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ABSTRACT

A dielectric response theory was used to study the inelastic cross sections for
electrons crossing the indium nitride and titanium nitride surface. The inelastic cross
sections contain information on both the surface and volume excitations. Parameters
in the extended Drude dielectric function were determined from the fits of this
function to experimental optical data. Theoretical derivations of the differential
inverse inelastic mean free path (DIIMFP) and inverse inelastic mean free path

(inverse IMFP) for either incident or escaping electrons were made for different



electron energies, crossing angles, and electron distances relative to the crossing point

at the surface. Dependences of the calculated DIIMFP and inverse IMFP on electron

energy, crossing angle, and electron distance were analyzed. Surface excitation

parameter (SEP), which describes the total probability of the surface excitations for

the electrons moving outside the solid, was also calculated for different electron

energies and crossing angles. The energy and angular dependences of the calculated

SEPs were also analyzed.
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Fig. 2.1

Fig. 3.1

Fig. 3.2

Figure Captions

A plot of the problem studied in this work. An electron of charge 33
e~ and velocity V. moves across the interface at time t=0 from
medium 1 to medium 2 with crossing angle o. &(q,®) and
e,(q,0) are, respectively, dielectric functions of the media 1 and 2.

The instant position of the electron is r=vt, relative to the
crossing point at the interface.

A plot of the real and imaginary parts of the dielectric function, 34
ex(0,0) and ¢,(0,0),sand the volume and surface loss functions,
Im[-1/¢(0,®)] and” Im[-1/(s(0,®)+ 1)}, for InN.  Solid and
dotted curves are, respectively, calculated results of the present work

and experimental data [14, 15].

A plot of the real and imaginary parts of the dielectric function, 35
ex(0,) and ¢,(0,®), and the volume and surface loss functions,
Im[-1/¢(0,®)] and Im[-1/(e(0,)+1)], for TiN. Solid and
dotted curves are, respectively, calculated results of the present work

and experimental data [16].



Fig. 3.3
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Fig. 3.7

Calculated results of the DIIMFP for a 500 eV electron escaping

from InN to vacuum with different crossing angles and distances

from the crossing point at the surface, either outside (r>0) or

inside (r < 0) the solid.

Calculated results of the DIIMFP for a 500 eV electron incident

from vacuum to InN with different crossing angles and distances

from the crossing point at the surface, either outside (r <0Q) or

inside (r > 0) the solid.

Calculated results of the DIIMFP for a 500 eV electron escaping

from TiN to vacuum with different crossing angles and distances

from the crossing point at the surface,-either outside (r >0) or

inside (r < 0) the solid.

Calculated results of the DIIMFP for a 500 eV electron incident

from vacuum to TiN with different crossing angles and distances

from the crossing point at the surface, either outside (r <0Q) or

inside (r > 0) the solid.

Calculated results of the DIIMFP for a 60° crossing angle electron

escaping from InN to vacuum for several electron energies with

different distances from the crossing point at the surface, either

outside (r > 0) or inside (r < 0) the solid.
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Fig. 3.8

Fig. 3.9

Fig. 3.10

Fig. 3.11

Fig. 3.12

Calculated results of the DIIMFP for a 60° crossing angle electron

incident from vacuum to TiN for several electron energies with

different distances from the crossing point at the surface, either

outside (r <0) orinside (r > 0) the solid.

A plot of the inverse IMFP for a 500 eV electron escaping from InN

to vacuum with different crossing angles as a function of electron

distance from the crossing point at the surface, either outside

(r>0)orinside (r <0) the solid.

A plot of the inverse IMFP for a 500 eV electron incident from

vacuum to InN with «different crossing angles as a function of

electron distance from the crossing point at the surface, either

outside (r <0) or inside (r > 0) the solid.

A plot of the inverse IMFP for a 500 eV electron escaping from TiN

to vacuum with different crossing angles as a function of electron

distance from the crossing point at the surface, either outside

(r>0)orinside (r <0) the solid.

A plot of the inverse IMFP for a 500 eV electron incident from

vacuum to TiN with different crossing angles as a function of

electron distance from the crossing point at the surface, either

outside (r <0) orinside (r > 0) the solid.
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Fig. 3.13

Fig. 3.14

Fig. 3.15

Fig. 3.16

Fig. 3.17

A plot of the inverse IMFP for a 60° crossing angle electron

escaping from InN to vacuum with different electron energies as a

function of electron distance from the crossing point at the surface,

either outside (r > 0) or inside (r < 0) the solid.

A plot of the inverse IMFP for a 60° crossing angle electron

incident from vacuum to TiN with different electron energies as a

function of electron distance from the crossing point at the surface,

either outside (r <0) or inside (r > 0) the solid.

A plot of the SEP for escaping electrons moving from InN to

vacuum as a function of electron energy and crossing angle. Solid

circles are the calculated results using Eq: (2.27). Solid curves are

the fitting results using’Eg. (2.29).

A plot of the SEP for incident electrons moving from vacuum to InN

as a function of electron energy and crossing angle. Solid circles

are the calculated results using Eq. (2.28). Solid curves are the

fitting results using Eq. (2.29).

