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Acceleration and Implementation of H.264
based Visual Communication System on Tl DSP

Platform

Student: Yi-An Chen Advisor: Dr. Sheng-Jyh Wang

Department of Electronics Engineering, Institute of Electronics

National Chiao Tung University

Abstract

In this thesis, we implement.an. H.:264/AVC based real-time video
communication system. The two ends of this system include video
capturing/encoding/network-transmission and network-reception/
decoding/video-display. The H.264/AVC encoded data are transmitted
from one end to the other end. The whole procedure is implemented in
multiple threads. To speed up the coding process, both optimization and
parallelization of the DSP codes are performed with respect to the
DM642 DSP chip and the multi-DSP board, MEX.
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Chapter 1.

INTRODUCTION

1.1. INTRODUCTION

With its higher compression efficiency than all prior video coding standards, the
latest video compression standard H.264, which is also known as MPEG-4 part 10 or
MPEG-4 AVC, is expected to become the major video standard in the coming years.
H.264/AVC provides high coding efficiency through the addition of new features and
functionalities. With the H.264/AVC standard, the size of a digital video can be
reduced up to 80% than the Motion JPEG format and up to 50% than the MPEG-4
Part-2 standard.

On the other hand, the demand for multimedia services over internet is steadily
increasing. With its high coding efficiency,H.264/AVC has become one of the most
favorite video compression standards to transmit videos over the internet. However,
the high complexity of the H.264/AV.C coding process has made the implementation
of the H.264/AVC standard very difficult.

The general-purpose Digital Signal Processor (DSP) has been widely used in the
implementation of various algorithms. The C64x DSP family, developed and provided
by the Texas Instruments (TI), is a popular choice for digital media applications. In
this thesis, we implement an H.264/AVC based video communication system based
on the multi-DSP board MEX (Multi-Channel Video Platform), which possesses four
TMS320DM642 DSP chips. The H.264 based video transmission is implemented in
terms of multiple threads. Moreover, to speed up the encoding/decoding process, the

optimization and parallelization of the DSP codes are investigated in this thesis.

1.2. OVERVIEW OF THE THESIS

The rest of the thesis is organized as follows. Chapter 2 contains the brief
introduction to the H.264/AVC coding standard. In Chapter 3, a brief overview of the
DSP platform and the development environment is represented. In Chapter 4, a
multi-task multi-thread implementation of the H.264 based video communication

system is discussed. Finally, conclusions are given in Chapter 5.
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Chapter 2.

CONSPECTUS OF H.264 STANDARD

H.264, also known as MPEG-4 Part 10 or MPEG-4 AVC, is the state-of-the-art
video coding standard. It is proposed by the Joint Video Team of both the ITU-T
Video Coding Experts Group (VCEG) and the ISO/IEC Moving Pictures Experts
Group (MPEG). The final drafting work on the first version had been completed in
May 2003 [1].

The primary goal of H.264/AVC is to develop a video coding standard with high
coding efficiency and network-friendly video representation. As shown in Figure 2-1,
the H.264 covers a Video Coding Layer (VCL), which efficiently represents the video
content, and a Network Abstraction Layer (NAL), whose formats are appropriate for
conveyance over particular transport layers or storage media. With the state-of-the-art
coding tools, it can achieve lower bit rates thanall prior standards, like MPEG-2,
H.263, and MEPG-4 Part-2 [2]. Moreover, its packed-based video representation
addresses both conversational “and non-conversational applications. Outperforming
earlier standards, H.264/AVC is"becoming the worldwide digital video standard for
consumer electronics and video broadeasting. In"this chapter, the H.264/AVC standard
is briefly introduced. More details about H.264/AVC can be accessed in [3].

Video Coding Layer

Coded Macroblock

Control Data

Data Partitioning

Coded Slice/Partition

Network Abstraction Layer
H.320 MP4FF H32¥IP| MPEG2 | ete. |

Figure 2-1 Structure of an H.264/AVC video encoder [4]



2.1. OVERVIEW OF H.264/AVC

As shown in Figure 2-2, the scope of H.264/AVC standard includes only the
decoder of the typical video coding /decoding chain. The decoder is standardized by
prescribing the Bitstream syntax and defining the decoding process. This limitation of
the scope of the standard allows the maximal freedom to the encoder for different
applications.

Although the encoder /decoder pair is not explicitly defined, encoder and
decoder are likely to include the functional elements shown in Figure 2-3 and Figure

2-4 to be complaint to the standard.

Source . -
. Pre -Processing Encoding
T _——==== |
— Post -Processing Decoding
Destination & Error Recovery | i
I Scope of Standard _|

Figure 2-2 Scope of H.264/AVC [4]

2.1.1. THE H.264/AVEC ENCODBER

A block diagram of a typical H.264/AVC encoder is shown in Figure 2-3. The
encoding process is divided into: several'functionality block diagrams. Except the
deblocking filter, most of these: functional | components (intra/inter prediction,
transformation, quantization, entropy encoding) had been presented in these previous
standards. However, some important changes in the details of each functional block

occur in H.264.

Macroblock of Pradiction Quantized

Input Image Signa Error Signal Coafficients
a.g__g___l._(?‘—g__.| Transform [™] Guant. = Eﬂ?ﬁg "

— Dablocking

, ow— | Intra-Frame Filtar

i Prediction _‘i_

i
\I'\...— Motion Comp. M
Intradritar Prediction BIEY

L
Mition Data
e Mition
Estmation

Figure 2-3 H.264/AVC Encoder[5]



The intra prediction and motion estimation/compensation removes spatial
redundancy and temporal redundancy respectively. After that, the prediction mode and
the residual data are recorded. Then the transformation and quantization are adopted
to transform residual data into more suitable data space to drop some details those are
less perceptible to human vision. The entropy coding removes the syntax redundancy.
In addition, the deblocking is performed to reduce the blocking effect in

reconstruction path.

2.1.2. THE H.264/AVC DECODER

Figure 2-3 shows the block diagram of the H.264/AVC decoder. The entropy
decoder decodes the quantized coefficients and the motion data, which is used for the
motion compensated prediction. As in the encoder, prediction data are obtained by
intra or motion estimation, which is added to the inverse transformed coefficients.

After deblocking filtering, the macroblock is completely decoded.

Cuantized Dacoded
Coefficiants Macroblock

Entrapy Inverss Ay Dieblocking
Diecoding Transform Filter
[ Intra-Frama
: Prediction
\{\-—‘
Intranter

Mation Comp.
Prediction I‘_| Mesmiory

Motion Data

Figure 2-4 H.264/AVC Decoder[5]

2.2. PROFILE AND LEVELS

There are three profiles defined in H.264/AVC standard, these profiles are
baseline profile, main profile, and extended profile. The profile is adopted flexibly for
different application. The baseline profile, supporting intra coding and inter coding,
together with entropy coding with CAVLC is primary for lower-cost application.
Designed as the mainstream consumer profile, the main profile supports interlaced
video, B-picture, inter coding using weighted prediction and entropy coding using
CABAC. With robustness to data losses, the extended profile does not support
interlaced video and CABAC, but adds modes to enable switching between Bitstream
and to improve error resilience. Table 2-1 lists the coding tools and features of these

three profiles.



Table 2-1 Coding tools and features of different profiles [3]

Baseline Extended Main
I and P Slices Yes Yes Yes
B Slices No Yes Yes
SI and SP Slices No Yes No
Multiple Reference Frames Yes Yes Yes
In-Loop Deblocking Filter Yes Yes Yes
CAVLC Entropy Coding Yes Yes Yes
CABAC Entropy Coding No No Yes
Flexible Macroblock Ordering (FMO) Yes Yes No
Arbitrary Slice Ordering (ASO) Yes Yes No
Redundant Slices (RS) Yes Yes No

2.3. INTER PREDICTION

By using the previous encoded video frames or fields, inter prediction can be
established from motion estimation, and “motion ¢ompensation. Similar to the prior
coding standard, the block-based,motion compensation is used. However, variable
block size is different from the earlier standards and makes it more efficiency than
earlier standards.

