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摘要 

為了提升 MOSFETs 元件效能及載子遷移率(carrier mobility)，在(001) 晶圓

上的單軸縱向(uniaxial longitudinal)及雙軸(biaxial)應變矽製程已被廣泛的應用在

先進的奈米技術中。 

在本論文中，首先，為了探討在不同的晶圓方向及不同的應力條件下，是否

能進一步的增高元件效能及降低元件功率，我們將應變張量(strain tensor)表示成

縱向應力(longitudinal stress)、橫向應力(transverse stress)及垂直應力(normal stress)

的函數。接著利用 deformation potential theory 以及 k‧p framework 來分別計算在

三種晶圓方向：(001)、(110)和(111)上及不同的應力條件下，應變矽材料的傳導

帶和價電帶的能帶結構(band structure)、能谷位移(band edge shift)、三維 k 空間

下的等能量面(constant energy surface)、二維能量等高線(2D energy contour)，以

及有效質量(effective mass)。另外，額外的垂直晶圓方向應力及橫向應力也被考

慮及計算。利用以上的計算結果來作為分析的工具，我們發現在這些可能的應變

形式中，對 nMOSFETs 來說，在(001)晶圓上的單軸及雙軸伸張應變具有較佳的

增益；而對 pMOSFETs 來說，在(001)和(110)晶圓上的單軸壓縮應變具有較佳的

增益。此外，對 pMOSFETs 來說，在(001) 晶圓上加上額外的橫向伸張應力可以

進一步的增進元件的電導率(conductivity)。 

接著，利用計算出來的能帶結構，我們萃取出在(001) 晶圓方向上的單軸及

雙軸應變下的量子化有效質量(quantization effective mass)、二維及三維能態密度
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有效質量(2D and 3D density-of-state effective mass)。此外，根據應變下的能帶結

構，我們推導及修正了半導體元件物理中常用的物理表示式，包含材料的費米能

階 (Fermi energy)、傳導帶及價電帶的有效狀態密度 (conduction and valence 

effective DOS)、本質載子濃度(intrinsic carrier concentration)，使其可以繼續延伸

應用到材料內具有應變的情況。同時我們也計算了這些參數在單軸及雙軸應變下

從零到 3GPa 的變化，並提出了合理的物理解釋。以上這些參數在決定材料特性

及元件效能時相當重要。 

最後，根據以上的討論，我們建立了一套物理模型及模擬器來評估及計算應

力對 MOSFETs 元件造成的影響，包含平帶電壓(flat-band voltage)、應變下對應

的多晶矽閘極/氧化層/通道截面能帶圖(band diagram)。並將三角形位能井近似法

(triangular potential approximation) 延伸應用到應變矽 MOSFETs 元件中，同時也

考慮閘極及通道均具有應變的情況。此方法可計算出在不同應力條件、外加電壓

及元件參數下介面電場、次能階、反轉層載子濃度及多晶矽閘極/氧化層/通道跨

壓等重要參數。接著，利用 WKB 方法，我們也計算出在(001)晶圓上單軸壓縮應

變對 nMOSFETs 和 pMOSFETs 的閘極直接穿隧電流(gate direct tunneling current) 

的影響，模擬結果與實驗數據吻合。 
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Abstract 

 

In this work, by using the deformation potential theory for conduction band and 

the k‧p framework (6×6 Luttinger Hamiltonian) for valence band, the strain-altered 

band structure (E-k relation), the strain-induced band edge shift, the constant energy 

surface, and the 2D energy contour have been calculated for various stress conditions 

on three conventional wafer orientations, (100), (110), and (111). Moreover, the 

influences of the additional transverse or normal strain have been examined as well. 

Next, utilizing the calculated E-k relation, the conventional physical 

parameters including the quantization effective mass, the 2D DOS Effective mass,  

and 3D DOS effective mass have been also extracted under uniaxial and biaxial stress 

on (001) wafer. Then, using the DOS effective masses and strain-induced band edge 

shifts, the Fermi energy of bulk silicon can be determined as a function of stress and 

doping concentration. These parameters are significant in calculating the subband 

energy and carrier density in the channel inversion layer of MOSFETs. In addition, we 

also evaluated the intrinsic carrier density of bulk silicon under uniaxial and biaxial 

stress from zero to 3GPa. 
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Furthermore, we extended and modified the previously developed triangular 

potential approximation, a self-consistent method that takes the quantum confinement 

effect in the inversion layer and the conservation of electric flux at the SiO2/Si 

interface into consideration, for the unstrained MOSFETs to construct the band 

diagram and physical model for strained counterparts. The method has also been 

applied to both nMOSFETs and pMOSFETs with corresponding revisions of the 

physical model. In our model, the stresses for poly gate and channel are allowed to 

have different magnitude and type. 

Finally, applying our model and the extracted physical parameters, we can 

calculate the interface electric field, subband energy, inversion carrier density, 

substrate band bending, etc., with various stress conditions, applied voltage and 

device parameters as inputs. Then, utilizing the WKB approximation, the transmission 

probability and gate direct tunneling current for various stress conditions can also be 

evaluated. The simulated results agree with the experimental data of the former 

works. 

 iv



Acknowledgement 

 

這篇論文的完成，首先要感謝陳明哲教授二年來的指導與鼓勵。在雜訊與擾

動課程及每週 seminar 和老師的互動中，讓我學習到許多做研究的方法、思考的

方式、以及嚴謹的態度。而在半導體元件物理課程時及擔任助教時與學弟妹的互

動中，也使我獲益良多，對固態領域有了更深入的體悟。另外要感謝謝振宇學長

及梁惕華同學平日極具啟發性的討論，蒐集的 paper 及資料的分享，並一起釐清

了許多觀念，協助我確立研究的方法與方向。同時要感謝李建志學長、許智育學

長、李韋漢學長在課業、生活及研究上的幫助與建議。另外也要感謝張書通教授

所撰寫的程式及簡鶴年同學無私的分享與討論，使我能夠儘快的瞭解這個領域的

關鍵知識與技術。也要感謝呂立方同學在研究用軟體及物理模擬軟體的使用以及

研究經驗的分享；周佳宏、宋東壕、陳彥銘同學平日的討論與幫助；以及湯侑穎

同學在系學會網路組時期、擔任半導體元件物理助教時、以及實驗室事務上的大

力協助。另外也要感謝張智勝經理、李文欽經理和張書通教授在口試及面試時的

指導與建議。最後要感謝我的家人的全力支持，讓我能夠無後顧之憂的專心在研

究之上。 

Yi-Tang, Lin 

August 2008 

 v



Contents 

 

Chinese Abstract ......................................................................................................... i 

English Abstract ......................................................................................................... iii 

Acknowledgement .......................................................................................................v 

Contents ......................................................................................................................vi 

Table Captions............................................................................................................ ix 

Figure Captions...........................................................................................................x 

 

Chapter 1 Introduction...............................................................................................1 

 

Chapter 2 Strain-altered Band Structures................................................................3 

    2.1 Introduction.....................................................................................................3 

    2.2 A Review of Mechanics of Materials..............................................................3 

        2.2.1 Stress ....................................................................................................3 

        2.2.2 Strain ....................................................................................................5 

        2.2.3 Relationship between Stress and Strain ...............................................6 

    2.3 Hamiltonian.....................................................................................................8 

        2.3.1 Hamiltonian for Conduction Band (Deformation Potential Theory) ...8 

        2.3.2 Hamiltonian for Valence Band (k‧p Framework)..............................9 

            2.3.2.1 Various Materials (Si/Ge/GaAs) ..............................................11 

    2.4 Types of Stress and Various Wafer Orientations ............................................12 

    2.5 Results and Discussion ..................................................................................13 

2.5.1 Band Structures ...................................................................................13 

2.5.2 Strain-induced Subband Energy Shift.................................................14 

 vi



        2.5.3 Constant Energy Surface.....................................................................17 

        2.5.4 Two-dimension Energy Contour in the Plane of Wafer Surface.........17 

        2.5.5 Advantageous Strains and Wafer Orientations....................................18 

        2.5.6 Influences of Additional Transverse or Normal Stress .......................21 

    2.6 Conclusion .....................................................................................................23 

 

Chapter 3 The Properties of Bulk Silicon in the Presence of Stress ......................25 

    3.1 Introduction....................................................................................................25 

3.2 Effective Mass ...............................................................................................26 

    3.3 Carrier Density and Effective DOS ...............................................................29 

        3.3.1 Electrons in Conduction Band ............................................................29 

        3.3.2 Holes in Valence Band ........................................................................30 

        3.3.3 Simulated Results of  and ...................................................31 *
CN *

VN

    3.4 Fermi Energy of Bulk Silicon ........................................................................31 

    3.5 Intrinsic Carrier Concentration ......................................................................33 

    3.6 Conclusion .....................................................................................................33 

 

Chapter 4 Strain-induced Change of Gate Direct Tunneling Current..................35 

    4.1 Introduction....................................................................................................35 

    4.2 Physical Model...............................................................................................36 

        4.2.1 Hole Subband Energy and Carrier Density (pMOSFETs) ..................36 

4.2.2 Hole Direct Tunneling Current for pMOSFETs..................................39 

        4.2.3 Electron Direct Tunneling Current for nMOSFETs............................41 

    4.3 Results and Discussion ..................................................................................42 

4.3.1 Hole Direct Tunneling Current for pMOSFETs..................................42 

 vii



    4.3.1.1 Parameters Extraction for the Vertical Electric Field 

Component...........................................................................42 

    4.3.1.2. Calculation for the Stress Component (Valence Band Edge 

Shifts)...................................................................................43 

    4.3.1.3. Hole Direct Tunneling Current ...............................................44 

    4.3.1.4 Uniaxial Transverse Stress .......................................................45 

4.3.2 Electron Direct Tunneling Current for nMOSFETs............................46 

    4.4 Conclusion .....................................................................................................47 

 

Chapter 5 Conclusions...............................................................................................48 

 

References...................................................................................................................51 

Vita ............................................................................................................................ 115 

 

 viii



Table Captions 

 

Chapter 2 

 

Table 2.1 The deformation potentials, Luttinger parameters, elastic stiffness constants, 

and split-off energy for Si, Ge, and GaAs. ..................................................55 

Table 2.2 The normal, longitudinal, and transverse direction for (001), (110), and (111) 

wafer. ...........................................................................................................56 

Table 2.3 The stress tensor and strain tensor for biaxial stress on (001) wafer, uniaxial 

stress along [110], [110], [001], [111], and [11 2 ] direction.......................57 

Table 2.4 The resultant strain tensors in response to the combination of normal, 

longitudinal, and transverse stress for the three wafer orientations. ...........58 

Table 2.5 Numerical values of effective mass for silicon conduction band in inversion 

layer given by [30]. .....................................................................................59 

Table 2.6 The conductivity, transverse, and quantization effective masses of the top 

band for bulk silicon with various stress conditions and wafer orientations. 

The quantization effective masses of the second band are also listed.........60 

Table 2.7 Comparison the effective masses between the 1GPa uniaxial longitudinal 

compressive stress with and without additional 1GPa uniaxial transverse 

tensile stress for (001) and (110) wafer. ......................................................61 

 

Chapter 4 

 

Table 4.1 Equations for subband calculation. ..............................................................62 

 ix



Figure Captions 

 

Chapter 2 

 

Fig. 2.1. . (a) An arbitrary force ( )PRΔ  acting on an infinitesimal area AΔ  at point P. 

The normal component of the force is ( )PFΔ  and the tangential 

components of the force are ( )PVsΔ  and ( )PVtΔ  along two orthogonal 

directions in the plane. (b) Schematic of the nine components defining the 

stress state at an arbitrary point in three dimensions....................................63 

Fig. 2.2. (a) Schematic of the deformation of a body applied to normal stress along 

y-axis; and (b) schematic the deformation of a body applied to pure shear 

stress. Dash line indicates the size and shape of the original body before 

deformation and solid line indicates those of the body after deformation. ....

......................................................................................................................64 

Fig. 2.3. Schematic of the surface orientation and the corresponding stress directions 

for (001) wafer. The shadow region indicates the wafer surface. The surface 

normal is [001], the longitudinal (channel) direction is [110], and the 

transverse direction, which is perpendicular to the channel in the plane, is 

[110]. ............................................................................................................65 

Fig. 2.4. Schematic of the surface orientation and the corresponding stress directions 

for (110) wafer. The shadow region indicates the wafer surface. The surface 

normal is [110], the longitudinal (channel) direction is [110], and the 

transverse direction, which is perpendicular to the channel in the plane, is 

[001]. ............................................................................................................66 

Fig. 2.5. Schematic of the surface orientation and the corresponding stress directions 

 x



for (111) wafer. The shadow region indicates the wafer surface. The surface 

normal is [111], the longitudinal (channel) direction is [110], and the 

transverse direction, which is perpendicular to the channel in the plane, is 

[11 2 ]. ...........................................................................................................67 

Fig. 2.6. Silicon valence band structures for (a) unstressed, (b) 1GPa uniaxial 

longitudinal compressive, (c) 1GPa uniaxial longitudinal tensile, (d) 1GPa 

uniaxial transverse compressive, and (e) 1GPa uniaxial transverse tensile 

stress on (001) wafer. ...................................................................................68 

Fig. 2.7. Silicon valence band structures for (a) 1GPa biaxial compressive and (b) 

1GPa biaxial tensile stress on (001) wafer. ..................................................69 

Fig. 2.8. Silicon valence band structures for (a) unstressed, (b) 1GPa uniaxial 

longitudinal compressive, (c) 1GPa uniaxial longitudinal tensile, (d) 1GPa 

uniaxial transverse compressive, and (e) 1GPa uniaxial transverse tensile 

stress on (110) wafer.....................................................................................70 

Fig. 2.9. Silicon valence band structures for (a) unstressed, (b) 1GPa uniaxial 

longitudinal compressive, (c) 1GPa uniaxial longitudinal tensile, (d) 1GPa 

uniaxial transverse compressive, and (e) 1GPa uniaxial transverse tensile 

stress on (111) wafer.....................................................................................71 

Fig. 2.10. Strain-induced hole subband energy shift versus (a) uniaxial longitudinal 

and (b) uniaxial transverse stress on (001) wafer. ........................................72 

Fig. 2.11. Strain-induced hole subband energy shift versus biaxial stress on (001) 

wafer. ............................................................................................................73 

Fig. 2.12. Comparison between the strain-induced hole subband energy shift 

calculated by 4×4 and 6×6 Hamiltonian for (a) uniaxial longitudinal and (b) 

biaxial stress on (001) wafer. The solid line indicates the subband energy 

calculated by the 6×6 Hamiltonian. The dotted line indicates the subband 

 xi



energy calculated by 4 by 4 Hamiltonian. ....................................................74 

Fig. 2.13. Strain-induced hole subband energy shift versus (a) uniaxial longitudinal 

and (b) uniaxial transverse stress on (110) wafer. ........................................75 

Fig. 2.14. Strain-induced subband energy shift versus (a) uniaxial longitudinal and (b) 

uniaxial transverse stress on (111) wafer......................................................76 

Fig. 2.15. Hole constant energy surface of unstressed bulk silicon for three lowest 

bands.............................................................................................................77 

Fig. 2.16. Hole constant energy surface of silicon under 1GPa uniaxial longitudinal (a) 

compressive and (b) tensile stress on (001) wafer for three lowest bands. ....

