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H.264/AVC 影像編碼系統在 TI DSP 系統平台上

之實現與加速 

 
 

       研究生：陳奕安      指導教授：王聖智 博士 

 

國立交通大學 

電子工程學系  電子研究所碩士班 

 

摘要 

 

在本論文中，我們針對了 H264/AVC 的影像壓縮規格，實現了一

個即時影像傳輸系統。包含影像接收-壓縮-網路傳送端，以及網路接

收-解壓縮-播放端，在一端送出經過 H.264/AVC 編碼技術壓縮過的資

料，經過網際網路傳輸後可以被另一端收到並進行解碼。我們使用了

多線程緒的執行方式，來達成此即時系統。針對 DM642 數位處理晶

片，我們提出平行化的方法，並且也對具有多顆數位訊號處理晶片的

MEX 系統做平行化的處理。 
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Abstract 

 

In this thesis, we implement an H.264/AVC based real-time video 

communication system. The two ends of this system include video 

capturing/encoding/network-transmission and network-reception/ 

decoding/video-display. The H.264/AVC encoded data are transmitted 

from one end to the other end. The whole procedure is implemented in 

multiple threads. To speed up the coding process, both optimization and 

parallelization of the DSP codes are performed with respect to the 

DM642 DSP chip and the multi-DSP board, MEX. 
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Chapter 1.  

INTRODUCTION 

1.1. INTRODUCTION 
With its higher compression efficiency than all prior video coding standards, the 

latest video compression standard H.264, which is also known as MPEG-4 part 10 or 
MPEG-4 AVC, is expected to become the major video standard in the coming years. 
H.264/AVC provides high coding efficiency through the addition of new features and 
functionalities. With the H.264/AVC standard, the size of a digital video can be 
reduced up to 80% than the Motion JPEG format and up to 50% than the MPEG-4 
Part-2 standard.  

On the other hand, the demand for multimedia services over internet is steadily 
increasing. With its high coding efficiency, H.264/AVC has become one of the most 
favorite video compression standards to transmit videos over the internet. However, 
the high complexity of the H.264/AVC coding process has made the implementation 
of the H.264/AVC standard very difficult.  

The general-purpose Digital Signal Processor (DSP) has been widely used in the 
implementation of various algorithms. The C64x DSP family, developed and provided 
by the Texas Instruments (TI), is a popular choice for digital media applications. In 
this thesis, we implement an H.264/AVC based video communication system based 
on the multi-DSP board MEX (Multi-Channel Video Platform), which possesses four 
TMS320DM642 DSP chips. The H.264 based video transmission is implemented in 
terms of multiple threads. Moreover, to speed up the encoding/decoding process, the 
optimization and parallelization of the DSP codes are investigated in this thesis. 

1.2. OVERVIEW OF THE THESIS 
The rest of the thesis is organized as follows. Chapter 2 contains the brief 

introduction to the H.264/AVC coding standard. In Chapter 3, a brief overview of the 
DSP platform and the development environment is represented. In Chapter 4, a 
multi-task multi-thread implementation of the H.264 based video communication 
system is discussed. Finally, conclusions are given in Chapter 5. 
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Chapter 2.  

CONSPECTUS OF H.264 STANDARD 
H.264, also known as MPEG-4 Part 10 or MPEG-4 AVC, is the state-of-the-art 

video coding standard. It is proposed by the Joint Video Team of both the ITU-T 
Video Coding Experts Group (VCEG) and the ISO/IEC Moving Pictures Experts 
Group (MPEG). The final drafting work on the first version had been completed in 
May 2003 [1]. 

The primary goal of H.264/AVC is to develop a video coding standard with high 
coding efficiency and network-friendly video representation. As shown in Figure 2-1, 
the H.264 covers a Video Coding Layer (VCL), which efficiently represents the video 
content, and a Network Abstraction Layer (NAL), whose formats are appropriate for 
conveyance over particular transport layers or storage media. With the state-of-the-art 
coding tools, it can achieve lower bit rates than all prior standards, like MPEG-2, 
H.263, and MEPG-4 Part-2 [2]. Moreover, its packed-based video representation 
addresses both conversational and non-conversational applications. Outperforming 
earlier standards, H.264/AVC is becoming the worldwide digital video standard for 
consumer electronics and video broadcasting. In this chapter, the H.264/AVC standard 
is briefly introduced. More details about H.264/AVC can be accessed in [3].  

 
Figure 2-1 Structure of an H.264/AVC video encoder [4] 
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2.1. OVERVIEW OF H.264/AVC  
As shown in Figure 2-2, the scope of H.264/AVC standard includes only the 

decoder of the typical video coding /decoding chain. The decoder is standardized by 
prescribing the Bitstream syntax and defining the decoding process. This limitation of 
the scope of the standard allows the maximal freedom to the encoder for different 
applications.  

Although the encoder /decoder pair is not explicitly defined, encoder and 
decoder are likely to include the functional elements shown in Figure 2-3 and Figure 
2-4 to be complaint to the standard. 

2.1.1. THE H.264/AVC ENCODER 

A block diagram of a typical H.264/AVC encoder is shown in Figure 2-3. The 
encoding process is divided into several functionality block diagrams. Except the 
deblocking filter, most of these functional components (intra/inter prediction, 
transformation, quantization, entropy encoding) had been presented in these previous 
standards. However, some important changes in the details of each functional block 
occur in H.264. 

Figure 2-3 H.264/AVC Encoder[5] 

 

Figure 2-2 Scope of H.264/AVC [4] 
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The intra prediction and motion estimation/compensation removes spatial 
redundancy and temporal redundancy respectively. After that, the prediction mode and 
the residual data are recorded. Then the transformation and quantization are adopted 
to transform residual data into more suitable data space to drop some details those are 
less perceptible to human vision. The entropy coding removes the syntax redundancy. 
In addition, the deblocking is performed to reduce the blocking effect in 
reconstruction path. 

2.1.2. THE H.264/AVC DECODER 

Figure 2-3 shows the block diagram of the H.264/AVC decoder. The entropy 
decoder decodes the quantized coefficients and the motion data, which is used for the 
motion compensated prediction. As in the encoder, prediction data are obtained by 
intra or motion estimation, which is added to the inverse transformed coefficients. 
After deblocking filtering, the macroblock is completely decoded. 

 

Figure 2-4 H.264/AVC Decoder[5] 

2.2. PROFILE AND LEVELS 
There are three profiles defined in H.264/AVC standard, these profiles are 

baseline profile, main profile, and extended profile. The profile is adopted flexibly for 
different application. The baseline profile, supporting intra coding and inter coding, 
together with entropy coding with CAVLC is primary for lower-cost application. 
Designed as the mainstream consumer profile, the main profile supports interlaced 
video, B-picture, inter coding using weighted prediction and entropy coding using 
CABAC. With robustness to data losses, the extended profile does not support 
interlaced video and CABAC, but adds modes to enable switching between Bitstream 
and to improve error resilience. Table 2-1 lists the coding tools and features of these 
three profiles. 
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Table 2-1 Coding tools and features of different profiles [3] 

    
 Baseline Extended Main  

I and P Slices  Yes Yes Yes  
B Slices  No Yes Yes  

SI and SP Slices No Yes No  

Multiple Reference Frames Yes Yes Yes  
In-Loop Deblocking Filter Yes Yes Yes  
CAVLC Entropy Coding Yes Yes Yes  
CABAC Entropy Coding No  No  Yes  

Flexible Macroblock Ordering (FMO) Yes Yes No  

Arbitrary Slice Ordering (ASO) Yes Yes No  

Redundant Slices (RS) Yes Yes No  

2.3. INTER PREDICTION 
By using the previous encoded video frames or fields, inter prediction can be 

established from motion estimation and motion compensation. Similar to the prior 
coding standard, the block-based motion compensation is used. However, variable 
block size is different from the earlier standards and makes it more efficiency than 
earlier standards. 

