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摘要 

 

 本論文根據電磁介電理論來研究電子穿越氮化銦及氮化鈦表面時，電子與固

體間發生之非彈性交互作用。體激發效應及表面激發效應都對非彈性散射截面有

所貢獻。在介電理論中，相關的激發效應可以用介電函式來描述，本論文利用實

驗所量測到的光學數據來決定延伸式德魯特函式介電中的參數。接著計算入射或

出射電子的微分倒數非彈性平均自由行徑及倒數非彈性平均自由行徑，並分析當

電子以不同的電子能量、穿越角度、或離穿越點不同距離穿越氮化銦及氮化鈦表

面時對微分倒數非彈性平均自由行徑及倒數非彈性平均自由行徑的影響。電子在

固體外移動所產生激發的總機率可以用表面激發參數來詮釋，本研究也將計算電

子入射或出射氮化銦及氮化鈦表面造成的表面激發參數，並分析當電子以不同的
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電子能量或不同穿越角度入射或出射氮化銦及氮化鈦表面時對表面激發參數的 

影響。 
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ABSTRACT 

 

A dielectric response theory was used to study the inelastic cross sections for 

electrons crossing the indium nitride and titanium nitride surface. The inelastic cross 

sections contain information on both the surface and volume excitations. Parameters 

in the extended Drude dielectric function were determined from the fits of this 

function to experimental optical data. Theoretical derivations of the differential 

inverse inelastic mean free path (DIIMFP) and inverse inelastic mean free path 

(inverse IMFP) for either incident or escaping electrons were made for different 

 iii



 iv

electron energies, crossing angles, and electron distances relative to the crossing point 

at the surface. Dependences of the calculated DIIMFP and inverse IMFP on electron 

energy, crossing angle, and electron distance were analyzed. Surface excitation 

parameter (SEP), which describes the total probability of the surface excitations for 

the electrons moving outside the solid, was also calculated for different electron 

energies and crossing angles. The energy and angular dependences of the calculated 

SEPs were also analyzed. 
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Figure Captions 

Fig. 2.1 A plot of the problem studied in this work.  An electron of charge 

 and velocity v  moves across the interface at time  from 

medium 1 to medium 2 with crossing angle 

−e r 0=t

α . ( ω)ε ,1 q  and 

 are, respectively, dielectric functions of the media 1 and 2. 

The instant position of the electron is 

( ω,q )ε2

tvr rr
= , relative to the 

crossing point at the interface. 

33

Fig. 3.1 A plot of the real and imaginary parts of the dielectric function, 

 and , and the volume and surface loss functions, ( ωε ,0R ) )( ωε ,0I

)[ ]( ωε− /1Im ,0  and ( )( )[ ]1,0/1Im +ωε− , for InN.  Solid and 

dotted curves are, respectively, calculated results of the present work 

and experimental data [14, 15]. 

34

Fig. 3.2 A plot of the real and imaginary parts of the dielectric function, 

 and , and the volume and surface loss functions, ( ωε ,0R ) )( ωε ,0I

)[ ]( ωε− /1Im ,0  and ( )( )[ ]1,0/1Im +ωε− , for TiN.  Solid and 

dotted curves are, respectively, calculated results of the present work 

and experimental data [16]. 
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Fig. 3.3 Calculated results of the DIIMFP for a 500 eV electron escaping 

from InN to vacuum with different crossing angles and distances 

from the crossing point at the surface, either outside ( ) or 

inside ( ) the solid. 

0>r

<r
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Fig. 3.4 Calculated results of the DIIMFP for a 500 eV electron incident 

from vacuum to InN with different crossing angles and distances 

from the crossing point at the surface, either outside ( ) or 

inside ( ) the solid. 

0<r

>r
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Fig. 3.5 Calculated results of the DIIMFP for a 500 eV electron escaping 

from TiN to vacuum with different crossing angles and distances 

from the crossing point at the surface, either outside ( ) or 

inside ( ) the solid. 

0>r

<r

38

Fig. 3.6 Calculated results of the DIIMFP for a 500 eV electron incident 

from vacuum to TiN with different crossing angles and distances 

from the crossing point at the surface, either outside ( ) or 

inside ( ) the solid. 

0<r

>r

39

Fig. 3.7 Calculated results of the DIIMFP for a  crossing angle electron 

escaping from InN to vacuum for several electron energies with 

different distances from the crossing point at the surface, either 

outside ( ) or inside (

°60

>r <r ) the solid. 
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Fig. 3.8 Calculated results of the DIIMFP for a  crossing angle electron 

incident from vacuum to TiN for several electron energies with 

different distances from the crossing point at the surface, either 

outside ( ) or inside ( ) the solid. 

°60

<r >r

41

Fig. 3.9 A plot of the inverse IMFP for a 500 eV electron escaping from InN 

to vacuum with different crossing angles as a function of electron 

distance from the crossing point at the surface, either outside 

( ) or inside ( ) the solid. >r <r

42

Fig. 3.10 A plot of the inverse IMFP for a 500 eV electron incident from 

vacuum to InN with different crossing angles as a function of 

electron distance from the crossing point at the surface, either 

outside ( ) or inside ( ) the solid. 0 0

0 0

<r >r

43

Fig. 3.11 A plot of the inverse IMFP for a 500 eV electron escaping from TiN 

to vacuum with different crossing angles as a function of electron 

distance from the crossing point at the surface, either outside 

( ) or inside ( ) the solid. >r <r

44

Fig. 3.12 A plot of the inverse IMFP for a 500 eV electron incident from 

vacuum to TiN with different crossing angles as a function of 

electron distance from the crossing point at the surface, either 

outside ( ) or inside ( ) the solid. 0 0<r >r
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Fig. 3.13 A plot of the inverse IMFP for a  crossing angle electron 

escaping from InN to vacuum with different electron energies as a 

function of electron distance from the crossing point at the surface, 

either outside ( ) or inside (

°60

>r <r ) the solid. 

