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可運用於合作式視訊監控之攝影機分工協調技術 

 
 

       研究生：范博凱      指導教授：王聖智 博士 

 

國立交通大學 

電子工程學系  電子研究所碩士班 

 

摘要 

 

在本論文中，我們提出一套應用於多台主動式攝影機之分工協調

系統，對於空間中大約已知臉部之位置與朝向的人群，進行攝影機的

分工與協調。每一台攝影機將會負責拍攝一小部分人群的臉部，並且

設法調整攝影機的旋轉角度以及放大倍率，使人臉可以清晰地在畫面

中呈現。在此，我們對於人臉在畫面中清晰與否的評斷標準為：人臉

是否正面朝向負責拍攝的攝影機，以及人臉在影像中的解析度。透過

本系統，我們可以安排各個主動式攝影機的旋轉角度與放大倍率，盡

可能地拍攝場景中所有人的臉部，以獲得理想的人臉拍攝角度與解析

度，便於清楚地辨識每個人。 
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National Chiao Tung University 

 

Abstract 

 

In this paper, we propose a camera coordination system that 

coordinates multiple PTZ cameras to capture the face pictures of 

monitored targets. Given the positions and orientations of people’s faces 

in the 3-D space, this system dynamically controls the panning, tilting, 

and zooming of all PTZ cameras, trying to acquire better shots of targets’ 

faces. The adopted criteria include people’s facing directions with respect 

to the cameras and the resolutions of the facial images. Unlike other 

approaches, we do not limit our PTZ cameras to capture only one target at 

one time. Instead, the proposed system coordinates all PTZ cameras to 

capture as many high resolution frontal faces as possible. With this 

system, the faces in the scene can be better captured and the identity of 

each monitored target can be well discerned. 
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Chapter 1.  

INTRODUCTION 
A tremendous number of cameras have been surrounding us in our daily lives in 

recent years. We can see them in various places, like airports, train stations, subways, 
and convenience stores. Due to the increasing demands in security and safety, more 
and more researchers pay attention to the issues of video surveillance. Recently, the 
issues about multi-camera surveillance systems have attracted the attention of 
researchers. In a multi-camera system, more than one camera is installed within a 
certain area. The cameras located at different locations can help us in monitoring the 
targets from different observation angles. If PTZ (Pan-Tilt-Zoom) cameras, instead of 
static cameras, are used, the functionalities of video surveillance system can be even 
more versatile. 

Before, a multi-camera system was composed of static cameras, whose pan angle, 
tilt angle, and field of view were fixed. Compared with a single camera, this kind of 
multi-camera system extends the monitoring region and angles of view. However, 
once if the monitored targets move away from the monitored region, we can no longer 
get clear images of the targets. Hence, recently, people start to use active cameras in 
their multi-camera systems. 

The most popular type of active camera is the PTZ (Pan-Tilt-Zoom) camera. As 
implied by its name, a PTZ camera can actively adjust its pan angle, tilt angle, and 
zoom level. Many recently proposed multi-camera systems are composed of both 
static cameras and PTZ cameras. With the help of PTZ cameras, we can not only 
monitor a region with various angles of view, but can also more clearly capture the 
features of the monitored targets via the adjustment of the zoom level. 

Up to now, many multi-camera systems equipped with PTZ cameras focus on the 
capturing of human faces. They assign PTZ cameras to zoom in on the target to get a 
close-up of the target’s face. This can help in identifying the monitored target. 
However, existing systems usually assign each camera to focus on a single face at one 
time. If the number of targets are many more than the number of PTZ cameras, then 
these multi-camera systems may fail in taking good observations of all targets. 

In this thesis, we develop a surveillance system that tries to simultaneously 
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observe as many high-resolution faces as possible. In Figure 1-1, we illustrate the task 
of the proposed system. In this example, there are 9 people in total. The triangles 
denotes PTZ cameras, the circles indicate people’s locations, and the arrows represent 
the orientation of people’s face. The proposed system will automatically assign these 
four PTZ cameras to take care of different groups of people so that the multi-camera 
system can capture as many high-resolution facial images as possible at every 
moment. 

We first formulate the problem according to some criteria and we define the 
evaluation function. We also try to optimize the evaluation function in an efficient 
way. For the sake of cost and convenience, we simulate the proposed system by using 
virtual videos generated from the ObjectVideo Virtual Video (OVVV) software tool. 

In this thesis, we will first discuss some related works and mathematical 
techniques in Chapter 2. In Chapter 3, we will present the proposed coordination 
system which use multiple active cameras to get as many clear people’s face images 
as possible. Some experimental results are shown in Chapter 4. Finally, we give our 
conclusion in Chapter 5. 

 
Figure 1-1 An example of camera coordination 
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Chapter 2.  

BACKGROUNDS 
Although several multi-camera surveillance systems have already been proposed, we 
have not found any multi-camera system that offers similar functionalities as ours. 
Hence, we only mention a few articles that have discussed some issues similar to ours. 
In the proposed method, we use some mathematical techniques, such as clustering and 
optimization. Hence, we will also briefly introduce these mathematical techniques. In 
the end of this chapter, we will introduce the virtual video tool which we have made 
use of. 

2.1. SURVEILLANCE SYSTEMS WITH PTZ 

CAMERAS 

In general, in a surveillance system with PTZ cameras, there are several static 
cameras and no less than one PTZ camera. With the PTZ cameras, we are able to 
carry out more intelligent surveillance, such as active monitoring. For example, if we 
are interested in people’s faces, we may control the PTZ cameras to focus on 
someone’s face and identify who the person is.  

Most of these systems mainly focus on the capture of clear human images. For 
example, in [1] and [2], Micheloni proposed a system that contains a few static 
cameras and PTZ cameras. The resolution of the PTZ camera is higher than that of 
static camera. When a person appears, they estimate the 3-D location of the target and 
automatically control the pan angle and tilt angle of the PTZ cameras to capture the 
target’s high-resolution images. In their approach, each PTZ camera focuses on the 
tracking of a single target. Their results are shown in Figure 2-1. 
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Figure 2-1 The results of Micheloni’s proposed system [2] 

On the other hand, [3] uses the cooperation of multiple PTZ cameras to reduce 
the spatial limit and to locate the targets’ positions. This system is composed of two 
major parts: camera agents and a support module. Camera agents carry out image 
processing and camera control, while the support module coordinates all camera 
agents. The overview of this system is shown in Figure 2-2. 

 
Figure 2-2 Overview of Kim’s system [3] 

In [4], the proposed surveillance system also contains multiple static cameras and 
PTZ cameras. The static cameras are used to estimate the 3D positions of the detected 
targets. Face detection is also used to determine whether a human face exists. Once if 
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a face exists, then they control a PTZ camera to capture a close-up of that face. 

 

Figure 2-3 Block diagram of Hampapur’s 3D tracker [4] 

Figure 2-3 shows the 3D tracking process of the static cameras and Figure 2-4 
shows how the system coordinates the static and PTZ cameras to accomplish face 
capturing. In Figure 2-5, we show the zoomed images captured by the PTZ camera. 

In [5], the authors use pairs of static cameras to estimate the depth information. 
The face position of the target is estimated by combining the depth information with 
the face detection results. Similarly, once if a face is detected, a PTZ camera is 
controlled to capture a clearer facial picture of the target. Some experimental results 
are shown in Figure 2-6. 
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Figure 2-4 The process of face focus of Hampapur’s system [4] 

 

 
Figure 2-5 A face zoom sequence [4] 

In [6] and [7], the authors use pairs of static cameras to estimate the depth 
information. The face position of the target is estimated by combining the depth 
information with the face detection results. Similarly, once if a face is detected, a PTZ 
camera is controlled to capture a clearer facial picture of the target. Some examples 
are shown in Figure 2-7. 
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Figure 2-6 The experiment results of [5] 

. 

 
(a) 

 

(b) 
Figure 2-7 A virtual train station designed by Qureshi (a) over views (b) close-up 

views by PTZ cameras [6] 
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2.2. CLUSTERING ALGORITHMS 

Clustering can be thought as a kind of classification method. When there are 
several data which have some kinds of similar properties clustering methods can be 
used to explore the data and to group similar ones together under certain criteria. A 
clustering example is illustrated in Figure 2-8. In the literature, clustering has already 
been well developed and many different algorithms have been developed. We will 
discuss some commonly used algorithms in this section. 

 
(a) (b) 

Figure 2-8 A clustering example (a) data points (b) clustering result 

 

2.2.1. K-MEANS CLUSTERING 

K-means is a simple and fast clustering algorithm. It was originally proposed in 
[8]. The main idea of K-means clustering is to iteratively minimize the variance of 
each cluster. At the beginning, k centroids are initialized and they represent the 
centers of clusters. Then, each datum is classified to a cluster according to the 
distances between the data point and the centroids. The data point is assigned to the 
cluster which has the shortest distance between its centroid and this data point. Finally, 
the mean of each cluster is calculated and is used to update the new centroid. The 
process is repeated until the positions of the centroids converge. The followings are 
the detailed steps of the k-means algorithm: 

1. In the data space, choose k points as the initial centroids of clusters. 
2. Assign each data point to the cluster which has the shortest distance 

between its centroid and that data point. 
3. Recalculate the k centroids by averaging the data points. 
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4. Repeat Step 2 and Step 3 until these centroids are almost fixed. Then 
we get the final clustering result. 

The advantages of the k-means method are its simplicity and low computational 
cost. It is very easy to implement the K-means algorithm. However, this method still 
has several disadvantages. For example, it is very sensitive to the choice of the initial 
centroids. It only minimizes the intra-cluster variance, but not the global variance. In 
other words, this method does not guarantee global minimization but only a local 
minimization. The global minimization depends on the appropriate selection of the 
initial centroids. There is an example of k-means clustering shown in Figure 2-9. 

  
(a) (b) 

  
(c) (d) 

Figure 2-9 An example of the process of K-means clustering (a) centroids 

initialization (b)-(d) iteration (centroids recalculation) 

 

2.2.2. FUZZY C-MEANS CLUSTERING 

Fuzzy c-means clustering technique [9] is similar to k-means but it allows data to 
belong to more than one cluster. This is why it is called fuzzy. We illustrate the 
difference between k-means clustering and fuzzy c-means clustering in Figure 2-10. 
Here we consider 1-D data points and two clusters (red and green). For k-means 
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clustering, each data point only belongs to one cluster, as shown in Figure 2-10 (a). 
With fuzzy c-means clustering, however, each data point can belong to more than one 
cluster with different degrees of cluster membership, as shown in Figure 2-10 (b). 

