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摘要 

 

目前，利用由製程所造成的單軸應力(uniaxial stress)來改善元件效能已

經被廣泛地使用，例如矽鍺源汲極、接觸孔蝕刻停止層。而採用高載子遷

移率的鍺通道或應變鍺通道，對於未來 CMOS 微縮是必要的。所以研究因

形變而改變的載子傳導帶或價電帶結構是個重要的議題。 

在本篇論文中，吾人利用 Luttenger-Kohn 模型計算價電帶結構，自洽計

算薛丁格及泊松方程式，其中包含矽及鍺通道金氧半電晶體二維量子井。

最後，吾人利用蒙地卡羅(Monte Carlo)方法來模擬量子井中電洞的傳輸。 

 i



Subband Structures of Silicon and Germanium Channels 

in P-type Metal-oxide-semiconductor Devices 

 

Student: Tzu-Hua Chiu     Advisor: Dr. Tahui Wang 

 

Department of Electronics Engineering 

& Institute of Electronics 

National Chiao Tung University 

 

Abstract 

For today’s technology, uniaxial–process induced stress is used to improve device 

performance. One method is the adoption of the embedded and raised SiGe in the p-channel 

source and drain and a tensile capping layer on the n-channel device. The other method is 

with advantages of dual stress liners: compressive and tensile silicon nitride (SiN) for p- and 

n-channel devices, respectively. However, for further CMOS scaling, it is imperative to 

investigate other high mobility channel materials, such as Ge, strained Si/Ge and GaAs. Due 

to the complexity of the coupling valence band among the heavy, light and split-off bands, the 

treatment of one mass approximation applied to hole quantization in semiconductor inversion 

layer is incorrect. This thesis focuses on valence band calculations in various devices, such as  

Si MOS structure and double gate devices by iteratively solving the coupled Schrödinger and 

Poisson equations with six-band Luttinger-Kohn model. Finally, we developed a 

two-dimensional Monte Carlo simulation to study hole transport properties in SiGe and Ge 

quantum wells. 
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Chapter 1 

Introduction 

For the past decades, the scaling of silicon complementary metal-oxide 

semiconductor (CMOS) transistor has enabled not only an exponential increase in 

integration circuit density, but also a corresponding enhancement in the transistor 

performance. But as the transistor gate length shrinks down to 35nm [1.1, 1.2], 

physical limitations, such as off-state leakage current and power density, make 

geometric scaling an increasingly challenging task. Therefore, new techniques are 

required to improve transistor’s performance. The key feature to enhance 90-, 65-, 

and 45-nm technology nodes is uniaxial-process induced stress [1.3-1.5]. For p-type 

MOSFETs, the embedded SiB1-xBGeBxB in source and drain area was promoted by Intel 

[1.6]. For the counterpart of n-type MOSFETs, a tensile silicon nitride-capping layer 

was used to enhance electron mobility. However, for further CMOS scaling, it is 

imperative to investigate other high mobility channel materials, such as Ge, strained 

Si/Ge and GaAs [1.7, 1.8], which may possess better carrier transport property than a 

highly strained Si. As we know, the device performance can be affected through the 

band structure, which determines the scattering rates and density of states. As a 

consequence, the purpose of this thesis is to understand the band structure 

characteristics of these devices, especially for the case of complicated valence bands. 

In addition, carrier mobility can be further improved in quantum structure MOSFETs 

owing to the modification of a band-structure and carrier scattering rates. The 

valence subband structures of various devices, such as Ge quantum well, Si 

metal-oxide-semiconductor structure and double gate devices, are included in this 

thesis to provide subband structures, wave functions and density of states to study the 

behavior of the carrier transport by a Monte Carlo simulation.  
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The organization of the thesis is in the following. 

In chapter 2, the valence band structures are calculated by using a 

Luttinger-Kohn model. The 30 Å infinite quantum well of Si and Ge are compared.  

In chapter 3, we examine the main features of a two-dimensional hole gas 

confined near a Si and SiOB2B interface. The six-band Luttinger-Kohn model is used to 

study the band warping of the heavy-hole, light-hole and split-off bands. Moreover, 

we solve iteratively and simultaneously the Schrödinger and Poisson equations in the 

case of an inversion of holes in a P-channel metal-oxide-semiconductor structure for 

different gate biases. The simulated subband energies suggest that the use of one mass 

approximation in each subband is incorrect. Furthermore, the simulation results 

showed that the character of the subbands becomes mixed as the wave-vector kB//B 

separates from zero. We also compare the main characteristics of the inversion layer 

on (001) and (110) substrates.  

In chapter 4, the self-consistent solution of Schrödinger and Poisson equation is 

applied to single and double gate metal-oxide-semiconductor (MOS) structures. The 

influence of the semiconductor film thickness of the single and double gate MOS on 

the hole concentration distribution, inversion hole density, threshold voltage and 

transverse effective electric field is analyzed. The simulations results show that the 

transverse effective is lower in the double gate device compared to that in the single 

gate device, which possibly leads to improved mobility as a result of a reduction of 

the surface roughness scattering.  

In chapter 5, we developed a two dimensional hole Monte Carlo simulation to 

study the hole transport in Ge and SiGe quantum wells. The intra and inter subband 

scattering rate are evaluated based on the Fermi-golden rule. The simulation results 

show that the phonon-limited low-field mobility in Ge quantum well is larger that that 

in SiGe quantum well due to lower scattering rate and lower effective mass. The 

 2



temperature dependence of mobility is also demonstrated. 

