

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

H.264/AVC 影像編碼系統在 TI DSP 系統平台上

之實現與加速

Acceleration and Implementation of

H.264/AVC Based Visual Communication System

on TI DSP Platform

研 究 生：陳奕安

指 導 教 授：王聖智 博士

中 華 民 國 九 十 七 年 十 月

H.264/AVC 影像編碼系統在 TI DSP 系統平台上

之實現與加速

Acceleration and Implementation of H.264/AVC based

Visual Communication System on TI DSP Platform

研 究 生：陳奕安 Student：Yi-An Chen

指導教授：王聖智博士 Advisor：Dr. Sheng-Jyh Wang

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of Master

in

Electronics Engineering
July 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年十月

I

H.264/AVC 影像編碼系統在 TI DSP 系統平台上

之實現與加速

 研究生：陳奕安 指導教授：王聖智 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

在本論文中，我們針對了 H264/AVC 的影像壓縮規格，實現了一

個即時影像傳輸系統。包含影像接收-壓縮-網路傳送端，以及網路接

收-解壓縮-播放端，在一端送出經過 H.264/AVC 編碼技術壓縮過的資

料，經過網際網路傳輸後可以被另一端收到並進行解碼。我們使用了

多線程緒的執行方式，來達成此即時系統。針對 DM642 數位處理晶

片，我們提出平行化的方法，並且也對具有多顆數位訊號處理晶片的

MEX 系統做平行化的處理。

II

 Acceleration and Implementation of H.264

based Visual Communication System on TI DSP

Platform

 Student: Yi-An Chen Advisor: Dr. Sheng-Jyh Wang

Department of Electronics Engineering, Institute of Electronics

National Chiao Tung University

Abstract

In this thesis, we implement an H.264/AVC based real-time video

communication system. The two ends of this system include video

capturing/encoding/network-transmission and network-reception/

decoding/video-display. The H.264/AVC encoded data are transmitted

from one end to the other end. The whole procedure is implemented in

multiple threads. To speed up the coding process, both optimization and

parallelization of the DSP codes are performed with respect to the

DM642 DSP chip and the multi-DSP board, MEX.

III

誌謝

 在這幾年的學習生涯中，我首先要感謝指導教授王聖智老師。從

大三開始進實驗室做專題，到碩士班結束共四年時間，老師在其中不

僅悉心教導了許多做研究的方法與態度，也展現了待人接物該有的氣

度以及處理事情的技巧，使我獲益匪淺。在此向老師致上最高的感謝

之意。

 同時我也要感謝每次下班還特別撥空與我討論的信嘉學長，不僅

耐心的與我討論，也不厭其煩的指出我研究中的缺失。另外也要感謝

影像處理實驗室的敬群、禎宇學長，在實驗室時不斷鼓勵我給予我良

好的建議。也感謝俊晟、博凱、晴駿同學的幫忙，在實驗室中歡樂的

度過美好的時光。當然也感謝瑞男、庭瑋、文中、維辰你們諸多的幫

忙。

 最後，感謝我的家人與朋友給予我的鼓勵，在此將論文獻給我有

有幫助過我的，陪我走過這段求學生涯的所有師友、同學、朋友和家

人。

IV

Content
Chapter 1. Introduction .. 1

1.1. Introduction .. 1
1.2. Overview of the Thesis .. 1

Chapter 2. Conspectus of H.264 Standard ... 2
2.1. Overview of H.264/AVC ... 3

2.1.1. The H.264/AVC Encoder ... 3
2.1.2. The H.264/AVC Decoder ... 4

2.2. Profile and Levels .. 4
2.3. Inter Prediction... 5

2.3.1. Tree-structure motion compensation ... 5
2.3.2. Fractional pixel precision ... 6
2.3.3. Motion vector prediction .. 8

2.4. Intra Prediction... 8
2.4.1. 4x4 Luma Prediction modes .. 9
2.4.2. 16x16 Luma Prediction modes .. 9
2.4.3. 8x8 Chroma Prediction modes ... 10

2.5. In-Loop De-blocking Filter .. 10
2.6. Transform and Quantization .. 11
2.7. Entropy Coding .. 12
2.8. NAL unit .. 12
2.9. Data Dependency of H.264/AVC ... 13
2.10. Complexity Analysis of H.264/AVC .. 14

Chapter 3. DSP Implementation Environment .. 15
3.1. Introduction of DSP Platform .. 15
3.2. DSP Chip .. 17

3.2.1. Central Processing Unit (CPU) .. 19
3.2.2. Memory Architecture ... 21
3.2.3. Peripherals .. 22

3.2.3.1. External Memory Interface (EMIF) 22
3.2.3.2. The enhanced direct memory access (EDMA) 23
3.2.3.3. Video Port .. 23
3.2.3.4. Inter- integrated circuit (I2C) 24
3.2.3.5. Ethernet MAC (EMAC) ... 24

3.3. Coding Development Environment ... 25
3.3.1. Code composer studio .. 25

3.3.1.1. Code generation tool and Integrated Development

V

Environment ………………………………………………………..26
3.3.1.2. DSP/BIOS Plug-ins .. 27
3.3.1.3. Hardware Emulation and Real-Time Data Exchange .. 28

3.3.2. DSP Program Development Flow .. 29
3.4. Optimization on TI DSP Platform.. 31

3.4.1. Compiler level optimization .. 31
3.4.2. Program level optimization .. 32

3.5. Reference Framework Level 5 ... 33
3.5.1. Task level data communication .. 33
3.5.2. Cell level data communication... 34

3.6. Network Developer's Kit ... 35
Chapter 4. Implementation and Speed Improvement .. 36

4.1. Architecture of H.264/AVC video communication system 36
4.2. Single-DSP Parallelization ... 38

4.2.1. Single-DSP optimization .. 38
4.2.2. Double buffering .. 40
4.2.3. Single-DSP parallelization ... 40

4.3. Multi-DSP Parallelization .. 41
4.3.1. System profile .. 41
4.3.2. Multi-DSP parallelization .. 42

4.4. Experiments & Results .. 43
4.4.1. Result of Single DSP Optimization ... 43
4.4.2. Result of Single DSP Parallelization ... 44
4.4.3. Result of Multi DSP Optimization ... 44

Chapter 5. Conclusion and Future Work ... 45
References …………..46

VI

List of Figures
Figure 2-1 Structure of an H.264/AVC video encoder [4] ... 2
Figure 2-2 Scope of H.264/AVC [4] .. 3
Figure 2-3 H.264/AVC Encoder[5] .. 3
Figure 2-4 H.264/AVC Decoder[5] .. 4
Figure 2-5 Macroblock partitions: 16x16, 16x8, 8x16 and 8x8 [3] 6
Figure 2-6 Macroblock sub-partitions: 8x8, 8x4, 4x8 and 4x4 [3] 6
Figure 2-7 Interpolation of luma half-pel positions [3] ... 7
Figure 2-8 Interpolation of luma quarter-pixel positions [3] ... 7
Figure 2-9 Interpolation of chroma samples [3] .. 7
Figure 2-10 Current and neighboring partitions for MVp [3] .. 8
Figure 2-11 4 × 4 luma prediction modes [3] .. 9
Figure 2-12 Intra 16 × 16 prediction modes [3] ... 10
Figure 2-13 Edge filtering order in a macroblock [3] .. 10
Figure 2-14 Performance of the deblocking filter for highly compressed pictures 11
Figure 2-15 Scanning order of residual blocks within a macroblock. [3] 11
Figure 2-16 NALU header. .. 12
Figure 2-17 Data dependency induced by intra prediction and deblocking filter 13
Figure 2-18 Data dependency induced by inter prediction .. 13
Figure 2-19 Distribution of clock cycle of each function of encoder. 14
Figure 2-20 Distribution of clock cycle of each function decoder. 14
Figure 3-1 MEX (Multi-Channel Video Platform) [6]... 16
Figure 3-2 Block diagram of the MEX [6] .. 16
Figure 3-3 Block diagram of (a)emulator system and (b)application system 17
Figure 3-4 Block diagram of the TMSDM642 [9] ... 18
Figure 3-5 TMS320C64xTM CPU (DSP Core)Data Paths [9] 21
Figure 3-6 Video Port Block Diagram [12] ... 24
Figure 3-7 I2C bus format .. 24
Figure 3-8 EMAC Control Module Block Diagram .. 25
Figure 3-9 Code Composer Studio environment [14] .. 26
Figure 3-10 DSP/BIOS Configuration Tool Interface ... 27
Figure 3-11 TSK module execution flow chart .. 28
Figure 3-12 real-time data exchange of DSP emulation [14] 29
Figure 3-13 DSP Program Development Flow .. 30
Figure 3-14 Process that translates source program into code [16] 31
Figure 3-15 Processing elements in RF5 ... 33
Figure 3-16 Communication Between a Task and a Device Driver 34

