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Weighted D-Filtering
Wen-Rong Wu and Amlan Kundu

Abstract —In this paper, we have proposed a new type of filter which
has the most desirable properties of an image smoothing filter. These
properties are 1) robust smoothing efficiency, 2) edge preservation, and
3) thin-line detail preservation. The new filter computes its output as the
median of weighted averages, instead of plain averages as used in the
Hodges—-Lehman D-filter, of symmetrically placed order statistics. One
particular weighting sch is considered in details for experiments.
The experimental and comparison results are included verifying the
useful properties of the proposed filter.

I. INTRODUCTION

Image smoothing and restoration have wide applications in
image processing and robot vision [1). Median filtering as pro-
posed in [2] has been widely applied to image enhancement
[3]-[5]. The median filter, however, has relatively poor smooth-
ing efficiency, and it cannot preserve thin line details (TLD).
Various approaches based on robust estimation theory and rank
estimation are proposed [6], [7] to achieve higher smoothing
efficiency without sacrificing the edge preserving characteristics
of the median filter. A number of other filters such as multilevel
median filter [1], [8], FIR hybrid median filter [1], etc., are
proposed to preserve TLD of the image.

In this paper, our objective is to design a filter that has three
very important characteristics: 1) good noise smoothing effi-
ciency; 2) good edge preservation; and 3) good TLD preserva-
tion. The new filter, called the weighted D-filter, is considered
in the next section. The simulation resuits and the conclusions
are described in Section III.

II. WEIGHTED D-FILTER

It is known that the characteristic of the central pixel is very
important for edge and detail preservation. The filter should
also have good smoothing efficiency over the flat regions of the
image. In the following, we propose a general scheme for
designing a robust edge and detail preserving filter.

1) Start with a sliding window encompassing a datalength n
and a robust noise smoothing filter. The sliding window is
not necessarily a square window. In the absence of edges
or details, such a filter gives very good smoothing of the
noise.
Design a subsample that selects only those pixels, from the
pixels of the sliding window, whose gray values are in some
neighborhood of the central pixel. Over a flat region, such
a subsample should substantially include all the pixels of
the window.
3) Apply the filter of Step 1 to the pixels of the window with
appropriately more weights to the pixels of the subsample.

2

~

Design of Subsample

The subsample should select all the pixels whose gray values
are “close” to the central pixel. One possible design is given
below.
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Pick the central pixel value X, of an nXn region. Then
select every X; of the region in the range [ Xy — ¢ < X; < X, + ql
as part of the subsample. The parameter g is chosen for the
optimal performance of the algorithm, and is closely related to
o, the noise standard deviation.

Since for TLD, X, belongs to the “thin line,” such subsam-
pling with the proper choice of g only picks the pixels on the
“thin line.” When an edge passes through the window, X,
belongs to the edge. Thus the relationship X, —g< X; < X, +4q
is likely to be satisfied by the pixels belonging to the edge. There
is one major drawback in the subsampling scheme discussed
above. What will happen if the central pixel is corrupted by an
outlier? To safeguard against such cases one needs to estimate
X, by means of a robust estimate. This makes the design of
subsample very much complicated. An easier but less accurate
approach is to have a default option. Whenever X, is corrupted
by an outlier, the filter should behave as a plain smoothing filter
as required by the flat regions of the image. This is reasonable
as the flat regions are more common than the edges or the
thin-line signals in a natural image. In the following, we propose
a filtering scheme that incorporates the subsampling scheme
and is based on Hodges—Lehman D-filter [10]. This filter has an
in-built tolerance to such outlier presence [10].

Filter Design

Step 1: We choose the D-filter [10] as described next. The
noise smoothing and the outlier tolerance properties of D-filter
are described in [10].

