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Abstract

In this work, by using the deformation potential theory for conduction band and
the k - p framework (6x6 Luttinger Hamiltonian) for valence band, the strain-altered
band structure (E-k relation), the strain-induced band edge shift, the constant energy
surface, and the 2D energy contour have been calculated for various stress conditions
on three conventional wafer orientations, (100), (110), and (111). Moreover, the
influences of the additional transverse or normal strain have been examined as well.

Next, utilizing the calculated E-k relation, the conventional physical
parameters including the quantization effective mass, the 2D DOS Effective mass,
and 3D DOS effective mass have been also extracted under uniaxial and biaxial stress
on (001) wafer. Then, using the DOS effective masses and strain-induced band edge
shifts, the Fermi energy of bulk silicon can be determined as a function of stress and
doping concentration. These parameters are significant in calculating the subband
energy and carrier density in the channel inversion layer of MOSFETSs. In addition, we
also evaluated the intrinsic carrier density of bulk silicon under uniaxial and biaxial

stress from zero to 3GPa.



Furthermore, we extended and modified the previously developed triangular
potential approximation, a self-consistent method that takes the quantum confinement
effect in the inversion layer and the conservation of electric flux at the SiO,/Si
interface into consideration, for the unstrained MOSFETs to construct the band
diagram and physical model for strained counterparts. The method has also been
applied to both nMOSFETs and pMOSFETs with corresponding revisions of the
physical model. In our model, the stresses for poly gate and channel are allowed to
have different magnitude and type.

Finally, applying our model and the extracted physical parameters, we can
calculate the interface electric field, subband energy, inversion carrier density,
substrate band bending, etc., with various stress conditions, applied voltage and
device parameters as inputs. Then,utilizing the WKB approximation, the transmission
probability and gate direct tunneling current for various stress conditions can also be
evaluated. The simulated results agree-with-the ‘experimental data of the former

works.
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Chapter 1

Introduction

In advanced nanotechnology, strain process has been extensively used for
enhancing device performance [1], [2]. Therefore, having fundamental understanding
of strain physics and studying the influences of strain in the nano-scale Si devices are
essential. Moreover, developing a physically reasonable model and incorporating it
into a quantum simulator in order to provide clear insight for future strain engineering
and assess the influences of strain, such as subband energy splitting, repopulation of
carrier density in each subband, and change of gate direct tunneling current, is crucial
as well.

In order to give insights into the future-strained devices while meeting the high
performance and low power requirements, we first examine several potential stress
types on various wafer orientations in Chapter 2. The simulation results including the
strain-altered band structure, strain-induced band edge shift, constant energy surface
in momentum space, two-dimensional energy contour, and the effective masses along
the different crystallization directions, which are calculated by the deformation
potential theory for conduction band and k - p framework for valence band, are
utilized to be the tools for estimating device performance. In addition, the influences
of additional transverse stress, which is existent in process such as capping layer or
STI stressor when the dimension of channel width is comparable with channel length,
but usually ignored in former work, are addressed as well.

Second, in order to understand the properties of bulk silicon such as the Fermi

level and intrinsic carrier concentration in the presence of strain, we utilize the



strain-altered band structures and the effective mass approximation to calculate the
quantization effective mass, 2D DOS effective mass, and 3D DOS effective mass of
bulk silicon under uniaxial and biaxial stress on (001) wafer in Chapter 3.
Consequently, the effective DOS, Fermi energy, and intrinsic carrier concentration are
also extracted with stress varying from zero to 3GPa. However, it is noticeable that
the effective mass approximation, or the hypothetical elliptic constant energy surface,
is suitable for large strain due to the strain symmetry, but introduces large error under
small strain.

Third, in IC industry, the phenomenon of gate direct tunneling current in
MOSFETs induces many problems such as standby power consumption, leakage
current in C-V measurement, and etc. [3]-[5]. In the recent years, the dimension of
device keeps scaling down while-gate oxide thickness keeps thinning. Even the
thickness is only several atomic.layers. Therefore, the drawback of gate direct
tunneling current becomes severe and-influences the-normal operation of devices [3].
On the other hand, in the advanced nanotechnology, the strain process is extensively
used. Selecting the type of strain appropriately may enhance the mobility and alleviate
the gate leakage in the meantime [1], [2], [6]. Thus, a computing efficient and
reasonably physical model for characterizing and modeling the gate direct tunneling
current of strained silicon device is essential. In chapter 4, we have developed a
triangular potential approximation based quantum simulator for strained MOSFETs

modeling.



Chapter 2

Strain-altered Band Structures

2.1 Introduction

In this chapter, we first review the topic of mechanics of materials and the
equilibrium analysis of deformable bodies. Next, the well recognized methods,
namely the deformation potential theory for conduction band and k - p framework for
valence band, are introduced to calculate the strain-altered band structure (energy
dispersion relation). Then, in order to give insights into the future strained devices
while meeting the high performance and low power requirements, several potential
wafer orientations, (001), (110), and.(112), with various stress conditions including
uniaxial longitudinal, uniaxial transverse, and. biaxial stress, will be examined. The
calculated results in terms of the band.structures, effective masses, strain-induced
subband energy shift, constant energy surface, and two-dimensional energy contour,
will exhibit the ability to quantitatively determine the device performance. Finally, the

influences of the additional transverse strain on the devices will also been discussed.

2.2 A Review of Mechanics of Materials

In this section, we first review the concept of stress and strain, and then make a
connection between the two. Note that the stress and strain produced by the change of
temperature [7] are not included, that is, the temperature remains constant in this

work.

2.2.1 Stress

Stress is the distribution of a force over the area on which the force acts. The



intensity of stress is expressed as force per unit area [7], [8]. There are two types of
stress: normal stress and shear stress. To illustrate this, let us consider an arbitrary

force vector AR(P) at certain point P acting on an infinitesimal area AA with

normal vector n as shown in Fig. 2.1(a). The force is resolved into normal and

tangential components AF(P) and AV(P). The tangential component is further

resolved into components along two orthogonal directions, s and t in the plane. Then,

the normal stress o, and the shear stress 7, and 7, at point P are defined by the

following expressions [7]:

()= lim [ *52)) 2.12
r.(?)=lim( 222)) (2.10)
ol#)- lim{ (2,10

Next, we expand above definitions of stress on a particular plane to all three

mutually orthogonal planes that intercept a-given common point in a deformable body

as shown in Fig. 1(b). In the figure, '} " refers to the normal stress components

acting on the planes perpendicular to i-direction, while z; indicates the shear stress

components oriented in the j-direction acting on the planes perpendicular to
i-direction. According to Cauchy’s equation of motion, these nine components are

sufficient to define the stress state at any point in a deformable body [8]. Furthermore,

at moment equilibrium, the shear stress components must satisfy z; =z, [7]. Thus,

a stress tensor with six independent components is sufficient to describe the state of

stress:



o= : (2.2)

2.2.2 Strain

When a deformable body is subjected to external forces, it changes size and/or
shape in response to the applied forces. The deformation of the body may include
both changes of length (normal strain) and changes of angles (shear strain). For

example, let us first focus on the case of a normal stress applied to the deformable

body along the y-axis as shown in Fig. 2.2(a). A positive value for the stress o, that

is, a tensile stress, causes the body: to elongate along y-axis and to contract along x

and z-axis. On the other hand;-a negative value for the stress o, indicates

compressive stress, hence causing the body: to be shortened along y-axis and dilated

along x and z-axis. The normal strain is defined as

g-Ab_L-L (2.3)
L L

where L, L’, and AL denote the original length, the length after deformation has
occurred, and the total elongation of the body along y-axis, respectively. A positive
value for strain ¢ indicates the body is stretched along y-axis, that is, L’ > L, and is
called tensile strain. A negative value for ¢ indicates that the body is contracted
along y-axis, that is, L’ < L, and is referred to as the compressive strain.

Next, let us consider that a body deforms due to the pure shear stress as shown in
Fig. 2.2(b). After deformation, the original right angle 7 /2 becomes an acute angle
@'. The shear strain is defined as the change in angle between two originally

perpendicular line segments as shown in Fig. 2.2(b). Thus, we have [7], [9], and [10]
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Likewise, we extend these definitions of normal strain and shear strain to the

three mutually orthogonal planes [8]-[10]

Eg = a;XX &y =a;—yy, &, = aauzz (2.5a)
Vg =V = ?y* % (2.5b)
Yy =V = % + (2; (2.5¢)
Y =V = a;; + a;(z (2.50)

where uy, Uy, and u, are the displacements in the x, y, and z direction, respectively. It is

worth noting that y; denotes engineered shear strain and ¢; is called average shear

strain and defined as one half the .44 [9], [10].

Similar to stress tensor, the strain tensor is also composed of six independent

components

“ . (2.6)

2.2.3 Relationship between Stress and Strain
When a small normal stress, which remains well below the yield point, is applied
to a homogeneous and isotropic body, the linear relationship between normal stress
and normal strain can be described by Hooke’s law [7],
o=Ee¢ (2.7)

where the constant of proportionality E represents the Young’s modules. Moreover,



associated with the normal strain of an elastic body in the direction of the applied
normal stress, there is usually a transverse strain in two other directions, as illustrated
in Fig. 2.2(a). The relationship between normal strain and transverse strain is

described by [7], [9]

Exran = VEiong (2.8)

tran

where the constant of proportionality v represents the Poisson’s ratio. Finally, to relate
shear stress and shear strain, the Hooke’s law for shear is used [7], [9]
=Gy (2.9)
where the constant of proportionality G represents the shear modulus of elasticity.
By the principle of linear superposition, we can use the equations (2.7), (2.8),
and (2.9) to combine strain response  by. adding together the separate responses
produced by the six components of stress-tensor. Consequently, the generalized

Hooke’s law for isotropic materials is expressed as [7]

E P é[axx —V(c)'yy +0,, )] (2.10a)
&y = é[ayy - V((TXX +0, )] (2.10Db)
£, = é [GZZ - V(GXX +o, )] (2.10c)
7/xy =é7xy1 Vxe = éz-xz’ j/yz =éryz (210d)

It is noteworthy that for isotropic materials, shear strains are independent of
normal stresses, and, likewise, normal strains are independent of shear stresses. In
addition, the three components of shear are uncoupled [7].

For convenience, we usually combine the equations (2.2), (2.6), and (2.10) to
establish the elastic strain-stress matrix for relating stress tensor and strain tensor [8],

[10]-[12].
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£, _ S, S, S; O 0 0 || o, (2.11)
25yZ 0 0 0o S, O 0| 7y
2¢,, 0 0 0 0 S, O0|¢z,
264 [0 0 0 0 0 S,|7y]

where Sy, Si12, and Sa4 are the elastic stiffness constants.

These relationships can be determined experimentally by performing certain
stress-strain and torsion tests [7]. Some extracted values of bulk Silicon for Young’s
modules (130GPa for <100> directions and 169GPa for <110> directions), Poisson’s
ratio (0.22-0.28), and shear modulus (79.9GPa) can be found in [8], [13]-[16]. Then,
using these values, the elastic stiffness constants, Si;, Si2, and Su4 can be evaluated.
The values used in this work are listed in"Table,2.1. Note that although silicon is an
anisotropic crystal, for the purposes of simplification it is conventional to use the

equation (2.11) for mechanical analysis of bulk silicon [8], [11], and [12].

2.3 Hamiltonian
The deformation potential theory [17] (for conduction band) and k « p Framework
[18], [19] (for valence band) are the primary [18] method to calculate the

strain-altered band structures including band shift and warping to date.