Finally, a brief conclusion will be given in chapter 6. 
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Chapter 2 

The Luttinger-Kohn Model 

 

2.1 Introduction 

Various methods have been developed to calculate a band structure in 

semiconductors. These methods can be grouped into four categories: the 

pseudopotential method [2.1,2.2], the envelope-function (k．p) method [2.3], the tight 

binding method [2.4], and the bond orbital model (BOM) method [2.5,2.6]. Among 

these methods, the pseudopotential approach is suitable for a conduction band 

structure and the k．p method is widely used to calculate a valence band structure. As 

a contrast, although the tight binding method can take the effect of a full valence band 

structure into account, the main disadvantage of this method is that it requires many 

empirical parameters which are usually determined by tedious fitting procedures. In 

this thesis, we calculate the valence band structure using the envelope function 

method. As we know, in the Kane’s model, as shown in Fig. 2.1 (a) and (b), only a 

conduction band, a heavy-hole, a light-hole and a split-off band with double 

degeneracy are taken into account. Other higher and lower bands are not considered, 

which results in an incorrect effective mass for the heavy-hole band. On the other 

hand, in the Luttinger-Kohn model, the heavy-hole, the light-hole and split-off bands 

in double degeneracy are considered and are called class A. All other bands are 

defined as class B. The effects of bands in class B on those in class A are included in 

the Luttinger-Kohn model.  

In chapter 2, in order to take into account the effect of uniaxial compressive 

strain, the Luttinger-Kohn model is used. This model is similar to the k．p method. 
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The strain effects can be included with the Bir-Pikus deformation potentials. The 

Luttinger-Kohn model is described as follows. 

 

2.2 Valence Band Structure Calculation 

2.2.1 The Luttinger-Kohn Model 

Based on the theory of Luttinger-Kohn and Bir-Pikus [2.7], the valence band 

structure of a strained bulk material can be derived by the following Hamiltonian in 

the envelope-function space: 
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2 22
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where  is the spin△ -orbit splitting, γB1B, γB2B, and γB3B are the Luttinger parameters, and aBvB, 

b, and d are the Bir-Pikus deformation potentials. The basis function 

represents the Bloch wave function at the zone center. The parameters used 

in this thesis are listed in Table 2.1.  
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2.2.2 Valence Band Structure of Bulk Si and Ge 

Fig. 2.2 (a) and (b) shows the constant energy surface of the heavy-hole band for 
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Si and Ge, respectively. The constant energy is 100 meV below the zone center. As 

shown in the figure, the heavy-hole band depicts the twelve promising prongs and the 

energy anisotropy for Ge is less severe than that for Si. 

 

2.3 Subband Structures in Infinite Quantum Wells 

When an external voltage is applied in the z-direction, the Schrodinger equation 

under the Luttinger-Kohn model is [2.10, 2.11] 

 

6 6 , , , ,( , , ) ( ) ( ) ( , ) ( )
x y x yx y z n k k n x y n k kH k k k i qV z I z E k k z

z
ϕ ϕ×

∂⎡ ⎤= − + = ⋅⎢ ⎥∂⎣ ⎦
    

 

where , , ( )
x yn k k zϕ is a 6x1 vector containing the components of the basis function, 

IB6x6B is the identity matrix of order 6, V(z) is the quantum confinement energy caused 

by the external applied voltage, and EBnB is the subband energy of the n-th subband. 

Since the system varies only along the z direction, and is translational invariant in the 

lateral directions. Then, we can express the Hamiltonian matrix element as a 

second-order polynomial in kBzB and replace the wave vector-component kBzB by the 

operator zk i= − ∂ ∂z  [2.12].  

 

(2) 2 (1) (0)( ) ( )ij ij z ij z ijH H k H k k H k= ⋅ + ⋅ +           

2
(2) (1) (0)

, , , ,2[ ( )] ( ) (
x y x yn k k n x y n k k, ) ( ) H iH H qV z z E k k z

z z
ϕ ϕ∂ ∂

− − + + ⋅ = ⋅
∂ ∂

  

 

 Fig. 2.3 (a) and (b) show the comparison of hole subband structures calculated 

with the Luttinger-Kohn model and bond-orbital model for a 30 Å (001) infinite Si 

and Ge quantum wells, respectively. Energy is plotted along wave-vector direction of 
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<100> and <110> and confinement direction is taken to be along the z direction. Two 

points are worth noting. First, the Luttinger-Kohn model can yield reliable results 

only near the valence band maxima, and it’s not appropriate for the high energy 

portion of a valence band. Second, Ge generally has small quantization masses 

compared to that of Si, resulting in larger energy separations. For instance, as shown 

in Fig. 2.3 (b), an energy separation of 0.1 eV between the first and second subband is 

obtained. 
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Fig. 2.1 (a) The kp method in Kane’s model. (b) The Luttinger-Kohn 
model. 
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Table 2.1 Material parameters for Si and Ge, respectively. 

1

2

3

Material Parameters Symbol   Unit     Si   Ref.     Ge   Ref.
Valence band structure       4.285   [2.8]     13.38  [2.8] 

     0.339   [2.8]     4.24  [2.8]
     1.446   [2.8]     5.69  [2.8] 

Spin-orbit splitt

γ
γ
γ

0

ing   eV     0.044   [2.8]     0.297  [2.8] 
Deformation potential   eV     2.05   [2.9]     2.0  [2.9] 

 eV     2.1   [2.9]     2.2  [2.9] 
 eV     4.85   [2.9]     4.4  [2.9] 

Lattice constant       5.431      

a
b
d
a

Δ

− −
− −

11 2

11 2

11 2

11

12

44

10 dyn/cm

10 dyn/cm

10 dyn/cm

 5.646   
Dielectric constant       11.7       16.0   
Elastic constant c       16.577   [2.9]      12.853  [2.9]    

c     6.393   [2.9]     4.826  [2.9]
c     7.962   [2.9]  

