各個數值。依據公式(H),(I) 作 線性迴歸圖可以驗證圖解法的正確性。表 3.11 為各溫度下的化學位移與濃 度關係圖,並標示求出的單雙體位移與平衡常數 K。圖 3.41 為 2-acetylpyrrole 在 d-chloroform 中的 NMR 的光譜圖。圖 3.43 為不同數據代 入公式(H)中所作的 δ_{abs} 對 X 線性圖。其中實線為將所求出的 δ_m 、 δ_d 、K 代 入公式(H)中所作的 δ_{abs} 對 X 線性圖。其中實線為將所求出的 δ_m 、 δ_d 、K 代 入公式(H)中所獲得的理論線。實心圓所對應的座標為觀測位移,橫座標 為 X,X 為將偵測到 δ_m 代入 $X = \left(\frac{\delta_{abs} - \delta_m}{[B]_o}\right)^{1/2}$ 所獲得的值。所以可以檢驗出 圖解法求出的值誤差不大。至於 K 值的檢驗為利用公式(I) δ_{abs} 對 f_d (雙 體分率) 作圖顯示於圖 3.44 理論線為實線,將圖解法的 K 值代入公式中所 獲得的 f_d 即為橫座標。這兩張圖可以驗證圖解法求出的數值誤差不大。圖 3.45 顯示觀測位移對起始濃度作圖,實線為理論線圖,實點為實驗的觀測 位移 δ_{obs}。結果顯示觀測位移與理論線吻合,由此可以證明圖解法的正確性 佳。由數據顯示化學位移隨溫度增加而遞減,隨濃度增加而增加,這些數 值顯示低溫與高濃度有利於雙體的生成。透過四組溫度可以計算出標準結 合熵(entropy)和標準結合焓(enthalpy),代入 van't Hoff 方程式,以 ln K vs. 1/T 作圖便可計算得到最終所求的熱力學參數表現在圖 3.46。

圖解法介紹—此方法可以同時求得單體位移,雙體位移以及平衡常數。要使用本方法,須滿足以下三個假設:

(1) 溶質在溶劑中只有雙體結合,而無雙體以上之多體結合。

(2) 沒有濃度與位移誤差。

(3)溶液在觀測範圍內必須為理想溶液,即平衡常數K值保持定值。
利用上述兩條公式,逐步求解。步驟如下:

(1) 首先猜測一個單體位移,對n個已知的濃度以及觀測位移,由

$$X = \left[\frac{\delta_{obs} - \delta_{m}}{[B]_{o}}\right]^{1/2}$$
可得 n 個 X 值, 然後作 δ_{obs} 對 X 圖, 對 n 個 δ_{obs} , X 分

別作線性迴歸與二次迴歸,若單體位移猜對且毫無誤差,則一次迴歸與 二次迴歸應重合為一,且實驗數據點應準確的落在此線上,由公式(H) 可求出迴歸線的斜率與截距,各分別代表正確的雙體位移以及平衡常 數。若單體位移猜錯,顯然的線性迴歸線與二次迴歸線不同,實驗數據 點無法準確的落在迴歸線上,且線性迴歸與二次線性迴歸將得到不同的 K值,其中作二次迴歸後,取迴歸二次函數的一次項係數與常數項代入 公式中,由截距及斜率分別算出K與δ₄。

- (2)猜測一序列的單體位移,由前述求出對應的K值,作K與δ_m值,一次 與二次迴歸,各繪出一條曲線,分別為L1和Q1,L1和Q1兩線的交 點P1的縱橫座標值各為單體位移與平衡常數。
- (3) 改猜測K值,由公式(I)可求得f_d,作δ_{obs}對f_d圖,若猜測正確,線性迴歸與二次迴歸相同,實驗數據點會落在此迴歸線上,單體位移可由公式
 (I) 之迴歸線截距求出,若猜測錯誤,得到不同的δ_m,作二次迴歸後,取其截距即為單體位移。
- (4) 猜測一序列的 K, 作 K 對 δ 圖, 次迴歸 L2 與二次迴歸 Q2 之交點為
 P2。
- (5) 取 P1 與 P2 兩點連線中點 P3,為最終決定的單體位移 δ_m 與結合常數 K。
- (6) 最後將 P3 所對應的 δ_m 結合常數 K,代入公式(H) 與公式(I),由截距及 斜率分別求出兩各不同的雙體位移 δ_d ,再取平均值作為決定的雙體位移 δ_d 。

以上介紹如圖 3.41 為畫出的結果。

Monomer Shift(Hz)

圖 3.41 298K, 2-acetylpyrrole 在氯仿-d1中,以圖解法求取單體位 移與結合常數,L1、L2、Q1、Q2、P1與P2所代表的意義 見文章內容。