2.3.1 Hamiltonian for Conduction Band (Deformation Potential Theory)
In deformation potential theory, the total Hamiltonian for each energy valleys of

silicon conduction band is [18]

n(k, —k, )  h’k}
H = L0 4 L +(E, +2,Tr(e;)+ = 2.12
[ 2m, 2m, ( ’ oTr5) u€|) ( )

where 7 is the reduced Planck’s constant. k; and k; are the wavevetors parallel and



perpendicular to the <100> directions of each energy valleys, respectively. m, and
m, are the longitudinal and transverse effective mass, respectively. Ec is the

conduction band edge of untrained bulk silicon. =, and =, are the dilation and

u

uniaxial deformation potential for silicon conduction band, respectively. Tr(e;)
stands for the trace of the strain tensor. &, is the longitudinal strain component. Note

that m’ and m, are generally assumed to be constant since they do not change

significantly under small or moderate strain [12], [18]. In other words, the strains do
not alter the energy dispersion in conduction band, the first part of Equation (2.12),
but just shift the band edge, the second part. Appling Equation (2.12), the quantities of
band edge shift for the six conduction-band minima along the <100> directions can be

expressed as [12]

AE. =&, (gxx +e, +&, )+ E,é,,. forthe-valleys-along [100] and [100]  (2.13a)
AE. =&, (gxx +te, +&, )+ 2,¢,, forthevalleysalong [010] and [OiO] (2.13b)
AE. =5, (gxx +e, +&, )+ E,&, forthe valleys along [001] and [001]  (2.13c)

Note that the shear strain terms do not contribute to the band shift, and the

strain-induced band edge shift is only proportional to the normal strain terms.

2.3.2 Hamiltonian for Valence Band (k « p Framework)

The influences of strain on valence band structures include not only band shifts,
but also strong band warping. Thus, the deformation potential theory, which considers
only the band shift, cannot serve for valence band. In order to calculate the
strain-altered valence band structures of bulk silicon, we employ the six-band k « p

method [20]. The k - p method is based on perturbation theory and symmetry



consideration [18]. The strain effects can be easily introduced to k « p framework [18],

[21]. According to Pikus and Bir [18], the strain Hamiltonian is formally identical to

the k « p Hamiltonian (Luttinger Hamiltonian) [18]. The correspondence between the

strain and k - p Hamiltonian is kk; <> &; and the total Hamiltonian is given by

H=H,,+Hg., [18]. The total Hamiltonian is expressed by [18], [21]

1
-P-Q L -M 0 —L —2Mm
V2
Lt ~P+Q 0 -M J2Q - gL
~M* 0 P10 -L -2 V20
H = Hk.p + Hstrain = 2 1
0 M & —pP- NV -
° 72
1 3
—L° an20 e AS T oM —P-A 0
72 2 2
3 1
—2Mt A WersraoilE —L 0 ~P-A
_ 2 Y _
(2.14)

where P=R +P,, Q=Q,+Q,, L=L, +L,, and M =M, +M,. The symbol A

is the split-off energy. The k - p terms in the Hamiltonian are defined as

R :iyl(kf £k +k2) (2.152)
2m, !
2
Qu =2y, (k2 +k2 —2k?) (2.15b)
2m,
2
Lo = 3y, (k, — ik, K, (2.15¢)
mO
hz 2 2 -
M, =~ V3l (K —k2)-2iyk K, | (2.15d)
0
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where y,, y,,and y, arethe Luttinger parameters. m, is the mass of free electron.

kx, Ky, and k; are the wavevectors along X, y, and z-axis, respectively. The strain terms

in the Hamiltonian are defined as

Ps =-4a, (gxx + Ey +é&y ) (2163-)
b

Qg = _E(gxx + Ey— 2821 ) (216b)

L, =—d(e, —ie,,) (2.16¢)

M, = ?b(gxx —s, )-ide,, (2.16d)

where a, b, and d are the deformation potentials for valence band. The components of
strain tensor are defined in Equation (2.5) and (2.6). The values of the Luttinger
parameters and deformation potentials for silicon are given in Table 1. Note that the
valence band edge for unstrained silicon is at zero value in this expression.

For the sake of brevity, many works ignored the coupling effect of the split-off
band. In this case, the Hamiltonian of the top and second band can be described by a

4 x4 Hamiltonian [the upper-left 4x4 matrix block in Equation (2.14)].

P-Q L -M 0
L -p Y

H_ +Q 2.17)
“M* 0 -P+Q -L
0 -M°" -L' -P-0Q

Then, the analytic solution of the valence band structure for top two bands can be

obtained as

£ =R, ~P, £Q + Q. #[L + L M, M 219
In section 2.4.2, we will discuss the differences in the strain-induced subband

energy shift calculated by the 6x6 and 4x4 Hamiltonian.

2.3.2.1 Various Materials (Si, Ge, and GaAs)
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The valence bands for all diamond and zinc blende structure semiconductors
whose band gap is much larger than the split-off energy can be calculated using the
Luttinger Hamiltonian. Thus, using the corresponding parameters, the deformation
potentials, Luttinger parameters, elastic stiffness constants, and split-off energy, as
listed in Table 2.1, the band structures for the other two typical semiconductors, Ge

and GaAs, can be evaluated as well.

2.4 Types of Stress and Various Wafer Orientations

In this section, we first define the directions of normal, longitudinal, and
transverse stress for three conventional wafer orientations, (001), (110), and (111).
Then, the stress tensors and strain tensors for these wafer orientations are expressed as
a function of the corresponding normal, longitudinal, and transverse stress.

Fig. 2.3, 2.4, and 2.5 show: the surface orientations and the corresponding stress
directions for (001), (110), and (111)iwafer,-respectively. The shadow region indicates
the wafer surface. For (001) wafer, the. surface normal or out-of-plane direction is
along [001], the longitudinal (channel) direction is along [110], and the transverse
direction, which is perpendicular to the channel in the plane, is along [110]. The

biaxial stress for (001) wafer is along [100] and [010] directions with the same

magnitude of stress, that is, oy = 0. FOr (110) wafer, the surface normal

direction is along [110]. The [ilO] direction is chosen as the channel direction for
higher hole mobility in the plane [19]. The transverse direction is along [001]. For
(111) wafer, the surface normal is along [111], the longitudinal direction is along
[ilO], and the transverse direction is along [115]. The stress directions for the three
wafer orientations are also summarized in Table 2.2. Note that (110) and (111) wafers

have no so-called biaxial stress since the longitudinal and transverse direction are not

12



symmetric in silicon crystal.

In addition, the channel directions are indeed the same on (001), (110), and (111)
wafer since the [110] and [110] have the same symmetry in silicon crystal; however,
the normal and transverse directions are different. Thus, if additional normal or
transverse stresses exist in devices, it would induce different band structures among
these wafer orientations.

Using the discussion in Section 2.1, the stress tensors and strain tensors for
biaxial stress on (001) wafer, uniaxial stress along [110], [ilO], [001], [111], and

[115] direction can be obtained and listed in Table 2.3. By the principle of linear

superposition, the resultant strain tensor in response to the combination of normal,
longitudinal, and transverse stress for the three wafer orientations are also obtained
and given in Table 2.4. Note thatalthough the normal, longitudinal, and transverse
stresses on (001) and (110) wafer. are along different directions, they are indeed
among the same set of stress directions;that-is;;[110], [ilO], and [001]. That implies
the same strain-altered band structures-can be-achieved on (001) and (110) wafer with

the corresponding stresses included.

2.5 Results and Discussion

2.5.1 Band Structures

Applying Table 2.4 and Equations (2.12)-(2.16), the calculations of strain-altered
band structures on the three wafer orientations with various stress conditions are
straightforward.

As discussed before, the band warping of silicon conduction band remains
unchanged (band edge shift will be discussed in next section). The valence band

structures with various strain conditions including unstressed bulk silicon, 1GPa
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uniaxial longitudinal compression, 1GPa uniaxial longitudinal tension, 1GPa uniaxial
transverse compression, and 1GPa uniaxial transverse tension, are shown in Fig. 2.6,
2.8, and 2.9 for (001), (110), and (111) wafer, respectively. Fig. 2.7 also shows the
1GPa biaxial compressive and tensile stress on (001) wafer. The right hand side of the
figures is along the out-of-plane direction, and the left hand counterpart is along the
channel direction. Moreover, the band structures are plotted in electron energy, that is,
more positive value at energy axis represents smaller hole energy. The effective
masses along normal and channel direction for the three lowest bands are also marked
in the figures. The three lowest valence bands in Fig. 2.6-2.9 are denoted as top,
second, and third band since the designations, heavy, light, and split-off, lose their
meanings under stress. For example, Fig. 2.6(b) shows the band structure of bulk
silicon under uniaxial compressive stress on (001) wafer. The top band along [001]
direction is “heavy-hole like” and.second band is “light-hole like,” but along [110]
direction, the situation is reverse: the top-band-becomes “light-hole like” and second

band is “heavy-hole like.”

2.5.2 Strain-induced Band Edge Shift

In order to give insight into the trends of strain-altered band structures from
small to large strain, there are two characteristics of band structures that should be
considered. One is band edge shift discussed in this section, and the other is band
warping which will be modeled into effective masses and extracted in Chapter 3.

Using Equation (2.12) and Table 2.4, the band edge shift of the six conduction
band minima along the <100> directions can be obtained. Note that the first term of
Equation (2.13) shifts the six valleys in the same magnitude while the second term
splits the A4 valleys (the conduction band minima along [100], [iOO], [010], and

[OiO] directions) and A2 valleys (the minima along [001] and [OOi] directions) since
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£ =€, # &, forall stress types in the discussion. Also note that associated with

compressive (tensile) strain in one direction, there are generally a tensile (compressive)

strain in the other two directions. Thus, the signs of &,, (¢,)and ¢, are opposite

for a single uniaxial or biaxial stress. On the other hand, with the combination of the

normal, longitudinal, and transverse stress, the ¢, (¢,,) and &,, may be produced

with the same sign. However, it indeed favors opposing sign for increasing the

population in the lowest subband and enhancing mobility.

Using Table 2.4 and Equation (2.14)-(2.16) with k, =k, =k, =0, the

strain-induced valence subband energy shift can be obtained since the valance band
minima for bulk silicon are all at gamma, point (see Fig. 2.6-2.9). The three lowest
valence band edges versus stress.with uniaxial:longitudinal, uniaxial transverse stress
are shown in Fig. 2.10, 2.13, and 2.14 for (001), (110), and (111) wafer, respectively.
Fig. 2.11 also shows the biaxial stress case-on (001) wafer. The negative value of
stress indicates compressive stress and ‘the positive value indicates tensile stress. Note
that the band edge shift under uniaxial longitudinal stress on (001), (110), and (111)
wafer, and uniaxial transverse stress on (001) wafer are the same since these stress
directions have the same symmetry in silicon crystal.

The figures also label the quantization effective mass, which is along the
direction normal to the surface, for top two bands. The “hh” denotes the effective
mass of the corresponding band as “heavy-hole like” while “Ih” is “light-hole like”
among the two bands. It is interesting that no matter whether the stress is uniaxial
longitudinal, uniaxial transverse, or biaxial on the (001) wafer, under the compressive
stress the first band is heavy-hole like and the second band is light-hole like.

Nevertheless, under tensile stress, the situation is reverse. This is the main mechanism
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accounting for the reverse trends of the change of direct tunneling current between
compressive and tensile stress. It will be discussed thoroughly in Chapter 5. The
analysis can be applied to (110) and (111) wafer as well.

Moreover, the subband energy splitting between top and second band is larger
under uniaxial compression (biaxial tension) than uniaxial tension (biaxial
compression). The influences will be discussed in chapter 3, 4, and 5.

Next, let us compare the difference between results calculated by the 6x6
Hamiltonian and the 4 x4 Hamiltonian. The latter is widely used in the previous works
for device modeling [16], [22] since its solutions have very simple form for biaxial
stress on (001) wafer [Equation (2.19)] and uniaxial stress along [110] [Equation
(2.20)]. The solutions can be obtained through Equation (2.18) and Table 2.4. Note

that the band edge is proportional to the stress.

E,(k =0)=a(28;, +4S,, )6 £(S,, - S,, Jb|o] (2.19)
b? . dz_, [
E, (k = O) = a(Sll +23; )O- + {T (Su - S12) + ESL |O-| (2.20)

On the other hand, the analytic solution of 6x6 Hamiltonian is complex for
uniaxial stress along [110] and not listed here due to space limit. However, the

solution of that for biaxial stress [Equation (2.21)] is relatively simple since biaxial

stress have no shear strain terms and withe, =&, thus, L, =M_ =0 in Equation

(2.14).