A plot of the SEP for escaping electrons moving from TiN to

vacuum as a function of electron energy and crossing angle. Solid

circles are the calculated results using Eq. (2.27). Solid curves are

the fitting results using Eq. (2.29).
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Fig. 3.18

Fig. 3.19

Fig. 3.20

A plot of the SEP for incident electrons moving from vacuum to TiN

as a function of electron energy and crossing angle. Solid circles

are the calculated results using Eq. (2.28). Solid curves are the

fitting results using Eq. (2.29).

A plot of the SEP for 500 eV electrons escaping from InN to

vacuum as a function of the crossing angle. Solid circles, solid

curve, dashed curve, and dotted curve are, respectively, the

calculated result using Eq. (2.27), the fitting results using Eq. (2.29),

the previous model [5], and the Oswald’s model [17].

A plot of the SEP for 500 eV electrons.incident from vacuum to TiN

as a function of the crossing angle. 'Solid circles, solid curve,

dashed curve, and dotted curve are, respectively, the calculated
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CHAPTER 1
INTRODUCTION

In the rapid development of nano-science, the study of surface phenomenon
plays a crucial role because of the increasing surface-to-volume ratio. Many
electron spectroscopies, such as the Auger electron spectroscopy (AES), x-ray
photoelectron spectroscopy (XPS) and reflection electron energy loss spectroscopy
(REELS), are sensitive to the surface layer within nanometer distance below the solid
surface. Quantitative information on inelastic interaction cross sections of
low-energy electrons crossing solid surfaces is important in those surface sensitive
spectroscopies. Previous studies. revealed that surface excitations contributed
significantly to the energy-loss spectra of electrons backscattered from solid surface
[1-3]. Therefore, surface excitations should be included in the analyses of electron
spectroscopies.

The inelastic cross sections contain the combined effects arisen from volume and
surface plasmon excitations. For electrons traveling inside the solid, the increase in
surface excitations as electrons move closer to the surface is roughly compensated by
the decrease in volume excitations. Therefore, the inelastic cross sections derived

for an infinite solid could be applied as a good approximation in this region [4, 5].



As electrons move outside the solid, only surface excitations are possible over an
effective region near to the surface. Many theoretical approaches [2, 3, 6] to surface
excitations were dealt with the dielectric response theory. Such surface excitations
were usually characterized by the so-called surface excitation parameter (SEP), which
describes the total probability of the surface excitations for the electrons moving
outside the solid [5].

Previously, Kwei et al. [5] developed an inelastic-scattering model. Kwei et al.
used the dielectric response theory and solved the Posisson’s equation in Fourier
space by matching the boundary conditions. * This model was used to calculate the
SEP for normally incident and escaping electrons moving only in vacuum. For other
tilted crossing angle, o, the SEP was approximated by multiplying the SEP for
normally crossing angle with (cosa)™ [5, 7]. However, the conservations of
energy and momentum were not completely satisfied because of the use of cylindrical
coordinates that carried no restriction on the normal component of momentum
transfer [8, 9]. Recently, Li et al. [8, 9] developed a new interaction model for
obliquely incident and escaping electrons with arbitrary crossing angles. In this
model, spherical coordinates were employed for momentum transfer and thus satisfied
the energy and momentum conservations. In the present work, the Li’s model was

applied to calculate the differential inverse inelastic mean free path (DIIMFP), the



inelastic mean free path (IMFP) and surface excitation parameter (SEP) for obliquely

incident and escaping electrons crossing the surface of indium nitride (InN) and

titanium nitride (TiN). InN, a Il11-V semiconductor, is of interest for application in

semiconductor devices such as lasers, light-emitting diodes, and high efficiency solar

cells [10, 11]. TiN, a ceramic material, is generally used as a coating due to its

outstanding properties such as high hardness, excellent corrosion resistance, chemical

stability, etc [12, 13]. These calculations were performed based on the dielectric

response theory using an extended Drude dielectric function with parameters obtained

from a fit of this function to the experimental optical data [14-16]. Because of the

strong overlapping of oscillator-strengths between electrons in the valence band and

the outermost inner shell, the data was fitted to include the contribution from also the

outermost inner shell. Sum rules were thus employed to confirm the accuracy of

these parameters. The presently calculated results were compared with

corresponding data of other works [5, 17]. Dependences of the presently calculated

DIIMFP and inverse IMFP on electron distance, crossing angle, and electron energy

were analyzed. The angular and energy dependences of the presently calculated SEP

were also analyzed. The calculated SEP was fitted to a simple formula as a function

of electron energy and crossing angle.



CHAPTER 2
DIELECTRIC RESPONSE THEORY

When an electron moves across the solid surface, it may induce volume and
surface excitations because of the electron-solid interactions. Volume excitations,
including volume plasmon generations and inter-band transitions, arise when an
electron travels deep inside the solid. Surface excitations, on the other hand, occur
as an electron moves close to the interface. Both excitations can be described by the
dielectric function of the solid. Recently, a modified inelastic-scattering model was
developed [4, 5]. This model was performed based-on the dielectric response theory
using the dielectric function. By solving Poisson.equations in the Fourier space and
applying the boundary conditions, induced potential can be calculated. Then, the
differential inverse inelastic mean free path (DIIMFP), inelastic mean free path (IMFP)
and surface excitation parameter (SEP) were also calculated. Note that all quantities

are expressed in atomic units (a.u.) unless otherwise specified.