In prediction procedure, a predicted block P is searched from the reference 
picture Fn-1 by motion estimation. Motion Vector (MV) is the displacement from the 
current block to the predicted block P. With the encoded information of MVs and 
residual, motion compensation can reconstruct the current picture from the reference 
picture Fn-1. In this standard, MVs have accuracy of quarter-sample resolution to 
achieve higher coding efficiency. Next, we will describe these features of H.264 inter 
prediction 

2.3.1. TREE-STRUCTURE MOTION COMPENSATION 

In H.264/AVC standard, the luma component of each macroblock can be 
segmented into one 16x16 partition, two 8x16 partitions, two 16x8 partitions, or four 
8x8 partitions, as shown in Figure 2-1. In Figure 2-6, if the 8x8 partitions is chosen, 
each 8x8 block can be further divide into four different sub-partitions, including 8x8, 
8x4, 4x8, and 4x4. In general, the large partitions are appropriate for smooth regions; 
the smaller partitions have smaller residual, but the number of motion vectors is 
increased. With the flexibility of variable block-size motion compensation, the coding 
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efficiency can be increased. 

 
Figure 2-5 Macroblock partitions: 16x16, 16x8, 8x16 and 8x8 [3] 

 

 
Figure 2-6 Macroblock sub-partitions: 8x8, 8x4, 4x8 and 4x4 [3] 

2.3.2. FRACTIONAL PIXEL PRECISION  

In order to increase the accuracy of motion compensation, H.264 supports 
quarter-pixel resolution for luma components and one-eight-pixel resolution for 
chroma components. If the prediction result of sub pixel is better than that of the 
integer pixel, the sub pixel will be chosen.  

The half-pixel samples are obtained by applying a six tap filter with weights 
(1/32, -5/32, 20/32, 20/32, -5/32, 1/32). For example, a half pixel b in Figure 2-7 is 
obtained from the six horizontal integer neighbors E, F, G, H, I, and J with the 
formulation: 

b = round ((E- 5F+20G+20H-5I+J )/32) 
Furthermore, the quarter-pixel samples can be calculated after all the half-pixel 

macroblock are available. They are produced by linear interpolation between two of 
their adjacent samples. As shown in Figure 2-8, value of a can be calculate by: 

a = round ( (G+b)/2) 
In Figure 2-9, the chroma eight-sample component can be acquired by linear 

interpolation of the neighbor pixels: 
a=round([(8-dx)(8-dy)A+dx(8-dy)B+(8-dx)dyC+dxdyD]/64) 
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Figure 2-7 Interpolation of luma half-pel positions [3] 

 

 
Figure 2-8 Interpolation of luma quarter-pixel positions [3] 

 

Figure 2-9 Interpolation of chroma samples [3] 

 
 



 

8 
 

2.3.3. MOTION VECTOR PREDICTION   

As mentioned in 2.3.1, number of motion vectors increases with the using of 
variable block partition mechanism. It can cost a significant number of bits to 
encoding a motion vector for each partition. Since there are high correlations between 
motion vectors of the neighboring partitions, the motion vector can be predicted by 
nearby ones. Hence the motion vector prediction (MVp) is generated by the motion 
vector of the adjacent partitions. The way of forming the prediction MVp depends on 
the motion compensation partition size and on the availability of nearby vectors. MVp 
is obtained in a manner of: (see Figure 2-10 ) 

 For 16x8 partitions, the MVp of the upper 16x8 partition is predicted from of B, 
and the MVp of the lower one is the motion vector of A. 

 For 8x16 partitions, the MVp of the left 8x16 partition is predicted from of A, 
and the MVp of the right one is the motion vector of C. 

 The MVp of other partitions is the median of the motion vector of A, B, and C. 
The motion vector difference (MVD) is then derived calculate the difference 

between the MVp and the real motion vector. These MVDs are the final results that 
should be further encoded. In general cases, fewer bits are needed for encoding the 
MVDs than encoding real motion vectors.  

 
Figure 2-10 Current and neighboring partitions for MVp [3] 

2.4. INTRA PREDICTION 
The high correlation of neighboring region within a frame implies the high 

redundancy in spatial domain. As mentioned in 2.1.1, intra predication is imposed to 
eliminate the spatial redundancy. For the luma samples, intra prediction block is 
formed for each 4x4 block or 16x16 blocks; for the chroma samples intra prediction 
block is formed for each 8x8 blocks. The spatial prediction is calculated from the 
edges pixels of neighboring blocks. 
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2.4.1. 4X4 LUMA PREDICTION MODES 

When intra mode of 4x4 blocks is applied, nine possible modes cab be chosen. 
As shown in Figure 2-11, the samples above and to the left (labeled A–M) have 
previously been encoded and reconstructed to form a prediction reference. The 
prediction block (the gray part) is calculated based in A-M. The arrows in Figure 
2-11indicate the direction of prediction in each mode. In mode 0 and mode 1, 
respectively, the samples of A-D and I-L are extrapolated vertically and horizontally. 
Mode 2 (DC prediction) is modified depending on the availability of samples A to M. 
In the rest modes: Mode 3-8, the predicted samples are calculated by a weighted 
average of the reference samples A-M. 

 

 

Figure 2-11 4 × 4 luma prediction modes [3] 

2.4.2. 16X16 LUMA PREDICTION MODES 

In addition to those 4x4 luma modes described in the previous section, there are 
four modes for 16x16 prediction modes for luma intra prediction. These four luma 
16x16 prediction modes are vertical, horizontal, DC, and plane, as shown in Figure 
2-12. The requirement of reconstruction of above and left component is similar to the 
4x4 luma prediction. 
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Figure 2-12 Intra 16 × 16 prediction modes [3] 

2.4.3. 8X8 CHROMA PREDICTION MODES  

 Four 8x8 intra prediction modes are provided for the chroma samples. Similar to 
the 16x16 luma inter prediction in Figure 2-12, the four modes are DC, horizontal, 
vertical and plane.  

2.5. IN-LOOP DE-BLOCKING FILTER 
One drawbacks of the block base video compression mentioned above is the 

visible block boundaries. It is so called blocking effects: the lower bit rate the 
compression is, the more obvious the edges are. To eliminate the blocking effect, a 
deblocking filter is applied after the inverse transform in both encoder and decoder. 
As shown in Figure 2-13, it is applied to vertical or horizontal edges of 4x4 blocks in 
a macroblock, in the fallowing order: four vertical boundaries (a, b, c, then d) of luma, 
four horizontal boundaries (e, f, g, then h) of lima, and two vertical boundaries (i, j) 
horizontal boundaries (k, l).  

 

Figure 2-13 Edge filtering order in a macroblock [3] 

The filtering is adaptively applied according to the boundary strength and the 
gradient across the boundaries. The boundary strength depends on the compression 
mode of a macroblock, the quantization parameter, motion vector, frame or field 
coding decision, and pixel values. 