E (k=0)=—P.-Q, or —Pg—%A+%Qgi%[A2+2Q5A+9QfT/2 (2.21)

Fig. 2.12 shows the comparison between the band edge shift calculated by 6x6
(solid line) and 4x4 (dotted line) Hamiltonian under uniaxial and biaxial stress on
(001) wafer. It can be seen that under uniaxial or biaxial stress, one of the top two

bands can be approximated by a straight line, hence the use of Equations (2.19) and
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(2.20) can get fairly good results. However, the other band is far from the linear line
calculated by 4x4 Hamiltonian and even the lowest energy is not located at zero
stress, that is, it first decreases and then increases while the stress increases. Therefore,
the usage of analytic solutions derived from 4x4 Hamiltonian can only serve for very
small stress and induces significant error under moderate and large stress as shown in
Fig. 2.12. For this reason, we will apply the 6x6 Hamiltonian throughout our

simulation work in Chapter 2, 3, and 4.

2.5.3 Constant Energy Surface

Constant energy surface in k-space is also an important tool for estimating the
influences of strain and can be obtained from Equation (2.12) for conduction band and
(2.14) for valence band. Fig. 2.16,:2.17, and 2.18 show the constant energy surface in
k-space of bulk silicon for three-lowest valence bands with 1GPa uniaxial longitudinal,
uniaxial transverse, biaxial stress on.(Q01)-wafer, respectively. For comparison, Fig.
2.15 also shows the case of unstressed-bulk silicon (the results are consistent with Ref.
[23]). The three coordinate axes are along ky, ky, and k,. The figures also label the
effective masses along normal, longitudinal, transverse, and other principal directions.
In addition, constant energy surface for bulk silicon under 1GPa uniaxial longitudinal
and uniaxial transverse on (110) and (111) are shown in Fig. 2.19-2.22. Note that, in
these figures, the three coordinate axes are along the normal, longitudinal, and

transverse directions.

2.5.4 Two-dimensional Energy Contour in the Plane of Wafer Surface
The two-dimensional energy contour in the plane of wafer surface can help us
determine the characteristics of inversion layer of MOSFETs including the

conductivity effective mass, transverse effective mass, density of states, and the
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symmetry of E-k relation under various stress conditions.

The energy contour of valence band can be obtained by Equation (2.14) and
setting the wavevector along normal direction at zero. The results are plotted in Fig.
2.23-2.30 for various stress conditions and wafer orientations as discussed above.
Note that the horizontal and vertical axes are along ky and ky for (001) wafer and,
contrary to that, they are along the longitudinal and transverse directions for (110) and

(111) wafers.

2.5.5 Advantageous Strains and Wafer Orientations
The general expression of conductivity for n- or p-MOSFETSs operating in
inversion condition can be described by

Condugtivity = q{n{%} + nz[qﬁﬂ (2.22)

cl ch

where g, n, 7, and m. are the elementary-charge, carrier density, scattering relaxation
time, and conductivity effective ‘mass..along channel direction, respectively. The
subscript denotes the first and second subband in the inversion layer of MOSFETS.
For high performance and low power requirements, advantageous strains need to
meet following criteria [2], [24]-[26]: (1) small conductivity effective mass of the
lowest subband, m¢, for enhancing the mobility since most of carriers occupy the
lowest subband; (2) large quantization effective mass along the out-of-plane direction
of the lowest subband, which enhances the carrier population by lowering the
quantization energy in the inversion layer; (3) large 2D DOS effective mass, or large
transverse effective mass, of the lowest subband which also increases the carrier
population of the lowest subband; (4) large energy splitting of the two lowest
subbands for lowering the intervalley (optical phonon) scattering; and (5) the

strain-induced subband shift and confinement effect in inversion layer are additive,
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that is, the band shifted down by strain must also have a larger quantization effective
mass, whereas the band shifted up by strain must have a smaller quantization effective
mass. The requirement not only enhances mobility due to increased carrier population
in lowest subband which have small conductivity effective mass, but also reduces the
power dissipation due to decreased gate direct tunneling current (details will be
discussed in Chapter 4).

Let us first examine the potential stress types and wafer orientations with these
criteria for nMOSFETSs, then, for pMOSFETs. The quantization, conductivity, and
DOS effective masses of the lowest subbands for nMOSFETS operating in inversion
conditions are given by [27]-[29] and listed in Table. 2.5. For conservative reason, we
assume the stress is not large enough to perturb significantly the original system
described in [27]-[29]. Under this assumption, the effective masses keep constant
under strain, that is, strain has no influences. on the eriteria 1-3. In addition, the total
carrier density in inversion layer dees-not-change significantly when the carriers
repopulate from one subband to another subband due to the strain-induce subband
energy shift.

For criterion 5, uniaxial longitudinal, uniaxial transverse, and biaxial tension are
advantageous strains for (001) wafer since these strains lift the A4 valleys, which
have smaller quantization effective mass, and shift down the A 2 valleys, which have
larger quantization effective mass [see Equation (2.13) and Table 2.4]. On the other
hand, the uniaxial longitudinal compression are advantageous strains for (110) wafer
since these strains lift the A 2 valleys, which have smaller quantization effective mass,
and shift down the A4 valleys, which have larger quantization effective mass. Note
that the A4 valleys are the conduction band minima along [100], [iOO], [010], and

[010] directions while A2 valleys are the minima along [001] and [001] directions

on both (001) and (110) wafer [27]. For the (111) wafer, the six valleys are degenerate
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in inversion layer and have the same conductivity effective mass, that is, the
strain-induced subband energy shift does not provide additional benefits for the
conductivity.

For comparing the (001) and (110) wafer, let us consider the same carriers
concentration in inversion layer on (001) and (110) wafer. The quantization effective
mass of the lower valleys on (001) wafer is much larger than that of (110) wafer while
for higher valleys, it remains the same. That is, the occupation ratio of the lower
valleys is larger on (001) wafer than that on (110) wafer due to the much lower
subband energy of lower valleys compared to higher valleys on (001) wafer. In
addition, the conductivity effective mass of the lower valleys is smaller on (001)
wafer than that on (110) wafer while for the higher valleys it is equivalent on both
wafers. Moreover, the magnitudes of strain-induced subband energy shift are
equivalent since the directions- of .uniaxial longitudinal stress on (001) and (110)
wafers have the same crystal symmetry.-Therefore, the conductivity on (001) wafer is
better than that on (110) wafer.”"However, - experiments and accurate numerical
simulations must be conducted to corroborate this argument.

Next, let us examine these stress types and wafer orientations for pMOSFETSs
using the criteria, the simulation results, Fig. 2.6-2.30, and the effective masses
summarized in Table 2.6. For criterion 5, the disadvantageous strains producing
smaller quantization effective mass for top band and larger quantization effective
mass for second band are marked with a strikethrough on the quantization effective
mass. Then, for criteria 1-3, the advantageous strains producing smallest conductivity
effective mass, largest transverse effective mass, and best quantization effective mass
among these stress types and wafer orientations are emphasized with bold effective
mass.

In Table 2.6, it can be seen that the uniaxial longitudinal compression on both
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(001) and (110) wafers is better among all advantageous strains. For uniaxial
longitudinal compression on (001) wafer, it can provide smallest conductivity
effective mass and largest transverse effective mass of the top band, but the
quantization effective masses are not as desirable as that on (110) wafer. On the other
hand, uniaxial longitudinal compression on (110) wafer can provide the smallest
conductivity effective mass as that on (100) wafer, the largest quantization effective
mass of the top band, and the smallest quantization effective mass of the second band,
which not only increases the carrier population in top band, but also reduces the gate
direct tunneling current. However, the transverse effective masses are small
comparing with that on (001) wafer. Moreover, the magnitudes of strain-induced band
edge shift on both wafers are equivalent as shown in Fig. 2.10(a) and Fig. 2.13(a).
Indeed, there are reported simulation results [26] indicating that the mobility on (110)
wafer is larger than that on (001).wafer below about 1.3GPa, but the situation is
reverse above 1.3GPa. Nevertheless;.the-conductivity and total drive current, which
relate to the carrier density and occupation ratio of each subband, were not reported in
the work. Therefore, there are advantages and disadvantages on each wafer orientation,

but for low power application, (110) wafer may be better than (001) wafer.

2.5.6 Influences of Additional Transverse or Normal Stress

In Section 2.5.5, we concluded that uniaxial and biaxial tensile stresses on (001)
wafer favor the conductivity enhancement for nMOSFETs while it is the uniaxial
longitudinal compressive stress on both (001) and (110) wafer for pMOSFETSs. Then,
in this section, we focus on the influences on these advantageous stress with
additional uniaxial transverse stress, or normal stress, which is existent in process
such as capping layer or STI stressor when the dimension of channel width is

comparable with channel length.
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Let us first consider an additional transverse stress on (001) wafer, or an
additional normal stress on (110) wafer with the same sign, that is, compressive stress,
and magnitude of the longitudinal stress. It is possible in process such as capping
layer or STI stressor. Table 2.4 shows that the shear strain term is canceled while the
normal strain term is doubled. Thus, the strain tensors reduce to the form as biaxial
compressive stress on (001) wafer (a pure normal stress). It is not desirable for
PMOSFETSs since the benefits of longitudinal compressive stress is degraded.

Next, let us consider additional transverse stress on (001) wafer, or normal stress
on (110) wafer, with the opposing sign, that is, tensile stress, and the same magnitude
of longitudinal stress. [Note that uniaxial longitudinal compressive and transverse
tensile stresses are both advantageous strains on (001) wafer as shown in Fig. 2.6(e),
Fig. 2.17(b), Fig. 2.25(b), and Table 2.6.] Table 2.4 shows that the normal strain terms
are canceled while the shear strain term doubles. -Thus, the strain tensors readily
reduce to a pure shear strain. It is not.desirable-in nNMOSFETSs since there is no energy
splitting between the A2 and A 4"valleys due to the normal strain terms being zero.
Thus, the mobility enhancement of nMOSFETs by uniaxial longitudinal stress is
degraded. For pMOSFETSs, Fig. 2.31 shows the band structures, constant energy
surfaces, and 2D energy contours of bulk silicon with addition transverse stress on
(001), and (110) and the effective masses are summarized in Table. 2.7. It can be
found that with additional transverse tensile stress on (001) wafer, the conductivity
effective mass remains 0.12mg for top band, but that reduced from 0.59mq to 0.3m;q for
second band. In addition, the transverse effective mass of top band increases from
1.37mo to 1.88m,. Note that the simulated results for additional normal tensile stress
on (110) wafer are similar to that for an additional transverse tensile stress on (001)
wafer, but the normal and transverse direction are exchanged. Thus, additional

transverse tensile stress on (001) wafer can further enhance the hole mobility while
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additional normal tensile stress on (110) wafer can further reduce the gate direct
tunneling current (the quantization effective mass of top band increase from 1.37m, to
1.88mg). On the other hand, additional transverse tensile stress have no apparent
benefits on (110) wafer as shown in Table 2.7.

To introduce the additional transverse tensile stress on (001) wafer for enhancing
hole mobility, it is possible to be achieved without additional costs by modifying
slightly the standard strained CMOS logic technology process flow [1]. The
undertaken technology enhances the electron and hole mobility on the same wafer by
first using SiGe source/drain to introduce longitudinal compressive stress in the
channel of pMOSFETs and then introduces longitudinal tensile stress in the channel
of NMOSFETs by applying nitride capping layer on both nMOSFETs and pMOSFETSs.
The disadvantage of this process flow is that it needs additional step for neutralizing
the capping layer strain on pMOSEETSs. However, instead of the longitudinal tensile
stress with the nitride capping-layer, if-the-tensile stress is incorporated along the
transverse direction during the same:step,.which not only enhances the election
mobility in the same order of magnitude, but also introduces additional hole mobility
enhancement. (Remind that the longitudinal and transverse directions are symmetry in
silicon crystal. Thus, the energy splitting of the A2 and A4 valleys are equivalent
under these two type stresses. Moreover, effective masses remain unchanged in

conduction band).

