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摘 要       
 
 

為了縮短電子產品上市時間及減少在先進製程光罩上的巨額花費，繞線工

程改變已成為具吸引力與實際的解決方案。在使用繞線工程改變時，由於

電路上有限的備份電路單元造成新加入的電路常會造成時序上的輸入扭轉

違規與輸出負載違規使得電路時序上出錯。這篇論文提出一個解決輸入扭

轉違規與輸出負載違規的架構，藉由連接備份電路單元作為緩沖電路以解

決新產生之電路延遲問題。我們提出兩種插入緩沖電路方法依序最小化所

使用的緩沖電路及解決時序上有所違背的電路節點。這樣的架構已經在業

界所使用的電路上驗證過。實驗數據表明我們所提出的架構相對於商業軟

體可以使用更少的緩沖電路、更少的中央處理器運行時間去解決更多時序

上延遲問題。整個架構建築在現有的自動繞線及擺放工具上並且可以方便

的應用到不同的工具中。 
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Student: Chih-Wei Chang                                            Advisor: Dr. Chia-Tso Chao 
 
 
 

Department of Electronics Engineering 
 

Institute of Electronics 
 

National Chiao Tung University 
 
 

Abstract 
 
To shorten the time-to-market and reduce the expensive cost of photomasks in 

advance process technologies, metal-only ECO has become a practical and 

attractive solution to handle incremental design changes. Due to limited spare 

cells in metal-only ECO, the new added netlist may often violate the input-slew 

and output-loading constraints and, in turn, delay or even fail the timing closure. 

This paper proposes a framework, named MOESS, to solve the input-slew and 

output-loading violations by connecting spare cells onto the violated nets as 

buffers. MOESS provides two buffer insertion schemes performed sequentially 

to minimize the number of inserted buffers and then to solve timing violations if 

there is any. This framework has been silicon-validated through industrial 

designs with more than 1-million instances. The experimental results 

demonstrate that MOESS can solve more violations with less inserted buffers 
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and less CPU runtime compared to an EDA vendor’s solution. The whole 

framework is built based on a commercial APR tool and can be ported to any 

other APR tool offering open access to its design database. 
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I. INTRODUCTION 

The increasing pressure of time-to-market has forced the IC design houses to improve its 

capability of handling incremental design changes, such as ECO (engineering change order), 

instead of starting another design respin. Those incremental changes may result from the 

specification revision requested from the system integrators, who might catch a system-

design error after first integration or attempt to slightly enhance the original functions. Also, 

some incremental changes are requested by the IC design house to fix design errors captured 

in silicon debugging or eliminate systematic defects for yield improvement. All the above 

changes occur after the first silicon chips are produced, implying that the original photomasks 

have to be replaced for the design changes. 

 

In current process technologies, the cost of photomasks increases by an order of 

magnitude per generation [1][2]. For sub-100 nm technologies, the cost of a full photomask 

set could reach 1 million USD [1][2]. To reduce this expensive cost of photomasks, the above 

incremental design changes are enforced to be implemented by changing only the metal 

layers while the base layers (for cells) remain the same. As a result, the original photomasks 

used for printing the cells can be reused in the next tape-out. This reuse of the base-layer 

photomasks can not only save the cost of photomasks themselves but also reduce the tape-

out turn-around time since the base layers could be manufactured in advance. This type of 

the incremental design changes is referred to as the metal-only ECO. 
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To realize metal-only ECO and make it more effective, some new design techniques have to 

be developed. First, spare cells need to be spread all over the design so that the change can 

be implemented in every possible location. This allocation of spare cells directly determines 

the affordable ECO size and its area overhead. EDA vendors already provide some solutions to 

it [3][4][5]. Second, a more complicated router is required to efficiently handle a large 

number of existing obstacles and design rules in ECO. Some previous work addressed these 

issues by using an implicit connection graph [6], a graph-reduction technique [7], or a timing-

aware router [8]. Third, the violations of timing factors may significantly increase after metal-

only ECO. Thus, a solver which can automatically remove those timing-related violations is 

needed to shorten the timing closure of metal-only ECO. Unfortunately, the current solutions 

provided by EDA vendors are not effective so far. 