3.4.1 2-乙醯基吡咯溶於氯仿-d1 溶液

第一組系統分別在 288K、298K、308K、318K 四各溫度下進行實驗。以 濃度 0.0171m 在溫度 298K 的 2-acetylpyrrole 在三氯甲烷溶液為例,其¹H NMR 光譜示圖 3.42。此化合物的 NH 化學位移為 3051.3 Hz。表 3.11 表示 10 組濃度 NH 的化學位移在不同溫度下,由數據中可以看出在同一溫度下 NH 的化學位移隨溫度增加而遞減,但在同一溫度下隨濃度的增加而增加, 這些數值顯示低溫與高濃度有利於雙體生成。最後求出 ΔH° 與 ΔS° 值分別 為 -13.26±8.98 kJmol⁻¹與 -37.81±29.55 Jmol⁻¹K⁻¹。

T/K	288K	298K	308K	318K
[B] _o /molkg ⁻¹	$\delta_{_{obs}}/\mathrm{Hz}$	$\mathcal{S}_{_{obs}}/\mathrm{Hz}$	$\mathcal{S}_{_{obs}}/\mathrm{Hz}$	$\delta_{_{obs}}/\mathrm{Hz}$
0.3466	3105	3075	3042.3	3015.6
0.2751	3081	3047.7	3018	2988.9
0.2464	3067.5	3035.4	3006.9	2978.4
0.2213	3052.8	3021	2989.5	2967.6
0.1950	3036.3	3006.3	2979.6	2949.6
0.1523	3007.8	2979.3	2952	2924.4
0.1440	2999.4	2967.9	2944.2	2916.9
0.1245	2983.8	2955.3	2929.2	2904
0.0976	2953.8	2930.1	2902.2	2880.9
0.0790	2934	2907	2885.4	2863.5
Determined		Contraction of the second		
$\delta_{_m}$ / Hz	2759.75±16.19	2758.50±13.43	2749.29±17.41	2746.79±8.61
$\delta_{_d}$ / Hz	3469.88±27.83	3461.68±29.40	3431.28±34.37	3426.30±33.94
K / kgmol ⁻¹	2.714±0.47	2.141±0.47	1.951±0.49	1.568±0.23

移, δ_m , δ_d 與平衡常數 K。

圖 3.42 NMR 光譜圖, 298K, c = 0.0171m, 2-acetylpyrrole in CDCl₃。

圖 3.43 各種溫度下, 2-acetylpyrrole 在氯仿-d1 中的觀測位移對 X 之理論線與數據點,溫度表示在圖中。

圖 3.44 各種溫度下, 2-acetylpyrrole 在氯仿-d1 中的觀測位移對 f_d 之理論線與數據點,溫度標示在圖中。

圖 3.45 各種溫度下, 2-acetylpyrrole 在氯仿-d1 中的觀測位移對[B]。 的理論線,溫度標示在圖中。

圖 3.46 2-acetylpyrrole 在氯仿-d1 中的 van't Hoff 圖。

3.4.2 2-乙醯基吡咯溶於苯-d6 溶液

表 3.12 為各溫度下的化學位移與濃度關係圖,並標示求出的單 雙體位移與平衡常數 K。圖 3.47 為不同數據代入公式(H)中所作的 δ_{abs} 對X線性圖。其中實線為將所求出的 δ_{m} 、 δ_{d} 、K代入公式(H) 中所獲得的理論線。至於 K 值的檢驗為利用公式(I) δ_{abs} 對 f_d (雙體 分率) 作圖顯示於圖 3.48 理論線為實線,將圖解法的 K 值代入公式 中所獲得的fa即為橫座標。這兩張圖可以驗證圖解法求出的數值誤差 程度,我們發現單體的位移出現了很大的偏差,這是由於 IR 實驗中 已經驗證過在苯的系統中會出現複體的關係。這在 NMR 圖譜中是看 不出來的,因為在氫譜中看到的是平均位移,所以這也是IR 優於NMR 的原因。圖 3.49 顯示觀測位移對起始濃度作圖,實線為理論線圖, 實點為實驗的觀測位移 δ_{abc} ,結果顯示觀測位移與理論線吻合。由數 據顯示化學位移隨溫度增加而遞減,隨濃度增加而增加,這些數值顯 示低溫與高濃度有利於雙體的生成。透過四組溫度可以計算出標準結 合熵(entropy)和標準結合焓(enthalpy),代入 van't Hoff 方程式,以 ln K vs. 1/T 作圖便可計算得到最終所求的熱力學參數表現在圖 3.50。