In prediction procedure, a predicted block P is searched from the reference
picture F,,.; by motion estimation. Motion Vector (MV) is the displacement from the
current block to the predicted block P. With the encoded information of MVs and
residual, motion compensation can reconstruct the current picture from the reference
picture F,.;. In this standard, MVs have accuracy of quarter-sample resolution to
achieve higher coding efficiency. Next, we will describe these features of H.264 inter

prediction

2.3.1. TREE-STRUCTURE MOTION COMPENSATION

In H.264/AVC standard, the luma component of each macroblock can be
segmented into one 16x16 partition, two 8x16 partitions, two 16x8 partitions, or four
8x8 partitions, as shown in Figure 2-1. In Figure 2-6, if the 8x8 partitions is chosen,
each 8x8 block can be further divide into four different sub-partitions, including 8x8,
8x4, 4x8, and 4x4. In general, the large partitions are appropriate for smooth regions;
the smaller partitions have smaller residual, but the number of motion vectors is
increased. With the flexibility of variable block-size motion compensation, the coding

5



efficiency can be increased.

16 B a8
0 [ 1
16 0 U] 1
1 2 3
1exie il & [ ]

Figure 2-5 Macroblock partitions: 16x16, 16x8, 8x16 and 8x8 [3]

8 4 4
0 0 1
g 0 0 i
1 2 a
=] 4x8 Bd Acd

Figure 2-6 Macroblock sub-partitions: 8x8, 8x4, 4x8 and 4x4 [3]

2.3.2. FRACTIONAL PIXEL PRECISION

In order to increase the aceuracy..of motion compensation, H.264 supports
quarter-pixel resolution for luma components .and one-eight-pixel resolution for
chroma components. If the prédiction result of sub-pixel is better than that of the
integer pixel, the sub pixel will be chosei:

The half-pixel samples are obtained by applying a six tap filter with weights
(1/32, -5/32, 20/32, 20/32, -5/32, 1/32). For example, a half pixel b in Figure 2-7 is
obtained from the six horizontal integer neighbors E, F, G, H, I, and J with the
formulation:

b =round ((E- SF+20G+20H-51+] )/32)

Furthermore, the quarter-pixel samples can be calculated after all the half-pixel
macroblock are available. They are produced by linear interpolation between two of
their adjacent samples. As shown in Figure 2-8, value of a can be calculate by:

a =round ( (G+b)/2)

In Figure 2-9, the chroma eight-sample component can be acquired by linear
interpolation of the neighbor pixels:

a=round([(8-dy)(8-dy)A+d(8-dy)B+(8-dy)dy,C+d,d,D]/64)



A |as| B
C B D
E F G b H I J
il L
K L M | N p Q
R s
T Enle| U

Figure 2-7 Interpolation of luma half-pel positions [3]

* B [
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Figure 2-9 Interpolation of chroma samples [3]



2.3.3. MOTION VECTOR PREDICTION

As mentioned in 2.3.1, number of motion vectors increases with the using of
variable block partition mechanism. It can cost a significant number of bits to
encoding a motion vector for each partition. Since there are high correlations between
motion vectors of the neighboring partitions, the motion vector can be predicted by
nearby ones. Hence the motion vector prediction (MVp) is generated by the motion
vector of the adjacent partitions. The way of forming the prediction MVp depends on
the motion compensation partition size and on the availability of nearby vectors. MVp
is obtained in a manner of: (see Figure 2-10 )
® For 16x8 partitions, the MVp of the upper 16x8 partition is predicted from of B,

and the MVp of the lower one is the motion vector of A.
® For 8x16 partitions, the MVp of the left 8x16 partition is predicted from of A,

and the MVp of the right one is the motion vector of C.
® The MVp of other partitions is the median of the motion vector of A, B, and C.

The motion vector difference (MVID)ris. then derived calculate the difference
between the MVp and the real motion vector.. Thése MVDs are the final results that
should be further encoded. In general cases, fewer bits are needed for encoding the

MVDs than encoding real motion vectors.

4¥8 16X8

1618

Figure 2-10 Current and neighboring partitions for MVp [3]

2.4. INTRAPREDICTION

The high correlation of neighboring region within a frame implies the high
redundancy in spatial domain. As mentioned in 2.1.1, intra predication is imposed to
eliminate the spatial redundancy. For the luma samples, intra prediction block is
formed for each 4x4 block or 16x16 blocks; for the chroma samples intra prediction
block is formed for each 8x8 blocks. The spatial prediction is calculated from the

edges pixels of neighboring blocks.



2.4.1. 4X4 LUMA PREDICTION MODES

When intra mode of 4x4 blocks is applied, nine possible modes cab be chosen.
As shown in Figure 2-11, the samples above and to the left (labeled A—M) have
previously been encoded and reconstructed to form a prediction reference. The
prediction block (the gray part) is calculated based in A-M. The arrows in Figure
2-1lindicate the direction of prediction in each mode. In mode 0 and mode 1,
respectively, the samples of A-D and I-L are extrapolated vertically and horizontally.
Mode 2 (DC prediction) is modified depending on the availability of samples A to M.
In the rest modes: Mode 3-8, the predicted samples are calculated by a weighted

average of the reference samples A-M.

0 [vertical) 1 (horzontal) 2 (DC)
M A[B[C]D[E]F]G[H] [M[A]BIC[D[EIF]G[H| (M A[BIC[D|E[F]G[H|
] i ———> L Bl
_K ‘I 1 :rl
|_ {1}
3 (diagonal down-left) 4 (diagonal down-right) 5 (vertical-right)
M[A[B[C]D]EIF]|G[H| [M ATBK_LE} E[FIG[H [M[AIEB[C[D[E[FIG[H

7 (vertical-left) 8 {horizontal-up}
ABCID E[F]'G| Hj [M[ A[B]C] D] E]F]G[H|
/ ! - =]

M[A| B[C[D]E[F]G[H] i
] I

Figure 2-11 4 x 4 luma prediction modes [3]

2.4.2. 16x16 LUMA PREDICTION MODES

In addition to those 4x4 luma modes described in the previous section, there are
four modes for 16x16 prediction modes for luma intra prediction. These four luma
16x16 prediction modes are vertical, horizontal, DC, and plane, as shown in Figure
2-12. The requirement of reconstruction of above and left component is similar to the

4x4 luma prediction.
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Figure 2-12 Intra 16 x 16 prediction modes [3]

2.4.3. 8Xx8 CHROMA PREDICTION MODES

Four 8x8 intra prediction modes are provided for the chroma samples. Similar to
the 16x16 luma inter prediction in Figure 2-12, the four modes are DC, horizontal,

vertical and plane.

2.5. IN-LOOP DE-BLOCKING FILTER

One drawbacks of the block base' video. compression mentioned above is the
visible block boundaries. It is so called.blocking effects: the lower bit rate the
compression is, the more obvious the edges are. To. eliminate the blocking effect, a
deblocking filter is applied aftér the inverse transform in both encoder and decoder.
As shown in Figure 2-13, it is applied to'vertical or horizontal edges of 4x4 blocks in
a macroblock, in the fallowing ordet: four vertical'‘boundaries (a, b, c, then d) of luma,
four horizontal boundaries (e, f, g, then h) of lima, and two vertical boundaries (i, j)

horizontal boundaries (k, 1).

- ——
- —— f
e — g | iianiy el | k
i
= sh iy i
. (.
a b o i i i
16x16 luma 2x8 chrorma

Figure 2-13 Edge filtering order in a macroblock [3]

The filtering is adaptively applied according to the boundary strength and the
gradient across the boundaries. The boundary strength depends on the compression
mode of a macroblock, the quantization parameter, motion vector, frame or field
coding decision, and pixel values.

