
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

可運用於合作式視訊監控之攝影機分工協調技術

A Study on Coordination of PTZ Cameras for

Cooperative Video Surveillance

研 究 生：范博凱

指導教授：王聖智 博士

中 華 民 國 九 十 七 年 七 月

可運用於合作式視訊監控之攝影機分工協調技術

A Study on Coordination of PTZ Cameras for Cooperative

Video Surveillance

研 究 生：范博凱 Student：Po-Kai Fan

指導教授：王聖智博士 Advisor：Dr. Sheng-Jyh Wang

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of Master

in

Electronics Engineering
July 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年七月

i

可運用於合作式視訊監控之攝影機分工協調技術

 研究生：范博凱 指導教授：王聖智 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

在本論文中，我們提出一套應用於多台主動式攝影機之分工協調

系統，對於空間中大約已知臉部之位置與朝向的人群，進行攝影機的

分工與協調。每一台攝影機將會負責拍攝一小部分人群的臉部，並且

設法調整攝影機的旋轉角度以及放大倍率，使人臉可以清晰地在畫面

中呈現。在此，我們對於人臉在畫面中清晰與否的評斷標準為：人臉

是否正面朝向負責拍攝的攝影機，以及人臉在影像中的解析度。透過

本系統，我們可以安排各個主動式攝影機的旋轉角度與放大倍率，盡

可能地拍攝場景中所有人的臉部，以獲得理想的人臉拍攝角度與解析

度，便於清楚地辨識每個人。

ii

A Study on Coordination of PTZ Cameras for

Cooperative Video Surveillance

 Student: Po-Kai Fan Advisor: Dr. Sheng-Jyh Wang

Department of Electronics Engineering, Institute of Electronics

National Chiao Tung University

Abstract

In this paper, we propose a camera coordination system that

coordinates multiple PTZ cameras to capture the face pictures of

monitored targets. Given the positions and orientations of people’s faces

in the 3-D space, this system dynamically controls the panning, tilting,

and zooming of all PTZ cameras, trying to acquire better shots of targets’

faces. The adopted criteria include people’s facing directions with respect

to the cameras and the resolutions of the facial images. Unlike other

approaches, we do not limit our PTZ cameras to capture only one target at

one time. Instead, the proposed system coordinates all PTZ cameras to

capture as many high resolution frontal faces as possible. With this

system, the faces in the scene can be better captured and the identity of

each monitored target can be well discerned.

iii

誌謝

在此要特別感謝我的指導教授 王聖智老師，在他的細心指導下，學

習到了很多研究的方法與態度，除了課業上的知識外，也學習到許多

待人接物與處理事情的技巧，使我在這兩年中有著長足的成長。感謝

實驗室的全體夥伴，在我需要幫助時，給予我真誠的協助。同時，我

也要感謝我的家人，因為有他們的支持，讓我可以安心地在學業上努

力。最後，我要感謝晴駿，因為妳的支持、鼓勵與陪伴，使我擁有今

日的結果。

iv

Content
Chapter 1. Introduction .. 1
Chapter 2. Backgrounds .. 3

2.1. Surveillance Systems with PTZ Cameras .. 3
2.2. Clustering Algorithms .. 8

2.2.1. K-means Clustering ... 8
2.2.2. Fuzzy C-Means Clustering .. 9
2.2.3. Hierarchical Clustering .. 11

2.3. Optimization .. 12
2.3.1. Particle Swarm Optimization ... 12

2.3.1.1. Classical PSO ... 12
2.3.1.2. Discrete Binary PSO .. 14

2.3.2. Differential Evolution .. 17
2.4. Virtual Video Tool .. 20

Chapter 3. Camera Coordination ... 23
3.1. Problem Formulation ... 23
3.2. Significance weight .. 28

3.2.1. Weighting Update .. 30
3.2.1.1. Rise State ... 30
3.2.1.2. Hold State ... 30
3.2.1.3. Decline State .. 31

3.2.2. Upper Bound of Unclear Period .. 32
3.2.3. Combining Weight with Evaluation ... 34

3.3. Modified Discrete Binary PSO .. 34
3.3.1. Particle Generation ... 35

3.3.1.1. Feature Space ... 35
3.3.1.2. Generation by Clustering ... 37
3.3.1.3. Generation by the Latest Assignment 37
3.3.1.4. Generation by Random Selection .. 38