VII

Figure 3-17 Communication Between Two Tasks via SCOM Messages 34
Figure 3-18 Communication between Cells via ICC object .. 34
Figure 3-19 Stack Control Flow .. 35
Figure 4-1 H.264 based Visual Communication System ... 36
Figure 4-2 System block diagram of Reference Framework level-5 37
Figure 4-4 Ping-Pong buffering diagram ... 40
Figure 4-5 Single DSP macroblock parallelization .. 41
Figure 4-6 Multi DSP macroblock parallelization ... 42

VIII

List of Tables
Table 2-1 Coding tools and features of different profiles [3] .. 5
Table 2-2 Examples of parameters to be encoded ... 12
Table 3-1 Functional Units and Operations Performed [10] .. 20
Table 3-2 Memory map using EMIF of each DSP on MEX .. 22
Table 4-1Intrinsic functions we used ... 39
Table 4-2 System profile of the major tasks .. 41
Table 4-3 Average execution cycle of a frame of x264 encoder 43
Table 4-4 Average execution cycle of a frame of JM10.3 decoder 43
Table 4-5 Single DSP parallelization of x264 encoder .. 44
Table 4-6 Single DSP parallelization of JM10.3 decoder .. 44
Table 4-7 Multi DSP parallelization result .. 44

1

Chapter 1.

INTRODUCTION

1.1. INTRODUCTION
With its higher compression efficiency than all prior video coding standards, the

latest video compression standard H.264, which is also known as MPEG-4 part 10 or
MPEG-4 AVC, is expected to become the major video standard in the coming years.
H.264/AVC provides high coding efficiency through the addition of new features and
functionalities. With the H.264/AVC standard, the size of a digital video can be
reduced up to 80% than the Motion JPEG format and up to 50% than the MPEG-4
Part-2 standard.

On the other hand, the demand for multimedia services over internet is steadily
increasing. With its high coding efficiency, H.264/AVC has become one of the most
favorite video compression standards to transmit videos over the internet. However,
the high complexity of the H.264/AVC coding process has made the implementation
of the H.264/AVC standard very difficult.

The general-purpose Digital Signal Processor (DSP) has been widely used in the
implementation of various algorithms. The C64x DSP family, developed and provided
by the Texas Instruments (TI), is a popular choice for digital media applications. In
this thesis, we implement an H.264/AVC based video communication system based
on the multi-DSP board MEX (Multi-Channel Video Platform), which possesses four
TMS320DM642 DSP chips. The H.264 based video transmission is implemented in
terms of multiple threads. Moreover, to speed up the encoding/decoding process, the
optimization and parallelization of the DSP codes are investigated in this thesis.

1.2. OVERVIEW OF THE THESIS
The rest of the thesis is organized as follows. Chapter 2 contains the brief

introduction to the H.264/AVC coding standard. In Chapter 3, a brief overview of the
DSP platform and the development environment is represented. In Chapter 4, a
multi-task multi-thread implementation of the H.264 based video communication
system is discussed. Finally, conclusions are given in Chapter 5.

2

Chapter 2.

CONSPECTUS OF H.264 STANDARD
H.264, also known as MPEG-4 Part 10 or MPEG-4 AVC, is the state-of-the-art

video coding standard. It is proposed by the Joint Video Team of both the ITU-T
Video Coding Experts Group (VCEG) and the ISO/IEC Moving Pictures Experts
Group (MPEG). The final drafting work on the first version had been completed in
May 2003 [1].

The primary goal of H.264/AVC is to develop a video coding standard with high
coding efficiency and network-friendly video representation. As shown in Figure 2-1,
the H.264 covers a Video Coding Layer (VCL), which efficiently represents the video
content, and a Network Abstraction Layer (NAL), whose formats are appropriate for
conveyance over particular transport layers or storage media. With the state-of-the-art
coding tools, it can achieve lower bit rates than all prior standards, like MPEG-2,
H.263, and MEPG-4 Part-2 [2]. Moreover, its packed-based video representation
addresses both conversational and non-conversational applications. Outperforming
earlier standards, H.264/AVC is becoming the worldwide digital video standard for
consumer electronics and video broadcasting. In this chapter, the H.264/AVC standard
is briefly introduced. More details about H.264/AVC can be accessed in [3].

Figure 2-1 Structure of an H.264/AVC video encoder [4]

3

2.1. OVERVIEW OF H.264/AVC
As shown in Figure 2-2, the scope of H.264/AVC standard includes only the

decoder of the typical video coding /decoding chain. The decoder is standardized by
prescribing the Bitstream syntax and defining the decoding process. This limitation of
the scope of the standard allows the maximal freedom to the encoder for different
applications.

Although the encoder /decoder pair is not explicitly defined, encoder and
decoder are likely to include the functional elements shown in Figure 2-3 and Figure
2-4 to be complaint to the standard.

2.1.1. THE H.264/AVC ENCODER

A block diagram of a typical H.264/AVC encoder is shown in Figure 2-3. The
encoding process is divided into several functionality block diagrams. Except the
deblocking filter, most of these functional components (intra/inter prediction,
transformation, quantization, entropy encoding) had been presented in these previous
standards. However, some important changes in the details of each functional block
occur in H.264.

Figure 2-3 H.264/AVC Encoder[5]

Figure 2-2 Scope of H.264/AVC [4]

4

The intra prediction and motion estimation/compensation removes spatial
redundancy and temporal redundancy respectively. After that, the prediction mode and
the residual data are recorded. Then the transformation and quantization are adopted
to transform residual data into more suitable data space to drop some details those are
less perceptible to human vision. The entropy coding removes the syntax redundancy.
In addition, the deblocking is performed to reduce the blocking effect in
reconstruction path.

2.1.2. THE H.264/AVC DECODER

Figure 2-3 shows the block diagram of the H.264/AVC decoder. The entropy
decoder decodes the quantized coefficients and the motion data, which is used for the
motion compensated prediction. As in the encoder, prediction data are obtained by
intra or motion estimation, which is added to the inverse transformed coefficients.
After deblocking filtering, the macroblock is completely decoded.

Figure 2-4 H.264/AVC Decoder[5]

2.2. PROFILE AND LEVELS
There are three profiles defined in H.264/AVC standard, these profiles are

baseline profile, main profile, and extended profile. The profile is adopted flexibly for
different application. The baseline profile, supporting intra coding and inter coding,
together with entropy coding with CAVLC is primary for lower-cost application.
Designed as the mainstream consumer profile, the main profile supports interlaced
video, B-picture, inter coding using weighted prediction and entropy coding using
CABAC. With robustness to data losses, the extended profile does not support
interlaced video and CABAC, but adds modes to enable switching between Bitstream
and to improve error resilience. Table 2-1 lists the coding tools and features of these
three profiles.

5

Table 2-1 Coding tools and features of different profiles [3]

 Baseline Extended Main

I and P Slices Yes Yes Yes
B Slices No Yes Yes

SI and SP Slices No Yes No

Multiple Reference Frames Yes Yes Yes
In-Loop Deblocking Filter Yes Yes Yes
CAVLC Entropy Coding Yes Yes Yes
CABAC Entropy Coding No No Yes

Flexible Macroblock Ordering (FMO) Yes Yes No

Arbitrary Slice Ordering (ASO) Yes Yes No

Redundant Slices (RS) Yes Yes No

2.3. INTER PREDICTION
By using the previous encoded video frames or fields, inter prediction can be

established from motion estimation and motion compensation. Similar to the prior
coding standard, the block-based motion compensation is used. However, variable
block size is different from the earlier standards and makes it more efficiency than
earlier standards.

In prediction procedure, a predicted block P is searched from the reference
picture Fn-1 by motion estimation. Motion Vector (MV) is the displacement from the
current block to the predicted block P. With the encoded information of MVs and
residual, motion compensation can reconstruct the current picture from the reference
picture Fn-1. In this standard, MVs have accuracy of quarter-sample resolution to
achieve higher coding efficiency. Next, we will describe these features of H.264 inter
prediction

2.3.1. TREE-STRUCTURE MOTION COMPENSATION

In H.264/AVC standard, the luma component of each macroblock can be
segmented into one 16x16 partition, two 8x16 partitions, two 16x8 partitions, or four
8x8 partitions, as shown in Figure 2-1. In Figure 2-6, if the 8x8 partitions is chosen,
each 8x8 block can be further divide into four different sub-partitions, including 8x8,
8x4, 4x8, and 4x4. In general, the large partitions are appropriate for smooth regions;
the smaller partitions have smaller residual, but the number of motion vectors is
increased. With the flexibility of variable block-size motion compensation, the coding

6

efficiency can be increased.

