[EXT

5] 17. 3 58 X

EFfFIERRE

-

BEFRTR L3k

E & X

BAARECR Y AL~ R

fit

A Metal-Only-ECO Solver for Input-Slew and Output-Loading

Violations

SRR

T RS SR

hEREATNE - A

A Metal-Only-ECO Solver for Input-Slew and Output-Loading

Violations
Boyod RS Student : Chih-Wei Chang
R AL Advisor : Chia-Tso Chao

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer-Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in
Electronics Engineering

January 2010
Hsinchu, Taiwan, Republic of China

PR R L4 £

AL AR AL L R
?3&’

F24 %R s A RE 2L

FERELFASIIERZ RS ALl PR R o MR
AReo e 5 B4 R Eanfidt ko o AR B AR PF > d 30
REL FUNE PR E A ST 2 DR R § NP ALY Pl 2
ERAEN P ERRALREE NG - TRw Y RN - B £

RN P ERPF RO ARG PTRE AL g TR R

IS

SRR B E) 1Lt

¥
She
N
hX
|
(w
AR
&
=
P
by
15
gt
TR
=
F
53\
N

g TR fRAPA L FTEY T RE B SRR Sk
Froirig ® R B kB o F By A P AP AR N DFEHEAPEE R
My ug* { Dengd iR v LA BEAERI L] SER
PRI FRERER AARG p BERZ I E P FH P TN

YR FIA el B9 o

A Metal-Only-ECO Solver for Input-Slew and Output-Loading Violations

Student: Chih-Wei Chang Advisor: Dr. Chia-Tso Chao

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

Abstract
To shorten the time-to-market and reduce the expensive cost of photomasks in
advance process technologies, metal-only ECO has become a practical and
attractive solution to handle incremental design changes. Due to limited spare
cells in metal-only ECO, the new.added netlist-may often violate the input-slew
and output-loading constraints and, in turn, delay or even fail the timing closure.
This paper proposes a framework, named MOESS, to solve the input-slew and
output-loading violations by connecting spare cells onto the violated nets as
buffers. MOESS provides two buffer insertion schemes performed sequentially
to minimize the number of inserted buffers and then to solve timing violations if
there is any. This framework has been silicon-validated through industrial
designs with more than 1-million instances. The experimental results

demonstrate that MOESS can solve more violations with less inserted buffers

and less CPU runtime compared to an EDA vendor’s solution. The whole
framework is built based on a commercial APR tool and can be ported to any

other APR tool offering open access to its design database.

£

&%%gﬁﬁﬁiﬁﬁﬂéjﬁﬂ’%ﬁﬁﬁﬁ‘ﬁﬁ‘£$‘$§4a
SRl REHITHE-IREFLLE FIRMPRES o ERGS

TR CREE-FAL 4 ARSI P RE R RS gk

£ irg SR e~ A3 Rl iR ﬁﬂ)ﬁ%_} AAR 0 L IR end #éfjfh

Y
~zh
o)
?m
F_*
pi3

o

2010 & $EAF S E 5T

Contents

FE B e s e i
A o 1) o - ot TP ii
5 iii
CONEENTS e v
List Of TADIES e e \4
Iy oo A TV Y 3PP Vi
SR 121 Yo 181 o [o TR 1
Z = PRELIMINARIES oo e 0 e e i e e e s s e s m e sneen e e e em e e sn e 5
= OVERVIEW OF PROPOSED‘METAL-ONLY ECO SLEW/LOADING SOLVER ...ccccvvvrvrrerrrrnnn. 8
7 - ESB AND ECT BUFFER-INSERTION SCHEMES ..ttt iumre e e e e e e 13
I EXPERIMENT RESULT it e it aaa i seessasesnsases seseas deties aneeseaseeseesnessessessesseesnesensesssssnns ees 24
Tt CONCLUSION et e it e e e e ndeah s e e st s enee e sn e e ese e e eneseen sreeen sre e e nnnens 28
=+ REFERENCGES ...ttt et et e e e e e e s s s s s s s s s e s e e s e e e e e ee s e e srnnnnes 29

List of Tables

Table | Comparison between MOESS and [3] on solving slew, loading, and timing violations for
multiple metal-only ECO ProjECES ..oooiiiiiiiieie ettt ettt err v e e e ste e s ere e 27
Table Il Comparison between MOESS and [3] on solving slew, loading, and timing violations

for different ECO generations of a single projectSccccceeviecicicecceeece e 27

vi

List of Figures

Figure 1 Flow and an example of converting a slew constraint to a loading constraint ... 6

Figure 2 Overall flow of MOESS ...ttt sttt st r e en e 8
Figure 3 ExamPle of converting functional gates to buffers ..., 10
Figure 4 Example of inserted buffers for different pin groupingcccccevveveeveececececnne. 14
Figure 5 Flow of ESB buffer-insertion SCheme ..o 15
Figure 6 Minimum Chain algorithm ... e 16
Figure 7 Search buffer in the ORL diamond shapeccuviviveieieiieice i 19
Figure 8 MC buffer insertion algorithm - e cecreieieieisi s 21
Figure 9 An example process.of ESB buffer-insertion schemecocoeeveveieiececicnennns 22

Figure 10 Spare buffers in the.intersection before (a) and after (b) backward tolerance

Figure 11 (a) spare empty area(placement/routing obstacle) (b) spare gate search failed

(C) dETOUN INSEITION vvieieeeee ettt st e er bbb n et saas 23

Figure 12 Buffer insertion in a critical path by (a) ESB scheme and (b) ECT scheme 25

vii

|. INTRODUCTION

The increasing pressure of time-to-market has forced the IC design houses to improve its
capability of handling incremental design changes, such as ECO (engineering change order),
instead of starting another design respin. Those incremental changes may result from the
specification revision requested from the system integrators, who might catch a system-
design error after first integration or attempt to slightly enhance the original functions. Also,
some incremental changes are requested by the IC design house to fix design errors captured
in silicon debugging or eliminate systematic defects for yield improvement. All the above
changes occur after the first silicon chips-are produced, implying that the original photomasks

have to be replaced for the design changes.