46

Fig. 3.14 A plot of the inverse IMFP for a crossing angle electron 

incident from vacuum to TiN with different electron energies as a 

function of electron distance from the crossing point at the surface, 

either outside ( ) or inside ( ) the solid. 

°60

0 0<r >r
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Fig. 3.15 A plot of the SEP for escaping electrons moving from InN to 

vacuum as a function of electron energy and crossing angle.  Solid 

circles are the calculated results using Eq. (2.27).  Solid curves are 

the fitting results using Eq. (2.29). 

48

Fig. 3.16 A plot of the SEP for incident electrons moving from vacuum to InN 

as a function of electron energy and crossing angle.  Solid circles 

are the calculated results using Eq. (2.28).  Solid curves are the 

fitting results using Eq. (2.29). 

49

Fig. 3.17 A plot of the SEP for escaping electrons moving from TiN to 

vacuum as a function of electron energy and crossing angle.  Solid 

circles are the calculated results using Eq. (2.27).  Solid curves are 

the fitting results using Eq. (2.29). 
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Fig. 3.18 A plot of the SEP for incident electrons moving from vacuum to TiN 

as a function of electron energy and crossing angle.  Solid circles 

are the calculated results using Eq. (2.28).  Solid curves are the 

fitting results using Eq. (2.29). 
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Fig. 3.19 A plot of the SEP for 500 eV electrons escaping from InN to 

vacuum as a function of the crossing angle.  Solid circles, solid 

curve, dashed curve, and dotted curve are, respectively, the 

calculated result using Eq. (2.27), the fitting results using Eq. (2.29), 

the previous model [5], and the Oswald’s model [17]. 
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dashed curve, and dotted curve are, respectively, the calculated 
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CHAPTER 1 

INTRODUCTION 

 

In the rapid development of nano-science, the study of surface phenomenon 

plays a crucial role because of the increasing surface-to-volume ratio.  Many 

electron spectroscopies, such as the Auger electron spectroscopy (AES), x-ray 

photoelectron spectroscopy (XPS) and reflection electron energy loss spectroscopy 

(REELS), are sensitive to the surface layer within nanometer distance below the solid 

surface.  Quantitative information on inelastic interaction cross sections of 

low-energy electrons crossing solid surfaces is important in those surface sensitive 

spectroscopies.  Previous studies revealed that surface excitations contributed 

significantly to the energy-loss spectra of electrons backscattered from solid surface 

[1-3].  Therefore, surface excitations should be included in the analyses of electron 

spectroscopies. 

The inelastic cross sections contain the combined effects arisen from volume and 

surface plasmon excitations.  For electrons traveling inside the solid, the increase in 

surface excitations as electrons move closer to the surface is roughly compensated by 

the decrease in volume excitations.  Therefore, the inelastic cross sections derived 

for an infinite solid could be applied as a good approximation in this region [4, 5].  
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As electrons move outside the solid, only surface excitations are possible over an 

effective region near to the surface.  Many theoretical approaches [2, 3, 6] to surface 

excitations were dealt with the dielectric response theory.  Such surface excitations 

were usually characterized by the so-called surface excitation parameter (SEP), which 

describes the total probability of the surface excitations for the electrons moving 

outside the solid [5]. 

Previously, Kwei et al. [5] developed an inelastic-scattering model.  Kwei et al. 

used the dielectric response theory and solved the Posisson’s equation in Fourier 

space by matching the boundary conditions.  This model was used to calculate the 

SEP for normally incident and escaping electrons moving only in vacuum.  For other 

tilted crossing angle, , the SEP was approximated by multiplying the SEP for 

normally crossing angle with  [5, 7].  However, the conservations of 

energy and momentum were not completely satisfied because of the use of cylindrical 

coordinates that carried no restriction on the normal component of momentum 

transfer [8, 9].  Recently, Li et al. [8, 9] developed a new interaction model for 

obliquely incident and escaping electrons with arbitrary crossing angles.  In this 

model, spherical coordinates were employed for momentum transfer and thus satisfied 

the energy and momentum conservations.  In the present work, the Li’s model was 

applied to calculate the differential inverse inelastic mean free path (DIIMFP), the 

α

1)(cos −α
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inelastic mean free path (IMFP) and surface excitation parameter (SEP) for obliquely 

incident and escaping electrons crossing the surface of indium nitride (InN) and 

titanium nitride (TiN).  InN, a III-V semiconductor, is of interest for application in 

semiconductor devices such as lasers, light-emitting diodes, and high efficiency solar 

cells [10, 11].  TiN, a ceramic material, is generally used as a coating due to its 

outstanding properties such as high hardness, excellent corrosion resistance, chemical 

stability, etc [12, 13].  These calculations were performed based on the dielectric 

response theory using an extended Drude dielectric function with parameters obtained 

from a fit of this function to the experimental optical data [14-16].  Because of the 

strong overlapping of oscillator strengths between electrons in the valence band and 

the outermost inner shell, the data was fitted to include the contribution from also the 

outermost inner shell.  Sum rules were thus employed to confirm the accuracy of 

these parameters.  The presently calculated results were compared with 

corresponding data of other works [5, 17].  Dependences of the presently calculated 

DIIMFP and inverse IMFP on electron distance, crossing angle, and electron energy 

were analyzed.  The angular and energy dependences of the presently calculated SEP 

were also analyzed.  The calculated SEP was fitted to a simple formula as a function 

of electron energy and crossing angle. 