Figure 2-5 Macroblock partitions: 16x16, 16x8, 8x16 and 8x8 [3]

Figure 2-6 Macroblock sub-partitions: 8x8, 8x4, 4x8 and 4x4 [3]

2.3.2. FRACTIONAL PIXEL PRECISION

In order to increase the accuracy of motion compensation, H.264 supports
quarter-pixel resolution for luma components and one-eight-pixel resolution for
chroma components. If the prediction result of sub pixel is better than that of the
integer pixel, the sub pixel will be chosen.

The half-pixel samples are obtained by applying a six tap filter with weights
(1/32, -5/32, 20/32, 20/32, -5/32, 1/32). For example, a half pixel b in Figure 2-7 is
obtained from the six horizontal integer neighbors E, F, G, H, I, and J with the
formulation:

b = round ((E- 5F+20G+20H-5I+J)/32)
Furthermore, the quarter-pixel samples can be calculated after all the half-pixel

macroblock are available. They are produced by linear interpolation between two of
their adjacent samples. As shown in Figure 2-8, value of a can be calculate by:

a = round ((G+b)/2)
In Figure 2-9, the chroma eight-sample component can be acquired by linear

interpolation of the neighbor pixels:
a=round([(8-dx)(8-dy)A+dx(8-dy)B+(8-dx)dyC+dxdyD]/64)

7

Figure 2-7 Interpolation of luma half-pel positions [3]

Figure 2-8 Interpolation of luma quarter-pixel positions [3]

Figure 2-9 Interpolation of chroma samples [3]

8

2.3.3. MOTION VECTOR PREDICTION

As mentioned in 2.3.1, number of motion vectors increases with the using of
variable block partition mechanism. It can cost a significant number of bits to
encoding a motion vector for each partition. Since there are high correlations between
motion vectors of the neighboring partitions, the motion vector can be predicted by
nearby ones. Hence the motion vector prediction (MVp) is generated by the motion
vector of the adjacent partitions. The way of forming the prediction MVp depends on
the motion compensation partition size and on the availability of nearby vectors. MVp
is obtained in a manner of: (see Figure 2-10)

 For 16x8 partitions, the MVp of the upper 16x8 partition is predicted from of B,
and the MVp of the lower one is the motion vector of A.

 For 8x16 partitions, the MVp of the left 8x16 partition is predicted from of A,
and the MVp of the right one is the motion vector of C.

 The MVp of other partitions is the median of the motion vector of A, B, and C.
The motion vector difference (MVD) is then derived calculate the difference

between the MVp and the real motion vector. These MVDs are the final results that
should be further encoded. In general cases, fewer bits are needed for encoding the
MVDs than encoding real motion vectors.

Figure 2-10 Current and neighboring partitions for MVp [3]

2.4. INTRA PREDICTION
The high correlation of neighboring region within a frame implies the high

redundancy in spatial domain. As mentioned in 2.1.1, intra predication is imposed to
eliminate the spatial redundancy. For the luma samples, intra prediction block is
formed for each 4x4 block or 16x16 blocks; for the chroma samples intra prediction
block is formed for each 8x8 blocks. The spatial prediction is calculated from the
edges pixels of neighboring blocks.

9

2.4.1. 4X4 LUMA PREDICTION MODES

When intra mode of 4x4 blocks is applied, nine possible modes cab be chosen.
As shown in Figure 2-11, the samples above and to the left (labeled A–M) have
previously been encoded and reconstructed to form a prediction reference. The
prediction block (the gray part) is calculated based in A-M. The arrows in Figure
2-11indicate the direction of prediction in each mode. In mode 0 and mode 1,
respectively, the samples of A-D and I-L are extrapolated vertically and horizontally.
Mode 2 (DC prediction) is modified depending on the availability of samples A to M.
In the rest modes: Mode 3-8, the predicted samples are calculated by a weighted
average of the reference samples A-M.

Figure 2-11 4 × 4 luma prediction modes [3]

2.4.2. 16X16 LUMA PREDICTION MODES

In addition to those 4x4 luma modes described in the previous section, there are
four modes for 16x16 prediction modes for luma intra prediction. These four luma
16x16 prediction modes are vertical, horizontal, DC, and plane, as shown in Figure
2-12. The requirement of reconstruction of above and left component is similar to the
4x4 luma prediction.

10

Figure 2-12 Intra 16 × 16 prediction modes [3]

2.4.3. 8X8 CHROMA PREDICTION MODES

 Four 8x8 intra prediction modes are provided for the chroma samples. Similar to
the 16x16 luma inter prediction in Figure 2-12, the four modes are DC, horizontal,
vertical and plane.

2.5. IN-LOOP DE-BLOCKING FILTER
One drawbacks of the block base video compression mentioned above is the

visible block boundaries. It is so called blocking effects: the lower bit rate the
compression is, the more obvious the edges are. To eliminate the blocking effect, a
deblocking filter is applied after the inverse transform in both encoder and decoder.
As shown in Figure 2-13, it is applied to vertical or horizontal edges of 4x4 blocks in
a macroblock, in the fallowing order: four vertical boundaries (a, b, c, then d) of luma,
four horizontal boundaries (e, f, g, then h) of lima, and two vertical boundaries (i, j)
horizontal boundaries (k, l).

Figure 2-13 Edge filtering order in a macroblock [3]

The filtering is adaptively applied according to the boundary strength and the
gradient across the boundaries. The boundary strength depends on the compression
mode of a macroblock, the quantization parameter, motion vector, frame or field
coding decision, and pixel values.

With this filter, subjective quality is significant improved as shown in Figure
2-14. This filter also reduces the bits rate with ratio of 5%–10% compared with
non-filtered video with the same objective quality [4].

11

(a) (b)

Figure 2-14 Performance of the deblocking filter for highly compressed pictures

(a) without deblocking filter and (b) with deblocking filter [4]

2.6. TRANSFORM AND QUANTIZATION
H.264/AVC, as prior video standard, utilizes the transform coding on the

prediction residual. The residual generated in intra or inter prediction is processed the
transform for further quantization. One macroblock is divided into 24 4x4 blocks to
do the 4x4 integer transform with the transform matrix:

In addition, for each macroblock a 4x4macroblock, a 4x4 Hadamard transform is
applied to the DC coefficients of the 16 luma blocks, while a 2x2 Hadamard transform
is applied to the DC coefficients of the 4x2 chroma blocks, as shown in Figure 2-15.

Figure 2-15 Scanning order of residual blocks within a macroblock. [3]

12

A quantization parameter is used to determine the quantization step for the
quantization of transform coefficient. A total of 52 values of quantization step size
(Qstep) are supported by this standard, which are indexed by the quantization
parameter (QP). Increasing one in the value of QP means an increase of the
quantization step size by approximately 12%. An increase of step size by 12% also
means a reduction of bit rate by approximately 12% [4].

2.7. ENTROPY CODING
To eliminate the syntax redundancy, the arithmetic coding is applied. The syntax

above the slice layer is encoded as fixed- or variable-length codes (VLCs). At the
slice layer and below, elements are coded using Content Adaptive Variable Length
Coding (CAVLC) or Content Adaptive Binary Arithmetic Coding (CABAC)
according to the entropy encoding mode. Parameters that are required to be encoded
and transmitted include the following (Table 2-2Table 2-1).

Table 2-2 Examples of parameters to be encoded

Parameters Description
Syntax elements above slice layer Headers and parameters
Macroblock type mb type Prediction method for each coded macroblock

Coded block pattern Blocks containing coded coefficients within a macroblock

Reference frame index Identify reference frame(s) for inter prediction

Motion vector Difference (mvd) from predicted motion vector

Residual data Coefficient data for each 4 × 4 or 2 × 2 block

2.8. NAL UNIT
By choosing a suitable transporting protocol to represent of video coded

content, the coded video is organized as a collection of NAL units. Each NALU
is a video picket containing an integer number of bytes. As shown in , the first
byte as a header byte of NALU contain NAL unite type (T), the
nal_reference_idc (R) that indicates the importance of an NALU for the
reconstruction process, and the forbidden_bit (F) which is set to ‘0’ in H.264
encoding.