2.1 Extended Drude Dielectric Function

The Drude model works fairly well for the conduction band of a free-electron-



like metal [18]. The conduction electrons are described by a free-electron gas

constrained by the Fermi-Dirac statistics in this model.

function in the optical limit, i.e. q— 0, is given by

e(0,0) =g, (0,)+ig, (0, )

The Drude dielectric

2.1)

where g is the momentum transfer, and ® is the energy transfer. For a solid

having a complex structure, the valence band may be composed of several subbands.

Each ith subband is characterized:by its own oscillator strength, A, damping

constant, y,, and critical-point: energy;" ®

. nterband transitions can be

incorporated into the Drude model by adding these-subband electrons to free-electron

system. The imaginary part of the extended Drude dielectric function in the optical

limit, ¢,(0,), is given by [19]

SI(Q(D):Z Ayo

2
~ (02 -0’ ] + 0%y

(2.2)

and the real part of the extended Drude dielectric function, SR(O,O)), is given by

(2.3)



where A, vy, and o, areall associated with the i-th group electrons in the valance
band and, sometimes, the outermost inner shells. The background dielectric constant,
eg, accounts for influence of polarizable ion cores [20].

To extend the dielectric function into the q=0 region of the g—® plane, we

2

replace o, in Eq. (2.2) and Eq. (2.3) by o, +q? [21, 22]. This extension leads to
a correct behavior of the dispersion relation at the optical limit, i.e. q—0. Thus,

these two equations become

sl(q,m)zz A(;Zim (2.4)
' (0 - (@ +7)2)2 e ((OYi)Z

and

AW o+ 97

8R(q1(0)=83_z

2 , (2.5)
"0 = (0 + ) + (o)

respectively. Consequently, the extended Drude dielectric function can be written as

£(0,0) = (0, 0)+i5, (0,0) =55 - 3 A . (26)

"o’ — (o, +qz)2 +ioy,



The volume energy-loss function, or the imaginary part of the volume response

function, may then be calculated from

m -1 — gl(q!m)
| L(q,w)} [ex (g, 0)f +[g, (g, @) (2.7)

Similarly, the surface energy-loss function, or the imaginary part of the surface

response function, can be calculated from

m 1 - Sl(q’m)
| L(q,w)ﬂ} Eqo) s Fillaof - (28)

In order to obtain the full spectrum of the dielectric function, the experimental
optical data are frequently used [21, 23, 24]. The information of the optical data is

useful for obtaining the dielectric function due to

ex(0,0)=n’*(0)-k*(o) (2.9)

and



£,(0,0) = 2n(ok(w) (2.10)

where n(o) is the refraction index, and «(w) is the extinction coefficient.
Therefore, all parameters (g5, A, y; and ;) of the extended Drude dielectric
function in Eq. (2.6) can be determined by fits of &.(0,0), £,(0,0), Im[-1/£(0,0)]
and Im[-1/((0,w)+1)] to the experimental optical data. Since optical data are
usually available regarding the refraction index and the extinction coefficient in the
limited frequency ranges, extrapolations are sometimes required [21, 23, 24].
Furthermore, in order to confirm the accuracy of fitting parameters, we also

check the validity of the sum rules [25]

J:O o'e,(0,0")dw’ = 27°NZ (o) (2.11)

and

j‘”mm 1 4o 202N iﬁ’) (2.12)
0 e(0,0') €q

where N is the number of molecules per volume, and Z(w) and Z'(w) are the

corresponding effective numbers of electrons per molecule by excitation up t0 .

8



When o is small, Z(o) and Z'(w) only include the contribution from valence
electrons. As ® increases to a value approach the binding energy of the outermost
inner-shell, outermost inner-shell electrons start to contribute. As ® increases to

infinity, Z(o) and Z'() should saturate to Z,, the total number of the electrons
per molecule. Nevertheless, the « region of available optical data usually covers

with contributions only from the valence band and the outermost inner-shell.

Therefore, Z_, cannot attain from the integration of Egs. (2.11) and (2.12). In
reality, we can set the upper limits of integration in Egs. (2.11) and (2.12) to finite and
infinite values. For the applicationiof finite=range sum rules, we check Z(w) and
Z’(w) at any given energy transfer.. In the case of infinite-range sum rules, we

check

2 A =4nNZ; (2.13)

to confirm if Z' includes the contribution from the valence electrons and the

outermost inner-shell electrons.

2.2 Induced Potential



An electron of charge e~ and velocity Vv moves obliquely across the interface

attime t=0 from medium 1 to medium 2, as illustrated in Fig. 2.1. &(q,®) and
gz(q,a)) are, respectively, dielectric functions of the media 1 and 2. The crossing
angle a is defined as the angle between the electron moving direction and the
surface normal. And F =Vt is the instant position of the electron relative to the
crossing point at the interface.