With this filter, subjective quality is significant improved as shown in Figure 
2-14. This filter also reduces the bits rate with ratio of 5%–10% compared with 
non-filtered video with the same objective quality [4].   
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(a) (b) 

Figure 2-14 Performance of the deblocking filter for highly compressed pictures 

(a) without deblocking filter and (b) with deblocking filter [4] 

 

2.6. TRANSFORM AND QUANTIZATION 
H.264/AVC, as prior video standard, utilizes the transform coding on the 

prediction residual. The residual generated in intra or inter prediction is processed the 
transform for further quantization. One macroblock is divided into 24 4x4 blocks to 
do the 4x4 integer transform with the transform matrix: 

In addition, for each macroblock a 4x4macroblock, a 4x4 Hadamard transform is 
applied to the DC coefficients of the 16 luma blocks, while a 2x2 Hadamard transform 
is applied to the DC coefficients of the 4x2 chroma blocks, as shown in Figure 2-15. 

 

Figure 2-15 Scanning order of residual blocks within a macroblock. [3] 
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A quantization parameter is used to determine the quantization step for the 
quantization of transform coefficient. A total of 52 values of quantization step size 
(Qstep) are supported by this standard, which are indexed by the quantization 
parameter (QP). Increasing one in the value of QP means an increase of the 
quantization step size by approximately 12%. An increase of step size by 12% also 
means a reduction of bit rate by approximately 12% [4].  

2.7. ENTROPY CODING 
To eliminate the syntax redundancy, the arithmetic coding is applied. The syntax 

above the slice layer is encoded as fixed- or variable-length codes (VLCs). At the 
slice layer and below, elements are coded using Content Adaptive Variable Length 
Coding (CAVLC) or Content Adaptive Binary Arithmetic Coding (CABAC) 
according to the entropy encoding mode. Parameters that are required to be encoded 
and transmitted include the following (Table 2-2Table 2-1). 

 
Table 2-2 Examples of parameters to be encoded 

Parameters Description 
Syntax elements above slice layer Headers and parameters 
Macroblock type mb type Prediction method for each coded macroblock 

Coded block pattern Blocks containing coded coefficients within a macroblock  

Reference frame index Identify reference frame(s) for inter prediction 

Motion vector Difference (mvd) from predicted motion vector 

Residual data Coefficient data for each 4 × 4 or 2 × 2 block 

2.8. NAL UNIT 
By choosing a suitable transporting protocol to represent of video coded 

content, the coded video is organized as a collection of NAL units. Each NALU 
is a video picket containing an integer number of bytes. As shown in , the first 
byte as a header byte of NALU contain NAL unite type (T), the 
nal_reference_idc (R) that indicates the importance of an NALU for the 
reconstruction process, and the forbidden_bit (F) which is set to ‘0’ in H.264 
encoding. 

 
Figure 2-16 NALU header. 
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2.9. DATA DEPENDENCY OF H.264/AVC 
Taking a macroblock as the basic elements In H.264/AVC, the data dependencies 

cross the macroblocks are illustrated in Figure 2-17 and Figure 2-18. Intra prediction 
needs the above and the left macroblock to be decoded, further for 4x4 luma block 
needs the up block, left block, and up right block information. And for deblocking 
filtering four tap in the upper macroblock and left to the macroblock are needed. 

In Figure 2-18, data within the search range of the reference frame is needed to 
do the interprediciotn. 

 
Figure 2-17 Data dependency induced by (Left) intra prediction and (Right)deblocking filter 

 

 
Figure 2-18 Data dependency induced by inter prediction 
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2.10. COMPLEXITY ANALYSIS OF 

H.264/AVC 
 
The H.267/AVC standard only specifies the decoder, and the encoder design 

remains open. In this paper, we adopted the official H.264/AVC JM as decoder for 
integrity, and adopted the x264 encoder for the faster encoding speed. Thus we 
illustrate the complexity of the important functions in Figure 2-19 and Figure 2-20. 

 
Figure 2-19 Distribution of clock cycle of each function of encoder. 

 

 

Figure 2-20 Distribution of clock cycle of each function decoder. 
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Chapter 3.  

DSP IMPLEMENTATION ENVIRONMENT 
In this chapter, we will briefly introduce the DSP platform environment and some 

optimization methods. We use the DSP module (MEX) made by Vitec Mult-Media. 
Four TMS320DM642 DSP chips are housed on this board. Our implementation 
system includes software system and some peripherals on the board. Thus for the TI 
DSP, the Code Composer Studio (CCS) and some efficient optimization methods will 
be introduced. In addition, to facilitate the system and peripherals, Reference 
Framework 5(RF5) and Network Developer’s Kit (NDK) will be bring out as well. 

3.1. INTRODUCTION OF DSP PLATFORM  
The DSP board used in our implementation is the MEX (Multi-Channel Video 

Platform) in Figure 3-1, which is a powerful platform for video application. The 
architecture of MEX includes four TI DSPs, two FPGA (one as crossbar, the other as 
PCI interface), eight video decoders, four audio stereo ADCs, and a 100BaseT 
Ethernet controller, as shown in Figure 3-2.  

MEX’s key features are listed as below: 
 Four TMS320DM642 DSPs run at up to 600MHz (Fixed point). 
 Each DSP has a private memory of 32MB, which is SDRAM running at 100 

MHz with 64 bits.  
 Each DSP has three powerful configurable video ports. By configure the crossbar 

(implemented in an FPGA), the video architecture are flexible. With proper 
configuration, the video path way can distribute one vide source on four DSP, 
four distinct video sources on four DSP, four distinct video sources on one DSP, 
or so on. 

 DSP-DSP communication or DSP-PCI communication is facilitated by the 
"Inter-DSP communication & PCI interface" FPGA. Each DSP has a dedicated 
FIFO inside the FPGA which is mapped in its memory. This FIFO can be written 
by the DSP and sent to PCI interface and the others DSPs. Those mean PC-DSP 
communication and DSP-DSP communication respectively. 
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Figure 3-1 MEX (Multi-Channel Video Platform) [6] 

 

Figure 3-2 Block diagram of the MEX [6] 
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As shown in Figure 3-2, the flexible architecture include some modules of 
TMS320DM642 DSP chip: the I2C bus used to configure the Video (7113) / 
Audio(CS4221) chips, the Video Port set to configure the video acquisition data path, 
and EMIF that define the address of FPGA seen by DSP. Those DSP modules will 
further introduced in the following sections. 

 

(a) (b) 

Figure 3-3 Block diagram of (a)emulator system and (b)application system 

In the developing phase, a JTAG emulator pod called “USB 560BP” is used to 
connect the MEX to PC. With the JTAG emulator, the CCS emulation of DSPs on the 
board is fully supported. We develop our system and debug in this way. After that, the 
emulator can be removed from this system to expose the stand-alone ability of MEX. 
The only thing the PC should do is to supply 3V power and load the DSP program to 
the board. Figure 3-3 are two different block diagram of the system in emulation 
phase and in application phase. 

3.2. DSP CHIP 
In our system, the TMS320DM642 DSP chip is the most important part of this 

system. In this section, we will describe some details of this chip. TMS320DM642, 
the high-performance fixed-point DSP, is based on the second generation, high 
performance, advanced VelociTI™ very long instruction word (VLIW) architecture 
(VelociTI.2™), developed by Texas Instruments (TI). The VelociTI.2 extensions in 
the eight functional units include new instructions to accelerate the performance in 
key applications and extend the parallelism of the VelociTI architecture. This VLIW 
architecture makes the DSP chips an excellent choice for digital media application [8]. 