Figure 2-16 NALU header.

13

2.9. DATA DEPENDENCY OF H.264/AVC
Taking a macroblock as the basic elements In H.264/AVC, the data dependencies

cross the macroblocks are illustrated in Figure 2-17 and Figure 2-18. Intra prediction
needs the above and the left macroblock to be decoded, further for 4x4 luma block
needs the up block, left block, and up right block information. And for deblocking
filtering four tap in the upper macroblock and left to the macroblock are needed.

In Figure 2-18, data within the search range of the reference frame is needed to
do the interprediciotn.

Figure 2-17 Data dependency induced by (Left) intra prediction and (Right)deblocking filter

Figure 2-18 Data dependency induced by inter prediction

14

2.10. COMPLEXITY ANALYSIS OF

H.264/AVC

The H.267/AVC standard only specifies the decoder, and the encoder design

remains open. In this paper, we adopted the official H.264/AVC JM as decoder for
integrity, and adopted the x264 encoder for the faster encoding speed. Thus we
illustrate the complexity of the important functions in Figure 2-19 and Figure 2-20.

Figure 2-19 Distribution of clock cycle of each function of encoder.

Figure 2-20 Distribution of clock cycle of each function decoder.

15

Chapter 3.

DSP IMPLEMENTATION ENVIRONMENT
In this chapter, we will briefly introduce the DSP platform environment and some

optimization methods. We use the DSP module (MEX) made by Vitec Mult-Media.
Four TMS320DM642 DSP chips are housed on this board. Our implementation
system includes software system and some peripherals on the board. Thus for the TI
DSP, the Code Composer Studio (CCS) and some efficient optimization methods will
be introduced. In addition, to facilitate the system and peripherals, Reference
Framework 5(RF5) and Network Developer’s Kit (NDK) will be bring out as well.

3.1. INTRODUCTION OF DSP PLATFORM
The DSP board used in our implementation is the MEX (Multi-Channel Video

Platform) in Figure 3-1, which is a powerful platform for video application. The
architecture of MEX includes four TI DSPs, two FPGA (one as crossbar, the other as
PCI interface), eight video decoders, four audio stereo ADCs, and a 100BaseT
Ethernet controller, as shown in Figure 3-2.

MEX’s key features are listed as below:
 Four TMS320DM642 DSPs run at up to 600MHz (Fixed point).
 Each DSP has a private memory of 32MB, which is SDRAM running at 100

MHz with 64 bits.
 Each DSP has three powerful configurable video ports. By configure the crossbar

(implemented in an FPGA), the video architecture are flexible. With proper
configuration, the video path way can distribute one vide source on four DSP,
four distinct video sources on four DSP, four distinct video sources on one DSP,
or so on.

 DSP-DSP communication or DSP-PCI communication is facilitated by the
"Inter-DSP communication & PCI interface" FPGA. Each DSP has a dedicated
FIFO inside the FPGA which is mapped in its memory. This FIFO can be written
by the DSP and sent to PCI interface and the others DSPs. Those mean PC-DSP
communication and DSP-DSP communication respectively.

16

Figure 3-1 MEX (Multi-Channel Video Platform) [6]

Figure 3-2 Block diagram of the MEX [6]

17

As shown in Figure 3-2, the flexible architecture include some modules of
TMS320DM642 DSP chip: the I2C bus used to configure the Video (7113) /
Audio(CS4221) chips, the Video Port set to configure the video acquisition data path,
and EMIF that define the address of FPGA seen by DSP. Those DSP modules will
further introduced in the following sections.

(a) (b)

Figure 3-3 Block diagram of (a)emulator system and (b)application system

In the developing phase, a JTAG emulator pod called “USB 560BP” is used to
connect the MEX to PC. With the JTAG emulator, the CCS emulation of DSPs on the
board is fully supported. We develop our system and debug in this way. After that, the
emulator can be removed from this system to expose the stand-alone ability of MEX.
The only thing the PC should do is to supply 3V power and load the DSP program to
the board. Figure 3-3 are two different block diagram of the system in emulation
phase and in application phase.

3.2. DSP CHIP
In our system, the TMS320DM642 DSP chip is the most important part of this

system. In this section, we will describe some details of this chip. TMS320DM642,
the high-performance fixed-point DSP, is based on the second generation, high
performance, advanced VelociTI™ very long instruction word (VLIW) architecture
(VelociTI.2™), developed by Texas Instruments (TI). The VelociTI.2 extensions in
the eight functional units include new instructions to accelerate the performance in
key applications and extend the parallelism of the VelociTI architecture. This VLIW
architecture makes the DSP chips an excellent choice for digital media application [8].

The DM642 DSP is a Video/Imaging fixed-point digital signal processor in the

TMS320C64x family. It has eight independent functional units running at 600MHZ

for peak execution of 4800 MIPS. Some key features of DM642 are listed below.

 Eight highly independent functional units - two multipliers to generate 32-bit

result and six arithmetic logic units (ALUs)

 The VelociTI.2™ extensions in the eight functional units include new

instructions to accelerate the performance in video and imaging manipulations

18

and to extend the parallelism of the VelociTI™ architecture.

 Conditional execution reduces cost of branch and increase parallelism.

 Instruction packing reduces code size, program fetches, and power consumption.

 8/16/32/40-bit data support.

 Saturation and normalization provide support for key arithmetic operations.

Figure 3-4 is the functional block and DSP core diagram of TMS320C64x.
In the following sections, three major components of TMS320C64x DSP,

including the central processing unit, memory, and peripherals, will be introduced.

Figure 3-4 Block diagram of the TMSDM642 [9]

19

3.2.1. CENTRAL PROCESSING UNIT (CPU)

The DSP core of C64 series consists of eight independent fictional units, 64
general purpose registers, program fetch unit, instruction dispatch (attached with
advanced instruction packing), instruction decode unit, two data path, test unit,
emulation unit, interrupt logic, and etc. The instruction dispatch and decode units
could decode and arrange the eight instructions to eight functional units respectively.
Thus the program fetch, instruction dispatch, and instruction decode units can deliver
up to eight 32-bit instructions to the functional units during every CPU clock cycle.
The eight functional units in the C64 architecture could be further divided into two
data paths, data path A and data path B as shown in Figure 3-4.

Each data path has 8 functional units for multiplication operations (.M), logical
and, arithmetic operations (.L), branch, bit manipulation, and arithmetic operations
(.S), and loading/storing and arithmetic operations (.D). Table 3-1 shows these
functional units and their operations. Two cross data paths (1x and 2x) allow
functional units from one data path to access a 32-bit operand from the register file
from the opposite side. Most data lines in the CPU support 32-bit operands, while
some support long (40-bit) operands. Each functional unit has its own 32-bit write
port to a general-purpose register file and 32-bit read port for source operands src1
and src2 (refer to Figure 3-5). All function units which ends in 1(for example (.L1))
write to register file A, while those function units which end in 2 (for example (.M2))
write to register file B.

20

Table 3-1 Functional Units and Operations Performed [10]

Functional

Unit

Fixed-Point Operations Floating-Point Operations

.L unit
(.L1, .L2)

32/40-bit arithmetic and compare operations
32-bit logical operations
Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts
Data packing/unpacking
5-bit constant generation
Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations
Dual 16-bit min/max operations
Quad 8-bit min/max operations

Arithmetic operations
DP SP, INT DP, INT SP
conversion operations

.S unit

(.S1, .S2)

32-bit arithmetic operations
32/40-bit shifts and 32-bit bit-field
operations
32-bit logical operations
Branches
Constant generation
Register transfers to/from control register
file (.S2 only)
Byte shifts
Data packing/unpacking
Dual 16-bit compare operations
Quad 8-bit compare operations
Dual 16-bit shift operations
Dual 16-bit saturated arithmetic
operations
Quad 8-bit saturated arithmetic
operations

cal square-root
operations
Absolute value operations
SP DP conversion operations

.M unit
(.M1, .M2)

16 x 16 multiply operations
16 x 32 multiply operations
Quad 8 x 8 multiply operations
Dual 16 x 16 multiply operations
Dual 16 x 16 multiply with
add/subtract operations
Quad 8 x 8 multiply with add operation
Bit expansion
Bit interleaving/de-interleaving
Variable shift operations
Rotation
Galois Field Multiply

32 X 32-bit fixed-point multiply
operations
Floating-point multiply
operations

.D unit
(.D1, .D2)

32-bit add, subtract, linear and circular
address calculation

Loads and stores with 5-bit constant offset
Loads and stores with 15-bit constant offset
(.D2 only)
Load and store double words with 5-bit
constant
Load and store non-aligned words and
double words
5-bit constant generation 32-bit logical
operations

Load doubleword with 5-bit
constant offset

21

Figure 3-5 TMS320C64xTM CPU (DSP Core)Data Paths [9]

3.2.2. MEMORY ARCHITECTURE

The DM642 uses a two-level cache-based architecture and has a powerful set of
peripherals. This memory architecture consists of the following:

 Internal data/program memory
 External memory, with external memory interface (EMIF)
 Enhanced Directed-Memory-Access (EDMA)

Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1
data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2
memory/cache (L2) consists of a 2-Mbit memory space that is shared by both

22

program space and data space. The TMS320DM642 internal program memory can be
mapped into the CPU address space or operated as a program cache. There is a single
port to access internal program memory, with an instruction fetch width of 256 bits.
The internal data memory on C64x devices divides the memory into eight 32-bit wide
banks. These banks are single-ported, allowing only one access per cycle. This is in
contrast to the C621x/C671x devices, which use a single bank of dual-ported memory
rather than multiple banks of single-ported memory. There are more details described
in [11].