The Fourier components of the scalar potential in medium 1 and medium 2 can

be determined by solving the Poisson equations in the Fourier space [5, 26]; that are

_ —8r? =
®,(d, ) = o [6(— qvcosp)+p, (@, o) (2.14)
for t<0,and
@, (3,0 =%[§(w—qvcoss)—ps(@m)] (2.15)

for t>0, where q:(@,qz), Q and q, are the parallel and normal components of
g with respect to the interface, B is the angle between ¢ and v, and ps(d,m) is
the induced surface charge density. Because of the boundary condition, i.e. the

continuity of the normal component of the electric displacement at the interface, the

10



signs in front of the ps((':),(n) are opposite for t<0 and for t>0. In addition,
applying the other boundary condition, i.e. the continuity of the tangential component
of the electric field at the interface, the induced surface charge density can be derived

as

TS(co—Q-\Zl—qzvl){ 11 }dq
@) a@o)]

(2.16)

1 { 1 1 }
I—Z -+ — dq,
q° [ &,(0,0) &/(q, o)

—00

—

where v, and v, are the parallel and-normal.components of the v with respect to
the interface. Therefore, we ¢an obtain“®,(q, ) -and ®,(q, ) after substituting
Eg. (2.16) into Egs. (2.14) and (2.15).

After removing the potential of the electron in the vacuum, the Fourier

components of the induced potentials, ®,,,(d,®) and ®@,,,(d, ), can be obtained.

Then, the induced potential in the real space can be derived by applying the Fourier

inverse transforms of ®@,,,(d,®) and ®,,,(d,®). Adopting the spherical

coordinates in the integration of momentum transfer, the induced potentials in the real

space can be written as

11



Dy (F1)=—= 8(w— qvcosp (avicosp-ot)sin B dBdgde
][ foto-awos) 21l

2.17)
_Z_RZHHM i(@R-atlginzgingdpdadqde

&,(4, »)

for t<0, and

@, (7, t)=—=1 | | 8(c - qvcosp (avicosp-ot)sin B dBdgde
1ty 2

+ 2_712 J' I ”é(;—z))e‘ QR-otlgia:2gingdgdodgda

(2.18)

for t>0, where T = (ﬁ,z), R and'z are the parallel and normal components of

r with respect to the interface. ' By assuming that g(q,m)z s(ﬂ,(o) [23, 27], we

can obtain

ps(a’w)zi Qv, ‘81((j (’))_82(# (’)) (2.19)
&(d, o) n( -Q- V”) +Q%? 81(4 colal(a ® +82(H w)]
and

s(q’m)zi Qv, 81((5 “’)‘82 0 ‘”) (2.20)
g,(0 o) = (03—@ \7”)2 +Q%? 82(_’,03181((5 ® +82(_> (o)]

12



The integrations over ® in the second integrals of Egs. (2.17) and (2.18) can be
performed by closing the contour in the upper and lower half planes for t<0 and
t >0, respectively. In order to carry out the contour integration in the lower half

plane, it is convenient to convert it into the upper half plane by replacing gl@f-ot) i

Eq. (2.18) with e‘(é'r“‘”‘) = 2cos(wt -Q- F?)—e‘i(‘j"i“’“).
2.3 Differential Inverse Inelastic Mean Free Path
The stopping power, or the stopping force;.means the average energy loss per

unit path length of a charged particle. ~The- stopping power, —CL—V:, can be

expressed in terms of the induced potential,” @, (F,t), according to [28]

_dﬂ_l[a®lnd(?’t):| (2 21)

Furthermore, the stopping power can be related to the differential inverse inelastic

mean free path (DIIMFP), u(a, E,o,r), by

_aw_

E
= ,E,o,r)d 2.22
. j op(o, E,0,r)do (2.22)

13



where E isthe electron energy. For the case of an electron obliquely escaped from

solid to vacuum (s—V), &,(q,®) and &,(q,w) may be substituted for &(q,®) and

1, respectively. The DIIMFP is given by

- 2 %1 1
38 (a,E,(D,r)—ﬁa[dqalm{—}@(—r)

¢(0,0)
2c0sa. ¢ ", . gsin0cos(q,reoso lexp(~ |r[Qcosa) ~1
- dq [do[d Z | -
i ,[ q.[ OJ. 0 &2 + QA m S(Q,(o) ®( r)
q_ 0 0
q, n/2 2=m =2 _ _
+4C03:Sajdq Idej-dd) gsin ecos(qzrczzom)zeip( |r|QCOSOL)Im{ 1 }@(—r)
A o +Q°V] g(Qw)+1
+4cos<x‘]:d njzde]:rdd) qsinzeexp(—|r|Qcosoc)|m -1 ZCOS(@j—eXp(—MQCOSOL) o(r)
n’ . a . o’ +Q%? e(Q,0)+1 v

(2.23)

A similar calculation can be performed for the case of electrons obliquely incident
from vacuum to solid (v—s), by replaced ¢,(q,0) and &,(q,) with 1 and

e(g,®). Then the DIIMFP is given by

dcosa 't "f. % . qsin?0cos(q, rcosaexp(—|r|Qcosa) -1
(o, Ey,1) = dq [do[d ! | o
n> (o, E,,1) - a[q_!. .([d) o’ +Q? ms(Q,m)Jrl (1)
2 %1 -1
< fdg=1m —— @
o [ i PO
2c0sa. " % gsin0exp(~|r/Qcosa) —1 or
-3 a[dq _([de!dd) 5 1O Im 0.0) {ZCOS(TJ—exp(—|r|Qcosoc)}®(r)
+4C050cqf d “jz | BT " qsinzeexp(—|r|Qc05a)lm 1 ZCOS(@j—exp(—hpcosQ) o)
L qo g o’ +Q? g(Qw)+1 v
(2.24)