 

Input slew and output loading are two important timing factors to sign off the timing 

closure, which are limited by the slew constraint and loading constraint, respectively. Any 

violation to these two constraints may lead to a wrong timing estimation of the design, and in 

turn, degrade its performance and yield. In reality, meeting the slew constraint is even more 

crucial than meeting the timing constraint (more specific, setup-time constraint). In most 

cases when the slew constraint is met, its timing constraint can also be met [9][10]. Several 

buffer-insertion techniques [9][10][11][12][13] are proposed to solve the violation of the slew, 

loading, and timing constraint. However, most previous works assume that its gate placement 

is able to change, and hence cannot be applied to metal-only ECO. 
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In metal-only ECO, solving the timing-related violation relies on the utilization of pre-placed 

spare gates. [14] proposed a technology-remapping technique to fix timing violations, which 

may require more pre-placed spare cells to support the desired remapping. [15] inserted 

constant values to the inputs of spare cells and applied a technology-mapping technique to 

replace the original cells with spare cells. It may require more universal but larger-area spare 

cells, such as AOI and MUX. Some commercial tools also provide options to support buffer 

insertions in metal-only ECO. However, the final location of the inserted buffers often 

deviates from the ideal location due to the lack of physical information on spare cells and 

routing resources during the buffer insertion. 

 

In this paper, we develop a metal-only-ECO framework, named MOESS (Metal-Only Eco 

Slew/cap Solver), to solve slew and loading violations by using pre-placed spare gates as 

inserted buffers. This framework also can solve the timing violations, implicitly or explicitly. 

For each violation, the proposed framework first finds the best buffer candidates from all 

spare gates and utilizes a commercial back-end tool to insert the selected buffer through its 

interface. Therefore, the focus of this framework is not on building a complete ECO router to 

handle obstacles and constraints, but on accurately estimating the input slew and output 

loading of the buffers newly inserted with the adopted back-end tool. This framework can be 

applied based on any commercial back-end tool as long as the design database can be 

queried through an open interface, such as Milkyway for Synopsys, OpenAccess for Cadence, 

or Volcano for Magma. 
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In addition, two buffer-insertion schemes are provided in the proposed framework 

sequentially. The first scheme applies the minimum-chain algorithm to minimize the number 

of spare gates in use, followed by the second scheme to solve timing violations created by the 

first scheme, if there is any. The framework has been silicon-validated through industrial 

designs with more than 1-million instances. The experimental results show that, compared to 

an EDA vendor’s solution, the proposed framework can solve more slew and loading 

violations with less spare gates and less CPU runtime. This framework is currently applied in 

industry. 

 



 
 

5 
 

 

II. PRELIMINARIES 

A. Current Metal-Only ECO Flow 

Most current APR tools apply the following two steps to realize metal-only ECO: netlist 

difference followed by spare cell mapping. In the netlist-difference step, tools first identify the 

new added cells by comparing the new netlist to be ECO with the original netlist. The added 

cells are assumed to be placed in an ideal area, which may not be valid. In the spare-gate-

mapping step, the tools map the new added cells to physical spare cells. However, when the 

ECO size is large, those spare cells may not always be found in the ideal area and tools need 

to search for the nearby gates to substitute. Thus, violations of slew, loading, and setup-time 

constraints may occur here. 

 

To eliminating these violations, APR tools use a similar approach, inserting buffers in the 

netlist and mapping buffers into spare gates. However, the spare buffers may not be found in 

the desired area. Hence the violations remain unsolved or even become worse since the wire 

loading of the new-added interconnect may exceed the constraint as well. This unexpected 

violation can be attributed to the insufficient number of available spare buffers and the lack 

of physical information on the spare buffers during the mapping step. 