CHAPTER 2 

DIELECTRIC RESPONSE THEORY 

 

When an electron moves across the solid surface, it may induce volume and 

surface excitations because of the electron-solid interactions.  Volume excitations, 

including volume plasmon generations and inter-band transitions, arise when an 

electron travels deep inside the solid.  Surface excitations, on the other hand, occur 

as an electron moves close to the interface.  Both excitations can be described by the 

dielectric function of the solid.  Recently, a modified inelastic-scattering model was 

developed [4, 5].  This model was performed based on the dielectric response theory 

using the dielectric function.  By solving Poisson equations in the Fourier space and 

applying the boundary conditions, induced potential can be calculated.  Then, the 

differential inverse inelastic mean free path (DIIMFP), inelastic mean free path (IMFP) 

and surface excitation parameter (SEP) were also calculated.  Note that all quantities 

are expressed in atomic units (a.u.) unless otherwise specified. 

 

2.1 Extended Drude Dielectric Function 

 

The Drude model works fairly well for the conduction band of a free-electron- 
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like metal [18].  The conduction electrons are described by a free-electron gas 

constrained by the Fermi-Dirac statistics in this model.  The Drude dielectric 

function in the optical limit, i.e. , is given by 0→q

 

( ) ( ) ( ωε )+ωε=ωε ,0,0,0 i IR                                           (2.1) 

 

where  is the momentum transfer, and q ω  is the energy transfer.  For a solid 

having a complex structure, the valence band may be composed of several subbands.  

Each ith subband is characterized by its own oscillator strength, , damping 

constant, 

iA

iγ , and critical-point energy, iω .  Interband transitions can be 

incorporated into the Drude model by adding these subband electrons to free-electron 

system.  The imaginary part of the extended Drude dielectric function in the optical 

limit, , is given by [19] ( ωε ,0 )I

 

( ) ( )∑
γω+ω−ω

ωγ
=ωε

i ii

iiA
22222I ,0                                        (2.2) 

 

and the real part of the extended Drude dielectric function , ( )ωε ,0R , is given by 

 

( ) ( )
( )∑

γω+ω−ω

ω−ω
−ε=ωε

i ii

iiA
22222

22

BR ,0                                    (2.3) 
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where , iA iγ  and  are all associated with the i-th group electrons in the valance 

band and, sometimes, the outermost inner shells.  The background dielectric constant, 

, accounts for influence of polarizable ion cores [20]. 

iω

Bε

To extend the dielectric function into the 0≠q  region of the  plane, we 

replace  in Eq. (2.2) and Eq. (2.3) by 

ω−q

iω 2

2q
i +ω  [21, 22].  This extension leads to 

a correct behavior of the dispersion relation at the optical limit, i.e. .  Thus, 0→q

these two equations become 

 

( ) ∑
ωγ++ω−ω

ωγ
=ωε

i
ii

ii

q
Aq

222
2

2
I

)())
2

((
,                               (2.4) 

 

and 

 

( ) ∑
ωγ++ω−ω

+ω−ω
−ε=ωε

i
ii

ii

q

qA
q

222
2

2

2
2

2

BR

)())
2

((

))
2

((
,  ,                        (2.5) 

 

respectively.  Consequently, the extended Drude dielectric function can be written as 

 

( ) ( ) ( ) ∑
ωγ++ω−ω

−ε=ωε+ωε=ωε
i

ii

i

iq
Aqiqq

2
2

2
BIR

)
2

(
,,,  .             (2.6) 
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The volume energy-loss function, or the imaginary part of the volume response 

function, may then be calculated from 

 

( )
( )

( )[ ] ( )[ ]2I
2

R

I

,,
,

,
1Im

ωε+ωε
ωε

=⎥
⎦

⎤
⎢
⎣

⎡
ωε

−
qq

q
q

 .                               (2.7) 

 

Similarly, the surface energy-loss function, or the imaginary part of the surface 

response function, can be calculated from 

 

( )
( )

( )[ ] ( )[ ]2I
2

R

I

,1,
,

1,
1Im

ωε++ωε
ωε

=⎥
⎦

⎤
⎢
⎣

⎡
+ωε

−
qq

q
q

 .                          (2.8) 

 

In order to obtain the full spectrum of the dielectric function, the experimental 

optical data are frequently used [21, 23, 24].  The information of the optical data is 

useful for obtaining the dielectric function due to 

 

( ) ( ) ( )ωκ−ω=ωε 22,0 nR                                             (2.9) 

 

and 
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( ) ( ) ( )ωκω=ωε n2,0I                                                (2.10) 

 

where  is the refraction index, and ( )ωn ( )ωκ  is the extinction coefficient.  

Therefore, all parameters ( , , Bε iA iγ  and iω ) of the extended Drude dielectric 

function in Eq. (2.6) can be determined by fits of ( )ωε ,0R , ( )ωε ,0I ,  

and  to the experimental optical data.  Since optical data are 

usually available regarding the refraction index and the extinction coefficient in the 

( )[ ]ωε− ,0/1Im

( )([ 1,0Im +ωε )]/1−

limited frequency ranges, extrapolations are sometimes required [21, 23, 24]. 