ε

   6.680  [2.9]

1
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Fig. 2.2 Constant energy surfaces of the heavy-hole hand for (a) Si 
and (b) Ge with energy 100meV below the zone center. 
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Fig. 2.3 Hole subband structure for a 30-Å (001) infinite Si and Ge 
quantum well. Calculation from the Luttinger-Kohn model is 
compared with that from the bond-orbital model. Energy plotted 
along wave-vector direction of <100> and <110>. Confinement 
direction is taken to be along z direction. 
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Chapter 3 

Valence Band Calculation in Silicon Inversion 

Layer by a Self-consistent Approach 

 

3.1 Introduction 

 The effective mass approximation has been widely applied to the electron 

quantization in silicon inversion layer. Although such a treatment has also been used 

for the hole case [3.1,3.2], this methodology will result in an incorrect valence 

subband structures due to the band-mixing of the heavy, light and split-off bands and 

thus lead to an incorrect carrier transport behavior. One of the methods to incorporate 

these effects is based on the diagonalization of the Luttinger-Kohn Hamiltonian in the 

framework of the effective mass theory [2.12, 2.13]. The strain effect can be easily 

incorporated into Luttinger-Kohn Hamiltonian by including the Bir-Pikus deformation 

potentials. 

 

3.2 Device Configuration and Simulation Technique 

Fig. 3.1 shows the simulated one-dimensional (1D) Si–SiOB2B pMOS structure on 

a 500nm (100) silicon substrate. The coupled Schrödinger and Poisson equation is 

solved by using the three-point finite difference method with a nonuniform mesh. 100 

grid points for a 500 nm substrate are used to obtain well converged wavefunctions 

and subband energies. Furthermore, the linear 1D Poisson equation is solved by the 

Newton iteration scheme.  
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3.2.1 Formulation for the Schrödinger Equation 

 The formulation for the Schrödinger Equation had been described in chapter 2 

and the corresponding equations are described as follows 

 

6 6 , , , ,( , , ) ( ) ( ) ( , ) ( )
x y x yx y z n k k n x y n k kH k k k i qV z I z E k k z

z
ϕ ϕ×

∂⎡ ⎤= − + = ⋅⎢ ⎥∂⎣ ⎦
   (1) 

(2) 2 (1) (0)( ) ( )ij ij z ij z ijH H k H k k H k= ⋅ + ⋅ +          (2) 

2
(2) (1) (0)

, , , ,2[ ( )] ( ) (
x y x yn k k n x y n k k, ) ( ) H iH H qV z z E k k z

z z
ϕ ϕ∂ ∂

− − + + ⋅ = ⋅
∂ ∂

 (3) 

 

In this section, we mainly focus on the formulation of the Schrödinger Equation with 

a nonuniform mesh. Following by the approach given in [3.3], we firstly discretized 

the differential equation by using a three-point finite difference method. The index i 

represents each discretized lattice point and hBiB stands for the mesh size between 

adjacent grid points xBiB and xBi+1B. This will give an asymmetric tridiagonal-block matrix 

if the mesh spacings are nonuniform, as shown in Fig. 3.2 (a), which yields a 6NBz Bx 

6NBzB eigenvalue problem.  

 

(2) (0)
,

1 1

(1)
(2)

, 1
1 1 1

(1)
(2)

, 1
1 1

1 1 2  ( ) ( ) (

1 2 2( ) ( ) (
2

1 2 2( ) ( ) ( )
2

i i
i i i i

i i
i i i i

i i
i i i i i

H H H V z
h h h h

iHH H
h h h h h

iHH H
h h h h h

− −

−
− − −

+
− −

= + ⋅ + +
+

= − ⋅ + ⋅
+ +

= − ⋅ − ⋅
+ +

)

)
i

      (4)  

   

This may be cast in the form of a matrix equation, 

Hϕ λϕ=   (5) 
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Here, we define the following parameters:  

2 ( )L h h −= + 1 / 2i i i  (6) 

 

Thus, the matrix becomes 

' (2) (0) 1
,

1

(1)
' (2)
, 1

1

(1)
' (2)
, 1

1 1  { ( ) ( ( )) ( )
2

1{ ( ) }
2

1{ ( ) }
2

i i
i i

i i

i i
i

i i
i

h hB H H V z
h h

iHB H
h

iHB H
h

−

−

−
−

+

}+
= + + + ⋅

= − +

= − −

    (7) 

 

We set 2
ij i ijB L H=  

Then it can be easily shown that instead of solving Eq. (5), one can solve Eq. (8) to 

obtain the eigenvalue λ corresponding to the eigenfunction Φ due to the symmetric 

and tridiagonal matrix A, which ensures the real-valued eigenvalues.  

 

A λΦ = Φ  (8) 

where 1 1A L BL− −=  and 1Lϕ −= Φ  

 

3.2.2 Formulation for the Poisson Equation 

 The one dimensional Poisson equation taking position dependence of dielectric 

constant into consideration is expressed as 

 

( ( ) ( )) ( ( ) ( ) ( ) ( ))A D
z z q p z n z N z N zε φ − +∇ ⋅ ⋅∇ = − ⋅ − − +      (9) 
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Where q represents elementary charge equal to 1.6x10P

-19
P coulomb, ε(z) is the 

position-dependent dielectric constant in each material, and ( )zφ  is the electrostatic 

potential. In the simulation, complete ionization at 300K is assumed. In oxide region, 

Eq. (9) reduces to  

 

2 ( ) 0zφ∇ =  (10) 

Discretization of Eq. (10) is given by 

1 1
1

1 1 1( )i i
i ix x iφ φ φ+ −

−

= +
Δ

 

where 
1

1 1(
i i

)
x x −

Δ = +  and xBiB and xBi+1B are defined in Fig. 3.2 (b). 

