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Abstract

The physical properties and chemical properties are both important in the
polymer researches. Many properties will be enhanced after modifying the polymers.
In this thesis, we focus on three major subjects which based on the polybenzoxazines:
(1)The studies of polymer interaction and thermal curing behavior of

polybenzoxazines

We concentrate on the polymer miscibility and specific interaction, especially
in the hydrogen bonding interaction. The polybenzoxazine contains hydroxyl group
that is known as a proton donor for several polymers with proton acceptor, and many
properties were enhanced after inducing the hydrogen bonding interaction.
Furthermore, we could control and undetstand the properties of polybenzoxazines by

studying its thermal cuing behavior.

(2) The studies of polybenzoxazine ‘n:low-dielectric materials

Low dielectric constant materials' (k<3.0) have the advantage of facilitating

manufacture of higher performance integrated-circuit (IC) devices with decreasing
feature size of the chip. After replacing the aluminum process by the cupper process,
the most feasible approach is to use an insulating material possessing a lower
dielectric constant without changing the copper process. Polybenzoxazine resins were
found to possess several outstanding properties that fit the requirements of low
dielectric constant materials, such as near-zero shrinkage after curing, high thermal
stability, low water absorption, high glass transition temperature and low price. In the
section, we used two methods including fluorinating polybenzoxazine and forming

porous structures in the course of developing low dielectric constant materials.
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(3) The studies of polyseudorotaxanes based on adamantane-modified
polybenzoxazines and cyclodextrin

In general, a polymer containing a cyclic alkyl substitute tends to raise its Ty.
In addition, positioning the mass center of the substitute closer to the polymer
backbone will increase the bulkiness of the substitute and thus become more effective
for T, increasing. In the section, we incorporated adamantane as a pendant group into
the polybenzoxazine structure and enhanced its thermal properties. Furthermore, the
pendant group, adamantane, forms stoichiometric complexes with B-cyclodextrin
(B-CD) and fine crystalline powders are obtained. We characterized these complexes
by powder X-ray diffraction, 'H NMR spectroscopy, ~C and *C CP/MAS NMR
spectroscopies. A detail discussion was made in order to analyze the effect that caused

by the crystalline complex structure:
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