......................................................................................................................78 

Fig. 2.17. Hole constant energy surface of silicon under 1GPa uniaxial transverse (a) 

compressive and (b) tensile stress on (001) wafer for three lowest bands. ....

......................................................................................................................79 

Fig. 2.18. Hole constant energy surface of Silicon under 1GPa biaxial (a) compressive 

and (b) tensile stress on (001) wafer for three lowest bands. .......................80 

Fig. 2.19. Hole constant energy surface of silicon under 1GPa uniaxial longitudinal (a) 

compressive and (b) tensile stress on (110) wafer for three lowest bands. ....

......................................................................................................................81 

Fig. 2.20. Hole constant energy surface of silicon under 1GPa uniaxial transverse (a) 

compressive and (b) tensile stress on (110) wafer for three lowest bands. ....

......................................................................................................................82 

Fig. 2.21. Hole constant energy surface of silicon under 1GPa uniaxial longitudinal (a) 

compressive and (b) tensile stress on (111) wafer for three lowest bands. ....

......................................................................................................................83 

Fig. 2.22. Hole constant energy surface of silicon under 1GPa uniaxial longitudinal (a) 

compressive and (b) tensile stress on (111) wafer for three lowest bands. ....

 xii



......................................................................................................................84 

Fig. 2.23. Contour map in kx, ky plane (kz=0) of unstressed bulk silicon on (001) wafer 

for three lowest valence bands. ....................................................................85 

Fig. 2.24. Contour map in kx, ky plane (kz=0) of silicon under 1GPa uniaxial 

longitudinal (a) compressive and (b) tensile stress on (001) wafer for three 

lowest valence bands. ...................................................................................86 

Fig. 2.25. Contour map in kx, ky plane (kz=0) of silicon under 1GPa uniaxial transverse 

(a) compressive and (b) tensile stress on (001) wafer for three lowest 

valence bands. ..............................................................................................87 

Fig. 2.26. Contour map in kx, ky plane (kz=0) of silicon under 1GPa biaxial (a) 

compressive (b) tensile stress on (001) wafer for three lowest valence bands.

......................................................................................................................88 

Fig. 2.27. Contour map in kx, ky plane (kz=0) of silicon under 1GPa uniaxial 

longitudinal (a) compressive and (b) tensile stress on (110) wafer for three 

lowest valence bands. ...................................................................................89 

Fig. 2.28. Contour map in kx, ky plane (kz=0) of silicon under 1GPa uniaxial transverse 

(a) compressive and (b) tensile stress on (110) wafer for three lowest 

valence bands. ..............................................................................................90 

Fig. 2.29. Contour map in kx, ky plane (kz=0) of silicon under 1GPa uniaxial 

longitudinal (a) compressive and (b) tensile stress on (111) wafer for three 

lowest valence bands. ...................................................................................91 

Fig. 2.30. Contour map in kx, ky plane (kz=0) of silicon under 1GPa uniaxial transverse 

(a) compressive and (b) tensile stress on (111) wafer for three lowest 

valence bands. ..............................................................................................92 

Fig. 2.31. Band structures, constant energy surface, and energy contour of bulk silicon 

under 1GPa longitudinal compressive stress with additional 1GPa transverse 

 xiii



tensile stress on (a) (001) and (b) (110) wafer, respectively.........................93 

 

Chapter 3 

 

Fig. 3.1. Effective masses along the three axes of the ellipsoid, , [ ]110m [ ]101m , and 

, versus uniaxial longitudinal stress for three lowest valence bands. ....

......................................................................................................................94 

[ ]001m

Fig. 3.2. 3D (bulk) and 2D DOS effective masses versus uniaxial longitudinal stress 

for three lowest valence bands. ....................................................................95 

Fig. 3.3. Effective masses along the three axes of the ellipsoid, , , and 

, versus biaxial stress for three lowest valence bands. ........................96 

[ ]100m [ ]010m

[ ]001m

Fig. 3.4. 3D (bulk) and 2D DOS effective masses versus biaxial stress for three 

lowest valence bands. ...................................................................................97 

Fig. 3.5. Schematic of the strain-induced energy valleys splitting for (a) conduction 

band electrons and (b) valence band holes...................................................98 

Fig. 3.6. Conduction and valence effective DOS, Nc and Nv, versus uniaxial stress. ...

......................................................................................................................99 

Fig. 3.7. Conduction and valence effective DOS, Nc and Nv, versus biaxial stress. .....

....................................................................................................................100 

Fig. 3.8. Fermi energy of bulk silicon versus uniaxial stress for various doping 

concentrations. The figure also shows the intrinsic Fermi level, conduction 

band edge, and valence band edge versus stress. .......................................101 

Fig. 3.9. Fermi energy of bulk silicon versus biaxial stress for various doping 

concentration. The figure also shows the intrinsic Fermi level, conduction 

 xiv



band edge, and valence band edge versus stress. .......................................102 

Fig. 3.10. Intrinsic carrier concentration versus uniaxial and biaxial stress...............103 

 

Chapter 4 

 

Fig. 4.1. Valence band hole dispersion relation along [100] and [110] direction for the 

three lowest bands calculated by six-band k‧p method under channel 

inversion condition (FSi=1MV/cm). The external stress is (a) unstressed and 

(b) 500MPa uniaxial compressive stress along [110] direction. ................104 

Fig. 4.2. Schematic of band diagram of a p+ polysilicon/SiO2/n-Si structure biased in 

channel inversion condition and stressed with uniaxial longitudinal 

compressive stress. The solid lines indicate the conduction and valence band 

edge without external stress. The dotted lines indicate the stress induced 

band edge shift of the conduction and valence band. The figure also shows 

the energy quantization effect in the channel inversion layer and hole direct 

tunneling current from the channel inversion layer to the polysilicon gate 

under stress. ................................................................................................105 

Fig. 4.3. Schematic of the band diagram of a p+ polysilicon/SiO2/n-Si (pMOS) 

structure, which is biased a negative gate voltage. The poly gate and channel 

are under arbitrary strain. The expression of flat band voltage for 

pMOSFETs under arbitrary strain can be derived with the help of this 

diagram.......................................................................................................106 

Fig. 4.4. Schematic of band diagram of an n+ polysilicon/SiO2/p-Si structure biased 

in channel inversion condition and stressed with uniaxial longitudinal 

compressive stress. The solid lines indicate the conduction and valence band 

edge without external stress. The dotted lines indicate the stress induced 

 xv



band edge shift of the conduction and valence band. The figure also shows 

the energy quantization effect in the channel inversion layer and electron 

direct tunneling current from the channel inversion layer to the polysilicon 

gate under stress. ........................................................................................107 

Fig. 4.5. Schematic of the band diagram of an n+ polysilicon/SiO2/p-Si (nMOS) 

structure, which is biased a positive gate voltage. The poly gate and channel 

are under arbitrary strain. The expression of flat band voltage for 

nMOSFETs under arbitrary strain can be derived with the help of this 

diagram.......................................................................................................108 

Fig. 4.6. Hole subband energy at gamma point versus FSi without external stress. The 

circles are data calculated by the six-band k ‧ p method with 

Schrödinger-Poisson equation. The solid lines are the fitting by the 

triangular potential approximation and the improved one band EMA. The 

figure also shows the quantization effective mass of the three lowest bands 

for best fitting. ............................................................................................109 

Fig. 4.7. Hole subband energy at gamma point versus stress with various FSi. (a) First 

band, (b) second band, and (c) third band. The circles are data calculated by 

k dot p method with Schrödinger-Poisson equation. The solid lines are the 

data calculated by Equation (4.1) for the three lowest bands, respectively....

.................................................................................................................... 110 

Fig. 4.8. The strain-induced band edge shift versus stress for bulk silicon (a) 

conduction and (b) valence band................................................................ 111 

Fig. 4.9. (a) ΔJHDT/JHDT versus Stress. The squares, diamonds, and circles are data 

published by former works. The solid lines are the simulation result by our 

model. (b) Hole subband energy versus stress. (c) Carriers density versus 

stress. (d) Hole direct tunneling current density versus stress. .................. 112 

 xvi



Fig. 4.10. (a) ΔJEDT/JEDT versus Stress. The squares, diamonds, and circles are data 

published by former works. The solid lines are the simulation result by our 

model. (b) Electron subband energy versus stress. (c) Carriers density versus 

stress. (d) Electron direct tunneling current density versus stress.............. 113 

Fig. 4.11. Compare the influences of electron direct tunneling current between the two 

different doping concentrations of substrate. ............................................. 114 

 xvii



Chapter 1 

 

Introduction 
 

In advanced nanotechnology, strain process has been extensively used for 

enhancing device performance [1], [2]. Therefore, having fundamental understanding 

of strain physics and studying the influences of strain in the nano-scale Si devices are 

essential. Moreover, developing a physically reasonable model and incorporating it 

into a quantum simulator in order to provide clear insight for future strain engineering 

and assess the influences of strain, such as subband energy splitting, repopulation of 

carrier density in each subband, and change of gate direct tunneling current, is crucial 

as well. 

In order to give insights into the future strained devices while meeting the high 

performance and low power requirements, we first examine several potential stress 

types on various wafer orientations in Chapter 2. The simulation results including the 

strain-altered band structure, strain-induced band edge shift, constant energy surface 

in momentum space, two-dimensional energy contour, and the effective masses along 

the different crystallization directions, which are calculated by the deformation 

potential theory for conduction band and k‧p framework for valence band, are 

utilized to be the tools for estimating device performance. In addition, the influences 

of additional transverse stress, which is existent in process such as capping layer or 

STI stressor when the dimension of channel width is comparable with channel length, 

but usually ignored in former work, are addressed as well. 

Second, in order to understand the properties of bulk silicon such as the Fermi 

level and intrinsic carrier concentration in the presence of strain, we utilize the 
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strain-altered band structures and the effective mass approximation to calculate the 

quantization effective mass, 2D DOS effective mass, and 3D DOS effective mass of 

bulk silicon under uniaxial and biaxial stress on (001) wafer in Chapter 3. 

Consequently, the effective DOS, Fermi energy, and intrinsic carrier concentration are 

also extracted with stress varying from zero to 3GPa. However, it is noticeable that 

the effective mass approximation, or the hypothetical elliptic constant energy surface, 

is suitable for large strain due to the strain symmetry, but introduces large error under 

small strain. 

Third, in IC industry, the phenomenon of gate direct tunneling current in 

MOSFETs induces many problems such as standby power consumption, leakage 

current in C-V measurement, and etc. [3]-[5]. In the recent years, the dimension of 

device keeps scaling down while gate oxide thickness keeps thinning. Even the 

thickness is only several atomic layers. Therefore, the drawback of gate direct 

tunneling current becomes severe and influences the normal operation of devices [3]. 

On the other hand, in the advanced nanotechnology, the strain process is extensively 

used. Selecting the type of strain appropriately may enhance the mobility and alleviate 

the gate leakage in the meantime [1], [2], [6]. Thus, a computing efficient and 

reasonably physical model for characterizing and modeling the gate direct tunneling 

current of strained silicon device is essential. In chapter 4, we have developed a 

triangular potential approximation based quantum simulator for strained MOSFETs 

modeling. 
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Chapter 2 

Strain-altered Band Structures 
 

2.1 Introduction 

In this chapter, we first review the topic of mechanics of materials and the 

equilibrium analysis of deformable bodies. Next, the well recognized methods, 

namely the deformation potential theory for conduction band and k‧p framework for 

valence band, are introduced to calculate the strain-altered band structure (energy 

dispersion relation). Then, in order to give insights into the future strained devices 

while meeting the high performance and low power requirements, several potential 

wafer orientations, (001), (110), and (111), with various stress conditions including 

uniaxial longitudinal, uniaxial transverse, and biaxial stress, will be examined. The 

calculated results in terms of the band structures, effective masses, strain-induced 

subband energy shift, constant energy surface, and two-dimensional energy contour, 

will exhibit the ability to quantitatively determine the device performance. Finally, the 

influences of the additional transverse strain on the devices will also been discussed. 

 

2.2 A Review of Mechanics of Materials 

 In this section, we first review the concept of stress and strain, and then make a 

connection between the two. Note that the stress and strain produced by the change of 

temperature [7] are not included, that is, the temperature remains constant in this 

work. 

 

2.2.1 Stress 

 Stress is the distribution of a force over the area on which the force acts. The 
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intensity of stress is expressed as force per unit area [7], [8]. There are two types of 

stress: normal stress and shear stress. To illustrate this, let us consider an arbitrary 

force vector  at certain point P acting on an infinitesimal area ( )PRΔ AΔ  with 

normal vector n as shown in Fig. 2.1(a). The force is resolved into normal and 

tangential components  and ( )PFΔ ( )PVΔ . The tangential component is further 

resolved into components along two orthogonal directions, s and t in the plane. Then, 

the normal stress nσ  and the shear stress nsτ  and ntτ  at point P are defined by the 

following expressions [7]: 

( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛

Δ
Δ

=
→Δ A

PFP
A

n lim
0

σ       (2.1a) 

( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛

Δ
Δ

=
→Δ A

PVP s

A
ns lim

0
τ       (2.1b) 

( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛

Δ
Δ

=
→Δ A

PVP t

A
nt lim

0
τ .     (2.1c) 

Next, we expand above definitions of stress on a particular plane to all three 

mutually orthogonal planes that intercept a given common point in a deformable body 

as shown in Fig. 1(b). In the figure, iiσ  refers to the normal stress components 

acting on the planes perpendicular to i-direction, while ijτ  indicates the shear stress 

components oriented in the j-direction acting on the planes perpendicular to 

i-direction. According to Cauchy’s equation of motion, these nine components are 

sufficient to define the stress state at any point in a deformable body [8]. Furthermore, 

at moment equilibrium, the shear stress components must satisfy jiij ττ =  [7]. Thus, 

a stress tensor with six independent components is sufficient to describe the state of 

stress: 
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σ .       (2.2) 

2.2.2 Strain 

 When a deformable body is subjected to external forces, it changes size and/or 

shape in response to the applied forces. The deformation of the body may include 

both changes of length (normal strain) and changes of angles (shear strain). For 

example, let us first focus on the case of a normal stress applied to the deformable 

body along the y-axis as shown in Fig. 2.2(a). A positive value for the stress yσ , that 

is, a tensile stress, causes the body to elongate along y-axis and to contract along x 

and z-axis. On the other hand, a negative value for the stress yσ  indicates 

compressive stress, hence causing the body to be shortened along y-axis and dilated 

along x and z-axis. The normal strain is defined as 

L
LL

L
L −
=

Δ
=

'ε       (2.3) 

where L, L’, and LΔ  denote the original length, the length after deformation has 

occurred, and the total elongation of the body along y-axis, respectively. A positive 

value for strain ε  indicates the body is stretched along y-axis, that is, L’ > L, and is 

called tensile strain. A negative value for ε  indicates that the body is contracted 

along y-axis, that is, L’ < L, and is referred to as the compressive strain. 