 

In semiconductor region, discretization of Eq. (9) can be obtained first by linearizing 

Eq. (9), i.e. let ( 1) ( )k kφ φ δ+ = + , then 

 

( ) ( ) ( )  k
A Dq n p q n p N Nε δ β δ ε φ∇ ⋅∇ − + ⋅ = − + − − ∇ ⋅∇    (11) 

where q kTβ =  

 

 

Appling three-point finite difference method gives 

 

1 1 1

1 1
1 11 1

2 1 2 1

( ) ( )
( ) ( )

i i i i i i i i

i i i i
i A D

i i i i

x x x xq n p q n p N N
x x x x

1δ δ δ δ φ φ φ φ

ε β δ ε

+ − +

− −

− −

− − − −− −
− + = − + − −

+ +

−

ic

  (12) 

 
or 1 1 1 1i i i i ib aδ δ δ− − + ++ + =  
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3.2.3 Flow Chart of Self-consistent Calculation 

 The simulation flow of the coupled self-consistent Schrödinger and the Poisson 

equation is shown in Fig. 3.3. First, we obtained the classical electrostatic potential 

distribution by solving the Poisson equation. Then, we get the corresponding 

subbands and wavefunctions by solving the Schrödinger equation according to Eq. (8). 

Here, we have defined an energy, EBlimB, to obtain the hole concentrations in the 

continuum (pB3dB) and in the subbands (pB2dB). For energies below EBlimB the hole 

concentration (pB3dB) is evaluated as an incomplete Fermi integral [3.4] by using a 

continuous distribution of the density of states. For energies above EBlimB, the subband 

energies are calculated and the two-dimensional hole concentration is calculated by 

Eq. (13) [3.4]. 

 
* 2

2 2
,

( ) ln(1 exp( )) ( )i Fp
d j

i j

E Em kTp z z
kT

ϕ
π

−
= ⋅ +∑    (13) 

 

 With the new ( )zφ , and using Eq. (3) and (9), we calculate p(z) once again, and 

continue iteratively until convergence is obtained. For a particular gate bias, this 

method allows us to obtain the band structure in the kBxB-kByB plane, the distribution of the 

potential due to the external voltage along the z direction of the device, and the 

two-dimensional hole concentration in each subband. 

 

3.3 Simulation Results 

 The simulated structure is shown in Fig. 3.1, where we have depicted the 

potential distribution of pMOS. The applied bias, VBgB-VBfbB, is changed from -1.5 to 4.0 

V. The doping of the n-type substrate is 5x10P

17
P cmP

-3
P. The 6nm oxide layer is used to 

assume no direct tunneling current.  
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Fig. 3.4 and Fig. 3.5 illustrates the components of the wavefunction for each 

subband and valence band structure on (001) Si substrate with applied bias VBgB-VBfbB= 

-3.0(V) at Γ point k=[0,0], respectively. Each subband is composed of six basis 

functions, 3 3
2 2| ,± >  (heavy hole states), 3 1

2 2| ,± >  (light hole states), and 

1 1
2 2| ,± >  (split-off states). The labels of the subbands are defined from the 

characteristic basis states at the zone center. For example, HH1 denotes the first 

heavy-hole subband, in which the two heavy-hole basis functions 3 3
2 2| ,± >  are 

dominant. Likewise, LH1 is the first light-hole subband, SO1 is the first split-off 

subband. Fig. 3.6 shows the subband energies as a function of the surface field on 

(001) Si substrate. Note that the heavy hole-like subband is the ground state. The 

calculated subband structures along two principal directions, [kBxB,kByB]=[k,0] and [k,k], 

are also plotted in Fig. 3.7. Fig. 3.8 demonstrates the wavefunction percentage of the 

HH1 subband along [kBxB,kByB]=[k,0.5k]. The characteristic of the subband becomes 

mixed as the kB//B is separated from zero. From Fig. 3.7 and Fig. 3.8, it should be noted 

that the intersubband transition energy is strongly affected by the band-mixing effect. 

Fig. 3.9 shows constant energy contours represented by the polar coordinates for 

the subbands HH1, LH1 and SO1. The strong band-mixing effect results in a warping 

of the constant energy contour. The constant energy contours for the HH1, LH1 and 

SO1 subbands are illustrated in Fig. 3.10 and the constant energy lines are separated 

by 25meV. Apparently, the effective mass varies in different directions. For this 

reason, an analytical form is inadequate and the numerical tabular form for the 

subband structure is needed to perform the Monte Carlo simulation. Fig 3.11 (a) and 

(b) shows the constant energy contours of various subbands on (001) and (110) Si 

substrate, respectively. It can be seen clearly that the density of states of (110) Si 

substrate is smaller that that of (001) Si substrate due to smaller available k states 

 18



between E and E+△E. Furthermore, Fig. 3.12 shows the calculated density of states 

as a function of energy on (001) and (110) Si substrate according to [3.5] 

 
2

2 0

2( )
(2 ) k

kD E d
E

π
θ

π
=

∇∫   

 

Lower density of states on (110) substrate compared to that on (001) suggests that the 

implementation of (110) substrate for the device’s active layer will be useful in 

achieving a high mobility channel [3.6]. 