With this filter, subjective quality is significant improved as shown in Figure
2-14. This filter also reduces the bits rate with ratio of 5%—-10% compared with

non-filtered video with the same objective quality [4].
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(a) (b)
Figure 2-14 Performance of the deblocking filter for highly compressed pictures
(a) without deblocking filter and (b) with deblocking filter [4]

2.6. TRANSFORM AND QUANTIZATION

H.264/AVC, as prior video standard, utilizes the transform coding on the
prediction residual. The residual genel;ated in m,tra or inter prediction is processed the
transform for further quantlzatlola, (’)ne cr_pbt'laék is divided into 24 4x4 blocks to
do the 4x4 integer transform w1‘pil the Trarl_ hﬁ 'rham

In addition, for each macroblock a 4x4macroblock a 4x4 Hadamard transform is
applied to the DC coefficients of the 16 luma blocks, while a 2x2 Hadamard transform
is applied to the DC coefficients of the 4x2 chroma blocks, as shown in Figure 2-15.

{1616 Intra
micds only)

Figure 2-15 Scanning order of residual blocks within a macroblock. [3]
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A quantization parameter is used to determine the quantization step for the
quantization of transform coefficient. A total of 52 values of quantization step size
(Qstep) are supported by this standard, which are indexed by the quantization
parameter (QP). Increasing one in the value of QP means an increase of the
quantization step size by approximately 12%. An increase of step size by 12% also

means a reduction of bit rate by approximately 12% [4].

2.7. ENTROPY CODING

To eliminate the syntax redundancy, the arithmetic coding is applied. The syntax
above the slice layer is encoded as fixed- or variable-length codes (VLCs). At the
slice layer and below, elements are coded using Content Adaptive Variable Length
Coding (CAVLC) or Content Adaptive Binary Arithmetic Coding (CABAC)
according to the entropy encoding mode. Parameters that are required to be encoded
and transmitted include the following (Table 2-2Table 2-1).

Table 2-2 Examples of parameters to be encoded

Parameters Description

Syntax elements above slice layer Headers and parameters

Macroblock type mb type Prediction method for each coded macroblock

Coded block pattern Blogks, containing coded coefficients within a macroblock
Reference frame index Identify reference frame(s) for inter prediction

Motion vector Difference (mvd) from predicted motion vector

Residual data Coefficient data for each 4 X 4 or2 X< 2 block

2.8. NALUNIT

By choosing a suitable transporting protocol to represent of video coded
content, the coded video is organized as a collection of NAL units. Each NALU
is a video picket containing an integer number of bytes. As shown in , the first
byte as a header byte of NALU contain NAL unite type (T), the
nal _reference idc (R) that indicates the importance of an NALU for the
reconstruction process, and the forbidden bit (F) which is set to ‘0’ in H.264

encoding.

0 1 2 34 5 6 | 7 | T: MAL unit type
E: MAL reference ide
F: forbidden bit

Figure 2-16 NALU header.
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2.9. DATA DEPENDENCY OF H.264/AVC

Taking a macroblock as the basic elements In H.264/AVC, the data dependencies
cross the macroblocks are illustrated in Figure 2-17 and Figure 2-18. Intra prediction
needs the above and the left macroblock to be decoded, further for 4x4 luma block
needs the up block, left block, and up right block information. And for deblocking
filtering four tap in the upper macroblock and left to the macroblock are needed.

In Figure 2-18, data within the search range of the reference frame is needed to

do the interprediciotn.

-
4 pixels

Current
Block

Current
Block

16 pixels 16 pixels

16 pixels

16 pixels ' | .
Figure 2-17 Data dependency ind % eft) if _,i"i ction and (Right)deblocking filter

| TR
|

Figure 2-18 Data dependency induced by inter prediction
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2.10. COMPLEXITY ANALYSIS OF

H.264/AVC

The H.267/AVC standard only specifies the decoder, and the encoder design
remains open. In this paper, we adopted the official H.264/AVC JM as decoder for
integrity, and adopted the x264 encoder for the faster encoding speed. Thus we
illustrate the complexity of the important functions in Figure 2-19 and Figure 2-20.

X264 Encoder

2%

2% 0%

M [nter

M Intra

m DCT/IDCT

W Quant.

m Deblock

m Entropy Coding

m Others

Figure 2-19 Distribution of clock cycle of each function of encoder.

JM decoder

0%
M Inter
M Intra
mIDCT

W Quant.
2%

4%

M Deblocking
m Entropy coding
 Others

Figure 2-20 Distribution of clock cycle of each function decoder.
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Chapter 3.

DSP IMPLEMENTATION ENVIRONMENT

In this chapter, we will briefly introduce the DSP platform environment and some
optimization methods. We use the DSP module (MEX) made by Vitec Mult-Media.
Four TMS320DM642 DSP chips are housed on this board. Our implementation
system includes software system and some peripherals on the board. Thus for the TI
DSP, the Code Composer Studio (CCS) and some efficient optimization methods will
be introduced. In addition, to facilitate the system and peripherals, Reference
Framework 5(RF5) and Network Developer’s Kit (NDK) will be bring out as well.

3.1. INTRODUCTION OF DSP PLATFORM

The DSP board used in our implementation. is the MEX (Multi-Channel Video
Platform) in Figure 3-1, which®is a pewerful,platform for video application. The
architecture of MEX includes four TI DSPs, two FPGA (one as crossbar, the other as
PCI interface), eight video decoders, ‘four audio stereco ADCs, and a 100BaseT
Ethernet controller, as shown in Figure3-2.

MEX’s key features are listed as below:

v" Four TMS320DM642 DSPs run at up to 600MHz (Fixed point).

v" Each DSP has a private memory of 32MB, which is SDRAM running at 100
MHz with 64 bits.

v" Each DSP has three powerful configurable video ports. By configure the crossbar
(implemented in an FPGA), the video architecture are flexible. With proper
configuration, the video path way can distribute one vide source on four DSP,
four distinct video sources on four DSP, four distinct video sources on one DSP,
or SO on.

v" DSP-DSP communication or DSP-PCI communication is facilitated by the
"Inter-DSP communication & PCI interface" FPGA. Each DSP has a dedicated
FIFO inside the FPGA which is mapped in its memory. This FIFO can be written
by the DSP and sent to PCI interface and the others DSPs. Those mean PC-DSP

communication and DSP-DSP communication respectively.
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Figure 3-1 MEX (Multi-Channel Video Platform) [6]
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As shown in Figure 3-2, the flexible architecture include some modules of
TMS320DM642 DSP chip: the 12C bus used to configure the Video (7113) /
Audio(CS4221) chips, the Video Port set to configure the video acquisition data path,
and EMIF that define the address of FPGA seen by DSP. Those DSP modules will
further introduced in the following sections.

SV powee 3V power

App.
ccs
3 =

E} Emulator J

(a) (b)
Figure 3-3 Block diagram of (a)emulator system and (b)application system
In the developing phase, a JTAG emulator pod called “USB 560BP” is used to
connect the MEX to PC. With the JTAG emulator, the CCS emulation of DSPs on the
board is fully supported. We develop our system and debug in this way. After that, the

emulator can be removed from this system to expose the stand-alone ability of MEX.
The only thing the PC should do is to,supply 3V power and load the DSP program to
the board. Figure 3-3 are two different.block diagram of the system in emulation

phase and in application phase.

3.2. DSP CHiIP

In our system, the TMS320DM642 DSP chip is the most important part of this
system. In this section, we will describe some details of this chip. TMS320DM642,
the high-performance fixed-point DSP, is based on the second generation, high
performance, advanced VelociTI™ very long instruction word (VLIW) architecture
(VelociT1.2™), developed by Texas Instruments (TI). The VelociTI.2 extensions in
the eight functional units include new instructions to accelerate the performance in
key applications and extend the parallelism of the VelociTI architecture. This VLIW

architecture makes the DSP chips an excellent choice for digital media application [8].