The DM642 DSP is a Video/Imaging fixed-point digital signal processor in the 

TMS320C64x family. It has eight independent functional units running at 600MHZ 

for peak execution of 4800 MIPS. Some key features of DM642 are listed below. 

 Eight highly independent functional units - two multipliers to generate 32-bit 

result and six arithmetic logic units (ALUs) 

 The VelociTI.2™ extensions in the eight functional units include new 

instructions to accelerate the performance in video and imaging manipulations 



 

18 
 

and to extend the parallelism of the VelociTI™ architecture. 

 Conditional execution reduces cost of branch and increase parallelism. 

 Instruction packing reduces code size, program fetches, and power consumption. 

 8/16/32/40-bit data support.  

 Saturation and normalization provide support for key arithmetic operations. 

Figure 3-4 is the functional block and DSP core diagram of TMS320C64x. 
In the following sections, three major components of TMS320C64x DSP, 

including the central processing unit, memory, and peripherals, will be introduced.  

 
Figure 3-4 Block diagram of the TMSDM642 [9] 
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3.2.1. CENTRAL PROCESSING UNIT (CPU) 

The DSP core of C64 series consists of eight independent fictional units, 64 
general purpose registers, program fetch unit, instruction dispatch (attached with 
advanced instruction packing), instruction decode unit, two data path, test unit, 
emulation unit, interrupt logic, and etc. The instruction dispatch and decode units 
could decode and arrange the eight instructions to eight functional units respectively. 
Thus the program fetch, instruction dispatch, and instruction decode units can deliver 
up to eight 32-bit instructions to the functional units during every CPU clock cycle. 
The eight functional units in the C64 architecture could be further divided into two 
data paths, data path A and data path B as shown in Figure 3-4. 

Each data path has 8 functional units for multiplication operations (.M), logical 
and, arithmetic operations (.L), branch, bit manipulation, and arithmetic operations 
(.S), and loading/storing and arithmetic operations (.D). Table 3-1 shows these 
functional units and their operations. Two cross data paths (1x and 2x) allow 
functional units from one data path to access a 32-bit operand from the register file 
from the opposite side. Most data lines in the CPU support 32-bit operands, while 
some support long (40-bit) operands. Each functional unit has its own 32-bit write 
port to a general-purpose register file and 32-bit read port for source operands src1 
and src2 (refer to Figure 3-5). All function units which ends in 1(for example (.L1)) 
write to register file A, while those function units which end in 2 (for example (.M2)) 
write to register file B. 
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Table 3-1 Functional Units and Operations Performed [10] 
 

Functional 

Unit  

Fixed-Point Operations Floating-Point Operations 

.L unit 
(.L1, .L2) 

32/40-bit arithmetic and compare operations
32-bit logical operations 
Leftmost 1 or 0 counting for 32 bits 
Normalization count for 32 and 40 bits 
Byte shifts 
Data packing/unpacking 
5-bit constant generation 
Dual 16-bit arithmetic operations 
Quad 8-bit arithmetic operations 
Dual 16-bit min/max operations 
Quad 8-bit min/max operations

Arithmetic operations 
DP SP, INT DP, INT SP
conversion operations 

 

.S unit 

(.S1, .S2) 

 

32-bit arithmetic operations
32/40-bit shifts and 32-bit bit-field 
operations 
32-bit logical operations 
Branches 
Constant generation 
Register transfers to/from control register 
file (.S2 only) 
Byte shifts 
Data packing/unpacking 
Dual 16-bit compare operations 
Quad 8-bit compare operations 
Dual 16-bit shift operations 
Dual 16-bit saturated arithmetic 
operations 
Quad 8-bit saturated arithmetic 
operations 

cal square-root 
operations 
Absolute value operations 
SP  DP conversion operations

 

.M unit 
(.M1, .M2) 

16 x 16 multiply operations
16 x 32 multiply operations 
Quad 8 x 8 multiply operations 
Dual 16 x 16 multiply operations 
Dual 16 x 16 multiply with 
add/subtract operations 
Quad 8 x 8 multiply with add operation 
Bit expansion 
Bit interleaving/de-interleaving 
Variable shift operations 
Rotation 
Galois Field Multiply

32 X 32-bit fixed-point multiply 
operations 
Floating-point multiply 
operations 

 

.D unit 
(.D1, .D2) 

32-bit add, subtract, linear and circular 
address calculation 

Loads and stores with 5-bit constant offset 
Loads and stores with 15-bit constant offset 
(.D2 only) 
Load and store double words with 5-bit 
constant 
Load and store non-aligned words and 
double words 
5-bit constant generation 32-bit logical 
operations 

Load doubleword with 5-bit 
constant offset 
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Figure 3-5 TMS320C64xTM CPU (DSP Core)Data Paths [9] 

3.2.2. MEMORY ARCHITECTURE 

The DM642 uses a two-level cache-based architecture and has a powerful set of 
peripherals. This memory architecture consists of the following: 

 Internal data/program memory 
 External memory, with external memory interface (EMIF) 
 Enhanced Directed-Memory-Access (EDMA) 

Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 
data cache (L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 
memory/cache (L2) consists of a 2-Mbit memory space that is shared by both 
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program space and data space. The TMS320DM642 internal program memory can be 
mapped into the CPU address space or operated as a program cache. There is a single 
port to access internal program memory, with an instruction fetch width of 256 bits. 
The internal data memory on C64x devices divides the memory into eight 32-bit wide 
banks. These banks are single-ported, allowing only one access per cycle. This is in 
contrast to the C621x/C671x devices, which use a single bank of dual-ported memory 
rather than multiple banks of single-ported memory. There are more details described 
in [11]. 

3.2.3. PERIPHERALS 

The C64x contains some peripherals such as enhanced direct memory access 
(EDMA) controller, external memory interface (EMIF), video port peripheral,  
inter-integrated circuit (I2C) Bus module,10/100 Mb/s Ethernet MAC (EMAC), and 
etc. 

3.2.3.1. EXTERNAL MEMORY INTERFACE (EMIF) 
EMIF supports a glueless interface to a variety of external device, including: 

 Pipelined synchronous-burst SDRAM (SBSRAM) 
 Synchronous DRAM (SDRAM) 
 Asynchronous device, including SDRAM, ROM, and FIFOs 
 An external shared-memory device 

On MEX board, EMIF serves as the interface between DSP to two SDRAM, 
memories of 1Meg×32bits×4banks (total 32MB), a synchronous FIFO to write/read 
data, and various registers via an asynchronous. Thus the external memory map is 
listed in Table 3-2. 

 
Table 3-2 Memory map using EMIF of each DSP on MEX 

Start 
Address 

End 
Address

Type of memory 
interface

Bus 
width 

0x80000000 0x81FFFFFF SDRAM 64 bits 
0x90000000 Synchronous FIFO 16 bits 

0xB0000000 0xB000000E Asynchronous interface 16 bits 
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3.2.3.2. THE ENHANCED DIRECT MEMORY ACCESS 

(EDMA) 
The enhanced direct memory access (EDMA) controller handles all data 

transfers between the Level-two (L2) cache/memory controller and the device 
peripherals on the C64x DSP. The EDMA controller in the C64x DSP has a different 
architecture from the previous DMA controller in the C620x/C670x devices. The 
EDMA includes several enhancements to the DMA, such as 64 channels for the C64x 
DSP, with programmable priority, and the ability to link and chain data transfers. The 
EDMA allows movement of data to/from any addressable memory spaces, including 
internal memory, peripherals, and external memory.  