Fig. 13 shows the two-dimensional hole concentration distribution for different 

gate bias for a 6nm oxide thickness. Apparently, the peak of the hole concentration is 

decreased as the gate bias is decreased. On the other hand, the distance corresponding 

to the peak hole concentration is shorter with larger gate bias. The inversion hole 

density is also shown in Fig. 14. Fig. 15 shows the behavior of inversion layer 

centroid, ZBavgB, as a function of gate bias, where ZBavgB is defined as 

 

( )

( )
Si

avg

Si

p z z dz
Z

p z dz

⋅ ⋅
=

⋅
∫
∫

   (14) 

 

Our simulation has obtained a ZBavgB between 2.48nm and 1.84 nm for VBgB-VBfbB= -1.5 

and -4 V, respectively. ZBavgB has been shown to be an important parameter in electron 

modeling [3.7] and it is also expected to be similar in the hole confinement. Moreover, 

to assess the importance of several scattering mechanisms as interface roughness and 

coulomb scattering, precise calculations of ZBavgB are needed to determine the distance 

from the interface where carriers concentrate, which will be shown in chapter 4. It’s 

noted that ZBavgB is dependent on substrate doping, oxide thickness, bias and so on. 
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 Finally, we compared the hole concentration distributions on (001) and (110) Si 

substrate with same applied gate bias. Fig. 16 shows that the peak depth of the hole 

concentration on (110) Si substrate is closer to SiOB2B/Si interface than on (001) Si, 

which implies clear difference in (110) and (001) inversion layer thickness. It can be 

easily realized from the fact that for the bulk Si band structure, (110) surface yields a 

larger quantization mass, which will suffer larger confinement effect. As a result, a 

larger confinement effect results in smaller ZBavgB, which leads to smaller inversion 

layer thickness. The comparison of ZBavgB on (001) and (110) Si substrate is also shown 

in Fig. 17. The calculated ZBavgB on (110) is 1nm thinner than that on (001) for VBgB-VBfbB= 

-3.0 V, which implies that in terms of inversion layer capacitance, the (110) pFETs 

show higher performance than (001) pFETs [3.8].  
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Fig. 3.1 Schematics of the band energy of the structure. 
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Fig. 3.2 (a) Tridiagonal block matrix for the Schrodinger equation. (b) 
Discretization of the potential using a nonuniform mesh. 
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Fig. 3.3 Flowchart of self-consistent calculation by solving the 
Schrödinger and the Poisson equations.  
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Fig. 3.4 The components of the wave function at zone center for (a) 
HH1, (b) LH1, and (c) SO1.  
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Fig. 3.5 The calculated valence band structure on (001) Si substrate. 
The VBgB-VBfbB= -3.0V. The n-type substrate doping is 5*10P
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Fig. 3.6 The energies of the subbands as a function of the surface field 
on (001) Si substrateB. 
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Fig. 3.7 The subband structures along two principal directions for 2D 
holes on (001) Si substrate at VBgB-VBfbB=-3.0V. 
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Fig. 3.8 Nature of the 1st subband on (001) Si substrate. B.BThe 
wave-vector is along [kBxB, kByB]=[k, 0.5k] at VBgB-VBfbB=-3.0V. 
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Fig. 3.9 The constant energy contours in a polar coordinate 
representation for the subbands HH1, LH1, and SO1. 
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Fig. 3.10 Constant energy contours of the HH1, LH1 and SO1 band. 
The constant energy lines are separated by 25meV at VBgB-VBfbB=-3.0V. 
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Fig. 3.11 Constant energy contours of the HH1, LH1 and SO1 
subbands for (a) (001) and (b) (110) substrate at VBgB-VBfbB=-3.0V. The 
constant energy lines is 25meV. Only one spin state is plotted for 
clarity. 
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Fig. 3.12 Density-of-states of Si (001) and (110) substrates. EB0B is the 
minimum of the lowest subband. 
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Fig. 3.13 The hole concentration distribution for different gate bias. 
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Fig. 3.14 The inversion hole density as a function of gate bias. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 34



 
 
 

-1 -2 -3 -4
1.8

2.0

2.2

2.4

2.6

 Tox=6nm

 Vg-Vfb

Z av
g(

nm
)

 
 
Fig. 3.15 ZBavgB of the inversion layer as a function of gate bias. 
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Fig. 3.16 The hole concentration distributions on (001) and (110) Si 
substrates at VBgB-VBfbB=-3.0V. 
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Fig. 3.17 ZBavgB of the inversion layer as a function of gate bias on (001) 
and (110) Si substrates. 
 

 37



Chapter 4 

Self-consistent Simulation of Quantization 

Effects in Double Gate and Single Gate MOS  

 

4.1 Introduction 

The double-gate (DG) transistor, where the both gates are employed to control 

the channel, exhibits attractive advantages in comparison to the conventional MOS 

transistor. The double gate transistor has the properties of almost ideal subthreshold 

swing and high transconductance. The increase of DG transistor’s current is due to the 

formation of a double conducting channel close to the two Si and SiOB2B interfaces. The 

additional advantage in terms of transconductance and current drive are attributed to 

the inversion layer of the silicon region away from the two interfaces, which suffer 

less surface roughness scattering. The double-gate transistor with even thinner 

semiconductor layer can work in the volume inversion regime [4.1-4.3], which means 

that the whole volume of the semiconductor region is in the strong inversion. 

If the semiconductor layer is ultra thin, the energy quantization effect becomes 

evident which affects considerably the carrier distribution in the semiconductor and 

influences the transistor parameters. In this chapter, we firstly investigate the effect of 

the semiconductor thickness on the hole density distribution, threshold voltage and 

finally compare the double-gate and single-gate transistor in terms of hole density 

distribution and the effective electric field, which are related to the low field mobility.  