2.6 Conclusion

In this chapter, the strain tensors have been expressed as a function of normal,
longitudinal, and transverse stress on (001), (110), and (111) wafers, respectively.
Then, the strain-altered band structures, band edge shifts, constant energy surface, 2D

energy contour, and effective masses for various stress conditions and wafer
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orientations have been calculated by deformation potential theory and k « p framework
for conduction band and valence band, respectively. Utilizing these simulated results
as tools to estimate the device performance, the best advantageous strains among
these stress types and wafer orientations for nMOSFETs have shown to be uniaxial
and biaxial tension on (001) wafer while for pMOSFETs they are uniaxial
longitudinal compression on both (001) and (110) wafer. Finally, we have examined
the influences of additional transverse or normal strain and have found that the
additional transverse tensile stress on (001) wafer can further enhance the hole

mobility.
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Chapter 3

The Properties of Bulk Silicon in the Presence of

Strain

3.1 Introduction

In order to model the characteristics of strained MOSFETSs such as the change of
gate direct tunneling current (Chapter 4), there are two important features of
strain-altered band structure that should be take into consideration. One is the
strain-induced band edge shift, which has been.discussed and extracted in Chapter 2.
The other is the strain-induced:band warping, which will be incorporated into our
physical model (developed in ‘Chapter 4) via the effective masses extracted in this
chapter such as the quantization effective mass; the 2D density of state (DOS)
effective mass, and 3D DOS effective mass. In Chapter 4, we will verify qualitatively
and quantitatively that the strain-induced change of gate direct tunneling current can
be attributed to these two features of strain-altered band structure. Moreover, utilizing
the extracted 3D DOS effective masses and band edge shifts of all valleys, the
conduction band effective DOS, N, and valence band effective DOS, N,, can be
determined. Then, following the approach of conventional “Semiconductor Device
Physics,” [30], [31] the strain-altered Fermi energy level of bulk silicon, which is an
important physical parameter for device modeling, can be determined. Finally, the
strain-altered intrinsic carrier density of bulk silicon will be calculated as well.

Note that in Chapter 3 and 4, it is primarily focused on the silicon under uniaxial

longitudinal stress and biaxial stress on (001) wafer since there are adequate
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experimental data published by previous works and widely used in industry to date.
Nevertheless, the approach and analysis developed here can be applied directly to

other stress conditions and wafer orientations with extracted physical parameters.

3.2 Effective Mass

As discussed in Chapter 2, the conduction band effective mass of bulk silicon
remains unchanged under strain. For the valence band, we assume that the constant
energy surfaces can be approximated to ellipsoids, that is, the energy dispersion
relations along the three axes of the ellipsoid are parabolic-like. Thus, the energy
dispersion relation of bulk silicon near the gamma point can be expressed as

21,2 21,2 21,2
:hka+hkb+hki (3.1)
2m 2m

C

E

* *

2m,

a

where Kk, Ky, and k. are the wavevectors along-the three axes of the ellipsoid, a, b, and
c directions, respectively. m,, my, and m.-are-the effective masses along a, b, and c
directions, respectively. For uniaxial  stress," the directions along [110], the
longitudinal direction, along [ilO], the transverse direction, and along [001], the
normal direction, in k-space are selected to be the three orthogonal axes of the
ellipsoid due to the symmetry of uniaxial strain as shown in Fig. 2.16 and Fig. 2.24.
On the other hand, for biaxial stress, the direction of [100], [010], and [001] in
k-space are selected to be the three orthogonal axes of the ellipsoid due to the
symmetry of biaxial strain as shown in Fig. 2.18 and Fig. 2.16. Note that the effective
masses along [100], [010], [110], and [ilO] are the same under biaxial stress due to
the symmetry of silicon crystal and biaxial strain. Therefore, for biaxial stress, the
energy contour is circle-like near the gamma point under large strain, while for
uniaxial stress, the energy contour is ellipse-like.

Also, note that the constant energy surfaces, or 2D energy contours, of the heavy
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hole band of unstrained bulk silicon, as shown in Fig. 2.15 and Fig. 2.23, are indeed
far from the ellipsoid or ellipse in the plane. Thus, for small strain case, the
assumption of elliptic constant energy surface is not suitable. However, the approach
used in Ref. [32] for deriving the effective masses of unstrained silicon cannot be
applied directly to the strained case due to the complex form of energy dispersion
relation under strain. In addition, the analytic solution used in [32] for heavy and light
hole band are extracted from the 4x4 Hamiltonian described in Chapter 2, which
ignores the mixing effect of split-off band and hence induces significant errors as
compared with the 6x6 Hamiltonian. Moreover, the conventional effective masses
given by the Ref. [30]-[32] for the unstrained case are extracted from bulk silicon.
They are not applicable to describe the inversion layer of MOSFETs. Thus, the one
band effective mass approximation-is adopted ‘tn:Chapter 4 for the small strain case
instead of the values extracted here. On the other- hand, when the strain is large
enough, the crystal symmetry of band structure will be destroyed and forced to the
strain symmetry. Thus, the hypothetical elliptic' constant energy surface is a good
approximation.

Next, the effective masses along the three axes of the ellipsoid can be defined as

2 -1 2 -1 2 -1
m=h(gk—E] , m=h[zk—E] , m=h(gk—E] (3.2)
a b c

where E is the energy and the subscript i denotes the ith valleys.
Consequently, based on the assumption of elliptic constant energy surface, the

3D (bulk) DOS effective mass can be derived as

1
My = (mai My M )5 . (3.3)

On the other hand, assuming energy contour in k-ky plane is ellipse-like, the energy in

inversion layer of MOSFETSs can be expressed as
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2m.  2m, "

E

a
where the E,, is the quantization energy along the z direction. The subscript i and n

denote the nth subband of ith valley. Then, the 2D DOS effective mass in inversion

layer can be derived as

1

My = (mai My; )E (3.5)
Fig. 3.1 shows the effective masses along the three axes of the ellipsoid, mg,q,

Miz10)

and my,,;, versus uniaxial longitudinal stress for three lowest valence bands.
Note that some of these effective masses vary significantly from small to large strain
while the others remain almost constant., Thus, the influences of strain-altered
effective masses cannot be ignored and must be. incorporated into our physical model.
It can be seen that the longitudinal (conductivity) effective mass of top band under
compressive stress is much smaller than-that under uniaxial tensile stress. It is
consistent with the analysis in Chapter 2. Especially, the transverse and quantization
effective mass increase while the uniaxial compressive stress increases. It implies that
introducing larger strain into the channel is beneficial and desirable. Fig. 3.2 shows
the 3D (bulk) and 2D DOS effective masses versus uniaxial longitudinal stress for
three lowest valence bands. It can be observed that the 3D and 2D DOS effective

masses of top band increase significantly while the uniaxial compressive stress

increases from zero to 3GPa.

Fig. 3.3 shows the effective masses along the three axes of the ellipsoid, my,
Migso)> AN M7, VErsus biaxial stress for three lowest valence bands. The my,,; and

Myye) are equivalent due to the strain and crystal symmetry. Then, Fig. 3.4 shows the
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3D and 2D DOS effective masses versus biaxial stress for three lowest valence bands.

Note that the 3D DOS effective masses for the three lowest valence bands appear to

remain constant (about 0.24mo) due to the reverse trends between mp,,; (M) and

My While the compressive or tensile strain increases form zero to 3GPa.

3.3 Carrier Density and Effective DOS

3.3.1 Electrons in Conduction Band

To derive the expression of carrier density of bulk silicon with non-degenerate
doping as a function of band shifts and 3D DOS effective masses of all valleys, Fig.
3.5(a) shows the strain-induced energy valleys splitting for conduction band under
arbitrary stress. The E;, E,, E3 represent, respectively, the energy of conduction band
minima along one of the three arthogonal axes, ki, Ky, or k.. Note that for uniaxial and
biaxial compressive stress on (001) wafer, the E;-and E, are degenerate and are the
valley minima along kg, and k, axes while Ez is the valley minima along k;, axis and
higher than E; and E,. On the other hand, for uniaxial and biaxial tensile stress, the E;
and E; are degenerate and are the valley minima along ky, and k, axes while E; is the
valley minima along k, axis and lower than E, and Esz. In addition, the AE;,
represents the band splitting between E; and E, while AE;3 represents the band
splitting between E; and Es. Then the carrier density of electron in conduction band
can be expressed as

(Ec-Ef) 7[(EC+AE1,2%Ef] 7[(EC+AEl,3%Ef]
“T +Nege T +Nge o
AE,; , _AE5 (Ec*Ef)

kgT KeT B
® 4+ Ng,e

Ny = N¢,€

= Ng, +Ng,e g o (3.6)

_(EC_Ef)
— N(’;e kT
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where E; is the Fermi energy. The N¢1, Ne2, and N¢s are the effective DOS of the E;, Ej,
and Eg, respectively, and can be expressed as
3

N, = 2(%} . (3.7)

Reminding that the strain does not alter the band warping in conduction band, and

therefore, the 3D DOS effective masses remain unchanged, leading to the expression:

2 1
- *2  x |n
My, My, ,md3:23(mt m, F. (3.8)
Consequently, the Nci, Nc2, and Ncs are equivalent. Therefore, the expression of

electron carrier density can be further simplified as shown in Equation (3.6) where
the N is the effective conduction band effective DOS under stress:

L AEf (o) AEi5(0)
Nc1(o_)+ ch(o')e % Ncs(o_)e ol
AEr,(9) AEj,(2) (39)
= N{He e }

Ne (o)

3.3.2 Holes in Valence Band
Similar to the case of conduction band, Fig. 3.5(b) shows the schematic
strain-induced energy valleys splitting for the three lowest valence bands. Thus, the

carrier density of hole in valence band can be expressed by

_(Ef &) _[Ef (B -AEy,)] _[Ef ~(Ey-4E,5)]
pO = NV,tope ol + NV,seconde ol + Nv,thirde !
AEp, AR (E-E)
= Nv,top + NV,seconde ol + NV,thirde ! € ol (310)
7(Ef*Ev)
=Nye

where the Nytop, Nysecond, @nd Nymirg are the effective DOS of the three lowest valence

bands, respectively, and can be determined by the 3D DOS effective masses shown in
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Fig. 3.2 and 3.4 for uniaxial and biaxial stress, respectively. Therefore, one can write

3
Ny = 2(—@;8; jz : (3.11)

Then, the effective valence band effective DOS under stress, N, , can be expressed as

AE; (o) AE;5(0)

N;(G):Nw(o')"' sz(o')ei ol +Nv3(0')ei o (3.12)

3.3.3 Simulated Results of N. and N,

Fig. 3.6 and Fig. 3.7 show the conduction and valence effective DOS, N and N,,
versus uniaxial and biaxial stress, respectively. It can be seen that for both uniaxial
and biaxial stress, the N and N, drop very quickly when the stress increases from zero
to 1GPa, but almost remain constant above 1GPa. The phenomena can be explained
by Equation (3.9) and (3.12). That,is, the second andthird terms in Equation (3.9) and
(3.12) decrease exponentially due to-the.-energy splitting increase when the stress
increases (see Fig. 2.10 and 2.11). Ultimately;the second and third terms tend to zero,
thus, Nc and N, are dominated by the first term under large strain. Note that, it is
different from the biaxial case, the N, increases slightly when the uniaxial
compressive stress increases. It can be explained by the 3D DOS effective mass of the
top valence band under uniaxial stress (see Fig. 3.2), which increases significantly
when the uniaxial stress increases from zero to 3GPa while for biaxial stress it

remains almost constant (see Fig. 3.4).