 Next, let us consider that a body deforms due to the pure shear stress as shown in 

Fig. 2.2(b). After deformation, the original right angle π /2 becomes an acute angle 

θ ′ . The shear strain is defined as the change in angle between two originally 

perpendicular line segments as shown in Fig. 2.2(b). Thus, we have [7], [9], and [10] 
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 Likewise, we extend these definitions of normal strain and shear strain to the 

three mutually orthogonal planes [8]-[10] 

x
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∂
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y

u y
yy ∂

∂
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z
uz
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=ε      (2.5a) 
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∂
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∂

== γγ       (2.5b) 

y
u

z
u zy

zyyz ∂
∂
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∂
== γγ       (2.5c) 

x
u

z
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xzzx ∂
∂

+
∂
∂

== γγ       (2.5d) 

where ux, uy, and uz are the displacements in the x, y, and z direction, respectively. It is 

worth noting that ijγ  denotes engineered shear strain and ijε  is called average shear 

strain and defined as one half the ijγ  [9], [10]. 

Similar to stress tensor, the strain tensor is also composed of six independent 

components 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
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⎢

⎣

⎡

=
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zx

yz

zz

yy
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ε
ε
ε
ε
ε
ε

ε  .       (2.6) 

 

2.2.3 Relationship between Stress and Strain 

 When a small normal stress, which remains well below the yield point, is applied 

to a homogeneous and isotropic body, the linear relationship between normal stress 

and normal strain can be described by Hooke’s law [7], 

εσ E=         (2.7) 

where the constant of proportionality E represents the Young’s modules. Moreover, 
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associated with the normal strain of an elastic body in the direction of the applied 

normal stress, there is usually a transverse strain in two other directions, as illustrated 

in Fig. 2.2(a). The relationship between normal strain and transverse strain is 

described by [7], [9] 

longtran νεε −=        (2.8) 

where the constant of proportionality v represents the Poisson’s ratio. Finally, to relate 

shear stress and shear strain, the Hooke’s law for shear is used [7], [9] 

γτ G=         (2.9) 

where the constant of proportionality G represents the shear modulus of elasticity. 

 By the principle of linear superposition, we can use the equations (2.7), (2.8), 

and (2.9) to combine strain response by adding together the separate responses 

produced by the six components of stress tensor. Consequently, the generalized 

Hooke’s law for isotropic materials is expressed as [7] 

( )[ ]zzyyxxxx v
E

σσσε +−=
1      (2.10a) 

( )[ ]zzxxyyyy v
E

σσσε +−=
1      (2.10b) 

( )[ ]yyxxzzzz v
E

σσσε +−=
1      (2.10c) 

xyxy G
τγ 1

= , xzxz G
τγ 1

= , yzyz G
τγ 1

=  .   (2.10d) 

It is noteworthy that for isotropic materials, shear strains are independent of 

normal stresses, and, likewise, normal strains are independent of shear stresses. In 

addition, the three components of shear are uncoupled [7]. 

For convenience, we usually combine the equations (2.2), (2.6), and (2.10) to 

establish the elastic strain-stress matrix for relating stress tensor and strain tensor [8], 

[10]-[12]. 
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   (2.11) 

where S11, S12, and S44 are the elastic stiffness constants.  

These relationships can be determined experimentally by performing certain 

stress-strain and torsion tests [7]. Some extracted values of bulk Silicon for Young’s 

modules (130GPa for <100> directions and 169GPa for <110> directions), Poisson’s 

ratio (0.22-0.28), and shear modulus (79.9GPa) can be found in [8], [13]-[16]. Then, 

using these values, the elastic stiffness constants, S11, S12, and S44 can be evaluated. 

The values used in this work are listed in Table 2.1. Note that although silicon is an 

anisotropic crystal, for the purposes of simplification it is conventional to use the 

equation (2.11) for mechanical analysis of bulk silicon [8], [11], and [12].  

 

2.3 Hamiltonian 

 The deformation potential theory [17] (for conduction band) and k‧p Framework 

[18], [19] (for valence band) are the primary [18] method to calculate the 

strain-altered band structures including band shift and warping to date. 

 

2.3.1 Hamiltonian for Conduction Band (Deformation Potential Theory) 

In deformation potential theory, the total Hamiltonian for each energy valleys of 

silicon conduction band is [18] 

( ) ( luijdc
t

t

l

l TrE
m
k

m
kkH εε Ξ+Ξ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
= )(

22 *

22

*

2
0

2 hh )   (2.12) 

where  is the reduced Planck’s constant. kh l and kt are the wavevetors parallel and 
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perpendicular to the <100> directions of each energy valleys, respectively.  and 

 are the longitudinal and transverse effective mass, respectively. Ec is the 

conduction band edge of untrained bulk silicon. 

*
lm

*
tm

dΞ  and uΞ  are the dilation and 

uniaxial deformation potential for silicon conduction band, respectively. )( ijTr ε  

stands for the trace of the strain tensor. lε  is the longitudinal strain component. Note 

that  and  are generally assumed to be constant since they do not change 

significantly under small or moderate strain [12], [18]. In other words, the strains do 

not alter the energy dispersion in conduction band, the first part of Equation (2.12), 

but just shift the band edge, the second part. Appling Equation (2.12), the quantities of 

band edge shift for the six conduction band minima along the <100> directions can be 

expressed as [12] 

*
lm *

tm

( ) xxuzzyyxxdCE εεεε Ξ+++Ξ=Δ  for the valleys along [100] and [100] (2.13a) 

( ) yyuzzyyxxdCE εεεε Ξ+++Ξ=Δ  for the valleys along [010] and [010] (2.13b) 

( ) zzuzzyyxxdCE εεεε Ξ+++Ξ=Δ  for the valleys along [001] and [001] (2.13c) 

Note that the shear strain terms do not contribute to the band shift, and the 

strain-induced band edge shift is only proportional to the normal strain terms. 

 

2.3.2 Hamiltonian for Valence Band (k‧p Framework) 

The influences of strain on valence band structures include not only band shifts, 

but also strong band warping. Thus, the deformation potential theory, which considers 

only the band shift, cannot serve for valence band. In order to calculate the 

strain-altered valence band structures of bulk silicon, we employ the six-band k‧p 

method [20]. The k‧p method is based on perturbation theory and symmetry 
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consideration [18]. The strain effects can be easily introduced to k‧p framework [18], 

[21]. According to Pikus and Bir [18], the strain Hamiltonian is formally identical to 

the k‧p Hamiltonian (Luttinger Hamiltonian) [18]. The correspondence between the 

strain and k‧p Hamiltonian is ijjikk ε↔  and the total Hamiltonian is given by 

 [18]. The total Hamiltonian is expressed by [18], [21] strainpk HHH += ⋅
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(2.14) 

where , , εPPP k += εQQQ k += εLLL k += , and εMMM k += . The symbol Δ  

is the split-off energy. The k‧p terms in the Hamiltonian are defined as 

( 222
1

0

2

2 zyxk kkk
m

P ++= γh )      (2.15a) 

( 222
2

0

2

2
2 zyxk kkk

m
Q −+= γh )      (2.15b) 

( zyxk kikk
m

L −= 3
0

2

3γh )       (2.15c) 

( )[ yxyxk kkikk
m

M 3
22

2
0

2

23
2

γγ −−−=
h ]    (2.15d) 
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where 1γ , 2γ , and 3γ  are the Luttinger parameters.  is the mass of free electron. 

k

0m

x, ky, and kz are the wavevectors along x, y, and z-axis, respectively. The strain terms 

in the Hamiltonian are defined as 

( )zzyyxxvaP εεεε ++−=        (2.16a) 

( )zzyyxx
bQ εεεε 2
2

−+−=       (2.16b) 

( )yzxz idL εεε −−=         (2.16c) 

( ) xyyyxx idbM εεεε −−=
2
3       (2.16d) 

where a, b, and d are the deformation potentials for valence band. The components of 

strain tensor are defined in Equation (2.5) and (2.6). The values of the Luttinger 

parameters and deformation potentials for silicon are given in Table 1. Note that the 

valence band edge for unstrained silicon is at zero value in this expression. 

For the sake of brevity, many works ignored the coupling effect of the split-off 

band. In this case, the Hamiltonian of the top and second band can be described by a 

4×4 Hamiltonian [the upper-left 4×4 matrix block in Equation (2.14)]. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−+−−
−+−

−−−

=

++

+

+

QPLM
LQPM
MQPL

MLQP

H

0
0

0
0

    (2.17) 

 Then, the analytic solution of the valence band structure for top two bands can be 

obtained as 

222)( εεεε MMLLQQPPkE kkkk +++++±−−=   (2.18) 

 In section 2.4.2, we will discuss the differences in the strain-induced subband 

energy shift calculated by the 6×6 and 4×4 Hamiltonian. 

 

2.3.2.1 Various Materials (Si, Ge, and GaAs) 
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The valence bands for all diamond and zinc blende structure semiconductors 

whose band gap is much larger than the split-off energy can be calculated using the 

Luttinger Hamiltonian. Thus, using the corresponding parameters, the deformation 

potentials, Luttinger parameters, elastic stiffness constants, and split-off energy, as 

listed in Table 2.1, the band structures for the other two typical semiconductors, Ge 

and GaAs, can be evaluated as well. 

 

2.4 Types of Stress and Various Wafer Orientations 

 In this section, we first define the directions of normal, longitudinal, and 

transverse stress for three conventional wafer orientations, (001), (110), and (111). 

Then, the stress tensors and strain tensors for these wafer orientations are expressed as 

a function of the corresponding normal, longitudinal, and transverse stress. 

Fig. 2.3, 2.4, and 2.5 show the surface orientations and the corresponding stress 

directions for (001), (110), and (111) wafer, respectively. The shadow region indicates 

the wafer surface. For (001) wafer, the surface normal or out-of-plane direction is 

along [001], the longitudinal (channel) direction is along [110], and the transverse 

direction, which is perpendicular to the channel in the plane, is along [110]. The 

biaxial stress for (001) wafer is along [100] and [010] directions with the same 

magnitude of stress, that is, [ ] [ ]010100 σσ = . For (110) wafer, the surface normal 

direction is along [110]. The [110] direction is chosen as the channel direction for 

higher hole mobility in the plane [19]. The transverse direction is along [001]. For 

(111) wafer, the surface normal is along [111], the longitudinal direction is along 

[110], and the transverse direction is along [11 2 ]. The stress directions for the three 

wafer orientations are also summarized in Table 2.2. Note that (110) and (111) wafers 

have no so-called biaxial stress since the longitudinal and transverse direction are not 
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symmetric in silicon crystal. 

In addition, the channel directions are indeed the same on (001), (110), and (111) 

wafer since the [110] and [110] have the same symmetry in silicon crystal; however, 

the normal and transverse directions are different. Thus, if additional normal or 

transverse stresses exist in devices, it would induce different band structures among 

these wafer orientations. 

 Using the discussion in Section 2.1, the stress tensors and strain tensors for 

biaxial stress on (001) wafer, uniaxial stress along [110], [110], [001], [111], and 

[11 2 ] direction can be obtained and listed in Table 2.3. By the principle of linear 

superposition, the resultant strain tensor in response to the combination of normal, 

longitudinal, and transverse stress for the three wafer orientations are also obtained 

and given in Table 2.4. Note that although the normal, longitudinal, and transverse 

stresses on (001) and (110) wafer are along different directions, they are indeed 

among the same set of stress directions, that is, [110], [110], and [001]. That implies 

the same strain-altered band structures can be achieved on (001) and (110) wafer with 

the corresponding stresses included. 

 

2.5 Results and Discussion 

 

2.5.1 Band Structures 

Applying Table 2.4 and Equations (2.12)-(2.16), the calculations of strain-altered 

band structures on the three wafer orientations with various stress conditions are 

straightforward. 

As discussed before, the band warping of silicon conduction band remains 

unchanged (band edge shift will be discussed in next section). The valence band 

structures with various strain conditions including unstressed bulk silicon, 1GPa 
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uniaxial longitudinal compression, 1GPa uniaxial longitudinal tension, 1GPa uniaxial 

transverse compression, and 1GPa uniaxial transverse tension, are shown in Fig. 2.6, 

2.8, and 2.9 for (001), (110), and (111) wafer, respectively. Fig. 2.7 also shows the 

1GPa biaxial compressive and tensile stress on (001) wafer. The right hand side of the 

figures is along the out-of-plane direction, and the left hand counterpart is along the 

channel direction. Moreover, the band structures are plotted in electron energy, that is, 

more positive value at energy axis represents smaller hole energy. The effective 

masses along normal and channel direction for the three lowest bands are also marked 

in the figures. The three lowest valence bands in Fig. 2.6-2.9 are denoted as top, 

second, and third band since the designations, heavy, light, and split-off, lose their 

meanings under stress. For example, Fig. 2.6(b) shows the band structure of bulk 

silicon under uniaxial compressive stress on (001) wafer. The top band along [001] 

direction is “heavy-hole like” and second band is “light-hole like,” but along [110] 

direction, the situation is reverse: the top band becomes “light-hole like” and second 

band is “heavy-hole like.” 

 

2.5.2 Strain-induced Band Edge Shift 

In order to give insight into the trends of strain-altered band structures from 

small to large strain, there are two characteristics of band structures that should be 

considered. One is band edge shift discussed in this section, and the other is band 

warping which will be modeled into effective masses and extracted in Chapter 3. 