(a) (b) 

Figure 2-10 The comparison of (a) k-means clustering (b) fuzzy c-means cluster algorithm 

The objective of fuzzy c-means clustering and k-means clustering are the same. That 
is, we find the clusters that minimize their variances. Similar to k-means, the fuzzy 
c-means clustering needs to define an initial condition and then iteratively update the 
cluster centers. However, the difference is that the fuzzy c-means clustering directly 
initializes the degrees of the data points in each cluster and update them in each 
iteration. The detailed fuzzy c-means algorithm is described as follows: 

 

1. Initialize uij, the degree of xi in the cluster j, where xi is a data point. 

2. Calculate each center cj by means of the formula 1
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4. Repeat Step 2 and Step 3 until { }( 1) ( )max k k
ij ij iju u ε+ − <  

where m is a real number greater than 1, k is the iteration number, and ε is a real 
number between 0 and 1. 

Although fuzzy c-means clustering requires more computations than k-means 
clustering, it usually can find better solution. However, it still possesses some 
problems of k-means clustering. For example, it can only find a local minimum. The 

Degree of cluster membership

P

Degree of cluster membership 

1 

N



11 
 

clustering result is also sensitive to the initialization of the degrees. 

2.2.3. HIERARCHICAL CLUSTERING 

Unlike k-means clustering and fuzzy c-means clustering, the hierarchical 
clustering algorithm [10] does not need to set the number of clusters. Compared with 
k-means (or fuzzy c-means) clustering, this method uses the concept of mergence, 
instead of the concept of partition. It considers each data point a cluster initially and 
then merges data points gradually to reach a proper set of clusters. Figure 2-11 
illustrates the simple merging process. Here we take each creature as a data point and 
we gradually clustering these six creatures into clusters. 

 

Figure 2-11 An example of merging process 

The followings are the detailed steps of the hierarchical clustering algorithm: 

1. Consider each data point a cluster. Define the distances between each 
pair of clusters. 

2. Find the pair of clusters which has the closest distance. 
3. Merge the pair of clusters with the closest distance into a new cluster. 

The number of clusters reduces one. 
4. Repeat Step 2 and Step 3 until the number of clusters reduces to a 

value we desire. 

Generally, the hierarchical clustering method better suits the characteristics of 
data. It does not need assign the number of clusters and can always reach the same 
result. However, this method has a major problem: its high computational cost. Its 
complexity is at least O(n2). Besides, because of the mergence, this method cannot 
undo what have been done previously. 

Cat Lion Dog WolfHuman Orangutan 
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2.3. OPTIMIZATION 

We usually encounter the optimization problem in our daily lives. For example, 
when we prepare a trip, we often ask how we can arrange our transportation to reduce 
the traveling time to the destination. This is a simple example of the optimization 
problem. Typically, an optimization problem can be formulated in mathematics. In 
general, we describe these problems by using an objective function with or without 
constraints. The objective function and the constraints are composed of several 
unknown parameters. Then, we try to find the selection of parameters that gets the 
minimum or maximum of the objective function. In other words, we want to find the 
values of parameters which make the value of the objective function minimal or 
maximal. Depending on the problems we want to solve, the objective function can be 
defined in different ways. The objective function may be linear or nonlinear and can 
be either continuous or discrete.  

So far, many optimization algorithms have already been proposed, like gradient 
decent, linear programming, Lagrange multiplier, and Karush-Kuhn-Tucker (KKT) 
condition [11], etc. However, these derivative-based and linear constrained algorithms 
do not suit the problems that are nonlinear or cannot be differentiated. Hence, people 
devise some other algorithms for these kinds of optimization problems. Here, we 
briefly introduce two effective algorithms – Particle Swarm Optimization (PSO) and 
Differential Evolution (DE). 

2.3.1. PARTICLE SWARM OPTIMIZATION 

2.3.1.1. CLASSICAL PSO 

Kennedy and Eberhart devise the particle swarm optimization algorithm, which 
is inspired by a sociological model [12][13]. Each particle represents a trial solution 
of the problem that we want to solve. In this algorithm, as implied by the name 
“particle swarm”, a large number of particles are generated. The PSO algorithm uses 
these particles to carry out multi-agent parallel search. Each particle has its own 
memory. They can “remember” their previous best positions that make the objective 
function minimal or maximal. In addition, the particles communicate with each other 
to get the best global position that achieves the global extreme in the past. One 
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particle moves to its next position according to its previous best position and the 
global best position in the past. The particles repeat the same steps and they gradually 
converge to the final position. 

In mathematics, the objective function can be expressed as 

 ( ) ( )1 2, , , nf x f x x x=
G

…  Eq. 2-1

where x
G

 is the variable vector in the n-dimensional space. Here we assume that the 
problem we want to solve is a minimization problem and we would like to find a *x

JJG
 

that minimizes Eq. 2-1. 

First, a group of particles are initialized randomly. That is, we create a certain 
number of particles and allocate their initial positions and velocities randomly. The 
velocity defines where the corresponding particle should move to next time. The 
position and velocity of the i-th particle at Time t are denoted as t

ix
JJG

 and t
iv
JG

, 
respectively. The number of particles is initialized by the user. For each particle, we 
calculate the value of the objective function at its current position. Every particle 
keeps track of its best previous position that gets the extreme value of the objective 
function. We denote the best previous position as iP

JG
. In the meantime, we also record 

the globally best position, which is denoted as gP
JJG

. Finally, the next velocity and 
position of each particle can be calculated by Eq. 2-2 and Eq. 2-3, respectively. 

 ( ) ( )1
1 1 2 2

t t t t
i i i i g iv v c P x c P xω ϕ ϕ+ = ⋅ + ⋅ − + ⋅ −
JJJG JG JJG JJGJG JJG

 Eq. 2-2

 1 1t t t
i i ix x v+ += +
JJJG JJG JJJG

 Eq. 2-3

where ω  is the inertia factor, c1 and c2 are scalars, and 1ϕ  and 2ϕ  are random 
numbers generated from the uniform distribution over the interval [0, 1]. The 
aforementioned process is repeated until the stop criterion is reached. The followings 
are the pseudo code of the PSO algorithm. 

PSEUDO CODE 

Initialization: Initialize the positions ( 0
ix
JJG

) and velocities ( 0
iv
JJG

) of N particles 
randomly. Also initialize iP

JG
 and gP

JJG
. 

Begin 
While the stop criterion is not reached 

For i = 1 to N 
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Evaluate the value of objective function for each particle: ( )t
if x
JJG

 

If ( ) ( )t
i if x f P<
JJG JG

 do 

t
i iP x=
JJGJG

 

End do 

If ( ) ( )i gf P f P<
JG JJG

 do 

g iP P=
JJG JG

 

End do 
End for 
For i = 1 to N 

( ) ( )1
1 1 2 2

1 1

ω ϕ ϕ+

+ +

= ⋅ + ⋅ − + ⋅ −

= +

JJJG JG JJG JJGJG JJG

JJJG JJG JJJG

t t t t
i i i i g i

t t t
i i i

v v c P x c P x

x x v
 

End for 
End while 

End 
Output: the optimal position is * gx P=

JJG JJG
 

The PSO algorithm is simple to implement without heavy computation load. In 
addition, it can find the global optimum and does not depend on the form of objective 
function (or fitness function). It is an effective optimization algorithm. We can utilize 
PSO to deal with complex, high-dimensional and nonlinear optimization problems. 

2.3.1.2. DISCRETE BINARY PSO 

The PSO algorithm mentioned above is originally operated in continuous domain. 
However, many optimization problems are actually in a discrete domain. Hence, 
Kennedy and Eberhart proposed the discrete binary version of PSO [14] for discrete 
optimization problems. The concept of discrete binary PSO algorithm is the same as 
the original PSO algorithm, except a few modifications over the original PSO 
algorithm. In the discrete binary space, the variables are only the integers 0 or 1. 
Hence we re-define the objective function (or fitness function) to Eq. 2-4: 
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 ( ) ( )1 2, , , nf f x x x=x …  Eq. 2-4

where x denotes an n-bit string, and xk represents the k-th bit which is 0 or 1 in the bit 
string. Similarly, we want to find a *x  to minimize Eq. 2-4. The position of the i-th 
particle and its d-th bit are denoted by xi and xid. The definition of velocity is different 
from the original PSO. In continuous PSO, the velocity is defined for each particle. 
Here each dimension has its own velocity which is denoted by vid. That is, each bit has 
its own velocity. Moreover, the velocity of the original PSO indicates where the 
corresponding particle moves to. However, when we discuss the velocity of binary 
PSO, we focus on each single bit and the meaning of velocities is changed. The 
meaning of velocity now represents the tendency of the corresponding bit to become 1. 
The larger the velocity is, the more likely the corresponding bit becomes 1. Besides, 
with the modification of the definition of velocity, the best previous position and the 
best previous global position are also treated in a bitwise manner. pid denotes the best 
previous d-th bit of the i-th particles and pgd denotes the best previous global d-th bit. 
Of course pid and pgd are either 0 or 1. With the above modifications, we rewrite the 
velocity updating formula to be 

 ( ) ( )1
1 2

t t t t
id id id id gd idv v p x p xω ϕ ϕ+ = ⋅ + ⋅ − + ⋅ −  Eq. 2-5

where t represents the time instant, ω  is the inertia factor, and 1ϕ  and 2ϕ  are 
random numbers generated from the uniform distribution over the interval [0,1]. The 
authors used probability to describe the tendency of bit change so the velocities have 
to be converted to the interval [0, 1]. They introduce the sigmoid function and 
modified the position-updating formula to be defined as below: 

 
( ) ( )( )1 1

1

0,1   1

 0

t t
id id

t
id

if rand S v then x

else x

+ +

+

< =

=
 Eq. 2-6

where rand(0,1) is a random number selected from the uniform distribution over [0, 
1], and S is a sigmoid function. Eq. 2-7 is the formula of the sigmoid function. 

 ( ) 1
1 vS v

e−=
+

 Eq. 2-7

The logistic curve of the sigmoid function is shown in Figure 2-12. This function 
transfers the value of vid into the interval [0, 1]. 
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Figure 2-12 Sigmoid function 

Basically, the binary PSO is very similar to the original PSO. Only the definition of 
velocity and the position-updating function are modified. The followings are the 
pseudo codes of the DBPSO algorithm. 

PSEUDO CODE 

Initialization: Initialize the positions ( 0
ix ) and velocities ( 0

idv ) of N particles 
randomly. Also initialize pi and pg 

Begin 
While the stop criterion is not reached 

For i = 1 to N 
Evaluate the value of objective function of each particle: ( )t

if x  
If ( ) ( )t

i if f<x p  do 
t

i i=p x  
End do 

If ( ) ( )i gf f<p p  do 

g i=p p  
End do 

End for 
For i = 1 to N 

For d = 1 to n 
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( ) ( )
( ) ( )( )

1
1 2

1 1

1

0,1   1

 0

ω ϕ ϕ+

+ +

+

= ⋅ + ⋅ − + ⋅ −

< =

=

t t t t
id id id id gd id

t t
id id

t
id

v v p x p x

if rand S v then x

else x

 

End for 
End for 

End while 
End 
Output: the optimal bit string is * g=x p  

The binary PSO inherits the main concept from the original PSO. The particle 
swarm still has “memory” in the binary PSO and the particles move toward the region 
that so far provides the best solution. The DBPSO is also effective for solving the 
discrete binary optimization problems. 