3.3.2. Optimization with Constraints ... 38
3.4. Camera Assignment ... 43

3.4.1. Who to Look? .. 43
3.4.2. Where to Look?.. 43

3.5. Camera Control .. 46
3.6. Assignment Hold ... 48
3.7. Overall Coordination System ... 49

Chapter 4. Simulations .. 51

v

Chapter 5. Conclusions .. 73
References .. 74

vi

List of Figures
Figure 2-1 The results of Micheloni’s proposed system [2] .. 4
Figure 2-2 Overview of Kim’s system [3] ... 4
Figure 2-4 The process of face focus of Hampapur’s system [4] 6
Figure 2-5 A face zoom sequence [4] .. 6
Figure 2-7 A virtual train station designed by Qureshi (a) over views (b) close-up views

by PTZ cameras [6] ... 7
Figure 2-8 A clustering example (a) data points (b) clustering result 8
Figure 2-9 An example of the process of K-means clustering (a) centroids initialization

(b)-(d) iteration (centroids recalculation) .. 9
Figure 2-10 The comparison of (a) k-means clustering (b) fuzzy c-means cluster

algorithm ... 10
Figure 2-11 An example of merging process ... 11
Figure 2-12 Sigmoid function .. 16
Figure 2-13 The block diagram of differential evolution algorithm [16] 17
Figure 2-14 A mutation example of a two dimensional minimization problem [15] ... 18
Figure 2-15 An example of crossover [15] .. 19
Figure 2-16 OVVV system [19] .. 20
Figure 2-17 The synthetic frames with (right) and without (left) noises [19] 21
Figure 2-18 The synthetic frames of omnicams: panoramic (left) parabolic catadioptric

(right) omni-directional cameras [19] ... 21
Figure 2-19 A ground truth examples: bounding box (left) and label map (right) [19]

 ... 22
Figure 3-1 Flow chart of our proposed camera coordination system 23
Figure 3-3 The illustration of Wij ... 24
Figure 3-4 Normalized function of the bias angle ... 26
Figure 3-5 Normalized function of the face width ... 27
Figure 3-6 (a) lower (b) higher overall observation level .. 30
Figure 3-7 Variation of the significance weight over time... 31
Figure 3-8 Illustration of the weighting variation for the case of time limitation 33
Figure 3-9 Illustration of the weighting variation for the case of weighting limitation

 ... 33
Figure 3-10 An example of coordinate normalization ... 36
Figure 3-11 The illustration of constraint repair of each iteration of binary PSO 40
Figure 3-12 Repair process for the no assignment case ... 42
Figure 3-13 Block diagram of the optimization process .. 42
Figure 3-14 A camera takes charge of three people ... 43

vii

Figure 3-15 Representation of FOV by vectors ... 44
Figure 3-16 Angle bisector... 45
Figure 3-17 Internal point of division of a line segment ... 45
Figure 3-19 Illustration of pan and tilt angles .. 47
Figure 3-20 Block diagram of camera adjustment ... 49
Figure 3-21 Overall block diagram of the proposed coordination system................... 50
Figure 4-1 The installation of PTZ cameras .. 51
Figure 4-2 Experimental results of the test sequence SEQ-1 55
Figure 4-3 All people’s score curves of Sequence SEQ-1 ... 56
Figure 4-4 All people’s significance weights of Sequence SEQ-1 56
Figure 4-5 Person p8’s score curve of Sequence SEQ-1 without applying significance

weight .. 57
Figure 4-6 Illustration of the mechanism of unclear limitation 57
Figure 4-7 The corresponding score curve of Figure 4-6 .. 58
Figure 4-8 Experimental results of the test sequence SEQ-2 60
Figure 4-9 All people’s score curves of the sequence SEQ-2 61
Figure 4-10 Experimental results of the test sequence SEQ-3 63
Figure 4-11 All people’s score curves of sequence SEQ-3 .. 64
Figure 4-12 Experimental results of the test sequence SEQ-4 66
Figure 4-13 All people’s score curves of Sequence SEQ-4 ... 66
Figure 4-14 Experimental results of the test sequence SEQ-5 69
Figure 4-15 All people’s score curves of Sequence SEQ-5 ... 69