Furthermore, in order to confirm the accuracy of fitting parameters, we also 

check the validity of the sum rules [25] 

 

( ) (∫
ω

ωπ=ω′ω′εω′
0

2
2 2,0 NZd )                                         (2.11) 

 

and 

 

( )
( )

2
2

0
2

,0
1Im

B

ZNd
ε
ω′

π=ω′⎥
⎦

⎤
⎢
⎣

⎡
ω′ε

−
ω′∫

ω
                                   (2.12) 

 

where  is the number of molecules per volume, and N ( )ωZ  and  are the 

corresponding effective numbers of electrons per molecule by excitation up to 

( )ω′Z

ω .  
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When  is small,  and ω ( )ωZ ( )ω′Z  only include the contribution from valence 

electrons.  As  increases to a value approach the binding energy of the outermost 

inner-shell, outermost inner-shell electrons start to contribute.  As  increases to 

infinity,  and  should saturate to , the total number of the electrons 

per molecule.  Nevertheless, the 

ω

ω

( )ωZ ( )ω′Z mZ

ω  region of available optical data usually covers 

with contributions only from the valence band and the outermost inner-shell.  

Therefore,  cannot attain from the integration of Eqs. (2.11) and (2.12).  In 

reality, we can set the upper limits of integration in Eqs. (2.11) and (2.12) to finite and 

infinite values.  For the application of finite-range sum rules, we check  and 

mZ

′π mZN

( )ωZ

( )ω′Z  at any given energy transfer.  In the case of infinite-range sum rules, we 

check 

 

∑i iA = 4                                                  (2.13) 

 

to confirm if  includes the contribution from the valence electrons and the mZ ′

outermost inner-shell electrons. 

 

2.2 Induced Potential 
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An electron of charge  and velocity −e vr  moves obliquely across the interface 

at time  from medium 1 to medium 2, as illustrated in Fig. 2.1.  0=t ( )ωε ,1 q  and 

( )ωε ,2 q  are, respectively, dielectric functions of the media 1 and 2.  The crossing 

angle  is defined as the angle between the electron moving direction and the 

surface normal.  And  is the instant position of the electron relative to the 

α

tvr rr
=

crossing point at the interface. 

The Fourier components of the scalar potential in medium 1 and medium 2 can 

be determined by solving the Poisson equations in the Fourier space [5, 26]; that are 

 

( ) ( ) ( ) ( )[ ]                         (2.14) ωρ+β−ωδ
ωε

π−
=ωΦ ,cos

,
8,

1
2

2

1 Qqv
qq

q s

r
r

r

0t

 

for , and <

 

( ) ( ) ( ) ( )[ ωρ−β−ωδ
ωε

π−
=ωΦ ,cos

,
8,

2
2

2

2 Qqv
qq

q s

r
r

r ]                         (2.15) 

 

for , where 0>t ( )zqQq ,
rr

= , Q
r

 and  are the parallel and normal components of zq

qr  with respect to the interface, β  is the angle between qr  and vr , and ( )ωρ ,Qs

r
 is 

the induced surface charge density.  Because of the boundary condition, i.e. the 

continuity of the normal component of the electric displacement at the interface, the 
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signs in front of the ( )ωρ ,Qs

r
 are opposite for 0<t  and for .  In addition, 

applying the other boundary condition, i.e. the continuity of the tangential component 

of the electric field at the interface, the induced surface charge density can be derived 

0>t

as 

 

( )
( )

∫

∫
∞+

∞−

+∞

∞−

⊥

⎢
⎣

⎡
ε

− z

qq

q
vqv

,(
11

2
2

2
||

r ⎥
⎦

⎤
ωε

+
ω

⎢
⎣

⎡
ε

−
ωε

−ωδ

=ωρ

⋅

z

z

s

dq
q

qq
Q

Q

),(
1

)

,(
1

),(
1

,

1

12

r

rr ⎥
⎦

⎤
ω

dq
)

r

r

r

                 (2.16) 

 

vrwhere  and  are the parallel and normal components of the ||v ⊥v  with respect to 

the interface.  Therefore, we can obtain ( )ω,q1
r

Φ  and ( )ω,q2
r

Φ  after substituting 

Eq. (2.16) into Eqs. (2.14) and (2.15). 

After removing the potential of the electron in the vacuum, the Fourier 

components of the induced potentials, ( )ω,,1 qind
r

Φ  and ( )ω,,2 qind
r

Φ , can be obtained.  

Then, the induced potential in the real space can be derived by applying the Fourier 

inverse transforms of ( )ω,qr ( )ω,qr and Φ ,1 ind ,2 indΦ .  Adopting the spherical 

coordinates in the integration of momentum transfer, the induced potentials in the real 

space can be written as 
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( ) ( ) ( )
( )

( )
( )

( )∫ ∫ ∫ ∫

∫ ∫ ∫

ωθφθ
ωε
ωρ

π
−

ωββ⎥
⎦

⎤
⎢
⎣

⎡
−

ωε
β−ωδ

π
−=Φ

ω−⋅

ω−β

dqdddee
q
Q

dqdde
q

qvtr

ziqtRQis

tqvti
ind

z sin
,
,

2
1                  

sin1
,

1cos1,

1
2

cos

1
,1

rr

r

r

r
r

      (2.17) 

for , and 0t <

 

( ) ( ) ( )
( )

( )
( )

( )∫ ∫ ∫ ∫

∫ ∫ ∫

ωθφθ
ωε
ωρ

π
+

ωββ⎥
⎦

⎤
⎢
⎣

⎡
−

ωε
β−ωδ

π
−=Φ

ω−⋅

ω−β

dqdddee
q
Q

dqdde
q
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for , where 0>t ( )zRr ,
rr

= , R
r

 and  are the parallel and normal components of z

rr  with respect to the interface.  By assuming that ( ) ( )ωε≈ωε ,, Qq
rr  [23, 27], we 

can obtain 

 

( )
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and 
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 .             (2.20) 
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The integrations over  in the second integrals of Eqs. (2.17) and (2.18) can be 

performed by closing the contour in the upper and lower half planes for  and 

, respectively.  In order to carry out the contour integration in the lower half 

plane, it is convenient to convert it into the upper half plane by replacing )  in 

ω

0<t

( tRQie ω−⋅
rr

0>t

Eq. (2.18) with ( ) ( ) ( )tRQitRQi eRQte ω−⋅−ω−⋅ −⋅−ω=
rrrr rr

cos2 . 