2.3.2. DIFFERENTIAL EVOLUTION 

Differential evolution is a global optimization algorithm proposed by Storn and 
Price [15]. Like PSO, it is one kind of parallel searching techniques. It generates 
several numbers of trial parameter vectors at the same time and tries to find the 
optimum. DE inherits the ideas from genetic algorithm but it alters the classical 
crossover and mutation operqations. The authors present a differential operator to 
generating new “offspring” for the searching of the optimum. The block diagram of 
the DE algorithm is shown in Figure 2-13. 

 
Figure 2-13 The block diagram of differential evolution algorithm [16] 

In the initialization stage, a population is initialized. In other words, a number 
of D-dimensional parameter vectors are initialized. The i-th parameter vector in the 
g-th generation is denoted as g

ix , and the population size is denoted as N. After the 
initialization, DE creates several candidates that may become parts of the population 
of the next generation. These candidates are generated by means of “mutation” and 
“crossover”. In the mutation stage, we use Eq. 2-8 to generate a “mutant” parameter 
vector for each target vector, g

ix : 

Initialization Mutation Crossover Selection 
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 ( )1 2 3

1g g g g
i r r rv x C x x+ = + ⋅ −  Eq. 2-8

where C is a constant in [0, 2] and r1, r2, r3 are the random integers from 1 to N. In 
Figure 2-14, we show an example of mutation. 

 
Figure 2-14 A mutation example of a two dimensional minimization problem [15] 

Next, the mutant parameter vectors are carried out crossover to increase the 
variance. A trial parameter vector, g

iu , is created for each target vector by means of 
crossover. It is generated based on the following equation: 

 
( ) ( )1

,1
,

,

,   0,1   1,
 ,                                              

+
+ ⎧ ≤ =⎪= ⎨

⎪⎩

g
i j intg

i j g
i j

v if rand CR or j rand D
u

x otherwise
 Eq. 2-9

where j is an integer from 1 to D that represents the value of the j-th dimension; 
rand(0, 1) is a random real number generated from the uniform distribution over [0, 1]; 
randint(1, D) is a random integer number chosen from {1, 2,…, D}; and CR represents 
the pre-defined crossover constant within the range [0, 1]. In Figure 2-15, we illustrate 
the crossover process. 
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Figure 2-15 An example of crossover [15] 

Finally, the selection process is performed to decide the next-generation 
population. Here we assume that we want to find the minimum of the objective 
function. A decision is made by comparing the target vector with the corresponding 
trial vector. If the trail vector produces the smaller value of objective function (or 
fitness function) than the target vector, the target vector will be replaced by the trail 
vector as the next-generation population. On the contrary, the target vector is retained. 
Eq. 2-10 formulates the selection process: 

 
( ) ( )1 1

1 ,  

  ,             

+ +
+

⎧ <⎪= ⎨
⎪⎩

g g g
i i ig

i g
i

u f u f x
x

x otherwise
 Eq. 2-10

where f is the objective function (or fitness function) to be minimized. 

Differential evolution imitates the biological behavior and tries to find the global 
optimum of the multi-dimensional objective function in the continuous space. It is 
also easy to be implemented and is an effective global optimization algorithm. 
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2.4. VIRTUAL VIDEO TOOL 

In general, we have to set up real cameras to verify the proposed surveillance 
system. From time to time, we need to change the experimental environments and the 
adjustment may cost a lot money and time. Hence, using virtual reality for 
experiments is another choice to release the dilemma. In the literature, there have 
been some examples, like [17] and [18], that use virtual reality tools to help the 
development of their surveillance systems. 

In [19], Taylor et al. developed a virtual video tool for surveillance simulation 
and evaluation. They call it ObjectVideo Virtual Video (OVVV), which is a 
modification based on the game engine of Half-Life 2 by Valve Software. It can 
simulate static or active cameras and render video streams. In addition, it can also 
extract the ground truth from each camera automatically to help performance 
evaluation.  

Figure 2-16 shows the block diagrams of the OVVV system. The camera server 
manages the virtual cameras which are defined by several camera parameters, 
including frame rate, orientation, location, and field of view (FOV). This system can 
render videos for each virtual camera. The PTZ server controls the PTZ parameters of 
each virtual camera. Because of the utilization of TCP/IP (Transmission Control 
Protocol/Internet Protocol) protocol, we can access the camera and PTZ servers via 
internet. We can get the videos generated by virtual cameras and adjust the PTZ 
parameters of each camera remotely through the video client and PTZ client. 
Moreover, we do not necessarily operate them on only one computer. In other words, 
we can manipulate them even on the computer where the OVVV system is not 
installed. 

 

Figure 2-16 OVVV system [19] 

 



21 
 

OVVV system is not just a simple virtual video generator. In order to simulate 
real cameras, several kinds of noise and camera distortion can be added optionally, 
including additive pixel noise, video ghost, radial distortion, blur, defocus, and jitter. 
Users can also change the level of noise or distortion arbitrarily. Based on these 
functionalities, we’ll be able to discuss the relationship between noise interference 
and the performance of the surveillance system. An example of noise addition is 
shown in Figure 2-17. Besides noise and distortion, the OVVV system can also 
simulate omni-cameras, such as panoramic and parabolic catadioptric 
omni-directional cameras. These two kinds of cameras views are shown in Figure 
2-18. These functions can increase the usability for many kinds of surveillance 
experiments. 

 
Figure 2-17 The synthetic frames with (right) and without (left) noises [19] 

 

 
Figure 2-18 The synthetic frames of omnicams: panoramic (left) parabolic 

catadioptric (right) omni-directional cameras [19] 

OVVV system does not only aim at simulation but evaluation. It can generate the 
ground truth to support the evaluation of surveillance systems. It includes both camera 
and target ground truth. The camera ground truth consists of camera center, camera 
orientation, horizontal FOV, and frame dimensions. The target ground truth consists of 
3D world location of target center, target center on image, foreground label map, 
bounding box of an entire target, and bounding box of a visible target. Figure 2-19 
shows an example of the ground truth. In the left figure of Figure 2-19, the dashed 
line represents the bounding box of an entire target and the solid one represents the 
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bounding box of visible target. The different bounding boxes help us to evaluate the 
performance of the system under the occlusion situation. 

 
Figure 2-19 A ground truth examples: bounding box (left) and label map (right) [19] 

Because the scenarios and scripts are simulated virtually, we can repeat the 
experiments with the same experimental environment to improve our surveillance 
system. In addition, we can acquire those sequences that are hard to make. We can 
also place cameras at any place and can control these cameras easily. Although 
eventually we still have to test our surveillance in the real world, the use of the 
OVVV tools can shorten the period of system development and increase the 
feasibility of the developed system. With the help of the OVVV system, we can 
greatly reduce the cost of development. 

 

 

 

 

 



23 
 

Chapter 3.  

CAMERA COORDINATION 
Figure 3-1 shows the flow chart of our proposed coordination system. In this 

thesis, focus on the coordination of multiple cameras. Here, we assume all 
pre-processes, like camera calibration, object detection, face detection, and object 
tracking, have already been done. Hence, the 3D locations of the targets and the 
orientations of the target faces are available beforehand. Here we utilize the ground 
truth of OVVV to accomplish these tasks. In this chapter, we’ll discuss how to 
formulate the coordination problem and how to apply a suitable optimization tool to 
achieve the goal. 

Figure 3-1 Flow chart of our proposed camera coordination system 

3.1. PROBLEM FORMULATION 

At the start, we define the problem that we want to solve. Unlike the articles we 
introduce in Section 2.1, we aim to capture as many frontal high-resolution facial 
images as possible during the presence of the monitored targets. In the proposed 

Optimization 

Camera 
Adjustment 

Input Video 

OVVV 

Output Video 
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algorithm, PTZ cameras are allowed to cover more than one target at each time, as 
long as the captured facial images are sufficiently clear. Moreover, we allow the 
tracking of a target can be handed over from one PTZ camera to another PTZ camera 
so that the face of that target can be better observed over time. In the proposed 
algorithm, we design our camera coordination system based on two major criteria: 
frontal shoot and high-resolution shoot. 

To formulate these two criteria, we define the shoot angle θij, and the face width 

Wij. In θij and Wij, the subscript i denotes the i-th PTZ camera, while the subscript j 

denotes the j-th target. As shown in Figure 3-2, the shoot angle θij represents the angle 

between the blue arrow ijcam
JJJJJG

 and the green arrow jface
JJJJJG

. ijcam
JJJJJG

 indicates the line 

connecting the i-th PTZ camera and the j-th target, while jface
JJJJJG

 indicates the facing 

orientation of the j-th target. As the j-th target is looking toward the i-th camera, we 

have a smaller shoot angle. On the other hand, as shown in Figure 3-3, the shot face 

width Wij represents the width of the j-th target’s face in the image captured by the i-th 

camera. A larger value of Wij indicates a better observation of the j-th target in the the 

i-th camera image. 

Figure 3-2 The illustration of θij 

 

Figure 3-3 The illustration of Wij 

 

Wij 

j-th Target 

The image of camera i 

jface
JJJJJG

ijcam
JJJJJG

Camera i 

Person j 

ijθ
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To simplify the computation of θij and Wij, all 3-D vectors are projected onto the 
ground plan to form 2-D vectors instead of calculating 3-D vectors directly. In other 
words, we only consider the 2D vectors here in order to simplify the computation. In 
the simplified forms, the shoot angle and the face width are defined as follows. 

 ( )θ
⋅

=

JJJJJG JJJJJG

JJJJJG JJJJJGij j
ij

ij j

cam face
acos

cam face
 Eq. 3-1

 
   3  

ij xi
ij

Face width in D spaceW f
D

=  Eq. 3-2

 
 

2
2

xi
i

Image widthf
FOVtan

=
⎛ ⎞⋅ ⎜ ⎟
⎝ ⎠

 
Eq. 3-3

In the definition of Wij, fxi denotes the focal length of the i-th PTZ camera in the 
horizontal direction, Dij is the distance between the i-th camera and the j-th target, and 
FOVi is the field of view of the i-th PTZ camera. Eq. 3-2 and Eq. 3-3 originate in the 
pinhole camera model. Originally Eq. 3-2 is used only when the face is on the center 
of image. However, we do not need a very precise face width in the image. Hence, we 
simply define the face width in an approximated way to simplify the computation. 