viii

List of Tables
Table 4-1 Statistical results of all experimental sequences .. 70
Table 4-2 Comparison between the modified DBPSO and the original DBPSO 70
Table 4-3 Comparison between the modified DBPSO and the original DBPSO 71
Table 4-4 Comparison of iteration numbers (30 particles) .. 71
Table 4-5 Comparison of iteration number (20 particles) .. 72

1

Chapter 1.

INTRODUCTION
A tremendous number of cameras have been surrounding us in our daily lives in

recent years. We can see them in various places, like airports, train stations, subways,
and convenience stores. Due to the increasing demands in security and safety, more
and more researchers pay attention to the issues of video surveillance. Recently, the
issues about multi-camera surveillance systems have attracted the attention of
researchers. In a multi-camera system, more than one camera is installed within a
certain area. The cameras located at different locations can help us in monitoring the
targets from different observation angles. If PTZ (Pan-Tilt-Zoom) cameras, instead of
static cameras, are used, the functionalities of video surveillance system can be even
more versatile.

Before, a multi-camera system was composed of static cameras, whose pan angle,
tilt angle, and field of view were fixed. Compared with a single camera, this kind of
multi-camera system extends the monitoring region and angles of view. However,
once if the monitored targets move away from the monitored region, we can no longer
get clear images of the targets. Hence, recently, people start to use active cameras in
their multi-camera systems.

The most popular type of active camera is the PTZ (Pan-Tilt-Zoom) camera. As
implied by its name, a PTZ camera can actively adjust its pan angle, tilt angle, and
zoom level. Many recently proposed multi-camera systems are composed of both
static cameras and PTZ cameras. With the help of PTZ cameras, we can not only
monitor a region with various angles of view, but can also more clearly capture the
features of the monitored targets via the adjustment of the zoom level.

Up to now, many multi-camera systems equipped with PTZ cameras focus on the
capturing of human faces. They assign PTZ cameras to zoom in on the target to get a
close-up of the target’s face. This can help in identifying the monitored target.
However, existing systems usually assign each camera to focus on a single face at one
time. If the number of targets are many more than the number of PTZ cameras, then
these multi-camera systems may fail in taking good observations of all targets.

In this thesis, we develop a surveillance system that tries to simultaneously

2

observe as many high-resolution faces as possible. In Figure 1-1, we illustrate the task
of the proposed system. In this example, there are 9 people in total. The triangles
denotes PTZ cameras, the circles indicate people’s locations, and the arrows represent
the orientation of people’s face. The proposed system will automatically assign these
four PTZ cameras to take care of different groups of people so that the multi-camera
system can capture as many high-resolution facial images as possible at every
moment.

We first formulate the problem according to some criteria and we define the
evaluation function. We also try to optimize the evaluation function in an efficient
way. For the sake of cost and convenience, we simulate the proposed system by using
virtual videos generated from the ObjectVideo Virtual Video (OVVV) software tool.

In this thesis, we will first discuss some related works and mathematical
techniques in Chapter 2. In Chapter 3, we will present the proposed coordination
system which use multiple active cameras to get as many clear people’s face images
as possible. Some experimental results are shown in Chapter 4. Finally, we give our
conclusion in Chapter 5.

Figure 1-1 An example of camera coordination

3

Chapter 2.

BACKGROUNDS
Although several multi-camera surveillance systems have already been proposed, we
have not found any multi-camera system that offers similar functionalities as ours.
Hence, we only mention a few articles that have discussed some issues similar to ours.
In the proposed method, we use some mathematical techniques, such as clustering and
optimization. Hence, we will also briefly introduce these mathematical techniques. In
the end of this chapter, we will introduce the virtual video tool which we have made
use of.