 

2.3 Differential Inverse Inelastic Mean Free Path 

 

The stopping power, or the stopping force, means the average energy loss per 

unit path length of a charged particle.  The stopping power, 
ds

dW
− , can be 

expressed in terms of the induced potential, ( )trind ,rΦ , according to [28] 

 

( )
t

ind

t
t

vds
dW

vr

,r1
rr

r

=
⎥⎦
⎤

⎢⎣
⎡

∂
Φ∂

=−  .                                         (2.21) 

 

Furthermore, the stopping power can be related to the differential inverse inelastic 

mean free path (DIIMFP), ( )rE ,,, ωαμ , by 

 

(∫ ωωαωμ=−
E

drE
ds

dW

0

,,, )                                           (2.22) 
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where E  is the electron energy.  For the case of an electron obliquely escaped from 

solid to vacuum (s→v),  and ( ωε ,q )1 ( )ωε ,q2 ) may be substituted for  and ( ωε ,q

1, respectively.  The DIIMFP is given by 

 

( ) ( ) ( )
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A similar calculation can be performed for the case of electrons obliquely incident 

from vacuum to solid (v s), by replaced → ( )ωε ,q1  and ( )ωε ,q2

)

 with 1 and 

( ωε ,q .  Then the DIIMFP is given by 
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where , , θ= sinqQ θ= cosqqz α=⊥ cos2Ev , αφθ−ω=ω sincossin~ qv , and 

 is the Heaviside step function.  The upper and lower limits of  are ( )rΘ q

( )ω−± EE 22=±q , which are derived from conservations of energy and 

momentum.  Note that terms containing [ ])1/(1Im +ε−  are the contribution from 

surface excitations, whereas terms involving [ ]ε− /1Im  are the contribution from 

volume excitation. 

 

2.4 Surface Excitation Parameter 

 

When an electron moves inside a solid, surface and volume excitations are 

treated together by the use of a depth-independent inelastic mean free path (IMFP) 

due to the approximate compensation of these excitations at any given depth [5, 8].  

The inverse IMFPs for obliquely escaping and incident electrons are, respectively, 

given by 

 

( ) ( )∫ ωωαμ=αμ →→
E

drErE
0

vsvs ,,,,,                                    (2.25) 

 

and 
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( ) ( )∫ ωωαμ=αμ →→
E

drErE
0

svsv ,,,,,  .                                  (2.26) 

 

Since only surface excitations are possible for an electron moving outside the 

solid, the surface excitation parameters (SEPs) are defined as the total probability of 

the surface excitations for the electrons moving in vacuum.  The SEP can be 

calculated as the integration of the inverse IMFP over the whole path length of the 

electron outside the solid [5].  Thus, the SEPs for obliquely escaping and incident 

electrons are, respectively, given by 

 

( ) ( )drrEEPs ∫
∞

→→ αμ=α
0

vsvs ,,,                                        (2.27) 

 

and 

 

( ) ( )drrEEPs ∫
∞−

→→ αμ=α
0

svsv ,,,  .                                      (2.28) 

 

Eqs. (2.27) and (2.28) indicate that the SEP depends on electron energy and crossing 

angle.  Examining these calculated results, we found that the SEPs generally follow 

a simple formula [9] 
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 17

)( EPs ,vs α→  or ( )
α

=α
−

→
c

b

s
aEEP
cos

,sv                                    (2.29) 

 

where ,  and  are the fitting coefficients, which are material dependent. a b c

 



CHAPTER 3 

Results and Discussion 

 

3.1 Parameters of Extended Drude Dielectric Function 

 

In the present work, we determined all parameters ( Bε , , iA iγ  and ) of the 

extended Drude dielectric function in Eq. (2.6) by fitting 

iω

( )ωε ,0R , , 

 and 

( )ω,0Iε

([ ]ωε− ,0/1Im ) )]( )([ 1,0/1Im +ωε−  from Eqs. (2.3)、 (2.2)、 (2.7) and (2.8) to 

the experimental optical data of the InN [14, 15] and TiN [16].  The fitting results of 

the parameters in Eq. (2.6) are listed in Table 3.1 for indium nitride (InN) and 

titanium nitride (TiN). 

 

3.2 Dielectric Function and Energy Loss Function 

 

Fig 3.1 shows a comparison on ( )ωε ,0R , ( )ωε ,0I , ( )[ ]ωε− ,0/1Im  and 

 for InN among the present fittings (solid curves) and the 

experimental data [14, 15] (dotted curves).  It can be seen that the present fittings are 

in good agreement as compared to the experimental data.  The volume and surface 

excitations exhibit resonant plasmon peaks at around 15 and 13 eV.  A similar plot 

( )([ 1,0/1Im +ωε− )]
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for TiN is shown in Fig 3.2 among the present fittings (solid curves) and the 

experimental data [16] (dotted curves).  Again, the volume and surface excitations 

exhibit resonant plasmon main peaks at around 25 and 14 eV.  Moreover, we also 

check the sum rules to assure the correctness of fitting parameters.  For the 

application of finite-range sum rules, we check the calculated effective number of 

valence electrons at any given energy transfer with the corresponding available 

optical data.  In the case of infinite-range sum rules, we check the accuracy of the 

total oscillator strength, .  For example, the present fits for InN cover the 4d 

inner-shell of indium owing to the strong overlapping of oscillator strengths between 

the valence band and this sub-shell in the proximity of its binding energy.  In order 

to avoid the unclear state in the separation of cross contributions, we extend our fits to 

∑i iA

higher energy transfers covering these inner-shell excitations. 