3.2.3. PERIPHERALS

The C64x contains some peripherals such as enhanced direct memory access
(EDMA) controller, external memory interface (EMIF), video port peripheral,
inter-integrated circuit (I2C) Bus module,10/100 Mb/s Ethernet MAC (EMAC), and
etc.

3.2.3.1. EXTERNAL MEMORY INTERFACE (EMIF)
EMIF supports a glueless interface to a variety of external device, including:

 Pipelined synchronous-burst SDRAM (SBSRAM)
 Synchronous DRAM (SDRAM)
 Asynchronous device, including SDRAM, ROM, and FIFOs
 An external shared-memory device

On MEX board, EMIF serves as the interface between DSP to two SDRAM,
memories of 1Meg×32bits×4banks (total 32MB), a synchronous FIFO to write/read
data, and various registers via an asynchronous. Thus the external memory map is
listed in Table 3-2.

Table 3-2 Memory map using EMIF of each DSP on MEX

Start
Address

End
Address

Type of memory
interface

Bus
width

0x80000000 0x81FFFFFF SDRAM 64 bits
0x90000000 Synchronous FIFO 16 bits

0xB0000000 0xB000000E Asynchronous interface 16 bits

23

3.2.3.2. THE ENHANCED DIRECT MEMORY ACCESS

(EDMA)
The enhanced direct memory access (EDMA) controller handles all data

transfers between the Level-two (L2) cache/memory controller and the device
peripherals on the C64x DSP. The EDMA controller in the C64x DSP has a different
architecture from the previous DMA controller in the C620x/C670x devices. The
EDMA includes several enhancements to the DMA, such as 64 channels for the C64x
DSP, with programmable priority, and the ability to link and chain data transfers. The
EDMA allows movement of data to/from any addressable memory spaces, including
internal memory, peripherals, and external memory.

3.2.3.3. VIDEO PORT
The DM642 device has three configurable video port peripherals. These video

port peripherals provide an interface to common video decoder and encoder devices.
The DM642 video port peripherals support multiple resolutions and video standards.
These three video port peripherals are configurable and can support video capture
and/or video display modes. As shown in Video Port Block Diagram [12], each video
port consists of two channels - A and B with a 5120-byte capture/display buffer being
splittable between these two channels. The video port peripheral can operate as a
video capture port, a video display port, or a transport stream interface (TSI) capture
port. For the capture mode, the video port may operate as two 8/10 bits channels of
BT.656 or raw video. It may also operate as a single channel of 8/10-bit BT.656,
8/10-bit raw video, 16/20-bit Y/C video, 16/20-bit raw video, or 8-bit TSI. For the
display mode, the video port may operate as a single channel of 8/10-bit BT.656,
8/10-bit raw video, 16/20 bit Y/C video, or 16/20-bit raw video. It may also operate in
a two-channel 8/10-bit raw mode. There are more details described in [12].

24

Figure 3-6 Video Port Block Diagram [12]

3.2.3.4. INTER- INTEGRATED CIRCUIT (I2C)

The inter-integrated circuit (I2C) module provides an ideal interface between
TMS320C6000 DSP and other devices compliant with Philips Semiconductors
Inter-IC bus (I2C bus) specification. On the MEX board the I2C bus connects the
DM642 chip to video (SAA7113) and audio (CS4221) chips, and is used to initial the
video/audio chips and configure the video/audio data pathway with the format shown
below.

Figure 3-7 I2C bus format

3.2.3.5. ETHERNET MAC (EMAC)

The Ethernet media access controller (EMAC) provides an efficient interface
between the DM642 DSP core processor and the network. It supports both 10Base-T
and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or

25

full-duplex. The EMAC controls the flow of packet data from the DSP to the physical
layer device (PHY). The MDIO module controls PHY configuration and status
monitoring. Figure 3-8 Figure 2-1is the EMAC Control Module Block Diagram.

Figure 3-8 EMAC Control Module Block Diagram

3.3. CODING DEVELOPMENT ENVIRONMENT
In this section, we will briefly introduce the coding environment of our project.

The powerful coding environment tool called Code Composer Studio (CCS) will be
described. In CCS, DSP programmers can develop the project, debug the project, and
do some optimization. It’s necessary for a DSP programmer to be familiar with the
coding environment to develop a program efficiently.

3.3.1. CODE COMPOSER STUDIO

Code composer studio (CCS) extends the basic code generation toll with a set of
debugging and real-time analysis capabilities. It speeds and enhances the development
process for programmers who create and test real-time, embedded signal processing
applications. Every phase of development cycle including conceptual design, coding
&building, debugging, and real-time analysis is fully supported. Code Composer
Studio includes the following components, which works together as show in:

 TMS320C6000 code generation tools
 Code Composer Studio Integrated Development Environment (IDE):
 DSP/BIOS plug-ins and API
 RTDX plug-in, host interface, and API

26

Figure 3-9 Code Composer Studio environment [14]

3.3.1.1. CODE GENERATION TOOL AND INTEGRATED

DEVELOPMENT ENVIRONMENT
The foundation for the development environment provided by Code Composer

Studio is consist of some code generation tools, including C compiler, assembler,
assembly optimizer, linker, archives library-build utility, and etc.

 The Code Composer Studio Integrated Development Environment (IDE) is
designed to allow user to edit, build, and debug DSP target programs. In the coding
phase, C source code and the corresponding assembly instructions can be shown and
edit. In building phase, different files including C source files, assembly source files,
object files, libraries, linker command files, and include files can be added to build the
application. In debugging phase, flexibility to setting the breakpoints, accessibility to
memory registers, graphical signal, statistics of execution profiling make it easier to
debug.

27

3.3.1.2. DSP/BIOS PLUG-INS
DSP/BIOS gives DSP chips developers the ability to develop and analyze

embedded real-time software. DSP/BIOS provides a graphical interface for static
system setup, real-time scheduling, real-time analysis (RTA), and real-time data
exchange (RTDX). By using the DSP/BIOS Configuration Tool, we can initialize data
structures and set various parameters of DSP/BIOS objects. The Configuration Tool
provides developers a windows explorer-like interface, as shown in DSP/BIOS
Configuration Tool I, to use DSP/BIOS real-time library, DSP/BIOS API, and also
CSL.

Figure 3-10 DSP/BIOS Configuration Tool Interface

For real-time DSP applications, such as our system, it is possible to perform a

number of seemingly unrelated functions at the same time. Such functions are called
thread. DSP/BIOS enables applications to be structured as a collection of threads,
with each of them carrying out a modularized function. Multi-thread programs run on
a single processor by allowing higher-priority threads to preempt lower-priority
threads, and by allowing various types of interactions among threads, including
blocking, communication, and synchronization [15]. The thread types (from highest to
lowest priority) provided by DSP/BIOS include: hardware interrupts (HWI), software
interrupts (SWI), tasks (TSK), and Background thread (IDL). Programs using

28

multithreads, as opposed to a single centralized polling loop, are easier to design,
implement, and maintain.
 Since the DSP/BIOS object tasks (TSK) is the major component of our
multi-thread system, the way how tasks work is illustrated below. There are 15 level
priorities and four states of execution, including running, ready, blocked, and
terminated of tasks. Tasks are scheduled for execution according to a priority level
assigned to the application. At a time only one task can be running, while other ready
tasks are blocked due to their lower priorities. When a task with higher priority is
ready, the current running task is blocked until higher-priority task is terminated.
As shown in Figure 3-11, TSK preempts the running task in favor of the
higher-priority ready task. During the course of a program, each task’s mode of
execution can change for a number of reasons. The following figure shows how
execution modes change.