Using Equation (2.12) and Table 2.4, the band edge shift of the six conduction 

band minima along the <100> directions can be obtained. Note that the first term of 

Equation (2.13) shifts the six valleys in the same magnitude while the second term 

splits the 4 valleys (the conduction band minima along [100], [Δ 100], [010], and 

[010] directions) and 2 valleys (the minima along [001] and [00Δ 1] directions) since 
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zzyyxx εεε ≠=  for all stress types in the discussion. Also note that associated with 

compressive (tensile) strain in one direction, there are generally a tensile (compressive) 

strain in the other two directions. Thus, the signs of xxε  ( yyε ) and zzε  are opposite 

for a single uniaxial or biaxial stress. On the other hand, with the combination of the 

normal, longitudinal, and transverse stress, the xxε  ( yyε ) and zzε  may be produced 

with the same sign. However, it indeed favors opposing sign for increasing the 

population in the lowest subband and enhancing mobility. 

Using Table 2.4 and Equation (2.14)-(2.16) with 0=== zyx kkk , the 

strain-induced valence subband energy shift can be obtained since the valance band 

minima for bulk silicon are all at gamma point (see Fig. 2.6-2.9). The three lowest 

valence band edges versus stress with uniaxial longitudinal, uniaxial transverse stress 

are shown in Fig. 2.10, 2.13, and 2.14 for (001), (110), and (111) wafer, respectively. 

Fig. 2.11 also shows the biaxial stress case on (001) wafer. The negative value of 

stress indicates compressive stress and the positive value indicates tensile stress. Note 

that the band edge shift under uniaxial longitudinal stress on (001), (110), and (111) 

wafer, and uniaxial transverse stress on (001) wafer are the same since these stress 

directions have the same symmetry in silicon crystal. 

The figures also label the quantization effective mass, which is along the 

direction normal to the surface, for top two bands. The “hh” denotes the effective 

mass of the corresponding band as “heavy-hole like” while “lh” is “light-hole like” 

among the two bands. It is interesting that no matter whether the stress is uniaxial 

longitudinal, uniaxial transverse, or biaxial on the (001) wafer, under the compressive 

stress the first band is heavy-hole like and the second band is light-hole like. 

Nevertheless, under tensile stress, the situation is reverse. This is the main mechanism 
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accounting for the reverse trends of the change of direct tunneling current between 

compressive and tensile stress. It will be discussed thoroughly in Chapter 5. The 

analysis can be applied to (110) and (111) wafer as well. 

Moreover, the subband energy splitting between top and second band is larger 

under uniaxial compression (biaxial tension) than uniaxial tension (biaxial 

compression). The influences will be discussed in chapter 3, 4, and 5. 

Next, let us compare the difference between results calculated by the 6 6 

Hamiltonian and the 4×4 Hamiltonian. The latter is widely used in the previous works 

for device modeling [16], [22] since its solutions have very simple form for biaxial 

stress on (001) wafer [Equation (2.19)] and uniaxial stress along [110] [Equation 

(2.20)]. The solutions can be obtained through Equation (2.18) and Table 2.4. Note 

that the band edge is proportional to the stress.  

×
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On the other hand, the analytic solution of 6×6 Hamiltonian is complex for 

uniaxial stress along [110] and not listed here due to space limit. However, the 

solution of that for biaxial stress [Equation (2.21)] is relatively simple since biaxial 

stress have no shear strain terms and with yyxx εε = , thus, 0== εε ML  in Equation 

(2.14).  

( ) [ ] 2122 92
2
1

2
1

2
10 εεεεεε QQQPorQPkEv +Δ+Δ±+Δ−−−−==  (2.21) 

Fig. 2.12 shows the comparison between the band edge shift calculated by 6×6 

(solid line) and 4×4 (dotted line) Hamiltonian under uniaxial and biaxial stress on 

(001) wafer. It can be seen that under uniaxial or biaxial stress, one of the top two 

bands can be approximated by a straight line, hence the use of Equations (2.19) and 
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(2.20) can get fairly good results. However, the other band is far from the linear line 

calculated by 4×4 Hamiltonian and even the lowest energy is not located at zero 

stress, that is, it first decreases and then increases while the stress increases. Therefore, 

the usage of analytic solutions derived from 4×4 Hamiltonian can only serve for very 

small stress and induces significant error under moderate and large stress as shown in 

Fig. 2.12. For this reason, we will apply the 6×6 Hamiltonian throughout our 

simulation work in Chapter 2, 3, and 4. 

 

2.5.3 Constant Energy Surface 

Constant energy surface in k-space is also an important tool for estimating the 

influences of strain and can be obtained from Equation (2.12) for conduction band and 

(2.14) for valence band. Fig. 2.16, 2.17, and 2.18 show the constant energy surface in 

k-space of bulk silicon for three lowest valence bands with 1GPa uniaxial longitudinal, 

uniaxial transverse, biaxial stress on (001) wafer, respectively. For comparison, Fig. 

2.15 also shows the case of unstressed bulk silicon (the results are consistent with Ref. 

[23]). The three coordinate axes are along kx, ky, and kz. The figures also label the 

effective masses along normal, longitudinal, transverse, and other principal directions. 

In addition, constant energy surface for bulk silicon under 1GPa uniaxial longitudinal 

and uniaxial transverse on (110) and (111) are shown in Fig. 2.19-2.22. Note that, in 

these figures, the three coordinate axes are along the normal, longitudinal, and 

transverse directions. 

 

2.5.4 Two-dimensional Energy Contour in the Plane of Wafer Surface 

 The two-dimensional energy contour in the plane of wafer surface can help us 

determine the characteristics of inversion layer of MOSFETs including the 

conductivity effective mass, transverse effective mass, density of states, and the 
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symmetry of E-k relation under various stress conditions. 

 The energy contour of valence band can be obtained by Equation (2.14) and 

setting the wavevector along normal direction at zero. The results are plotted in Fig. 

2.23-2.30 for various stress conditions and wafer orientations as discussed above. 

Note that the horizontal and vertical axes are along kx and ky for (001) wafer and, 

contrary to that, they are along the longitudinal and transverse directions for (110) and 

(111) wafers. 

 

2.5.5 Advantageous Strains and Wafer Orientations 

 The general expression of conductivity for n- or p-MOSFETs operating in 

inversion condition can be described by 
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where q, n, τ , and mc are the elementary charge, carrier density, scattering relaxation 

time, and conductivity effective mass along channel direction, respectively. The 

subscript denotes the first and second subband in the inversion layer of MOSFETs. 

For high performance and low power requirements, advantageous strains need to 

meet following criteria [2], [24]-[26]: (1) small conductivity effective mass of the 

lowest subband, mc1, for enhancing the mobility since most of carriers occupy the 

lowest subband; (2) large quantization effective mass along the out-of-plane direction 

of the lowest subband, which enhances the carrier population by lowering the 

quantization energy in the inversion layer; (3) large 2D DOS effective mass, or large 

transverse effective mass, of the lowest subband which also increases the carrier 

population of the lowest subband; (4) large energy splitting of the two lowest 

subbands for lowering the intervalley (optical phonon) scattering; and (5) the 

strain-induced subband shift and confinement effect in inversion layer are additive, 
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that is, the band shifted down by strain must also have a larger quantization effective 

mass, whereas the band shifted up by strain must have a smaller quantization effective 

mass. The requirement not only enhances mobility due to increased carrier population 

in lowest subband which have small conductivity effective mass, but also reduces the 

power dissipation due to decreased gate direct tunneling current (details will be 

discussed in Chapter 4). 

Let us first examine the potential stress types and wafer orientations with these 

criteria for nMOSFETs, then, for pMOSFETs. The quantization, conductivity, and 

DOS effective masses of the lowest subbands for nMOSFETs operating in inversion 

conditions are given by [27]-[29] and listed in Table. 2.5. For conservative reason, we 

assume the stress is not large enough to perturb significantly the original system 

described in [27]-[29]. Under this assumption, the effective masses keep constant 

under strain, that is, strain has no influences on the criteria 1-3. In addition, the total 

carrier density in inversion layer does not change significantly when the carriers 

repopulate from one subband to another subband due to the strain-induce subband 

energy shift. 

For criterion 5, uniaxial longitudinal, uniaxial transverse, and biaxial tension are 

advantageous strains for (001) wafer since these strains lift the Δ 4 valleys, which 

have smaller quantization effective mass, and shift down the Δ 2 valleys, which have 

larger quantization effective mass [see Equation (2.13) and Table 2.4]. On the other 

hand, the uniaxial longitudinal compression are advantageous strains for (110) wafer 

since these strains lift the 2 valleys, which have smaller quantization effective mass, 

and shift down the 4 valleys, which have larger quantization effective mass. Note 

that the 4 valleys are the conduction band minima along [100], [

Δ

Δ

Δ 100], [010], and 

[010] directions while 2 valleys are the minima along [001] and [00Δ 1] directions 

on both (001) and (110) wafer [27]. For the (111) wafer, the six valleys are degenerate 
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in inversion layer and have the same conductivity effective mass, that is, the 

strain-induced subband energy shift does not provide additional benefits for the 

conductivity. 

For comparing the (001) and (110) wafer, let us consider the same carriers 

concentration in inversion layer on (001) and (110) wafer. The quantization effective 

mass of the lower valleys on (001) wafer is much larger than that of (110) wafer while  

for higher valleys, it remains the same. That is, the occupation ratio of the lower 

valleys is larger on (001) wafer than that on (110) wafer due to the much lower 

subband energy of lower valleys compared to higher valleys on (001) wafer. In 

addition, the conductivity effective mass of the lower valleys is smaller on (001) 

wafer than that on (110) wafer while for the higher valleys it is equivalent on both 

wafers. Moreover, the magnitudes of strain-induced subband energy shift are 

equivalent since the directions of uniaxial longitudinal stress on (001) and (110) 

wafers have the same crystal symmetry. Therefore, the conductivity on (001) wafer is 

better than that on (110) wafer. However, experiments and accurate numerical 

simulations must be conducted to corroborate this argument. 

 Next, let us examine these stress types and wafer orientations for pMOSFETs 

using the criteria, the simulation results, Fig. 2.6-2.30, and the effective masses 

summarized in Table 2.6. For criterion 5, the disadvantageous strains producing 

smaller quantization effective mass for top band and larger quantization effective 

mass for second band are marked with a strikethrough on the quantization effective 

mass. Then, for criteria 1-3, the advantageous strains producing smallest conductivity 

effective mass, largest transverse effective mass, and best quantization effective mass 

among these stress types and wafer orientations are emphasized with bold effective 

mass. 

 In Table 2.6, it can be seen that the uniaxial longitudinal compression on both 
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(001) and (110) wafers is better among all advantageous strains. For uniaxial 

longitudinal compression on (001) wafer, it can provide smallest conductivity 

effective mass and largest transverse effective mass of the top band, but the 

quantization effective masses are not as desirable as that on (110) wafer. On the other 

hand, uniaxial longitudinal compression on (110) wafer can provide the smallest 

conductivity effective mass as that on (100) wafer, the largest quantization effective 

mass of the top band, and the smallest quantization effective mass of the second band, 

which not only increases the carrier population in top band, but also reduces the gate 

direct tunneling current. However, the transverse effective masses are small 

comparing with that on (001) wafer. Moreover, the magnitudes of strain-induced band 

edge shift on both wafers are equivalent as shown in Fig. 2.10(a) and Fig. 2.13(a). 

Indeed, there are reported simulation results [26] indicating that the mobility on (110) 

wafer is larger than that on (001) wafer below about 1.3GPa, but the situation is 

reverse above 1.3GPa. Nevertheless, the conductivity and total drive current, which 

relate to the carrier density and occupation ratio of each subband, were not reported in 

the work. Therefore, there are advantages and disadvantages on each wafer orientation, 

but for low power application, (110) wafer may be better than (001) wafer. 

 

2.5.6 Influences of Additional Transverse or Normal Stress 

In Section 2.5.5, we concluded that uniaxial and biaxial tensile stresses on (001) 

wafer favor the conductivity enhancement for nMOSFETs while it is the uniaxial 

longitudinal compressive stress on both (001) and (110) wafer for pMOSFETs. Then, 

in this section, we focus on the influences on these advantageous stress with 

additional uniaxial transverse stress, or normal stress, which is existent in process 

such as capping layer or STI stressor when the dimension of channel width is 

comparable with channel length. 
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Let us first consider an additional transverse stress on (001) wafer, or an 

additional normal stress on (110) wafer with the same sign, that is, compressive stress, 

and magnitude of the longitudinal stress. It is possible in process such as capping 

layer or STI stressor. Table 2.4 shows that the shear strain term is canceled while the 

normal strain term is doubled. Thus, the strain tensors reduce to the form as biaxial 

compressive stress on (001) wafer (a pure normal stress). It is not desirable for 

pMOSFETs since the benefits of longitudinal compressive stress is degraded. 

 Next, let us consider additional transverse stress on (001) wafer, or normal stress 

on (110) wafer, with the opposing sign, that is, tensile stress, and the same magnitude 

of longitudinal stress. [Note that uniaxial longitudinal compressive and transverse 

tensile stresses are both advantageous strains on (001) wafer as shown in Fig. 2.6(e), 

Fig. 2.17(b), Fig. 2.25(b), and Table 2.6.] Table 2.4 shows that the normal strain terms 

are canceled while the shear strain term doubles. Thus, the strain tensors readily 

reduce to a pure shear strain. It is not desirable in nMOSFETs since there is no energy 

splitting between the 2 and 4 valleys due to the normal strain terms being zero. 

Thus, the mobility enhancement of nMOSFETs by uniaxial longitudinal stress is 

degraded. For pMOSFETs, Fig. 2.31 shows the band structures, constant energy 

surfaces, and 2D energy contours of bulk silicon with addition transverse stress on 

(001), and (110) and the effective masses are summarized in Table. 2.7. It can be 

found that with additional transverse tensile stress on (001) wafer, the conductivity 

effective mass remains 0.12m

Δ Δ

0 for top band, but that reduced from 0.59m0 to 0.3m0 for 

second band. In addition, the transverse effective mass of top band increases from 

1.37m0 to 1.88m0. Note that the simulated results for additional normal tensile stress 

on (110) wafer are similar to that for an additional transverse tensile stress on (001) 

wafer, but the normal and transverse direction are exchanged. Thus, additional 

transverse tensile stress on (001) wafer can further enhance the hole mobility while 
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additional normal tensile stress on (110) wafer can further reduce the gate direct 

tunneling current (the quantization effective mass of top band increase from 1.37m0 to 

1.88m0). On the other hand, additional transverse tensile stress have no apparent 

benefits on (110) wafer as shown in Table 2.7. 

 To introduce the additional transverse tensile stress on (001) wafer for enhancing 

hole mobility, it is possible to be achieved without additional costs by modifying 

slightly the standard strained CMOS logic technology process flow [1]. The 

undertaken technology enhances the electron and hole mobility on the same wafer by 

first using SiGe source/drain to introduce longitudinal compressive stress in the 

channel of pMOSFETs and then introduces longitudinal tensile stress in the channel 

of nMOSFETs by applying nitride capping layer on both nMOSFETs and pMOSFETs. 