Hodges— Lehman D-Filter [10]: Let X;; 1<i<n be a sample
from a population with distribution F(x,6) and density f(x,0)
where f(-) is symmetric about zero, continuous, and strictly
positive on the convex support of F-[x: 0 < F(x)<1]. Denote
Xy s X(ny as the order statistics of the sample. Let n=2m or
2m —1. In either case, we define

D,(xq," -, x,) = median ( Xy + Xn_jipy) 172 (D)
1<ism

We observe the usual convention of letting D, be the mid-
point of the interval of medians, if there is an ambiguity.
D-filtering as given by (1) assigns the same weight to both the
symmetrically placed order statistics. However, one of the sym-
metrically placed order statistics could fall in the subsample
range, while the other may not. Assignment of equal weight in
such cases is responsible for edge smearing and destruction of
thin line details. In the proposed design, the weighting scheme is
changed.

Step 2 — Subsample Design: We choose the subsample design
scheme as described before.

Step 3: In this step, the filter of Step 1 needs to be modified
to assign more weights to the pixels in the subsample. Consider
a generalized version of the D-filter, called the weighted D-filter,
as given below.

Weighted D-Filter:

D = median (X, w(i) + X, sy u(n—i+1));
i
w(i)+w(n—i+1)=1 (2a)

where 0 < w(),wn—i+1)<1.

For the D-filter w(i)=w(n —i+1)=0.5. For the weighted
D-filter, w(i) and w(n — i +1) can have any value in the range
0—1. It is intuitively clear that w(i) should have a small value
(close to zero) when X;, does not belong to the subsample; and
X, _i+1, belongs to the subsample. Also, in this case wn—i+1)
should flave a large value close to one. On the other hand, if
both X, and X,,_;,, belong to the subsample, both w(i) and
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w(n — i + 1) should have equal weight of 1/2. So, we choose

w(i)=1/2; w(n—i+1)=1/2
when R,=R;=1orR,=R,=0 (2b)
w(i)=1; w(n—i+1)=0 when R,=1and R,=0
(20)
w(i)=0; w(n—i+1)=1  when Ry=0and R,=1.
(2d)

Here, R;’s are defined as logical variables given by the following
equations.

R, =1 when X, - g< X;, < Xy +gq,
otherwise R, =0 (3a)
R, =1 when Xo—g< X, ;< Xg=¢

otherwise R, =0.

(3b)

It is clear from (2¢) and (2d) that, in the presence of edge or
TLD, the observations inside the subsample are given the most
weight (one). For the slowly varying region or quasi-constant
region, the weighting scheme is given by (2b), as the subsample
range is likely to contain all the data. The filtering in this case is
plain D-filtering as desired. When the central pixel is corrupted
by an impulse, the other weighting scheme given by (2b) will be
effective. In this case, most of the observations will be outside
the subsample. The weighting scheme ensures that, in this
extreme case, the output is essentially the plain D-filter output,
and the impulse is rejected. This is the so-called default option,
which is reasonable as most of the image consists of quasi-con-
stant or slowly varying regions.

Window Selection: For the weighted D-filter to be effective
both in edge and detail preservation, the proper choice of
window is absolutely essential. We first choose an m X m square
window, There are four diagonals that can be drawn through the
central pixel of this window. For the m X m window, all the
pixels on these four diagonals are selected for filtering. Thus the
window selection is similar to that of the multilevel median filter

{8}

III. ExPERIMENTAL REsuLTS AND CONCLUSIONS

First, we evaluate the filter for edge preservation. For this
purpose, we propose a quantitative criterion for edge preserva-
tion.

Definition: Let a sample of size n consist of two samples of
size n; and n, with distributions f(-,0,) and f(-,8,), respec-
tively, such that n=n, + n,, and |6, — 6,| > 30. The distribution
f(-) is considered to be symmetric and medium-tailed with
standard deviation o. An estimate is called practically edge
preserving if it estimates 6, when n, > n,; and

12
): (6,-01()?] <o

!=1

4)

where 8{(i) is the estimate of 8, for the ith experiment, and N
is the number of times the experiment is carried out. Naturally,
N should be large ( > 25). In a recent paper, Peterson et al. [9]
essentially used the same concept to evaluate the edge preserv-
ing nature of certain filters. Their method is based on numerical
evaluation of the filter output distribution when the input is an
edge signal as assumed in our definition. Our definition, though
not based on such information as output distribution of the
filters, qualitatively leads to the same answer.