3.4 Fermi Energy of Bulk Silicon
Using the strain-induced shift of conduction band edge extracted in Chapter 2
and the strain-altered conduction effective DOS extracted in previous section, the

Fermi energy of n-type silicon under strain can be expressed as [30], [31]
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E.(0)-E, (0)=—k,T |n{N?—<(>U)j . (3.13)

C
Likewise, using the strain-induced shift of valence band edge and the strain-altered
valence effective DOS, the Fermi energy of p-type silicon under strain can be

expressed as [30], [31]

E,(0)-E,(c)=—k,T In[ NPEo)j . (3.14)

\

Finally, the strain-altered intrinsic Fermi energy level, E;, can be determined by

Ei(a)=(EC tE j+ Al In( NQ(U)]. (3.15)

2 2 | NZ(o)

Fig. 3.8 and Fig. 3.9 show the Fermi energy of bulk silicon versus uniaxial and
biaxial stress, respectively, for various doping concentrations. The figures also show
how the intrinsic Fermi level, conduction band edge, and valence band edge vary
with stress. Note that the band-gap of unstrained silicon is 1.12eV. From Fig. 3.8,
Equation (3.13), and Equation (3.14);.it_can be observed that the strain-induced
conduction band edge shift decreases the Fermi energy of n-type silicon while the
strain-induced valence band edge shift increases the Fermi energy of p-type silicon
when the stress becomes large. On the other hand, the energy difference between
conduction band edge and the Fermi energy of n-type silicon, or the energy
difference between valence band edge and Fermi energy of p-type silicon, reduces
since the DOS effective masses decrease while stress increases. Thus, different from
the influences of band edge shift, the effective DOS introduces reverse influences on
the strain-altered Fermi energy. Moreover, the strain-altered Fermi energies are
primary dominated by the band edge shift under stress above 1GPa since the
effective DOS of conduction and valence band both tend to constant when the stress

becomes large.
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3.5 Intrinsic Carrier Concentration

Utilizing the conduction and valence effective DOS of bulk silicon under strain
extracted in Section 3.4 and the strain-induced band gap narrowing, which enhances
the intrinsic carrier density, extracted in Chapter 2 and 3.4., the intrinsic carrier

density can be obtained as

* *

n, =/ Ng(o)Ng (o) B2 (3.16)
where E.(c) is the band gap of bulk silicon under strain. kg is the Boltzmann

constant and T is temperature.

Fig. 3.10 shows the intrinsic carrier concentration versus uniaxial and biaxial
stress. In the figure, it can be seen that the intrinsic carrier density increases slightly
under 1GPa and enhances quickly above:1GPRa. In addition, the intrinsic carrier
density increases faster under_biaxial stress than that under uniaxial stress. The
phenomena can be understood by Equation (3.16), Fig. 3.6, and Fig. 3.7. For the stress
under 1GPa, the conduction and valence effective DOS reduce quickly, thus
suppressing the enhancement of intrinsic carrier density due to the band gap
narrowing. On the other hand, when the stress becomes large, the effective DOS tends
to constant. Thus, the intrinsic carrier density is primary dominated by the band gap
narrowing and increases quickly when stress becomes large. Moreover, the
strain-induced band gap narrowing is larger under biaxial stress than that under
uniaxial stress as shown in Fig. 3.8 and Fig. 3.9. Therefore, the enhancement of

intrinsic carrier density is larger under biaxial stress than that under uniaxial stress.

3.6 Conclusion

In this chapter, the quantization effective masses, the 2D DOS effective masses,
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and the 3D DOS effective masses of silicon under uniaxial and biaxial stress on (001)
wafer have been extracted. These extracted effective masses determine the
characteristics of inversion layer in MOSFETs such as the quantization subband
energy, occupation ratio of each subband, and the Fermi energy. In addition, the
strain-altered conduction and valence effective DOS have been derived as a function
of the strain-induced band edge shift and strain-altered 3D DOS effective mass. From
the calculated results, the effective DOS drops quickly due to the band edge splitting
when stress increases from zero to 1GPa, and then tends to a constant determined by
3D DOS effective mass of lowest valley for further increased stress. Furthermore, the
Fermi energy of bulk silicon with non-degenerate doping has also been derived as a
function of the strain-induced conduction or valence band edge shifts and the
strain-altered effective DOS. The calculated results have shown that the Fermi energy
is dominated by band shifts under. large stress because the effective DOS tends to
constant. Finally, the intrinsic carriericancentration has been derived and expressed as
a function of strain-altered effective:DOS andstrain-induced band gap narrowing. The
calculated results have shown that the intrinsic carrier density increases rapidly due to

the strain-induced band gap narrowing when the stress is larger than 1GPa.
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Chapter 4

Strain-induced Change of Gate Direct Tunneling

Current

4.1 Introduction

There are two approaches to study the conduction band electron direct tunneling
(EDT) current in unstrained nMOSFETs. One is the self-consistent
Schrodinger-Poisson equation [5]. Another is triangular potential approximation [33],
[34], [41]. The triangular potential approximation was also applied successfully to the
hole direct tunneling (HDT) curtént of valence.band [3], [42]. However, the physical
parameters used in above studies were extracted from energy dispersion relationship
(band structure) of bulk silicon.”Theractual-dispersion relation of valence band in the
channel inversion condition possesses many non-ideal properties such as band mixing,
anisotropic, far from parabolic, camel back, vertical electric field-dependent, and the
density of state function is deviated from the step-like function [4], [35]-[37] as
shown in Fig. 1(a) for unstressed case and (b) for uniaxial longitudinal compressive
stress. In Fig. 1, note that the energy of the heavy, light, and split-off spin-orbit hole
band are degenerated and zero at gamma point in bulk silicon without stress.

The actual dispersion relation and the corresponding calculation procedure are
too complex so that for further applications are impractical. Fortunately, the improved
one band effective mass approximation (improved one band EMA) introduced in Ref.
[4], [35]-[37], [42] can resolve this difficulty. This approach can achieve both the

reasonably accuracy and computing efficiency.
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On the other hand, the dispersion relation of valence band with external stress
using six-band k - p method has been deeply developed [19]. Moreover, using the
six-band k « p method and Self-consistent Schrdodinger-Poisson equation to calculate
hole tunneling current in pPMOSFETSs with various type of stress has been report [6].

In particular, there is an analytic expression for subband energy shift of
conduction band under longitudinal uniaxial stress, which is a function of vertical
electric field and stress [38]. Furthermore, using the analytic expression and measured
electron gate direct tunneling current, it has been corroborated that the expression can
be used to extract the conduction band deformation potential constant [38] and
quantify channel stress in devices [39].

However, there is no available procedure, which is based on the triangular
potential approximation and strain-altered dispersion relationship of silicon, to
calculate the hole direct tunneling current. Therefore, in this work, model and
characterize direct tunneling currenttin - MOSEETSs under uniaxial compressive stress
by using the modified triangular potential approximation is demonstrated.

The simulation result can provide information for future strain engineering and
later calculation. Furthermore, the model can provide an explicit physical picture for
the impact of strain on the gate direct tunneling current in MOSFETS.

In this chapter, we focus on the direct tunneling current for pMOSFETs under
uniaxial longitudinal compressive stress on (001) wafer, then, extend that for
NMOSFETs. The same approach and analysis can be applied to other stress conditions

and wafer orientation with corresponding modifications of the model.

4.2 Physical Model

4.2.1 Hole Subband Energy and Carrier Density (pbMOSFETS)
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Fig. 4.2 shows the band diagram of a pMOSFETs under uniaxial compressive
stress (note that the band diagram may be different for other stress conditions) and
biased in channel inversoin condition. The figure also illustrates the quantizated
subband energies in the inversion layer and HDT current from the channel into the
gate. Ecqunstressed) @nd Evunstresseqy are the conduction and valence band edge in bulk
silicon without external stress. Er is the Fermi energy. Ec(s2 and Ec(a4) indicate the
strain-induced conduction band edge shift of the A2 and A4 valleys of bulk silicon,
respectively. Evi(Fsi=0, ¢ ), Evw(Fsi=0, ¢ ), Evs(Fsi=0, ¢ ) indicate the
strain-induced valence band edge shift of the three lowest bands of bulk silicon.
Evi(Fsi, o), Eva(Fsi, o), Evs(Fsi, o) are the quantized energy of the three lowest
subbands in the inversion layer. Note that under uniaxial compressive stress, the order
of three lowest subbands in the inversion layer are.indeed the same as the three lowest
bands (valleys) of bulk silicon.. @gy is the valence band edge difference between
SiO; and Si without stress. tox is-the gate-oxide-thickness.

In Fig. 4.2, the energy band ‘bending. induced by gate voltage in the inversion

layer can be approximated by a triangular potential well. The slope of the triangular

potential well can be modeled by the silicon surface electric field Fg . Analogizing to

Ref. [38], we assume that the impact of strain-induced band edge shift and the
electric-field-induced subband energy confinement in the inversion layer are
independent. Therefore, we can express the three lowest valence subband energy in
the inversion layer by directly adding the triangular potential component, first term in

the right hand size in Equation (4.1), and stress component, second term, as

52 13 9 2/3
Evlz(Zle] (gﬂqFSij +AEv1(G)v (4.1a)
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h2 1/3 9 2/3
E. :( j (gﬂqFSij +AEv2(O')1 (4.1a)

2m,,
and
h2 1/3 9 2/3
Evs:(Zm J [gﬂqFSij +A+AE4(o) (4.1a)
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where m,, m,,and m,, are the quantization effective masses of the three lowest
subbands, respectively, AE,(c), AE,(c), and AE,(c) indicate the quantity of

valence band edge shifts between strained and unstrained bulk silicon for the three
lowest subbands, respectively. The split-off spin-orbit energy of bulk silicon is A=
44meV [35], [37].

Using 2D density of states and, Fermi-Dirac statistic, the carrier density in

inversion layer for each subband.can be derived.as

kT * E o EVI’]
N, = (?den In(1+ exp(FTD (4.2)

Where m, is the hole DOS effective"mass of the nth subband. E, is the nth

subband energy defined by Equation (4.1) for the three lowest subbands.

The relationship between gate voltage V, and Fg is determined from the

voltage balance equation

Vol =Veg +Vo, + Vo, +Vs (4.3)

poly

where V; is flat-band voltage, V,, is oxide voltage drop, V is the voltage drop

poly
in polysilicon gate due to poly depletion, and V; is the substrate band bending.

To derive the flat-band voltage for pMOSFETs under arbitrary strain in both
polysilicon gate and channel, Fig. 4.3 shows the band diagram of a p°

polysilicon/SiO,/n-Si (pMOS) structure with a negative gate voltage. Then, to
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establish the energy relation of both side with the help of the band diagram. Next, let

Voo =Vooy =V, =0 and V; =V, the expression of flat-band voltage can be derived
as
NSU
qVFB = ‘AECGI (O-polyX - |AECSI(O-chanX + EGG (Gpoly )+ kT In( : j (44)
NC (O-chan)

where AECGl(apo,y) and AE,(o,.,,) are the quantity of conduction band edge shift

for polysilicon gate and channel, respectively. The strain-altered band gap of
polysilicon gate is Egg = EG(apO,y :O)—‘AECGl(apO,yX—‘AEVGl(apO,VX as shown in
Fig. 4.3. Ny, Iisthe substrate doping concentration and N. (apo,y) Is the conduction
effective DOS described in Chapter 3.

The self-consistent procedure for subband, calculation is described as following:

(1) given Npoly, tox, Nsup, and V. (2) Let V., :%[\/G ~Veg| Where 0<k <N since
the voltage drop of oxide must be between zero:to M, —Vy;|. It is noteworthy that

increasing the value of N will increase the accuracy of simulated results, but the
computation time increases as well. (3) Using the equations summarized in Table 4.1
to calculate subband energies, carrier density of each subband, voltage drop, depletion

charge, etc. (4) Examine the calculated results with Poisson equation, or the

conservation of electric flux, q(Nj,, + Ny, )~ £, F. . Then, find the value of k and the

inv 0oxX " 0X

corresponding solution with smallest error between the both sides of the electric flux

conservation equation.