The disadvantage of this process flow is that it needs additional step for neutralizing 

the capping layer strain on pMOSFETs. However, instead of the longitudinal tensile 

stress with the nitride capping layer, if the tensile stress is incorporated along the 

transverse direction during the same step, which not only enhances the election 

mobility in the same order of magnitude, but also introduces additional hole mobility 

enhancement. (Remind that the longitudinal and transverse directions are symmetry in 

silicon crystal. Thus, the energy splitting of the Δ 2 and Δ 4 valleys are equivalent 

under these two type stresses. Moreover, effective masses remain unchanged in 

conduction band). 

 

2.6 Conclusion 

 In this chapter, the strain tensors have been expressed as a function of normal, 

longitudinal, and transverse stress on (001), (110), and (111) wafers, respectively. 

Then, the strain-altered band structures, band edge shifts, constant energy surface, 2D 

energy contour, and effective masses for various stress conditions and wafer 
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orientations have been calculated by deformation potential theory and k‧p framework 

for conduction band and valence band, respectively. Utilizing these simulated results 

as tools to estimate the device performance, the best advantageous strains among 

these stress types and wafer orientations for nMOSFETs have shown to be uniaxial 

and biaxial tension on (001) wafer while for pMOSFETs they are uniaxial 

longitudinal compression on both (001) and (110) wafer. Finally, we have examined 

the influences of additional transverse or normal strain and have found that the 

additional transverse tensile stress on (001) wafer can further enhance the hole 

mobility. 
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Chapter 3 

 

The Properties of Bulk Silicon in the Presence of 

Strain 

 
3.1 Introduction 

 In order to model the characteristics of strained MOSFETs such as the change of 

gate direct tunneling current (Chapter 4), there are two important features of 

strain-altered band structure that should be take into consideration. One is the 

strain-induced band edge shift, which has been discussed and extracted in Chapter 2. 

The other is the strain-induced band warping, which will be incorporated into our 

physical model (developed in Chapter 4) via the effective masses extracted in this 

chapter such as the quantization effective mass, the 2D density of state (DOS) 

effective mass, and 3D DOS effective mass. In Chapter 4, we will verify qualitatively 

and quantitatively that the strain-induced change of gate direct tunneling current can 

be attributed to these two features of strain-altered band structure. Moreover, utilizing 

the extracted 3D DOS effective masses and band edge shifts of all valleys, the 

conduction band effective DOS, Nc, and valence band effective DOS, Nv, can be 

determined. Then, following the approach of conventional “Semiconductor Device 

Physics,” [30], [31] the strain-altered Fermi energy level of bulk silicon, which is an 

important physical parameter for device modeling, can be determined. Finally, the 

strain-altered intrinsic carrier density of bulk silicon will be calculated as well. 

 Note that in Chapter 3 and 4, it is primarily focused on the silicon under uniaxial 

longitudinal stress and biaxial stress on (001) wafer since there are adequate 
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experimental data published by previous works and widely used in industry to date. 

Nevertheless, the approach and analysis developed here can be applied directly to 

other stress conditions and wafer orientations with extracted physical parameters. 

 

3.2 Effective Mass 

As discussed in Chapter 2, the conduction band effective mass of bulk silicon 

remains unchanged under strain. For the valence band, we assume that the constant 

energy surfaces can be approximated to ellipsoids, that is, the energy dispersion 

relations along the three axes of the ellipsoid are parabolic-like. Thus, the energy 

dispersion relation of bulk silicon near the gamma point can be expressed as  
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where ka, kb, and kc are the wavevectors along the three axes of the ellipsoid, a, b, and 

c directions, respectively. ma, mb, and mc are the effective masses along a, b, and c 

directions, respectively. For uniaxial stress, the directions along [110], the 

longitudinal direction, along [110], the transverse direction, and along [001], the 

normal direction, in k-space are selected to be the three orthogonal axes of the 

ellipsoid due to the symmetry of uniaxial strain as shown in Fig. 2.16 and Fig. 2.24. 

On the other hand, for biaxial stress, the direction of [100], [010], and [001] in 

k-space are selected to be the three orthogonal axes of the ellipsoid due to the 

symmetry of biaxial strain as shown in Fig. 2.18 and Fig. 2.16. Note that the effective 

masses along [100], [010], [110], and [110] are the same under biaxial stress due to 

the symmetry of silicon crystal and biaxial strain. Therefore, for biaxial stress, the 

energy contour is circle-like near the gamma point under large strain, while for 

uniaxial stress, the energy contour is ellipse-like. 

Also, note that the constant energy surfaces, or 2D energy contours, of the heavy 
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hole band of unstrained bulk silicon, as shown in Fig. 2.15 and Fig. 2.23, are indeed 

far from the ellipsoid or ellipse in the plane. Thus, for small strain case, the 

assumption of elliptic constant energy surface is not suitable. However, the approach 

used in Ref. [32] for deriving the effective masses of unstrained silicon cannot be 

applied directly to the strained case due to the complex form of energy dispersion 

relation under strain. In addition, the analytic solution used in [32] for heavy and light 

hole band are extracted from the 4×4 Hamiltonian described in Chapter 2, which 

ignores the mixing effect of split-off band and hence induces significant errors as 

compared with the 6×6 Hamiltonian. Moreover, the conventional effective masses 

given by the Ref. [30]-[32] for the unstrained case are extracted from bulk silicon. 

They are not applicable to describe the inversion layer of MOSFETs. Thus, the one 

band effective mass approximation is adopted in Chapter 4 for the small strain case 

instead of the values extracted here. On the other hand, when the strain is large 

enough, the crystal symmetry of band structure will be destroyed and forced to the 

strain symmetry. Thus, the hypothetical elliptic constant energy surface is a good 

approximation.  

Next, the effective masses along the three axes of the ellipsoid can be defined as 
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where E is the energy and the subscript i denotes the ith valleys.  

Consequently, based on the assumption of elliptic constant energy surface, the 

3D (bulk) DOS effective mass can be derived as  

( )3
1

cibiaidi mmmm = .       (3.3) 

On the other hand, assuming energy contour in kx-ky plane is ellipse-like, the energy in 

inversion layer of MOSFETs can be expressed as 
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where the  is the quantization energy along the z direction. The subscript i and n 

denote the nth subband of ith valley. Then, the 2D DOS effective mass in inversion 

layer can be derived as 
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Fig. 3.1 shows the effective masses along the three axes of the ellipsoid, , [ ]110m

[ ]101m , and , versus uniaxial longitudinal stress for three lowest valence bands. 

Note that some of these effective masses vary significantly from small to large strain 

while the others remain almost constant. Thus, the influences of strain-altered 

effective masses cannot be ignored and must be incorporated into our physical model. 

It can be seen that the longitudinal (conductivity) effective mass of top band under 

compressive stress is much smaller than that under uniaxial tensile stress. It is 

consistent with the analysis in Chapter 2. Especially, the transverse and quantization 

effective mass increase while the uniaxial compressive stress increases. It implies that 

introducing larger strain into the channel is beneficial and desirable. Fig. 3.2 shows 

the 3D (bulk) and 2D DOS effective masses versus uniaxial longitudinal stress for 

three lowest valence bands. It can be observed that the 3D and 2D DOS effective 

masses of top band increase significantly while the uniaxial compressive stress 

increases from zero to 3GPa.  

[ ]001m

Fig. 3.3 shows the effective masses along the three axes of the ellipsoid, , 

, and , versus biaxial stress for three lowest valence bands. The  and 

 are equivalent due to the strain and crystal symmetry. Then, Fig. 3.4 shows the 

[ ]100m

[ ]010m [ ]001m [ ]100m

[ ]010m
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3D and 2D DOS effective masses versus biaxial stress for three lowest valence bands. 

Note that the 3D DOS effective masses for the three lowest valence bands appear to 

remain constant (about 0.24m0) due to the reverse trends between ]  ( ) and 

 while the compressive or tensile strain increases form zero to 3GPa. 

[100m [ ]010m

[ ]001m

 

3.3 Carrier Density and Effective DOS 

 

3.3.1 Electrons in Conduction Band 

To derive the expression of carrier density of bulk silicon with non-degenerate 

doping as a function of band shifts and 3D DOS effective masses of all valleys, Fig. 

3.5(a) shows the strain-induced energy valleys splitting for conduction band under 

arbitrary stress. The E1, E2, E3 represent, respectively, the energy of conduction band 

minima along one of the three orthogonal axes, kx, ky, or kz. Note that for uniaxial and 

biaxial compressive stress on (001) wafer, the E1 and E2 are degenerate and are the 

valley minima along kx, and ky axes while E3 is the valley minima along kz axis and 

higher than E1 and E2. On the other hand, for uniaxial and biaxial tensile stress, the E2 

and E3 are degenerate and are the valley minima along kx, and ky axes while E1 is the 

valley minima along kz axis and lower than E2 and E3. In addition, the EΔ 1,2 

represents the band splitting between E1 and E2 while ΔE1,3 represents the band 

splitting between E1 and E3. Then the carrier density of electron in conduction band 

can be expressed as  
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where Ef is the Fermi energy. The Nc1, Nc2, and Nc3 are the effective DOS of the E1, E2, 

and E3, respectively, and can be expressed as 
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Reminding that the strain does not alter the band warping in conduction band, and 

therefore, the 3D DOS effective masses remain unchanged, leading to the expression: 
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Consequently, the Nc1, Nc2, and Nc3 are equivalent. Therefore, the expression of 

electron carrier density can be further simplified as shown in Equation (3.6) where 

the  is the effective conduction band effective DOS under stress: *
CN
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3.3.2 Holes in Valence Band 

 Similar to the case of conduction band, Fig. 3.5(b) shows the schematic 

strain-induced energy valleys splitting for the three lowest valence bands. Thus, the 

carrier density of hole in valence band can be expressed by 
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where the Nv,top, Nv,second, and Nv,third are the effective DOS of the three lowest valence 

bands, respectively, and can be determined by the 3D DOS effective masses shown in 
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Fig. 3.2 and 3.4 for uniaxial and biaxial stress, respectively. Therefore, one can write 
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Then, the effective valence band effective DOS under stress, , can be expressed as  *
VN
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3.3.3 Simulated Results of  and  *
CN *

VN

 Fig. 3.6 and Fig. 3.7 show the conduction and valence effective DOS, Nc and Nv, 

versus uniaxial and biaxial stress, respectively. It can be seen that for both uniaxial 

and biaxial stress, the Nc and Nv drop very quickly when the stress increases from zero 

to 1GPa, but almost remain constant above 1GPa. The phenomena can be explained 

by Equation (3.9) and (3.12). That is, the second and third terms in Equation (3.9) and 

(3.12) decrease exponentially due to the energy splitting increase when the stress 

increases (see Fig. 2.10 and 2.11). Ultimately, the second and third terms tend to zero, 

thus, Nc and Nv are dominated by the first term under large strain. Note that, it is 

different from the biaxial case, the Nv increases slightly when the uniaxial 

compressive stress increases. It can be explained by the 3D DOS effective mass of the 

top valence band under uniaxial stress (see Fig. 3.2), which increases significantly 

when the uniaxial stress increases from zero to 3GPa while for biaxial stress it 

remains almost constant (see Fig. 3.4). 

 

3.4 Fermi Energy of Bulk Silicon 

Using the strain-induced shift of conduction band edge extracted in Chapter 2 

and the strain-altered conduction effective DOS extracted in previous section, the 

Fermi energy of n-type silicon under strain can be expressed as [30], [31] 
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Likewise, using the strain-induced shift of valence band edge and the strain-altered 

valence effective DOS, the Fermi energy of p-type silicon under strain can be 

expressed as [30], [31] 
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Finally, the strain-altered intrinsic Fermi energy level, Ei, can be determined by 
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 Fig. 3.8 and Fig. 3.9 show the Fermi energy of bulk silicon versus uniaxial and 

biaxial stress, respectively, for various doping concentrations. The figures also show 

how the intrinsic Fermi level, conduction band edge, and valence band edge vary 

with stress. Note that the band gap of unstrained silicon is 1.12eV. From Fig. 3.8, 

Equation (3.13), and Equation (3.14), it can be observed that the strain-induced 

conduction band edge shift decreases the Fermi energy of n-type silicon while the 

strain-induced valence band edge shift increases the Fermi energy of p-type silicon 

when the stress becomes large. On the other hand, the energy difference between 

conduction band edge and the Fermi energy of n-type silicon, or the energy 

difference between valence band edge and Fermi energy of p-type silicon, reduces 

since the DOS effective masses decrease while stress increases. Thus, different from 

the influences of band edge shift, the effective DOS introduces reverse influences on 

the strain-altered Fermi energy. Moreover, the strain-altered Fermi energies are 

primary dominated by the band edge shift under stress above 1GPa since the 

effective DOS of conduction and valence band both tend to constant when the stress 

becomes large. 
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3.5 Intrinsic Carrier Concentration 

 Utilizing the conduction and valence effective DOS of bulk silicon under strain 

extracted in Section 3.4 and the strain-induced band gap narrowing, which enhances 

the intrinsic carrier density, extracted in Chapter 2 and 3.4., the intrinsic carrier 

density can be obtained as  

( ) ( ) ( ) TkE
VCi

BGeNNn 2/** σσσ −=     (3.16) 

where ( )σGE  is the band gap of bulk silicon under strain. kB is the Boltzmann 

constant and T is temperature. 

B

 Fig. 3.10 shows the intrinsic carrier concentration versus uniaxial and biaxial 

stress. In the figure, it can be seen that the intrinsic carrier density increases slightly 

under 1GPa and enhances quickly above 1GPa. In addition, the intrinsic carrier 

density increases faster under biaxial stress than that under uniaxial stress. The 

phenomena can be understood by Equation (3.16), Fig. 3.6, and Fig. 3.7. For the stress 

under 1GPa, the conduction and valence effective DOS reduce quickly, thus 

suppressing the enhancement of intrinsic carrier density due to the band gap 

narrowing. On the other hand, when the stress becomes large, the effective DOS tends 

to constant. Thus, the intrinsic carrier density is primary dominated by the band gap 

narrowing and increases quickly when stress becomes large. Moreover, the 

strain-induced band gap narrowing is larger under biaxial stress than that under 

uniaxial stress as shown in Fig. 3.8 and Fig. 3.9. Therefore, the enhancement of 

intrinsic carrier density is larger under biaxial stress than that under uniaxial stress. 