Fig. 1 shows the edge preserving characteristic of the weighted
D-filter. For the experiment reported in Fig. 1, n =25, N =25,
6,=100, 8, =180, and o =16. The effect of parameter ¢ is
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Fig. 1. Experimental results on the edge preserving characteristic of

the weighted D-filter.
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Fig. 2. (a) Synthetic thin ring image with 1% impulse corruption and
zero mean additive Gaussian noise. (b) Weighted D-filtered image.
(c) Median filtered version of Fig. 2(a). (d) Multilevel median filtered
version of Fig. 2(a).

clearly evident from Fig. 1. For values of ¢ in the range 30 — o,
the filter is edge preserving.

Next, our focus is on TLD preservation. We propose the
following quantitative mcasures, denoted as M, M,, and M;,
for TLD preservation.

Consider a thin ring image as shown in Fig. 2. Let the thin
ring image be s(i,j) and the filtered (or corrupted) image be
r(i, j). Indicate the set of (i, j), which belongs to the thin ring, by
R and the set of the neighborhood of ((i, j)€ R) by S. Or,

S={(i,0),I(i,j)y=(i" i) < B, where(i’,j') € R,
and |I| is the Euclidean distance}.
The parameter 8 in S should be chosen small enough to

include only the immediate neighborhood of R. The measures
M,, M,, and M, are now defined as follows:
X )= sl
(i,j)eR
M, = S
. - ©)
where N is the number of points in R. M, measures the
average absolute deviation of the intensity of the filtered (or

T
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TABLE 1 TABLE II(a)
COMPARISON OF M|, M,, AND M; FOR DIFFERENT FILTERS; @ =8, =3 RE anp PI For WEeIGHTED D-FILTER; ¢ = 3.2X(5.d.)
M, M, M, Parameter RE PI

Noisy 6.355 0.6842 104.9 Laplacian n=6 0.9552 0.9648
MLM 5.836 0.7105 4002 pw=11 0.9162 0.9647
Weighted-D 4.631 0.8289 18.78 Gaussian o=8 0.9357 0.9765
Median 28.24 0.1711 2654 o=15 0.9432 0.9764
Uniform m=14 0.9994 0.9942
m=26 0.9925 0.9942

corrupted) thin line signal with respect to the original. For ideal

filter performance, M, should be zero.
TABLE II(b)
Z 1(‘,.(1-’]-) _ s(i,j)l) RE aND PI FOR WEIGHTED D-FILTER; ¢ = 2.8 X(s.d)
M. = G(,NER (6a) Parameter RE PI
, =

N Laplacian p=6 0.8646 0.9554
Y sogs ; : pn=11 0.8438 0.9552
where I(+) is an indicator function defined as Gaussian A 0.9200 09862
. u=15 0.9135 0.9662
I(x)= { 1, if tf sa (6b) Uniform m=14 0.9548 0.9823
0, otherwise. m=26 0.9429 0.9821

This measure gives the fraction of pixels in the filtered thin
ring with intensity values within a prescribed range from the
original. Ideally, this measure should be one. For the computa-
tion of this measure, the parameter a should be chosen in the
vicinity of o, the standard deviation of the additive noise.

L (r(i)=s(i.))’

G, pes

M, - ™

where L is the number of points in S. M; is the measure for

average squared error over a small neighborhood encompassing

the thin ring. Ideally, this measure should be zero. If the

filtering process cannot reconstruct the thin ring at its original
position, this measure is likely to have very high values.