4.2.2 Hole Direct Tunneling Current for pMOSFETs

After modifying the subband energy expression and subband calculation
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procedure for the strained silicon, we can readily apply the well-developed WKB
approximation [3], [4], and [34] to calculate the tunneling current density. The hole
direct tunneling current density Js can be expressed as a sum of the tunneling current

contribution of each subbands,

i, (4.5)

where N, is the inversion carrier density of the nth subband and 7, is the lifetime

of the nth subband. The lifetime of an nth subband in the triangular potential well can

be expressed as [3], [4]

L TE)

m E -1/2
= = —3— 4.6
7,(E) IOZ" J2m; /[E - E, (2)dz 4 ( j (“9)

where z, is the classical turning point of the‘nth subband, E,(z) is the Si valence

band edge, T(E) is the transmission probability of a carrier. Transmission

probability can be written in the-form.of
T(E):TWKB(E)'TR(E) (4.7)
where TWKB(E) is the typical WKB approximation of the transmission probability,

and T is the correction factor taking into account the reflections from boundaries of
the oxide. Appling parabolic dispersion relationship in the oxide [3], the Twkg(E) can

be simplified as

2

TWKB (E) = exp[— %

I;W Jam, (E-qVv (z))dzH = exp( A 2Mosy ((p:;tﬁ ~ P )J (4.8)

39| F,|
where m_,, is the effective hole mass, F, is the oxide electric field, ¢, is the

barrier height of tunneling hole with quantized energy E,, at cathode side, and ¢,

is that at anode side. ¢, =®,, —qV,, —E, and ¢, =d,, —E, . The reflection

vn
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correction factor is expressed as

T (E) — 4USi (E)on (wan ) % 4Usi (E + qvox )on (¢cath ) (49)
" USZi (E)+ U(fx ((Dan ) Ugi (E + qux )+ U(fx ((Dcath )

where v (E) and oy (E+qV,,) are the group velocity of the electron incident and

leaving the oxide, respectively, and v, (@,,) and v, (¢.,) are the magnitudes of

the purely imaginary group velocity of hole at the cathode and anode side within the

OXide' USi (Evn) = ‘\/ 2Evn/mzn and on(Evn) = \/z(q)BV - Evn - qux(Z))/moxh for the

parabolic dispersion relationship.

4.2.3 Electron Direct Tunneling Current for nMOSFETS

Fig. 4.4 illustrates the band diagram. of an n* polysilicon/SiO./p-Si structure
biased in channel inversion conditionsand: stréessed with uniaxial longitudinal
compressive stress. The figure-also shows the subband energy confinement in the
inversion layer and the electron direct tunneling current from channel to gate. Similar

to pMOSFETSs, the strain-altered subband energy can be expressed as

hZ 13 3 1 2/3
Eei(a2) :( ] (E q”FSi(i _ZD + AEc(Az)(O') (4.109)

2m, )

1/3 2/3
n? 3 .1
Eci(A4) = [ J (— q/Z'FSi (l — ij + AEC(A4)(O-) (410b)

2, (4 2

where the AE,,, (o) and AE,,(c) are the strain-induced conduction band edge
shift for the A2 and A4 valleys, respectively. The details for calculating AEC(AZ)((;)
and AE,,,(c) have been introduced in Chapter 2. The subscript i denotes the ith

subband of each valleys. m,,, and m,,,, are the quantization effective mass for

the A2 and A4 valleys, respectively. As discussed in Chapter 2 and 3, the
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quantization, 2D DOS, and 3D DOS effective mass are independent of strain for
silicon conduction band. The values of the quantization and 2D DOS effective masses
are given in Table 2.5. In addition, the strain-altered flat-band voltage for nMOSFETSs
under arbitrary strain in both polysilicon gate and channel can be derived with the
help of the band diagram as shown in Fig. 4.5.

N
QVeg = ‘AECGI(O-pOIyX - |AEc51(O'chan)| - Eg (O-chan ) —kT Ir{¢J (4.11)
NV (Gchan)

where Eg = Eg(0gan =0)—[AEcsi(Ognan | — |AEys: (0nan | IS the strain-altered band

gap of channel as shown in Fig. 45. N,(o,,,) is the valence effective DOS

described in Chapter 3.
The remaining calculation procedures are the same as that for pMOSFETSs, but

with the corresponding physical parameters for nMOSFETSs.

4.3 Results and Discussion

4.3.1 Hole Direct Tunneling Current for pMOSFETs
4.3.1.1 Parameters Extraction for the Vertical Electric Field Component

For simplification, we assume that quantization and density of state effective
mass are constant and have no significant change within the range of vertical electric
field and stress in our calculation.

Using the triangular potential approximation and improved one-band EMA,
Equations (4.1) with o =0, we can extract the quantization effective masses for the
three lowest subbands. The quantization effective masses are the only adjustable

parameter in Equation (4.1) with o =0 and the values for best fitting are as follows:

m,, =0.28m,, m,, =0.23m,, and m,; =0.21m,. These values are consistent with
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the values used in [4], [35]-[37] for unstressed case (m), =0.29m,, m, =0.24m,,
and m’, =0.22m,) and approximated the value used in [6] for longitudinal uniaxial

compressive case (m;, =0.27m,, m,, =0.22m,,and m_, =0.23m,).

Fig. 4.6 shows that the hole subband energy (o = 0) evaluated by the improved
one band EMA, which provides better computing efficiency and takes the non-ideal
properties of dispersion relationship in channel inversion condition into account, well
reproduced the results calculated by accurate six-band k - p method (with the

self-consistent Schrodinger-Poisson equation) for the three lowest subbands versus

F, varying from zero to 2.5MV/cm. Thus, the use of constant values for

quantization effective mass is applicable.

For simplification, we adopt'the density of state effective mass suggested by [36]
for channel inversion and unstressed condition. Furthermore, we assume that the
density of state effective mass-do not have-significant change under small stress
condition. However, it is noteworthy that for large stress or precise computation, the

change of density of state effective mass should be taken into consideration.

4.3.1.2. Calculation for the Stress Component (Valence Band Edge Shifts)

The method for calculating valence band edge shifts has been discussed in
Chapter 2. Fig. 4.7 shows the hole subband energies calculated by Equation (4.1) with
the quantization effective masses extracted above. The figure also shows the data
evaluated by the six-band k « p method (with the self-consistent Schrédinger-Poisson
equation).

It can be observed that our model can well reproduce the data calculated by

six-band k -+ p method within the range, F;; varies from 0.5MV/cm to 1.5MV/cm and
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the stress varies from zero to 300MPa. Note that comparing to the subband energy
and the thermal energy kT =0.026 eV at room temperature, the error is tolerated for
later calculation. Moreover, in usual operation of pMOSFETS, which oxide thickness

is thinner than 2nm, the gate voltage is between zero to 1.5V and the corresponding

Fs is between around 0.5MV/cm to 1.5MV/cm. Therefore, the assumption, the
influences of strain-induced subband energy shift is independent of Fg , is

appropriate within the range of Fg; and o in our discussion.

Fig. 4.8 shows the strain-induced band edge shifts in bulk silicon for both the
conduction and valence band. The level of zero energy is the conduction and valence

band edge without external stress, respectively.

4.3.1.3. Hole Direct Tunneling-Current

Our model has been verified that-it-can-well reproduce the experimental data
published by previous works, HDT-current.in-Ref. [3], [4] and EDT current in [34],
for unstrained silicon with various gate oxide thickness and doping concentration.

Then, using our model and the parameters extracted above, the simulation result,

AJ, /1 J; versus stress at V=1V, was calculated and plotted in Fig. 4.9(a). The

device parameters used in simulation are as following: gate oxide thickness is 1.3nm;
polysilicon and substrate doping concentration are 5x10%° cm™ and 10 cm?,

respectively. The figure also shows the experimental data published by former works.

The squares is the data measured at V;=1V in Ref. [2]. The diamonds are the date

measured by four point bending jig at V=1V for the device samples consisting of

heavily doped poly-silicon gate, 1.3nm physical thickness SiO, gate dielectrics, and

~5x 10" cm™ well doping in Ref. [40]. The circles are the data measured by wafer
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bending technique at V=1V for the device samples with 10" cm™ n-type substrate

doping and 1.3nm physical thickness nitrided SiO, gate insulators in Ref. [6].
In our calculation, the carrier density of third subband is only about 2% of total
three subbands. Thus, according to Fermi-Dirac statistic, contribution of higher

subbands is negligible [37]. Also note that the assumption of parabolic dispersion

relationship in oxide is precise at V;=1V and oxide thickness is thinner than 2nm

with m_. =0.4mq [3], [4]. Moreover, since the experimental data cited from Ref. [6]

oxh

and [40] are measured by the wafer bending technique, the stress type and magnitude
of polysilicon gate are set to be the same as that of channel [16]. Furthermore, the
doping effects on the tunneling currents have been examined. It was identified that

when substrate doping varies from10* to 5x10*".cm™, there is no significant change

on the AJg/Jg versus stress curve. This result+is consistent with the experimental

data.

It can be observed that the simulated result of AJ,/J, versus stress is

consistent with the trend of experimental data published in Ref. [2], [6], but with
some deviation at larger stress.

Fig. 4.9 also shows the corresponding subband energy, carrier density, and the
hole direct tunneling current versus stress for the three lowest subbands. According to
simulated results, the strain-induced change of HDT current is primarily results from
the carrier repopulation. Under longitudinal uniaxial compressive stress, the first
subband energy become lower and the second and third subbands become higher than
that in unstressed case as shown in Fig. 6(b). Consequently, according to the
Fermi-Dirac statistic, a number of carriers redistribute from second and third

subbands into the first subband as shown in Fig. 6(c). Note that the total carrier
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density remains almost constant with the stress varying from zero to 300MPa. In
addition, the barrier for hole tunneling of first subband is higher and corresponding
WKB transmission probability is smaller than other subbands. Therefore, the total
tunneling current decreases while the stress increases as shown in Fig. 6(d).

The deviation between the experimental data and simulation results at larger
stress may result from the use of constant 2D DOS effective mass in our calculation.
Fig. 2.23, 2.24 and 3.2 shows that the 2D DOS effective mass of the first band indeed
increase while that of the second band decreases at larger stress. Consequently, there
are indeed more carriers repopulate from higher subband into the first subband than

that expected by the model. Thus, the HDT current further reduced.

4.3.1.4 Uniaxial Transverse Stress

It can be observed that the-experimental data.measured in Ref. [2], [40] have the
same trend and magnitude of the strain-induced-change of HDT current under uniaxial
longitudinal and transverse stress.<This. phenomenon can also be expected in our
model since the strain-induced valence band edge shifts and the 2D DOS effective

masses are equivalent under longitudinal and transverse stress on (001) wafer.

4.3.2 Electron Direct Tunneling Current for nMOSFETS

Fig. 4.10 shows the simulated results for nMOSFETSs under uniaxial longitudinal
compressive stress. Note that the calculation includes the first two subbands of A2
valleys and the first subband of A4 valleys since the subband energy of second
subband of A2 valleys are close to that of the first subband of A4 valleys as shown

in Fig4.10(b). The circles are the experimental data measured by four-point bending

jig at V;=1V for the device samples consisting of arsenic doped polysilicon gate,
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1.3nm nitrided SiO2 gate dielectric, and 10" cm™ boron doped p well in Ref. [38].
The diamonds and squares are the data from Ref. [2] and [40] as described in the
PMOSFETs case. It can be seen that the simulation results well reproduce the
experimental data. The mechanism for the change of EDT current can also be
explained by the carrier repopulation. Under uniaxial compressive stress, the lowest
subband ( A 2 valleys) shifts up while the second subband ( A 4 valleys) shifts down as
shown in Fig. 4.8(a) and Fig. 4.10(b). Consequently, a number of carriers repopulate
from the lowest subband to the second subband, which has lower tunneling barrier. In
addition, the barrier of the lowest subband also decreases. Thus, the EDT current
increases. Note that this mechanism is reverse to that for pMOSFETs under uniaxial
compressive stress. Moreover, the analysis for these two cases can also be applied to
explain the change of direct tunneling current under other stress conditions.