3.2.3.3. VIDEO PORT  
The DM642 device has three configurable video port peripherals. These video 

port peripherals provide an interface to common video decoder and encoder devices. 
The DM642 video port peripherals support multiple resolutions and video standards. 
These three video port peripherals are configurable and can support video capture 
and/or video display modes. As shown in Video Port Block Diagram [12], each video 
port consists of two channels - A and B with a 5120-byte capture/display buffer being 
splittable between these two channels. The video port peripheral can operate as a 
video capture port, a video display port, or a transport stream interface (TSI) capture 
port. For the capture mode, the video port may operate as two 8/10 bits channels of 
BT.656 or raw video. It may also operate as a single channel of 8/10-bit BT.656, 
8/10-bit raw video, 16/20-bit Y/C video, 16/20-bit raw video, or 8-bit TSI. For the 
display mode, the video port may operate as a single channel of 8/10-bit BT.656, 
8/10-bit raw video, 16/20 bit Y/C video, or 16/20-bit raw video. It may also operate in 
a two-channel 8/10-bit raw mode. There are more details described in [12]. 
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Figure 3-6 Video Port Block Diagram [12] 

 

3.2.3.4. INTER- INTEGRATED CIRCUIT (I2C)  

The inter-integrated circuit (I2C) module provides an ideal interface between 
TMS320C6000 DSP and other devices compliant with Philips Semiconductors 
Inter-IC bus (I2C bus) specification. On the MEX board the I2C bus connects the 
DM642 chip to video (SAA7113) and audio (CS4221) chips, and is used to initial the 
video/audio chips and configure the video/audio data pathway with the format shown 
below. 

 
Figure 3-7 I2C bus format 

 

3.2.3.5. ETHERNET MAC (EMAC) 

The Ethernet media access controller (EMAC) provides an efficient interface 
between the DM642 DSP core processor and the network. It supports both 10Base-T 
and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or 
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full-duplex. The EMAC controls the flow of packet data from the DSP to the physical 
layer device (PHY). The MDIO module controls PHY configuration and status 
monitoring. Figure 3-8 Figure 2-1is the EMAC Control Module Block Diagram. 

 

Figure 3-8 EMAC Control Module Block Diagram 

 

3.3. CODING DEVELOPMENT ENVIRONMENT  
In this section, we will briefly introduce the coding environment of our project. 

The powerful coding environment tool called Code Composer Studio (CCS) will be 
described. In CCS, DSP programmers can develop the project, debug the project, and 
do some optimization. It’s necessary for a DSP programmer to be familiar with the 
coding environment to develop a program efficiently. 

3.3.1. CODE COMPOSER STUDIO 

Code composer studio (CCS) extends the basic code generation toll with a set of 
debugging and real-time analysis capabilities. It speeds and enhances the development 
process for programmers who create and test real-time, embedded signal processing 
applications. Every phase of development cycle including conceptual design, coding 
&building, debugging, and real-time analysis is fully supported. Code Composer 
Studio includes the following components, which works together as show in: 

 TMS320C6000 code generation tools 
 Code Composer Studio Integrated Development Environment (IDE): 
 DSP/BIOS plug-ins and API 
 RTDX plug-in, host interface, and API 
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Figure 3-9 Code Composer Studio environment [14] 

 

3.3.1.1. CODE GENERATION TOOL AND INTEGRATED 

DEVELOPMENT ENVIRONMENT 
The foundation for the development environment provided by Code Composer 

Studio is consist of some code generation tools, including C compiler, assembler, 
assembly optimizer, linker, archives library-build utility, and etc. 

 The Code Composer Studio Integrated Development Environment (IDE) is 
designed to allow user to edit, build, and debug DSP target programs. In the coding 
phase, C source code and the corresponding assembly instructions can be shown and 
edit. In building phase, different files including C source files, assembly source files, 
object files, libraries, linker command files, and include files can be added to build the 
application. In debugging phase, flexibility to setting the breakpoints, accessibility to 
memory registers, graphical signal, statistics of execution profiling make it easier to 
debug.  
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3.3.1.2. DSP/BIOS PLUG-INS 
DSP/BIOS gives DSP chips developers the ability to develop and analyze 

embedded real-time software. DSP/BIOS provides a graphical interface for static 
system setup, real-time scheduling, real-time analysis (RTA), and real-time data 
exchange (RTDX). By using the DSP/BIOS Configuration Tool, we can initialize data 
structures and set various parameters of DSP/BIOS objects. The Configuration Tool 
provides developers a windows explorer-like interface, as shown in  DSP/BIOS 
Configuration Tool I, to use DSP/BIOS real-time library, DSP/BIOS API, and also 
CSL. 

 

 
Figure 3-10 DSP/BIOS Configuration Tool Interface  

 
For real-time DSP applications, such as our system, it is possible to perform a 

number of seemingly unrelated functions at the same time. Such functions are called 
thread. DSP/BIOS enables applications to be structured as a collection of threads, 
with each of them carrying out a modularized function. Multi-thread programs run on 
a single processor by allowing higher-priority threads to preempt lower-priority 
threads, and by allowing various types of interactions among threads, including 
blocking, communication, and synchronization [15]. The thread types (from highest to 
lowest priority) provided by DSP/BIOS include: hardware interrupts (HWI), software 
interrupts (SWI), tasks (TSK), and Background thread (IDL). Programs using 
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multithreads, as opposed to a single centralized polling loop, are easier to design, 
implement, and maintain. 
 Since the DSP/BIOS object tasks (TSK) is the major component of our 
multi-thread system, the way how tasks work is illustrated below. There are 15 level 
priorities and four states of execution, including running, ready, blocked, and 
terminated of tasks. Tasks are scheduled for execution according to a priority level 
assigned to the application. At a time only one task can be running, while other ready 
tasks are blocked due to their lower priorities. When a task with higher priority is 
ready, the current running task is blocked until higher-priority task is terminated. 
As shown in Figure 3-11, TSK preempts the running task in favor of the 
higher-priority ready task. During the course of a program, each task’s mode of 
execution can change for a number of reasons. The following figure shows how 
execution modes change. 
 

 
Figure 3-11 TSK module execution flow chart 

 

3.3.1.3. HARDWARE EMULATION AND REAL-TIME 

DATA EXCHANGE 
TI DSPs provide on-chip emulation support that enables Code Composer Studio 

to control program execution and monitor real-time program activity. An emulator 
interface, like the TI XDS510, provides the host side of the JTAG connection.  

In addition, real-time data exchange (RTDX) capability is exposed through host 
and DSP APIs, allowing for bi-directional real-time communications between the host 
and DSP. It provides real-time, continuous visibility into the way DSP applications 
operate in the real world. As shown in  real-time data exchange of DSP, the RTDX 
between the host and the DSP is achieved via the JTAG emulator. 
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Figure 3-12 real-time data exchange of DSP emulation [14] 

3.3.2. DSP PROGRAM DEVELOPMENT FLOW 

Tradition development flows in DSP industry have involved validating a C 
model for correctness on a host PC or UNIX workstation. Programmer will need to 
take a great effort to port process from C code to hand coded DSP assembly langue. 
However this is both time consuming and error prone. The recommended code 
development flow involves utilizing the C6000 code generation tools to aid in 
optimization than force the programmer to code by hand in assembly. These 
advantages allow the compiler to do all the exhausting work of instruction 
parallelizing, pipelining, and register allocation.  

