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Weighted D-Filtering 

Wen-Rong Wu and Amlan Kundu 

Abstruct --In this paper, we have proposed a new type of filter which 
has the most desirable properties of an image smoothing filter. These 
properties are 1) robust smoothing efficiency, 2) edge preservation, and 
3) thin-line detail preservation. The new filter computes its output as the 
median of weighted averages, instead of plain averages as used in the 
Hodges-Lehman D-filter, of symmetrically placed order statistics. One 
particular weighting scheme is considered in details for experiments. 
The experimental and comparison results are included verifying the 
useful properties of the proposed filter. 

I. INTRODUC~ION 

Image smoothing and restoration have wide applications in 
image processing and robot vision [ l ] .  Median filtering as pro- 
posed in [2] has been widely applied to image enhancement 
[3]-[5] .  The median filter, however, has relatively poor smooth- 
ing efficiency, and it cannot preserve thin line details (TLD). 
Various approaches based on robust estimation theory and rank 
estimation are proposed [61, [7] to achieve higher smoothing 
efficiency without sacrificing the edge preserving characteristics 
of the median filter. A number of other filters such as multilevel 
median filter [ l ] ,  [8], FIR hybrid median filter [ l ] ,  etc., are 
proposed to preserve TLD of the image. 

In this paper, our objective is to design a filter that has three 
very important characteristics: 1 )  good noise smoothing effi- 
ciency; 2) good edge preservation; and 3) good TLD preserva- 
tion. The new filter, called the weighted D-filter, is considered 
in the next section. The simulation results and the conclusions 
are described in Section 111. 

11. WEIGHTED D-FILTER 

It is known that the characteristic of the central pixel is very 
important for edge and detail preservation. The filter should 
also have good smoothing efficiency over the flat regions of the 
image. In the following, we propose a general scheme for 
designing a robust edge and detail preserving filter. 

1) Start with a sliding window encompassing a datalength n 
and a robust noise smoothing filter. The sliding window is 
not necessarily a square window. In the absence of edges 
or details, such a filter gives very good smoothing of the 
noise. 

2)  Design a subsample that selects only those pixels, from the 
pixels of the sliding window, whose gray values are in some 
neighborhood of the central pixel. Over a flat region, such 
a subsample should substantially include all the pixels of 
the window. 

3)  Apply the filter of Step 1 to the pixels of the window with 
appropriately more weights to the pixels of the subsample. 

Design of Subsample 

The subsample should select all the pixels whose gray values 
are “close” to the central pixel. One possible design is given 
below. 
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Pick the central pixel value X ,  of an n X n region. Then 
select every Xi of the region in the range [ X ,  - q Q Xi  Q X ,  + q ]  
as part of the subsample. The parameter q is chosen for the 
optimal performance of the algorithm, and is closely related to 
U ,  the noise standard deviation. 

Since for TLD, X ,  belongs to the “thin line,” such subsam- 
pling with the proper choice of q only picks the pixels on the 
“thin line.” When an edge passes through the window, X ,  
belongs to the edge. Thus the relationship X ,  - q Q Xi  Q X ,  + q 
is likely to be satisfied by the pixels belonging to the edge. There 
is one major drawback in the subsampling scheme discussed 
above. What will happen if the central pixel is corrupted by an 
outlier? To safeguard against such cases one needs to estimate 
X ,  by means of a robust estimate. This makes the design of 
subsample very much complicated. An easier but less accurate 
approach is to have a default option. Whenever X ,  is corrupted 
by an outlier, the filter should behave as a plain smoothing filter 
as required by the flat regions of the image. This is reasonable 
as the flat regions are more common than the edges or the 
thin-line signals in a natural image. In the following, we propose 
a filtering scheme that incorporates the subsampling scheme 
and is based on Hodges-Lehman D-filter [ l o ] .  This filter has an 
in-built tolerance to such outlier presence [ lo] .  

Filter Design 

Step 1: We choose the D-filter [ l o ]  as described next. The 
noise smoothing and the outlier tolerance properties of D-filter 
are described in [lo].  