T/K	288K	298K	308K	318K
[B] _o /molkg ⁻¹	$\delta_{_{obs}}/\mathrm{Hz}$	$\delta_{_{obs}}/\mathrm{Hz}$	$\delta_{_{obs}}/\mathrm{Hz}$	$\delta_{_{obs}}/\mathrm{Hz}$
0.1174	3041.1	2966.7	2916.0	2862.3
0.2559	3190.8	3117.9	3064.8	3005.1
0.2941	3211.5	3151.5	3091.2	3030.3
0.4494	3286.8	3213.9	3163.5	3114.0
0.5587	3312.0	3246.3	3195.0	3140.7
0.6339	3325.8	3263.1	3220.5	3163.8
0.7355	3343.8	3289.8	3236.1	3186.3
0.8075	3353.7	3291.6	3252.9	3198.0
0.9240	3367.8	3319.2	3270.3	3217.5
1.0072	3375.3	3321.3	3280.8	3231.9
Determined		ALLEY .		
$\delta_{_m}$ / Hz	2027±243.7	2276±155.6	2445±35.33	2470±40.37
$\delta_{_d}$ / Hz	3597±12.01	3582±18.05	3586±9.33	3567±15.85
K / kgmol ⁻¹	21.87±9.17	10.16±3.82	5.10±0.60	3.68±0.58

 δ_m , δ_d 與平衡常數 K。

圖 3.47 各種溫度下, 2-acetylpyrrole 在 C_6D_6 中的觀測位移對 X 之 理論線與數據點,溫度表示在圖中。

圖 3.48 各種溫度下, 2-acetylpyrrole 在 C_6D_6 中的觀測位移對 f_d 之 理論線與數據點,溫度標示在圖中。

圖 3.50 2-acetylpyrrole 在 C_6D_6 中的 van't Hoff 圖

3.4.3 2-乙醯基吡咯溶於四氯化碳溶液

表 3.13 為各溫度下的化學位移與濃度關係圖,並標示求出的單雙 體位移與平衡常數 K。圖 3.51 為不同數據代入公式(H)中所作的 δ_{obs} 對 X 線性圖。其中實線為將所求出的 δ_m 、 δ_l 、K 代入公式(H)中所 獲得的理論線。利用公式(I) δ_{abc} 對 f_{d} (雙體分率) 作圖顯示於圖 3.52 理論線為實線,由於該組系統濃度最低為 0.05m,低濃度在 NMR 下不容易觀測到,在圖 3.53 中我們可以看到低濃度部份並沒有數據 點可以作線性迴歸,故K值無法由圖解法求得。所以我們以IR的K 值數據來求取單雙體位移。圖 3.51 和圖 3.52 中帶入的公式已經把 K 值當成已知來求取。圖 3.53 顯示觀測位移對起始濃度作圖,實線為 10000 理論線圖,實點為實驗的觀測位移 δ_{ab} ,結果顯示觀測位移與理論線 吻合。由數據顯示化學位移隨溫度增加而遞減,隨濃度增加而增加, 這些數值顯示低溫與高濃度有利於雙體的生成。結果我們發現單體位 疑有比較大的偏差。雖然由於實驗限制太多,無法透過圖解法完整求 得數據,但是這樣更能證明 IR 求出的數據有可靠的價值。

85

T/K	288K	294K	308K	318K
[B] _o /molkg ⁻¹	$\delta_{_{obs}}/\mathrm{Hz}$	$\delta_{_{obs}}/\mathrm{Hz}$	$\delta_{_{obs}}/\mathrm{Hz}$	$\delta_{_{obs}}/\mathrm{Hz}$
0.0567	3310.5	3279.6	3206.7	3159.0
0.0693	3328.2	3297.3	3228.0	3174.9
0.0827	3345.9	3318.0	3246.9	3195.3
0.1056	3358.8	3335.7	3270.6	3220.5
0.1192	3367.8	3343.2	3279.6	3230.7
0.1446	3380.4	3358.8	3300.6	3252.0
0.1635	3387.9	3366.6	3309.9	3264.3
0.1795	3397.2	3375.6	3317.1	3273.0
0.1954	3397.8	3377.1	3321.6	3279.3
0.2255	3387.0	3383.1	3327.3	3288.9
Determined				
$\delta_{_m}$ / Hz	2430±62.94	2349±18.90	2500±13.24	2497±0.63
$\delta_{_d}$ / Hz	3499±9.16	3472±3.13	3470±3.45	3454±4.78
K / kgmol ⁻¹	243.00	187.62	81.35	61.39