In current process technologies, the cost of photomasks increases by an order of
magnitude per generation [1][2]. For sub-100 nm technologies, the cost of a full photomask
set could reach 1 million USD [1][2]. To reduce this expensive cost of photomasks, the above
incremental design changes are enforced to be implemented by changing only the metal
layers while the base layers (for cells) remain the same. As a result, the original photomasks
used for printing the cells can be reused in the next tape-out. This reuse of the base-layer
photomasks can not only save the cost of photomasks themselves but also reduce the tape-
out turn-around time since the base layers could be manufactured in advance. This type of

the incremental design changes is referred to as the metal-only ECO.

To realize metal-only ECO and make it more effective, some new design techniques have to
be developed. First, spare cells need to be spread all over the design so that the change can
be implemented in every possible location. This allocation of spare cells directly determines
the affordable ECO size and its area overhead. EDA vendors already provide some solutions to
it [3][4][5]. Second, a more complicated router is required to efficiently handle a large
number of existing obstacles and design rules in ECO. Some previous work addressed these
issues by using an implicit connection graph [6], a graph-reduction technique [7], or a timing-
aware router [8]. Third, the violations of timing factors may significantly increase after metal-
only ECO. Thus, a solver which can automatically remove those timing-related violations is
needed to shorten the timing closure of metal-only ECO. Unfortunately, the current solutions

provided by EDA vendors are not effective so far.

Input slew and output loading are two important timing factors to sign off the timing
closure, which are limited by the slew constraint and loading constraint, respectively. Any
violation to these two constraints may lead to a wrong timing estimation of the design, and in
turn, degrade its performance and yield. In reality, meeting the slew constraint is even more
crucial than meeting the timing constraint (more specific, setup-time constraint). In most
cases when the slew constraint is met, its timing constraint can also be met [9][10]. Several
buffer-insertion techniques [9][10][11][12][13] are proposed to solve the violation of the slew,
loading, and timing constraint. However, most previous works assume that its gate placement

is able to change, and hence cannot be applied to metal-only ECO.

In metal-only ECO, solving the timing-related violation relies on the utilization of pre-placed
spare gates. [14] proposed a technology-remapping technique to fix timing violations, which
may require more pre-placed spare cells to support the desired remapping. [15] inserted
constant values to the inputs of spare cells and applied a technology-mapping technique to
replace the original cells with spare cells. It may require more universal but larger-area spare
cells, such as AOI and MUX. Some commercial tools also provide options to support buffer
insertions in metal-only ECO. However, the final location of the inserted buffers often
deviates from the ideal location due to the lack of physical information on spare cells and

routing resources during the bufferinsertion.

In this paper, we develop a metal-only-ECO framework, named MOESS (Metal-Only Eco
Slew/cap Solver), to solve slew and loading violations by using pre-placed spare gates as
inserted buffers. This framework also can solve the timing violations, implicitly or explicitly.
For each violation, the proposed framework first finds the best buffer candidates from all
spare gates and utilizes a commercial back-end tool to insert the selected buffer through its
interface. Therefore, the focus of this framework is not on building a complete ECO router to
handle obstacles and constraints, but on accurately estimating the input slew and output
loading of the buffers newly inserted with the adopted back-end tool. This framework can be
applied based on any commercial back-end tool as long as the design database can be
gueried through an open interface, such as Milkyway for Synopsys, OpenAccess for Cadence,

or Volcano for Magma.

In addition, two buffer-insertion schemes are provided in the proposed framework
sequentially. The first scheme applies the minimum-chain algorithm to minimize the number
of spare gates in use, followed by the second scheme to solve timing violations created by the
first scheme, if there is any. The framework has been silicon-validated through industrial
designs with more than 1-million instances. The experimental results show that, compared to
an EDA vendor’s solution, the proposed framework can solve more slew and loading
violations with less spare gates and less CPU runtime. This framework is currently applied in

industry.

II. PRELIMINARIES

A. Current Metal-Only ECO Flow

Most current APR tools apply the following two steps to realize metal-only ECO: netlist
difference followed by spare cell mapping. In the netlist-difference step, tools first identify the
new added cells by comparing the new netlist to be ECO with the original netlist. The added
cells are assumed to be placed in an ideal area, which may not be valid. In the spare-gate-
mapping step, the tools map the new added cells to physical spare cells. However, when the
ECO size is large, those spare cells may not always be found in the ideal area and tools need
to search for the nearby gates to substitute. Thus, violations of slew, loading, and setup-time

constraints may occur here.

To eliminating these violations, APR tools use a similar approach, inserting buffers in the
netlist and mapping buffers into spare gates.-However, the spare buffers may not be found in
the desired area. Hence the violations remain unsolved or even become worse since the wire
loading of the new-added interconnect may exceed the constraint as well. This unexpected
violation can be attributed to the insufficient number of available spare buffers and the lack

of physical information on the spare buffers during the mapping step.

B. Transfer Slew Constraint into Loading Constraint

The output slew of a gate is determined by its input slew and its output loading. An
excessive output loading at the current gate will result in an excessive input slew at its fanout

gates. Therefore, to control the output loading of its fanin gates can avoid the input-slew

5

violation of the current gate. In other words, we can transfer the problem of solving input-
slew violations for the current pin into the problem of solving output-loading violation for its

fanin gates.