The DM642 DSP is a Video/Imaging fixed-point digital signal processor in the
TMS320C64x family. It has eight independent functional units running at 600MHZ
for peak execution of 4800 MIPS. Some key features of DM642 are listed below.

v Eight highly independent functional units - two multipliers to generate 32-bit
result and six arithmetic logic units (ALUs)
v The VelociTI.2™ extensions in the eight functional units include new

instructions to accelerate the performance in video and imaging manipulations
17



and to extend the parallelism of the VelociTI™ architecture.
Conditional execution reduces cost of branch and increase parallelism.

Instruction packing reduces code size, program fetches, and power consumption.

8/16/32/40-bit data support.

AN NN

Saturation and normalization provide support for key arithmetic operations.
Figure 3-4 is the functional block and DSP core diagram of TMS320C64x.
In the following sections, three major components of TMS320C64x DSP,

including the central processing unit, memory, and peripherals, will be introduced.
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3.2.1. CENTRAL PROCESSING UNIT (CPU)

The DSP core of C64 series consists of eight independent fictional units, 64
general purpose registers, program fetch unit, instruction dispatch (attached with
advanced instruction packing), instruction decode unit, two data path, test unit,
emulation unit, interrupt logic, and etc. The instruction dispatch and decode units
could decode and arrange the eight instructions to eight functional units respectively.
Thus the program fetch, instruction dispatch, and instruction decode units can deliver
up to eight 32-bit instructions to the functional units during every CPU clock cycle.
The eight functional units in the C64 architecture could be further divided into two
data paths, data path A and data path B as shown in Figure 3-4.

Each data path has 8 functional units for multiplication operations (.M), logical
and, arithmetic operations (.L), branch, bit manipulation, and arithmetic operations
(.S), and loading/storing and arithmetic operations (.D). Table 3-1 shows these
functional units and their operations. Two cross data paths (Ix and 2x) allow
functional units from one data path tosaccess a 32-bit operand from the register file
from the opposite side. Most data lines.in.the CPU support 32-bit operands, while
some support long (40-bit) operands. Each'functional unit has its own 32-bit write
port to a general-purpose register file and 32-bit read port for source operands srcl
and src2 (refer to Figure 3-5). All functiofnrunits which ends in 1(for example (.L1))
write to register file A, while those function units'which end in 2 (for example (.M2))

write to register file B.
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Table 3-1 Functional Units and Operations Performed [10]

Functional
Unit

Fixed-Point Operations

Floating-Point Operations

.L unit
(.L1, .L2)

.S unit

(.S1,.82)

M unit
(M1, .M2)

.D unit
(.D1, .D2)

32/40-bit arithmetic and compare operations

32-bit logical operations

Leftmost 1 or 0 counting for 32 bits

Normalization count for 32 and 40 bits

Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit arithmetic operations

Quad 8-bit arithmetic operations

Dual 16-bit min/max operations

Quad 8-bit min/max operations

32-bit arithmetic operations

32/40-bit  shifts and 32-bit bit-field

operations

32-bit logical operations

Branches

Constant generation

Register transfers to/from control register

file (.S2 only)

Byte shifts

Data packing/unpacking

Dual 16-bit compare operations

Quad 8-bit compare operations

Dual 16-bit shift operations

Dual 16-bit  saturated — arithmetic

operations

Quad  8-bit . saturated - arithmetic
operations

16 x 16 multiply operations

16 x 32 multiply operations

Quad 8 x 8 multiply operations

Dual 16 x 16 multiply operations

Dual 16 x 16 multiply with

add/subtract operations

Quad 8 x 8 multiply with add operation

Bit expansion

Bit interleaving/de-interleaving

Variable shift operations

Rotation

Galois Field Multiply

32-bit add, subtract, linear and circular
address calculation

Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant offset

(.D2 only)

Load and store double words with 5-bit

constant

Load and store non-aligned words and

double words

5-bit constant generation 32-bit logical

operations

Arithmetic operations
DP >SP, INT >DP, INT >SP
conversion operations

cal square-root

operations

Absolute value operations

SP = DP conversion operations

32 X 32-bit fixed-point multiply
operations
Floating-point multiply
operations

Load doubleword with 5-bit
constant offset
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Figure 3-5 TMS320C64x™ CPU (DSP Core)Data Paths [9]

3.2.2. MEMORY ARCHITECTURE

The DM642 uses a two-level cache-based architecture and has a powerful set of

peripherals. This memory architecture consists of the following:

v
v
v

Internal data/program memory

21

External memory, with external memory interface (EMIF)
Enhanced Directed-Memory-Access (EDMA)
Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1
data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2
memory/cache (L2) consists of a 2-Mbit memory space that is shared by both



program space and data space. The TMS320DM642 internal program memory can be
mapped into the CPU address space or operated as a program cache. There is a single
port to access internal program memory, with an instruction fetch width of 256 bits.
The internal data memory on C64x devices divides the memory into eight 32-bit wide
banks. These banks are single-ported, allowing only one access per cycle. This is in
contrast to the C621x/C671x devices, which use a single bank of dual-ported memory
rather than multiple banks of single-ported memory. There are more details described
in[11].

3.2.3. PERIPHERALS

The C64x contains some peripherals such as enhanced direct memory access
(EDMA) controller, external memory interface (EMIF), video port peripheral,
inter-integrated circuit (I2C) Bus module,10/100 Mb/s Ethernet MAC (EMAC), and
etc.

3.2.3.1. EXTERNAL MEMORY INTERFACE (EMIF)

EMIF supports a glueless interfaceito a variety of external device, including:
Pipelined synchronous-burst SDRAM (SBSRAM)

Synchronous DRAM (SDRAM)

Asynchronous device, including SDRAM, ROM, and FIFOs

An external shared-memory device

On MEX board, EMIF serves as the interface between DSP to two SDRAM,
memories of 1Megx32bitsx4banks (total 32MB), a synchronous FIFO to write/read

AN N NN

data, and various registers via an asynchronous. Thus the external memory map is
listed in Table 3-2.

Table 3-2 Memory map using EMIF of each DSP on MEX

Start End Type of memory | Bus
Address Address interface width
0x80000000 0x81FFFFFF SDRAM 64 bits
0x90000000 Synchronous FIFO 16 bits
0xB0000000 [ 0xBOOOOOOE | Asynchronous interface | 16 bits
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3.2.3.2. THE ENHANCED DIRECT MEMORY ACCESS

(EDMA)

The enhanced direct memory access (EDMA) controller handles all data
transfers between the Level-two (L2) cache/memory controller and the device
peripherals on the C64x DSP. The EDMA controller in the C64x DSP has a different
architecture from the previous DMA controller in the C620x/C670x devices. The
EDMA includes several enhancements to the DMA, such as 64 channels for the C64x
DSP, with programmable priority, and the ability to link and chain data transfers. The
EDMA allows movement of data to/from any addressable memory spaces, including

internal memory, peripherals, and external memory.

3.2.3.3. VIDEO PORT

The DM642 device has three configurable video port peripherals. These video
port peripherals provide an interface to common . video decoder and encoder devices.
The DM642 video port peripherals support- multiplé. resolutions and video standards.
These three video port peripherals are configurable- and can support video capture
and/or video display modes. As'shown.in‘Video Port'Block Diagram [12], each video
port consists of two channels - Aland B with a’5120-byte capture/display buffer being
splittable between these two channels. The video port peripheral can operate as a
video capture port, a video display port, or a transport stream interface (TSI) capture
port. For the capture mode, the video port may operate as two 8/10 bits channels of
BT.656 or raw video. It may also operate as a single channel of 8/10-bit BT.656,
8/10-bit raw video, 16/20-bit Y/C video, 16/20-bit raw video, or 8-bit TSI. For the
display mode, the video port may operate as a single channel of 8/10-bit BT.656,
8/10-bit raw video, 16/20 bit Y/C video, or 16/20-bit raw video. It may also operate in
a two-channel 8/10-bit raw mode. There are more details described in [12].
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3.2.3.4. INTER- INTEGRATED CIRCUIT (12C)

The inter-integrated circuit' {I2C) module provides an ideal interface between
TMS320C6000 DSP and other devices compliant with Philips Semiconductors
Inter-IC bus (I*C bus) specification. On the MEX board the I12C bus connects the
DM642 chip to video (SAA7113) and audio (CS4221) chips, and is used to initial the
video/audio chips and configure the video/audio data pathway with the format shown

below.