2.1. SURVEILLANCE SYSTEMS WITH PTZ

CAMERAS

In general, in a surveillance system with PTZ cameras, there are several static
cameras and no less than one PTZ camera. With the PTZ cameras, we are able to
carry out more intelligent surveillance, such as active monitoring. For example, if we
are interested in people’s faces, we may control the PTZ cameras to focus on
someone’s face and identify who the person is.

Most of these systems mainly focus on the capture of clear human images. For
example, in [1] and [2], Micheloni proposed a system that contains a few static
cameras and PTZ cameras. The resolution of the PTZ camera is higher than that of
static camera. When a person appears, they estimate the 3-D location of the target and
automatically control the pan angle and tilt angle of the PTZ cameras to capture the
target’s high-resolution images. In their approach, each PTZ camera focuses on the
tracking of a single target. Their results are shown in Figure 2-1.

4

Figure 2-1 The results of Micheloni’s proposed system [2]

On the other hand, [3] uses the cooperation of multiple PTZ cameras to reduce
the spatial limit and to locate the targets’ positions. This system is composed of two
major parts: camera agents and a support module. Camera agents carry out image
processing and camera control, while the support module coordinates all camera
agents. The overview of this system is shown in Figure 2-2.

Figure 2-2 Overview of Kim’s system [3]

In [4], the proposed surveillance system also contains multiple static cameras and
PTZ cameras. The static cameras are used to estimate the 3D positions of the detected
targets. Face detection is also used to determine whether a human face exists. Once if

5

a face exists, then they control a PTZ camera to capture a close-up of that face.

Figure 2-3 Block diagram of Hampapur’s 3D tracker [4]

Figure 2-3 shows the 3D tracking process of the static cameras and Figure 2-4
shows how the system coordinates the static and PTZ cameras to accomplish face
capturing. In Figure 2-5, we show the zoomed images captured by the PTZ camera.

In [5], the authors use pairs of static cameras to estimate the depth information.
The face position of the target is estimated by combining the depth information with
the face detection results. Similarly, once if a face is detected, a PTZ camera is
controlled to capture a clearer facial picture of the target. Some experimental results
are shown in Figure 2-6.

6

Figure 2-4 The process of face focus of Hampapur’s system [4]

Figure 2-5 A face zoom sequence [4]

In [6] and [7], the authors use pairs of static cameras to estimate the depth
information. The face position of the target is estimated by combining the depth
information with the face detection results. Similarly, once if a face is detected, a PTZ
camera is controlled to capture a clearer facial picture of the target. Some examples
are shown in Figure 2-7.

7

Figure 2-6 The experiment results of [5]

.

(a)

(b)
Figure 2-7 A virtual train station designed by Qureshi (a) over views (b) close-up

views by PTZ cameras [6]

8

2.2. CLUSTERING ALGORITHMS

Clustering can be thought as a kind of classification method. When there are
several data which have some kinds of similar properties clustering methods can be
used to explore the data and to group similar ones together under certain criteria. A
clustering example is illustrated in Figure 2-8. In the literature, clustering has already
been well developed and many different algorithms have been developed. We will
discuss some commonly used algorithms in this section.

(a) (b)

Figure 2-8 A clustering example (a) data points (b) clustering result

2.2.1. K-MEANS CLUSTERING

K-means is a simple and fast clustering algorithm. It was originally proposed in
[8]. The main idea of K-means clustering is to iteratively minimize the variance of
each cluster. At the beginning, k centroids are initialized and they represent the
centers of clusters. Then, each datum is classified to a cluster according to the
distances between the data point and the centroids. The data point is assigned to the
cluster which has the shortest distance between its centroid and this data point. Finally,
the mean of each cluster is calculated and is used to update the new centroid. The
process is repeated until the positions of the centroids converge. The followings are
the detailed steps of the k-means algorithm:

1. In the data space, choose k points as the initial centroids of clusters.
2. Assign each data point to the cluster which has the shortest distance

between its centroid and that data point.
3. Recalculate the k centroids by averaging the data points.