Fig. 2(a) shows the noise-corrupted synthetic image of a
one-pixel wide thin edge in the shape of a disk. The height of
the uncorrupted thin ring is 50. The additive noise is white
Gaussian with mean 0 and standard deviation 8. The image size
is 50X 50. The weighted D-filtered version is given by Fig. 2(b).
The filtering is done using a 3X3 window in a raster scan
fashion with parameter g=24. Fig. 2(c) and (d) show the
median and MLM filtered version of Fig. 2(a), respectively. A
3% 3 window is used for the median filter, and a 5 X5 window is
used for the MLM filter. Comparing Fig. 2(b) with Fig. 2(d), it is
easy to see that the weighted D-filter is as effective as the MLM
filter in preserving thin-line details. Also, as shown in Fig. 2(c),
the performance of the median in relation to TLD preservation
is very poor. The measures M;, M,, and M; for Fig. 2(a)-(d)
are given in Table I.

It is clear from the table that the median filter cannot pre-
serve thin line structures. The multilevel median [8] and the
weighted D-filter can substantially preserve the thin line details
as they both pay attention to the characteristic of the central
pixel.

Finally, the smoothing efficiency of weighted D-filter is com-
pared with that of plain D-filter, which is known to have a very
good smoothing efficiency for a number of distributions. It is
intuitively clear that the weighted D-filter, with the proper
choice of the parameter g, does retain most of the smoothing
efficiency of the D-filter as it mimics the D-filter over the flat
regions. However, to rigorously answer this question, we com-
pare the performance of the D and the weighted D estimators
in the following manner: We consider a number of different
distributions with constant mean. For each distribution, 2000
samples are generated. The window size is selected as 9. With a
moving window of size 9 and the samples, the signal value at
each point is estimated by means of the D and the weighted D

estimators. The variances of these estimators are computed and
chosen as the performance measure. In Table II we summarize
the results. RE stands for the relative efficiency which is defined
as Var(D)/Var(weighted D). PI stands for the probability of
inclusion, which is calculated as:

y+q

Pi=[""ras [ fxas (8)

where g is the parameter used in weighted D-filter, and f(-) is
the underlined distribution of the data. Since the weighted
D-filter practically includes a segment of the sample, rather than
the whole sample, for filtering, PI gives the average rate of
sample inclusjon.

From Table II, we conclude that if we choose the parameter g
in the range 2.80 -3.2¢, the PI index is close to one and the loss
of smoothing efficiency, as compared to the D-filter, is relatively
small. The filter is also tried on a natural image. The detailed
experimental results are reported in [12]. The results with the
natural image are very good for the weighted D-filter.

On the basis of our study, the following comments are in
order.

1) If we choose the parameter ¢ properly, i.e., in the range
2.50 -3¢, and if the additive noise is moderate, i.e., o is
less than 6% of the dynamic range, the weighted D-filter
works nicely as a robust edge and detail preserving
smoothing filter. For large noise, a bigger value of g is
required to smooth the flat regions. However, a very large
value of g means that the weak edges or the thin-line
signals may not be preserved.

2) The weighted D-filter uses three possible values for the
weight: 0, 0.5, and 1.0. It is conceivable that a bigger set of
values, or even a continuous set of values in the range 0-1
might improve the filter performance even more. A bigger
set of weight values also requires an elaborate scheme for
weight assignment. Investigations are underway in this
direction.

3) In a recent paper, Gandhi et al. [11] has developed an
important approach for the design of edge and detail
preserving smoothing filters incorporating winsorization
both in rank and temporal domains. The temporal win-
sorization, as described in [11] for 1-D signals, can be
formalized with respect to two temporal (or spatial) coordi-
nates to design filters for image signals. It is interesting to
note that in the weighted D-filter, the rank winsorization
depends on the central pixel value. The central pixel
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provides the temporal index. Thus the filter uses a tempo-
ral index based rank winsorization scheme.
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Parallel Architectures for Multirate
Superresolution Spectrum Analyzers
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Abstract —This work develops parallel architectures for implementing
matrix based superresolution spectral estimation algorithms for situa-
tions .that require high levels of resolution commensurate with large
coherent apertures and large sample orders. The featured architectures
couple matrix based superresolution algorithms together with front-end
multirate decimation preprocessor. This procedure creates parallel
pseudo-apertures corresponding to different sub-bands of the temporal
(or spatial) frequency spectrum. The overall superresolution of the large
aperture is maintained. Simulations applying the large array architec-
tures to the Tufts—Kumaresan reduced rank modified covariance algo-
rithm and the linear minimum free energy /regularized form of the
modified covariance algorithm are given for 1024-clement coherent
apertures.
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1. INTRODUCTION

