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本論文展示了一種以非對稱輕摻雜汲極金氧半體電晶體作為功率單元的 2.4GHz 

射頻功率放大器架構，該放大器可完全以 TSMC 0.18um 的 CMOS 一般製程環境來

實現。這個設計可以穩定的操作在 2.5V ~ 2.75V，而不需使用串接電路。較高

的操作電壓使得電路有優越的功率特性，根據晶片實際量測的結果，2.5V 工作

電壓條件下，功率增益達 20dB，功率增加效率(PAE)達 30%，2.75V 的工作電壓

條件下，輸出功率 P1dB 可達 21.5dBm 飽和輸出功率可達 23.2dBm，並且測得

W-CDMA π/4 QPSK 調變下，鄰近通道功率比在 15dBm 的輸出功率為-41dBc，與大

約 36dBm 的輸出三階互調截點(OIP3)。 
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Abstract 

 

 

This thesis presents a 2.4 GHz RF CMOS power amplifier based on two stages 

amplifiers topology with asymmetric-lightly-doped-drain (LDD) CMOS power cell 

which is fully embedded in the conventional foundry logic process with only one 

additional mask but without extra process step. The power amplifier can achieved 

higher output power and higher power-added efficiency (PAE) and novel linearity. 

The simulation result demonstrated 20dB power gain, and 30% PAE with 2.5V supply 

voltage, 21.5dBm at 1-dB compression point (P1dB), 23.2dBm saturate output power, 

-41dBc ACPR at 15dBm output power point with standard W-CDMA π/4 QPSK 

modulation , and ~36dBm OIP3 with 2.75V supply voltage.  

 

 

 

Keywords: CMOS power amplifier, asymmetry –LDD CMOS, power cell, 

break down voltage, PAE, power gain, P1dB, SOC. 
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Chapter 1 

INTRODUCTION  

In RF circuit design, Power Amplifiers are the most power-hungry building blocks of 

RF transceivers. Large supply voltage is requirement for practical application. CMOS 

PA design will face the great impact and hard to survive in advance technology 

implementation with low supply voltage in the future.  

The CMOS process reduce the minimum channel length in recent years, unit current 

gain cut off frequency (ft) has increased, For instance, Tsmc 0.13um technology, ft is 

above 100GHz and maximum oscillation frequency (fmax) is about 80GHz [1]; for 

Tsmc 0.18um technology, ft is about 51 GHz, fmax is about 76GHz. These results are 

suitable for present protocol. CMOS technology has made great progress, it almost 

has implemented all blocks in system successfully, such as baseband processor, 

microprocessor, flash memory, VCO, LNA, mixer [Table 1.1]. CMOS technology 

became the most common back-end system implementation.  The approach of 

system on a chip (SOC) can avoid expensive and individual bulky hardware or 

complexity system in package (SIP) technique.  

However, designers suffered from realizing the direct conversion RF system for 

several years, especially power amplifier building block. Because something cost 

trade-offs in performance.  
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1.2 Challenge of CMOS power amplifier 

Fig. 1 show the supply voltage of advance technology that decreases when gate 

length decrease. The practical supply voltage of power amplifier is 3.3V but the 

logic-core supply voltage even less than 1.2V after 90nm technology. Therefore, low 

output power standard like Bluetooth, 0~4dBm can be realized, but large output 

power would be limited by CMOS characteristic. A fatal drawback of CMOS is low 

breakdown voltage. The problem limited the supply voltage that limits the maximum 

output power of power amplifier [Fig. 1.2]. The optimum output loading design 

becomes a complex and critical issue in power amplifier design. Therefore, CMOS 

power amplifier has been one of the most challenging circuits and still defied an 

elegant solution. 