We first define the output available load of a gate g, OAL,, as the maximum output loading
of g which can generate a output slew smaller than the slew constraint assuming that the
input slew of g is equal to the slew constraint. Through table look-up of the timing library and
interpolation, this OAL4 can be obtained after a binary search of the output slews
corresponding to different output loadings. Figure 1 illustrates the detailed steps of obtaining
this OALg . In step 1, input slew of gate g'is set to the maximum allowed slew. In step 2, the
output slew associated with a presumed OAL; is obtained by table look-up. In step3, we check
if the output slew is the same as the slew constraint. If yes, then stop searching. Otherwise, if
the output slew is larger than the slew constraint, we presume a lower output loading and
repeat step 2. If the output slew is less than the'slew constraint, we presume a higher output

loading and repeat step 2.

'step1: fixed slew step2: get output slew given
constraint a presumed output loading

Itr. input OAL output
slew slew
500p 4000ff 2000p
500p 1500ff 400p
500p 1600ff 520p

500p 500p

ep3: check if output s
equal to input slew

Z
o
H WN =

constant
done

Fig. 1. Flow and an example of converting a slew constraint to a loading constraint.
In most cases, the obtained OAL,4 associated with the slew constraint is smaller than the

loading constraint of gate g, implying that satisfying the slew constraint can also satisfy the

loading constraint. However, for some gates with weak driving capability, the OAL4 associated
with the slew constraint may exceed the loading constraint. In this case, we set OAL, to the

loading constraint.

III. OVERVIEW OF PROPOSED METAL-ONLY ECO

SLEW/LOADING SOLVER

A. Overall Flow of MOESS

After the metal-only ECO is finished by using netlist difference and spare cell mapping
(Section II-A), tools will report the pins violating slew and loading constraints. From this
violation report, MOESS will automatically generate the corresponding command script of a
commercial APR tool to solve the violations. Figure 2 shows the overall flow of MOESS, which

is designed to solve slew, loading, andtiming violations after metal-only ECO.

| 1. Collect usable spare gates & calculate their output loading]

2. For each slew/cap violation pin, apply ESB buffer-insertion
scheme to save spare cells in use

heck STA timing repor OK

No
3. For each timing violation pin, apply ECT buffer-insertion scheme
to reduce set-up time while satisfying slew/cap constraints

OK heck STA timing repor

No
4. For each unsolved timing violation net, enforce priority routing
using top metal or double spacing

o

> Done <

Fig. 2. Overall flow of MOESS
The first stage of MOESS is to increase the candidate pool of spare buffers by collecting
usable spare cells. Section I1I-B describes the details. The second stage of MOESS is to apply
ESB (Eco Save Buffer) buffer-insertion scheme to solve the slew and capacitance violations
using minimum buffers. A minimum-chain algorithm is used in the ESB scheme to guide the

order inserted buffers. After the slew violations are solved, most timing violations can be

solved as well. Then a timing analysis tool will report the remaining critical paths violating
timing constraint. Along those critical paths, we identify the nets which are inserted with
buffers in stage 2. Then, we perform the ECT (Eco Care Timing) buffer-insertion scheme to re-
insert buffers and shorten setup time while solving slew and loading violations. The details of
ESB and ECT buffer-insertion schemes are provided in Section IV. For the timing violations
which cannot be solved by solving the slew violation, MOESS will perform its last stage to
enforce the priority routing of the critical nets by using top metal (reducing resistance) or
double spacing (reducing coupled capacitance), and re-route the other non-critical nets
accordingly. These two options (top mental and double space) are provided by most of

current commercial APR tools.

B. Enlarge Candidate Pool-of Spare Buffers

Current commercial APR tools‘use only the spare gate labeled as”buffer-type” to perform
buffer insertion. More aggressively, MOESS exploits the pool of spare buffers by recycling the

redundant cells and using functional spare gates as buffers.

1. Recycle of Redundant Cells: During implementation stage, most APR tools use a special
tag to recognize spare gates. However, the tag could be lost when designers or APR
engineers incorrectly operate. In MOESS, we recycle those lost-tag gates as spare gates.
In addition, designer sometimes might remove certain functionality of a module. Thus,
MOESS applies a breadth-first-search algorithm to recycle the redundant gates starting

from each floating output.

2. Use Functional Cells as Buffers: In MOESS, spare functional cells can also be used as
buffers by connecting Vdd or Gnd to cells’ side inputs. The cell’s input used as buffer’s
input is the pin with least capacitance. For example in Figure 3(a), an AND gate contains
two inputs with 8ff and 3ff input capacitance each. To convert this AND gate to a buffer,
the input pin with larger capacitance is connected to the non-controlling value, Vdd. The
input pin with smaller capacitance is used as the buffer input. These connection choices
can speed up the gate propagation delay by avoiding the charge of high-capacitance

input. A similar concept can be applied to convert a MUX to a buffer (Figure 3(b)).

4ff
8ff =
Y B S

= [

Y

(a) (b)
Fig. 3. Example of converting functional gates to buffers.

C. Wire-Loading Estimations in Metal-Only ECO

Another barrier to effective the buffer insertion in metal-only ECO is the estimation to the
wire loading of a new interconnect. The wire length of a new interconnect varies from
different levels of routing congestion, and cannot be simply measured by Manhattan distance.
A more accurate estimation to the wire loading can be obtained by doing the routing first and
then extract its RC, which is time-consuming and not applicable when building an efficient
buffer-insertion scheme. Therefore, to solve the slew and loading violation with minimum
buffers, our metal-only-ECO framework needs to not only enlarges the candidate pool of
spare cells but also efficiently estimates the wire loading considering the level of routing

congestion.