The phases of recommended code development flow are illustrated in Figure 
3-13. 

Figure 3-13 DSP Program Development Flow 

In phase one some compiler level optimization can be adopted without any 
knowledge of the C6000. In the second phase, intrinsic and compiler options are used 

to improve the code. In the last phase, linear assembly code won’t be written unless the 
software pipeline efficiency is hardly achieved or the unbalanced resource allocation 
is hardly solved by the compiler. 
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Figure 3-13 DSP Program Development Flow 
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3.4. OPTIMIZATION ON TI DSP PLATFORM 
As shown in Figure 3-13, optimization is adopted to increase the execution 

performance. In this section some common used optimizations we adopt will be 
described. 

3.4.1. COMPILER LEVEL OPTIMIZATION   

Figure 3-14 Process that translates source program into code [16] 

 

As shown in Figure 2-1, the process that is taken to translate source program into 
code. Compiler in this process is able to perform various optimizations. High-level 
optimizations are performed in the optimizer and low-level, target specific 
optimizations occur in the code generator. The optimizer can reduce code size and 
improve executing time by using different compiler options. There are four 
optimization levels –o0, –o1, –o2, and –o3 denoting different type and degree of 
optimization, naming register level, local level, unction level, file level optimization 
respectively. 

The –o1, register level optimization performs control-flow-graph simplification, 
allocates variables to registers, performs loop rotation, eliminates unused code, 
simplifies expressions and statements, expands calls to functions declared inline. 
Besides the optimization done in –o0, some more optimization will be done in the 
local level optimization (-o1) includes propagation of local copy/constant, unused 
assignments removal, and elimination of local common expressions. The function 
level (-o2) performs all –o1 optimizations, plus software pipelining, loop 
optimizations, global common sub-expressions and global unused assignments 
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elimination, and loop unrolling. Finally, the highest level file level (-o3) perform 
all –o2 optimization, and remove never-called functions, simplifies functions with 
return values that are never used, in-lines calls to small functions, reorders function 
declarations, propagates arguments into function bodies, and Identifies file-level 
variable characteristics. In addition to these optimizations, there are some 
optimizations that are performed regardless of the optimization level. These 
optimizations cannot be turned off.  

3.4.2. PROGRAM LEVEL OPTIMIZATION 

Expect the compiler optimization taken by configuring the optimization level of 
compiler, mentioned in the last section, there are still refinements we can do to speed 
up the program. There are several optimization methods for the special architecture of 
TI C64x DSP.  

First we can allocate the code sections and the code section into memories. In the 
two level memory architecture mentioned in 0, there are fast memories with small size 
such as SRAM or cache and slow memories with large size such as the external 
SDRAM. By using the pragma CODE_SECTION and DATA_SECTION, we can 
declare memory sections, and then use the linker commend file to assign these section 
to the proper memory level. It’s intuitive to allocate the frequently used code or data 
into the fast and higher memory level. The frequency to access the code or the data 
should be analyzed for better performance. Although, the L2 cache provide such a 
mechanism to access an external memory efficiently, exploiting the SRAM sometimes 
reach better performance than using the L2 cache. 

Secondly, the software pipeline and loop unrolling done in compiler level 
optimization mentioned in the previous section can be more efficient with the loop 
information given in the program. For example with the pragma MUST_ITERATE, 
the loop iteration information is aid to the compiler in choosing the best software 
optimization. The UNROLL pragma specifies to the compiler how many times a loop 
should be unrolled. Sometimes it will help the compiler to reduce code size and 
sometimes will generate redundant loops. More detailed specification is accessible in 
[16]. These two pragma are adopted in our project. 

Finally, the C6000 compiler provides intrinsic, which are special functions that 
map directly to in-lined C64x instructions, to optimize C/C++ code efficiently. All 
these intrinsic functions are optimized codes based on the knowledge and techniques 
of DSP architecture. A trick of it is that intrinsic use a single instruction multi data. 
For example, if we can place four 8-bit data or two 16-bite data in a 32-bit register, it 
can execute one operation instead of four (8-bit) or two (16 bit) operation.  
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3.5. REFERENCE FRAMEWORK LEVEL 5 
To realize the multithread system of video streaming, video processing and 

transmission the Reference Framework Level 5 (RF5) is used. RF5 that use 
DSP/BIOS and the TMS320 DSP Algorithm Standard (also known as XDAIS) is 
intended to enable designers to create extensive applications that use numerous 
algorithms, multi threads, or multi channels. The four basic elements: tasks, channels, 
cell, and XDAIS form the data processing of RF5 as shown in Figure 3-15. 

 At the top level is a DSP/BIOS task. A task is a collection of channels, a 
channel is a collection of cells, and a cell is a wrapper for an algorithm. The cell 
provides a standard interface between the algorithm and the outside world, by 
defining only one processing function. While the channels always perform a fixed 
operation of executing cells serially. The task is able to execute channels in series, and 
able to occasionally send control messages to one another task for thread scheduling 
as described in 3.3.1.2.The tasks those run get-data, execute-channels, send-data form 
a data processing system. 

 
Figure 3-15 Processing elements in RF5 

3.5.1. TASK LEVEL DATA COMMUNICATION  

For task-level communication, which uses semaphore-based synchronization, we 
have streaming I/O(SIO) and synchronized communication(SCOM) messages.  

SIO interfaces with device drivers and tasks. As shown in Figure 3-16 
Communication Between a Task , these standard DSP/BIOS objects element facilitate 
the typical double buffering. That is to said, each time the task passes empty buffers to 
the input device driver and collects buffers full of data from the device. 

SCOM message are defined by user, and passed among tasks. Tasks allocate 
memory buffers that other task write data to or read data from. Thus they need to 
communicate to the other. Each task creates its own receiving SCOM queue (or more 
than one if necessary), and puts SCOM messages to other tasks' receiving queues. The 
availability of each task and the data pass to the task is verified by checking if there is 
any message receiving SCOM queue. Figure 3-18 shows the task communication via 
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SCOM message.  

 
Figure 3-16 Communication Between a Task and a Device Driver via an SIO Object 

 

 
Figure 3-17 Communication Between Two Tasks via SCOM Messages 

3.5.2. CELL LEVEL DATA COMMUNICATION 

For cell-level communication, we have inter-cell communication (ICC) objects 
and lists of those objects. The purpose of an ICC object is to describe the buffer from 
which a cell reads the data, or to which the cell writes the data. For each cell, there are 
one input list and one output list of those objects. As shown in Figure 3-18, two cells 
in effect communicate by having the same ICC object in their lists: the cell that writes 
to a buffer described by an ICC object has the object in its output list, and the cell that 

reads the buffer has the object in its input list. 
 

Figure 3-18 Communication between Cells via ICC object 
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3.6. NETWORK DEVELOPER'S KIT 
The Network Developer's Kit provided by TI is designed as a platform for 

development and demonstration of network enabled application on the DSP. To build 
the a full TCP/IP functional environment only small memory footprint of around 
200K to 250K of program memory and 95K of data memory are required [17]. That 
make NDK a good choice to implement networking transmit system.   

The NDK software package is designed to be a transparent add-on to DSP/BIOS 
and CCS development tools, as shown in Figure 3-19.  

In Figure 3-19, the stack package is organized in terms of function call control 
flow, including five main libraries: STACK, NETTOOL, OS, HAL, and NETCTRL 
libraries.  