The shoot angle and the face width are two different physical quantities. In 
addition, the desired tendencies of the two quantities are different. Basically, we 
prefer to capture a facial image with a smaller shoot angle but a larger face width. 
Therefore, we apply two mapping functions Nθ( ) and Nw( ) over θij and Wij to convert 
them into two normalized measures. The two different quantities can be unified after 
normalizing. Here we define the values to become lager after normalizing when the 
performance we desire is became well. In other words, we set higher “scores” for 
better capture situations. For example, we hope that θij is as small as possible so that 
we can see more frontal face. Therefore, the value of Nθ(x) becomes lager as the x 
becomes smaller. These two mapping functions are defined as follows and are 
illustrated in Figure 3-4 and Figure 3-5. 

 ( )
( )1

,  0
2

              0              ,  otherwise

r kr k x x th
N x th

θθ
θ

θ θ

+⎧ ⋅
− + ≤ <⎪= ⎨
⎪
⎩

 Eq. 3-4
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 ( ) ( )

( )

                    0                           ,  
1

,  
2

1
                                  ,  

2

min

WW W min
W min max

max min max min

W
max

x th
r kr k r k thN x x th x th

th th th th
r k

x th

⎧
⎪ <
⎪

−⎪ ⋅ ⋅ ⋅
= − + ≤ <⎨ − −⎪
⎪ +
⎪ ≥
⎩

 Eq. 3-5

In Eq. 3-4 and Eq. 3-5, k is a positive constant that controls the dynamic range 
of Nθ( ) and Nw( ). rθ and rW are real numbers within the range [0, 1] and they control 
the slopes of Nθ( ) and Nw( ). thθ, thmin, and thmax are pre-defined thresholds. thθ 
represents the worst situation that can be allowed for capturing the frontal face. thmin 
represents the minimum face width for clear observation. On the other hand, when the 
face width is wider than thmax, we think the facial image has achieved the level of 
perfect observation. These thresholds can be varied by the users for different 
applications. 

 
Figure 3-4 Normalized function of the bias angle 
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Figure 3-5 Normalized function of the face width 

The physical meaning of thθ is the worst situation for capturing the frontal face. 
In other words, we hardly clearly see (or identify) someone’s face when the angle 
between face vector and camera vector exceeds thθ. Similarly, thmin and thmax represent 
the worst and best case of face width in the image respectively. When the face width 
is smaller then thmin, we also hardly see the clear face because of the low resolution. 
Conversely, when the face width reaches or exceeds the threshold, thmax, we can 
clearly to identify this face. The function of rθ and rW are to adjust the slopes of the 
linear part of the normalized functions and the maximal and minimal values of the 
normalized functions. It will affect the weightings of the orientation and clearness. 
For example, if rW becomes smaller, the largest and smallest values of the normalized 
function will be closer and the difference between them is smaller. That means the 
discrimination of the face resolution is decreased. Under the extreme condition, if we 
let the rW be zero (and it will make the slope zero), any face width will get the same 
normalized value. That makes no difference no matter what the face width is after the 
normalization. 

The goal is that our system finds a camera coordination way to make each θij as 
small as possible while make each Wij as large as possible. With the definitions of Nθ 

and NW, we then define Eval( ) (Eq. 3-6) for the face capture of the j-th target by the 
i-th camera. It is defined to evaluate the different coordination. The large the value of 
Eval( ) is, the better the performance of coordination is. 

 ( ) ( ) ( )
1 1

m n

ij ij W ij
i j

Eval AP ap N N Wθ θ
= =

= ∑∑  Eq. 3-6

In Eq. 3-6, m and n are the number of cameras and targets respectively. AP denotes a 
set of camera assignments and is defined as Eq. 3-7: 

 { } ,   1, 2, , ,   1, 2, ,ijAP ap i m j n= = =… …  Eq. 3-7

apij represents the binary assignment parameters. apij is equal to 1 if the i-th camera is 
assigned to monitor the j-th target, and apij is equal to 0 otherwise. Hence, for a 
camera assignment AP, Eval(AP) represents the overall observation levels of the n 
targets by all m cameras. When more targets can be better observed by their 
corresponding cameras, with smaller shoot angles and larger face widths, we have a 
larger Eval(AP). Hence, the goal of the proposed camera coordination system is 
simply to find the optimal camera assignment that reaches the largest Eval(AP). 
Moreover, as these n targets keep moving within the monitored scene, we need to 
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adaptively adjust the assignment of cameras to achieve the most preferable 
observation. 

Besides, to simplify the problem, we also add one extra constraint over Eq. 3-6. 
The constraint is stated in Eq. 3-8: 

 
1

1,   1, 2, ,
m

ik
i

ap k n
=

= =∑ …  Eq. 3-8

This constraint implies that we only take into account the camera view that is assigned 
to the target even though that target may also appear in some other views. 

Because there are two criteria, one target has two observation level, the level of 
orientation (shoot angle) and the level of clearness (face width). They are the values 
of the two normalized functions, Nθ and NW, respectively. The zero values of the 
normalized functions mean that the situation of orientation or clearness is too bad to 
identify the target’s face. Here, we multiply these two scores together to form the final 
score. This is because we consider these two scores to be dependent. We consider that 
if one of the scores for a target is low, we will not be able to clearly see that target 
even though the other score is high. Hence, as one score is high but the other one is 
low, the final score is still low. In addition, when the performance of orientation or 
clearness is lower than a threshold, according to Eq. 3-4 or Eq. 3-5, the value of Eq. 
3-6 (total score) is set to zero.   

We add all the targets’ overall observation levels together to evaluate the 
performance of camera coordination for all targets. Obviously, according to the 
mapping functions we define, the value of the evaluation function (Eq. 3-6) will 
become larger if the performance of coordination gets better. That is to say, more 
frontal and higher resolution faces. Thus, the goal is that we want to find a set of 
camera assignment (assigned parameters), AP, which makes the evaluation function 
maximal. In other words, we want to find an optimal AP here. 

3.2. SIGNIFICANCE WEIGHT 

In theory, we can always find an optimal AP for the evaluation function at any 
time instant. However, people’s behavior is highly diverse. It is very likely that even 
with the optimal camera assignment we still cannot clearly capture all people’s faces 
at some time instants. In addition, the evaluation function takes all people into 
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account and the evaluation function is actually a tradeoff among all cameras. It may 
happen that some people’s observation levels are sacrificed to gain other people’s 
observation levels. Hence, the proposed system cannot guarantee that all people’s 
faces are always clearly observed. 

Because the evaluation function takes all people into account, sometimes the 
tradeoff situation happens when we carry out the optimization. It means that maybe 
some people’s observation level is sacrificed to increase some other people’s 
observation level. The increased value of evaluation function may be larger than the 
sacrificed value so the system will prefer this kind of coordination during the 
optimization process. Figure 3-6 shows an example of the optimization tradeoff. In 
Figure 3-6, two different cases are illustrated. Compared with Figure 3-6(a), Camera 2 
in Figure 3-6(b) cannot capture Person 3’s frontal face and we lose some scores on it. 
However, the FOV of Camera 1 becomes small because Camera 1 only needs to take 
charge of Person 1 and Person 2. As the FOV becomes smaller, the scores of Person 1 
and Person 2 increase. The total increased amount is larger than the decreased amount 
and the total scores become higher. 

The cases that the system cannot always cover all people’s faces are unavoidable. 
However, we still hope to clearly see the unclear faces in the next moment. We hope 
we’ll be able to clearly see all people’s face during some periods of time and try to 
capture as many frontal high-resolution facial images as possible. 

To deal with this problem, we assign each target a significance weight to 
represent the priority of that target. In other word, it represents the importance of the 
target. This weight will increase if the target hasn’t been clearly observed in the past 
few moments. On the contrary, if that target has already been clearly observed for a 
while, we decrease its significance weight. Here, target’s “clearness” is defined by 
his/her observation level. The zero observation level means that the corresponding 
target cannot be observed at all. 
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(a) (b) 

Figure 3-6 (a) lower (b) higher overall observation level 

3.2.1. WEIGHTING UPDATE 

The usage of significance weight is to help the clear capture of targets’ faces. The 
values of weights are closely related to the situation that targets cannot be clearly 
captured. The trend of significance weight roughly follows the states of the clearness. 
Here, we design the adjustment of significance weight to include three major states: 
rise, hold, and decline. 

3.2.1.1. RISE STATE 

The weight increases continuously in the rise state. When the face of a target 
cannot be clearly captured, we linearly increase its significance weight. When the 
weight is raised, the system will pay more attention to that target and it’s more likely 
that the target can be better observed. The value of weight is 0 initially. When a 
target’s face is unclear, his or her weight starts to increase. If the unclear situation is 
continuous, the value will also increase continuously. It will stop increasing when the 
unclear situation is improved. 

3.2.1.2. HOLD STATE 

Once if the system has adjusted its camera coordination to take clear facial 
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picture of that target, the significance weight will be held at a high value for a while. 
At this time, we stop to increase the value of the significance weight because we have 
already clearly seen the target’s face. Although we stop to increase the weight, we do 
not decrease the value of weight immediately. This is because we hope we can clearly 
see the person’s face for a while, but not just a short glimpse. Hence, the significance 
weight is held in the holding state for a pre-defined period to ensure the target’s face 
can be clearly observed for a long enough period. 

3.2.1.3. DECLINE STATE 

After keeping a period of “hold”, the significance weight of the target is 
decreased gradually as long as the target’s face can be clearly captured. This is 
because we have paid attention to the target for a long enough period in the holding 
state and the target is no longer as important as before. Similar to the rise state, we 
reduce the value linearly. The value will be continuously reduced to zero as long as 
the target’s face can be clearly captured continuously. 

These three states are alternately taken place until the weight comes back to the 
initial state, that is, the zero value. Once a target’s face becomes unclear, his/her 
weight is in the “rise” state again. As the target’s face can be clearly observed, the 
state switches to “hold” for a while. If the face is continuously clear after a period of 
time, the state will switch to the “decline” state. However, if the face becomes unclear 
suddenly during the “hold” or “decline” state, it will switch back to the “rise” state to 
enforce a higher priority in capturing the clear image of that face. 

 
Figure 3-7 Variation of the significance weight over time 

An example of the switching of these three states is illustrated in Figure 3-7. At 
the beginning, the target’s face is not clear within the “rise” state. T represents the 

time 

weight 
Initial State
Rise State
Hold State
Decline State

T T
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holding time. As illustrated in Figure 3-7, whenever the unclear condition happens, 
the “rise” state takes place again. On the other hand, as the target can be clearly 
observed for a while, the weight drops to zero in the “decline” state. 