10

The wire loading is linearly proportional to the wire length. If all routing resources can be
used, the wire length will follow the Manhattan distance. However, with existing
interconnects, the wire length may be larger than the Manhattan distance depending on the
level of routing congestion. In MOESS, we use the via density, denoted as VD(p1, p2), to
represent the routing-congestion level in a rectangular area between two connected pins p1
and p2. VD(p1, p2) = VA/area, where VA is the area of the occupied vias and area is the

rectangular area formed by using p1 and p2 as its two diagonal vertices.

Then, we define the routing ratioto Manhattan distance, denoted as RRMDy(vd)
(RRMD,(vd)), to represent the ratio of the actual wire length over the Manhattan distance
between connected pins in horizontal (vertical) direction. This ratio is a function of the via
density vd. In MOESS, this RRMDy(vd) or RRMDy(vd) is obtained by the average statistical
result accumulated in the past usage of'the adopted APR tool. This statistical result varies
according to different APR tools in use. Based on this ratio, we can use the following equation
to compute the wire loading corresponding to a horizontal (vertical) unit of the Manhattan
distance between two pins p1 and p2, denoted as Up(p1, p2) (U, (p1, p2)):

Unlp1, p2) = RRMDn(VD(p1, p2)) - K (1)
Uip1, p2) = RRMD,(VD(p1, p2)) - K, (2)
where Kj, (K,) represents the wire loading per unit in the horizontal (vertical) direction
according to the process technology. Last, the wire load between two pins p1 and p2,

WL(p1,p2), could be estimated by,

11

WL(p1, p2) = MDy(p1, p2) - Un(pl, p2) + MD,(p1, p2) - U,(p1, p2) (3)
where MDy(p1, p2) (MD, (p1, p2)) represents the Manhattan distance in horizontal (vertical)

direction.

12

IV. ESB AND ECT BUFFER-INSERTION SCHEMES

For an input-slew-violation pin p, we first calculate its equivalent OAL4 by the method
described in Section II-B, where g’s output directly connects to p. Then the slew-violation
problem at input pin p is transferred to an equivalent loading-violation problem at
gate g’s output. The gate g is referred to the violation gate and the net driven by g is referred
to the violation net. We first apply the ESB buffer-insertion scheme to minimize the number
of spare cells used to solve this loading-violation problem. The more spare cells can be saved,
the larger ECO size can be implemented in the next generation of ECO. From our experience,
a product could have more than 10 generations of ECO due to either large market requests or

poor design.

In reality, most slew violations result from high-fanout nets. To save the spare buffers in use,
we try to use one buffer to drive as many terminal pins as possible. Therefore, we need an
effective grouping method to select the nearby terminal pins which can be driven by a
common buffer under the loading or slew-transferred constraint. Figure 4 shows an example
of a 3-terminal violation net. If we group two geometrically separated pins, such as t2 and t3
in Figure 4(b), one buffer is not enough to drive both of t2 and t3 since their wire loading is
too large. However, if we group two nearby pins, such as t1 and t2 in Figure 4(c), one buffer is

enough to drive both of t1 and t2.

13

| A | B> :inserted buffer
= g:.violation gate L§G2 - [l :Groupt, G1

ti:terminal pin

(a) (b) (c) E :Group2, G2

t1,I:] _l—ﬂ]]]]]G1 G1
Dy D—[z_l—éez D_[Zj[ﬁl&ﬂm
]

Fig. 4. Example of inserted buffers for different pin grouping.

Figure 5 shows the flow of the ESB scheme. In step A, a minimum-chain algorithm is
applied to obtain an order of terminal pins for the violation net, named MC order (detailed in
Section IV-B). This MC order can guide the grouping of nearby terminal pins in step B
(detailed in Section IV-B). Step C calculates the ideal location of the inserted buffer based on
the grouped terminal pins (detailed in Section IV-C)..In'step D, we attempt to map a real spare
buffer closest to the ideal location while satisfying the slew-transferred loading constraint
(detailed in Section IV-D). Aftera real spare buffer is successfully inserted, we update the
violation net and recalculate the'MC.order of its terminal.pins in step E. We repeat step B to
step E until the output loading of the violation gate meets the slew-transferred loading
constraint. An overall algorithm is provided in Section IV-E. We also discuss how to relax the
searching criteria when no suitable buffer ¢ an be found to solve the violation in Section IV-F.

Section IV-G describes how to handle hard macros in the ESB scheme.

14

A. Obtain MC (minimum-chain) ¥
f net' inal pi
bt svtermma pins E. Update net and recalculate
B. Group terminal pins its MG order
based on the order
4

C. Cglculate the ideal buffer < Meet loading constraint
location for the grouped pins No

D. Search real spare buffer

and insert it to the net

(special case: backward/detour)
|

Fig. 5. Flow of ESB buffer-insertion scheme.
The ECT buffer-insertion scheme is applied after ESB scheme. The objective of ECT scheme
is to eliminate the timing violations resulted from using ESB scheme. The flow of ECT is similar
to the ESB scheme except the grouping method.in-step B.The details are described in Section

IV-H.

A. Obtain Minimum-Chain Order.of Terminal Pins

As the example in Figure 4 shows, we hope to group the terminal pins of the violation net
not only in the same geometrical neighborhood but also in the same direction toward the
violation gate. Otherwise the wire loading to drive the grouped pins may be too large. In
order to obtain such grouping, we modified a minimum-chain algorithm in [16] to get the MC
order of terminal pins. The concept of this minimum-chain algorithm is to assign the closest
pin as the next ordered pin each time, starting from the violation gate g (the order of g is 0).
By connecting the terminal pins one by one with such order, their total wire length can
approach to minimal. This property also implies that the terminal pins with adjacent MC
order are more likely in the same direction toward the violation gates as well. Figure 6 lists

15

this minimum-chain algorithm.