 

3.6 Conclusion 

 In this chapter, the quantization effective masses, the 2D DOS effective masses, 
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and the 3D DOS effective masses of silicon under uniaxial and biaxial stress on (001) 

wafer have been extracted. These extracted effective masses determine the 

characteristics of inversion layer in MOSFETs such as the quantization subband 

energy, occupation ratio of each subband, and the Fermi energy. In addition, the 

strain-altered conduction and valence effective DOS have been derived as a function 

of the strain-induced band edge shift and strain-altered 3D DOS effective mass. From 

the calculated results, the effective DOS drops quickly due to the band edge splitting 

when stress increases from zero to 1GPa, and then tends to a constant determined by 

3D DOS effective mass of lowest valley for further increased stress. Furthermore, the 

Fermi energy of bulk silicon with non-degenerate doping has also been derived as a 

function of the strain-induced conduction or valence band edge shifts and the 

strain-altered effective DOS. The calculated results have shown that the Fermi energy 

is dominated by band shifts under large stress because the effective DOS tends to 

constant. Finally, the intrinsic carrier concentration has been derived and expressed as 

a function of strain-altered effective DOS and strain-induced band gap narrowing. The 

calculated results have shown that the intrinsic carrier density increases rapidly due to 

the strain-induced band gap narrowing when the stress is larger than 1GPa. 
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Chapter 4 

 

Strain-induced Change of Gate Direct Tunneling 

Current 
 

4.1 Introduction 

 There are two approaches to study the conduction band electron direct tunneling 

(EDT) current in unstrained nMOSFETs. One is the self-consistent 

Schrödinger-Poisson equation [5]. Another is triangular potential approximation [33], 

[34], [41]. The triangular potential approximation was also applied successfully to the 

hole direct tunneling (HDT) current of valence band [3], [42]. However, the physical 

parameters used in above studies were extracted from energy dispersion relationship 

(band structure) of bulk silicon. The actual dispersion relation of valence band in the 

channel inversion condition possesses many non-ideal properties such as band mixing, 

anisotropic, far from parabolic, camel back, vertical electric field-dependent, and the 

density of state function is deviated from the step-like function [4], [35]-[37] as 

shown in Fig. 1(a) for unstressed case and (b) for uniaxial longitudinal compressive 

stress. In Fig. 1, note that the energy of the heavy, light, and split-off spin-orbit hole 

band are degenerated and zero at gamma point in bulk silicon without stress. 

 The actual dispersion relation and the corresponding calculation procedure are 

too complex so that for further applications are impractical. Fortunately, the improved 

one band effective mass approximation (improved one band EMA) introduced in Ref. 

[4], [35]-[37], [42] can resolve this difficulty. This approach can achieve both the 

reasonably accuracy and computing efficiency. 
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On the other hand, the dispersion relation of valence band with external stress 

using six-band k‧p method has been deeply developed [19]. Moreover, using the 

six-band k‧p method and Self-consistent Schrödinger-Poisson equation to calculate 

hole tunneling current in pMOSFETs with various type of stress has been report [6]. 

 In particular, there is an analytic expression for subband energy shift of 

conduction band under longitudinal uniaxial stress, which is a function of vertical 

electric field and stress [38]. Furthermore, using the analytic expression and measured 

electron gate direct tunneling current, it has been corroborated that the expression can 

be used to extract the conduction band deformation potential constant [38] and 

quantify channel stress in devices [39]. 

However, there is no available procedure, which is based on the triangular 

potential approximation and strain-altered dispersion relationship of silicon, to 

calculate the hole direct tunneling current. Therefore, in this work, model and 

characterize direct tunneling current in MOSFETs under uniaxial compressive stress 

by using the modified triangular potential approximation is demonstrated. 

The simulation result can provide information for future strain engineering and 

later calculation. Furthermore, the model can provide an explicit physical picture for 

the impact of strain on the gate direct tunneling current in MOSFETs. 

In this chapter, we focus on the direct tunneling current for pMOSFETs under 

uniaxial longitudinal compressive stress on (001) wafer, then, extend that for 

nMOSFETs. The same approach and analysis can be applied to other stress conditions 

and wafer orientation with corresponding modifications of the model. 

 

4.2 Physical Model 

 

4.2.1 Hole Subband Energy and Carrier Density (pMOSFETs) 
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Fig. 4.2 shows the band diagram of a pMOSFETs under uniaxial compressive 

stress (note that the band diagram may be different for other stress conditions) and 

biased in channel inversoin condition. The figure also illustrates the quantizated 

subband energies in the inversion layer and HDT current from the channel into the 

gate. EC(unstressed) and EV(unstressed) are the conduction and valence band edge in bulk 

silicon without external stress. EF is the Fermi energy. EC(Δ2) and EC(Δ4) indicate the 

strain-induced conduction band edge shift of the Δ 2 and Δ 4 valleys of bulk silicon, 

respectively. EV1(FSi=0, σ ), EV2(FSi=0, σ ), EV3(FSi=0, σ ) indicate the 

strain-induced valence band edge shift of the three lowest bands of bulk silicon. 

EV1(FSi, σ), EV2(FSi, σ), EV3(FSi, σ) are the quantized energy of the three lowest 

subbands in the inversion layer. Note that under uniaxial compressive stress, the order 

of three lowest subbands in the inversion layer are indeed the same as the three lowest 

bands (valleys) of bulk silicon. ΦBV is the valence band edge difference between 

SiO2 and Si without stress. tox is the gate oxide thickness. 

In Fig. 4.2, the energy band bending induced by gate voltage in the inversion 

layer can be approximated by a triangular potential well. The slope of the triangular 

potential well can be modeled by the silicon surface electric field . Analogizing to 

Ref. [38], we assume that the impact of strain-induced band edge shift and the 

electric-field-induced subband energy confinement in the inversion layer are 

independent. Therefore, we can express the three lowest valence subband energy in 

the inversion layer by directly adding the triangular potential component, first term in 

the right hand size in Equation (4.1), and stress component, second term, as 
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and 
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where , , and  are the quantization effective masses of the three lowest 

subbands, respectively, 

1zm 2zm 3zm

( )σ1vEΔ , ( )σ2vEΔ , and ( )σ3vEΔ  indicate the quantity of  

valence band edge shifts between strained and unstrained bulk silicon for the three 

lowest subbands, respectively. The split-off spin-orbit energy of bulk silicon is Δ= 

44meV [35], [37]. 

 Using 2D density of states and Fermi-Dirac statistic, the carrier density in 

inversion layer for each subband can be derived as 
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Where  is the hole DOS effective mass of the nth subband.  is the nth 

subband energy defined by Equation (4.1) for the three lowest subbands. 

*
dnm vnE

 The relationship between gate voltage  and  is determined from the 

voltage balance equation 

GV SiF

SpolyoxFBG VVVVV +++=       (4.3) 

where  is flat-band voltage,  is oxide voltage drop,  is the voltage drop 

in polysilicon gate due to poly depletion, and  is the substrate band bending. 

FBV oxV polyV

SV

 To derive the flat-band voltage for pMOSFETs under arbitrary strain in both 

polysilicon gate and channel, Fig. 4.3 shows the band diagram of a p+ 

polysilicon/SiO2/n-Si (pMOS) structure with a negative gate voltage. Then, to 
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establish the energy relation of both side with the help of the band diagram. Next, let 

 and , the expression of flat-band voltage can be derived 

as 

0=== spolyox VVV FBG VV =

( ) ( ) ( ) ( )⎟
⎟
⎠

⎞
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⎝

⎛
++Δ−Δ=

chanC

sub
polyGGchanCSpolyCGFB N

NkTEEEqV
σ

σσσ ln11   (4.4) 

where ( )polyCGE σ1Δ  and ( )chanCSE σ1Δ  are the quantity of conduction band edge shift 

for polysilicon gate and channel, respectively. The strain-altered band gap of 

polysilicon gate is ( ) ( ) ( )polyVGpolyCGpolyGGG EEEE σσσ 110 Δ−Δ−==  as shown in 

Fig. 4.3.  is the substrate doping concentration and SubN ( )polyCN σ  is the conduction 

effective DOS described in Chapter 3. 

 The self-consistent procedure for subband calculation is described as following: 

(1) given Npoly, tox, Nsub, and VG. (2) Let FBGox VV
N
kV −=  where  since 

the voltage drop of oxide must be between zero to 

Nk ≤≤0

FBG VV − . It is noteworthy that 

increasing the value of N will increase the accuracy of simulated results, but the 

computation time increases as well. (3) Using the equations summarized in Table 4.1 

to calculate subband energies, carrier density of each subband, voltage drop, depletion 

charge, etc. (4) Examine the calculated results with Poisson equation, or the 

conservation of electric flux, ( ) oxoxdeplinv FNNq ε≈+ . Then, find the value of k and the 

corresponding solution with smallest error between the both sides of the electric flux 

conservation equation. 

 

4.2.2 Hole Direct Tunneling Current for pMOSFETs 

 After modifying the subband energy expression and subband calculation 
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procedure for the strained silicon, we can readily apply the well-developed WKB 

approximation [3], [4], and [34] to calculate the tunneling current density. The hole 

direct tunneling current density JG can be expressed as a sum of the tunneling current 

contribution of each subbands,  

( )∑=
n vnn

n
G E

NqJ
τ

,       (4.5) 

where  is the inversion carrier density of the nth subband and nN nτ  is the lifetime 

of the nth subband. The lifetime of an nth subband in the triangular potential well can 

be expressed as [3], [4]  
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where  is the classical turning point of the nth subband, nz ( )zEV  is the Si valence 

band edge,  is the transmission probability of a carrier. Transmission 

probability can be written in the form of  

( )ET

( ) ( ) ( )ETETET RWKB ⋅=       (4.7) 

where  is the typical WKB approximation of the transmission probability, 

and  is the correction factor taking into account the reflections from boundaries of 

the oxide. Appling parabolic dispersion relationship in the oxide [3], the T

( )ETWKB

RT
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be simplified as 
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where  is the effective hole mass,  is the oxide electric field, oxhm oxF cathϕ  is the 

barrier height of tunneling hole with quantized energy  at cathode side, and vnE anϕ  

is that at anode side. vnoxBVcath EqV −−Φ=ϕ  and vnBVan E−Φ=ϕ . The reflection 
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correction factor is expressed as  
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where )(ESiυ  and )( oxSi qVE +υ  are the group velocity of the electron incident and 

leaving the oxide, respectively, and )( anox ϕυ  and )( cathox ϕυ  are the magnitudes of 

the purely imaginary group velocity of hole at the cathode and anode side within the 

oxide. znvnvnSi mEE /2)( =υ  and oxhoxvnBVvnox mzqVEE /))((2)( −−Φ=υ  for the 

parabolic dispersion relationship. 

 

4.2.3 Electron Direct Tunneling Current for nMOSFETs 

Fig. 4.4 illustrates the band diagram of an n+ polysilicon/SiO2/p-Si structure 

biased in channel inversion condition and stressed with uniaxial longitudinal 

compressive stress. The figure also shows the subband energy confinement in the 

inversion layer and the electron direct tunneling current from channel to gate. Similar 

to pMOSFETs, the strain-altered subband energy can be expressed as  
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where the ( )( )σ2ΔΔ cE  and ( )( )σ4ΔΔ cE  are the strain-induced conduction band edge 

shift for the 2 and 4 valleys, respectively. The details for calculating Δ Δ ( )( )σ2ΔΔ cE  

and ( ) ( )σ4ΔΔ cE  have been introduced in Chapter 2. The subscript i denotes the ith 

subband of each valleys.  and  are the quantization effective mass for 

the 2 and 4 valleys, respectively. As discussed in Chapter 2 and 3, the 

( )2Δzm ( )4Δzm

Δ Δ
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quantization, 2D DOS, and 3D DOS effective mass are independent of strain for 

silicon conduction band. The values of the quantization and 2D DOS effective masses 

are given in Table 2.5. In addition, the strain-altered flat-band voltage for nMOSFETs 

under arbitrary strain in both polysilicon gate and channel can be derived with the 

help of the band diagram as shown in Fig. 4.5. 

( ) ( ) ( ) ( )⎟
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⎞
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⎝

⎛
−−Δ−Δ=

chanV

sub
chanGchanCSpolyCGFB N

NkTEEEqV
σ
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where ( ) ( ) ( )chanVSchanCSchanGG EEEE σσσ 110 Δ−Δ−==  is the strain-altered band 

gap of channel as shown in Fig. 4.5. ( )chanVN σ  is the valence effective DOS 

described in Chapter 3. 

 The remaining calculation procedures are the same as that for pMOSFETs, but 

with the corresponding physical parameters for nMOSFETs. 

 

4.3 Results and Discussion 

 

4.3.1 Hole Direct Tunneling Current for pMOSFETs 

4.3.1.1 Parameters Extraction for the Vertical Electric Field Component 

For simplification, we assume that quantization and density of state effective 

mass are constant and have no significant change within the range of vertical electric 

field and stress in our calculation. 

Using the triangular potential approximation and improved one-band EMA, 

Equations (4.1) with 0=σ , we can extract the quantization effective masses for the 

three lowest subbands. The quantization effective masses are the only adjustable 

parameter in Equation (4.1) with 0=σ  and the values for best fitting are as follows: 

, , and 01 28.0 mmz = 02 23.0 mmz = 03 21.0 mmz = . These values are consistent with 
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the values used in [4], [35]-[37] for unstressed case ( , , 

and ) and approximated the value used in [6] for longitudinal uniaxial 

compressive case ( , , and ). 

0
*
1 29.0 mmz = 0

*
2 24.0 mmz =

0
*
3 22.0 mmz =

0
*
1 27.0 mmz = 0

*
2 22.0 mmz = 0

*
3 23.0 mmz =

Fig. 4.6 shows that the hole subband energy ( 0=σ ) evaluated by the improved 

one band EMA, which provides better computing efficiency and takes the non-ideal 

properties of dispersion relationship in channel inversion condition into account, well 

reproduced the results calculated by accurate six-band k‧p method (with the 

self-consistent Schrödinger-Poisson equation) for the three lowest subbands versus 

 varying from zero to 2.5MV/cm. Thus, the use of constant values for 

quantization effective mass is applicable. 

SiF

For simplification, we adopt the density of state effective mass suggested by [36] 

for channel inversion and unstressed condition. Furthermore, we assume that the 

density of state effective mass do not have significant change under small stress 

condition. However, it is noteworthy that for large stress or precise computation, the 

change of density of state effective mass should be taken into consideration. 

  

4.3.1.2. Calculation for the Stress Component (Valence Band Edge Shifts) 

The method for calculating valence band edge shifts has been discussed in 

Chapter 2. Fig. 4.7 shows the hole subband energies calculated by Equation (4.1) with 

the quantization effective masses extracted above. The figure also shows the data 

evaluated by the six-band k‧p method (with the self-consistent Schrödinger-Poisson 

equation). 