 δ_m , δ_d 與平衡常數 K。

圖 3.51 各種溫度下, 2-acetylpyrrole 在 CCl₄ 中的觀測位移對 X 之 理論線與數據點,溫度表示在圖中。

圖 3.52 各種溫度下, 2-acetylpyrrole 在 CCl_4 中的觀測位移對 f_d 之 理論線與數據點,溫度標示在圖中。

圖 3.53 各種溫度下, 2-acetylpyrrole 在 CCl4 中的觀測位移對[B]。的

3.4.4 2-乙醯基吡咯溶於四氯乙烯溶液

表 3.14 為各溫度下的化學位移與濃度關係圖,並標示求出的單雙體 位移與平衡常數K。圖 3.54 為不同數據代入公式(H)中所作的δ_{abs} 對 X線性圖。其中實線為將所求出的δ_m、δ_d、K 代入公式(H)中所獲 得的理論線。利用公式(I) δ_{obs} 對f_d (雙體分率) 作圖顯示於圖 3.55 理論線為實線,由於該組系統濃度跟四氯化碳一樣在低濃度下不容易 觀測到,在圖 3.60 中我們可以看到低濃度部份並沒有數據點可以作 線性迴歸,故K 值無法由圖解法求得。所以我們以 IR 的K 值數據來 求取單雙體位移。圖 3.54 和圖 3.55 中代入的公式已經把K 值當成已 知來求取。圖 3.56 顯示觀測位移對起始濃度作圖,實線為理論線圖, 實點為實驗的觀測位移δ_{obs},結果顯示觀測位移與理論線吻合。由數 據顯示化學位移隨溫度增加而遞減,隨濃度增加而增加,這些數值顯 示低溫與高濃度有利於雙體的生成。

T/K	288K	298K	308K	318K
[B] _o /molkg ⁻¹	$\delta_{_{obs}}/\mathrm{Hz}$	$\delta_{_{obs}}/\mathrm{Hz}$	$\delta_{_{obs}}/\mathrm{Hz}$	$\delta_{_{obs}}/\mathrm{Hz}$
0.0619	3375.3	3320.7	3262.5	3209.1
0.0740	3392.1	3341.7	3290.1	3231.9
0.0875	3402.0	3357.6	3303.0	3251.1
0.0952	3408.9	3363.0	3311.4	3265.8
0.1098	3419.7	3375.0	3321.9	3280.2
0.1302	3432.0	3385.5	3337.5	3287.7
0.1438	3437.1	3389.4	3346.5	3297.3
0.1608	3441.3	3394.5	3355.2	3308.1
0.1827	3448.5	3404.7	3365.4	3315.3
0.1952	3449.4	3410.4	3369.6	3320.4
Determined		Contraction of the second		
$\delta_{_m}$ / Hz	2792±14.22	2790±19.14	2728±13.98	2691±21.08
$\delta_{_d}$ / Hz	3565±3.33	3540±5.57	3535±5.00	3502±8.32
K / kgmol ⁻¹	104.53	71.66	60.51	41.16

 δ_m , δ_d 與平衡常數 K。

圖 3.54 各種溫度下, 2-acetylpyrrole 在 C_2Cl_4 中的觀測位移對 X 之 理論線與數據點,溫度表示在圖中。

圖 3.55 各種溫度下,2-acetylpyrrole 在 C_2Cl_4 中的觀測位移對 f_d 之 理論線與數據點,溫度標示在圖中。

圖 3.56 各種溫度下, 2-acetylpyrrole 在 C_2Cl_4 中的觀測位移對[B]。

3.5 結果

综合以上五組系統,可以看到實驗室先前導出的公式經過轉換過後,所 求出的結果更為準確,前三組系統主要是在印證該兩組公式的線性迴歸準 確程度,透過動力學的假設,再加上平衡常數的公式所導出的兩條與單雙 體相關的公式,可以看出2-乙醯基吡咯在四氯化碳,四氯乙烯和正辛烷中, 所求得的標準焓分別為 -35.36, -30.40, -46.42 kJ/mol, 負號代表其在形成 雙體的過程中為放熱反應,根據勒沙特列原理當溫度越低越有利於雙體形 成。而負的越多代表在形成雙體的過程中需要更多的能量,所以可以看出 這三組系統中以在正辛烷中最不易形成雙體。而由於該化合物在正辛烷中 的溶解度不高,NMR 實驗無法測到故無從比較。而第四組系統在三氯甲烷 中,由於單體位置有兩根 peak 因此懷疑是兩種單體依不同比例存在,不過 也有可能是 solvent effect 導致, 文獻中有提到 2-pyrrolidinone 的自結合系 統較易形成環狀雙體和單體⁴¹,由於環狀雙體是由順式單體形成,因此可 以下一個結論,單體應該有兩種形式,比例比較多的為順式單體,比例比 較少的為反式單體,這兩個結構相近的化合物可以一併比較,而又因為我 們以 NMR 的圖解法做過研究,發現結果與 IR 做出來的差不多,因此可以 大膽假設該組系統也為單純的單雙體系統,單體間以一定比例存在兩種形 式。圖 3.57 為在各溶劑系統中的單體吸收位移對(D-1)/(2D+1)作圖,並可得 校正曲線 Y = 3497.62-183.17X。相互比較結果之後發現介電常數比較低的