 

4.2 Device Configuration and Simulation Technique 

In our simulations, we use the p-type (100) double-gate (DG) and single gate 
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(SG) MOS devices. The silicon thickness down to 5nm and the thickness of the 

back-oxide of the SG MOS device 50nm are considered. For the silicon layer, n-type 

doping with NBDB=10P

17
P cmP

-3
P is assumed for both cases. The two gate electrodes of the 

DG device and the front gate of the SG are assumed of pP

+
P-polysilicon, while in the 

SG device a grounded nP

+
P-polysilicon gate mimics the effect of the silicon substrate, 

as shown in Fig 4.1. 

The simulation is carried out by self-consistently solving the Poisson and 

Schrödinger equations. The quasi-Fermi levels for electrons and holes are set within 

the whole simulation domain, to reflect a bias condition with grounded source and 

drain. The poly depletion and wave function penetration into the gate oxide are 

neglected in our simulations. The procedures of solving the Poisson and Schrödinger 

equations are referred to chapter 3. 

 

4.3 Results and Discussions 

4.3.1 Symmetric Double Gate MOS 

  Fig. 4.2 shows the hole concentration distribution in a DG MOS device with 

10nm silicon thickness and 6nm oxide, which is biased above threshold. A maximum 

at the center of the silicon layer is obtained at lower gate voltage, while at higher gate 

voltage two inversion maxima are formed. The effect of volume inversion vanishes 

rapidly as silicon thickness is increased, resulting in a reduction of the minority carrier 

concentration in the middle of the silicon layer.  

Fig. 4.3 shows the influence of the silicon thickness on the hole concentration 

distribution at the same VBgB-VBfbB. As shown in Fig. 4.3, if the silicon thickness is 

thinner than 10nm, two regions overlap strongly that the hole concentration maximum 

is located in the middle of the silicon layer, and the distribution is totally different 
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from the classical picture. In Fig. 4.4, the dependence of the total inversion hole 

density on the different silicon thickness in the symmetrical DG device is shown. For 

the small VBgB-VBfbB, i.e. small surface potential, when the potential is nearly rectangular, 

the quantization is effective only for silicon thickness thinner than 20nm, as a result of 

the hole wave functions confinement by the two silicon and oxide interfaces. On the 

other hand, for the larger VBgB-VBfbB, all holes are confined in the surface subwells. As a 

consequence, the inversion hole density does not depend on the silicon thickness. 

Fig. 4.5 shows the dependence of the threshold voltage on the silicon thickness 

TBsiB. The threshold voltage is determined by the linear extrapolation of the gate voltage 

dependence of the inversion hole density [4.4]. It is worth noticing that the 

turn-around characteristic of the threshold voltage is demonstrated, which implies that 

for silicon layer thickness below 20nm, the effects of surface inversion layer overlap 

and the hole energy quantization become obvious. On the other hand, an appropriate 

work function of the double gate should be chosen to adjust the positive threshold 

voltage of pFET demonstrated here. 

 

4.3.2 Comparison of Double Gate and Single Gate MOS devices 

 In this section, we will focus on the advantages of DG devices in comparison to 

SG devices in terms of the low-field mobility, which is determined by the transverse 

electric field in the silicon layer and the displacement of the peak hole concentration 

from the oxide interface.   

In Fig. 4.6, the inversion hole density as a function of the gate voltage in a DG 

and SG MOS device with 20nm silicon thickness and 3nm oxide is shown. The inset 

is the linear scale of the inversion hole density versus the gate voltage to extrapolate 

the threshold voltage. Both two devices show ideal subthreshold swing, which is 

about 60mV/decade. The DG device also exhibits larger inversion hole charges than 
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in SG device due to the formation of the two conducting channels. In Fig 4.7 (a), the 

hole concentration distribution of a DG device is compared to that of a SG device 

biased with the same gate drive, which means the difference of the threshold voltage 

of the two devices is considered. The calculated inversion hole density is 7.32*10P

12
P 

cmP

-2
P for a DG device and 3.65*10P

12
P cmP

-2
P for a SG device, respectively. The inversion 

hole density of a DG device is twice of a SG device. As shown in the Fig. 4.7 (b), the 

DG inversion hole density distribution is more displaced from the interface than the 

SG one, which is about 0.45nm. This difference is crucial in determination of the 

low-field mobility. Finally, Fig. 4.8 compares the transverse electric field within one 

half of the silicon layer of a DG and a SG device biased at the same gate drive. The 

transverse electric field is lower in the DG device and vanishes at the middle of the 

silicon layer due to the symmetry of the structure. Moreover, the surface roughness 

scattering rate is given by [4.5], 

 

2 2
* 2 2 2 2 2

( ) / 2 2 2 2
03( ) ( )            

2 2
k L

SR eff eff
m L e k Lk e I E E

s
π

ε
−Δ

Γ = ∝ Δ ⋅  

 

where △ is the average displacement of the interface and EBeffB is the effective electric 

field. In a consequence, the effective electric field is lower in the DG device, which 

possibly results in the improved mobility as a result of a reduction of the surface 

roughness scattering.  
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Fig. 4.1 Schematic section of the simulated structures; left: double 
gate MOS, right: single gate MOS. 
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Fig. 4.2 Hole concentration profile within the silicon layer of a double 
gate MOS with Tsi=10nm, Tox=6nm, for three different bias points 
above threshold. 
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Fig. 4.3 Influence of the silicon thickness on the hole concentration 
distribution at the same VBgB-VBfbB. 
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Fig. 4.4 The dependence of the total inversion hole density in the 
symmetrical DG device on the different silicon thickness. 
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Fig. 4.5 The dependence of the threshold voltage on the silicon layer 
thickness,Tsi. 
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Fig. 4.6 The inversion hole density as a function of gate bias in a DG 
and SG device with Tsi=20nm and Tox=3nm. 
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Fig. 4.7 The hole density distribution of a DG device is compared to 
that of a SG device with Tsi=20nm and Tox=3nm biased with the 
same gate drive. 
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Fig. 4.8 Transverse electric field within one half of the silicon layer of 
a DG device and a SG one.  
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Chapter 5 

Hole Transport in Si/Ge Quantum Well 

 

5.1 Introduction 

Currently, uniaxial compressively strained Si is the dominant technology for high 

performance pMOSFETs. For further CMOS scaling, it is imperative to investigate 

other high mobility channel materials, such as Ge and strained Si/Ge, which may 

possess better carrier transport property than a highly strained Si.  