 

3.3 Differential Inverse Inelastic Mean Free Path 

 

The differential inverse inelastic mean free paths (DIIMFPs) were calculated for 

both escaping and incident electrons crossing the surface of InN and TiN using Eqs. 

(2.23) and (2.24) and the fitted results.  The calculated results of the DIIMFP for a 

500 eV electron escaping from InN to vacuum with various distances from the surface 
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crossing point are plotted in Fig. 3.3, either outside ( ) or inside ( ) the solid 

for different crossing angle, .  The DIIMFP for electrons moving inside the solid 

is approximately independent of crossing angle and distance owing to the 

compensation of the contributions from volume and surface excitations.  For the 

electrons moving in vacuum, the DIIMFP is entirely contributed from surface 

excitations.  Outside the solid, as the electrons move closer to the surface, 

corresponding to smaller 

0>r 0<r

α

r  values, the DIIMFP becomes larger owing to the 

increase in surface excitations.  Furthermore, the DIIMFP becomes larger for 

increasing crossing angle at a fixed r  value owing to the shorter distance to the 

surface.  Figure. 3.4 shows the calculated results of the DIIMFP for a 500 eV 

incident electron moving from vacuum to InN with different crossing angles and 

different distances from the surface crossing point, either outside ( ) or inside 

( ) the solid.  Again, the DIIMFP for incident electrons exhibit similar angular 

and distance dependences as for escaping electrons. Similar results of the DIIMFP for 

500 eV electrons moving between TiN and vacuum are plotted in Figs. 3.5 and 3.6 for 

0<r

0r

60

>

the escaping and incident electrons, respectively. 

Fig. 3.7 shows the calculated results of the DIIMFP for a  crossing angle 

electron escaping from InN to vacuum for several electron energies with different 

distances from the surface crossing point.  It reveals that the DIIMFP decreases with 

°
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increasing electron energy because of the smaller interacting time for volume and 

surface excitations.  However, the plasmon peak remains unchanged.  The distance 

dependence for DIIMFP is the same as we discussed in preceding paragraph.  

Similar results of the DIIMFP for  crossing angle electrons incident from 

vacuum to TiN are plotted in Fig. 3.8.  Again, the DIIMFP for incident electrons 

°60

exhibit similar energy and distance dependences as for escaping electrons. 

 

3.4 Inverse Inelastic Mean Free Path 

 

The inverse inelastic mean free paths (inverse IMFPs) were calculated for both 

escaping and incident electrons crossing the surface of several nitride semiconductors 

using Eqs. (2.25) and (2.26).  The calculated results of the inverse IMFPs with 

different crossing angles for a 500 eV electron escaping from InN to vacuum are 

plotted in Fig. 3.9 as a function of electron distances relative to the surface crossing 

point.  When the electrons travel inside the solid ( 0<r ), the inverse IMFP is 

roughly independent of the crossing angle and the electron distance owing to the 

approximate compensation of surface and volume excitations.  Therefore, the inverse 

IMFP of the electrons inside the solid approximately equals to the value 

corresponding to the infinite solid.  As the electrons moves outside the solid ( ), 0r >

 21



the inverse IMFP rapidly falls off with the increasing distance from the surface, 

especially for smaller crossing angles.  This indicates that the surface excitations are 

possible only for electrons near the surface.  And the electrons for larger crossing 

angles are more probable to induce surface excitations owing to these electrons spend 

longer time near the surface.  Fig. 3.10 shows the calculated results of the inverse 

IMFP for a 500 eV incident electron moving from vacuum to InN with several 

crossing angles.  Again, the inverse IMFP for incident electrons exhibit similar 

angular and distance dependences as for escaping electrons.  However, a comparison 

between Figs 3.9 and 3.10 indicates that the inverse IMFP for incident electrons in 

vacuum ( ) are slightly smaller than that for escaping electrons in vacuum 

( ).  This is because the different attractive forces acting on the electrons in 

vacuum by the surface charges.  The force on the incident electrons in vacuum is 

parallel to the electrons moving direction and hence accelerates the electrons.  On 

the other hand, the force on the escaping electrons in vacuum is anti-parallel to the 

electrons moving direction and thus decelerates the electron.  Consequently, the time 

spent near the surface for incident electrons in vacuum are less than that for escaping 

electrons in vacuum, leading to less surface excitations for incident electrons in 

vacuum.  Similar results of the inverse IMFP for 500 eV electrons moving between 

TiN and vacuum are plotted in Figs. 3.11 and 3.12 for the escaping and incident 

0<r

0>r
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electrons, respectively. 

Fig. 3.13 shows the calculated results of the inverse IMFP for a  crossing 

angle electron escaping from InN to vacuum with several electron energies.  It 

reveals that the inverse IMFP decreases with increasing electron energy owing to the 

smaller interacting time volume and surface excitations.  The distance dependence 

for inverse IMFP is the same as we discussed in preceding paragraph.  Similar 

results of the inverse IMFP for  crossing angle electrons incident from vacuum 

to TiN are plotted in Fig. 3.14.  Again, the inverse IMFP for incident electrons 

°60

°60

exhibit similar energy and distance dependences as for escaping electrons. 