 It can be observed that our model can well reproduce the data calculated by 

six-band k‧p method within the range,  varies from 0.5MV/cm to 1.5MV/cm and SiF
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the stress varies from zero to 300MPa. Note that comparing to the subband energy 

and the thermal energy =0.026 eV at room temperature, the error is tolerated for 

later calculation. Moreover, in usual operation of pMOSFETs, which oxide thickness 

is thinner than 2nm, the gate voltage is between zero to 1.5V and the corresponding 

 is between around 0.5MV/cm to 1.5MV/cm. Therefore, the assumption, the 

influences of strain-induced subband energy shift is independent of , is 

appropriate within the range of  and 

kT

SiF

SiF

SiF σ  in our discussion. 

Fig. 4.8 shows the strain-induced band edge shifts in bulk silicon for both the 

conduction and valence band. The level of zero energy is the conduction and valence 

band edge without external stress, respectively. 

 

4.3.1.3. Hole Direct Tunneling Current 

Our model has been verified that it can well reproduce the experimental data 

published by previous works, HDT current in Ref. [3], [4] and EDT current in [34],  

for unstrained silicon with various gate oxide thickness and doping concentration. 

Then, using our model and the parameters extracted above, the simulation result, 

 versus stress at =1V, was calculated and plotted in Fig. 4.9(a). The 

device parameters used in simulation are as following: gate oxide thickness is 1.3nm; 

polysilicon and substrate doping concentration are 5

GG JJ /Δ GV

× 1019 cm-3 and 1017 cm-3, 

respectively. The figure also shows the experimental data published by former works. 

The squares is the data measured at =1V in Ref. [2]. The diamonds are the date 

measured by four point bending jig at =1V for the device samples consisting of 

heavily doped poly-silicon gate, 1.3nm physical thickness SiO

GV

GV

2 gate dielectrics, and 

~5×1017 cm-3 well doping in Ref. [40]. The circles are the data measured by wafer 
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bending technique at =1V for the device samples with 10GV 17 cm-3 n-type substrate 

doping and 1.3nm physical thickness nitrided SiO2 gate insulators in Ref. [6]. 

In our calculation, the carrier density of third subband is only about 2% of total 

three subbands. Thus, according to Fermi-Dirac statistic, contribution of higher 

subbands is negligible [37]. Also note that the assumption of parabolic dispersion 

relationship in oxide is precise at =1V and oxide thickness is thinner than 2nm 

with =0.4m

GV

oxhm 0 [3], [4]. Moreover, since the experimental data cited from Ref. [6] 

and [40] are measured by the wafer bending technique, the stress type and magnitude 

of polysilicon gate are set to be the same as that of channel [16]. Furthermore, the 

doping effects on the tunneling currents have been examined. It was identified that 

when substrate doping varies from 1017 to 5×1017 cm-3, there is no significant change 

on the  versus stress curve. This result is consistent with the experimental 

data. 

GG JJ /Δ

It can be observed that the simulated result of GG JJ /Δ  versus stress is 

consistent with the trend of experimental data published in Ref. [2], [6], but with 

some deviation at larger stress.  

Fig. 4.9 also shows the corresponding subband energy, carrier density, and the 

hole direct tunneling current versus stress for the three lowest subbands. According to 

simulated results, the strain-induced change of HDT current is primarily results from 

the carrier repopulation. Under longitudinal uniaxial compressive stress, the first 

subband energy become lower and the second and third subbands become higher than 

that in unstressed case as shown in Fig. 6(b). Consequently, according to the 

Fermi-Dirac statistic, a number of carriers redistribute from second and third 

subbands into the first subband as shown in Fig. 6(c). Note that the total carrier 
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density remains almost constant with the stress varying from zero to 300MPa. In 

addition, the barrier for hole tunneling of first subband is higher and corresponding 

WKB transmission probability is smaller than other subbands. Therefore, the total 

tunneling current decreases while the stress increases as shown in Fig. 6(d). 

The deviation between the experimental data and simulation results at larger 

stress may result from the use of constant 2D DOS effective mass in our calculation. 

Fig. 2.23, 2.24 and 3.2 shows that the 2D DOS effective mass of the first band indeed 

increase while that of the second band decreases at larger stress. Consequently, there 

are indeed more carriers repopulate from higher subband into the first subband than 

that expected by the model. Thus, the HDT current further reduced. 

 

4.3.1.4 Uniaxial Transverse Stress 

 It can be observed that the experimental data measured in Ref. [2], [40] have the 

same trend and magnitude of the strain-induced change of HDT current under uniaxial 

longitudinal and transverse stress. This phenomenon can also be expected in our 

model since the strain-induced valence band edge shifts and the 2D DOS effective 

masses are equivalent under longitudinal and transverse stress on (001) wafer. 

 

4.3.2 Electron Direct Tunneling Current for nMOSFETs  

 Fig. 4.10 shows the simulated results for nMOSFETs under uniaxial longitudinal 

compressive stress. Note that the calculation includes the first two subbands of 2 

valleys and the first subband of 

Δ

Δ 4 valleys since the subband energy of second 

subband of 2 valleys are close to that of the first subband of Δ Δ 4 valleys as shown 

in Fig4.10(b). The circles are the experimental data measured by four-point bending 

jig at =1V for the device samples consisting of arsenic doped polysilicon gate, GV
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1.3nm nitrided SiO2 gate dielectric, and 1017 cm-3 boron doped p well in Ref. [38]. 

The diamonds and squares are the data from Ref. [2] and [40] as described in the 

pMOSFETs case. It can be seen that the simulation results well reproduce the 

experimental data. The mechanism for the change of EDT current can also be 

explained by the carrier repopulation. Under uniaxial compressive stress, the lowest 

subband ( 2 valleys) shifts up while the second subband (Δ Δ 4 valleys) shifts down as 

shown in Fig. 4.8(a) and Fig. 4.10(b). Consequently, a number of carriers repopulate 

from the lowest subband to the second subband, which has lower tunneling barrier. In 

addition, the barrier of the lowest subband also decreases. Thus, the EDT current 

increases. Note that this mechanism is reverse to that for pMOSFETs under uniaxial 

compressive stress. Moreover, the analysis for these two cases can also be applied to 

explain the change of direct tunneling current under other stress conditions. 

 Fig. 4.11 shows the simulation results for different substrate doping 

concentration, 5×1017 cm-3 and 1017 cm-3. It can be seen that the change of EDT 

current for 1017 cm-3 doping concentration are smaller than that for 5×1017 cm-3. The 

results are also consistent with the experimental data. 

4.4 Conclusion 

Using the modified subband energy expression of triangular potential 

approximation and the WKB approximation, we have demonstrated an efficient and 

reasonably accurate physical model to calculate HDT and EDT current for 

longitudinal uniaxial compressive stressed silicon device. The improved one band 

EMA and the data calculated by six-band k‧p method were used to extract the 

quantization effective mass. The simulated results correspond to the experimental data, 

 versus GG JJ /Δ σ , published by former work. 

In our model, the subband energy is a function of vertical electric field and stress. 
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Therefore, this model can be used directly to characterize the -  curve and be 

applied easily to different stress conditions on various wafer orientations with 

extracting the corresponding physical parameters. 

GJ GV
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Chapter 5 

 

Conclusions 
 

In the chapter 2, the strain tensors have been expressed as a function of normal, 

longitudinal, and transverse stress on (001), (110), and (111) wafers, respectively. 

Then, the strain-altered band structures, band edge shifts, constant energy surface, 2D 

energy contour, and effective masses for various stress conditions and wafer 

orientations have been calculated by deformation potential theory and k‧p framework 

for conduction and valence band, respectively. Utilizing these simulated results as 

tools to estimate the device performance, we concluded that the best advantageous 

strains among these stress types and wafer orientations for nMOSFETs have shown to 

be uniaxial and biaxial tension on (001) wafer while for pMOSFETs they are uniaxial 

longitudinal compression on both (001) and (110) wafer. Finally, we have examined 

the influences of additional transverse or normal strain and have found that the 

additional transverse tensile stress on (001) wafer can further enhance the hole 

mobility. 

In chapter 3, the quantization effective masses, the 2D DOS effective masses, 

and the 3D DOS effective masses of silicon under uniaxial and biaxial stress on (001) 

wafer have been extracted. In addition, the strain-altered conduction and valence 

effective DOS have been derived as a function of the strain-induced band edge shift 

and strain-altered 3D DOS effective mass. From the calculated results, the effective 

DOS drops quickly due to the band edge splitting when stress increases from zero to 

1GPa, and then tends to a constant determined by 3D DOS effective mass of lowest 

valley for further increased stress. Furthermore, the Fermi energy of bulk silicon with 

 48



non-degenerate doping has also been derived as a function of the strain-induced 

conduction or valence band edge shifts and the strain-altered effective DOS. The 

calculated results have shown that the Fermi energy is dominated by band shifts under 

large stress because the effective DOS tends to constant. Finally, the intrinsic carrier 

concentration has been derived and expressed as a function of strain-altered effective 

DOS and strain-induced band gap narrowing. The calculated results have shown that 

the intrinsic carrier density increases rapidly due to the strain-induced band gap 

narrowing when the stress is larger than 1GPa. 

In Chapter 4, a triangular potential approximation based physical model for 

HDT current in pMOSFETs and EDT current in nMOSFETs under longitudinal 

uniaxial compressive stress has been presented. A modified subband energy 

expression, which comprises the vertical electric field component and stress 

component, is used to evaluate the subband energy in the inversion layer of 

MOSFETs under gate bias and stress. Then, an improved one band effective mass 

approximation and data calculated by six-band k‧p method are used to extract 

quantization effective mass. Moreover, WKB approximation is utilized to evaluate 

transmission probability and tunneling current. The simulated results agree with the 

experimental data published by former works. The primarily reason accounting for the 

decrease of HDT current for pMOSFETs while increase uniaxial compressive stress is 

that a number of carriers redistribute from higher subband into the lowest subband 

due to the stress induced subband energy shift. Since the barrier of the lowest subband 

for hole tunneling is higher and the corresponding transmission probability is smaller 

than other subbands, the total tunneling current decreases while stress increases. The 

reverse mechanism of above can also be used to explain the opposite trend of EDT 

current for nMOSFETs under uniaxial compressive stress. Thus, the proposed model 

provides a simple method to assess the influence of external stress for direct tunneling 

 49



currents in MOSFETs qualitatively and quantitatively. Moreover, with extracting the 

corresponding physical parameters, our model can be applied directly to various wafer 

orientations and different stress conditions. For example, the device with different 

magnitude and type of stress in poly gate and channel. Alternatively, the longitudinal 

and transverse stresses exist in the device in the meantime. 
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Table 2.1 The deformation potentials, Luttinger parameters, elastic stiffness constants, 

and split-off energy for Si, Ge, and GaAs. 

 Si Ge GaAs 
a a(eV) 2.46 1.24 1.16 
b a (eV) -2.1 -2.9 -2.0 
d a (eV) -4.8 -5.3 -4.8 

1γ
a 4.22 13.4 6.98 

2γ
a 0.39 4.24 2.06 

3γ
a 1.44 5.69 2.93 

S11 (10-12 m2/N) 7.68 b 9.64 b 11.75 c

S12 (10-12 m2/N) -2.14 b -2.6 b -3.65 c

S44 (10-12 m2/N) 12.6 b 14.9 b 16.8 c

0Δ  (eV) 0.044 d 0.29 d 0.34 d

aSee Ref. 18. 

bSee Ref. 12. 

cSee Ref. 43. 

dSee Ref 30. 
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Table 2.2 The normal, longitudinal, and transverse direction for (001), (110), and (111) 

wafer. 

wafer orientation normal direction 
(out of plane) 

longitudinal 
direction (in-plane)

transverse 
direction (in-plane)

(001) [001] [110] [110] 
(110) [110] [110] [001] 
(111) [111] [110] [11 2 ] 
 

 56



Table 2.3 The stress tensor and strain tensor for biaxial stress on (001) wafer, uniaxial 

stress along [110], [110], [001], [111], and [11 2 ] direction. 

 Biaxial d [110] [110] [001] [111] [11 2 ] 
Stress 
tensor a 

( kσ× c) 
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⎥
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aThe form of stress tensor is defined by Equation (2.2). 

bThe form of strain tensor is defined by Equation (2.6). 

c
kσ  indicates the stress applied along k-direction. 

dFor biaxial stress on (001) wafer, k is along [100] or [010] and [ ] [ ]010100 σσ = . 
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Table 2.4 The resultant strain tensors in response to the combination of normal, 

longitudinal, and transverse stress for the three wafer orientations 

Wafer orientation Strain tensor 

Biaxial stress on 
(001) wafer 

( ) [ ]

( ) [ ]

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
++
++

0
0
0

2 1110012

121001211

121001211

norm

norm

norm

SS
SSS
SSS

σσ
σσ
σσ

 

Uniaxial stress on 
(001) wafer 

( )( )
( )( )

( )

( ) ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

++
+++
+++

tranlong

normtranlong

normtranlong

normtranlong

S

SS
SSS
SSS

σσ

σσσ
σσσ
σσσ

444
1

1112

1212112
1

1212112
1

0
0

 

Uniaxial stress on 
(110) wafer 

( )( )
( )( )

( )

( ) ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

++
+++
+++

longnorm

tranlongnorm

tranlongnorm

tranlongnorm

S

SS
SSS
SSS

σσ

σσσ
σσσ
σσσ

444
1

1112

1212112
1

1212112
1

0
0

 

Uniaxial stress on 
(111) wafer 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++−
+−
+−

++++
+++++
+++++

normltranlong

normltran

normltran

normltranlong

normltranlong

normltranlong

SSS
SS
SS

SSSSS
SSSSSS
SSSSSS

σσσ
σσ
σσ

σσσ
σσσ
σσσ

446
1

4412
1

444
1

446
1

446
1

446
1

446
1

12113
1

12113
1

12

12113
1

12116
1

12112
1

12113
1

12116
1

12112
1

22
25
25

 

 

 58



Table 2.5 Numerical values of effective mass for silicon conduction band in inversion 

layer given by [27]. 

surface (100) (110) (111) 
valleys lower higher lower higher all 
degeneracy 2 4 4 2 6 
Normal mass (m0) 0.916 0.190 0.315 0.190 0.258 
Conductivity mass (m0) 0.190 0.315 0.283 0.315 0.296 
DOS effective mass (m0) 0.190 0.417 0.324 0.417 0.358 
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Table 2.6 The conductivity, transverse, and quantization effective masses of the top 

band for bulk silicon with various stress conditions and wafer orientations. The 

quantization effective masses of the second band are also listed. 

wafer Stress type  
mc,1st (m0) 

mtran,1st 

(m0) 
mnorm,1st 

(m0) 
mnorm,2nd 

(m0) 
σ <0 0.12 1.37 0.28 0.22 Uniaxial 

longitudinal σ >0 0.46 0.18 0.21 0.24
σ <0 1.37 0.12 0.28 0.22 Uniaxial 

transverse σ >0 0.18 0.46 0.21 0.24
σ <0 0.22 0.22 0.29 0.27 

(001) 

Biaxial 
σ >0 0.28 0.28 0.18 0.29
σ <0 0.12 0.28 1.37 0.15 Uniaxial 

longitudinal σ >0 0.46 0.21 0.18 0.17 
σ <0 0.28 0.18 0.28 0.22 

(110) 

Uniaxial 
transverse σ >0 0.22 0.29 0.22 0.22

σ <0 0.12 0.17 0.47 0.18 Uniaxial 
longitudinal σ >0 0.46 0.29 0.19 0.20

σ <0 0.37 0.23 0.68 0.17 

(111) 

Uniaxial 
transverse σ >0 0.19 0.25 0.18 0.19
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Table 2.7 Comparison the effective masses between the 1GPa uniaxial longitudinal 

compressive stress with and without additional 1GPa uniaxial transverse tensile stress 

for (001) and (110) wafer. 

wafer Additional 
transverse stress 

mc,1st 

(m0) 
mc,2nd 

(m0) 
mtran,1st 

(m0) 
mnorm,1st 

(m0) 
mnorm,2nd 

(m0) 
Without 0.12 0.59 1.37 0.28 0.22 (001) 
With 0.12 0.3 1.88 0.28 0.18 
Without 0.12 0.59 0.28 1.37 0.15 (110) 
With 0.12 1.21 0.29 1.32 0.12 
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Table 4.1. Equations for subband calculation. 