 

B. Transfer Slew Constraint into Loading Constraint 

The output slew of a gate is determined by its input slew and its output loading. An 

excessive output loading at the current gate will result in an excessive input slew at its fanout 

gates. Therefore, to control the output loading of its fanin gates can avoid the input-slew 
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violation of the current gate. In other words, we can transfer the problem of solving input-

slew violations for the current pin into the problem of solving output-loading violation for its 

fanin gates. 

 

We first define the output available load of a gate g, OALg , as the maximum output loading 

of g which can generate a output slew smaller than the slew constraint assuming that the 

input slew of g is equal to the slew constraint. Through table look-up of the timing library and 

interpolation, this OALg can be obtained after a binary search of the output slews 

corresponding to different output loadings. Figure 1 illustrates the detailed steps of obtaining 

this OALg . In step 1, input slew of gate g is set to the maximum allowed slew. In step 2, the 

output slew associated with a presumed OALg is obtained by table look-up. In step3, we check 

if the output slew is the same as the slew constraint. If yes, then stop searching. Otherwise, if 

the output slew is larger than the slew constraint, we presume a lower output loading and 

repeat step 2. If the output slew is less than the slew constraint, we presume a higher output 

loading and repeat step 2. 

 

 
 

Fig. 1. Flow and an example of converting a slew constraint to a loading constraint. 
 

In most cases, the obtained OALg associated with the slew constraint is smaller than the 

loading constraint of gate g, implying that satisfying the slew constraint can also satisfy the 



 
 

7 
 

loading constraint. However, for some gates with weak driving capability, the OALg associated 

with the slew constraint may exceed the loading constraint. In this case, we set OALg to the 

loading constraint. 
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III. OVERVIEW OF PROPOSED METAL-ONLY ECO 

SLEW/LOADING SOLVER 

A. Overall Flow of MOESS 

After the metal-only ECO is finished by using netlist difference and spare cell mapping 

(Section II-A), tools will report the pins violating slew and loading constraints. From this 

violation report, MOESS will automatically generate the corresponding command script of a 

commercial APR tool to solve the violations. Figure 2 shows the overall flow of MOESS, which 

is designed to solve slew, loading, and timing violations after metal-only ECO. 

 

 
 

Fig. 2. Overall flow of MOESS 
 

The first stage of MOESS is to increase the candidate pool of spare buffers by collecting 

usable spare cells. Section III-B describes the details. The second stage of MOESS is to apply 

ESB (Eco Save Buffer) buffer-insertion scheme to solve the slew and capacitance violations 

using minimum buffers. A minimum-chain algorithm is used in the ESB scheme to guide the 

order inserted buffers. After the slew violations are solved, most timing violations can be 
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solved as well. Then a timing analysis tool will report the remaining critical paths violating 

timing constraint. Along those critical paths, we identify the nets which are inserted with 

buffers in stage 2. Then, we perform the ECT (Eco Care Timing) buffer-insertion scheme to re-

insert buffers and shorten setup time while solving slew and loading violations. The details of 

ESB and ECT buffer-insertion schemes are provided in Section IV. For the timing violations 

which cannot be solved by solving the slew violation, MOESS will perform its last stage to 

enforce the priority routing of the critical nets by using top metal (reducing resistance) or 

double spacing (reducing coupled capacitance), and re-route the other non-critical nets 

accordingly. These two options (top mental and double space) are provided by most of 

current commercial APR tools. 

 

B. Enlarge Candidate Pool of Spare Buffers 

Current commercial APR tools use only the spare gate labeled as”buffer-type” to perform 

buffer insertion. More aggressively, MOESS exploits the pool of spare buffers by recycling the 

redundant cells and using functional spare gates as buffers. 

 

1. Recycle of Redundant Cells: During implementation stage, most APR tools use a special 

tag to recognize spare gates. However, the tag could be lost when designers or APR 

engineers incorrectly operate. In MOESS, we recycle those lost-tag gates as spare gates. 