[ start] Slave Address| W | ACK|Sub Address| ACK-S|Data|ACK-S [Stop |
Write Sequence

Start |Slave Address| W |Sub Address| ACK-3
Start |Slave Address| R Data ACK-S STOP|

Read Sequence

Figure 3-7 I°C bus format

3.2.3.5. ETHERNET MAC (EMAC)

The Ethernet media access controller (EMAC) provides an efficient interface
between the DM642 DSP core processor and the network. It supports both 10Base-T
and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or
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full-duplex. The EMAC controls the flow of packet data from the DSP to the physical
layer device (PHY). The MDIO module controls PHY configuration and status
monitoring. Figure 3-8 Figure 2-1is the EMAC Control Module Block Diagram.

DsP

U Peripheral bus

EMAC control module

EMAGC module MDIO module

MIl bus U L MDIO bus

Figure 3-8 EMAC Control Module Block Diagram

3.3. CODING DEVELGPMENT ENVIRONMENT

In this section, we will briefly introduce the coding environment of our project.
The powerful coding environment tool €alled " Code Composer Studio (CCS) will be
described. In CCS, DSP programmers.can develop the project, debug the project, and
do some optimization. It’s necessary for a DSP programmer to be familiar with the

coding environment to develop a program efficiently.

3.3.1. CODE COMPOSER STUDIO

Code composer studio (CCS) extends the basic code generation toll with a set of
debugging and real-time analysis capabilities. It speeds and enhances the development
process for programmers who create and test real-time, embedded signal processing
applications. Every phase of development cycle including conceptual design, coding
&building, debugging, and real-time analysis is fully supported. Code Composer
Studio includes the following components, which works together as show in:

v' TMS320C6000 code generation tools
Code Composer Studio Integrated Development Environment (IDE):
DSP/BIOS plug-ins and API
RTDX plug-in, host interface, and API

AN NN
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3.3.1.1. CoDE GENEﬁk]I%N;{“SOL AND INTEGRATED

DEVELOPMENT ENVIRONMENT

The foundation for the development environment provided by Code Composer
Studio is consist of some code generation tools, including C compiler, assembler,
assembly optimizer, linker, archives library-build utility, and etc.

The Code Composer Studio Integrated Development Environment (IDE) is
designed to allow user to edit, build, and debug DSP target programs. In the coding
phase, C source code and the corresponding assembly instructions can be shown and
edit. In building phase, different files including C source files, assembly source files,
object files, libraries, linker command files, and include files can be added to build the
application. In debugging phase, flexibility to setting the breakpoints, accessibility to
memory registers, graphical signal, statistics of execution profiling make it easier to

debug.
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3.3.1.2. DSP/BIOS PLUG-INS

DSP/BIOS gives DSP chips developers the ability to develop and analyze
embedded real-time software. DSP/BIOS provides a graphical interface for static
system setup, real-time scheduling, real-time analysis (RTA), and real-time data
exchange (RTDX). By using the DSP/BIOS Configuration Tool, we can initialize data
structures and set various parameters of DSP/BIOS objects. The Configuration Tool
provides developers a windows explorer-like interface, as shown in DSP/BIOS
Configuration Tool I, to use DSP/BIOS real-time library, DSP/BIOS API, and also
CSL.

w dsk _app cdb
Estimated Data Size: 2829 Est. Min. Stack Size [MaUsg]: 1016 Global Settings properties

Property Value
Target Board Name chdi
44 MEM - DSF Speed In MHz (CLEOUT) 1000.0000
DSF Type £400
BUF - Buffer pool Manager Chip Support Library (CSL) 6416
BYE - Bystem Settings Chip Support Library Name cslf416 lib
& HOOK - Module Hook Manager DEP Endian Mode litfle
= E‘& Tnstrmentation Call Tzex Init Fonction False
Tser Init Function _FIN_F_nop
+ ﬂ LOG - Event Log Manager Ensble Real Time Analysis True
- BTS - Mafistics Object Manager Program Cache Control - CSR(PCC) ... mapped
SRE S_chedu]mg 621671 - Configure L2 Memory 3. False
42 CLK Elock Muieery Salx_ C?:nﬁﬁ:% Lzuﬁemgga?cc:) cT:mhe Enabled - Direct Mapped
+-§5 PRD - Perindic Function Manager PR i Bl ) S L D
f41% - Program Cache Control - CSR.. Cache Enabled - Direct Mapped
¥ '"I, HWI - Hardware Interrupt Service Routine Manager ] I\}fiod:‘? CCFG&,CQMO%]E) SECAM A SRR
+- 18 SWI- Software Interrupt Manager 641x L2 Mode - CCFGLIMODE) 4-weay cache (Ok)
& T It e uable AL TRC T Evet o~ Tt~
+ Y IDL - Tdls Function Manager i Tice dvenBates  Jlooe
~. S CDB search path in COFF file
=88 Synchronization MARS6-111 - bitmask controls EMIF.. 00000
¥ SEM - Semaphore Manager BMAR1ZE8-143 - bitmask controls EMI. 0x0001
0, MBI - Mailbox Manager MAR144-150 - bitmask controls EMI.. 00000
¥, QUE - Atomic Queve Menager MARI60-175 - bitmask controls EMI.. 00000

MAR176-101 - bitmask controls EMIL.. 0=0000

& LCK - Resomce Lock Manseer 6413 L2 Requestor Priority Queve - C... urgent

= (8] InputOutput Canfignre Prinrity Quenes Falie
@ RTDX - Eeal-Time Data Exchange Settings Max L2 Transfer Request:ton URGE.. 6
+- B3 HAT - Host Chanmel Manager Max L2 Transfer Requestson HIGH .. 2
E o : Maze L2 Transfer Requests on MEDIT... 2
&, FPIP - Bulfered Pipe Manager Meax L2 Tramsfer Requests cn LOW Q.. 2

:::_': BI0 - Btream Input and Output Manager
(10 - General InputOutput Manager
+ 3 Dievice Drivers
+ (g CSL - Chip Support Library

Figure 3-10 DSP/BIOS Configuration Tool Interface

For real-time DSP applications, such as our system, it is possible to perform a
number of seemingly unrelated functions at the same time. Such functions are called
thread. DSP/BIOS enables applications to be structured as a collection of threads,
with each of them carrying out a modularized function. Multi-thread programs run on
a single processor by allowing higher-priority threads to preempt lower-priority
threads, and by allowing various types of interactions among threads, including
blocking, communication, and synchronization [15]. The thread types (from highest to
lowest priority) provided by DSP/BIOS include: hardware interrupts (HWI), software

interrupts (SWI), tasks (TSK), and Background thread (IDL). Programs using
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multithreads, as opposed to a single centralized polling loop, are easier to design,
implement, and maintain.

Since the DSP/BIOS object tasks (TSK) is the major component of our
multi-thread system, the way how tasks work is illustrated below. There are 15 level
priorities and four states of execution, including running, ready, blocked, and
terminated of tasks. Tasks are scheduled for execution according to a priority level
assigned to the application. At a time only one task can be running, while other ready
tasks are blocked due to their lower priorities. When a task with higher priority is
ready, the current running task is blocked until higher-priority task is terminated.

As shown in Figure 3-11, TSK preempts the running task in favor of the
higher-priority ready task. During the course of a program, each task’s mode of
execution can change for a number of reasons. The following figure shows how

execution modes change.

TSK_creata() — TSE_ticki),

task is created =2 T SEM_post()
TEK_READY task is readied

TSK_yigld(),

TSK_delete() | task is delated presmptiori

" )
¢ TSK_RUNNING
7oK _TERMINATED jg_task exite ISl aliepais S e,
= TSK_exit(} TSK_sleapi]),... g
SEM_pend(),...
TSK_deletal)

task is delsted

Figure 3-11 TSK module execution flow chart

3.3.1.3. HARDWARE EMULATION AND REAL-TIME

DATA EXCHANGE

TI DSPs provide on-chip emulation support that enables Code Composer Studio
to control program execution and monitor real-time program activity. An emulator
interface, like the TT XDS510, provides the host side of the JTAG connection.