Due to drastic changes in carrier transport theory as CMOS is scaling down 

beyond 45nm, the traditional device simulator is inadequate to correctly predict the 

device’s performance, such as FinFet, double gate, SOI and so on. As a result, the first 

principle of the transport theory, Boltzmann transport equation, is needed. The 

purpose of this chapter is to study the hole transport properties based on the Monte 

Carlo method. Since the hole scattering rate is closely associated with a hole wave 

function and a subband structure, the hole mobility may change significantly with the 

shape of the Si/Ge quantum well geometry. Thus, to obtain a structure-dependent 

scattering rate, realistic subband structure and hole wave-functions are used in the 

evaluation of the scattering rate. Tabular forms of the subband E-k structure and 

scattering rates are established in our Monte Carlo simulation.    

 

5.2 Physical Model and Simulation Technique 

Two important scattering mechanisms are considered in the simulation: acoustic 

phonon scattering and optical phonon scattering. The scattering-matrix elements are 

approximated, such that phonon scattering can be considered as velocity randomizing. 
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The square of the matrix elements between the m-th subband and the n-th subband 

[5.1]: 

 

22 2

3 m 22 3

1( , ') ( , , ) I , ( , ', )
2mn D x y z n D z zD D

M k k M q q q k k q dq
π

= ×∫  

 

Where MB3DB is the corresponding matrix element for a bulk hole and q is a phonon 

wave vector. The overlap integral IBmnB is defined as  

 

m 2I , ( , ', ) ( , ) ( , )exp( )n D z n m zk k q F k z F k z iq z dzα α
α

∗=∑∫  

 

The coupling coefficient for the two dimensional hole is derived: 

 

2

m 2
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2
                  ( ', ) ( ', ) ( , ) ( , )

mn n D z z

n n m m

H k k k k q dq

F k z F k z F k z F k z dzα β α β
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π
∗ ∗

=

=

∫
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Using the matrix elements, the two dimensional hole scattering rates are calculated 

according to [5.2]. The acoustic phonon scattering rate is give by 

 
2

'
2

2 ( ) ( , )B
ac n mn

l

k TS D E H
u

π
ρ

Ξ
= ⋅ ⋅ k k  

 

where Ξ is the effective acoustic deformation potential, ρ is the material density, uB1 Bis 

the sound velocity, T is lattice temperature and DBnB(E) is the two dimensional density 

of hole states in n-th subband. 
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The optical phonon scattering is  

 
2

'
2

( ) 1 1[ ] ( ) (
2 2

opt
op op n op mn

op

D K
S n D E H

π
ω

ρω
= ⋅ + ⋅ ± ⋅∓ , )k k

.3

 

 

where DBtBK is the average optical deformation potential nBopB  is the Bose-Einstein 

distribution. The + and – represents the absorption and emission rates. The scattering 

parameters are listed in Table 5.1 [5.3, 5.4]. 

In the numerical implementation of the valence subband structure in a Monte 

Carlo simulation, a tabular form of the E-k relationship for the lowest four valence 

subbbands is established in the simulation. According to the 8-fold symmetry of the 

Brillouin zone of the subband structure in a quantum well, it’s only necessary to 

tabulate one-eighth of the zone, which is defined as 

 

0 0x yk k≤ ≤ ≤  

As in [5.5], the eigenvalues for kB// B<0.6π/a, which significantly contribute to the 

low-field channel mobility, are evaluated. The above k-space region is discretized by 

mesh points and energy and its gradient at each k point are evaluated. A part of the 

tabular subband structure form of the k-E relationship is shown in Table 5.2. Table 5.3 

lists the E-k relationship including a subband index.  

A flowchart of a simple Monte Carlo simulation can be referred to [5.6]. In the 

Monte Carlo simulation, a sample hole is simulated under an external electric field. It 

travels freely between two successive scatterings. The free-flight time is determined 

by using a fixed time technique. During the free flight, the hole is accelerated by the 

field and its momentum and energy are updated according to the tabular form of the 

E-k relationship. If a scattering happens, a random number is generated to decide the 
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responsible scattering mechanism and subband index. Then, the new hole state is 

chosen according to the tabular form of the E-k relationship. This procedure is 

continued until the fluctuation due to the statistical uncertainty is less than 1%. 

 

5.3 Results and Discussions 

Fig. 5.1 shows the configuration of the simulated devices. The Si/Ge/Si and 

Si/SiB0.75BGeB0.25B/Si system are compared. The well width of 40Å is used in this 

simulation. Fig. 5.2 shows the calculated two dimensional density of hole states 

obtained from the realistic subband structure. Compared to Si/SiB0.75BGeB0.25B/Si system, 

the Si/Ge/Si system has lower density of states, which suggest higher mobility. In Fig. 

5.3, hole velocity and average energy versus electric field in Si/SiB0.75BGeB0.25B/Si system 

are evaluated. The hole velocity and average energy increase with increasing electric 

field. The calculated phonon-limited low-field mobility is 422 cmP

2
P/Vs under the 

assumption of no alloy scattering, as shown in Fig. 5.4.  