Hodges-Lehman D-Filter [lo1 Let X i ;  1 Q i < n be a sample 
from a population with distribution F(x ,B)  and density f ( x , O )  
where f ( . )  is symmetric about zero, continuous, and strictly 
positive on the convex support of F . [ x :  0 < F ( x )  Q 11. Denote 
&,, . . . , X(.! as the order statistics of the sample. Let n = 2m or 
2m - 1 .  In either case, we define 

I 

D,(xl; . . , x n )  = median ( XCi, + X(n-i+l)) . 1 / 2 .  ( 1 )  
l b i b m  

We observe the usual convention of letting D, be the mid- 
point of the interval of medians, if there is an ambiguity. 
D-filtering as given by ( 1 )  assigns the same weight to both the 
symmetrically placed order statistics. However, one of the sym- 
metrically placed order statistics could fall in the subsample 
range, while the other may not. Assignment of equal weight in 
such cases is responsible for edge smearing and destruction of 
thin line details. In the proposed design, the weighting scheme is 
changed. 

Step 2 - Subsample Design: We choose the subsample design 
scheme as described before. 

Step 3: In this step, the filter of Step 1 needs to be modified 
to assign more weights to the pixels in the subsample. Consider 
a generalized version of the D-filter, called the weighted D-filter, 
as given below. 

Weighted D-Filter: 

D = median 1 ( X ( , , - w ( i )  + X ( n - i + l ) . u ( n  - i + 1 ) ) ;  

w ( i ) + w ( n - i + 1 ) = 1  (2a) 

where O < w ( i ) , w ( n - i + l ) ~ l .  
For the D-filter w ( i )  = w ( n  - i + 1) = 0.5. For the weighted 

D-filter, w ( i )  and w ( n  - i + 1 )  can have any value in the range 
0- 1 .  It is intuitively clear that w ( i )  should have a small value 
(close to zero) when X ( i )  does not belong to the subsample; and 
X(n-i+l belongs to the subsample. Also, in this case w(n - i + 1) 
should have a large value close to one. On the other hand, if 
both X(i )  and X ( n - i + l ,  belong to the subsample, both w ( i )  and 
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w(n - i + 1) should have equal weight of 1/2. So, we choose 

w(n - i + 1) = 1/2 w ( i )  = 1/2; 
when R, = R, = 1 or RI  = R, = 0 (2b) 

w ( i )  = 1; w(n - i + 1) = 0 when R,  = 1 and R, = 0 

(2c) 

(2d) 

w ( i ) = O ;  w ( n - i + l ) = l  when R,=Oand R,=1.  

Here, Ri’s are defined as logical variables given by the following 
equations. 

R, = 1 when X ,  - q d X(,)  < X,, + 4 ,  

otherwise R, = 0 (3a) 

R,=l  when X o - q d X + , + 1 , d X o = 4 ,  

otherwise R, = 0. (3b) 

It is clear from (2c) and (2d) that, in the presence of edge or 
TLD, the observations inside the subsample are given the most 
weight (one). For the slowly varying region or quasi-constant 
region, the weighting scheme is given by (2b), as the subsample 
range is likely to contain all the data. The filtering in this case is 
plain D-filtering as desired. When the central pixel is corrupted 
by an impulse, the other weighting scheme given by (2b) will be 
effective. In this case, most of the observations will be outside 
the subsample. The weighting scheme ensures that, in this 
extreme case, the output is essentially the plain D-filter output, 
and the impulse is rejected. This is the so-called default option, 
which is reasonable as most of the image consists of quasi-con- 
stant or slowly varying regions. 
Window Selection: For the weighted D-filter to be effective 

both in edge and detail preservation, the proper choice of 
window is absolutely essential. We first choose an m x m square 
window. There are four diagonals that can be drawn through the 
central pixel of this window. For the m X m  window, all the 
pixels on these four diagonals are selected for filtering. Thus the 
window selection is similar to that of the multilevel median filter 
[81. 

111. EXPERIMENTAL RESULTS AND CONCLUSIONS 

First, we evaluate the filter for edge preservation. For this 
purpose, we propose a quantitative criterion for edge preserva- 
tion. 

Definition: Let a sample of size n consist of two samples of 
size n ,  and n2 with distributions f(.,O,) and f ( . , O , ) ,  respec- 
tively, such that n = n1 + It,, and (8, - 0 2 (  > 3 0 .  The distribution 
f( .) is considered to be symmetric and medium-tailed with 
standard deviation a. An estimate is called practically edge 
preserving if it estimates 8 ,  when n ,  > n2; and 

1 i = N  1/2 

(z r = l  ,E ( 0 ,  - 0 ; ( i ) Y )  < a  (4) 

where ei(i) is the estimate of 8 ,  for the ith experiment, and N 
is the number of times the experiment is carried out. Naturally, 
N should be large ( z 25). In a recent paper, Peterson et al. [9] 
essentially used the same concept to evaluate the edge preserv- 
ing nature of certain filters. Their method is based on numerical 
evaluation of the filter output distribution when the input is an 
edge signal as assumed in our definition. Our definition, though 
not based on such information as output distribution of the 
filters, qualitatively leads to the same answer. 