Fig. 4.11 shows the simulation !'results. ‘for different substrate doping
concentration, 5x10"" cm™ and 10% ¢m>.It-can be seen that the change of EDT
current for 10'” cm™ doping concentration are:smaller than that for 5x10*" cm™. The
results are also consistent with the experimental data.

4.4 Conclusion

Using the modified subband energy expression of triangular potential
approximation and the WKB approximation, we have demonstrated an efficient and
reasonably accurate physical model to calculate HDT and EDT -current for
longitudinal uniaxial compressive stressed silicon device. The improved one band
EMA and the data calculated by six-band k - p method were used to extract the

quantization effective mass. The simulated results correspond to the experimental data,

AJ, 1J; versus o, published by former work.

In our model, the subband energy is a function of vertical electric field and stress.
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Therefore, this model can be used directly to characterize the J;-V; curve and be

applied easily to different stress conditions on various wafer orientations with

extracting the corresponding physical parameters.
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Chapter 5

Conclusions

In the chapter 2, the strain tensors have been expressed as a function of normal,
longitudinal, and transverse stress on (001), (110), and (111) wafers, respectively.
Then, the strain-altered band structures, band edge shifts, constant energy surface, 2D
energy contour, and effective masses for various stress conditions and wafer
orientations have been calculated by deformation potential theory and k - p framework
for conduction and valence band, respectively. Utilizing these simulated results as
tools to estimate the device performance, we concluded that the best advantageous
strains among these stress types-and.watfer orientations for nMOSFETs have shown to
be uniaxial and biaxial tension on (001) wafer-while for pMOSFETSs they are uniaxial
longitudinal compression on both (001).and (110) wafer. Finally, we have examined
the influences of additional transverse or normal strain and have found that the
additional transverse tensile stress on (001) wafer can further enhance the hole
mobility.

In chapter 3, the quantization effective masses, the 2D DOS effective masses,
and the 3D DOS effective masses of silicon under uniaxial and biaxial stress on (001)
wafer have been extracted. In addition, the strain-altered conduction and valence
effective DOS have been derived as a function of the strain-induced band edge shift
and strain-altered 3D DOS effective mass. From the calculated results, the effective
DOS drops quickly due to the band edge splitting when stress increases from zero to
1GPa, and then tends to a constant determined by 3D DOS effective mass of lowest

valley for further increased stress. Furthermore, the Fermi energy of bulk silicon with
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non-degenerate doping has also been derived as a function of the strain-induced
conduction or valence band edge shifts and the strain-altered effective DOS. The
calculated results have shown that the Fermi energy is dominated by band shifts under
large stress because the effective DOS tends to constant. Finally, the intrinsic carrier
concentration has been derived and expressed as a function of strain-altered effective
DOS and strain-induced band gap narrowing. The calculated results have shown that
the intrinsic carrier density increases rapidly due to the strain-induced band gap
narrowing when the stress is larger than 1GPa.

In Chapter 4, a triangular potential approximation based physical model for
HDT current in pMOSFETs and EDT current in nMOSFETs under longitudinal
uniaxial compressive stress has been presented. A modified subband energy
expression, which comprises the vertical electric field component and stress
component, is used to evaluate.the subband energy in the inversion layer of
MOSFETs under gate bias and-stress: - Then,-an improved one band effective mass
approximation and data calculated hy. six-band 'k < p method are used to extract
quantization effective mass. Moreover, WKB approximation is utilized to evaluate
transmission probability and tunneling current. The simulated results agree with the
experimental data published by former works. The primarily reason accounting for the
decrease of HDT current for pMOSFETS while increase uniaxial compressive stress is
that a number of carriers redistribute from higher subband into the lowest subband
due to the stress induced subband energy shift. Since the barrier of the lowest subband
for hole tunneling is higher and the corresponding transmission probability is smaller
than other subbands, the total tunneling current decreases while stress increases. The
reverse mechanism of above can also be used to explain the opposite trend of EDT
current for nMOSFETSs under uniaxial compressive stress. Thus, the proposed model

provides a simple method to assess the influence of external stress for direct tunneling
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currents in MOSFETs qualitatively and quantitatively. Moreover, with extracting the
corresponding physical parameters, our model can be applied directly to various wafer
orientations and different stress conditions. For example, the device with different
magnitude and type of stress in poly gate and channel. Alternatively, the longitudinal

and transverse stresses exist in the device in the meantime.
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Table 2.1 The deformation potentials, Luttinger parameters, elastic stiffness constants,

and split-off energy for Si, Ge, and GaAs.

Si Ge GaAs
a®eV) 2.46 1.24 1.16
b2 (eV) 2.1 -2.9 -2.0
d?(eV) -4.8 -5.3 -4.8
7t 4.22 13.4 6.98
2% 0.39 4.24 2.06
. 1.44 5.69 2.93
Vs
S11 (10 m?/N) 7.68° 9.64° 11.75°
S15 (10 m?/N) -2.14° -2.6° -3.65°¢
S44 (102 m?/N) 12.6° 14.9° 16.8 ¢
d d d
A, (V) 0.044 0.29 0.34
See Ref. 18.
bSee Ref. 12.
‘See Ref. 43.
9See Ref 30.
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Table 2.2 The normal, longitudinal, and transverse direction for (001), (110), and (111)

wafer.
wafer orientation normal direction longitudinal transverse
(out of plane) direction (in-plane) direction (in-plane)
(001) [001] [110] [110]
(110) [110] [110] [001]
(111) [111] [110] [112]
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Table 2.3 The stress tensor and strain tensor for biaxial stress on (001) wafer, uniaxial

stress along [110], [110], [001], [111], and [112] direction.

Biaxial ¢ [110] [110] [001] [111] [112]
Stress 1] H 3] o] [4] =
tensor ° ! : > 0 E s
0 0 0 1 1 2
(xo,°) 0 0 0 0 3 ~3
0 0 0 0 1 -1
0] 2 |—2] o] [3] L5
Strain _Su +Sp 1 _% (Su +Sp )_ _% (Su +3p, )_ —812_ _% (Sn +25;, )— _% (Su +55, )_
tensor b Su+Sp, %(Sn +3p ) %(sn + S12) Si2 %(Su +28, ) %(Sn +55, )
28, Si2 Si Sy %(Su +25, ) %(2511 + S12)
(XO'kc) 0 0 0 0 %844 _%844
0 0 0 0 %844 _%844
L 0 i L %844 i L — 3 844 L 0 i L %844 i L ﬁsu

¥The form of stress tensor is defined by Equation (2.2).

®The form of strain tensor is defined by:Eqguation (2.6).

‘o, indicates the stress applied-along k-direction.

%For biaxial stress on (001) wafér, k is along [100] or{010] and Ti00] = Oloo]-
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Table 2.4 The resultant strain tensors in response to the combination of normal,

longitudinal, and transverse stress for the three wafer orientations

Strain tensor
_(511 +Sy, )0'[100] +S1,000m
(811 +Sy, )0'[100] +5,000m
23,,07100] T 5110 norm
0
0
0

Wafer orientation

Biaxial stress on
(001) wafer

(Sll + S12 )(O-Iong + O-tran )+ S120-norm

%
%(Sll + S12 )(O-Iong + O tran )+ S120-n0rm
Uniaxial stress on Sp (U tong + Otran )+ S110 norm
(001) wafer 0
0

(Sll + SlZ )(O-norm 13 O-Iong )+ S120-tran

H
3 (811 +35 )(O' norm - O long )+ S120 an
Uniaxial stress on S (0 nor T Tiang ) 1-511Fran
(110) wafer 0
0

norm

(Sll + 812 )O-Iong + %(Sll + 5812 )O-Itran + %(Sll + 2812 )O-

1
2
%(811 +35,, )O-Iong + %(Sll +5S,, )O-Itran + %(Sll +2S,, )Unorm
Uniaxial stress on 8120 10ng +3(2511 + 515 )0ian ++(S11+ 254 )0 0
(111) wafer —%S4401ran + & S4400mm
— 550 an T ¢ S 440 nom

1 1 1
4 S44O-I0ng + 12 S44O-Itran + 6 S440-n0rm
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Table 2.5 Numerical values of effective mass for silicon conduction band in inversion

layer given by [27].

surface (100) (110) (111)
valleys lower higher lower higher all
degeneracy 2 4 4 2 6
Normal mass (mg) 0.916 0.190 0.315 0.190 0.258
Conductivity mass (mp) 0.190 0.315 0.283 0.315 0.296
DOS effective mass (mp) 0.190 0.417 0.324 0.417 0.358
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Table 2.6 The conductivity, transverse, and quantization effective masses of the top
band for bulk silicon with various stress conditions and wafer orientations. The

quantization effective masses of the second band are also listed.

wafer  Stress type Miran, 1st Mrorm, st Mrorm.2nd
Me, 15t (Mo)

(Mo) (Mo) (Mo)

(001)  Uniaxial o<0 0.12 1.37 0.28 0.22

longitudinal o >0 0.46 0.18 0.21 0.24

Uniaxial o <0 1.37 0.12 0.28 0.22

transverse >0 0.18 0.46 621 024

Biaxial o<0 0.22 0.22 0.29 0.27

c>0 0.28 0.28 0.18 0.29

(110)  Uniaxial o<0 0.12 0.28 1.37 0.15

longitudinal o >0 0.46 0.21 0.18 0.17

Uniaxial o <0 0.28 0.18 0.28 0.22

transverse >0 0.22 0.29 0:22 0:22

(111)  Uniaxial o <0 0.12 0:17 0.47 0.18

longitudinal o >0 0.46 0.29 0.19 0.20

Uniaxial o <0 0.37 0.23 0.68 0.17

transverse >0 0.19 0.25 618 619
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Table 2.7 Comparison the effective masses between the 1GPa uniaxial longitudinal
compressive stress with and without additional 1GPa uniaxial transverse tensile stress

for (001) and (110) wafer.

wafer  Additional Mc 15t M¢ 2nd Mianist  Mnormist  Mnorm.2nd
transverse stress (mo) (mo) (mo) (mo) (mo)

(001)  Without 0.12 0.59 1.37 0.28 0.22
With 0.12 0.3 1.88 0.28 0.18

(110)  Without 0.12 0.59 0.28 1.37 0.15
With 0.12 1.21 0.29 1.32 0.12
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Table 4.1. Equations for subband calculation.