In addition, real-time data exchange (RTDX) capability is exposed through host
and DSP APIs, allowing for bi-directional real-time communications between the host
and DSP. It provides real-time, continuous visibility into the way DSP applications
operate in the real world. As shown in real-time data exchange of DSP, the RTDX

between the host and the DSP is achieved via the JTAG emulator.
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Figure 3-12 real-time data exchange of DSP emulation [14]
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3.3.2. DSP PROGRAM DEVELOPMENT FLOW

Tradition development flows in DSP industry have involved validating a C
model for correctness on a host PC or UNIX workstation. Programmer will need to
take a great effort to port process from C code to hand coded DSP assembly langue.
However this is both time consuming and error prone. The recommended code
development flow involves utilizing sthe \€6000 code generation tools to aid in
optimization than force the programmer.to code by hand in assembly. These
advantages allow the compiler to de: all ‘the "exhausting work of instruction
parallelizing, pipelining, and register allocation.

The phases of recommended coderdevelopment flow are illustrated in Figure
3-13.

Figure 3-13 DSP Program Development Flow

In phase one some compiler level optimization can be adopted without any
knowledge of the C6000. In the second phase, intrinsic and compiler options are used
to improve the code. In the last phase, linear assembly code won’t be written unless the
software pipeline efficiency is hardly achieved or the unbalanced resource allocation

is hardly solved by the compiler.
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Figure 3-13 DSP Program Development Flow
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3.4. OPTIMIZATION ON T1 DSP PLATFORM

As shown in Figure 3-13, optimization is adopted to increase the execution
performance. In this section some common used optimizations we adopt will be
described.

3.4.1. COMPILER LEVEL OPTIMIZATION

r |
|

|

| Parser

|

|

|

|

|

|

|

|
Optimizer |

| (optional) |
Assembly optimizer | |
|

|

|

|

| Code
[ generator

Assembly
preprocessor

<
I
|
|
e

+ Assembler
. source . with the linker option (-z)

*Executable
: COFFfie

T

Figure 3-14 Process that translates Ssource program into code [16]

As shown in Figure 2-1, the process that is taken to translate source program into
code. Compiler in this process is able to perform various optimizations. High-level
optimizations are performed in the optimizer and low-level, target specific
optimizations occur in the code generator. The optimizer can reduce code size and
improve executing time by using different compiler options. There are four
optimization levels —00, —ol, —02, and —o03 denoting different type and degree of
optimization, naming register level, local level, unction level, file level optimization
respectively.

The —ol, register level optimization performs control-flow-graph simplification,
allocates variables to registers, performs loop rotation, eliminates unused code,
simplifies expressions and statements, expands calls to functions declared inline.
Besides the optimization done in —00, some more optimization will be done in the
local level optimization (-ol) includes propagation of local copy/constant, unused
assignments removal, and elimination of local common expressions. The function
level (-02) performs all —ol optimizations, plus software pipelining, loop

optimizations, global common sub-expressions and global unused assignments
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elimination, and loop unrolling. Finally, the highest level file level (-03) perform
all —02 optimization, and remove never-called functions, simplifies functions with
return values that are never used, in-lines calls to small functions, reorders function
declarations, propagates arguments into function bodies, and Identifies file-level
variable characteristics. In addition to these optimizations, there are some
optimizations that are performed regardless of the optimization level. These

optimizations cannot be turned off.

3.4.2. PROGRAM LEVEL OPTIMIZATION

Expect the compiler optimization taken by configuring the optimization level of
compiler, mentioned in the last section, there are still refinements we can do to speed
up the program. There are several optimization methods for the special architecture of
TI C64x DSP.

First we can allocate the code sections and the code section into memories. In the
two level memory architecture mentioned in 0, there are fast memories with small size
such as SRAM or cache and slow _memories with large size such as the external
SDRAM. By using the pragma.CODE_SECTION and DATA SECTION, we can
declare memory sections, and then use the linker commend file to assign these section
to the proper memory level. It’s intuitive to allocate the frequently used code or data
into the fast and higher memory level.-Theifréquency to access the code or the data
should be analyzed for better performance. Although, the L2 cache provide such a
mechanism to access an external memory efficiently, exploiting the SRAM sometimes
reach better performance than using the L2 cache.

Secondly, the software pipeline and loop unrolling done in compiler level
optimization mentioned in the previous section can be more efficient with the loop
information given in the program. For example with the pragma MUST ITERATE,
the loop iteration information is aid to the compiler in choosing the best software
optimization. The UNROLL pragma specifies to the compiler how many times a loop
should be unrolled. Sometimes it will help the compiler to reduce code size and
sometimes will generate redundant loops. More detailed specification is accessible in
[16]. These two pragma are adopted in our project.

Finally, the C6000 compiler provides intrinsic, which are special functions that
map directly to in-lined C64x instructions, to optimize C/C++ code efficiently. All
these intrinsic functions are optimized codes based on the knowledge and techniques
of DSP architecture. A trick of it is that intrinsic use a single instruction multi data.
For example, if we can place four 8-bit data or two 16-bite data in a 32-bit register, it

can execute one operation instead of four (8-bit) or two (16 bit) operation.
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3.5. REFERENCE FRAMEWORK LEVEL 5

To realize the multithread system of video streaming, video processing and
transmission the Reference Framework Level 5 (RF5) is used. RF5 that use
DSP/BIOS and the TMS320 DSP Algorithm Standard (also known as XDAIS) is
intended to enable designers to create extensive applications that use numerous
algorithms, multi threads, or multi channels. The four basic elements: tasks, channels,
cell, and XDAIS form the data processing of RF5 as shown in Figure 3-15.

At the top level is a DSP/BIOS task. A task is a collection of channels, a
channel is a collection of cells, and a cell is a wrapper for an algorithm. The cell
provides a standard interface between the algorithm and the outside world, by
defining only one processing function. While the channels always perform a fixed
operation of executing cells serially. The task is able to execute channels in series, and
able to occasionally send control messages to one another task for thread scheduling
as described in 3.3.1.2.The tasks those run get-data, execute-channels, send-data form

a data processing system.

Key

[

Transmit 1 -channel

O - cell

Fi, Vi - XDAIS algorithm

Gather

Figure 3-15 Processing elements in RFS

3.5.1. TASK LEVEL DATA COMMUNICATION

For task-level communication, which uses semaphore-based synchronization, we
have streaming I/O(SIO) and synchronized communication(SCOM) messages.

SIO interfaces with device drivers and tasks. As shown in Figure 3-16
Communication Between a Task , these standard DSP/BIOS objects element facilitate
the typical double buffering. That is to said, each time the task passes empty buffers to
the input device driver and collects buffers full of data from the device.

SCOM message are defined by user, and passed among tasks. Tasks allocate
memory buffers that other task write data to or read data from. Thus they need to
communicate to the other. Each task creates its own receiving SCOM queue (or more
than one if necessary), and puts SCOM messages to other tasks' receiving queues. The
availability of each task and the data pass to the task is verified by checking if there is

any message receiving SCOM queue. Figure 3-18 shows the task communication via
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Figure 3-16 Communication Between a Task and a Device Driver via an SIO Object
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Figure 3-17 Communication Between Two Tasks via SCOM Messages

3.5.2. CELL LEVEL DATA COMMUNICATION

For cell-level communication, we have inter-cell communication (ICC) objects
and lists of those objects. The purpose of anidCC object is to describe the buffer from
which a cell reads the data, or to which the cell. writes the data. For each cell, there are
one input list and one output list of those:objects: As:shown in Figure 3-18, two cells
in effect communicate by having the same ICC object in their lists: the cell that writes
to a buffer described by an ICC object hastherobject in its output list, and the cell that

reads the buffer has the object in its input list.