 
Figure 3-19 Stack Control Flow 
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Chapter 4.  IMPLEMENTATION AND 

SPEED IMPROVEMENT  

4.1. ARCHITECTURE OF H.264/AVC VIDEO 

COMMUNICATION SYSTEM 
In this thesis, the real H.264/AVC based video communication system is 

implemented. Unlike the other implementations of H.264/AVC codec that only 
contain the encoder and decoder with file I/O, as shown in Figure 4-1, we construct 
one more realistic system that describes a real encoding path and decoding path. The 
encoding path includes video capturing, H.264/AVC encoding, and network transmit, 
while the decoding path includes network receiving, H.264/AVC decoding and video 
display on PC, as shown in Figure 4-2.At one end a MEX board is installed on the 
computer to get the analog video signal from the video device, then do the 
H.264/AVC video compression to the video content, and finally transmit the coded 
data to the ethernet. These transmit data was received by another MEX board on 
different PC. At this end the coded data will be decode back into the video data, and 
then be displayed on the personal computer. 

 

Figure 4-1 Usual implantation of H.264/AVC System 

 

 
Figure 4-2  H.264 based Visual Communication System 
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The software in a typical embedded microprocessor system, such as the DM642 

we used for development, is composed of two general components, the application 
software and the system software. In our H.264/AVC based communication system, 
the video encoding and decoding algorithm and the ethernet communication are the 
application software, while the video capturing and display are system software. In 
order to operate correctly in real time, both of application software and the system 
software should be scheduled well. To realize the mechanism, we implement the 
real-time system by multi-task with multiple threads. 
 Refer to the section 3.5, we adopt the RF-5 framework to build our multi thread 
and multi task system. The entire system including the encoder end and decoder end is 
decomposed into RF-5 objects as shown in Figure 4-3. There are eight major tasks, 
three functional tasks including Capture task, Encoding Processing task, Tx 
networking task for the encoding process, three functional tasks including Display 
task, Encoding Processing Task, Rx networking task for the decoding process, and 
one control task for both encoding task and decoding task. 
 

 
Figure 4-3  System block diagram of Reference Framework level-5 
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 Capture task: After initializing the video chip SAA7113 via I2C module in 
DM642.Vido frame with format of 4:2:2, is captured from the video chip. 
The EDMA channel synchronized to the video port event (VP0EVTA) is 
open to get to video data from video port. The frame data is resampled to 
4:0:0 format, for to encode task. 

 Display task: In this task, decoded frame with 4:0:0 is resampled to 4:2:2 
and sent to the external FIFO which is also accessible to the HOST PC. 
Then a Win32 API windows function will receive an interrupt from DPS to 
and then display the decode frame. 

 Tx/Rx networking task: These two was use the NDK module to utilize to 
transmission and reception of coded data. The encoded data, NAL unit of 
H.264/AVC is transmitted by the Tx networking task, and are received by 
the Rx networking task. 

 Encoding Processing task: The H.264/AVC encoder get frame from the 
Capture task, and send the encode NAL units to the Tx networking task. 

 Decoding Processing task: H.264/AVC decoder get NAL units from the Rx 
networking task, and send the decode frame to the Display task. 

 Control task: use Mailbox (DSP/BIOS object) to configure the above tasks. 
Each task waits until it receives the message from the SCOM queue, and after 

execution it yield the execution to other tasks by put the SCOM message to the 
message queue. 

 

4.2. SINGLE-DSP PARALLELIZATION  
To facilitate application H.264/AVC based communication described above, we 

use the multi DSP board, MEX, to implement the system. Firstly the system is carried 
out and optimized on single DSP. And then further extension to other DSPs is taking 
into consideration. In this section, single DPS optimization and parallelization is 
described. 

4.2.1. SINGLE-DSP OPTIMIZATION 

By adopting the RF-5 framework and doing some modification to the H.264 
encoder and decoder source code, the H.264/AVC encoding system and decoding 
system are implemented on two MEX boards respectively. Thought the optimization 
of encoder and decoder is taken individually, similar optimization rules as mentioned 
in section 3.4 are taken to accelerate the encoding and decoding system:  
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 Compiler optimization level: 
 The highest compiler optimization level (-o3) is taken. Various loop 
optimizations are performed, such as software pipelining, unrolling, and SIMD. 
Various file level characteristics are also used to improve performance. 

 Software pipeline  
Adding the “#pragma MUST_ITERATE” pragma in the front of the loop to 

inform the complier to unroll it and prevent to produce redundant loop when 
optimizing. However, in a nested loop structure, only the innermost loop will be 
unrolled, while the inner loop will be ignored. Manual loop unrolling is done to make 
the software pipelining more efficient. 

 Allocation of code and data memory sections 
There are some frequently accessed data such the entropy coding decoding table, 

and some frequently executed functions, such as interpolation for fractional motion 
vector. Since the full 256kB L2 cache is not allowed for a NDK application [17]. We 
can allocate some memory into the SDRAM such as those frequently used data and 
code by using. The “#pragma DATA_SECTION” and “#pragma CODE_SECTION” 
are used to allocate the data memory and code memories respectively. 

 The table lists intrinsic function we used to replace the original C-operation to 
accelerate the execution. 

Table 4-1Intrinsic functions we used 

C Compiler Intrinsic Assembly
Instruction

Description

int _abs2(int src); ABS2 Calculates the absolute value for each 
16-bit value 

int _max2 (int src1, int src2); 
int _min2(int src1, int src2); 
uint _maxu4(uint src1, uint src2); 
uint _minu4(uint src1, uint src2); 

MAX2
MIN2 
MAX4 
MINU4 

Places the larger/smaller of Cvalue. 
Values can be 16-bit signed or 8-bit 
unsigned. 

_memd8(p) 
 
_memd4(p) 
 
_memd2(p) 

Unaligned access of double beginning at 
address p 
Unaligned access of unsigned int 
beginning at address  
Unaligned access of unsigned short 
beginning at address p 

 
 Moreover, the L2 cache is enable with 0, 32, 64, 128 Kbytes. 
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4.2.2. DOUBLE BUFFERING   

The double buffering also known as the ping-pong buffering is a mechanism that 
allows the CPU activity to be independent of the EDMA activity. In ping-pong 
buffering, there are multiple (usually two) sets of data buffers for the incoming and 
outgoing data streams. While the EDMA is transferring data into or out of the ping 
buffer, the CPU is manipulating data in the pong buffer. When the CPU and EDMA 
complete their activities, they switch the buffers. The EDMA then writes over the old 
input data and transfers the new output data. An example of the ping–pong buffering 
scheme is shown in Figure 4-4. By using double buffering, the data in ping and pong 
buffers are processed by CPU independently. 

 

Figure 4-4 Ping-Pong buffering diagram 

 

4.2.3. SINGLE-DSP PARALLELIZATION 

As mentioned in the previous section, with the help of EDMA, CPU can serve 
the ping and pong buffer independently. We produce the pseudo threads of the ping 
process and pong process respectively.  Though the pseudo threads dose not 
executed at the same time, we can make increase the efficiency by reducing the 
memory access time rather than the execution time. Here, we exploited the MB-level 
parallelism in spatial domain. To satisfy the data dependency constraint, describe in 
section 2.9. The processing of macroblock are in the order as Figure 4-5 shows. Each 
ping-pong pair is executed at the Time N successively. While the macroblock in ping 
buffer at Time N-1 is processed, the macroblock in pong buffer is processed right 
away at Time N-2. The execution condition at time 3, time 4, and time7 is shown 
below. We can notice that macroblock (2,0) and macroblock (0,1) is a ping-pong pair, 
so does the macroblock (0,2) and macroblock (4,1). The red pointer indicates the data 
dependency situation of each macroblock. 
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Figure 4-5 Single DSP macroblock parallelization 

4.3. MULTI-DSP PARALLELIZATION  

4.3.1. SYSTEM PROFILE 

We make a profiling of the whole system, including Capture TSK, Encode TSK, 
Tx TSK, Rx TSK, Decode TSK, and Display TSK. The profiling result is listed in 
Table 4-2. For further speed up, we take the other DSP chips on the MEX board into 
account. As shown in Table 4-2, the bottleneck of this system is the encoding task. It 
will be further parallelized, as illustrated in the next section. 