Description Equation
Oxide electric field E - Vo
ox tOX

Potential drop due to poly 2 2

. _ gox 0X
depletion poly = 20N
Substrate band bending

Vs = [VG _VFB|_Vpon _Vox

Quasi-Fermi level

Silicon surface field

Subband energies

Inversion carrier density per
subband

Total inversion layer carrier per
area

Total inversion QM channel
thickness

Average QM channel thickness

Silicon potential drop

lonized impurity density per area

Er =0V, —(EG +KT In( NNS”*’ N for pPMOSFETSs

c

E. =qV, —[EG +KT In[%n for nNMOSFETSs

v

¢ F

Ll 70X . 0X
NS Yy

&

Equation (4:1) for pMOSFETs
Equation (4.10) for nMOSFETs

KT E- - E;
N, = (nvmd‘z Jln(1+ exp( F_ D
7ih KT

Nip, = Z Nij

3 ZESiEiJ-
IJ - 3q€0XF0X
Z,N,
Zou :Z ,J\l J
aN,Z kT
Vien = Vs —8—QM .
Si
2¢ SinepI N
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(b) 7

> Q

Tyz

Tzx
Txz
2'
yX
7T—>Txy >y
Oy

Fig. 2.1. (a) An arbitrary force AR(P) acting on an infinitesimal area AA at point P.
The normal component of the force is AF(P) and the tangential

components of the force are AV, (P) and AV,(P) along two orthogonal
directions in the plane. (b) Schematic of the nine components defining the

stress state at an arbitrary point in three dimensions.
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(a) - L’ >
A2, g LALR
T —

Oy l l i l | 4— 5 o,
l i : ;
| // S |———/—/: 2
[ o | ///,
Kat e z
Undeformed /A Xz y
body

(b)

Fig. 2.2. (a) Schematic of the deformation of a body applied to normal stress along
y-axis; and (b) schematic the deformation of a body applied to pure shear
stress. Dash line indicates the size and shape of the original body before

deformation and solid line indicates those of the body after deformation
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[110]
[010]

[100] [110]

Fig. 2.3. Schematic of the surface orientation andthe corresponding stress directions
for (001) wafer. The shadow region indicates the wafer surface. The surface
normal is [001], the longitudinal (channel) direction is [110], and the
transverse direction, which is perpendicular to the channel in the plane, is

[110].
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- [110]

> [010]

Y [110]
[100] [001]

Fig. 2.4. Schematic of the surface orientation and‘the corresponding stress directions
for (110) wafer. The shadow region indicates the wafer surface. The surface

normal is [110], the longitudinal (channel) direction is [110], and the

transverse direction, which is perpendicular to the channel in the plane, is

[001].
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[110]
[010]

[100]

Fig. 2.5. Schematic of the surface orientation and‘the corresponding stress directions

for (111) wafer. The shadow region indicates the wafer surface. The surface

normal is [111], the longitudinal (channel) direction is [110], and the

transverse direction, which is perpendicular to the channel in the plane, is

[112].
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Fig. 2.6. Silicon valence band structures for (a) unstressed, (b) 1GPa uniaxial

Subband Energy(eV) Subband Energy(eV)

Subband Energy(eV)

-0.2
-0.1

[110]

-0.2

[110]

-0.2

[110]

longitudinal compressive, (¢) 1GPa uniaxial longitudinal tensile, (d) 1GPa

uniaxial transverse compressive, and (e) 1GPa uniaxial transverse tensile

stress on (001) wafer.
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Subband Energy(eV)

-015¢

Vees = s 0 B % B 035 005 0 0.06 0.4
110l K(1/A) 1001] [110] ki1/A) [001]

Fig. 2.7. Silicon valence band structures for (a) 1GPa biaxial compressive and (b)

1GPa biaxial tensile stress on (001) wafer.
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Fig. 2.8. Silicon valence band structures for (a) unstressed, (b) 1GPa uniaxial
longitudinal compressive, (¢) 1GPa uniaxial longitudinal tensile, (d) 1GPa
uniaxial transverse compressive, and (e) 1GPa uniaxial transverse tensile

stress on (110) wafer.
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Fig. 2.9. Silicon valence band structures for (a) unstressed, (b) 1GPa uniaxial
longitudinal compressive, (¢) 1GPa uniaxial longitudinal tensile, (d) 1GPa
uniaxial transverse compressive, and (e) 1GPa uniaxial transverse tensile

stress on (111) wafer.
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Fig. 2.10.Strain-induced hole subband energy shift versus (a) uniaxial longitudinal

and (b) uniaxial transverse stress on (001) wafer.
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Fig. 2.11.Strain-induced hole subband:energy-shift versus biaxial stress on (001)

wafer.
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Fig. 2.12.Comparison between the strain-induced hole subband energy shift
calculated by 4 x4 and 6x 6 Hamiltonian for (a) uniaxial longitudinal and (b)
biaxial stress on (001) wafer. The solid line indicates the subband energy
calculated by the 6x6 Hamiltonian. The dotted line indicates the subband

energy calculated by 4 by 4 Hamiltonian.
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Fig. 2.13.Strain-induced hole subband energy shift versus (a) uniaxial longitudinal

and (b) uniaxial transverse stress on (110) wafer.
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Fig. 2.14.Strain-induced subband energy shift versus (a) uniaxial longitudinal and (b)

uniaxial transverse stress on (111) wafer.
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Fig. 2.19.Hole constant energy surface of silicon under 1GPa uniaxial longitudinal (a)

compressive and (b) tensile stress on (110) wafer for three lowest bands.

81



E-EF =-25meV

E-EF =-25:meV

kiyop(1/A)

E-EF =-25meV

Ka10)(1/A)

a

o0s

0.08

o0s

Top band

myo0] = 0.28mo

“mpre}. =.0.28mg

01

My = 0.18mg
Mmpgo) = 0.28my

kpoory (1/4)

0.06

Second band

mygg) = 0.22mo

~mpgge} =.0.22mg

04

Mmgey) = 0.29mg
mpq0) = 0.22mg

Kpoog)(1/A)

EE, = -25MeV

01

£.05

kpri)(1/4)

Third band

myo0] = 0.22mo

“mpre}. =.0.22mg

Mgy = 0.28mg

Mmpgo) = 0.22myg

01

kpoory (1/4)

E-EF = 25 meEV

0.06

kpzi(1/A)

0

0.0s

0.05

0.0s

myo0] = 0.22mo

“mpre}. =.0.22mg

01

Mgy = 0.29me

Mmpgo) = 0.22myg

014 T iy =10.28mg 01 o T G =10.22mg
nos-” 0.05

b -

e e

o4 = o

B =

2 5

= =

& &
0.05 a4 0.05 a4
014 014
0.1 0.1

kpoory (1/4)

mygg) = 0.22mo

~mpgge} =.0.22mg

04

Mgy = 0.27mg
mpq0) = 0.22mg

e iy =0.22my Higgo) = 0.22mo
0o0s— 0.05
ot -~
~ e
= 0o = oo
= =
1 E
f.=A x,
) K )
008 a1 .05 a1
0.1 4 a1
0.1 01

Kpoog)(1/A)

myo0] = 0.28mo

“mpre}. =.0.28mg

My = 0.18mg

Mmpgo) = 0.28my

01

0.4 iy =i0.22mg 0.1 iy =i0.28mg
005" 0.054
ot o)
e e
= 0 = o
T =
3 E
k=3 =
= =
0,06 ay 0.06] ay
014 a1
01 01

kpoory (1/4)

ko (1/A)

(b)

ka0 (1/A)

(@)
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Fig. 2.21.Hole constant energy surface of silicon under 1GPa uniaxial longitudinal (a)

compressive and (b) tensile stress on (111) wafer for three lowest bands.

83



Top band

my11) = 0.68mo
comgggp = 0.37mg
mpy5 = 0.23me

myg1) = 0.18mo
comgggp=.0.19mg
mpy5 = 0.25me

g . 0o
i}
g
nos-” 0.05
o oy
e e
S =
3 3
ry -
006 e .06 e
014 a1
01 o1

E-EF =-25:meV

Ka10)(1/A)

o0s

o1 kpygz(1/4)

0.06

Second band

myg1) = 0.17mo
Mo =.0.2mg
my 3 = 0.25mg

EE, = -25MeV

01

kpzi(1/A)

kpygz(1/4)

myq1) = 0.19mo

coemre)=.0.22mg

my 3 = 0.24mg

01" 0.1

005 0.05
ot -~
~ e

= 0o = 0o
- -
b a3
= =
£ . 4

0054 » 0054 »
021 4 2.1
a1 o a1

kiyop(1/A)

E-EF =-25meV

. 008

LA kyiz(1/A)

£.05

kpri)(1/4)

Third band

myg1) = 0.19mo
“omggg) = 0.2mg
mpy5 = 0.23mg

E-EF = 25 meEV

kyiz(1/A)

my11) = 0.54mo

o) =.0.35mg

mpyz = 0.22mg

- b
nos-” 0.05

o o

e e

o4 I O

= ey

g ]

a 2

i =
a5 P 005 P
014 a1
a1 a1

0.06

] 01 o 01
k[no](l/A) s 01 ki1 (L/A) Kgio) (I/A) bt oA ki1 (L/A)

(@) (b)

Fig. 2.22.Hole constant energy surface of silicon under 1GPa uniaxial longitudinal (a)

compressive and (b) tensile stress on (111) wafer for three lowest bands.

84



Top band

oz : . : ‘ . My o = 0.29mp
mip10) = 0.29mp
01s =)0.29mg
Bing
0. 6ing
005
e
~
s
=
Y
o
005
a1
015
0z

L L L L L L
0.2 015 a4 005 0.05 01 0.16 0.z

kx(lﬂ/,&)

Second band

02 . . , . . My ag = 0.2mo
mypg0] = 0.2mg
018} mypgy) = 0.2Mp
mypi0) = 0.13mg
nal mpq0) = 0.13mg
nost
ot
-
= 0
I
i
o0s
a1
015
az

L L L L L L
D2 {18 a1 .08 0.os 01 0.18 0.z

ke(1/A)

Third band

0.2 ; . : ; . My oq = 0.24mp
mip10) = 0.24mp
015t mygpy) = 0.24myp
my10] = 0.23mg
otk M0 = 0.23m,
0os
e
o
=™ 0
=
Y
=
a0
a1
015
a2

L L L L L L
0.2 015 a4 005 0.05 01 0.16 0.z

ke(a/A)

Fig. 2.23.Contour map in ky, ky plane (k,=0) of unstressed bulk silicon on (001) wafer

for three lowest valence bands.

85



Top band

0.2 . . . . . s oo = 0.22mg s oo = 0.26me
m10] = 0.22mg
oisf My
my
o1t 1mg
008
b -
S o
= o
I I
& 5]
0.08
01
018
o . ; 2 7 .
Sz a1s 01 00 0 nos 01 015 02 D2 D015 a1 aos i nos 01 015 02
kx(1/A) l(1/A)
nz . . . . - my oy = 0.24mo 02 . . . . . My aoy = 0.24mo
myp1g] = 0.24mg myp1g] = 0.24mg
018}f Migp1] = 0.22mg 01sF Migp1] = 0.24mg
my10] = 0.59mg my 10] = 0.38mg
o1} mpgqo] = 0.13mg o1 mpyg = 0.17myp
ans 4 nost i
i -~
~ LS
= © 7 e 7
I =
= -
anst 2 005 2
o1} A o1t A
a1st o Dist A
—_ . ; ; " s , ' —_— " ; 3 . s , '
D2 018 01 D06 [ o5 01 015 02 D2 015 01 00s [i o5 01 015 02
kx(1/A) kx(1/A)
0.2 . . . . . s oo = 0.23me 02 . . . . . My a0} = 0.22mo
m10] = 0.23mg m10] = 0.22mg
oisf Mgy = 0.21me 016} Mgy = 0.28me
mp 1) = 0.39mg mp 1) = 0.13mg
o1tk mgyo] = 0.18my o1k mgyo] = 0.82my
nos| A D05} A
ﬁ_ ﬂ oo
=z ° 7 = O 7
I I
& 5]
008} B 0.05 B
01 4 a1 4
018} A 015} A
o . . . . . , . a2 . . . . . , .
Sz a1s 01 00 0 nos 01 015 02 D2 015 a1 aos i nos 01 015 02
kx(1/A) l(1/A)

(a) (b)
Fig. 2.24.Contour map in ks ky plane (k,=0) of silicon under 1GPa uniaxial
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Fig. 2.26.Contour map in Ky, ky plane (k,=0) of silicon under 1GPa biaxial (a)

compressive (b) tensile stress on (001) wafer for three lowest valence bands.
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Fig. 2.28.Contour map in Ky, ky plane (k,=0) of silicon under 1GPa uniaxial transverse
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Fig. 2.29.Contour map in ks ky plane (k,=0) of silicon under 1GPa uniaxial
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Fig. 2.30.Contour map in Ky, ky plane (k,=0) of silicon under 1GPa uniaxial transverse

(@) compressive and (b) tensile stress on (111) wafer for three lowest

valence bands.
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Fig. 2.31. Band structures, constant energy surface, and energy contour of bulk
silicon under 1GPa longitudinal compressive stress with additional 1GPa

transverse tensile stress on (a) (001) and (b) (110) wafer, respectively.
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(b)

Fig. 3.5. Schematic of the strain-induced-energy valleys splitting for (a) conduction

band electrons and (b) valence hand holes.
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