This work introduces parallel architectures for implementing
matrix based superresolution spectral estimation algorithms for
situations that require high levels of resolution commensurate
with large coherent apertures and large sample orders. Algo-
rithms involving large order matrices are computationally bur-
densome and often suffer from stability problems associated
with ill-conditioning. The parallel algorithms /architectures dis-
cussed and simulated in this work demonstrate an efficient
algorithm that preserves the potential Rayleigh resolution of the
full aperture, and reduces matrix orders to levels where calcula-
tions are feasible.

There is a number of techniques used to avoid large matrix
problems. Unfortunately, most of these approaches compromise
the potential system resolution. For example, the division of a
long coherent aperture into nonoverlapping subapertures, each
with sample orders that are small enough to make matrix
operations feasible, reduces the Rayleigh resolution to that of
the shorter length subapertures. Another technique involves
reducing the order of parametric models to levels small enough
to suppress instabilities. The arithmetic instabilities that are
manifested in spurious peaks are caused by large noise-induced
fluctuations in the small eigenvalues of the autocorrelation
matrices. This latter method also significantly degrades resolu-
tion.

The featured architectures are based upon a simple applica-
tion of the sampling theorem. To prevent aliasing, a baseband
signal of bandwidth B, f €[— B /2, + B /2], must be sampled at
a rate greater than the Nyquist rate, which is equal to the
baseband bandwidth B. Here frequency is used in a generic
sense. It relates to temporal frequency for time series applica-
tions, while for spatial phased arrays, the spatial frequency is
equal to one-half of the sine of the bearing angle.

Consider a uniformly sampled coherent aperture consisting of
N complex samples, {x(n)}, each separated by the Nyquist
interval 1/ B. The total length of the coherent aperture is N /B,
and the Rayleigh resolution is B /N. By digital filtering, divide
the spectrum up into K sub-bands of equal bandwidth. The
filtering operation gives K sets of signals {y,(n)} (all of order
N). The sub-bands can be sampled at the reduced rate B —
B /K, which corresponds to a decimation from N> N/K=Q
samples. The decimated “pseudo”-arrays that describe the sub-
band spectra are uniformly sampled with sampling intervals
equal to K/B. Each of the sub-band pseudo-arrays have the
same total length as the original aperture, KQ /B = N /B, which
implies that the sub-band Rayleigh resolution pg,, =B/N is
unchanged from that of the original total array. All these pro-
cesses can be performed in parallel on each of the sub-bands,
and the results can be fed in parallel into a bank of superresolu-
tion processors. These pseudo-arrays now have sample orders
that are sufficiently reduced to make the necessary matrix
operations practical.

The effectiveness of the large order array algorithm will be
demonstrated by single snapshot (single realization of a time
series) simulations featuring two noise suppressing superresolu-
tion algorithms: the Tufts—-Kumaresan (T-K) reduced rank
modified covariance algorithm [1], and the linear minimum free
energy extension (LMFE) of the modified covariance algorithm
[2], 13]. Both of these algorithms are formulated with forward
and backward smoothed forms of the sample covariance, which
is often referred to as a modified covariance matrix. In single
snapshot applications of MUSIC subspace type algorithms, spa-
tial smoothing is necessary to increase the rank of the signal
covariance matrix to a level commensurate with the actual
number of sources. Simulations demonstrating these large array
preprocessors for single snapshot applications of spatially
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