In addition, designer sometimes might remove certain functionality of a module. Thus, 

MOESS applies a breadth-first-search algorithm to recycle the redundant gates starting 

from each floating output. 
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2. Use Functional Cells as Buffers: In MOESS, spare functional cells can also be used as 

buffers by connecting Vdd or Gnd to cells’ side inputs. The cell’s input used as buffer’s 

input is the pin with least capacitance. For example in Figure 3(a), an AND gate contains 

two inputs with 8ff and 3ff input capacitance each. To convert this AND gate to a buffer, 

the input pin with larger capacitance is connected to the non-controlling value, Vdd. The 

input pin with smaller capacitance is used as the buffer input. These connection choices 

can speed up the gate propagation delay by avoiding the charge of high-capacitance 

input. A similar concept can be applied to convert a MUX to a buffer (Figure 3(b)). 

 

Fig. 3. Example of converting functional gates to buffers. 
 

C. Wire-Loading Estimations in Metal-Only ECO 

Another barrier to effective the buffer insertion in metal-only ECO is the estimation to the 

wire loading of a new interconnect. The wire length of a new interconnect varies from 

different levels of routing congestion, and cannot be simply measured by Manhattan distance. 

A more accurate estimation to the wire loading can be obtained by doing the routing first and 

then extract its RC, which is time-consuming and not applicable when building an efficient 

buffer-insertion scheme. Therefore, to solve the slew and loading violation with minimum 

buffers, our metal-only-ECO framework needs to not only enlarges the candidate pool of 

spare cells but also efficiently estimates the wire loading considering the level of routing 

congestion. 
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The wire loading is linearly proportional to the wire length. If all routing resources can be 

used, the wire length will follow the Manhattan distance. However, with existing 

interconnects, the wire length may be larger than the Manhattan distance depending on the 

level of routing congestion. In MOESS, we use the via density, denoted as VD(p1, p2), to 

represent the routing-congestion level in a rectangular area between two connected pins p1 

and p2. VD(p1, p2) = VA/area, where VA is the area of the occupied vias and area is the 

rectangular area formed by using p1 and p2 as its two diagonal vertices. 

 

Then, we define the routing ratio to Manhattan distance, denoted as RRMDh(vd) 

(RRMDv(vd)), to represent the ratio of the actual wire length over the Manhattan distance 

between connected pins in horizontal (vertical) direction. This ratio is a function of the via 

density vd. In MOESS, this RRMDh(vd) or RRMDh(vd) is obtained by the average statistical 

result accumulated in the past usage of the adopted APR tool. This statistical result varies 

according to different APR tools in use. Based on this ratio, we can use the following equation 

to compute the wire loading corresponding to a horizontal (vertical) unit of the Manhattan 

distance between two pins p1 and p2, denoted as Uh(p1, p2) (Uv (p1, p2)): 

Uh(p1, p2) = RRMDh(VD(p1, p2))．Kh                                                                                          (1) 

Uv(p1, p2) = RRMDv(VD(p1, p2))．Kv                                                                                                                                       (2) 

where Kh (Kv) represents the wire loading per unit in the horizontal (vertical) direction 

according to the process technology. Last, the wire load between two pins p1 and p2, 

WL(p1,p2), could be estimated by, 
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WL(p1, p2) = MDh(p1, p2)．Uh(p1, p2) + MDv(p1, p2)．Uv(p1, p2)                                      (3) 

where MDh(p1, p2) (MDv (p1, p2)) represents the Manhattan distance in horizontal (vertical) 

direction. 
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IV. ESB AND ECT BUFFER-INSERTION SCHEMES 

For an input-slew-violation pin p, we first calculate its equivalent OALg by the method 

described in Section II-B, where g’s output directly connects to p. Then the slew-violation 

problem at input pin p is transferred to an equivalent loading-violation problem at 

gate g’s output. The gate g is referred to the violation gate and the net driven by g is referred 

to the violation net. We first apply the ESB buffer-insertion scheme to minimize the number 

of spare cells used to solve this loading-violation problem. The more spare cells can be saved, 

the larger ECO size can be implemented in the next generation of ECO. From our experience, 

a product could have more than 10 generations of ECO due to either large market requests or 

poor design. 