Table 1.1. implementation of system with different application 

product PA/switch IF section Base band 

Cellular Phone GaAs/SiGe Bipolar/SiGe/Si BiCMOS CMOS 

WLAN GaAs/SiGe/CMOS Bipolar/Si 

BiCMOS/CMOS 

CMOS 

Bluetooth Si BiCMOS/CMOS Si BiCMOS/CMOS CMOS 

GPS GaAs/SiGe Bipolar/Si 

BiCMOS/CMOS 

CMOS 
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Fig. 1.2 V-I load line show that If increase breakdown voltage, the output power can 

approach ideal maximum power transfer with Rload = Rs. 
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1.3 General statement of CMOS power amplifier 

What is the development of the present CMOS power amplifier? In fact, industry had 

use CMOS power amplifier for lower output power application, such as bluetooth 

and WLAN, the standard bluetooth is about 0 to 4dBm [2] and WLAN is about 15dBm. 

But output power is still a limitation and it is rare larger output power application 

designed by CMOS, the large output power application such as PHS 3G cell phone are 

almost implemented by GaAs or SiGe. The limitation not only output power but also 

efficiency, gain etc. If we want to make a break though the bottleneck, high 

performance power cell would be the solution. 

Resent years, our research group presents a new asymmetric-lightly-doped-drain 

(LDD) MOS transistor [4], [5] that is fully embedded in a CMOS logic without any 

process modification, so it can be easy implemented without any additional process 

step or extra cost. 
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Fig. 1.3  (a)Device structure of asymmetric-LDD MOS transistor .(b)breakdown 

voltage of asymmetric –LDD mosfet and conventional mosfet 

(a) (b) 
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The major difference to conventional MOS transistor is no n
+
-LDD region at drain 

side. [Fig. 1.3(a)] The formed depletion region under reverse drain bias can sustain 

large voltage for RF power application. Based on the research, this new structure can 

overcome the low breakdown voltage issue and improve the RF power performance 

[3], the breakdown can be 7.0V [Fig.1.3(b)] with still high unity current gain cut-off 

frequency (ft). Focus on full embedded CMOS power cell, we compare three general 

power cells to asymmetric LDD mos power cell with model simulation, those are 

nmos unit cell, cascode cell, inverter CMOS push pull power cell. [Table. 1.2] 

 

Table. 1.2 comparison table of different power cell 

 Tsmc_unit Asys_unit 

(our cell) 

Tsmc_Cascode 

(unit area) 

Tsmc_cascode 

(large area) 

Push 

pull 

Area (5x20) 1 1 1 2 1 

Ft (GHz) 51 43 35 35 39 

Fmax(GHz) 76 100 80 70 59 

P1dB(dBm) 13.6 18.34 12.7 18.2 13.3 

PAE @P1dB (%) 27.3 39.5 13.4 25.5 35.4 
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In addition, here shows a data of double area cascode (Two unit area - 6 - cascode) 

to compare. It shows the asymmetric LDD nmos power cell has larger fmax, output 

power (even larger than double area cascode output power) and efficiency than 

others, and it indicates that the asymmetric LDD nmos has constitutional superiority 

to construct power amplifier.  

As technology evolution, the RF gain, cut-off frequency and noise figure of Si MOSFET 

improve continuously that are widely used for wireless communications. However, 

the RF power performance of Si MOSFET has little improvement with down-scaling, 

which is limited by the inherent low breakdown voltage. 

This is especially important for RF power amplifier (PA) [6]-[7], where the voltage 

swing is ~twice of DC bias voltage [9]. This restriction decreases maximum output 

power, power density and power-added-efficiency (PAE) to a high degree. To add 

these issues, lateral-diffused MOS (LDMOS) transistors with increased breakdown 

voltage have been incorporated in CMOS processed [8]-[9], However, for higher 

frequencies and emerging switch-mode architectures, fundamental limitations, such 

as comparatively low ft/fmax and high lossy parasitic output capacitance, highly 

integration complexity and large addition of cost call for alternative technologies. 

Cascode power cell is an alternative solution to increase output voltage swing 

without breakdown. However, additional cascode MOSFETs cause extra power 
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consumption and decrease PAE. To improve the PAE, off-chip matching with higher Q 

inductors are usually used but causes additional package complexity [10]-[16]. 

One method to improve the output power is to use the special transformer 

topology even at lower voltage [12]. Nevertheless, the low power gain would be the 

problem; besides, the transformer model is difficult to build up for a general purpose 

design. Moreover, the insertion loss induces by the low magnetic coupling factor 

between the primary and secondary winding has always been the issue.  