B. Group Terminal Pins Using MC Order

In step B, terminal pins of the violation net are first grouped assuming a type-t buffer b is
used. We start from the buffer type with the highest driving capability to the one with the
lowest. Then, we follow the MC order to serially add the terminal pins into the group p list.
The objective here is to obtain a group of pins p list such that the output loading of b for
driving all grouped pins in p list is close to but not exceed the OAL,. We estimate this output

loading of b for driving p list (denoted as GOL,(p_list)) by the following equation:

GOLy(pdist) = Y _ (InCy, + WL(ps, pi-1)),
i=1 (4)

Algorithm: MinChain (net)

input: net, a violated net

output: me_list, an ordered list of terminal pin, the farthest
terminal pin from source pin are ordered in the last

1 begin
2 p-list < all terminal pins of the net;
3 start_pin < source pin of the net;
4 mecelist — ¢

5 while p_list # ¢

6 search the closest pin, ¢p, to start_pin in p_list;
7 remove cp from p_list;
append cp to me.list; start_pin < cp;
9 endwhile
10 return mec_list;
11 end

Fig. 6. Minimum Chain algorithm
where n is the size of p list, pi is the ith ordered pin in p list, InCp; is the input capacitance of p;,

WL(p;, pi-1) is defined in Equation 3, and WL(p1, p0) is equal to 0.

In this estimation, we assume that the terminal pins are piece-wise connected one by one.

However, the real routing of a net generated by commercial tools is like a Steiner tree, where

16

multiple terminal pins may share one common wire. Therefore, this estimation is actually an
upper bound, implying that the inserted buffer by ESB scheme can safely meet the loading

constraint.

C. Calculate Ideal Buffer Location

We follow the following two rules when deciding the ideal location of the type-t buffer to
drive all terminal pins in p list:
R1 Use all buffer’s driving capability under the given constraint.
R2 Locate the inserted buffer as close to the violation output as possible.
To achieve R1, we first calculate the output remained load of the buffer b, denoted as ORL,,

using the equation:

ORLy = OAL, — GOLy(plist). (5)

The amount of ORL, determinesthe affordable wire length connecting from inserted buffer b
to the last-ordered pin p, in p_list. The higher ORL;, the longer wire length can be allowed
between b and p,. Thus, the ideal location of the inserted buffer b must satisfy the following
equation:
Xy — X

’ Uh(ba pn) + |Yb - Y,) U’U(bapﬂ) < ORLb:

T | T |

(6)
where X, and Y, represents the X-axis and Y-axis coordinates of pin (or gate) a, respectively. To
make the buffer b closer to the source pin g, we limit the ideal location of b on the straight

line between g and p,. Then we add another equation:

(Yb - an)/(Xb - Xpn) — (an - Yg)/(Xpn - Xg)-

(7)

17

Last, we can obtain the ideal location of b by solving both Equations 6 and 7, assuming the

equality holds in Equations 6.

D. Search Real Spare Gate

We first use the Manhattan distance between the last-ordered pin p, and the ideal buffer
location as the radius to draw a diamond-shape region centered at p,. The buffer found in this
diamond-shape region can satisfy Equations 6. To make the buffer closer to the violation gate
g, we use the same radius to draw another diamond-shape region centered at the ideal buffer
location. We then attempt to select the buffers locating in the intersection of the two regions.
This searching can make sure that the selected buffer, ifany, is on the way toward the
violation gate g, which helps to achieve R2. Figure 7 shows an example of these two

diamond-shape regions.

Finally, we select the type-t buffer closest to the ideal location in the intersection region. If

such type buffer cannot be found in the intersection region, then we change the buffer type

to one with lower driving capability and repeat step B to step D.

18

straight line
(X..Y.) fromgtop.,,/\.

ORL, radius search area

ideal = N -71:]17,,
buffer location . E’.-/ —{>
/<' Y R Py
i ORL o "
maximum _loading P>
boundary (Manhatén distance) ——D

@: candidate spare %: overloading spare
Fig. 7. Search buffer in the ORL diamond shape
E. Overall Algorithm of ESB Scheme

Figure 8 details the general algorithm of ESB scheme. In this algorithm, Line 6 to 17
corresponds to step B in Section IV-B.'Line 18 corresponds to step C in Section IV-C. Line 19 to

20 corresponds to step D in Section IV-D.

Figure 9 illustrates the process‘of inserting buffers.onto a 6-terminal violation net. In Figure
9(a), the labeled number on each terminal represents its MC order. We first group the
farthest pins in G1 (5 and 6) according to step B. In Figure 9(b) a spare buffer is inserted to
share the loading of grouped pins through step C and D. Pin 5 and 6 are hence removed from
the violation net. Assume OAL, is still less than GOL4 (mc list) in this case, we need to
recalculate the MC order for the updated violation net with 5 terminal pins. Then we repeat
the step B, C, and D to group terminal pins in Figure 9(c) and insert another buffer for the
grouped pins in Figure 9(d). After that, OAL; become less than GOL, (mc list). So total two

buffers are inserted to solve the violation. Figure 9(e) shows the final result.

19

F. Background Tolerance

In order to drive as many terminal pins as possible, we keep on adding terminal pins into
the grouping list p list as long as GOLy(p_list) is less than OAL,. A larger GOL,(p_list) will result
in a smaller ORL, (as defined in Equation 5) and, in turn, a smaller radius of the two diamond-
shape regions. This radius reduction may shrink the searching space of candidate spare
buffers, such as the situation in Figure 10(a). Therefore, when no candidate spare buffer can
be found to drive the pins in p list, we may remove the last-ordered pin in p list to increase
ORL,. Then we restart the searching for candidate spare buffers, such as the situation in

Figure 10(b).