 

Table 4-2 System profile of the major tasks 

Encoding Capture TSK Encode TSK Tx TSK  
ms 290250 417623219 120706616  
% 0.07 77.54 22.4  
     

Decoding Display TSK Decode TSK Rx TSK  
ms 107973264 68904482 1382446  
% 60.57 38.67 0.77  
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4.3.2. MULTI-DSP PARALLELIZATION 

 
Figure 4-6 Multi DSP macroblock parallelization 

  
To achieve the parallelization by using multi DSPs, a temporal domain 

parallelization is considered. As shown in Figure 4-6, while in spatial domain 
parallelization we ease the data dependency induced by intra prediction and 
deblocking filtering by processing macroblocks in an order as mentioned in the last 
section. Likely we should ease the dependency in a special order as  Multi DSP 
macroblock parallel shows. In the multi DSP parallelization, frames are distributed 
into DSPs. In the section 2.9, that the cross frame dependency is induced by the 
motion estimation; only when search window of the reference frame is reconstructed 
(either in encoder or decoder), the current macroblock is available to be processed. As 
shown in  Multi DSP macroblock parallel, at the Time10, four macroblocks are 
processed including macroblock (3, 2), macroblock (1, 3) in frame i, macroblock (3, 
0), and macroblock(1,1) in frame i+1. 
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4.4. EXPERIMENTS & RESULTS 

4.4.1. RESULT OF SINGLE DSP OPTIMIZATION 

After adopting the optimization methods we introduced before, we use the 
DM642 Device Cycle Accurate Simulator to profile the functions in encoding and 
decoding processes. Neither the video input, output task nor the network transmit task 
is consider in this comparison, because the optimization won’t help a lot for those I/O 
tasks. Though the optimization is done to the project globally, the improvement of 
speed of each functions in coding process are not the same; it depends on the structure 
of the function. In the following part, we will illustrate some important functions, 
compare the execution time of them and calculate the speed up ratio. 

As shown in Table 4-3, each function is speeded up by the optimization and 
some manual modification. Since the inter prediction intra prediction, and DCT/IDCT 
contain many loop structures in the functions, they are well optimized for the software 
pipeline e mechanism of the DSP chip. We can notice that most time consuming part 
is still the inter predictions. If there is any need to write the assembly code as shown 
in Figure 3-13, it might be the proper choice to write it into the assembly code. 

Table 4-3 Average execution cycle of a frame of x264 encoder 

 Non optimized Optimized  
 Cycle count Percentage Cycle count Percentage Ratio 
Inter 385955140 66.80 31345836 58.71 12.3 
Intra 76744048 13.28 5435452 10.26 14.1 
DCT/IDCT 36449650 6.31 2470440 4.66 14.7 
Quantization. 27206566 4.71 2718834 5.13 10.0 
Deblocking filter 10887230 1.88 2424248 4.58 4.49 
Entropy coding 9221182 1.60 2430716 4.59 3.79 
Total 577769679 100 52979974 100 10.91 

 In Table 4-4, the decoder task is speed up by ratio 5.3. Though the inter 
prediction, intra prediction, and DCT function are well optimized by the speeded up 
ratio 1x. The performance of the decoder task is contra trained by the deblocking filter. 
For the decoder the deblocking filter is the of choice function to written into assembly 
for further improvement. 

Table 4-4 Average execution cycle of a frame of JM10.3 decoder 
 Non  optimized Optimized  
 Cycle count Percentage Cycle count Percentage Ratio 

Inter 55418473.24 26.96 4163457 10.82 13.3 
Intra 3740215.647 1.80 244461 0.64 15.3 

IDCT 7638903.176 3.72 1135516 2.95 6.7 
Quantization 42497.23529 0.02 14976 0.039 2.8 

Deblocking filter 115774629 56.32 17790497 46.25 6.5 
Entropy coding 22219077.35 10.81 7875195 20.47 2.8 

Total 205535479 100 38467286 100 5.3 
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4.4.2. RESULT OF SINGLE DSP PARALLELIZATION 

In the single DSP parallelization, we use ping and pong buffer to allocate the 
successively executed macroblocks. Most of the program is not changed, but the 
macroblock processing order. Thus the improvement is due to the overlap of EDMA 
transmit and CPU processing. In the un-parallelized version, the memory data needed 
in ping procedure is fetch by CPU before processing; while in parallelized version, the 
needed data is fetch by EDMA at the last pong execution. We use emulator to observe 
the effect of real SDRAM accession (external memory accession), and how much is 
reduced by the proposed method. 

Table 4-5 Single DSP parallelization of x264 encoder 

 Non- parallelized Parallelized Ratio 
ms per frame 76.44  63.73  1.199 

 
Table 4-6 Single DSP parallelization of JM10.3 decoder 

 Non- parallelized Parallelized Ratio 
ms per frame 491.26 475.53 1.033 

The limitation of the speed up of this method is the ratio of EDMA transmit time 
and CPU execution time. When the ratio is about 1, or the time EDMA used to 
transmit is almost equal to the CPU executing time, the speed up ratio might up to two. 
To achieve this goal, further modification optimization to the code should be adopted 
to reduce the CPU execution time. 

4.4.3. RESULT OF MULTI DSP OPTIMIZATION 

In section 4.3.1 and 4.3.2, we proposed a multi DSP parallel mechanism that 
only applied to the encoder end for the system. To use other DSPs on the MEX board, 
we retain the network transmit task and the video capture task, but parallelize the 
encoding task into other DSPs. The parallelization result is shown below. 

Table 4-7 Multi DSP parallelization result 

 One DSP (original) Two DSP Three DSP Four DSP 
ms per frame 475.53 397.55 323.81 290.75 
Speed up ratio 1 1.196 1.4685 1.6355 

 
The multi DSP parallelization is restricted to the cross DSP transmit of the MEX 

board. For more efficient multi DSP parallelization, we should find some board else 
with better cross DSP communication. 
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Chapter 5. CONCLUSION AND FUTURE 

WORK 
In this thesis, we construct the H.264/AVC video communication system on MEX. 

Rather than the disk I/O system, we implement a more realistic system that consists of 
not only the H.264/AVC codec but also video capturing, displaying and ethernet 
transmission. Then we propose optimization and parallelization method for the multi 
DSP board. We conclude our accomplishments as below.  

 We implement of real-time H.264 encoder /decoder system. 
 We establish a multi thread system. 
 We do the optimization of H.264 encoder/decoder for single DSP by using 

double buffers. 
 We propose a parallelization prototype of H.264 encoder/decoder for multi DSP. 

To achieve higher performance, it’s important to find an efficient path for cross 
DSP communication. Since the benefit bought out from the macroblock parallelizing 
is stock due to the slow cross DSP communication.  
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