To sum up, the present PA designers are crying out for a wonderful power cell to 

realize more powerful, energy saver and fully integrated CMOS power amplifier 

 

1.4 Motivation 

Novel power performance of asymmetric-LDD MOS transistor invites me to further 

implement a power amplifier. Does output power really improve with increasing 

operation voltage? Is the asymmetric LDD mos power amplifier superior to 

conventional PA design? Is the performance still good with high loss on – chip 

matching design to realize SOC?  Those questions are very interesting, so I make 

one step further to realize the power amplifier and finally prove it works with 

wonderful performance. I have designed an asymmetric CMOS PA chip, and chapter 2 

presents fabricated high performance PA in detail. 
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Chapter 2 

DESIGN FLOW  

 

2.1 Circuit design 

In this work, the 2-stage PA adopts a class A operation for driver stage and a class 

AB for power stage. Such arrangement is optimized for gain and efficiency with good 

linearity. The simplified schematic of the circuit is shown in Fig. 2.1. To consider the 

power efficiency issue, the size ratio of driver stage to power stage is 1:4. Besides, 

the circuit is designed with on-chip matching. Here the impedance of input, 

inter-stage and output matching to transistors are carefully selected to get a 

compromise between power, efficiency from load and source pull simulation.  

In both stages, asymmetric-LDD MOS transistors have been implemented by 

foundry standard 0.18µm 1P6M process with only one additional mask but without 

process modification. The unit cell designed in this work has 10 gate fingers, 0.18 µm 

gate length and 5 µm width. The BSIM3 model of asymmetric-LDD MOS transistor 

has been used in PA design, which was confirmed by on-wafer power 

characterization measurements at 2.4 GHz using an ATN load-pull system. The 

number of unit cell for the driver and power stage was determined by considering 

the power-level, gain, matching and linearity. The design procedure of the amplifier 
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has been carried out through the iteration of ADS and EM simulation.  

 

 

Fig. 2.1 schematic of the two stage amplifier circuit 

 

 

 

 

 

Power cell 
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2.2 Pre-layout simulation process 

Ideal lump model design: 

First, we have to make a goal table [Table.2.1] and find out the drain bias of power 

cell. 

 

Fig. 2.2 Id-Vd analysis or the a-LDD MOSFET 

From the breakdown analysis [Fig.2.2] , The I – V curve show that the breakdown 

with supply VGS voltage is about 5 V, breakdown without supply VGS voltage is about 

7 V. So the optimum DC Vds is about 2.5 to 3V with class A operation. Then, the 

design was simulated by ideal passive components to examine the power 
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performance of the structure with ideal result. 

table 2.1 shows our goals: 

Index Typical value Goal value 

Output power@P1dB 
10 ~ 20dBm 

>20dBm 

PAE 
10 ~ 30%  

>30% 

Power gain 
8~15dB  

>20dB 

ACPR@15dBm  
< -30dBc  

>-40dBc 

Supply voltage  
1.8V  

>1.8 

 

First stage design:  

To be the first stage, the linearity and gain is the most important index, so first stage 

drives in class A operation with Vgs = 1.0V. full swing generate sin wave with good 

linearity but poor efficiency. Fig.2.3 show up the bias of class A and output loading 

current.  

Second stage design: 

The second stage, PAE and output power is the most important index, so it drives in 

class AB operation with Vgs = 0.7V. by trade of linearity and efficiency, Fig.2.4 shows 

that when output swing larger than about 3.2V, the current cut off and save the 

power consumption. 
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Fig. 2.3 Id-Vd analysis and simulation with load line, gate voltage consideration 
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Fig. 2.4 Id-Vd analysis and simulation with class AB operation 
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The goal of output power is 25dBm, Vdd is about 2.5V, with Vgs 0.7V power added 

efficiency is about 35%. By equation, determinate output load for initial estimation. 