 

In reality, most slew violations result from high-fanout nets. To save the spare buffers in use, 

we try to use one buffer to drive as many terminal pins as possible. Therefore, we need an 

effective grouping method to select the nearby terminal pins which can be driven by a 

common buffer under the loading or slew-transferred constraint. Figure 4 shows an example 

of a 3-terminal violation net. If we group two geometrically separated pins, such as t2 and t3 

in Figure 4(b), one buffer is not enough to drive both of t2 and t3 since their wire loading is 

too large. However, if we group two nearby pins, such as t1 and t2 in Figure 4(c), one buffer is 

enough to drive both of t1 and t2. 
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Fig. 4. Example of inserted buffers for different pin grouping. 
 

Figure 5 shows the flow of the ESB scheme. In step A, a minimum-chain algorithm is 

applied to obtain an order of terminal pins for the violation net, named MC order (detailed in 

Section IV-B). This MC order can guide the grouping of nearby terminal pins in step B 

(detailed in Section IV-B). Step C calculates the ideal location of the inserted buffer based on 

the grouped terminal pins (detailed in Section IV-C). In step D, we attempt to map a real spare 

buffer closest to the ideal location while satisfying the slew-transferred loading constraint 

(detailed in Section IV-D). After a real spare buffer is successfully inserted, we update the 

violation net and recalculate the MC order of its terminal pins in step E. We repeat step B to 

step E until the output loading of the violation gate meets the slew-transferred loading 

constraint. An overall algorithm is provided in Section IV-E. We also discuss how to relax the 

searching criteria when no suitable buffer c an be found to solve the violation in Section IV-F. 

Section IV-G describes how to handle hard macros in the ESB scheme. 
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Fig. 5. Flow of ESB buffer-insertion scheme. 
 

The ECT buffer-insertion scheme is applied after ESB scheme. The objective of ECT scheme 

is to eliminate the timing violations resulted from using ESB scheme. The flow of ECT is similar 

to the ESB scheme except the grouping method in step B. The details are described in Section 

IV-H. 

 

A. Obtain Minimum-Chain Order of Terminal Pins 

As the example in Figure 4 shows, we hope to group the terminal pins of the violation net 

not only in the same geometrical neighborhood but also in the same direction toward the 

violation gate. Otherwise the wire loading to drive the grouped pins may be too large. In 

order to obtain such grouping, we modified a minimum-chain algorithm in [16] to get the MC 

order of terminal pins. The concept of this minimum-chain algorithm is to assign the closest 

pin as the next ordered pin each time, starting from the violation gate g (the order of g is 0). 

By connecting the terminal pins one by one with such order, their total wire length can 

approach to minimal. This property also implies that the terminal pins with adjacent MC 

order are more likely in the same direction toward the violation gates as well. Figure 6 lists 
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this minimum-chain algorithm. 

 

B. Group Terminal Pins Using MC Order 

In step B, terminal pins of the violation net are first grouped assuming a type-t buffer b is 

used. We start from the buffer type with the highest driving capability to the one with the 

lowest. Then, we follow the MC order to serially add the terminal pins into the group p list. 

The objective here is to obtain a group of pins p list such that the output loading of b for 

driving all grouped pins in p list is close to but not exceed the OALb. We estimate this output 

loading of b for driving p list (denoted as GOLb(p_list)) by the following equation: 

                                                                               (4) 

 
 

Fig. 6. Minimum Chain algorithm 
 
where n is the size of p list, pi is the ith ordered pin in p list, InCpi is the input capacitance of pi, 

WL(pi, pi−1) is defined in Equation 3, and WL(p1, p0) is equal to 0. 

 
In this estimation, we assume that the terminal pins are piece-wise connected one by one. 

However, the real routing of a net generated by commercial tools is like a Steiner tree, where 
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multiple terminal pins may share one common wire. Therefore, this estimation is actually an 

upper bound, implying that the inserted buffer by ESB scheme can safely meet the loading 

constraint. 