Figure 3-11 TSK module execution flow chart

3.3.1.3. HARDWARE EMULATION AND REAL-TIME

DATA EXCHANGE
TI DSPs provide on-chip emulation support that enables Code Composer Studio

to control program execution and monitor real-time program activity. An emulator
interface, like the TI XDS510, provides the host side of the JTAG connection.

In addition, real-time data exchange (RTDX) capability is exposed through host
and DSP APIs, allowing for bi-directional real-time communications between the host
and DSP. It provides real-time, continuous visibility into the way DSP applications
operate in the real world. As shown in real-time data exchange of DSP, the RTDX
between the host and the DSP is achieved via the JTAG emulator.

29

Figure 3-12 real-time data exchange of DSP emulation [14]

3.3.2. DSP PROGRAM DEVELOPMENT FLOW

Tradition development flows in DSP industry have involved validating a C
model for correctness on a host PC or UNIX workstation. Programmer will need to
take a great effort to port process from C code to hand coded DSP assembly langue.
However this is both time consuming and error prone. The recommended code
development flow involves utilizing the C6000 code generation tools to aid in
optimization than force the programmer to code by hand in assembly. These
advantages allow the compiler to do all the exhausting work of instruction
parallelizing, pipelining, and register allocation.

The phases of recommended code development flow are illustrated in Figure
3-13.

Figure 3-13 DSP Program Development Flow

In phase one some compiler level optimization can be adopted without any
knowledge of the C6000. In the second phase, intrinsic and compiler options are used

to improve the code. In the last phase, linear assembly code won’t be written unless the
software pipeline efficiency is hardly achieved or the unbalanced resource allocation
is hardly solved by the compiler.

30

Figure 3-13 DSP Program Development Flow

31

3.4. OPTIMIZATION ON TI DSP PLATFORM
As shown in Figure 3-13, optimization is adopted to increase the execution

performance. In this section some common used optimizations we adopt will be
described.

3.4.1. COMPILER LEVEL OPTIMIZATION

Figure 3-14 Process that translates source program into code [16]

As shown in Figure 2-1, the process that is taken to translate source program into
code. Compiler in this process is able to perform various optimizations. High-level
optimizations are performed in the optimizer and low-level, target specific
optimizations occur in the code generator. The optimizer can reduce code size and
improve executing time by using different compiler options. There are four
optimization levels –o0, –o1, –o2, and –o3 denoting different type and degree of
optimization, naming register level, local level, unction level, file level optimization
respectively.

The –o1, register level optimization performs control-flow-graph simplification,
allocates variables to registers, performs loop rotation, eliminates unused code,
simplifies expressions and statements, expands calls to functions declared inline.
Besides the optimization done in –o0, some more optimization will be done in the
local level optimization (-o1) includes propagation of local copy/constant, unused
assignments removal, and elimination of local common expressions. The function
level (-o2) performs all –o1 optimizations, plus software pipelining, loop
optimizations, global common sub-expressions and global unused assignments

32

elimination, and loop unrolling. Finally, the highest level file level (-o3) perform
all –o2 optimization, and remove never-called functions, simplifies functions with
return values that are never used, in-lines calls to small functions, reorders function
declarations, propagates arguments into function bodies, and Identifies file-level
variable characteristics. In addition to these optimizations, there are some
optimizations that are performed regardless of the optimization level. These
optimizations cannot be turned off.

3.4.2. PROGRAM LEVEL OPTIMIZATION

Expect the compiler optimization taken by configuring the optimization level of
compiler, mentioned in the last section, there are still refinements we can do to speed
up the program. There are several optimization methods for the special architecture of
TI C64x DSP.

First we can allocate the code sections and the code section into memories. In the
two level memory architecture mentioned in 0, there are fast memories with small size
such as SRAM or cache and slow memories with large size such as the external
SDRAM. By using the pragma CODE_SECTION and DATA_SECTION, we can
declare memory sections, and then use the linker commend file to assign these section
to the proper memory level. It’s intuitive to allocate the frequently used code or data
into the fast and higher memory level. The frequency to access the code or the data
should be analyzed for better performance. Although, the L2 cache provide such a
mechanism to access an external memory efficiently, exploiting the SRAM sometimes
reach better performance than using the L2 cache.

Secondly, the software pipeline and loop unrolling done in compiler level
optimization mentioned in the previous section can be more efficient with the loop
information given in the program. For example with the pragma MUST_ITERATE,
the loop iteration information is aid to the compiler in choosing the best software
optimization. The UNROLL pragma specifies to the compiler how many times a loop
should be unrolled. Sometimes it will help the compiler to reduce code size and
sometimes will generate redundant loops. More detailed specification is accessible in
[16]. These two pragma are adopted in our project.

Finally, the C6000 compiler provides intrinsic, which are special functions that
map directly to in-lined C64x instructions, to optimize C/C++ code efficiently. All
these intrinsic functions are optimized codes based on the knowledge and techniques
of DSP architecture. A trick of it is that intrinsic use a single instruction multi data.
For example, if we can place four 8-bit data or two 16-bite data in a 32-bit register, it
can execute one operation instead of four (8-bit) or two (16 bit) operation.

33

3.5. REFERENCE FRAMEWORK LEVEL 5
To realize the multithread system of video streaming, video processing and

transmission the Reference Framework Level 5 (RF5) is used. RF5 that use
DSP/BIOS and the TMS320 DSP Algorithm Standard (also known as XDAIS) is
intended to enable designers to create extensive applications that use numerous
algorithms, multi threads, or multi channels. The four basic elements: tasks, channels,
cell, and XDAIS form the data processing of RF5 as shown in Figure 3-15.

 At the top level is a DSP/BIOS task. A task is a collection of channels, a
channel is a collection of cells, and a cell is a wrapper for an algorithm. The cell
provides a standard interface between the algorithm and the outside world, by
defining only one processing function. While the channels always perform a fixed
operation of executing cells serially. The task is able to execute channels in series, and
able to occasionally send control messages to one another task for thread scheduling
as described in 3.3.1.2.The tasks those run get-data, execute-channels, send-data form
a data processing system.

Figure 3-15 Processing elements in RF5

3.5.1. TASK LEVEL DATA COMMUNICATION

For task-level communication, which uses semaphore-based synchronization, we
have streaming I/O(SIO) and synchronized communication(SCOM) messages.

SIO interfaces with device drivers and tasks. As shown in Figure 3-16
Communication Between a Task , these standard DSP/BIOS objects element facilitate
the typical double buffering. That is to said, each time the task passes empty buffers to
the input device driver and collects buffers full of data from the device.

SCOM message are defined by user, and passed among tasks. Tasks allocate
memory buffers that other task write data to or read data from. Thus they need to
communicate to the other. Each task creates its own receiving SCOM queue (or more
than one if necessary), and puts SCOM messages to other tasks' receiving queues. The
availability of each task and the data pass to the task is verified by checking if there is
any message receiving SCOM queue. Figure 3-18 shows the task communication via

34

SCOM message.

Figure 3-16 Communication Between a Task and a Device Driver via an SIO Object

Figure 3-17 Communication Between Two Tasks via SCOM Messages

3.5.2. CELL LEVEL DATA COMMUNICATION

For cell-level communication, we have inter-cell communication (ICC) objects
and lists of those objects. The purpose of an ICC object is to describe the buffer from
which a cell reads the data, or to which the cell writes the data. For each cell, there are
one input list and one output list of those objects. As shown in Figure 3-18, two cells
in effect communicate by having the same ICC object in their lists: the cell that writes
to a buffer described by an ICC object has the object in its output list, and the cell that

reads the buffer has the object in its input list.

Figure 3-18 Communication between Cells via ICC object

35

3.6. NETWORK DEVELOPER'S KIT
The Network Developer's Kit provided by TI is designed as a platform for

development and demonstration of network enabled application on the DSP. To build
the a full TCP/IP functional environment only small memory footprint of around
200K to 250K of program memory and 95K of data memory are required [17]. That
make NDK a good choice to implement networking transmit system.

The NDK software package is designed to be a transparent add-on to DSP/BIOS
and CCS development tools, as shown in Figure 3-19.

In Figure 3-19, the stack package is organized in terms of function call control
flow, including five main libraries: STACK, NETTOOL, OS, HAL, and NETCTRL
libraries.