溶劑最容易使溶解的樣品有多體形成。因此濃度必須控制在越低越好,以確保多體出現。

至於第五組系統,我們嘗試用 benzene 當 Acceptor, CCl₄ 當 solvent, 2-acetylpyrrole 當 Solute 為一整組系統,透過單一沒有 Acceptor 的系統下, 可以確定在四氯化碳中是很單純的環境,也就是沒有溶劑效應,所以我們 現在固定 benzene 的濃度,逐步加入但以少量為主,發現了一個現象,該 化合物會與 benzene 形成 N-H…π hydrogen bonding 形成在單體和雙體之 間的位置,並會因為 acceptor 增加的關係而使單雙體的面積減小,這也就 間接證明了自異結合共存的狀態,過去我們無法處理這樣的系統,現在可 以嘗試使用這種方式去 fit。在第二章推導的部分,清楚解決這樣的問題, 所以單雙體的吸收係數和平衡常數可以由先前的系統代入,而錯體的部分 經由公式(41) $\frac{[X]_o}{A_x} = \frac{1}{\varepsilon_x} + \frac{\varepsilon_m}{\varepsilon_x K_x} \frac{1}{A_m}$ 的線性作圖,可以求得錯體的吸收係數和 錯體的平衡常數,成功的解決了五個熱力學常數。

第四章 結論

本論文的主旨在於利用 IR 研究相同分子間經由氫鍵而形成雙體之 自異結合系統。有別於之前的研究方法,我們除了利用單體吸收的數據 以外,也再開創了利用雙體吸收的方法,來求得自結合的平衡常數,並 且能與單體吸收的數據或其他實驗方法數據的結果互相比較。之後再加 入溶劑效應的異結合系統,在自異結合共存的情況下,求出各熱力學常 數值。

本篇即利用兩個新推導出的公式,使用電腦軟體的高斯—勞倫茲混 合校正曲線公式,分別求出光譜中的單體與雙體總吸收度,並再分別出 分子在溶液中於不同溫度下的單體吸收係數、雙體吸收係數及平衡常 數,並利用 van't Hoff plot 作圖法求得系統的結合焓ΔH[°]及結合熵 ΔS[°]。這兩個公式所得的結果可以互相比較。最後再針對溫度、溶劑、 立體障礙、濃度等實驗因子做探討。該公式在 2006 年的期刊中有兩篇 引用,其中一篇驗證 intermolecular association 的實驗⁴²。而另外一篇自 結合系統也是研究 open or cyclic dimers⁴³。另外我們使用新方法去計算 舊文獻的 data 也得到不錯的驗證⁴⁴。

我們研究的主要目標在於單體到雙體平衡的研究,因此實驗用的分子必須確保平衡能在我們的假設範圍之內。在這個前提之下,我們用

96

2-乙醯基吡咯(2-acetylpyrrole) 這種分子作為我們的樣品進行實驗。 主要的研究結果如下:

2-乙醯基吡咯在自結合系統中可能產生的形式有線性雙體和環狀雙 體,

異構物的形式有 cis 和 trans 兩種³⁴,但是在前三組系統下,我們可以 觀察出單體的形式只有 cis-一種,也經由實驗證明雙體形成為環狀的, 極不容易產生線性雙體。線性雙體的話會出現一根靠近單體的終端基訊 號,造成光譜複雜化,若是有這方面的雙體我們就要考慮扣除這部份的 面積,以避免誤差。在三氯甲烷溶液中,由於單體訊號有兩根 peak, 因此研判是不同的單體,由不同單體造成不同的吸收峰訊號,分別如

 H₃C
 N
 N

 下:
 0
 H

 和
 H₃C
 H

 所以綜合以上幾點我們做出下列幾

 點歸納:

2-乙醯基吡咯(2-acetylpyrrole)在四氯化碳、四氯乙烯、正辛烷等溶劑
 中經由氫鍵所形成的分子自結合現象,在這三種溶劑中都只有單體
 和環狀雙體。而由實驗結果可知,其在上述三種非極性溶劑中自結
合過程皆為放熱反應。

- 2. 2-乙醯基吡咯(2-acetylpyrrole)在三氯甲烷中經由氫鍵所形成的分子 自結合現象,有兩種單體和一種雙體,在低極性的溶劑中可以符合 系統需求,自結合過程為放熱反應。
- 2-乙醯基吡咯(2-acetylpyrrole)在以四氯化碳為溶劑的系統中,再加入 Acceptor,出現自異結合共存的光譜圖,求出單雙體平衡常數和錯體 平衡常數,由於加入少量 benzene 的關係,benzene 在其中的角色變 成為π電子的供應者,形成的氫鍵為 N-H····π type hydrogen bonding,形成時相對的單雙體面積會減少,透過莫耳平衡再加上線 性關係,算出了五個熱力學係數,由平衡狀態可以看出為放熱反應。