 

C. Calculate Ideal Buffer Location 

We follow the following two rules when deciding the ideal location of the type-t buffer to 

drive all terminal pins in p list: 

R1 Use all buffer’s driving capability under the given constraint. 

R2 Locate the inserted buffer as close to the violation output as possible. 

To achieve R1, we first calculate the output remained load of the buffer b, denoted as ORLb, 

using the equation: 

                                                                                  (5) 

The amount of ORLb determines the affordable wire length connecting from inserted buffer b 

to the last-ordered pin pn in p_list. The higher ORLb, the longer wire length can be allowed 

between b and pn. Thus, the ideal location of the inserted buffer b must satisfy the following 

equation: 

              (6) 

where Xa and Ya represents the X-axis and Y-axis coordinates of pin (or gate) a, respectively. To 

make the buffer b closer to the source pin g, we limit the ideal location of b on the straight 

line between g and pn. Then we add another equation: 

       (7) 
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Last, we can obtain the ideal location of b by solving both Equations 6 and 7, assuming the 

equality holds in Equations 6. 

 

D. Search Real Spare Gate 

We first use the Manhattan distance between the last-ordered pin pn and the ideal buffer 

location as the radius to draw a diamond-shape region centered at pn. The buffer found in this 

diamond-shape region can satisfy Equations 6. To make the buffer closer to the violation gate 

g, we use the same radius to draw another diamond-shape region centered at the ideal buffer 

location. We then attempt to select the buffers locating in the intersection of the two regions. 

This searching can make sure that the selected buffer, if any, is on the way toward the 

violation gate g, which helps to achieve R2. Figure 7 shows an example of these two 

diamond-shape regions. 

 

Finally, we select the type-t buffer closest to the ideal location in the intersection region. If 

such type buffer cannot be found in the intersection region, then we change the buffer type 

to one with lower driving capability and repeat step B to step D. 
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Fig. 7. Search buffer in the ORL diamond shape 
 

E. Overall Algorithm of ESB Scheme 

Figure 8 details the general algorithm of ESB scheme. In this algorithm, Line 6 to 17 

corresponds to step B in Section IV-B. Line 18 corresponds to step C in Section IV-C. Line 19 to 

20 corresponds to step D in Section IV-D. 

 

Figure 9 illustrates the process of inserting buffers onto a 6-terminal violation net. In Figure 

9(a), the labeled number on each terminal represents its MC order. We first group the 

farthest pins in G1 (5 and 6) according to step B. In Figure 9(b) a spare buffer is inserted to 

share the loading of grouped pins through step C and D. Pin 5 and 6 are hence removed from 

the violation net. Assume OALg is still less than GOLg (mc list) in this case, we need to 

recalculate the MC order for the updated violation net with 5 terminal pins. Then we repeat 

the step B, C, and D to group terminal pins in Figure 9(c) and insert another buffer for the 

grouped pins in Figure 9(d). After that, OALg become less than GOLg (mc list). So total two 

buffers are inserted to solve the violation. Figure 9(e) shows the final result. 
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F. Background Tolerance 

In order to drive as many terminal pins as possible, we keep on adding terminal pins into 

the grouping list p list as long as GOLb(p_list) is less than OALb. A larger GOLb(p_list) will result 

in a smaller ORLb (as defined in Equation 5) and, in turn, a smaller radius of the two diamond-

shape regions. This radius reduction may shrink the searching space of candidate spare 

buffers, such as the situation in Figure 10(a). Therefore, when no candidate spare buffer can 

be found to drive the pins in p list, we may remove the last-ordered pin in p list to increase 

ORLb. Then we restart the searching for candidate spare buffers, such as the situation in 

Figure 10(b). 

 

G. Detour Insertion to Avoid Hand Macro 

In seldom cases, the violation net contains terminal pins locating on the opposite two sides 

of a hard macro such as Figure 11(a). The predicted location of the inserted buffer may be 

inside the hard macro such as Figure 11(b). To avoid this situation, MOESS need record the 

area of hard macros in advance. Once the predicted buffer region is located in hard macro’s 

area, we perform a detour search along the boundary of the hard macro to find a proper 

buffer such as Figure 11(c). In such a case, the search could be from either direction of the 

source pin. In MOESS, we start from the direction which can form a shorter detour path to 

the target pin. 