14



where Q =qsind, ¢, =qcoso , vlzx/fcom, o=wn-qvsindcospsina, and
®(r) is the Heaviside step function. The upper and lower limits of q are
. =ﬂim, which are derived from conservations of energy and
momentum. Note that terms containing Im[—l/(g +1)] are the contribution from
surface excitations, whereas terms involving Im[-1/¢] are the contribution from

volume excitation.

2.4 Surface Excitation Parameter

When an electron moves=inside a solid, surface and volume excitations are
treated together by the use of a‘depth=independent inelastic mean free path (IMFP)
due to the approximate compensation of these excitations at any given depth [5, 8].
The inverse IMFPs for obliquely escaping and incident electrons are, respectively,

given by

(o, E,r)= [ 1" (a, E, @, 1 )do (2.25)

Il
O ey T

and

15



u‘HS(OL, E, r) u"”s((x, E, o, I’)dw . (2.26)

Il
O Sy [T

Since only surface excitations are possible for an electron moving outside the
solid, the surface excitation parameters (SEPs) are defined as the total probability of
the surface excitations for the electrons moving in vacuum. The SEP can be
calculated as the integration of the inverse IMFP over the whole path length of the
electron outside the solid [5]. Thus, the SEPs for obliquely escaping and incident

electrons are, respectively, given by

P (o B) = [ (e, E, rir (2.27)
0

and
0

P (o, E) = j 1 (o, E,rr (2.28)

Egs. (2.27) and (2.28) indicate that the SEP depends on electron energy and crossing
angle. Examining these calculated results, we found that the SEPs generally follow

a simple formula [9]

16



aE™®
cos‘a

P*"(a, E) or PY7*(a,, E)= (2.29)

where a, b and c are the fitting coefficients, which are material dependent.

17



CHAPTER 3

Results and Discussion

3.1 Parameters of Extended Drude Dielectric Function

In the present work, we determined all parameters (e;, A, vy, and o,) of the
extended Drude dielectric function in Eq. (2.6) by fitting £,(0,0), &,(0,0),
Im[-1/&(0,w)] and Im[-1/(g(0,w)+1)] from Egs. (2.3) ~ (2.2) ~ (2.7) and (2.8) to
the experimental optical data of the 4nN 14, 15]-and TiN [16]. The fitting results of
the parameters in Eq. (2.6) are listed in Table* 3.1 for indium nitride (InN) and

titanium nitride (TiN).

3.2 Dielectric Function and Energy Loss Function

Fig 3.1 shows a comparison on &.(0,0), &(0,), Im-1/¢0,0) and
Im[-1/((0,®)+1)] for InN among the present fittings (solid curves) and the
experimental data [14, 15] (dotted curves). It can be seen that the present fittings are
in good agreement as compared to the experimental data. The volume and surface

excitations exhibit resonant plasmon peaks at around 15 and 13 eV. A similar plot
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for TiN is shown in Fig 3.2 among the present fittings (solid curves) and the
experimental data [16] (dotted curves). Again, the volume and surface excitations
exhibit resonant plasmon main peaks at around 25 and 14 eV. Moreover, we also
check the sum rules to assure the correctness of fitting parameters. For the
application of finite-range sum rules, we check the calculated effective number of
valence electrons at any given energy transfer with the corresponding available
optical data. In the case of infinite-range sum rules, we check the accuracy of the
total oscillator strength, ZA . For example, the present fits for InN cover the 4d
inner-shell of indium owing to the strong overlapping of oscillator strengths between
the valence band and this sub-shellrin the proximity-of its binding energy. In order
to avoid the unclear state in the separation of cross.contributions, we extend our fits to

higher energy transfers covering these inner-shell excitations.

3.3 Differential Inverse Inelastic Mean Free Path

The differential inverse inelastic mean free paths (DIIMFPs) were calculated for
both escaping and incident electrons crossing the surface of InN and TiN using Egs.
(2.23) and (2.24) and the fitted results. The calculated results of the DIIMFP for a

500 eV electron escaping from InN to vacuum with various distances from the surface
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crossing point are plotted in Fig. 3.3, either outside (r > 0) or inside (r < 0) the solid

for different crossing angle, o. The DIIMFP for electrons moving inside the solid

is approximately independent of crossing angle and distance owing to the

compensation of the contributions from volume and surface excitations. For the

electrons moving in vacuum, the DIIMFP is entirely contributed from surface

excitations. Outside the solid, as the electrons move closer to the surface,

corresponding to smaller r values, the DIIMFP becomes larger owing to the

increase in surface excitations. Furthermore, the DIIMFP becomes larger for

increasing crossing angle at a fixed: r value‘owing to the shorter distance to the

surface. Figure. 3.4 shows the ‘calculated: results- of the DIIMFP for a 500 eV

incident electron moving from vacuum to InN-with different crossing angles and

different distances from the surface crossing point, either outside (r <0) or inside

(r>0) the solid. Again, the DIIMFP for incident electrons exhibit similar angular

and distance dependences as for escaping electrons. Similar results of the DIIMFP for

500 eV electrons moving between TiN and vacuum are plotted in Figs. 3.5 and 3.6 for

the escaping and incident electrons, respectively.