Fig. 1 shows the edge preserving characteristic of the weighted 
D-filter. For the experiment reported in Fig. 1, n = 25, N = 25, 
@,=loo,  O,=180, and a = 1 6 .  The effect of parameter q is 

q.30 kzk--iL q=ur 5 00 

1.25 2.50 3 75 
NI/N2 

0.0 
0.00 

Fig. 1. Experimental results on the edge preserving characteristic of 
the weighted D-filter. 

( c )  (d) 

Fig. 2. (a) Synthetic thin ring image with 1% impulse corruption and 
zero mean additive Gaussian noise. (b) Weighted D-filtered image. 
( c )  Median filtered version of Fig. 2(a). (d) Multilevel median filtered 
version of Fig. 2(a). 

clearly evident from Fig. 1 .  For values of q in the range 3a - U, 
the filter is edge preserving. 

Next, our focus is on TLD preservation. We propose the 
following quantitative mcasures, denoted as M , ,  M 2 ,  and M,, 
for TLD preservation. 

Consider a thin ring image as shown in Fig. 2. Let the thin 
ring image be s ( i , j )  and the filtered (or corrupted) image be 
r ( i ,  j ) .  Indicate the set of ( i ,  j ) ,  which belongs to the thin ring, by 
R and the set of the neighborhood of ((i, j ) E  R) by S .  Or, 

S= { ( i ,  j ) , I l ( i ,  j ) - ( i ‘ ,  j’)ll d /3, where(i’, j ’ )  E R ,  

and (I .)) is the Euclidean distance}. 

The parameter p in S should be chosen small enough to 
include only the immediate neighborhood of R. The measures 
M , ,  M 2 ,  and M ,  are now defined as follows: 

I r ( i , j ) -  s ( i , j ) l  

( 5 )  
( I , ] ) =  R 

M ,  = 
N 

where N is the number of points in R. M ,  measures the 
average absolute deviation of the intensity of the filtered (or 
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TABLE I 
COMPARISON OF MI,  M7, AND M ,  FOR DIFFERENT FILTERS; a = 8, /3 = 3 

TABLE II(a) 
RE AND PI FOR WEIGHED D-FILTER; q = 3.2 X (3.d.) 

Parameter RE PI 

Noisy 6.355 0.6842 104.9 
MLM 5.836 0.7105 40.02 
Weighted-D 4.631 0.8289 18.78 
Median 28.24 0.1711 265.4 

corrupted) thin line signal with respect to the original. For ideal 
filter performance, M ,  should be zero. 

where I ( . )  is an indicator function defined as 

ifx<cw 
= (il otherwise. 

This measure gives the fraction of pixels in the filtered thin 
ring with intensity values within a prescribed range from the 
original. Ideally, this measure should be one. For the computa- 
tion of this measure, the parameter (Y should be chosen in the 
vicinity of U ,  the standard deviation of the additive noise. 

where L is the number of points in S .  M3 is the measure for 
average squared error over a small neighborhood encompassing 
the thin ring. Ideally, this measure should be zero. If the 
filtering process cannot reconstruct the thin ring at its original 
position, this measure is likely to have very high values. 

Fig. 2(a) shows the noise-corrupted synthetic image of a 
one-pixel wide thin edge in the shape of a disk. The height of 
the uncorrupted thin ring is 50. The additive noise is white 
Gaussian with mean 0 and standard deviation 8. The image size 
is 50 X 50. The weighted D-filtered version is given by Fig. 2(b). 
The filtering is done using a 3 x 3  window in a raster scan 
fashion with parameter q=24 .  Fig. 2(c) and (d) show the 
median and MLM filtered version of Fig. 2(a), respectively. A 
3 X 3 window is used for the median filter, and a 5 X 5 window is 
used for the MLM filter. Comparing Fig. 2(b) with Fig. 2(d), i t  is 
easy to see that the weighted D-filter is as effective as the MLM 
filter in preserving thin-line details. Also, as shown in Fig. 2(c), 
the performance of the median in relation to TLD preservation 
is very poor. The measures M I ,  M 2 ,  and M3 for Fig. 2(a)-(d) 
are given in Table I. 