 

H. ECT Buffer-Insertion Scheme 

ESB scheme focuses on using a buffer to support as many terminal pins as possible. 
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Although the slew or loading violation can be solved by ESB scheme, the delay of some paths 

may exceed the timing constraint due to the extra gate delay of inserted buffers. This case 

usually occurs when a new-added function is connected to a timing-critical net. After studying 

those timing-violation cases, we found that most violations result from the sharing of a 

common buffer between a timing-critical path and long new-added wires, such as the case in 

Figure 12(a). The labeled number for each pin represents its Manhattan distance to the 

source pin of the violation net. Those new-added wires can be designed as multi-cycle paths 

to meet the timing constraint but the original paths cannot. 

 

 
 

Fig. 8. MC buffer insertion algorithm 
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Fig. 9. An example process of ESB buffer-insertion scheme. 

To avoid such cases, ECT buffer-insertion scheme will separate the grouping of long-wire 

terminal pins from the others. So the terminal pins on critical paths need not to share a 

common buffer with other long-wire terminal pins, such as the case in Figure 12(b). Therefore, 

ECT scheme basically follows the same flow of ESB scheme but change the step of terminal-

pin grouping (step B). In ECT scheme, a terminal pin whose Manhattan distance to the source 

pin exceeds a threshold is defined as the long-wire terminal pins. Then, for only those long-

wire terminal pins, we determine the pin grouping using the same procedure described in 

Section IV-B and insert buffers accordingly. After that, the same procedure is applied to the 

other terminal pins again. As a result, the number of inserted buffer may be increased while 

the propagation delay for critical paths can be reduced. 

 

 
 

Fig. 10. Spare buffers in the intersection before (a) and after (b) backward tolerance. 
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Fig. 11. (a) spare empty area(placement/routing obstacle) (b) spare gate search failed (c) 
detour insertion 

 
The threshold of the Manhattan distance to the source pin is actually a parameter in ECT 

scheme. ECT scheme will try different thresholds within an empirical range to check if the 

timing violation can be solved. If not, ECT scheme will report the case with the best negative 

slack. 
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V. EXPERIMENTAL RESULT 

Our platform is Linux, kernel 2.6.9-11.elsmp, running on AMD Opteron processor 250 with 

16GB memory. The ECO flow, including netlist difference, spare gate mapping, and routing, is 

performed based on a commercial APR platform [3]. After the metal-only ECO is performed, 

we first obtain the violation report on slew, loading, and timing constraints. Then MOESS will 

generate corresponding scripts based on this violation report to insert and map spare buffers 

onto violation nets. We compare the results of MOESS with a EDA vendor’s buffer-insertion 

solution for metal-only ECO [3]. In vendor’s solution, we use the command”run gate buffer 

wire -slew/cap -eco” to insert buffers for each violation net. 

 

The benchmarks used in this experiment are all industrial projects. The spare-cell count in 

each project is 3% to 5% of the total cell count. The spare cells are evenly placed within the 

chip by using an in-house tool before the base-layer tape-out. The slew constraint in use is a 

pre-defined constant associated with the process technology and the cell library. The loading 

constraint in use is defined as a ratio to the value of the library-suggested constraint. In our 

experiments, the slew and loading constraints are 2.2ns and the ratio of 1 for the .18um 

process; the slew and loading constraints are 1.0ns and the ratio of 1.2 for the .13um process. 
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Fig. 12. Buffer insertion in a critical path by (a) ESB scheme and (b) scheme. 
 