We have transistor loading current.[Fig.2.5] 
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Fig. 2.5 simulation of the transistor loading currents with class AB operation 
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Fig. 2.6 ideal lump schematic 
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Fig. 2.7 tsmc model schematic 

 

After finding out the value of passive components, replace with tsmc models [Fig.2.7], 

finishing the input matching task [Fig.2.8 ], and trade off output power to PAE on the 

load pull simulation system. Fig.2.9 show that constant PAE circle and constant 

output power circle, we take the point as the loading impedance between the central 

point of maximum constant output power circle and maximum constant PAE circle. 

After that, check the stability factor, make sure it is larger than 1[Fig.2.10], and check 

the s-parameter prevent oscillation. and the small signal gain larger than 20dB [2.11] 

At last, make sure every small signal and large signal within the goal and it was in the 

stable condition. 
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Fig. 2.8 Input matching 
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Fig.2.9 output load pull trade off 
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Fig. 2.10 stability factor > 1 
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Fig. 2.11 s-parameter of S11 –S21. 
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After simulation and match the goal, we run the layout flow to implement the chip. 

Fig. 2.12 show the layout topology, input power comes from the left and 

symmetrically to two power cells, the signal enlarge in fist stage, after internal 

matching circuit, the signal drive the second stage with fish bond symmetric wire and 

combine with output matching network. 

 

 

 
 

 

Fig. 2.12 the layout before post layout simulation 
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2.3 Post-layout simulation 

 

 

Fig. 2.13 Export the line of layout to momentum ADS system and simulation 

Layout is also a very important task for power amplifier design, due to the 

intersection influence or parasitic, the chip performance cannot match the design in 

practical, so we have to decrease those effects by post-layout simulation process. 

Fig.2.13 show the critical DC power line generates parasitic resistance [Fig.2.13 red 

circle]. To prevent loss, the line has to be widened. After modify the layout simulate 

the circuit again and find the best layout topology. 
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Fig.2.14 post layout simulation with line calculation 

To modify the layout with better simulation result, I use ADS momentum system to 

generate wire model and use ADS to simulate the result with wire model. [Fig.2.14] 

In this way, we can figure out the influence of wire effect. After this task, I can 

determinate the best layout topology and tape out. With the simulation, Fig. 2.15 

show the final layout version with best result, Fig. 2.16 show the photograph of the 

chip after implementation. 
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Fig. 2.15  the layout after post layout simulation. 

 

 

Fig. 2.16 the photograph of the chip 
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Chapter 3 

SIMULATION AND MEASUREMENT RESULT  

To verify the chip design, we first measured the small signal S-parameters. Fig. 3.1 

shows the on-wafer measurement data, which show a 20 dB gain and 17 dB input 

and output return loss- this is consistence with EM post-simulation data. 
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Fig. 3.1. Measured and simulated gain and return loss for CMOS PA. 

 

Fig. 3.2 shows the measured RF power results of the amplifier. The output power 

at 1 dB compression (P1dB) increases with increasing bias voltage from conventional 

1.8, 2.5 to 2.75 V. Such increase of desired higher output RF power is consistent with 
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simulation. Under 2.5 V bias operation, a P1dB of 20.8 dBm and power gain of 20 dB 

are measured with 30% PAE. The P1dB increases to 21.5 dBm at higher 2.75V bias 

condition with still compatible 19.6 dB power gain and 29.6% PAE.  

Good adjacent channel power ratio (ACPR) is an important linearity factor for PAs. 

Fig. 3.3 shows the measured ACPR with standard W-CDMA π/4 QPSK modulation on 

different bias voltage. Here the ACPR improves with increasing operation voltage 

from 1.8, 2.5 to 2.75V monotonically. At the 2.75 V bias voltage, an ACPR of -56 dBc 

at 0 dBm output power or -30 dBc at 20 dBm output power was measured, which is 

competitive to the data of the power amplifiers designed for better linearity [15]. In 

addition, IP3 point is an important factor, the Fig.3.4 ~ Fig.3.6 show up the IP3 point 

with different supply voltage. The output IP3 point of 1.8V, 2.5V and 2.75V is 22dBm, 

26dBm and 36dBm. So it shows that the linearity increases with larger supply 

voltage. 
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Fig. 3.2. Measured and simulated RF output power, gain and PAE of designed PA 

using high breakdown voltage asymmetric-LDD MOSFETs. 
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Fig. 3.3. Measured ACPR of designed PA using high breakdown voltage 

asymmetric-LDD MOSFETs. 
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Fig. 3.4 measurement data of third order inter modulation with 1.8V supply voltage. 
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Fig.3.5 measurement data of third order inter modulation with 2.5V supply voltage. 