] @H | @ ]
in out in out

| e
U@~

ut

Key

cell ~-»  pointer
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ICC object descrnibing a buffer

O
(]
imm|

O

element in an a list of pointers
to |CC objects

Figure 3-18 Communication between Cells via ICC object
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3.6. NETWORK DEVELOPER'S KIT

The Network Developer's Kit provided by TI is designed as a platform for
development and demonstration of network enabled application on the DSP. To build
the a full TCP/IP functional environment only small memory footprint of around
200K to 250K of program memory and 95K of data memory are required [17]. That
make NDK a good choice to implement networking transmit system.

The NDK software package is designed to be a transparent add-on to DSP/BIOS
and CCS development tools, as shown in Figure 3-19.

In Figure 3-19, the stack package is organized in terms of function call control
flow, including five main libraries: STACK, NETTOOL, OS, HAL, and NETCTRL
libraries.

MNetwork
application
Network tools
(NETTOOL)
A 4 ¢ ¢ Y
. 08 adaptation TCP/IP stack
DSPBIOS [ |ayer * fibrary (STACK)
(OS, MiniPrintf)
Py
¥
Hardware Network
adaptation control
layer (HAL) (NETCTRL)

Figure 3-19 Stack Control Flow
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Chapter 4. IMPLEMENTATION  AND

SPEED IMPROVEMENT

4.1. ARCHITECTURE OF H.264/AVC VIDEO

COMMUNICATION SYSTEM

In this thesis, the real H.264/AVC based video communication system 1is
implemented. Unlike the other implementations of H.264/AVC codec that only
contain the encoder and decoder with file I/O, as shown in Figure 4-1, we construct
one more realistic system that describes'a/real .encoding path and decoding path. The
encoding path includes video capturing, H.264/AVC encoding, and network transmit,
while the decoding path includes network receiving, H.264/AVC decoding and video
display on PC, as shown in Figure 4-2.At'one end @ MEX board is installed on the
computer to get the analog video signalfrom the video device, then do the
H.264/AVC video compression td:the video content, and finally transmit the coded
data to the ethernet. These transmit data’ was received by another MEX board on
different PC. At this end the coded data will be decode back into the video data, and

then be displayed on the personal computer.
H.264 Encode >
Processing
Disk
H.264 Decode >
Processing e

Figure 4-1 Usual implantation of H.264/AVC System

Video H.264 Encode Networking
Capture Processing Transmission

Video Device Q Ethernet Network
Networking H.264 Decode Video
Receiving Processing Display

Figure 4-2 H.264 based Visual Communication System
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The software in a typical embedded microprocessor system, such as the DM 642
we used for development, is composed of two general components, the application
software and the system software. In our H.264/AVC based communication system,
the video encoding and decoding algorithm and the ethernet communication are the
application software, while the video capturing and display are system software. In
order to operate correctly in real time, both of application software and the system
software should be scheduled well. To realize the mechanism, we implement the
real-time system by multi-task with multiple threads.

Refer to the section 3.5, we adopt the RF-5 framework to build our multi thread
and multi task system. The entire system including the encoder end and decoder end is
decomposed into RF-5 objects as shown in Figure 4-3. There are eight major tasks,
three functional tasks including Capture task, Encoding Processing task, Tx
networking task for the encoding process, three functional tasks including Display
task, Encoding Processing Task, Rx networking task for the decoding process, and

one control task for both encoding task and decoding task.

ab LR =
e,
L o

Capture task H.264 Encode Processing task TX networking task

Control task

. -
i Task (Thread) . Channel U Cell
{) Device driver 2 SIO object . Data buffer
B scOMqueue ! SCOM message E MBX mailbox for control messages

Figure 4-3 System block diagram of Reference Framework level-5
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v' Capture task: After initializing the video chip SAA7113 via 12C module in
DM642.Vido frame with format of 4:2:2, is captured from the video chip.
The EDMA channel synchronized to the video port event (VPOEVTA) is
open to get to video data from video port. The frame data is resampled to
4:0:0 format, for to encode task.

v' Display task: In this task, decoded frame with 4:0:0 is resampled to 4:2:2
and sent to the external FIFO which is also accessible to the HOST PC.
Then a Win32 API windows function will receive an interrupt from DPS to
and then display the decode frame.

v' Tx/Rx networking task: These two was use the NDK module to utilize to
transmission and reception of coded data. The encoded data, NAL unit of
H.264/AVC is transmitted by the Tx networking task, and are received by
the Rx networking task.

v' Encoding Processing task: The H.264/AVC encoder get frame from the
Capture task, and send the encode NAL units to the Tx networking task.

v' Decoding Processing task: H.264/AVC decoder get NAL units from the Rx
networking task, and send the decode. frame to the Display task.

v Control task: use Mailbgx (DSP/BIOS object) to configure the above tasks.

Each task waits until it receives the message from the SCOM queue, and after

execution it yield the executionito other tasks by put the SCOM message to the

message queue.

4.2. SINGLE-DSP PARALLELIZATION

To facilitate application H.264/AVC based communication described above, we
use the multi DSP board, MEX, to implement the system. Firstly the system is carried
out and optimized on single DSP. And then further extension to other DSPs is taking
into consideration. In this section, single DPS optimization and parallelization is
described.

4.2.1. SINGLE-DSP OPTIMIZATION

By adopting the RF-5 framework and doing some modification to the H.264
encoder and decoder source code, the H.264/AVC encoding system and decoding
system are implemented on two MEX boards respectively. Thought the optimization
of encoder and decoder is taken individually, similar optimization rules as mentioned

in section 3.4 are taken to accelerate the encoding and decoding system:
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v" Compiler optimization level:

The highest compiler optimization level (-03) is taken. Various loop
optimizations are performed, such as software pipelining, unrolling, and SIMD.
Various file level characteristics are also used to improve performance.

v' Software pipeline

Adding the “#pragma MUST ITERATE” pragma in the front of the loop to
inform the complier to unroll it and prevent to produce redundant loop when
optimizing. However, in a nested loop structure, only the innermost loop will be
unrolled, while the inner loop will be ignored. Manual loop unrolling is done to make
the software pipelining more efficient.

v' Allocation of code and data memory sections

There are some frequently accessed data such the entropy coding decoding table,
and some frequently executed functions, such as interpolation for fractional motion
vector. Since the full 256kB L2 cache is not allowed for a NDK application [17]. We
can allocate some memory into the SDRAM such as those frequently used data and
code by using. The “#pragma DATA SECTION” and “#pragma CODE SECTION”
are used to allocate the data memory and code-memories respectively.

v' The table lists intrinsic function we.used. to teplace the original C-operation to
accelerate the execution.

Table 4-1Intrinsic functions;we used

C Compiler Intrinsic Assembly ™ Description
Instruction

int _abs2(int src); ABS?2 Calculates the absolute value for each
16-bit value

int _max2 (int srcl, int src2); MAX2 Places the larger/smaller of Cvalue.

int _min2(int srcl, int src2); MIN2 Values can be 16-bit signed or 8-bit

uint _maxu4(uint srcl, uint src2); MAX4 unsigned.

uint _minu4(uint srcl, uint src2); MINU4

_memd8(p) Unaligned access of double beginning at
address p

_memd4(p) Unaligned access of unsigned int
beginning at address

_memd2(p) Unaligned access of unsigned short
beginning at address p

v' Moreover, the L2 cache is enable with 0, 32, 64, 128 Kbytes.
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4.2.2. DOUBLE BUFFERING

The double buffering also known as the ping-pong buffering is a mechanism that
allows the CPU activity to be independent of the EDMA activity. In ping-pong
buffering, there are multiple (usually two) sets of data buffers for the incoming and
outgoing data streams. While the EDMA is transferring data into or out of the ping
buffer, the CPU is manipulating data in the pong buffer. When the CPU and EDMA
complete their activities, they switch the buffers. The EDMA then writes over the old
input data and transfers the new output data. An example of the ping—pong buftfering
scheme is shown in Figure 4-4. By using double buffering, the data in ping and pong
buffers are processed by CPU independently.