Description Equation 
Oxide electric field 

ox

ox
ox t

VF =  

Potential drop due to poly 
depletion 

polySi

oxox
poly Nq

FV
ε
ε

2

22

=  

Substrate band bending 
oxpolyFBGs VVVVV −−−=  

Quasi-Fermi level 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

c

sub
GsF N

NkTEqVE ln  for pMOSFETs 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

v

sub
GsF N

NkTEqVE ln  for nMOSFETs

Silicon surface field 
Si

oxox
Si

FF
ε

ε
=  

Subband energies  Equation (4.1) for pMOSFETs 
Equation (4.10) for nMOSFETs 

Inversion carrier density per 
subband ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

kT
EEkTmn

N ijFdjv
ij exp1ln2hπ

 

Total inversion layer carrier per 
area ∑= ijinv NN  

Total inversion QM channel 
thickness oxox

ijSi
ij Fq

E
Z

ε
ε

3
2

=  

Average QM channel thickness ∑=
s

ijij
QM N

NZ
Z  

Silicon potential drop 
q

kTZqN
VV

Si

QMs
sdepl −−=

ε
 

Ionized impurity density per area 

q
NV

N subdeplSi
depl

ε2
=  
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Fig. 2.1. (a) An arbitrary force ( )PRΔ  acting on an infinitesimal area AΔ  at point P. 

The normal component of the force is ( )PFΔ  and the tangential 

components of the force are ( )PVsΔ  and ( )PVtΔ  along two orthogonal 

directions in the plane. (b) Schematic of the nine components defining the 

stress state at an arbitrary point in three dimensions. 
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Fig. 2.2. (a) Schematic of the deformation of a body applied to normal stress along 

y-axis; and (b) schematic the deformation of a body applied to pure shear 

stress. Dash line indicates the size and shape of the original body before 

deformation and solid line indicates those of the body after deformation 
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Fig. 2.3. Schematic of the surface orientation and the corresponding stress directions 

for (001) wafer. The shadow region indicates the wafer surface. The surface 

normal is [001], the longitudinal (channel) direction is [110], and the 

transverse direction, which is perpendicular to the channel in the plane, is 

[110]. 
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Fig. 2.4. Schematic of the surface orientation and the corresponding stress directions 

for (110) wafer. The shadow region indicates the wafer surface. The surface 

normal is [110], the longitudinal (channel) direction is [110], and the 

transverse direction, which is perpendicular to the channel in the plane, is 

[001].
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Fig. 2.5. Schematic of the surface orientation and the corresponding stress directions 

for (111) wafer. The shadow region indicates the wafer surface. The surface 

normal is [111], the longitudinal (channel) direction is [110], and the 

transverse direction, which is perpendicular to the channel in the plane, is 

[11 2 ]. 
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Fig. 2.6. Silicon valence band structures for (a) unstressed, (b) 1GPa uniaxial 

longitudinal compressive, (c) 1GPa uniaxial longitudinal tensile, (d) 1GPa 

uniaxial transverse compressive, and (e) 1GPa uniaxial transverse tensile 

stress on (001) wafer. 
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Fig. 2.7. Silicon valence band structures for (a) 1GPa biaxial compressive and (b) 

1GPa biaxial tensile stress on (001) wafer. 
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Fig. 2.8. Silicon valence band structures for (a) unstressed, (b) 1GPa uniaxial 

longitudinal compressive, (c) 1GPa uniaxial longitudinal tensile, (d) 1GPa 

uniaxial transverse compressive, and (e) 1GPa uniaxial transverse tensile 

stress on (110) wafer. 
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Fig. 2.9. Silicon valence band structures for (a) unstressed, (b) 1GPa uniaxial 

longitudinal compressive, (c) 1GPa uniaxial longitudinal tensile, (d) 1GPa 

uniaxial transverse compressive, and (e) 1GPa uniaxial transverse tensile 

stress on (111) wafer. 
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Fig. 2.10. Strain-induced hole subband energy shift versus (a) uniaxial longitudinal 

and (b) uniaxial transverse stress on (001) wafer. 
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Fig. 2.11. Strain-induced hole subband energy shift versus biaxial stress on (001) 

wafer. 
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Fig. 2.12. Comparison between the strain-induced hole subband energy shift 

calculated by 4×4 and 6×6 Hamiltonian for (a) uniaxial longitudinal and (b) 

biaxial stress on (001) wafer. The solid line indicates the subband energy 

calculated by the 6×6 Hamiltonian. The dotted line indicates the subband 

energy calculated by 4 by 4 Hamiltonian. 
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Fig. 2.13. Strain-induced hole subband energy shift versus (a) uniaxial longitudinal 

and (b) uniaxial transverse stress on (110) wafer. 
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Fig. 2.14. Strain-induced subband energy shift versus (a) uniaxial longitudinal and (b) 

uniaxial transverse stress on (111) wafer. 
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Fig. 2.15. Hole constant energy surface of unstressed bulk silicon for three lowest 

bands. 
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Fig. 2.16. Hole constant energy surface of silicon under 1GPa uniaxial longitudinal (a) 

compressive and (b) tensile stress on (001) wafer for three lowest bands. 
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(a) (b) 

Fig. 2.17. Hole constant energy surface of silicon under 1GPa uniaxial transverse (a) 

compressive and (b) tensile stress on (001) wafer for three lowest bands. 
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(a) (b) 

Fig. 2.18. Hole constant energy surface of Silicon under 1GPa biaxial (a) compressive 

and (b) tensile stress on (001) wafer for three lowest bands. 
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Fig. 2.19. Hole constant energy surface of silicon under 1GPa uniaxial longitudinal (a) 

compressive and (b) tensile stress on (110) wafer for three lowest bands. 
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Fig. 2.20. Hole constant energy surface of silicon under 1GPa uniaxial transverse (a) 

compressive and (b) tensile stress on (110) wafer for three lowest bands. 
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Fig. 2.21. Hole constant energy surface of silicon under 1GPa uniaxial longitudinal (a) 

compressive and (b) tensile stress on (111) wafer for three lowest bands. 
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Fig. 2.22. Hole constant energy surface of silicon under 1GPa uniaxial longitudinal (a) 

compressive and (b) tensile stress on (111) wafer for three lowest bands. 
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Fig. 2.23. Contour map in kx, ky plane (kz=0) of unstressed bulk silicon on (001) wafer 

for three lowest valence bands. 
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Second band 

Third band 

(a) (b) 

Fig. 2.24. Contour map in kx, ky plane (kz=0) of silicon under 1GPa uniaxial 

longitudinal (a) compressive and (b) tensile stress on (001) wafer for three 

lowest valence bands. 
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Third band 

(a) (b) 

Fig. 2.25. Contour map in kx, ky plane (kz=0) of silicon under 1GPa uniaxial transverse 

(a) compressive and (b) tensile stress on (001) wafer for three lowest 

valence bands. 
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(a) (b) 

Fig. 2.26. Contour map in kx, ky plane (kz=0) of silicon under 1GPa biaxial (a) 

compressive (b) tensile stress on (001) wafer for three lowest valence bands. 
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Third band 

(a) (b) 

Fig. 2.27. Contour map in kx, ky plane (kz=0) of silicon under 1GPa uniaxial 

longitudinal (a) compressive and (b) tensile stress on (110) wafer for three 

lowest valence bands. 
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(a) (b) 

Fig. 2.28. Contour map in kx, ky plane (kz=0) of silicon under 1GPa uniaxial transverse 

(a) compressive and (b) tensile stress on (110) wafer for three lowest 

valence bands. 
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(a) (b) 

Fig. 2.29. Contour map in kx, ky plane (kz=0) of silicon under 1GPa uniaxial 

longitudinal (a) compressive and (b) tensile stress on (111) wafer for three 

lowest valence bands. 
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(a) (b) 

Fig. 2.30. Contour map in kx, ky plane (kz=0) of silicon under 1GPa uniaxial transverse 

(a) compressive and (b) tensile stress on (111) wafer for three lowest 

valence bands. 
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Energy contour in the surface 

(a) (b) 

Fig. 2.31.  Band structures, constant energy surface, and energy contour of bulk 

silicon under 1GPa longitudinal compressive stress with additional 1GPa 

transverse tensile stress on (a) (001) and (b) (110) wafer, respectively. 
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Fig. 3.1. Effective masses along the three axes of the ellipsoid, , [ ]110m [ ]101m , and 

, versus uniaxial longitudinal stress for three lowest valence bands. [ ]001m
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Fig. 3.2. 3D (bulk) and 2D DOS effective masses versus uniaxial longitudinal stress 

for three lowest valence bands. 
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Fig. 3.3. Effective masses along the three axes of the ellipsoid, , , and 

, versus biaxial stress for three lowest valence bands. 

[ ]100m [ ]010m

[ ]001m
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Fig. 3.4. 3D (bulk) and 2D DOS effective masses versus biaxial stress for three 

lowest valence bands. 
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(a) 

 

 

(b) 

 

Fig. 3.5. Schematic of the strain-induced energy valleys splitting for (a) conduction 

band electrons and (b) valence band holes. 
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Fig. 3.6. Conduction and valence effective DOS, Nc and Nv, versus uniaxial stress. 
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Fig. 3.7. Conduction and valence effective DOS, Nc and Nv, versus biaxial stress. 
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Fig. 3.8. Fermi energy of bulk silicon versus uniaxial stress for various doping 

concentrations. The figure also shows the intrinsic Fermi level, conduction 

band edge, and valence band edge versus stress. 
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Fig. 3.9. Fermi energy of bulk silicon versus biaxial stress for various doping 

concentration. The figure also shows the intrinsic Fermi level, conduction 

band edge, and valence band edge versus stress. 
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Fig. 3.10. Intrinsic carrier concentration versus uniaxial and biaxial stress. 
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Fig. 4.1. Valence band hole dispersion relation along [100] and [110] direction for the 

three lowest bands calculated by six-band k‧p method under channel 

inversion condition (FSi=1MV/cm). The external stress is (a) unstressed and 

(b) 500MPa uniaxial compressive stress along [110] direction. 
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Fig. 4.2. Schematic of band diagram of a p+ polysilicon/SiO2/n-Si structure biased in 

channel inversion condition and stressed with uniaxial longitudinal 

compressive stress. The solid lines indicate the conduction and valence band 

edge without external stress. The dotted lines indicate the stress induced 

band edge shift of the conduction and valence band. The figure also shows 

the energy quantization effect in the channel inversion layer and hole direct 

tunneling current from the channel inversion layer to the polysilicon gate 

under stress. 
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Fig. 4.3. Schematic of the band diagram of a p+ polysilicon/SiO2/n-Si (pMOS) 

structure, which is biased a negative gate voltage. The poly gate and channel 

are under arbitrary strain. The expression of flat band voltage for 

pMOSFETs under arbitrary strain can be derived with the help of this 

diagram 
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Fig. 4.4. Schematic of band diagram of an n+ polysilicon/SiO2/p-Si structure biased 

in channel inversion condition and stressed with uniaxial longitudinal 

compressive stress. The solid lines indicate the conduction and valence band 

edge without external stress. The dotted lines indicate the stress induced 

band edge shift of the conduction and valence band. The figure also shows 

the energy quantization effect in the channel inversion layer and electron 

direct tunneling current from the channel inversion layer to the polysilicon 

gate under stress. 
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Fig. 4.5. Schematic of the band diagram of an n+ polysilicon/SiO2/p-Si (nMOS) 

structure, which is biased a positive gate voltage. The poly gate and channel 

are under arbitrary strain. The expression of flat band voltage for 

nMOSFETs under arbitrary strain can be derived with the help of this 

diagram 
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Fig. 4.6. Hole subband energy at gamma point versus FSi without external stress. The 

circles are data calculated by the six-band k ‧ p method with 

Schrödinger-Poisson equation. The solid lines are the fitting by the 

triangular potential approximation and the improved one band EMA. The 

figure also shows the quantization effective mass of the three lowest bands 

for best fitting. 
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Fig. 4.7. Hole subband energy at gamma point versus stress with various FSi. (a) First 

band, (b) second band, and (c) third band. The circles are data calculated by k dot p 

method with Schrödinger-Poisson equation. The solid lines are the data calculated by 

Equation (4.1) for the three lowest bands, respectively. 
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Fig. 4.8. The strain-induced band edge shift versus stress for bulk silicon (a) 

conduction and (b) valence band. 
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Fig. 4.9. (a) ΔJHDT/JHDT versus Stress. The squares, diamonds, and circles are data 

published by former works. The solid lines are the simulation result by our 

model. (b) Hole subband energy versus stress. (c) Carriers density versus 

stress. (d) Hole direct tunneling current density versus stress. 
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Fig. 4.10. (a) ΔJEDT/JEDT versus Stress. The squares, diamonds, and circles are data 

published by former works. The solid lines are the simulation result by our 

model. (b) Electron subband energy versus stress. (c) Carriers density versus 

stress. (d) Electron direct tunneling current density versus stress. 
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Fig. 4.11. Compare the influences of electron direct tunneling current between the two 

different doping concentrations of substrate. 
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