參考文獻

- Latimer, W. M.; Rodebush, W. H. "Polarity and Ionization from the Standpoint of the Lewis Theory of Valance", <u>J. Am. Chem. Soc.</u>, 42, pp. 1419-1433, April 1920.
- [2] Chen, J. S.; Shiao, J. C. "Graphic Method for the Determination of the Complex NMR Shift and Equilibrium Constant for a Hetero-association accompanying a Self-Association", <u>J. Chem. Soc.</u> <u>Faraday Trans.</u>, 90, pp. 429-433, August 1994.
- [3] Gutowsky, H. S.; Holm, C. H. "Rate Process and Nuclear Magnetic Resonance Spectra. Hindered Internal Rotation of Amides", <u>J.</u> <u>Chem. Phys.</u>, 25, pp. 1228-1234, December 1956.
- [4] Luo, W. C.; Lay, J. L.; Chen, J. S. "NMR Study of Hydrogen Bonding Association of some Sterically Hindered Alcohols in Carbon Tetrachloride, Chloroform and Cyclohexane", <u>Z. Phys.</u> <u>Chem.</u>, 216, pp. 829-843, June 2002.
- [5] Chen, J. S.; Wu, C. C.; Kao, D. Y. "New approach to IR study of Monomer-Dimer Self-Association: 2,2-Dimethyl-3-Ethyl-3-Pentanol in Tetrachloroethylene as an Example", <u>Spectrochim. Acta Part A.</u>, 60, pp. 2287-2293, December 2004.
- [6] Chen, J. S.; Kao, D. Y. "New Method to Analysis IR-Studies of Monomer-Dimer Self-Association: 2,2-Dimethyl-3-Ethyl-3-Pentanol in Carbon Disulfide as an Example", <u>Z. Phys. Chem.</u>, 218, pp. 231-243, November 2004.
- [7] Chen, J. S.; Kao, D.Y. "Accurate Determination of Dimerization Constants from IR Study of Monomer-Dimer Self-Association: 3-Ethyl-3-Pentanol in Carbon Tetrachloride as an Example", <u>J. Chin.</u> <u>Chem. Soc.</u>, 51, pp. 881-888, 2004.
- [8] Sassa, Y.; Katayama, T. "Investigation for Thermodynamic Properties of Alcoholic Solutions by Infrared Spectroscopic Study", <u>J. Chem.</u> <u>Eng. Jpn.</u>, 6, pp. 31-37, July 1973.

- [9] Schwager, F.; Marand, E.; Davis, R. M. "Determination of Self-Association Equilibrium Constants of Ethanol by FTIR Spectroscopy", <u>J. Phys. Chem.</u>, 100, pp. 19268-19272, September 1996.
- [10] Dudik, J. M.; Johnson, C. R.; Asher, S. A. "UV Resonance Raman Studies of Acetone, Acetamide, and N-Methylacetamide: Models for the Peptide Bond", J. Phys. Chem., 89, pp. 3805-3814, May 1985.
- [11] Susana, F. G.; Cabanas, A.; Costas, M. "Self-Association and Complex Formation in Alcohol-Unsaturated Hyfrocarbon Systems", <u>Phys. Chem. Chem. Phys.</u>, 1, pp. 665-674, December 1999.
- [12] Vinogradov, S. N.; Linnell, R. H. <u>Hydrogen Bonding</u>, Van Nostrand Reinhold Co., New York, 1971.
- [13] Bell, P. W.; Thote, A. J.; Park, Y.; Gupta, R. B.; Roberts, C. B. "Strong Lewis Acid-Lewis Base Interactions between Supercritical Carbon Dioxide and Carboxylic Acids: Effects on Self-Association", <u>Ind. Eng. Chem. Res.</u>, 42, pp. 6280-6289, September 2003.
- [14] Park, Y. K.; Gupta, R. B.; Curtis, C. W.; Roberts, C. B. "Solvents Effects on the Self-Association of Formic Acid in Carbon Dioxide and Ethane", J. Phys. Chem. B, 106, pp. 9696-9700, June 2002.
- [15] Laenen, R.; Simeonidis, K. "Vibrational Energy Migration in a Hydrogen-Bonded Dimer Probed with Ultrafast Time-Resolved Spectroscopy", <u>Chem. Phys. Lett.</u>, 292, pp. 631-637, June 1998.
- [16] Coggeshall, N. D. "Infrared Spectroscopic Investigations of Hydrogen Bonding in Hindered and Unhindered Phenols", <u>J. Am.</u> <u>Chem. Soc.</u>, 69, pp. 1620-1624, July 1947.
- [17] 吳承昌,「利用IR光譜研究分子結合」,國立交通大學,碩士論

文,民國92年。

- [18] Chen,J. S.; Kao, D. Y.; Liau P. C.; Chen, S. M. "IR Study of Monomer-Dimer Self-Association of 2,2-Dimethyl-3-Ethyl-3-Pentanol in n-Octane: Cyclic Dimer or Linear Dimer? ", Spectrochim. Acta Part A. (submitted)
- [19] Kuznetsova, L. M.; Furer, V. L.; Maklakov, L. I. "Infrared Intenstites of N-methylacetamide Associates", <u>J. Mol. Struct.</u>, 380, pp. 23-29, December 1996.
- [20] Aghamiri, S. F.; Modarress, H.; Mansoori, G. A. "A New Theoretical Approach to the Hydrogen-Bonded on the Conformal Solution Concept", <u>J. Phys. Chem. B</u>, 105, pp. 2820-2825, January 2001.
- [21] Shekarri, H.; Modarress, H.; Hadipour, N. "Thermodynamic Investigation on Self-Association of Alcohols in Carbon Tetrachloride by FT-NMR Spectroscopy", <u>J. Phys. Chem. A</u>, 107, pp. 1891-1895, November 2003.