In Fig. 5.5, the Ge quantum well exhibits higher hole mobility than that in 

Si/SiB0.75BGeB0.25B/Si system and the calculated phonon-limited low-field mobility is 

about 890 cmP

2
P/Vs. The temperature dependence of the phonon-limited mobility, μBphB, 

is also evaluated. The approximated power-law dependence is illustrated by the 

dashed lines, as shown in Fig. 5.6. 
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Table 5.1 Scattering parameters for Si and Ge 
 
 

8

9.2 [5.3] 10.8 [5.4]
13  [5.3] 8.8   [5.4] 10
62  [5.3] 38    [5.4]

eV
cmt

op

Parameter Si Ge unit
eV

D K
meVω

Ξ
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Table 5.2 A tabular form of k-E relationship 
 
 

/ /
0 0 0.0000E+00
0 0.004 4.2834E-04
0 0.008 1.7100E-03
0 0.012 3.8300E-0
0 0.016
0 0.02
0 0.024
0 0.028
0 0.032
0 0.036
0 0.04
0 0.044
0 0.048
0 0.052
0 0.056
0 0.06
0 0.064
0 0.068
0 0.072
0 0.076
0 0.08
0 0.084
0 0.088
0 0.092
0 0.096
0 0.1

x y x yk k E dE k dE

3
6.7600E-03
1.0470E-02
1.4910E-02
2.0040E-02
2.5780E-02
3.2060E-02
3.8780E-02
4.5850E-02
5.3150E-02
6.0560E-02
6.7960E-02
7.5280E-02
8.2500E-02
8.9660E-02
9.6860E-02
1.0421E-01
1.1180E-01
1.1970E-01
1.2797E-01
1.3664E-0

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+0

1
1.4572E-01
1.5523E-01

0.0000E+00
2.0840E-01
4.3674E-01
6.0502E-01
8.3252E-01
1.0066E+00
1.1798E+00
1.3698E+00
1.5102E+00
1.6302E+00
1.7554E+00
1.7955E+0

0
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

k

0
1.8636E+00
1.8383E+00
1.8260E+00
1.7999E+00
1.8103E+00
1.7757E+00
1.8325E+00
1.8597E+00
1.9321E+00
2.0200E+00
2.1279E+00
2.2050E+00
2.3145E+00
2.4352E+00
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Table 5.3 A tabular form of k-E relationship 
 
 

0.0000 0.0000 
0.0000 
0.0013 
0.0000 
0.0013 
0.0027 
0.0000 
0.0013 
0.0027 
0.0000 
0.0013 
0.0040 
0.0027 
0.0040 
0.0000 
0.0013 
0.0027 
0.0053 
0.0040 
0.0000 
0.0013 
0.0027 
0.0053 
0.0040 
0.0000 
0.0067

x yk k E subband
0.0000E+00

0.0013 4.7530E-05
0.0013 9.5020
0.0027 
0.0027 
0.0027 
0.0040 
0.0040 
0.0040 
0.0053 
0.0053 
0.0040 
0.0053 
0.0053 
0.0067 
0.0067 
0.0067 
0.0053 
0.0067 
0.0080 
0.0080 
0.0080 
0.0067 
0.0080 
0.0093 
0.0067

E-05
1.9052E-04
2.3787E-04
3.8033E-04
4.2834E-04
4.7548E-04
6.1728E-04
7.6071E-04
8.0754E-04
8.5313E-04
9.4842E-04
1.1800E-03
1.1900E-03
1.2300E-03
1.3700E-03
1.5100E-03
1.6100E-03
1.7100E-03
1.7500E-03
1.8900E-03
1.9300

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

E-03 1
2.1200E-03 1
2.3200E-03 1
2.3500E-03 1
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Fig. 5.1 Schematic section of the simulated structures: Ge and SiGe 
quantum well. 
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Fig. 5.2 Two dimensional density of states in Ge and SiGe quantum 
well. 
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Fig. 5.3 Hole velocity and average energy versus electric field. 
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Fig. 5.4 The phonon-limited low-field mobility in SiGe quantum well 
structure. 
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Fig. 5.5 Comparisons of phonon-limited low-field mobility in Ge and 
SiGe quantum well. 
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Fig. 5.6 Temperature dependence of the phonon-limited mobility in 
Ge quantum well.  
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Chapter 6 

Conclusion  

  

 In this thesis, a self-consistent solution of the coupled Schrödinger and Poisson 

equation with the six-band Luttinger-Kohn model is presented. The hole subbands of 

the inversion layers in p-type MOS, SG SOI and DG devices are demonstrated.  

In chapter 2, the Luttinger-Kohn model is introduced. In chapter 3, we have 

shown the physical characteristics in a (001) and (110) p-type MOS device. The 

subband energies, wave functions, two dimensional density of states are demonstrated. 

The applied bias and substrate orientation effects are also included in the simulation. 

In terms of the inversion layer capacitance, the (110) pMOS device shows higher 

performance than (001) pMOS device due to smaller peak depth of the hole 

concentration in the (110) MOS device. In chapter 4, we also have shown that 

symmetrical DG devices exhibit attractive advantages in comparison to SG SOI 

devices as a result of the double conducting channels and the improved low-field 

mobility resulting from the lower effective electric field in the silicon layer. In chapter 

5, a two dimensional hole Monte Carlo simulation is developed to study the hole 

transport in Ge and SiGe quantum wells. The simulation results show that the 

phonon-limited low-field mobility in Ge quantum well is larger that that in SiGe 

quantum well due to lower scattering rate and lower effective mass.  
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