Fig. 3.7 shows the calculated results of the DIIMFP for a 60° crossing angle

electron escaping from InN to vacuum for several electron energies with different

distances from the surface crossing point. It reveals that the DIIMFP decreases with
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increasing electron energy because of the smaller interacting time for volume and

surface excitations. However, the plasmon peak remains unchanged. The distance

dependence for DIIMFP is the same as we discussed in preceding paragraph.

Similar results of the DIIMFP for 60° crossing angle electrons incident from

vacuum to TiN are plotted in Fig. 3.8. Again, the DIIMFP for incident electrons

exhibit similar energy and distance dependences as for escaping electrons.

3.4 Inverse Inelastic Mean Free Path

The inverse inelastic mean: free paths (inverse IMFPs) were calculated for both

escaping and incident electrons crassing the surface of several nitride semiconductors

using Egs. (2.25) and (2.26). The calculated results of the inverse IMFPs with

different crossing angles for a 500 eV electron escaping from InN to vacuum are

plotted in Fig. 3.9 as a function of electron distances relative to the surface crossing

point. When the electrons travel inside the solid (r <0), the inverse IMFP is

roughly independent of the crossing angle and the electron distance owing to the

approximate compensation of surface and volume excitations. Therefore, the inverse

IMFP of the electrons inside the solid approximately equals to the value

corresponding to the infinite solid.  As the electrons moves outside the solid (r > 0),
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the inverse IMFP rapidly falls off with the increasing distance from the surface,

especially for smaller crossing angles. This indicates that the surface excitations are

possible only for electrons near the surface. And the electrons for larger crossing

angles are more probable to induce surface excitations owing to these electrons spend

longer time near the surface. Fig. 3.10 shows the calculated results of the inverse

IMFP for a 500 eV incident electron moving from vacuum to InN with several

crossing angles. Again, the inverse IMFP for incident electrons exhibit similar

angular and distance dependences as for escaping electrons. However, a comparison

between Figs 3.9 and 3.10 indicates'that the inverse IMFP for incident electrons in

vacuum (r <0) are slightly smaller than that for: escaping electrons in vacuum

(r>0). This is because the different attractive -forces acting on the electrons in

vacuum by the surface charges. The force on the incident electrons in vacuum is

parallel to the electrons moving direction and hence accelerates the electrons. On

the other hand, the force on the escaping electrons in vacuum is anti-parallel to the

electrons moving direction and thus decelerates the electron. Consequently, the time

spent near the surface for incident electrons in vacuum are less than that for escaping

electrons in vacuum, leading to less surface excitations for incident electrons in

vacuum.  Similar results of the inverse IMFP for 500 eV electrons moving between

TiN and vacuum are plotted in Figs. 3.11 and 3.12 for the escaping and incident
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electrons, respectively.

Fig. 3.13 shows the calculated results of the inverse IMFP for a 60° crossing

angle electron escaping from InN to vacuum with several electron energies. It

reveals that the inverse IMFP decreases with increasing electron energy owing to the

smaller interacting time volume and surface excitations. The distance dependence

for inverse IMFP is the same as we discussed in preceding paragraph. Similar

results of the inverse IMFP for 60° crossing angle electrons incident from vacuum

to TIN are plotted in Fig. 3.14. Again, the inverse IMFP for incident electrons

exhibit similar energy and distance dependences as for escaping electrons.

3.5 Surface Excitation Parameter

The surface excitation parameters (SEPs) were calculated for both escaping and

incident electrons of InN and TiN using Egs. (2.27) and (2.28). The calculated

results (solid circles) of the SEPs for electrons escaping moving from InN to vacuum

with different electron energies and crossing angles are plotted in Fig. 3.15. It

reveals that the SEPs decrease with increasing electron energy due to the smaller

interacting time between the electrons and the surface. It can be also seen that the

SEPs increase for larger crossing angles due to the longer time for electron-surface
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interactions. The SEPs rise slowly with increasing crossing angle until about

o = 70°, above which such a rise becomes rapidly. Fig 3.16 shows the calculated

results (solid circles) of the angular and energy dependent SEPs for incident electrons

moving from vacuum to InN.  Again, the SEPs for incident electrons exhibit similar

energy and angular dependences as for escaping electrons. Here the SEPs of the

incident electrons are slightly smaller than that of the escaping electrons due to the

electrons acceleration in the former case, as described earlier. The presently

calculated SEPs are fitted to Eq. (2.29). The fitting results are also included in Figs.

3.15 and 3.16 as solid curves for comparison.- ‘It reveals that the fitting results are in

good agreement as compared to-the calculated SEPs.- Similar results of the SEPs for

electrons moving between TiN and. the vacuum with different electron energies and

crossing angles are plotted in Figs. 3.17 and 3.18 for the escaping and incident

electrons, respectively. With E in electron-volts, we list the best fitted values of

the parameters a, b and c in Table 3.2 for InN and TiN.