 

- 25 - 

 

-30 -25 -20 -15 -10 -5 0 5 10 15 20

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

 

 

O
U
T
P
U
T
 P
O
W
E
R
 (
d
B
m
)

INPUT POWER (dBm)

 fund

 IM3

 IM5

 

Fig. 3.6 measurement data of third order inter modulation with 2.75V supply voltag 

 

Chapter 4 

COMPARISON 

The die photo of fabricated CMOS PA is shown in Fig. 2.16, which has a chip area of 

1m×1.1m. Table 4.1 summarizes the performance comparison with reported CMOS 

PA [10]-[16]. The fabricated PA using high breakdown voltage asymmetric-LDD 

MOSFETs shows the large P1dB of 21.5 dBm, high gain of 20.4 dB, and good 29.6% 

PAE at 2.4 GHz. Those power performances are better than other reported designs 

shown in Table 4.1, with added merits of simple single-ended design, using standard 

foundry technology and compact on-chip matching. 
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Table 4.1 The comparison table of Asymmetry MOS and conventional PAs. 

Ref. 
Freq. 

(GHz) 
voltage Pout (dBm) Gain (dB) PAE (%) 

Width/Pow

er density 

by 

P1dB(W/m

m) 

Matchin

g 

technolog

y 

[10] 5 1.8 19.2@1dB 7.1 17.5 1.28mm/0.065 On chip 0.18um 

[11] 5.2 1.8 
17.4/15.4@1

dB 
15.1 27.1 0.6mm/0.058 On chip 0.18um 

[12] 5.8 1 20.5@1dB ~8 
27 

(Drain) 
9.6mm/0.012 On chip 90nm 

[13] 2.4/5.2 1.8 
9.7@2.4GHz 

19.5@5.2GHz 

3.7@2.4GH

z 

24@5.4GHz 

15.3@5.2 

GHz 
1.92mm/0.046 On chip 0.18um 

[14] 
3.7~8.

8 
1.8 

19 

15.6@1dB 
8.24 25 0.96mm/0.038 On chip 0.18um 

[15] 2~2.45 2.5 16.3@1dB 18 ------- 4.2mm/0.01 Off chip 0.13um 

[16] 2.4 2.5 20@1dB 11.2 28 0.96mm/0.1 Off chip 0.25um 

This 

work 
2.4 

2.5 
22.7 

20.8@1dB 
20 30 

2mm/0.071 On chip 0.18um 

2.75 
23.2 

21.5@1dB 
19.6 29.6 
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Chapter 5 

CONCLUSION 

We have designed an asymmetric-LDD MOS transistor which has ~twice drain 

breakdown voltage to the conventional one. Besides, the power amplifier has been 

designed by single ended on chip design and fabricated by TSMC 0.18um 1P6M 

process without any process modification. The excellent power performance shows 

20dB power gain, and 20.8dBm P1dB compression power and 22.7dBm saturate 

output power with 30% PAE under 2.5V bias operation. And 20.4dB power gain, 

21.5dBm P1dB compression power and 23.2dBm saturate output power with 29.6% 

PAE under 2.75V bias operation. -41dBc ACPR at 15dBm output power, ~36dBm OIP3 

with 2.75V supply voltage. The output power and linearity increase with larger 

supply voltage, and PAE and power gain saturate at 2.75V. This research 

demonstrated that the asymmetric-LDD MOS transistor successfully implemented on 

a CMOS power amplifier with wonderful performance even with on chip matching 

design. This design method has great opportunity to be future trend and realize SOC 

of PA. 
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