3.2.2. UPPER BOUND OF UNCLEAR PERIOD 

Although the significance weight can help us in alleviating unclear observation, 
it still takes a while for an unclear observed target to get clearly observed. In some 
situations, the lag can be too long for practical usage. Hence, we put an upper bound 
over the unclear period. If the time period that a target hasn’t been clear observed 
exceeds a pre-defined threshold, its significance weight is dramatically raised to a 
very large value. This pushes the camera coordination system to take quick response 
to take good care of that target. 

As we dramatically raise the weight to a very large value, the people who are 
unclear before will have a very high priority to be clearly captured. Similar to the hold 
state mentioned in Section 3.2.1.2, this large value is also held for a long enough 
period. However, this period can be different than the aforementioned “hold” period. 
Moreover, the value of the weight is reset to zero this time when the high-value hold 
process ends, as illustrated in Figure 3-8.  

On the other hand, we also take the value of significance weight into account. 
When the value of the weight increases to a certain level but the corresponding target 
is still not captured well, we also adjust the target’s significance weight to a very high 
value, as illustrated in Figure 3-9.  
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Figure 3-8 Illustration of the weighting variation for the case of time limitation  

 

 

 
Figure 3-9 Illustration of the weighting variation for the case of weighting limitation 
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3.2.3. COMBINING WEIGHT WITH EVALUATION 

Because we want to take significance weight into account when we adjust the 
camera coordination, we incorporate significance weight into the evaluation function. 
Our object is that a target with higher weight will have a higher priority to be clearly 
captured. To realize the concept of importance weight, we add penalty term into the 
definition of Eval( ). If a target is assigned to a camera which cannot clearly capture 
his/her face by an AP, the evaluated value of the AP will be added a penalty term. 
This causes a value to be deducted from the original evaluated value. Hence, we 
redefine the evaluation function as below: 

 ( ) ( ) ( )( )
1 1

m n

ij ij W ij ij
i j

Eval AP ap N N W pvθ θ
= =

= −∑∑  Eq. 3-9

where the penalty term pvij is defined as 

 ij ij j ppv cf sw c= ⋅ ⋅  Eq. 3-10

In Eq. 3-10, swj stands for the significance weight of the j-th target, cfij represents the 
clear factor of the j-th target with respect to the i-th camera, and cp is a controlling 
parameter. The clear factor cfij is equal to 0 if the j-th target can be clearly observed 
by the i-th camera. Otherwise, cfij is equal to 1. Apparently, the penalty value is 
determined by the significance weight. The higher the weight is, the larger the penalty 
value is. With the inclusion of the penalty term, the camera coordination system can 
automatically pay more attention to these targets with larger significance weights. 

3.3. MODIFIED DISCRETE BINARY PSO 

In Eq. 3-9, we redefine our problem and want to find an AP to maximize the 
evaluation function. In mathematics, this is simply an optimization problem. 
Unfortunately, Eq. 3-9 has a nonlinear and non-differentiable form. To find the 
optimal AP, these classical optimization algorithms, like the gradient descent 
algorithm, cannot be used. Instead, we adopt the particle swarm optimization 
algorithm [12] mentioned in Section 2.3.1 to tackle this problem. Due to the binary 
nature of the assignment parameters, we actually adopt the discrete binary particle 
swarm optimization proposed in [14]. Moreover, since we have added one constraint 
in the evaluation function, we further make some modifications over the discrete 
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binary particle swarm optimization algorithm to tackle the problem. 

According to the discrete binary PSO algorithm, the evaluation function Eq. 3-9 
is equal to the objective function in Eq. 2-4. We want to find an AP that maximizes 
the evaluation function. AP is equivalent to the x in Eq. 2-4. Here, we can consider it 
as a bit string composed of a set of apij. An AP can be thought as a particle position 
too. In the first step of DBPSO, we will generate a number of AP’s first. 

3.3.1. PARTICLE GENERATION 

In the modified DBPSO, each particle represents a possible AP. In the original 
form of PSO, particles are randomly generated in the initial stage. The use of random 
particles increases the probability of finding the global optimum. However, this also 
causes a large number of iterations. To speed up the computations, we develop two 
simple but effective schemes to generate particles. At the first scheme, we utilize 
clustering to generate a reasonable initial guess about AP and use it to produce 
particles. In addition to the initial clustering over the monitored targets, we also utilize 
the temporal information in the second scheme to speed up the optimization process 
in subsequent frames.  

3.3.1.1. FEATURE SPACE 

In our approach, we consider that the people with similar characteristics should 
be assigned to the same camera. The characteristics we think are people’s positions 
and orientations. For the sake of efficiency, people who are close to each other and 
have similar face orientations are more likely to be assigned to the same camera. 
Hence, we use the clustering technique first for the design of camera coordination. 

We first create a feature space and convert people’s characteristics into this space. 
In other words, the characteristics of each person correspond to a data point in the 
feature space. Here, we define the feature space based on people’s positions and 
orientations. We then perform clustering over the data points. For people’s positions, 
we consider the 2D coordinates (X,Y). For people’s orientations, we use the inner 
product of the camera vector and the face vector. The camera vector and face vector 
are illustrated in Figure 3-2. Here, we do not directly use the inner product of these 
two vectors. Instead, we check the cosine of the included angle between these two 
vectors.  
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However, position and orientation are very different physical quantities. Hence, 
we further normalize these two quantities. Since the value of the cosine of the 
included angle is within the range [-1, 1], we normalize the positions to be within the 
same range. That is, the origin of the (X,Y) coordinates is translated to the center of 
the space. Then, the new coordinates of X and Y are divided by the half width of the 
space to get the normalized coordinates (X’ ,Y’), as illustrated in Figure 3-10. 

 
Figure 3-10 An example of coordinate normalization 

In Figure 3-10, we use a to normalize the position because it is longer than b. With 
this normalization, the values of X’ and Y’ are in the range [-1, 1].  

Assume m is the number of cameras. We define the dimension of the feature 
space to be m+2. For example, as we install four PTZ cameras, the feature space has 6 
dimensions and each target corresponds to a 6-D data point as expressed in Eq. 3-11: 

 ( )1 2 3 4X', Y', , , , IP IP IP IPλ λ  Eq. 3-11

where λ is a scalar to balance between positions and orientations. In Eq. 3-11, X’ and 

Y’ represent the normalized coordinates of the target on the ground plane. Both X’ 

and Y’ have the range [-1, 1]. IPi represents the normalized inner product between  
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. IPi has the range [-1, 1]. Moreover, because the orientation 

characteristic has m dimensions but the position one only has two, we use λ to balance 

it. In this case, we choose λ = 2. 

X 

Y 
X1

Y1
Moving place 

Translation to the center 

Person 

a

b 

( ) 1 1X YX', Y' , 
/ 2 / 2a a

⎛ ⎞= ⎜ ⎟
⎝ ⎠



37 
 

3.3.1.2. GENERATION BY CLUSTERING 

After converting each target into a data point in the m+2 dimensional feature 
space, we choose the k-means clustering algorithm [8] to cluster n targets into m 
clusters. After clustering, we assign each group to a camera. Since the centroid of 
each group represent the mean of the clusters, we use these centroids to help the 
assignment of cameras. For each camera, the values of IP’s of the centroids are 
compared with each other. We assign to that camera the group of feature points which 
has the smallest IP. For example, assume we have four PTZ cameras and four groups. 
For Camera 1, four IP1’s are compared and the group which has the smallest IP1 is 
assigned to Camera 1. The same process is carried out for the remaining cameras. 

This clustering creates the initial guess about the optimal camera assignment. 
That is to say, we obtain an initial AP (a set of apij). We then randomly generate a few 
particles around the initial AP. For example, assume there are six people and three 
PTZ cameras. Initially, the first and second, third and fourth, and fifth and sixth 
people are assigned to Camera 1, Camera 2, and Camera 3, respectively. Here, we 
change one target’s assignment at one time. If the first target is selected, we then 
randomly choose a camera for the target to be assigned to. Of course, since the 
original assignment of the first target is Camera 1, Camera 1 is excluded from the 
random selection process. After the random selection, we get a new AP, which is very 
close to the initial AP. 

In the previous paragraph, we only change one target’s assignment to generate a 
new AP. In practice, if the numbers of people and particles increases, we may change 
the assignment of more targets to increase the randomness. We can also repeat the 
above process several times to generate a number of different random APs as a 
portion of the initial particles. 

3.3.1.3. GENERATION BY THE LATEST ASSIGNMENT 

In addition to the initial clustering over the monitored targets, we also utilize 
the temporal information to speed up the optimization process in subsequent frames. 
In general, the time interval between two consecutive frames is small and we can 
reasonably assume the variations over targets’ positions and orientations are small 
between successive frames. Hence, the optimal AP at the previous time instant can be 
used as the initial guess of AP at the current time instant. Here, the latest optimal AP 
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can be obtained from latest result of the DBPSO. Then, we use it to generate a number 
of different AP’s. The generating process is the same as that in Section 3.3.1.2.  

3.3.1.4. GENERATION BY RANDOM SELECTION 

Even though we have used the initial clustering and the temporal prediction to 
speed up the computations of DBPSO, the optimization process may easily fall into a 
local optimum if we only use these particles generated around the initial guess. Hence, 
in our implementation, a portion of particles are still randomly generated. These 
random AP’s are generated by choosing the assignment from a uniform distribution, 
with mutually independent people assignment. For example, we assume there are four 
PTZ cameras and each target has four possible assignments. Then, all these four 
choices are equally probabilistic.  

 

3.3.2. OPTIMIZATION WITH CONSTRAINTS 

The DBPSO [14] technique is performed after the generation of initial particles. 
The objective function is defined in Eq. 3-9. Here we want to find a set of assignment 
parameters, an AP, which maximizes the objective function. However, the DBPSO 
proposed by Kennedy and Eberhart in [14] does not concern the problem with 
constraints. Hence, we also make some modification over DBPSO to fit for our 
constrained problem. 

In our approach, the main optimization process basically follows the algorithm 
mentioned in Section 2.3.1.2. First, the best previous position of each particle, pk,ij, 
and the best global position, pg,ij, are calculated. Second, the velocity of each apij is 
updated by Eq. 2-5 and we rewrite it with respect to the assigned parameters: 

 ( ) ( )1
, 1 , , 2 , ,

t t t t
k ij ij k ij k ij g ij k ijv v p ap p apω ϕ ϕ+ = ⋅ + ⋅ − + ⋅ −  Eq. 3-12

where t represent the time instant, k is the index of particle, ω  is the inertia factor, 
and 1ϕ  and 2ϕ  are random numbers generated from the uniform distribution in the 
interval between 0 and 1. We choose the inertia factor from the range [0.8 1]. Finally, 
the positions of particles are updated according to Eq. 2-6. Here, we only have to 
replace the parameter x with ap. Eq. 3-13 is the rewritten formula: 
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( ) ( )( )1 1

, ,

1
,

0,1   1

 0

t t
k ij k ij

t
k ij

if rand S v then ap

else ap

+ +

+

< =

=
 Eq. 3-13

where rand(0,1) is a random number selected from a uniform distribution in [0, 1], 
and S is the sigmoid function. No matter whether the objective function is a 
maximization or minimization problem, the velocity and position updating functions 
are the same. All we need to do is to replace the parameter representation. 