processin processin L processin
ping pong ping

" process
inpong

Figure 4-4 Ping-Pong buffering diagram

4.2.3. SINGLE-DSP PARALLELIZATION

As mentioned in the previous section, with the help of EDMA, CPU can serve
the ping and pong buffer independently. We produce the pseudo threads of the ping
process and pong process respectively. Though the pseudo threads dose not
executed at the same time, we can make increase the efficiency by reducing the
memory access time rather than the execution time. Here, we exploited the MB-level
parallelism in spatial domain. To satisfy the data dependency constraint, describe in
section 2.9. The processing of macroblock are in the order as Figure 4-5 shows. Each
ping-pong pair is executed at the Time N successively. While the macroblock in ping
buffer at Time N-1 is processed, the macroblock in pong buffer is processed right
away at Time N-2. The execution condition at time 3, time 4, and time7 is shown
below. We can notice that macroblock (2,0) and macroblock (0,1) is a ping-pong pair,
so does the macroblock (0,2) and macroblock (4,1). The red pointer indicates the data

dependency situation of each macroblock.
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Figure 4-5 Single DSP macroblock parallelization

4.3. MULTI-DSP PARALLELIZATION

4.3.1. SYSTEM PROFIL

1 ing Capture TSK, Encode TSK,
The profiling result is listed in
DSP chips on the MEX board into

neck of this system is the encoding task. It

We make a profiling of the¢
Tx TSK, Rx TSK, Decode TSK
Table 4-2. For further speed up,
account. As shown in Table 4-2, the bot '

will be further parallelized, as illustrated in the next section.

Table 4-2 System profile of the major tasks

Encoding Capture TSK Encode TSK Tx TSK
ms 290250 417623219 120706616
% 0.07 77.54 22.4
Decoding Display TSK Decode TSK Rx TSK
ms 107973264 68904482 1382446
% 60.57 38.67 0.77
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4.3.2. MULTI-DSP PARALLELIZATION

deblocking filtering by processing macroblocks in an order as mentioned in the last
section. Likely we should ease the dependency in a special order as Multi DSP
macroblock parallel shows. In the multi DSP parallelization, frames are distributed
into DSPs. In the section 2.9, that the cross frame dependency is induced by the
motion estimation; only when search window of the reference frame is reconstructed
(either in encoder or decoder), the current macroblock is available to be processed. As
shown in Multi DSP macroblock parallel, at the TimelO, four macroblocks are
processed including macroblock (3, 2), macroblock (1, 3) in frame 1, macroblock (3,

0), and macroblock(1,1) in frame i+1.
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4.4, EXPERIMENTS & RESULTS

4.4.1. RESULT OF SINGLE DSP OPTIMIZATION

After adopting the optimization methods we introduced before, we use the
DM642 Device Cycle Accurate Simulator to profile the functions in encoding and
decoding processes. Neither the video input, output task nor the network transmit task
is consider in this comparison, because the optimization won’t help a lot for those I/O
tasks. Though the optimization is done to the project globally, the improvement of
speed of each functions in coding process are not the same; it depends on the structure
of the function. In the following part, we will illustrate some important functions,
compare the execution time of them and calculate the speed up ratio.

As shown in Table 4-3, each function is speeded up by the optimization and
some manual modification. Since the inter prediction intra prediction, and DCT/IDCT
contain many loop structures in the functions,:they are well optimized for the software
pipeline € mechanism of the DSP.chip. We.can netice that most time consuming part
is still the inter predictions. If there is any need to write the assembly code as shown
in Figure 3-13, it might be the proper choice to write it into the assembly code.

Table 4-3 Average-execution cycle of a frame of x264 encoder

Non optimized Optimized

Cycle count Percentage . Cycle count Percentage  Ratio
Inter 385955140 66.80 31345836 58.71 12.3
Intra 76744048 13.28 5435452 10.26 14.1
DCT/IDCT 36449650 6.31 2470440 4.66 14.7
Quantization. 27206566 4.71 2718834 5.13 10.0
Deblocking filter 10887230 1.88 2424248 4.58 4.49
Entropy coding 9221182 1.60 2430716 4.59 3.79
Total 577769679 100 52979974 100 10.91

In Table 4-4, the decoder task is speed up by ratio 5.3. Though the inter
prediction, intra prediction, and DCT function are well optimized by the speeded up
ratio 1x. The performance of the decoder task is contra trained by the deblocking filter.
For the decoder the deblocking filter is the of choice function to written into assembly
for further improvement.

Table 4-4 Average execution cycle of a frame of JM10.3 decoder

Non optimized Optimized

Cycle count Percentage Cycle count Percentage Ratio

Inter | 55418473.24 26.96 4163457 10.82 13.3

Intra | 3740215.647 1.80 244461 0.64 153
IDCT | 7638903.176 3.72 1135516 2.95 6.7
Quantization | 42497.23529 0.02 14976 0.039 2.8
Deblocking filter 115774629 56.32 17790497 46.25 6.5
Entropy coding | 22219077.35 10.81 7875195 20.47 2.8
Total 205535479 100 38467286 100 5.3
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4.4.2. RESULT OF SINGLE DSP PARALLELIZATION

In the single DSP parallelization, we use ping and pong buffer to allocate the
successively executed macroblocks. Most of the program is not changed, but the
macroblock processing order. Thus the improvement is due to the overlap of EDMA
transmit and CPU processing. In the un-parallelized version, the memory data needed
in ping procedure is fetch by CPU before processing; while in parallelized version, the
needed data is fetch by EDMA at the last pong execution. We use emulator to observe
the effect of real SDRAM accession (external memory accession), and how much is
reduced by the proposed method.

Table 4-5 Single DSP parallelization of x264 encoder

| Non- parallelized ‘ Parallelized ‘ Ratio
ms per frame | 76.44 163.73 | 1.199

Table 4-6 Single DSP parallelization of JM10.3 decoder

| Non- parallelized \ Parallelized ‘ Ratio
ms per frame | 491.26 1475.53 | 1.033
The limitation of the speed-up-of this method.is the ratio of EDMA transmit time
and CPU execution time. When' the ratio is about’1, or the time EDMA used to

transmit is almost equal to the CPU executing'time, the speed up ratio might up to two.
To achieve this goal, further modification optimization to the code should be adopted

to reduce the CPU execution time.

4.4.3. RESULT OF MULTI DSP OPTIMIZATION

In section 4.3.1 and 4.3.2, we proposed a multi DSP parallel mechanism that
only applied to the encoder end for the system. To use other DSPs on the MEX board,
we retain the network transmit task and the video capture task, but parallelize the
encoding task into other DSPs. The parallelization result is shown below.

Table 4-7 Multi DSP parallelization result

One DSP (original) | Two DSP Three DSP | Four DSP
ms per frame 475.53 397.55 323.81 290.75
Speed up ratio 1 1.196 1.4685 1.6355

The multi DSP parallelization is restricted to the cross DSP transmit of the MEX
board. For more efficient multi DSP parallelization, we should find some board else

with better cross DSP communication.
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Chapter 5. CONCLUSION AND FUTURE

WORK

In this thesis, we construct the H.264/AVC video communication system on MEX.
Rather than the disk I/O system, we implement a more realistic system that consists of
not only the H.264/AVC codec but also video capturing, displaying and ethernet
transmission. Then we propose optimization and parallelization method for the multi
DSP board. We conclude our accomplishments as below.

v' We implement of real-time H.264 encoder /decoder system.

v' We establish a multi thread system.

v We do the optimization of H.264 encoder/decoder for single DSP by using
double buffers.

v" We propose a parallelization prototype of H.264 encoder/decoder for multi DSP.

To achieve higher performance, it’s important to find an efficient path for cross
DSP communication. Since the benefit bought out from the macroblock parallelizing

1s stock due to the slow cross DSP'communication’
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