Figure 3-19 Stack Control Flow

36

Chapter 4. IMPLEMENTATION AND

SPEED IMPROVEMENT

4.1. ARCHITECTURE OF H.264/AVC VIDEO

COMMUNICATION SYSTEM
In this thesis, the real H.264/AVC based video communication system is

implemented. Unlike the other implementations of H.264/AVC codec that only
contain the encoder and decoder with file I/O, as shown in Figure 4-1, we construct
one more realistic system that describes a real encoding path and decoding path. The
encoding path includes video capturing, H.264/AVC encoding, and network transmit,
while the decoding path includes network receiving, H.264/AVC decoding and video
display on PC, as shown in Figure 4-2.At one end a MEX board is installed on the
computer to get the analog video signal from the video device, then do the
H.264/AVC video compression to the video content, and finally transmit the coded
data to the ethernet. These transmit data was received by another MEX board on
different PC. At this end the coded data will be decode back into the video data, and
then be displayed on the personal computer.

Figure 4-1 Usual implantation of H.264/AVC System

Figure 4-2 H.264 based Visual Communication System

37

The software in a typical embedded microprocessor system, such as the DM642

we used for development, is composed of two general components, the application
software and the system software. In our H.264/AVC based communication system,
the video encoding and decoding algorithm and the ethernet communication are the
application software, while the video capturing and display are system software. In
order to operate correctly in real time, both of application software and the system
software should be scheduled well. To realize the mechanism, we implement the
real-time system by multi-task with multiple threads.
 Refer to the section 3.5, we adopt the RF-5 framework to build our multi thread
and multi task system. The entire system including the encoder end and decoder end is
decomposed into RF-5 objects as shown in Figure 4-3. There are eight major tasks,
three functional tasks including Capture task, Encoding Processing task, Tx
networking task for the encoding process, three functional tasks including Display
task, Encoding Processing Task, Rx networking task for the decoding process, and
one control task for both encoding task and decoding task.

Figure 4-3 System block diagram of Reference Framework level-5

38

 Capture task: After initializing the video chip SAA7113 via I2C module in
DM642.Vido frame with format of 4:2:2, is captured from the video chip.
The EDMA channel synchronized to the video port event (VP0EVTA) is
open to get to video data from video port. The frame data is resampled to
4:0:0 format, for to encode task.

 Display task: In this task, decoded frame with 4:0:0 is resampled to 4:2:2
and sent to the external FIFO which is also accessible to the HOST PC.
Then a Win32 API windows function will receive an interrupt from DPS to
and then display the decode frame.

 Tx/Rx networking task: These two was use the NDK module to utilize to
transmission and reception of coded data. The encoded data, NAL unit of
H.264/AVC is transmitted by the Tx networking task, and are received by
the Rx networking task.

 Encoding Processing task: The H.264/AVC encoder get frame from the
Capture task, and send the encode NAL units to the Tx networking task.

 Decoding Processing task: H.264/AVC decoder get NAL units from the Rx
networking task, and send the decode frame to the Display task.

 Control task: use Mailbox (DSP/BIOS object) to configure the above tasks.
Each task waits until it receives the message from the SCOM queue, and after

execution it yield the execution to other tasks by put the SCOM message to the
message queue.

4.2. SINGLE-DSP PARALLELIZATION
To facilitate application H.264/AVC based communication described above, we

use the multi DSP board, MEX, to implement the system. Firstly the system is carried
out and optimized on single DSP. And then further extension to other DSPs is taking
into consideration. In this section, single DPS optimization and parallelization is
described.

4.2.1. SINGLE-DSP OPTIMIZATION

By adopting the RF-5 framework and doing some modification to the H.264
encoder and decoder source code, the H.264/AVC encoding system and decoding
system are implemented on two MEX boards respectively. Thought the optimization
of encoder and decoder is taken individually, similar optimization rules as mentioned
in section 3.4 are taken to accelerate the encoding and decoding system:

39

 Compiler optimization level:
 The highest compiler optimization level (-o3) is taken. Various loop
optimizations are performed, such as software pipelining, unrolling, and SIMD.
Various file level characteristics are also used to improve performance.

 Software pipeline
Adding the “#pragma MUST_ITERATE” pragma in the front of the loop to

inform the complier to unroll it and prevent to produce redundant loop when
optimizing. However, in a nested loop structure, only the innermost loop will be
unrolled, while the inner loop will be ignored. Manual loop unrolling is done to make
the software pipelining more efficient.

 Allocation of code and data memory sections
There are some frequently accessed data such the entropy coding decoding table,

and some frequently executed functions, such as interpolation for fractional motion
vector. Since the full 256kB L2 cache is not allowed for a NDK application [17]. We
can allocate some memory into the SDRAM such as those frequently used data and
code by using. The “#pragma DATA_SECTION” and “#pragma CODE_SECTION”
are used to allocate the data memory and code memories respectively.

 The table lists intrinsic function we used to replace the original C-operation to
accelerate the execution.

Table 4-1Intrinsic functions we used

C Compiler Intrinsic Assembly
Instruction

Description

int _abs2(int src); ABS2 Calculates the absolute value for each
16-bit value

int _max2 (int src1, int src2);
int _min2(int src1, int src2);
uint _maxu4(uint src1, uint src2);
uint _minu4(uint src1, uint src2);

MAX2
MIN2
MAX4
MINU4

Places the larger/smaller of Cvalue.
Values can be 16-bit signed or 8-bit
unsigned.

_memd8(p)

_memd4(p)

_memd2(p)

Unaligned access of double beginning at
address p
Unaligned access of unsigned int
beginning at address
Unaligned access of unsigned short
beginning at address p

 Moreover, the L2 cache is enable with 0, 32, 64, 128 Kbytes.

40

4.2.2. DOUBLE BUFFERING

The double buffering also known as the ping-pong buffering is a mechanism that
allows the CPU activity to be independent of the EDMA activity. In ping-pong
buffering, there are multiple (usually two) sets of data buffers for the incoming and
outgoing data streams. While the EDMA is transferring data into or out of the ping
buffer, the CPU is manipulating data in the pong buffer. When the CPU and EDMA
complete their activities, they switch the buffers. The EDMA then writes over the old
input data and transfers the new output data. An example of the ping–pong buffering
scheme is shown in Figure 4-4. By using double buffering, the data in ping and pong
buffers are processed by CPU independently.

Figure 4-4 Ping-Pong buffering diagram

4.2.3. SINGLE-DSP PARALLELIZATION

As mentioned in the previous section, with the help of EDMA, CPU can serve
the ping and pong buffer independently. We produce the pseudo threads of the ping
process and pong process respectively. Though the pseudo threads dose not
executed at the same time, we can make increase the efficiency by reducing the
memory access time rather than the execution time. Here, we exploited the MB-level
parallelism in spatial domain. To satisfy the data dependency constraint, describe in
section 2.9. The processing of macroblock are in the order as Figure 4-5 shows. Each
ping-pong pair is executed at the Time N successively. While the macroblock in ping
buffer at Time N-1 is processed, the macroblock in pong buffer is processed right
away at Time N-2. The execution condition at time 3, time 4, and time7 is shown
below. We can notice that macroblock (2,0) and macroblock (0,1) is a ping-pong pair,
so does the macroblock (0,2) and macroblock (4,1). The red pointer indicates the data
dependency situation of each macroblock.

41

Figure 4-5 Single DSP macroblock parallelization

4.3. MULTI-DSP PARALLELIZATION

4.3.1. SYSTEM PROFILE

We make a profiling of the whole system, including Capture TSK, Encode TSK,
Tx TSK, Rx TSK, Decode TSK, and Display TSK. The profiling result is listed in
Table 4-2. For further speed up, we take the other DSP chips on the MEX board into
account. As shown in Table 4-2, the bottleneck of this system is the encoding task. It
will be further parallelized, as illustrated in the next section.

Table 4-2 System profile of the major tasks

Encoding Capture TSK Encode TSK Tx TSK
ms 290250 417623219 120706616
% 0.07 77.54 22.4

Decoding Display TSK Decode TSK Rx TSK
ms 107973264 68904482 1382446
% 60.57 38.67 0.77

42

4.3.2. MULTI-DSP PARALLELIZATION

Figure 4-6 Multi DSP macroblock parallelization

To achieve the parallelization by using multi DSPs, a temporal domain

parallelization is considered. As shown in Figure 4-6, while in spatial domain
parallelization we ease the data dependency induced by intra prediction and
deblocking filtering by processing macroblocks in an order as mentioned in the last
section. Likely we should ease the dependency in a special order as Multi DSP
macroblock parallel shows. In the multi DSP parallelization, frames are distributed
into DSPs. In the section 2.9, that the cross frame dependency is induced by the
motion estimation; only when search window of the reference frame is reconstructed
(either in encoder or decoder), the current macroblock is available to be processed. As
shown in Multi DSP macroblock parallel, at the Time10, four macroblocks are
processed including macroblock (3, 2), macroblock (1, 3) in frame i, macroblock (3,
0), and macroblock(1,1) in frame i+1.