Similar to the DBPSO algorithm, we repeat this process until the stop criterion is 
reached. However, due to the constraint that the assigned parameters must obey Eq. 
3-8, we slightly modified the original DBPSO to take into account the constraint. As 
before, the positions of particles are updated according to Eq. 3-13. However, because 
the random factor is used, we cannot assure that the assigned parameters will be 0 or 1. 
Naturally the constraint formulated in Eq. 3-8 is not guaranteed to be obeyed. Once if 
the constraint fails, we try to “repair” the assigned parameters to make them fit the 
constraint. The illegal situation occurs as one target is either assigned to more than 
one camera or assigned to no camera after the DBPSO process.  

To “repair” the assignment means that we have to design a method to alter the 
“wrong” particles of the DBPSO. For the case that some target is assigned to more 
than one camera, we modify the assigned parameters in the apik set for the target k and 
make only one assigned parameter be 1. The simplest approach is to randomly select 
one assigned parameter to be 1 among the assigned parameters which are 1 for this 
target. However, as we physically implemented this simple method, the experiments 
showed that the particles usually do not converge quickly in a few iterations. Hence, 
we developed an alternative method that has a better performance. In the following, 
we’ll explain how we modify the original DBPSO to fit the constraint. 

According to the concept of PSO, the particles will gradually move toward the 
best position based on its previous best experience and the best global experience. We 
utilize this concept and take these two positions into account as we carry out the 
repair process.  
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Figure 3-11 The illustration of constraint repair of each iteration of binary PSO 

When the assigned parameters for someone have multiple 1’s, only a single “1” 
will retain while the others will be set zero. Every assigned parameter has its 
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possibility to be 1 during the process of selection. In our approach, the assigned 
parameter which has the highest possibility of becoming 1 is retained. Here, if the 
assigned parameter is 1 and its best previous value or the best previous global value is 
1, it has higher possibility to retain as 1 in the repair process. That is to say, we tend to 
choose the best local or global position when we encounter the constraint violation. 

In the repair process, we randomly generate the possibilities for each assigned 
parameter at the start. Then, we determine their weights according to its best previous 
position and the best previous global position. Finally, the possibilities of the assigned 
parameters are compared with each other. The assigned parameter that has the highest 
possibilities will be kept while the others are set zero. Figure 3-11 shows an example 
of the repair process. Here we assume that there are four PTZ cameras that aim at the 
k-th target. We multiply the best previously assigned value and the best global 
assigned value by a scalar, C, and add them together to form the repair weight. We 
also add an extra one for all repair weights to keep them from being 0. Then, every 
repair weighting is multiplied by a random number in [0, 1] to get the weighted 
random value for each assigned parameter. After multiplying the weighted random 
value with the new assignment, we compare the possibilities and keep the assigned 
parameter whose possibility is the highest.  

On the other hand, if the assigned parameters of a target are all zero,.we slightly 
modify the repair process. As illustrated in Figure 3-12, we directly take the weighted 
random values as the possibility and choose one ap to be 1 by comparing this 
possibility. Compared with the original process, we only leave out the multiplication 
of the unrepaired assigned parameters. The core concept is basically the same. 

In the repair process, C is a weighting factor that affects the tendency of the 
repair process. The value of C cannot be negative. If C becomes larger, the system 
will prefer to choose the best previous assignment or the best global assignment. On 
the contrary, if C becomes smaller, the repair process will be more like a random 
selection. Finally, in Figure 3-13, we show the block diagram of the modified 
optimization process. 
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Figure 3-12 Repair process for the no assignment case 

 

 
Figure 3-13 Block diagram of the optimization process 
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3.4. CAMERA ASSIGNMENT 

After carrying out the modified DBPSO, we get an optimal AP. This AP is the 
globally optimal result found by the optimization process. So far, the cameras still 
have no idea about who to look and where to look. Hence, we have to further convert 
AP into the assignments of cameras. 

3.4.1. WHO TO LOOK? 

Every camera assignment should be determined before estimating the focusing 
location. Because apij decide whether the i-th camera should take charge of the j-th 
target, it is very easy to know the assignment of targets. We simply need to collect the 
values of assigned parameters which are one and then get the assignment for each 
camera. 

3.4.2. WHERE TO LOOK? 

In our system, one PTZ camera does not only capture one target’s facial image. 
Hence, we have to adjust the field of view (FOV) of the camera to capture all the 
people it wants to capture. In addition, the camera must also adjust its FOV to get as 
high resolution as possible.  

 
Figure 3-14 A camera takes charge of three people 

 

Figure 3-14 is an example where a PTZ camera takes charge of three people. In 
this kind case, we determine FOV of the camera first. This FOV cannot be too small 
to capture all the people the camera wants to take charge of. On the other hand, we 
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hope this FOV can be as small as possible so that we can capture higher resolution 
images of the faces. In Figure 3-14, we illustrate the selection of FOV that offers the 
best resolution in the capture of all three persons’ faces. Here, we check every pair of 
targets and find that the pair of Person 1 and Person 3 determine the minimal FOV for 
the camera In this case, there are three possible combinations: the pair of Person 1 and 
Person 2, the pair of Person 1 and Person 3, and the pair of Person 2 and Person 3. 
Only the FOV formed by Person 1 and Person 3 can cover all these three people and it 
is the minimal FOV we want to have for this camera. 

The FOV of each pair of targets can be easily estimated. We can calculate the 
camera-to-person vector first by the positions of the camera and person. Then, we 
utilize the inner product and the triangular function to calculate the FOV for that pair. 

 
Figure 3-15 Representation of FOV by vectors 

Figure 3-15 shows the vector representation for the FOV. We can calculate 1v
JG

 and 

2v
JJG

 by the positions of the camera and people. Then, we use Eq. 3-14 to estimate the 
FOV of the pair of people. 

 1 2

1 2

FOV v vacos
v v

⎛ ⎞⋅⎜ ⎟=
⎜ ⎟⋅⎝ ⎠

JG JJG
JG JJG  Eq. 3-14

After the FOV is determined based on the best combination of target pair, based 
on the above process, we use angle bisector theorem to decide the direction in which 
the camera should focus on. Figure 3-16 illustrates an angle bisector of a triangle. The 
angle bisector theorem is that the angle bisector divides the opposite side into two 
parts whose ratio is the same as the ratio of the adjacent sides. We can formulate it by 
Eq. 3-15. 

 

1v
JG

2v
JJG

People 

Camera 

FOV 



45 
 

Figure 3-16 Angle bisector 
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In addition, if we have a point that divides a line into two segments and we know the 
length ratio of the two segments, we can calculate the coordinate of that point 
according to Eq. 3-16: 
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where PB and PC are the end point coordinates of the line segment and PD represents 
the coordinate of the point of division, as illustrated in Figure 3-17. 

 

Figure 3-17 Internal point of division of a line segment 

There is an analogy between Figure 3-15 and Figure 3-16. We can think that point A 
corresponds to the camera position while point B and C correspond to the people’s 
positions. Obviously, the angle bisector corresponds to the optical axis of the camera. 
In order to make the optical axis coincide with the angle bisector, the camera should 
directly focus on the intersection point of the optical axis and the line through the two 
people. In other words, that point should project on the image center (or principal 
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point). This intersection point can be calculated by Eq. 3-15 and Eq. 3-16, according 
to the positions of the camera and people. 

 

3.5. CAMERA CONTROL 

After we know the focusing direction and the FOV of cameras, we can adjust 
the PTZ parameters to capture people’s faces. We adjust the PTZ parameters based on 
a reference coordinate system. Figure 3-18 illustrates the pan and tilt angles of a PTZ 
camera with reference to an axis and a plane, respectively. The camera center is at the 
origin of the coordination system. The absolute pan angle is defined with respect to 
the X axis and the tilt angle is defined with respect to the X-Y plane. 

  

(a) (b) 

Figure 3-18 (a) pan and (b) tilt angles with reference to the reference coordinate system 

In general, the PTZ cameras can adjust its pan and tilt angles with reference to some 
reference axes or planes. We only need to calculate the pan and tilt angles with regard 
to the references axis or plane to control the PTZ cameras. Here we illustrate the pan 
and tilt angle together in Figure 3-19. O is the origin of this coordinate system and is 
also the camera center. P is the focused point and P’ is the point that P projects on the 
XY plane. The pan angle, θ, is determined by the angle between positive x-axis and 
OP' . Because we can get the coordinates of P’, the pan angle can be calculated by Eq. 
3-17: 
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where xp’ and yp’ are the x and y coordinates of point P’, respectively. Because the x 
and y coordinates of the point P’ are the same with P, we can rewrite Eq. 3-17 as Eq. 
3-18: 
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Figure 3-19 Illustration of pan and tilt angles 

On the other hand, the tilt angle, φ, is determined by the angle between the X-Y plane 
and OP . In other words, φ is the angle between OP  and OP' . Hence, the tilt angle 
can be obtained by Eq. 3-19: 
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where xp’ and yp’ are the x and y coordinates of the point P’ and zp is the z coordinate 
of point P. We can also rewrite Eq. 3-19 because the x and y coordinates of point P’ 
are the same with P. Eq. 3-20 states the tilt angle in terms of the coordinates of P: 
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 Eq. 3-20

where xp, yp, and zp are the x, y, and z coordinates of the point P, respectively.  

Eq. 3-18 and Eq. 3-20 are based on the coordinates of the point P, with the origin 
of the coordinate system being the camera center. We have to convert the coordinates 
of point P into the coordinates with respect to the camera center before we calculate 
the pan and tilt angles of the camera. So far, we have determined the pan and tilt 
parameters of the PTZ camera. The zoom parameter will be discussed below.  

In general, the PTZ camera seldom sets the FOV directly. On the contrary, it 
often sets the focal length to adjust its FOV. Therefore, we need to convert FOV into 
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the focal length for the control of the zoom parameter. The formulas that convert the 
FOV of a rectilinear lens camera to the focal lengths are stated in following equations: 

 ( )
 

 2 2
x

image widthf
horizontal FOVtan

=
⋅

 Eq. 3-21

 ( )
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⋅

 Eq. 3-22

where fx and fy are the horizontal and vertical focal lengths, respectively. According to 
these equations and the FOV obtained in Section 3.4, we can calculate the focal length 
of each PTZ camera. 