G. Detour Insertion to Avoid Hand Macro

In seldom cases, the violation net cantains terminal pins locating on the opposite two sides
of a hard macro such as Figure 11(a). The predicted location of the inserted buffer may be
inside the hard macro such as Figure 11(b). To avoid this situation, MOESS need record the
area of hard macros in advance. Once the predicted buffer region is located in hard macro’s
area, we perform a detour search along the boundary of the hard macro to find a proper
buffer such as Figure 11(c). In such a case, the search could be from either direction of the
source pin. In MOESS, we start from the direction which can form a shorter detour path to

the target pin.

H. ECT Buffer-Insertion Scheme

ESB scheme focuses on using a buffer to support as many terminal pins as possible.

20

Although the slew or loading violation can be solved by ESB scheme, the delay of some paths
may exceed the timing constraint due to the extra gate delay of inserted buffers. This case
usually occurs when a new-added function is connected to a timing-critical net. After studying
those timing-violation cases, we found that most violations result from the sharing of a
common buffer between a timing-critical path and long new-added wires, such as the case in
Figure 12(a). The labeled number for each pin represents its Manhattan distance to the
source pin of the violation net. Those new-added wires can be designed as multi-cycle paths

to meet the timing constraint but the original paths cannot.

Algorithm: MCBufferInsertion (net, OAL,)
input: net, slew or capacitance violated net

input: OAL,, violated gate’s output available load
output: the new net connection of the net

1 begin

2 meclist = MinChain(net);

3 while OAL, < GOL4(meclist)

4 /I propose to insert buffer from the farthest input group
6 plist «— ¢; i «— |meclist| — 1;

7 overload_flag «— false;

8 foreach buffer type ¢ of the inserted buffer b
9 while overload_flag == false && i # 0

10 if GOLy(p-list) < OALy

11 P < i¢n terminal pin in me_list

12 append p to p_list;

13 i —1— 1

14 else

15 overload_flag «— true;

16 endif

17 endwhile

18 calculate ORL; and ideal location (X3, Y3) of b;
19 if real spare gate, rsb, for b found

20 insert buffer, rsb, for p_list;

21 // update the connection of the net

22 add rsb’s input in the input list of the net;
23 remove the node in p_list from the net;
24 me_list = MinChain(net);

25 break;

26 endif

27 endforeach
28 endwhile
29end

Fig. 8. MC buffer insertion algorithm

21

5 6t
DO
gl
3
—{ 14
(a)

Fig. 9. An example process of ESB buffer-insertion scheme.

To avoid such cases, ECT buffer-insertion scheme will separate the grouping of long-wire
terminal pins from the others. So the terminal pins on critical paths need not to share a
common buffer with other long-wire terminal pins, such as the case in Figure 12(b). Therefore,
ECT scheme basically follows the same flowof ESB scheme but change the step of terminal-
pin grouping (step B). In ECT scheme, a terminal pin whose Manhattan distance to the source
pin exceeds a threshold is defined as the long-wire terminal pins. Then, for only those long-
wire terminal pins, we determine the pin'grouping using the same procedure described in
Section IV-B and insert buffers accordingly. After that, the same procedure is applied to the
other terminal pins again. As a result, the number of inserted buffer may be increased while

the propagation delay for critical paths can be reduced.

..'-._.... @ —%..

B:FG [:spare not candidate [: candidate spare gate
(a) (b)

Fig. 10. Spare buffers in the intersection before (a) and after (b) backward tolerance.

22

predict detour
T— location CF— prediction C——

e
analog macro \ P
(routing obstacle ” |

D—— Di—
(a) (b) (c)

Fig. 11. (a) spare empty area(placement/routing obstacle) (b) spare gate search failed (c)
detour insertion

The threshold of the Manhattan distance to the source pin is actually a parameter in ECT
scheme. ECT scheme will try different thresholds within an empirical range to check if the
timing violation can be solved. If not, ECT scheme will report the case with the best negative

slack.

23

V. EXPERIMENTAL RESULT

Our platform is Linux, kernel 2.6.9-11.elsmp, running on AMD Opteron processor 250 with
16GB memory. The ECO flow, including netlist difference, spare gate mapping, and routing, is
performed based on a commercial APR platform [3]. After the metal-only ECO is performed,
we first obtain the violation report on slew, loading, and timing constraints. Then MOESS will
generate corresponding scripts based on this violation report to insert and map spare buffers
onto violation nets. We compare the results of MOESS with a EDA vendor’s buffer-insertion
solution for metal-only ECO [3]. In vendor’s solution, we use the command”run gate buffer

wire -slew/cap -eco” to insert buffers for each violation net.

The benchmarks used in this'experiment-are all industrial'projects. The spare-cell count in
each project is 3% to 5% of the total cell count. The spare cells are evenly placed within the
chip by using an in-house tool before the base-layer tape-out. The slew constraint in use is a
pre-defined constant associated with the process technology and the cell library. The loading
constraint in use is defined as a ratio to the value of the library-suggested constraint. In our
experiments, the slew and loading constraints are 2.2ns and the ratio of 1 for the .18um

process; the slew and loading constraints are 1.0ns and the ratio of 1.2 for the .13um process.

24

30
timing critical path D [] i
70um _.D 70um
MD constraint:
—>90um timing violated gate —>900m 1000u
\4 U
f———) 1500um —————{) 1500um
———{) 2500um ECO ——{) 2500um
—D 3500um J P2t —D 3500um
(a) (b)

Fig. 12. Buffer insertion in a critical path by (a) ESB scheme and (b) scheme.