43

4.4. EXPERIMENTS & RESULTS

4.4.1. RESULT OF SINGLE DSP OPTIMIZATION

After adopting the optimization methods we introduced before, we use the
DM642 Device Cycle Accurate Simulator to profile the functions in encoding and
decoding processes. Neither the video input, output task nor the network transmit task
is consider in this comparison, because the optimization won’t help a lot for those I/O
tasks. Though the optimization is done to the project globally, the improvement of
speed of each functions in coding process are not the same; it depends on the structure
of the function. In the following part, we will illustrate some important functions,
compare the execution time of them and calculate the speed up ratio.

As shown in Table 4-3, each function is speeded up by the optimization and
some manual modification. Since the inter prediction intra prediction, and DCT/IDCT
contain many loop structures in the functions, they are well optimized for the software
pipeline e mechanism of the DSP chip. We can notice that most time consuming part
is still the inter predictions. If there is any need to write the assembly code as shown
in Figure 3-13, it might be the proper choice to write it into the assembly code.

Table 4-3 Average execution cycle of a frame of x264 encoder

 Non optimized Optimized
 Cycle count Percentage Cycle count Percentage Ratio
Inter 385955140 66.80 31345836 58.71 12.3
Intra 76744048 13.28 5435452 10.26 14.1
DCT/IDCT 36449650 6.31 2470440 4.66 14.7
Quantization. 27206566 4.71 2718834 5.13 10.0
Deblocking filter 10887230 1.88 2424248 4.58 4.49
Entropy coding 9221182 1.60 2430716 4.59 3.79
Total 577769679 100 52979974 100 10.91

 In Table 4-4, the decoder task is speed up by ratio 5.3. Though the inter
prediction, intra prediction, and DCT function are well optimized by the speeded up
ratio 1x. The performance of the decoder task is contra trained by the deblocking filter.
For the decoder the deblocking filter is the of choice function to written into assembly
for further improvement.

Table 4-4 Average execution cycle of a frame of JM10.3 decoder
 Non optimized Optimized
 Cycle count Percentage Cycle count Percentage Ratio

Inter 55418473.24 26.96 4163457 10.82 13.3
Intra 3740215.647 1.80 244461 0.64 15.3

IDCT 7638903.176 3.72 1135516 2.95 6.7
Quantization 42497.23529 0.02 14976 0.039 2.8

Deblocking filter 115774629 56.32 17790497 46.25 6.5
Entropy coding 22219077.35 10.81 7875195 20.47 2.8

Total 205535479 100 38467286 100 5.3

44

4.4.2. RESULT OF SINGLE DSP PARALLELIZATION

In the single DSP parallelization, we use ping and pong buffer to allocate the
successively executed macroblocks. Most of the program is not changed, but the
macroblock processing order. Thus the improvement is due to the overlap of EDMA
transmit and CPU processing. In the un-parallelized version, the memory data needed
in ping procedure is fetch by CPU before processing; while in parallelized version, the
needed data is fetch by EDMA at the last pong execution. We use emulator to observe
the effect of real SDRAM accession (external memory accession), and how much is
reduced by the proposed method.

Table 4-5 Single DSP parallelization of x264 encoder

 Non- parallelized Parallelized Ratio
ms per frame 76.44 63.73 1.199

Table 4-6 Single DSP parallelization of JM10.3 decoder

 Non- parallelized Parallelized Ratio
ms per frame 491.26 475.53 1.033

The limitation of the speed up of this method is the ratio of EDMA transmit time
and CPU execution time. When the ratio is about 1, or the time EDMA used to
transmit is almost equal to the CPU executing time, the speed up ratio might up to two.
To achieve this goal, further modification optimization to the code should be adopted
to reduce the CPU execution time.

4.4.3. RESULT OF MULTI DSP OPTIMIZATION

In section 4.3.1 and 4.3.2, we proposed a multi DSP parallel mechanism that
only applied to the encoder end for the system. To use other DSPs on the MEX board,
we retain the network transmit task and the video capture task, but parallelize the
encoding task into other DSPs. The parallelization result is shown below.

Table 4-7 Multi DSP parallelization result

 One DSP (original) Two DSP Three DSP Four DSP
ms per frame 475.53 397.55 323.81 290.75
Speed up ratio 1 1.196 1.4685 1.6355

The multi DSP parallelization is restricted to the cross DSP transmit of the MEX

board. For more efficient multi DSP parallelization, we should find some board else
with better cross DSP communication.

45

Chapter 5. CONCLUSION AND FUTURE

WORK
In this thesis, we construct the H.264/AVC video communication system on MEX.

Rather than the disk I/O system, we implement a more realistic system that consists of
not only the H.264/AVC codec but also video capturing, displaying and ethernet
transmission. Then we propose optimization and parallelization method for the multi
DSP board. We conclude our accomplishments as below.

 We implement of real-time H.264 encoder /decoder system.
 We establish a multi thread system.
 We do the optimization of H.264 encoder/decoder for single DSP by using

double buffers.
 We propose a parallelization prototype of H.264 encoder/decoder for multi DSP.

To achieve higher performance, it’s important to find an efficient path for cross
DSP communication. Since the benefit bought out from the macroblock parallelizing
is stock due to the slow cross DSP communication.

46

REFERENCES
[1] JVT “Draft ITU-T recommendation and final draft international standard of joint

video specification (ITU-T rec. H.264– ISO/IEC 14496-10 AVC),” March 2003,
JVTG050 available on http://ip.hhi.de/imagecom_G1/assets/pdfs/JVT-G050.pdf .

[2] R. Schäfer, T. Wiegand and H. Schwarz, “The Emerging H.264/AVC Standard”,
EBU Technical Review, Jan. 2003.

[3] I.E.G. Richardson, H.264 and MPEG-4 Video Compression, John Wiley & Sons,
2003.

[4] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, and Ajay Luthra,
“Overview of the H.264/AVC Video Coding Standard,” IEEE Trans. on Circuits
Syst. Video Technol., Vol. 13, No. 7, pp.560 – 576, July 2003.

[5] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T.
Stockammer and T. Wedi, “Video Coding with H.264/AVC: Tools, Performance,
and Complexity”, IEEE Circuits and Systems, Vol. 4, No. 1, 2004.

[6] www.vitecmm.com, Preliminary of MEX
[7] www.blackhawk-dsp.com/Usb560bp.aspx, Preliminary of USB 560BP
[8] Texas Instruments, “TMS320C6414T, TMS320C6414T, TMS320C6416T fixed

point Digital Signal Processor”, Literature Number SPRR226, November 2003.
[9] Texas Instruments, “TMS320DM642 Video/Imaging Fixed-Point Digital Signal

Processor: Data manual”, Literature Number SPRS200G, July 2002 – Revised
August 2004.

[10] Texas Instruments, “TMS320C6000 CPU and Instruction Set Reference Guide”,
Literature Number SPRU189F, January 2000.

[11] Texas Instruments, “TMS320C64x DSP Two-Level Internal Memory Reference
Guide”, Literature Number SPRU610C, August 2004.

[12] Texas Instruments, “Video port/VCXO Interpolated Control (VIC) Reference
Guide”, Literature Number SPRU629F, January 2007.

[13] Texas Instruments, “TMS320C6000 DSP Ethernet Media Access Controller
(EMAC)/Management Data Input/ Output (MDIO) Module Reference Guide”,
Literature Number SPRU628A, March 2004.

[14] Texas Instruments, “TMS320C6000 Code Composer Studio Tutorial” Literature
Number SPRU301C, February 2000

[15] Texas Instruments, “TMS320C6000 DSP/BIOS User's Guide”, Literature

47

Number SPRU303B, March 2000
[16] Texas Instruments, “TMS320C6000 Optimizing Compiler User’s Guide”

Literature Number SPRU187G, March 2000
[17] Texas Instruments, “TMS320C6000 TCP/IP Network Developer’s Kit (NDK)

Technical Data Quick Reference GuideTMS320C6000 TCP/IP Network
Developer’s Kit (NDK) Technical Data Quick Reference Guide”, Literature
Number SPRU568, October 2001