It is clear from the table that the median filter cannot pre- 
serve thin line structures. The multilevel median [8] and the 
weighted D-filter can substantially preserve the thin line details 
as they both pay attention to the characteristic of the central 
pixel. 

Finally, the smoothing efficiency of weighted D-filter is com- 
pared with that of plain D-filter, which is known to have a very 
good smoothing efficiency for a number of distributions. It is 
intuitively clear that the weighted D-filter, with the proper 
choice of the parameter q, does retain most of the smoothing 
efficiency of the D-filter as it mimics the D-filter over the flat 
regions. However, to rigorously answer this question, we com- 
pare the performance of the D and the weighted D estimators 
in the following manner: We consider a number of different 
distributions with constant mean. For each distribution, 2000 
samples are generated. The window size is selected as 9. With a 
moving window of size 9 and the samples, the signal value at 
each point is estimated by means of the D and the weighted D 

Laplacian p = 6  0.9552 0.9648 
p = l l  0.9162 0.9647 

Gaussian a = 8  0.9357 0.9765 
a = 1 5  0.9432 0.9764 

Uniform m = 14 0.9994 0.9942 
m = 26 0.9925 0.9942 

TABLE II(b) 
RE AND PI FOR WEIGHTED D-FILTER; q = 2.8 X(5.d) 

Parameter 

Laplacian p = 6  
p = 11 

Gaussian u = 8  
p = l 5  

Uniform m = 1 4  
m = 26 

RE PI 

0.8646 0.9554 
0.8438 0.9552 
0.9209 0.9662 
0.9135 0.9662 
0.9548 0.9823 
0.9429 0.9821 

estimators. The variances of these estimators are computed and 
chosen as the performance measure. In Table I1 we summarize 
the results. RE stands for the relative efficiency which is defined 
as Var(D)/Var(weighted D). PI stands for the probability of 
inclusion, which is calculated as: 

where q is the parameter used in weighted D-filter, and f( .)  is 
the underlined distribution of the data. Since the weighted 
D-filter practically includes a segment of the sample, rather than 
the whole sample, for filtering, PI gives the average rate of 
sample inclusion. 

From Table 11, we conclude that if we choose the parameter q 
in the range 2.8u-3.2u, the PI index is close to one and the loss 
of smoothing efficiency, as compared to the D-filter, is relatively 
small. The filter is also tried on a natural image. The detailed 
experimental results are reported in [12]. The results with the 
natural image are very good for the weighted D-filter. 

On the basis of our study, the following comments are in 
order. 

1) If we choose the parameter q properly, i.e., in the range 
2.5u-3a, and if the additive noise is moderate, i.e., U is 
less than 6% of the dynamic range, the weighted D-filter 
works nicely as a robust edge and detail preserving 
smoothing filter. For large noise, a bigger value of q is 
required to smooth the flat regions. However, a very large 
value of q means that the weak edges or the thin-line 
signals may not be preserved. 

2) The weighted D-filter uses three possible values for the 
weight: 0, 0.5, and 1.0. It is conceivable that a bigger set of 
values, or even a continuous set of values in the range 0-1 
might improve the filter performance even more. A bigger 
set of weight values also requires an elaborate scheme for 
weight assignment. Investigations are underway in this 
direction. 

3) In a recent paper, Gandhi et al. [ll] has developed an 
important approach for the design of edge and detail 
preserving smoothing filters incorporating winsorjzation 
both in rank and temporal domains. The temporal win- 
sorization, as described in [ll] for 1-D signals, can be 
formalized with respect to two temporal (or spatial) coordi- 
nates to design filters for image signals. It is interesting to 
note that in the weighted D-filter, the rank winsorization 
depends on the central pixel value. The central pixel 
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provides the temporal index. Thus the filter uses a tempo- 
ral index based rank winsorization scheme. 
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Parallel Architectures for Multirate 
Superresolution Spectrum Analyzers 

Seth D. Silverstein, William E. Engeler, and John A. Tardif 

Abstract -This work develops parallel architectures for implementing 
matrix based superresolution spectral estimation algorithms for situa- 
tions that require high levels of resolution commensurate with large 
coherent apertures and large sample orders. The featured architectures 
couple matrix based superresolution algorithms together with front-end 
multirate decimation preprocessor. This procedure creates parallel 
pseudo-apertures corresponding to different sub-hands of the temporal 
(or spatial) frequency spectrum. The overall superresolution of the large 
apenure is maintained. Simulations applying the large array architec- 
tures to the Tufts-Kumaresan reduced rank modified covariance algo- 
rithm and the linear minimum free energy/regularized form of the 
modified covariance algorithm are given for 1024-element coherent 
apertures. 