In the Table I, we first report the comparison results on 7 industrial projects. Column 1 lists 

the project name and its ECO version in parentheses. Columns 2 to 5 list the instance count, 

the adopted process technology, the spare-cell count, and the size of ECO in instances for 

each project, respectively. Columns 6 and 7 list the numbers of reported slew violations and 

loading violations, respectively, before any buffer-insertion scheme is applied. Column 8-10, 

12-14, and 16-19 list the worst input slew, the worse output-loading ratio to the library-

suggested constraint, and the worst slack, respectively, reported (1) before any buffer-

insertion scheme is applied (denoted by ori.), (2) after a EDA vendor’s solution is applied 

(denoted by [3]), and (3) after MOESS is applied (denoted by MOESS). Column 11, 15, and 19 

also list the improvement of MOESS over [3] (denoted by imp.) in the worst input slew, the 

worse output-loading ratio, and the worst slack, respectively. The number followed by a ”*” 

means that the corresponding value violates the constraint. In Column 20-22 and 23-25, we 

report the number of spare buffers in use and the CPU runtime for both [3] and MOESS, and 

the corresponding improvement or speedup of MOESS over [3]. 

 

As the results show, MOESS can solve all the slew, loading, and setup-time violations for 

these seven projects while the vendor’s solution violates the slew constraint in 3 projects, the 
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loading constraint in 2 projects, and the setup time constraint in 4 projects. The average 

improvements of MOESS on the worst slew, worst loading, and worst slack are 24%, 21%, and 

57%. Also, the number of used spare buffers by MOESS is smaller than that by [3] for each 

project, which saves more ECO resources for the next generation of ECO. This reduction to the 

number of used spare buffers is 38% in average. Furthermore, the runtime consumed by 

MOESS is less than that by [3] for each project as well. The average speedup of MOESS is 

14.9X. One key reason why MOESS is faster than [3] is that MOESS utilizes the MC-ordering-

based method to quickly estimate the wire loading and group terminal pins (Section IV-B). 

The commercial tool [3] needs to construct a Steiner-tree-like net-routing before estimating 

its loading, which requires more computation time. These experimental results demonstrate 

both the effectiveness and efficiency of our buffer-insertion algorithm. 

 

To show a stronger need of an effective metal-only-ECO solver when the ECO resource is 

limited, we report the experimental results of different ECO generations on a single project in 

Table II. In the 2nd and 3rd ECO generations, the size of new added functions 

is small and hence both MOESS and [3] solve all the violations. However, after a large scale 

ECO is requested in the 5th ECO generation, [3] fails to solve the slew, loading, and timing 

violation while MOESS can solve all of them with less spare buffers and less runtime. Note 

that the number of remaining spare gates is only 0.5% to the total number of instance after 

the 5th ECO generation. Therefore, even though ECO size is small in the 7th and 8th ECO 

generation, [3] still fails to solve the slew and setup-time violations. On the contrary, MOESS 

solves all the slew and loading violations and controls the slack at an acceptable level, -0.1ns, 
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for both ECO generations. Actually we taped out these two ECO generations with this slack of 

-0.1ns because this negative slack cannot be removed with further manual effort. The slacks 

resulted from [3] in these two ECO generations are -1.7ns and -0.5ns, respectively, which is 

far away from the tape-out standard and requires a lot manual effort to achieve the timing 

closure. This experimental result again demonstrates the strength of MOESS in metal-only 

ECO. 

 

 
Table I 

Comparison between MOESS and [3] on solving slew, loading and timing violations for 

multiple metal-only ECO projects. 

 

 
Table II 

Comparison between MOESS and [3] on solving slew, loading, and timing violations for 

different ECO generations of a single project. 
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VI. CONCLUSION 

In this paper, an efficient and effective framework is proposed to solve the slew, loading, 

and timing constraint in metal-only ECO. The proposed framework is built based on the 

platform of a commercial APR tool. It can also be ported to any other commercial tool 

offering open access to the design database. According to the experimental results obtained 

from real industrial projects, the proposed framework can significantly increase affordable 

scale of mental-only ECO with less spare gates and runtime in use, compared to a current 

vendor’s solution. This framework is currently included in the ECO flow of an IC design house. 
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