 

3.5 Surface Excitation Parameter 

 

The surface excitation parameters (SEPs) were calculated for both escaping and 

incident electrons of InN and TiN using Eqs. (2.27) and (2.28).  The calculated 

results (solid circles) of the SEPs for electrons escaping moving from InN to vacuum 

with different electron energies and crossing angles are plotted in Fig. 3.15.  It 

reveals that the SEPs decrease with increasing electron energy due to the smaller 

interacting time between the electrons and the surface.  It can be also seen that the 

SEPs increase for larger crossing angles due to the longer time for electron-surface 
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interactions.  The SEPs rise slowly with increasing crossing angle until about 

, above which such a rise becomes rapidly.  Fig 3.16 shows the calculated 

results (solid circles) of the angular and energy dependent SEPs for incident electrons 

moving from vacuum to InN.  Again, the SEPs for incident electrons exhibit similar 

energy and angular dependences as for escaping electrons.  Here the SEPs of the 

incident electrons are slightly smaller than that of the escaping electrons due to the 

electrons acceleration in the former case, as described earlier.  The presently 

calculated SEPs are fitted to Eq. (2.29).  The fitting results are also included in Figs. 

3.15 and 3.16 as solid curves for comparison.  It reveals that the fitting results are in 

good agreement as compared to the calculated SEPs.  Similar results of the SEPs for 

electrons moving between TiN and the vacuum with different electron energies and 

crossing angles are plotted in Figs. 3.17 and 3.18 for the escaping and incident 

electrons, respectively.  With 

°=α 70

E  in electron-volts, we list the best fitted values of 

the parameters ,  and  in Table 3.2 for InN and TiN. a b c

Fig 3.19 is a plot of the SEP for 500 eV electrons escaping from InN to vacuum 

as a function of the crossing angle.  Solid circles, solid curve, dashed curve, and 

dotted curve are, respectively, the calculated result using Eq. (2.27), the fitting results 

using Eq. (2.29), the previous model [5], and the Oswald’s model [17].  It reveals 

that the results using previous model work only approximately due to the simplified 
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1)(cos −α  dependence of the SEP on crossing angle and carrying no restriction on the 

normal component of momentum transfer in the previous model.  There is a large 

discrepancy between the results present and Oswald’s models.  The reason is that the 

Oswald’s model is valid only for free-electron-like materials.  InN, however, is a 

semiconductor with small band gap and complex band structure.  Fig. 3.20 shows the 

similar results of the crossing-angle-dependent SEP calculated using Eq. (2.28) for 

500 eV electrons incident from vacuum to TiN (solid circles).  Again, the results of 

present fitting (solid curve), the previous model (dashed curve), and the Oswald’s 

model (dotted curve) are included in this figure for comparisons. 
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CHAPTER 4 

Conclusions 

 

InN, a small band gap semiconductor, is an attractive material in the application 

of laser and light-emitting diodes.  TiN, an extremely hard ceramic material, is 

widely used in protective coatings on cutting tools.  In the present work, a modified 

inelastic-scattering model was applied to calculate the inelastic cross sections for 

electrons moving across the InN and TiN surface.  This model was developed based 

on the dielectric response theory.  The DIIMFP, inverse IMFP, and SEP were 

calculated using extended Drude dielectric functions with parameters obtained from a 

fit of this function to the experimental optical data. 

It can be seen that the DIIMFP and inverse IMFP for electrons moving inside the 

solid were roughly independent of the electron distance and crossing angle due to the 

compensation of surface and volume excitations.  Therefore, the inverse IMFP 

approximately equals to the value corresponding to the infinite solid.  When the 

electrons travel in the vacuum, the DIIMFP and inverse IMFP became larger for 

increasing crossing angle, or decreasing electron distance owing to the increase in 

surface excitations. Besides, the DIIMFP and inverse IMFP became smaller for 

increasing electron energy due to the less interacting time for volume and surface 
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excitations. 

The SEP calculated as the integration of the inverse IMFP over whole path 

length of the electron in vacuum.  Thus the SEP increases with increasing crossing 

angle or decreasing electron energy.  The attractive force on the escaping or incident 

electron exerted by the surface induced charge decelerates or accelerates the electron, 

respectively.  Therefore, the DIIMFP, inverse IMFP and SEP of escaping electrons 

in vacuum are larger than those of incident electron.  The presently calculated SEP 

was found to follow a simple formula as a function of electron energy and crossing 

angle. 
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Table 3.1   Parameters in the dielectric function of Eq. (2.6) for InN and TiN. 

 

InN (εB=1.2) TiN (εB=1) 

Ai(eV2) γi(eV) ωi(eV) Ai(eV2) γi(eV) ωi(eV)

3.00 1.50 3.00 55.00 0.70 0.10

15.00 5.00 3.50 64.00 3.10 5.00

65.00 2.70 5.40 8.00 2.00 5.40

17.00 1.60 8.00 25.00 2.50 6.50

1.00 1.00 8.50 15.00 4.80 7.40

2.00 1.00 8.90 90.00 4.60 8.80

3.00 1.10 9.00 29.80 3.67 13.30

100.00 4.10 10.30 160.00 10.80 19.80

20.00 4.00 12.60

56.00 6.00 20.10

30.00 5.00 27.00

25.00 4.00 24.00

28.00 5.00 32.00

35.00 20.00 36.00

65.00 10.00 40.00
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Table 3.2   Fitted values of parameters ,  and  in Eq. (2.29) for InN and TiN. a b c

 

 Escaping electrons Incident electrons 

 a b c a b c 

InN 1.8351 0.4833 0.8605 0.9362 0.4862 1.1248 

TiN 3.3378 0.5039 0.8292 1.7079 0.5088 1.1040 
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Fig. 2.1  A plot of the problem studied in this work.  An electron of charge  and 

velocity  moves across the interface at time 

−e

vr 0=t  from medium 1 to 

medium 2 with crossing angle α . ( )ωε ,q1  and ( )ωε ,q2

tvr

 are, respectively, 

dielectric functions of the media 1 and 2.  The instant position of the 

electron is , relative to the crossing point at the interface. rr
=
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Fig 3.1  A plot of the real and imaginary parts of the dielectric function, ( )ωε ,0R