In the Table I, we first report the comparison results on 7 industrial projects. Column 1 lists
the project name and its ECO version in parentheses. Columns 2 to 5 list the instance count,
the adopted process technology, the spare-cell count, and the size of ECO in instances for
each project, respectively. Columns 6 and 7 list the numbers of reported slew violations and
loading violations, respectively, before-any buffer-insertion scheme is applied. Column 8-10,
12-14, and 16-19 list the worstiinput slew, the worse output-loading ratio to the library-
suggested constraint, and the worst slack, respectively, reported (1) before any buffer-
insertion scheme is applied (denoted by-ori.), (2) after a EDA vendor’s solution is applied
(denoted by [3]), and (3) after MOESS is applied (denoted by MOESS). Column 11, 15, and 19
also list the improvement of MOESS over [3] (denoted by imp.) in the worst input slew, the
worse output-loading ratio, and the worst slack, respectively. The number followed by a ”*”
means that the corresponding value violates the constraint. In Column 20-22 and 23-25, we
report the number of spare buffers in use and the CPU runtime for both [3] and MOESS, and

the corresponding improvement or speedup of MOESS over [3].

As the results show, MOESS can solve all the slew, loading, and setup-time violations for

these seven projects while the vendor’s solution violates the slew constraint in 3 projects, the

25

loading constraint in 2 projects, and the setup time constraint in 4 projects. The average
improvements of MOESS on the worst slew, worst loading, and worst slack are 24%, 21%, and
57%. Also, the number of used spare buffers by MOESS is smaller than that by [3] for each
project, which saves more ECO resources for the next generation of ECO. This reduction to the
number of used spare buffers is 38% in average. Furthermore, the runtime consumed by
MOESS is less than that by [3] for each project as well. The average speedup of MOESS is
14.9X. One key reason why MOESS is faster than [3] is that MOESS utilizes the MC-ordering-
based method to quickly estimate the wire loading and group terminal pins (Section IV-B).
The commercial tool [3] needs to construct a Steiner-tree-like net-routing before estimating
its loading, which requires more computation time. These experimental results demonstrate

both the effectiveness and efficiency of our buffer-insertion algorithm.

To show a stronger need of an‘effective metal-only-ECO solver when the ECO resource is
limited, we report the experimental results of different ECO generations on a single project in
Table Il. In the 2nd and 3rd ECO generations, the size of new added functions
is small and hence both MOESS and [3] solve all the violations. However, after a large scale
ECO is requested in the 5th ECO generation, [3] fails to solve the slew, loading, and timing
violation while MOESS can solve all of them with less spare buffers and less runtime. Note
that the number of remaining spare gates is only 0.5% to the total number of instance after
the 5th ECO generation. Therefore, even though ECO size is small in the 7th and 8th ECO
generation, [3] still fails to solve the slew and setup-time violations. On the contrary, MOESS

solves all the slew and loading violations and controls the slack at an acceptable level, -0.1ns,

26

for both ECO generations. Actually we taped out these two ECO generations with this slack of

-0.1ns because this negative slack cannot be removed with further manual effort. The slacks

resulted from [3] in these two ECO generations are -1.7ns and -0.5ns, respectively, which is

far away from the tape-out standard and requires a lot manual effort to achieve the timing

closure. This experimental result again demonstrates the strength of MOESS in metal-only

ECO.
U T 2 3T 4 JS5Te6eJ7 8T 9T 1o JurJea[13] 14 JisJ[1e] 17] 18 TI9J20] 21 [22][23] 24 [25
proj. [instance|pro-| spare [ECO|#violation worst slew worst loading worst slack #spare buffer runtime
(ver.) | count [cess|count| size[slew[Toad|| ori.] [3] [MOESS[imp.[[ori.] [3]JMOESS[imp.[[ori. T [3] [MOESS] imp. [[[3]]MOESS]imp. [3]]MOESS]speedup
da(3) [190.4K|.18]7.6K | 142 40| 0]{16.0n|5.0n*| 1.9n |68%]|4.3| <1 <l - ||-3.5n|-2.2n*[<O [100%]|| 78 40(49%|| 20m Im| 19.0X
db(3) [210.8K|[.18]9.1K [1030[6 Of| 2.4n|[1.8n| 1.8n - |1 <1 <l <0 | <0 <0 - 12 5|58%|| 22m Im| 21.0X
de(4) [2429K|.18 | 5.5K [507 71 0]| 6.6n[3.8n*| 2.0n [47%]||1.4|<1| <I -2.3n|-0.3n*| <0 [100%|| 91 68|25%|| 31m 3m| 9.3X
dd(3) [309.3K .18]10.4K[1904| 47 Off 7.2n{2.In| 2.0n [5% [[1.9[<I| <1 - ||-1.bn| <0 <0 - 83 48[42%(| 27m 2m| 12.5X
de(2) [871.1K|[.13[62.4K| 127 0 35[[0.9n] 0.9n | 0.9n - |[1.4]1.2 1.1 8% [| <0 | <0 <0 - 63 35[44%|[172m Sm| 33.4X
df(2) | 1.3M [.13 [48.8K[1276[15| 243|[2.0n[1.3n*| 0.9n [31%|[3.1]|3.5%] 1.2 |66%[[-0.6n|-0.1n*| <O [100%]|377 277(27%|[222m 37m| 5.0X
dg4) | 1.6M |.13[80.5K[1702| 166] 258]| 5.6n| 1.2n | 1.0n [17%][9.3]4.6*] 1.2 [74%][|-0.2n|-0.4n*] <0 [100%]|314 259[18%([252m| 45m| 4.6X
average] [T T T T T T T 4% T T Pre T 1 [57%]_] [38% T [149X
Table |
Comparison between MOESS and [3] on solving slew, loading and timing violations for
multiple metal-only ECO projects.
] 2 (3[4 [5[6[7[8[9 10 [I[I2[13] 14 [15 [[16] 17 [18 [19 [20] 21 [22][23] 24 [2
proj. |instance|pro-|spare [ECO|#violation worst slew worst loading worst slack #spare buffer runtime
(ver.) | count |cess|count| size[slew[load|| ori.] [3] [MOESS[imp.|[ori.] [3][MOESS] imp. [| or. [3] [MOESS] imp. || [3]][MOESS]imp.|| [3]|MOESS]speedup
dh(2) |352.1K| .18 [4.2K| 52 7 0[|2.7n| 1.8n | 1.8n - |[<1[<1 <l - -0.2n| <0 <0 - 12 7142%||35m Im| 34.0X
dh(3) [352.1K[.18 [4.1K[267 29| 2[[2.3n[2.In| 1.8n [9% [[1.9]<I| <1 - [[-0.4n] <0 <0 - 64 35[45%][39m Im| 38.0X
dh(5) | 352.1K | .18 [3.7K [1672] 118 5| 13n|4.6n*| 2.0n |57%|[2.7|1.3*| <1 |100%]|[-3.6n|-1.4n*| <O |100%]||188 124|34%||42m| 4.5m 8.3X
dh(7) |352.1K| .18 | 1.9K| 43 9 2]|3.7n]|2.8n*| 2.0n [29%|[1.3] <1 <l - -0.7n]-1.7n*| -0.1n* | 94% 18 13]28%||35m Im| 34.0X
dh(8) |352.1K | .18 | 1.8K | 135] 17 3|[4.5n|3.5n*| 2.In [40%][1.7| <1 <l - -2.2n(-0.5n*| -0.1n* | 80% |[29 19{34%||36m Im| 35.0X
average| L [T [T T T [27%] [1 [20]] [1 [55%] 1 B37%][1 [299X
Table I