Fig 3.19 is a plot of the SEP for 500 eV electrons escaping from InN to vacuum

as a function of the crossing angle. Solid circles, solid curve, dashed curve, and

dotted curve are, respectively, the calculated result using Eq. (2.27), the fitting results

using Eq. (2.29), the previous model [5], and the Oswald’s model [17]. It reveals

that the results using previous model work only approximately due to the simplified
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(cosa)™ dependence of the SEP on crossing angle and carrying no restriction on the
normal component of momentum transfer in the previous model. There is a large
discrepancy between the results present and Oswald’s models. The reason is that the
Oswald’s model is valid only for free-electron-like materials. InN, however, is a
semiconductor with small band gap and complex band structure. Fig. 3.20 shows the
similar results of the crossing-angle-dependent SEP calculated using Eq. (2.28) for
500 eV electrons incident from vacuum to TiN (solid circles). Again, the results of
present fitting (solid curve), the previous model (dashed curve), and the Oswald’s

model (dotted curve) are included imthis figure for comparisons.
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CHAPTER 4

Conclusions

InN, a small band gap semiconductor, is an attractive material in the application
of laser and light-emitting diodes. TiN, an extremely hard ceramic material, is
widely used in protective coatings on cutting tools. In the present work, a modified
inelastic-scattering model was applied to calculate the inelastic cross sections for
electrons moving across the InN and TiN surface. This model was developed based
on the dielectric response theorys™ The DIMFP, inverse IMFP, and SEP were
calculated using extended Drude dielectric functions-with parameters obtained from a
fit of this function to the experimental optical data.

It can be seen that the DIIMFP and inverse IMFP for electrons moving inside the
solid were roughly independent of the electron distance and crossing angle due to the
compensation of surface and volume excitations. Therefore, the inverse IMFP
approximately equals to the value corresponding to the infinite solid. When the
electrons travel in the vacuum, the DIIMFP and inverse IMFP became larger for
increasing crossing angle, or decreasing electron distance owing to the increase in
surface excitations. Besides, the DIIMFP and inverse IMFP became smaller for

increasing electron energy due to the less interacting time for volume and surface
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excitations.

The SEP calculated as the integration of the inverse IMFP over whole path

length of the electron in vacuum. Thus the SEP increases with increasing crossing

angle or decreasing electron energy. The attractive force on the escaping or incident

electron exerted by the surface induced charge decelerates or accelerates the electron,

respectively. Therefore, the DIIMFP, inverse IMFP and SEP of escaping electrons

in vacuum are larger than those of incident electron. The presently calculated SEP

was found to follow a simple formula as a function of electron energy and crossing

angle.
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Table 3.1 Parameters in the dielectric function of Eq. (2.6) for InN and TiN.

InN (gp=1.2) TiN (ep=1)

AeV?)  1(eV)  oeV) AV) rEeV) oY)

3.00 1.50 3.00 55.00 0.70 0.10

15.00 5.00 3.50  64.00 3.10 5.00

65.00 2.70 5.40 8.00 2.00 5.40

17.00 1.60 8.00,. . 25.00 2.50 6.50

1.00 1.00 8.50 " +15.00 4.80 7.40

2.00 =00 8.90°-90.00 4.60 8.80

3.00 1.10 9.00-29.80 3.67 13.30

100.00 4.10 10330 ""160.00  10.80  19.80

20.00 4.00 12.60

56.00 6.00  20.10

30.00 5.00  27.00

25.00 4.00 24.00

28.00 5.00  32.00

35.00 20.00 36.00

65.00  10.00  40.00
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Table 3.2  Fitted values of parameters a, b and c in Eq. (2.29) for InN and TiN.

Escaping electrons Incident electrons
a b c a b c
InN 1.8351 0.4833°7.0.8605 +0.9362 0.4862 1.1248
TiN 3.3378 0.5039 0.8292 1.7079 0.5088 1.1040
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t>0

Fig. 2.1 A plot of the problem studied in this work. An electron of charge e~ and
velocity V. moves across the interface at time t=0 from medium 1 to
medium 2 with crossing angle o. &,(q,®) and &,(q,0) are, respectively,
dielectric functions of the media 1 and 2. The instant position of the

electronis I =Vt , relative to the crossing point at the interface.

33



A\ Im[-1/5(0,0)]

1.0
6 i N

108 —
— 4] )
e ] S
= 106 X
e ] o
@ 5[ ] Eﬂ
104 =

or 102

22 ] 0.0

. 0.6

\Im[-1/(g(0,0)+1)]

€(0,0)

Im([-1/(s(0,0)+1)]

o(eV)

Fig 3.1 A plot of the real and imaginary parts of the dielectric function, ¢, (0, (n)

and 81(0,0)), and the volume and surface loss functions, Im[—l/ 8(0, (n)]

and Im[—l/(s(O,(o)Jrl)], for InN.