( )[ ]ωε ,0/

 

and , and the volume and surface loss functions,  

and 

( ωε ,0I )

)

−1Im

( )([ ]1,0 +ωε/1Im − ,  for InN.  Solid and dotted curves are, 

respectively, calculated results of the present work and experimental data 

[14, 15]. 
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Fig. 3.2  A plot of the real and imaginary parts of the dielectric function, ( )ωε ,0R

( )[ ]ωε ,0/

 

and , and the volume and surface loss functions,  

and 

( ωε ,0I )

)

−1Im

( )([ ]1,0 +ωε/1Im − ,  for TiN.  Solid and dotted curves are, 

respectively, calculated results of the present work and experimental data 

[16]. 
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Fig 3.3  Calculated results of the DIIMFP for a 500 eV electron escaping from InN 

to vacuum with different crossing angles and distances from the crossing 

point at the surface, either outside ( ) or inside (0r 0> <r ) the solid. 
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Fig 3.4  Calculated results of the DIIMFP for a 500 eV electron incident from 

vacuum to InN with different crossing angles and distances from the 

crossing point at the surface, either outside ( 0<r 0r) or inside ( ) the >

solid. 
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Fig 3.5  Calculated results of the DIIMFP for a 500 eV electron escaping from TiN 

to vacuum with different crossing angles and distances from the crossing 

point at the surface, either outside ( ) or inside (0r 0> <r ) the solid. 

 

 

 

 38



 

 

 

 

 

Fig 3.6  Calculated results of the DIIMFP for a 500 eV electron incident from 

vacuum to TiN with different crossing angles and distances from the 

crossing point at the surface, either outside ( 0<r 0r) or inside ( ) the >

solid. 
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Fig 3.7  Calculated results of the DIIMFP for a  crossing angle electron 

escaping from InN to vacuum for several electron energies with different 

distances from the crossing point at the surface, either outside ( ) or 

°60

0r

0

>

inside ( <r ) the solid. 

 

 

 40



 

 

 

 

 

Fig 3.8  Calculated results of the DIIMFP for a  crossing angle electron 

incident from vacuum to TiN for several electron energies with different 

distances from the crossing point at the surface, either outside ( ) or 

°60

0r

0r

<

inside ( ) the solid. >
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Fig 3.9  A plot of the inverse IMFP for a 500 eV electron escaping from InN to 

vacuum with different crossing angles as a function of electron distance 

from the crossing point at the surface, either outside ( ) or inside 0r

0r

>

( ) the solid. <
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Fig 3.10  A plot of the inverse IMFP for a 500 eV electron incident from vacuum to 

InN with different crossing angles as a function of electron distance from 

the crossing point at the surface, either outside ( 0<r 0r) or inside ( ) the >

solid. 
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Fig 3.11  A plot of the inverse IMFP for a 500 eV electron escaping from TiN to 

vacuum with different crossing angles as a function of electron distance 

from the crossing point at the surface, either outside ( ) or inside 0r

0r

>

( ) the solid. <
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Fig 3.12  A plot of the inverse IMFP for a 500 eV electron incident from vacuum to 

TiN with different crossing angles as a function of electron distance from 

the crossing point at the surface, either outside ( 0<r 0r) or inside ( ) the >

solid. 
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Fig 3.13  A plot of the inverse IMFP for a  crossing angle electron escaping 

from InN to vacuum with different electron energies as a function of 

electron distance from the crossing point at the surface, either outside 

°60

0r 0r( ) or inside ( ) the solid. > <
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Fig 3.14  A plot of the inverse IMFP for a  crossing angle electron incident 

from vacuum to TiN with different electron energies as a function of 

electron distance from the crossing point at the surface, either outside 

°60

0r 0r( ) or inside ( ) the solid. < >
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Fig. 3.15  A plot of the SEP for escaping electrons from InN to vacuum as a function 

of electron energy and crossing angle.  Solid circles are the calculated 

results using Eq. (2.27).  Solid curves are the fitting results using 

Eq. (2.29). 
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Fig. 3.16  A plot of the SEP for incident electrons from vacuum to InN as a function 

of electron energy and crossing angle.  Solid circles are the calculated 

results using Eq. (2.28).  Solid curves are the fitting results using 

Eq. (2.29). 
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Fig. 3.17  A plot of the SEP for escaping electrons from TiN to vacuum as a function 

of electron energy and crossing angle.  Solid circles are the calculated 

results using Eq. (2.27).  Solid curves are the fitting results using 

Eq. (2.29). 
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Fig. 3.18  A plot of the SEP for incident electrons from vacuum to TiN as a function 

of electron energy and crossing angle.  Solid circles are the calculated 

results using Eq. (2.28).  Solid curves are the fitting results using 

Eq. (2.29). 
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Fig. 3.19  A plot of the SEP for 500 eV electrons escaping from InN to vacuum as a 

function of the crossing angle.  Solid circles, solid curve, dashed curve, 

and dotted curve are, respectively, the calculated result using Eq. (2.27), the 

fitting results using Eq. (2.29), the previous model [5], and the Oswald’s 

model [17]. 
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Fig. 3.20  A plot of the SEP for 500 eV electrons incident from vacuum to TiN as a 

function of the crossing angle.  Solid circles, solid curve, dashed curve, 

and dotted curve are, respectively, the calculated result using Eq. (2.28), the 

fitting results using Eq. (2.29), the previous model [5], and the Oswald’s 

model [17]. 
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