Comparison between MOESS and [3] on solving slew, loading, and timing violations for

different ECO generations of a single project.

27

VI. CONCLUSION

In this paper, an efficient and effective framework is proposed to solve the slew, loading,
and timing constraint in metal-only ECO. The proposed framework is built based on the
platform of a commercial APR tool. It can also be ported to any other commercial tool
offering open access to the design database. According to the experimental results obtained
from real industrial projects, the proposed framework can significantly increase affordable
scale of mental-only ECO with less spare gates and runtime in use, compared to a current

vendor’s solution. This framework is currently included in the ECO flow of an IC design house.

28

REFERENCES

[1] International technology roadmap for semiconductors http://www.itrs.net/

[2] A. Balasinski, Optimization of sub-100-nm designs for mask cost reduction, J.
Microlithography, Microfabrication, Microsyst., vol.3, pp.322-331, Apr. 2004.

[3] Magma Design Automation, http://www.magma-da.com/

[4] Synopsys Inc., http://www.synopsys.com/

[5] Cadence Design System, http://www.cadence.com/

[6] J. Cong, J. Fang, and K. Khoo, An implicit connection graph maze routing algorithm for
ECO routing, ACM/IEEE Int’l Conference on Computer Aided Design, pp.163-167, Nov.,
1999.

[7] Yih-Lang Li, Jin-Yih Li, and Wen-Bin Chen, An efficient tile-based ECO router using routing
graph reduction and enhanced global routing flow, IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems; Vol. 26, No. 2, pp.345-358, Feb., 2007.

[8] S. Dutt, and H. Arslan, Efficient timing-driven incremental routing for VLSI ciruits using
DFS and localized slack-satisfaction computations, Design, Automation, and Test in Europe,
Vol. 1, pp.768-773, 2006

[9] Weiping shi and Zhuo Li, Fast algorithm for optimal buffer insertion, IEEE Trans. on CAD,
pp.492-498, 2005.

[10] P.J. Osler, Placement driven synthesis case studies on two sets of two chips: hierarchical

and flat, ACM Int’l Symposium on Physical Design, pp. 190-197, 2004.

[11] Charles Alpert, Andrew Kahng, Bao Liu, lon Mandoiu, and Alex Zelikovshy, Minimum-

29

buffered routing of non-critical nets for slew rate and reliability control, ACM/IEEE Int’|
Conference on Computer Aided Design, pp.408-415, 2001.

[12] P. Saxena and N. Menezes and P. Cocchini an D.A. Kirk-patrick, Repeater scaling and its
impact on CAD, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 23, no. 4, pp. 451-463, 2004.

[13] S. Hu, C.J. Alpert, J. Hu, S.K. Karandikar, Z. Li, W. Shi, and C. Sze, Fast algorithm for slew-
constrained minimum cost buffering, Design Automation Conference, pp. 308-313, 2006.

[14] Y.P. Chen, J.W. Fang and Y.W. Chang, ECO timing optimization using spare cells and
technology remapping, ACM/IEEE Int’| Conference on Computer Aided Design, pp.530-
535, Nov., 2007.

[15] Y.M. Kuo, Y.T. Chang, S.C. Chang and-M. Marek-Sadowska, Engineering change using
spare cells with constant insertion, ACM/IEEE Int’l Conference on Computer Aided
Design, pp.544-547, Nov., 2007.

[16] Sadig M Sait and Habib Youssef, VLSI PHYSICAL DESIGN AUTOMATION Theory and

Practice, Vol. 6, pp.165-167, 1999.

30