3.6. ASSIGNMENT HOLD 

However, there is usually a time lag before a PTZ camera moves to its 
destination. If we change the camera parameters too rapidly, the cameras might not 
correctly move to the destinations we want. For example, a PTZ camera may be 
requested to pan right at the n-th frame but pan left at the (n+1)-th frame. However, 
since the PTZ camera needs a time lag to move to the destination. The camera does 
not actually move to the destination of the n-th frame but instead starts to change the 
direction at the (n+1)-th frame. A quick change of commands may not only cause 
failures in target tracking but also cause unpleasant observation in target tracking. 

A too-fast swing of camera’s pose results from a quick change of the camera 
assignment. In other words, it is caused by the fast variations of the optimal results. 
Hence, in our system, we intentionally hold the result of optimization over a number 
of frames so that the moving states of the PTZ cameras become more consistent and 
more smooth over successive frames. Figure 3-20 shows the block diagram of the 
camera adjustment. Holding the result of optimization only means that the cameras 
keep taking charge of the same people within the holding frames. Camera assignment 
still needs to be carried out at each frame because people are still moving and their 
positions are changing. Although the holding procedure might cause some errors, the 
errors are under control because typically people don’t have abrupt change in 
movement during a short period. Of course, some exceptions are unavoidable and 
from time to time some people’s faces might not be captured well. When this kind of 
situation happens, the mechanism of significance weight starts to function. The details 
of the significance weights have discussed in Section 3.2. 



49 
 

 

Figure 3-20 Block diagram of camera adjustment 

 

3.7. OVERALL COORDINATION SYSTEM 

To sum up, we show the overall block diagram of the proposed coordination system in 
Figure 3-21. There are two main parts in the system – optimization and camera 
adjustment. In the optimization stage, we try to find out an optimal solution to capture 
as many frontal high-resolution people’s faces as possible in the scene. Here, we 
design an evaluation function to achieve this goal and simultaneously avoid some 
people from being unobserved for a long time. We find the best coordination by using 
the modified discrete binary particle swarm optimization. Based on the coordination, 
we control all the PTZ cameras on the camera adjustment stage. The pan, tilt, and 
zoom parameters are calculated according to the result of modified DBPSO and the 
PTZ cameras move to the assigned destinations to capture targets’ facial image. The 
holding process is also added to avoid too-fast swings. . 
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Figure 3-21 Overall block diagram of the proposed coordination system 
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Chapter 4.  

SIMULATIONS 
In this chapter, we will show and discuss our experimental results. We utilize OVVV 
to simulate and evaluate the proposed coordination system. We create some indoor 
environments where a few people are moving around. We use four PTZ cameras, 
which are mounted on the ceiling in the four corners of the room, to simulate the 
setup of the proposed coordination system. Figure 4-1 illustrates the installation of 
these four PTZ cameras in the room. These PTZ cameras are calibrated and we know 
their 3D positions. Moreover, the camera ground truth provided by OVVV is also 
used to help camera calibration. 

 
Figure 4-1 The installation of PTZ cameras 

In this thesis, we mainly focus on the coordination of cameras. Here, we assume 
the tracking of people has already been done by some means. That is to say, we have 
already known each target’s position in advance. Since the ground truth provided by 
OVVV contains people’s 3D coordinates on the ground, we use it directly as the 
results of people tracking. However, since OVVV does not provide the ground truth 
about the 3-D position of people’s faces, we simply define an average adult height and 
add this height to the people’s ground positions to approximate the face positions. The 

Indoor room 

PTZ camera 



52 
 

face directions are estimated by the two consecutive frames. We assume that people 
always look ahead so their facing direction can be estimated by two consecutive face 
positions. With the above assumptions, we are able to each target’s face position and 
orientation, as illustrated in Figure 3-2.  

Figure 4-2 shows the experiment results of the test sequence SEQ-1. In this 
sequence, people walk in groups initially. Then some people leave their partners and 
join another group. The first figure illustrates the color labeling for the 9 people in the 
scene. Each person is assigned a color and we use this color to plot a bounding box 
for that person. In the following figures, we show a few sets of images captured at 
different time instants. At each time instant, eight images are captured. They are 
captured by four static cameras and four PTZ cameras, locating at different positions. 
In each figure, the left four frames are captured by the static cameras, while the right 
four frames are captured by the PTZ cameras. The use of static cameras can help the 
reader to easily realize the relations among these nine people. On the other hand, the 
images captured by the PTZ cameras demonstrate the results of camera coordination. 

 
Color Labels 

Time 15 
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Time 35 

Time 55 

Time 65 
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Time 80 

Time 95 

Time 110 
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Time 120 

Time 135 

Figure 4-2 Experimental results of the test sequence SEQ-1 

In Figure 4-2, the person p8 is not captured well at Time 65 because of the 
tradeoff in optimization, as mentioned in Section 3.2. In fact, this situation started at 
Time 61, where the score of p8 drops to zero, as shown in Figure 4-3. In Figure 4-3, 
we show all people’s score curves from Time 1 to Time 150, with the best score being 
10 while the worst one being 0. Moreover, in this simulation, we set the holding time 
to 10. That is, we always hold the camera assignment for 10 frames to see whether 
there is any chance that the observation may get improved. Unfortunately, for this 
case, the observation of p8 is not improved during the following 10 time instants. 
Hence, at Time 71, a new assignment is ignited and the score of p8 gets raised 
afterward. Please note that the significance weight of p8 keeps increasing during the 
period from Time 61 to Time 70. Hence, at Time 71, p8 has already accumulated a 
large value of significance weight and this offers p8 a very high priority in camera 
assignment. 
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Figure 4-3 All people’s score curves of Sequence SEQ-1 

The variations of weights are illustrated in Figure 4-4. The weight of p8 is raised 
starting from Time 61. The significance weight is switched to the holding state at 
Time 71 until the face of p8 can be captured. After his face can be well captured, the 
weight diminishes to zero at Time 84.  

Figure 4-4 All people’s significance weights of Sequence SEQ-1 

If we do not apply the concept of significance weight to the coordination system, 
the face of p8 will not be seen for a long time. Figure 4-5 shows p8’s score curve 
without using the significance weight. We can see that p8 is not well captured during 
a long period starting from Time 51 till Time 120. During this period, he gets only 
zero score and his face is not observed at all. If he happens to stay in this scene only 
during this period, then we’ll never be able to see his face. However, with the use of 
significance weight, the period of invisibility can be shortened and the probability of 
miss can be lowered. 
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Figure 4-5 Person p8’s score curve of Sequence SEQ-1 without applying significance weight 

In this thesis, we set the threshold of tolerable period to 20 frames. That is, as 
long as the score value of a target has been continuously zero for 20 successive 
frames, we’ll assign that target a very high priority so that our system will try to 
capture a clear picture of that target as soon as possible. Here, we adopt the 
mechanism mentioned in Section 3.2.2. In order to verify the functionality of this 
mechanism, we intentionally slow down the increment rate of the significance weight. 
In this case, the significance weight of the unobserved target does not grow fast 
enough and the period of being unobserved can easily exceed 20 frames. On the other 
hand, the weight threshold is set to be 20. As shown in Figure 4-6 and Figure 4-7, the 
value of weight is dramatically raised to 30 at Time 75 because the weight threshold 
is reached. The value of weight keeps rising until Time 80 since the holding buffer 
changes the assignment at Time 81. On the other hand, the value of weight is also 
dramatically raised to 30 at Time 111 because the unobserved time period has reached 
the threshold of tolerable period. 

Figure 4-6 Illustration of the mechanism of unclear limitation 
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Figure 4-7 shows the corresponding score curve of Figure 4-6. The person gets out of 
the zero score at Time 80 and keeps non-zero score for 10 successive time units. 

 

Figure 4-7 The corresponding score curve of Figure 4-6 

Figure 4-8 shows the experimental results of the sequence SEQ-2. In SEQ-2, 
there are nine people in the scene. Different from SEQ-1, the people in SEQ-2 do not 
walk in group. They all walk on different routes with different directions. It is 
designed to simulate random walking people. 

 
Legend 

Time 15 
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Time 65 
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Time 105 



60 
 

Time 125 

Time 150 

Figure 4-8 Experimental results of the test sequence SEQ-2 

Figure 4-9 shows all people’s score curves of the sequence SEQ-2. We can 
apparently see some differences between the score curves of SEQ-1 and SEQ-2. The 
people’s scores of SEQ-1 are mostly higher than five while the scores of SEQ-2 are 
not. This is because the people in SEQ-2 walk in chaos. However, since we want to 
capture as many frontal people’s faces as possible at each time instant, some people 
may not be well captured. Although the results are not as satisfactory as that of SEQ-1, 
each target’s score is still higher than five over a certain period of time. This means 
we have clearly captured the frontal faces of all targets for a period of time. This will 
help us in recognizing the identity of each person in the monitored scene. 
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Figure 4-9 All people’s score curves of the sequence SEQ-2 

Figure 4-10 shows the experimental results of the sequence SEQ-3. There are six 
people in SEQ-3. They walk around a table, which can be seen by the static cameras. 
They do not walk in groups. Some people sometimes walk closely but sometimes 
walk alone. SEQ-3 is used to simulate the scenario that people walk around some 
obstacles, like tables or cabinets.  

 
Legend 

Time 50 
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Time 170 

Time 280 

Figure 4-10 Experimental results of the test sequence SEQ-3 

Figure 4-11 shows all people’s score curves of Sequence SEQ-3. The scores are 
high at most of the time. However, we can notice that people’s scores go down 
between Time 110 and Time 160. This is because people are changing their directions 
around that time. The results show that people are clearly captured except the instants 
of changing directions. 
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Figure 4-11 All people’s score curves of sequence SEQ-3 

Because the people in the sequence SEQ-3 walk around a big table, they keep 
similar conditions for a while. Hence, the PTZ cameras do not need to change their 
states rapidly. In SEQ-4, we test a rapid changing case. There are six people in SEQ-4 
and they only walk around a chair within a small region. They do not walk in certain 
kinds of groups, either. Figure 4-12 shows the experimental results of SEQ-4. We can 
notice that the PTZ cameras switch to take charge of different people more frequently. 

 
Legend 

Time 25 
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Time 225 

Time 280 

Figure 4-12 Experimental results of the test sequence SEQ-4 

Figure 4-13 shows all people’s score curves of SEQ-4. The chances that people’s 
scores go down in a short period of time are increased apparently. The status of 
“going down” is similar to that in SEQ-3 (see Figure 4-11) but the frequency of 
“going down” is much higher in SEQ-4. 