Manuscript received February 19, 1990; revised November 29, 1990. 

The authors are with the General Electric Research and Develop- 

IEEE Log Number 9042417. 

This paper was recommended by Associate Editor Y. F. Huang. 

ment Center, Schenectady, NY 12301. 

I.  INTRODUCTION 

This work introduces parallel architectures for implementing 
matrix based superresolution spectral estimation algorithms for 
situations that require high levels of resolution commensurate 
with large coherent apertures and large sample orders. Algo- 
rithms involving large order matrices are computationally bur- 
densome and often suffer from stability problems associated 
with ill-conditioning. The parallel algorithms/architectures dis- 
cussed and simulated in this work demonstrate an efficient 
algorithm that preserves the potential Rayleigh resolution of the 
full aperture, and reduces matrix orders to levels where calcula- 
tions are feasible. 

There is a number of techniques used to avoid large matrix 
problems. Unfortunately, most of these approaches compromise 
the potential system resolution. For example, the division of a 
long coherent aperture into nonoverlapping subapertures, each 
with sample orders that are small enough to make matrix 
operations feasible, reduces the Rayleigh resolution to that of 
the shorter length subapertures. Another technique involves 
reducing the order of parametric models to levels small enough 
to suppress instabilities. The arithmetic instabilities that are 
manifested in spurious peaks are caused by large noise-induced 
fluctuations in the small eigenvalues of the autocorrelation 
matrices. This latter method also significantly degrades resolu- 
tion. 

The featured architectures are based upon a simple applica- 
tion of the sampling theorem. To prevent aliasing, a baseband 
signal of bandwidth B ,  f E [ - B / 2 ,  + B / 2 ] ,  must be sampled at 
a rate greater than the Nyquist rate, which is equal to the 
baseband bandwidth B .  Here frequency is used in a generic 
sense. It relates to temporal frequency for time series applica- 
tions, while for spatial phased arrays, the spatial frequency is 
equal to one-half of the sine of the bearing angle. 

Consider a uniformly sampled coherent aperture consisting of 
N complex samples, {x (n ) } ,  each separated by the Nyquist 
interval 1 / B .  The total length of the coherent aperture is N / B ,  
and the Rayleigh resolution is B / N .  By digital filtering, divide 
the spectrum up into K sub-bands of equal bandwidth. The 
filtering operation gives K sets of signals ( y l ( n ) }  (all of order 
N ) .  The sub-bands can be sampled at the reduced rate B-+ 
B / K ,  which corresponds to a decimation from N -+ N / K  = Q 
samples. The decimated “pseudo”-arrays that describe the sub- 
band spectra are uniformly sampled with sampling intervals 
equal to K / B .  Each of the sub-band pseudo-arrays have the 
same total length as the original aperture, K Q / B  = N / B ,  which 
implies that the sub-band Rayleigh resolution pRay = B / N  is 
unchanged from that of the original total array. All these pro- 
cesses can be performed in parallel on each of the sub-bands, 
and the results can be fed in parallel into a bank of superresolu- 
tion processors. These pseudo-arrays now have sample orders 
that are sufficiently reduced to make the necessary matrix 
operations practical. 

The effectiveness of the large order array algorithm will be 
demonstrated by single snapshot (single realization of a time 
series) simulations featuring two noise suppressing superresolu- 
tion algorithms: the Tufts-Kumaresan (T-K) reduced rank 
modified covariance algorithm [l], and the linear minimum free 
energy extension (LMFE) of the modified covariance algorithm 
[2],  [31. Both of these algorithms are formulated with forward 
and backward smoothed forms of the sample covariance, which 
is often referred to as a modified covariance matrix. In single 
snapshot applications of MUSIC subspace type algorithms, spa- 
tial smoothing is necessary to increase the rank of the signal 
covariance matrix to a level commensurate with the actual 
number of sources. Simulations demonstrating these large array 
preprocessors for single snapshot applications of spatially 
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