Solid and dotted curves are,

respectively, calculated results of the present work and experimental data

[14, 15].
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Fig. 3.2 A plot of the real and imaginary parts of the dielectric function, ¢, (0, (n)
and &,(0,®), and the volume and surface loss functions, Im[-1/&(0,)]
and Im[—l/(S(O,(o)Jrl)], for TiN. Solid and dotted curves are,

respectively, calculated results of the present work and experimental data

[16].
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Fig 3.3

Calculated results of the DIIMFP for a 500 eV electron escaping from InN

to vacuum with different crossing angles and distances from the crossing

point at the surface, either outside (r > 0) or inside (r < 0) the solid.
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Fig 3.4 Calculated results of the DIIMFP for a 500 eV electron incident from
vacuum to InN with different crossing angles and distances from the

crossing point at the surface, either outside (r <0) or inside (r >0) the

solid.
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Fig 3.5 Calculated results of the DIIMFP for a 500 eV electron escaping from TiN
to vacuum with different crossing angles and distances from the crossing

point at the surface, either outside (r > 0) or inside (r < 0) the solid.
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Fig 3.6 Calculated results of the DIIMFP for a 500 eV electron incident from
vacuum to TiN with different crossing angles and distances from the

crossing point at the surface, either outside (r <0) or inside (r > 0) the

solid.

39



50

_ InN ,=38 A =2 A
40 o= 600 1t
30
207 :
Z —— E=300eV n
ot " .';’ i
:—.> 10 - E=500eV h 11
A Wi/ L

5 ~ E = 800 eV RN
'E 2 et )7 RN
= 0 T
8
=] o
m' r=-6A ]
3
X

1

\'\

._‘\\ _
\\.‘_. .
20 40 60 80 100

Fig 3.7 Calculated results of the DIIMFP for a 60° crossing angle electron
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distances from the crossing point at the surface, either outside (r >0) or

inside (r < 0) the solid.
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Fig 3.8 Calculated results of the DIIMFP for a 60° crossing angle electron
incident from vacuum to TiN for several electron energies with different

distances from the crossing point at the surface, either outside (r <0) or

inside (r > 0) the solid.
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Fig 3.9 A plot of the inverse IMFP for a 500 eV electron escaping from InN to
vacuum with different crossing angles as a function of electron distance
from the crossing point at the surface, either outside (r >0) or inside

(r <0) the solid.
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Fig 3.10 A plot of the inverse IMFP for a 500 eV electron incident from vacuum to
InN with different crossing angles as a function of electron distance from
the crossing point at the surface, either outside (r <0 ) or inside (r > 0) the

solid.
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Fig 3.11 A plot of the inverse IMFP for a 500 eV electron escaping from TiN to

vacuum with different crossing angles as a function of electron distance

from the crossing point at the surface, either outside (r >0) or inside

(r <0) the solid.
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Fig 3.12 A plot of the inverse IMFP for a 500 eV electron incident from vacuum to
TiN with different crossing angles as a function of electron distance from
the crossing point at the surface, either outside (r <0 ) or inside (r > 0) the

solid.
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Fig 3.13 A plot of the inverse IMFP for a 60° crossing angle electron escaping
from InN to vacuum with different electron energies as a function of
electron distance from the crossing point at the surface, either outside

(r>0)orinside (r <0) the solid.
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Fig 3.14 A plot of the inverse IMFP for a 60° crossing angle electron incident

from vacuum to TiN with different electron energies as a function of

electron distance from the crossing point at the surface, either outside

(r <0) orinside (r > 0) the solid.

47



1‘2 T T T T T T T T

INN

1.0 .

0.8 .
—— Fitting Results

o6l ® Calculated SEP 2006V |

PS S _)V(C‘HE)

0.0 1 1 L 1 | 1 L 1
0 10 20 30 40 50 60 70 80 90

o (degree)

Fig. 3.15 A plot of the SEP for escaping electrons from InN to vacuum as a function
of electron energy and crossing angle. Solid circles are the calculated
results using Eq. (2.27). Solid curves are the fitting results using

Eq. (2.29).
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Fig. 3.16 A plot of the SEP for incident electrons from vacuum to InN as a function
of electron energy and crossing angle. Solid circles are the calculated
results using Eq. (2.28). Solid curves are the fitting results using

Eq. (2.29).
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Fig. 3.17 A plot of the SEP for escaping electrons from TiN to vacuum as a function
of electron energy and crossing angle. Solid circles are the calculated
results using Eq. (2.27). Solid curves are the fitting results using

Eq. (2.29).
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Fig. 3.18 A plot of the SEP for incident electrons from vacuum to TiN as a function
of electron energy and crossing angle. Solid circles are the calculated
results using Eq. (2.28). Solid curves are the fitting results using

Eq. (2.29).
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Fig. 3.19 A plot of the SEP for 500 eV electrons escaping from InN to vacuum as a
function of the crossing angle. Solid circles, solid curve, dashed curve,
and dotted curve are, respectively, the calculated result using Eq. (2.27), the

fitting results using Eq. (2.29), the previous model [5], and the Oswald’s

model [17].
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Fig. 3.20 A plot of the SEP for 500 eV electrons incident from vacuum to TiN as a
function of the crossing angle. Solid circles, solid curve, dashed curve,
and dotted curve are, respectively, the calculated result using Eq. (2.28), the
fitting results using Eq. (2.29), the previous model [5], and the Oswald’s

model [17].
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