Figure 4-13 All people’s score curves of Sequence SEQ-4 
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Figure 4-14 shows the experimental results of the sequence SEQ-5. There are 
seven people in the scene of SEQ-5. SEQ-5 is somewhat similar to SEQ-1. The 
people also walk in groups in SEQ-5. However, the people in SEQ-5 meet together 
and change partners more frequently.  

 
Legend 

Time 75 

Time 125 



68 
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Time 275 

Figure 4-14 Experimental results of the test sequence SEQ-5 

Figure 4-15 shows all people’s score curves of SEQ-5. Compared to Figure 4-3, we 
notice that the number of people whose scores go down are increased. Nevertheless, 
these scores still keep high at most of the time.  

Figure 4-15 All people’s score curves of Sequence SEQ-5 

Table 4-1 shows the statistical results of all experimental sequences. The 
“average score” is the average score for all people in a sequence. The “unclear rate” is 
the average ratio of the zero-score time units over the total time units. The highest 
average score is 10 and the lowest is 0. Here, the dimension of each image frame is 
320×240 for all experiments. We set the value of thmax, thmin, and thθ to be 50, 15, and 
π/2, respectively. The upper bound of the “unclear period” is set to 20. 

According to the average score of all sequences, we can approximate the average 
face width in the image and the average shoot angle with respect to the camera. The 
average face width is 45 pixels and the average shoot angle is 13 degrees. According 
to the average unclear rate, the probability that we cannot identify a target is about 
1.61%. 
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Table 4-1 Statistical results of all experimental sequences 

 
Average Score 

(min, max) = (1, 10) 
Unclear Rate 

(%) 
SEQ-1 (9) 7.5355 2.00 
SEQ-2 (9) 5.0644 3.93 
SEQ-3 (6) 7.6656 0.56 
SEQ-4 (6) 8.0526 0.17 
SEQ-5 (7) 8.3151 1.38 
Average 7.3266 1.61 

We compare the performance of the proposed modified DBPSO with that of the 
original DBPSO. The performance is tested based on the same sequences. The 
optimization processes are implemented with 30 particles and the processes stop after 
30 iterations. The results are compared in Table 4-2. In Table 4-2, 25 percents of the 
results generated by the proposed modified DBPSO are better than that of the original 
one. Only 1.4 percents of the results are worse than that of the original DBPSO. In 
Table 4-3, we shorten the iteration number from 30 to 20. It canbe seen that as the 
number of iterations decreases, the proposed modified DBPSO method performs even 
better.  

Table 4-2 Comparison between the modified DBPSO and the original DBPSO  

(30 iteration) 

 
Better 
(%) 

Equal 
(%)  

Worse 
(%)  

SEQ-1 (9) 55.00  42.50  2.50  
SEQ-2 (9) 58.50  37.00  4.50  
SEQ-3 (6) 1.39  98.61  0.00  
SEQ-4 (6) 0.00  1.00  0.00  
SEQ-5 (7) 12.22  87.78  0.00  
Average 25.42  73.18  1.40  
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Table 4-3 Comparison between the modified DBPSO and the original DBPSO  

(20 iteration) 

 
Better 
(%) 

Equal 
(%)  

Worse 
(%)  

SEQ-1 (9) 76.00  24.00  0.00  
SEQ-2 (9) 82.00  11.50  6.50  
SEQ-3 (6) 8.89  91.11  0.00  
SEQ-4 (6) 3.06  96.94  0.00  
SEQ-5 (7) 23.75  76.25  0.00  
Average 38.74  59.96  1.30  

Table 4-4 shows the comparison of iteration number between the original and 
the modified binary PSO. The iteration number of the modified DBPSO is the 
iterations executed until the result converges. We compare the number of iterations 
that can achieve the same results by using the original DBPSO. The results are shown 
in Table 4-4. Here we use 30 particles to carry out this comparison. According to the 
statistics, the modified binary PSO in average saves 92-percent iterations. We do the 
comparison again by using 20 particles and show the results in Table 4-5. Because of 
the decrease in particle number, more iterations are needed to find the optimal 
solution. In comparison, the proposed modified DBPSO only need slightly more 
iterations to find the optimum.  

Table 4-4 Comparison of iteration numbers (30 particles) 

 
MDBPSO 
(Iteration)  

DBPSO 
(Iteration)  

Reduction 
(%)  

SEQ-1 (9) 2.0000  40.2167  95.03  
SEQ-2 (9) 2.0000  52.8778  96.22  
SEQ-3 (6) 2.0000  9.7472  79.48  
SEQ-4 (6) 2.0056  8.4138  76.23  
SEQ-5 (7) 2.0028  16.0344  87.53  
Average 2.0017  25.4580  92.14  
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Table 4-5 Comparison of iteration number (20 particles) 

 
MDBPSO 
(Iteration)  

DBPSO 
(Iteration)  

Reduction 
(%)  

SEQ-1 (9) 2.0000  50.5444  96.04  
SEQ-2 (9) 2.0050  65.2833  96.94  
SEQ-3 (6) 2.0028  15.8583  87.39  
SEQ-4 (6) 2.0000  12.7194  84.28  
SEQ-5 (7) 2.0031  22.8781  91.26  
Average 2.0022  33.4567  94.02  
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Chapter 5.  

CONCLUSIONS 
In this thesis, we construct a coordination system of PTZ cameras to control 

multiple PTZ cameras to capture as many frontal high-resolution facial images as 
possible. We coordinate multiple PTZ cameras to capture people’s faces according to 
their face resolutions on the images and the directions of the frontal faces with respect 
to the cameras. We propose the significance weight for each person and the 
coordination is affected by these weightings. The significance weight is proposed 
because the situation that someone’s face cannot be clearly captured is hardly avoided. 
The proposed system aims to control PTZ cameras to clearly capture those targets that 
haven’t been clearly observed before. In the proposed system, we define the 
evaluation function according to the above factors. We then try to find an optimal 
solution for the evaluation function. In other words, we attempt to find the best 
coordination approach to capture people’s faces. We utilize discrete binary particle 
swarm optimization technique to find the solution. Due to some requirements of our 
system, we further modify the DBPSO algorithm to improve the effectiveness. Finally, 
the PTZ parameters of PTZ cameras are adjusted according to the result of 
optimization. 

Because different persons may have different demands, some parameters of the 
proposed coordination system can be adjusted by users. Users can define their own 
thresholds. For example, the threshold of face width in the images is adjustable. In 
addition, the proposed system does not limit the number of PTZ cameras and their 
placement. No matter how many PTZ cameras there are, we can still use the proposed 
algorithm to accomplish the task of camera coordination. 

 

 

 

 

 



74 
 

REFERENCES 
[1] C. Micheloni, G. L. Foresti and L. Snidaro, “A cooperative multicamera system 

for video-surveillance of parking lots,” IEE Symposium on Intelligence 
Distributed Surveillance Systems, pp. 1-5, Feb. 2003. 

[2] C. Micheloni, G. L. Foresti and L. Snidaro, “A network of co-operative cameras 
for visual surveillance,” IEE Proceedings on Vision, Image and Signal 
Processing, vol. 152, pp. 205-212, April 2005. 

[3] Nyoun Kim, Ig-jae Kim and Hyoung-gon Kim, “Video Surveillance Using 
Dynamic Configuration of Multiple Active Cameras,” IEEE International 
Conference on Image Processing, pp. 1761-1764, Oct. 2006. 

[4] A. Hampapur, L. Brown, J. Connell, A. Ekin, N. Haas, M. Lu, H. Merkl, and S. 
Pankanti, “Smart video surveillance: exploring the concept of multiscale 
spatiotemporal tracking,” IEEE Signal Processing Magazine, vol. 22, pp. 38-51, 
Mar. 2005. 

[5] A. Khiat, S. Yous, T. Ogasawara and M. Kidode, “Combining Fixed Stereo and 
Active Monocular Cameras into a Platform for Security Applications,” IEEE Int. 
Conf. on Robotics and Biomimetics, pp. 1134-1139, Dec. 2006. 

[6] Faisal Z. Qureshi and Demetri Terzopoulos, “Surveillance Camera Scheduling: A 
Virtual Vision Approach,” Multimedia Systems, vol. 12, pp. 269-283, Dec. 2006. 

[7] Faisal Z. Qureshi and Demetri Terzopoulos, “Surveillance in Virtual Reality: 
System Design and Multi-Camera Control,” IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 1-8, Jun. 2007.  

[8] J. B. MacQueen, “Some Methods for Classification and Analysis of Multivariate 
Observations,” Proceedings of 5-th Berkeley Symposium on Mathematical Statics 
and Probability, Berkeley, University of California Press, pp. 281-297, 1967 

[9] J. C. Dunn, “A Fuzzy Relative of the ISODATA Process and Its Use in Detecting 
Compact Well-Separated Clusters,” Journal of Cybernetics, vol. 3, pp. 32-57, 
1973. 

[10] S. C. Johnson, “Hierarchical Clustering Schemes,” Psychometrika, vol. 2, pp. 
241-254, 1967. 

[11] Edwin K.P. Chong and Stanislaw H. Zak, “An Introduction to Optimization, 
second edition,” Wiley Press, Jul. 2001. 

[12] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” Proceedings of the 
IEEE International Conference on Neural Networks, vol. 4, pp. 1942-1948, 
1995. 

[13] J. Kennedy, R. C. Eberhart and Y. Shi, “Swarm Intelligence,” Morgan Kaufmann 



75 
 

Academic Press, 2001. 
[14] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm 

algorithm,” IEEE International Conference on Systems, Man, and Cybernetics, 
vol. 5, pp. 4104-4109, Oct. 1997. 

[15] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic 
for Global Optimization over Continuous Spaces,” Journal of Global 
Optimization, vol. 11, pp. 341-359, Dec. 1997. 

[16] S. Das and A. Abraham and Amit Konar, “Particle Swarm Optimization and 
Differential Evolution Algorithms: Technical Analysis, Applications and 
Hybridization Perspectives,” Advances of Computational Intelligence in 
Industrial Systems, Studies in Computational Intelligence, pp. 1-38, 2008 

[17] F. Qureshi and D. Terzopoulos, “Towards Intelligent Camera Networks: A Virtual 
Vision Approach,” In Proc. VSPETS 05, pp. 177-184, 2005. 

[18] X. Desurmont, J-B. Hayet, C. Machy, J-F. Delaigle and J-F. Macq, “On the 
performance evaluation of tracking systems using multiple pan-tilt-zoom 
cameras,” Videometrics IX, part of the IS&T/SPIE Symposium on Electronic 
Imaging 2007, pp. 28-30, Jan. 2007. 

[19] G. R. Taylor, A. J. Chosak, and P. C. Brewer, “OVVV: Using Virtual Worlds to 
Design and Evaluate Surveillance Systems,” IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 1-8, June 2007. 