1896

- [22] Huelsekopf, M.; Ludwig, R. "Hydrogen Bonding in a Sterically Hindered Alcohol", J. Mol. Liqs., 98, pp. 163-171, 2002.
- [23] Stefov, V.; Pejov, L.; Soptrajanov, B. "Experimental and Quantum Chemical Study of Pyrrole Self-Association through N-H... π Hydrogen Bonding", J. Mol. Struct., 649, pp. 231-243, November 2003.
- [24] Krlkorlan, S. E. "Determination of Dimerization of Cis and Trans Configured Secondary Amides Using Near-Infrared Spectrometry", J. Phys. Chem., 86, pp. 1875-1881, December 1982.
- [25] Prokopenko, N. A.; Bethea, I. A. et. al., "The Effects of Structure on Hydrogen Bonding", <u>Phys. Chem. Chem. Phys.</u>, 4, pp. 490-495, January 2002.
- [26] Asprion, N.; Hasse, H.; Maurer, G. " FTIR Spectroscopy

Investigations of Hydrogen Bonding in Alcohol-Hydrocarbon Solutions", Fluid Phase Equilibria, 186, pp. 1-25, February 2001.

- [27] Schwager, F.; Marand, E.; Davis, R. M. "Determination of Self-Association Equilibrium Constants of Ethanol by FTIR Spectroscopy", <u>J. Phys. Chem.</u>, 100, pp. 19268-19272, September 1996.
- [28] Dannhauser, W. J. "Dielectric Study of Intermolecular Association in Isomeric Octyl Alcohols", <u>J. Chem. Phys.</u>, 48, pp. 1911-1917, October 1968.
- [29] Luo, W. C.; Lay, J. L.; Chen, J. S. "NMR Study of Self-Association of Acetanilide in Chloroform, Acetone, Acetonitrile and Dimethyl Sulphoxide", <u>Z. Phys. Chem.</u>, 215, pp. 447-459, 2001.
- [30] Huelsekopf, M.; Ludwig, R. "Temperature Dependence of Hydrogen Bonding in Alcohols", J. Mol. Liqs., 85, pp. 105-125, April 2000.
- [31] Huelsekopf, M.; Ludwig, R. "Hydrogen Bonding in a Sterically Hindered Alcohol", <u>J. Mol. Liqs.</u>, 98, pp. 163-171, May 2002.
- [32] Laenen, R.; Simeonidis, K.; Ludwig, R. "Investigation of an H-bonded dimer: Calculations of Bonding Structures and Temperature Dependence of the Librational Substructure of the OH-Stretching Band", J. Chem. Phys., 111, pp. 5897-5904, July 1999.
- [33] Laenen, R.; Simeonidis, K. "Vibrational Energy Migration in a Hydrogen-Bonded Dimer Probed with Ultrafast time-Resolved Spectroscopy", <u>Chem. Phys. Lett.</u>, 292, pp. 631-637, June 1998.
- [34] Cumper, C. W. N.; Wood, J. W. M. "Dielectric Relaxation and Dipole Moments of Substituted Pyrroles", <u>J. Chem. Soc. B</u>, pp. 1811-1817, 1971.
- [35] In Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd ed., Eds.

by Mark, H. F.; Othmer, D. F.; Overberger, C.G.; Seaborg, G.T.; Wiley: New York, 1979; Vol.5.

- [36] West, W.; Edwards, R. T. "The Infrared Absorption Spectrum of Hydrogen Chloride in Solution", <u>J. Chem. Phys.</u>, 5, pp. 14-22, October 1937.
- [37] Bauer, E.; Magat, M. "Regarding the Deformation of Molecules in a Condensed Phase, and the Hydrogen Bond", <u>J. Phys. Radium</u>, 9, pp. 319-330, 1938.
- [38] Maryott, A. A.; Smith, E. R. <u>Table of Dielectric Constants of Pure</u> <u>Liquids</u>, National Bureau of Stsnd. Circ. 514, Washington 25, D. C., 1951.
- [39] Bevington, P. R.; Robinson, D. K. <u>Data Reduction and Error</u> <u>Analysis</u>, 3rd ed., McGraw-Hill, Boston, 2003.
- [40] Gutowsky, H. S.; Saika, A. "Dissociation, Chemical Exchange, and the Proton Magnetic Resonance", <u>J. Chem. Phys.</u>, 21, pp. 1688-1694, February 1953.
- [41] Walmsley, J. A. "Self-Association of 2-Pyrrolidinone", <u>J. Phys.</u> <u>Chem.</u>, 82, pp. 2031-2035, April 1978.
- [42] Kuppens, T.; Herrebout, W.; van der Veken, B. et al. "Intermolecular Association of Tetrahydrofuran-2-Carboxylic Acid in Solution", <u>J.</u> <u>Phys. Chem. A</u>, 110, pp. 10191-10200, June 2006.
- [43] Lomas, J. S.; Adenier, A.; Cordier, C. "Proton NMR and IR Study of Self-Association in Pyridylalkanols: Open or Cyclic Dimers ? Higher Polymers ?", <u>J. Phys. Org. Chem.</u>, 19, pp. 295-307, May 2006.
- [44] Tsuboi, M. "Energy ane Entropy Changes Accompanying the Molecular Association of Vslerosctsm in its Carbon Tetrachloride Solution" <u>Chem. Soc. Jpn.</u>, 24, pp. 75-77, December 1951.

附錄1 NMR 圖解法的 Mathematica 計算方法

主指令每一次代入使用 NmrMap 內的代號依序表示濃度, δ_{obs} ,猜 K 值,猜單體值,實驗總數量,猜幾個值 Module 內的代號依序為 x1- $(\frac{\delta_{obs}-\delta_m}{[B]_o})^{1/2}$,t1-以 x1 為 x 軸、 δ_{obs} 為 y 軸 作 table,f1-t1 作一次迴歸,c01-f1 的截距,c11-f1 的斜率, k1- $\frac{(c01-\delta_m)}{2\times(c11)^2}$,p1-單體位移對 k1 作 table,s1-畫出 p1(虛線部分),f2-二次迴歸,c02-二次迴歸截距,c12-二次迴歸斜率,k2- $\frac{(c02-\delta_m)}{2\times(c12)^2}$,p2-單體位移對 k2 作 table,s2-畫出 p2(虛線),x3- $\frac{(1+8K[B]_o)^{1/2}-1}{(1+8K[B]_o)^{1/2}+1}$,t3-x3 對 δ_m 作 table,f3-t3 作一次迴歸,c03--次迴歸的截距,p3-c03 對 K 作 table,s3-p3 作圖,f4-t3 作二次迴歸,c04-取 f4 做截距 table, p4-c04 對 K 作 table,s4-畫 p4 圖形(實線)

```
s1 = ListPlot[p1, Frame -> True, PlotJoined->True,
     PlotRegion->{\{0.2, 0.9\}, \{0, 1.175\}},
     AspectRatio->0.9,PlotStyle ->{Dashing[{0.01}],Thickness[0.0028]}];
f2[m] := Fit[t1[m], \{1, x, x^2\}, x];
c02 = Table[Coefficient[f2[m], x, 0], \{m, n2\}];
c12 = Table[Coefficient[f2[m], x, 1], \{m, n2\}];
k^{2} = (c^{0} - d)/(2c^{1} c^{1} c^{1} c^{1}); p^{2} = Table[\{d[[m]], k^{2}[[m]]\}, \{m, n^{2}\}];
s2 = ListPlot[p2, Frame -> True,PlotJoined->True,
     AspectRatio->0.9,PlotRegion->{{0.2,0.9},{0,1.175}},PlotStyle
     ->{Dashing[{0.01}],Thickness[0.0028]}];
 x_3[m] := Table[((1 + 8*c[[m]]*a[[i]])^0.5 - 1)/((1 + 8*c[[m]]*a[[i]])^0.5 + 1))
 t3[m] := Table[{x3[m][[i]], b[[i]]}, {i, n1}];
 f3[m] := Fit[t3[m], \{1, x\}, x];
 c03 = Table[Coefficient[f3[m], x, 0], \{m, n2\}];
 p3 = Table[\{c03[[m]], c[[m]]\}, \{m, n2\}];
 s3 = ListPlot[p3, Frame -> True,PlotJoined->True,
AspectRatio->0.9,PlotRegion->{{0.2,0.9},{0,1.175}},PlotStyle->Thickness[0.0028]];
f4[m_] := Fit[t3[m], \{1, x, x^2\}, x];
c04 = Table[Coefficient[f4[m], x, 0], \{m, n2\}];
p4 = Table[{c04[[m]], c[[m]]}, {m, n2}];
s4 = ListPlot[p4, Frame -> True, PlotJoined -> True,
   AspectRatio->0.9,PlotRegion->{{0.2,0.9},{0,1.175}},
   PlotStyle->Thickness[0.0028]];Show[s1,s2,s3,s4,AspectRatio->0.9]]
a=\{\} b=\{\} c=Table[i*0.01+1.5, \{i, 100\}] d=Table[i*1+1800, \{i, 100\}]
NmrMap[a,b,c,d,n,100]
```