9

4. Repeat Step 2 and Step 3 until these centroids are almost fixed. Then
we get the final clustering result.

The advantages of the k-means method are its simplicity and low computational
cost. It is very easy to implement the K-means algorithm. However, this method still
has several disadvantages. For example, it is very sensitive to the choice of the initial
centroids. It only minimizes the intra-cluster variance, but not the global variance. In
other words, this method does not guarantee global minimization but only a local
minimization. The global minimization depends on the appropriate selection of the
initial centroids. There is an example of k-means clustering shown in Figure 2-9.

(a) (b)

(c) (d)

Figure 2-9 An example of the process of K-means clustering (a) centroids

initialization (b)-(d) iteration (centroids recalculation)

2.2.2. FUZZY C-MEANS CLUSTERING

Fuzzy c-means clustering technique [9] is similar to k-means but it allows data to
belong to more than one cluster. This is why it is called fuzzy. We illustrate the
difference between k-means clustering and fuzzy c-means clustering in Figure 2-10.
Here we consider 1-D data points and two clusters (red and green). For k-means

10

clustering, each data point only belongs to one cluster, as shown in Figure 2-10 (a).
With fuzzy c-means clustering, however, each data point can belong to more than one
cluster with different degrees of cluster membership, as shown in Figure 2-10 (b).

(a) (b)

Figure 2-10 The comparison of (a) k-means clustering (b) fuzzy c-means cluster algorithm

The objective of fuzzy c-means clustering and k-means clustering are the same. That
is, we find the clusters that minimize their variances. Similar to k-means, the fuzzy
c-means clustering needs to define an initial condition and then iteratively update the
cluster centers. However, the difference is that the fuzzy c-means clustering directly
initializes the degrees of the data points in each cluster and update them in each
iteration. The detailed fuzzy c-means algorithm is described as follows:

1. Initialize uij, the degree of xi in the cluster j, where xi is a data point.

2. Calculate each center cj by means of the formula 1

1

N
m
ij i

i
j N

m
ij

i

u x
c

u

=

=

⋅
=
∑

∑
.

3. Use this formula

12
1

1

mC
i j

ij
k i k

x c
u

x c

−

−

=

⎡ ⎤
⎛ ⎞−⎢ ⎥⎜ ⎟= ⎢ ⎥⎜ ⎟−⎢ ⎥⎝ ⎠

⎣ ⎦

∑ to update each uij.

4. Repeat Step 2 and Step 3 until { }(1) ()max k k
ij ij iju u ε+ − <

where m is a real number greater than 1, k is the iteration number, and ε is a real
number between 0 and 1.

Although fuzzy c-means clustering requires more computations than k-means
clustering, it usually can find better solution. However, it still possesses some
problems of k-means clustering. For example, it can only find a local minimum. The

Degree of cluster membership

P

Degree of cluster membership

1

N

11

clustering result is also sensitive to the initialization of the degrees.

2.2.3. HIERARCHICAL CLUSTERING

Unlike k-means clustering and fuzzy c-means clustering, the hierarchical
clustering algorithm [10] does not need to set the number of clusters. Compared with
k-means (or fuzzy c-means) clustering, this method uses the concept of mergence,
instead of the concept of partition. It considers each data point a cluster initially and
then merges data points gradually to reach a proper set of clusters. Figure 2-11
illustrates the simple merging process. Here we take each creature as a data point and
we gradually clustering these six creatures into clusters.

Figure 2-11 An example of merging process

The followings are the detailed steps of the hierarchical clustering algorithm:

1. Consider each data point a cluster. Define the distances between each
pair of clusters.

2. Find the pair of clusters which has the closest distance.
3. Merge the pair of clusters with the closest distance into a new cluster.

The number of clusters reduces one.
4. Repeat Step 2 and Step 3 until the number of clusters reduces to a

value we desire.

Generally, the hierarchical clustering method better suits the characteristics of
data. It does not need assign the number of clusters and can always reach the same
result. However, this method has a major problem: its high computational cost. Its
complexity is at least O(n2). Besides, because of the mergence, this method cannot
undo what have been done previously.

Cat Lion Dog WolfHuman Orangutan

12

2.3. OPTIMIZATION

We usually encounter the optimization problem in our daily lives. For example,
when we prepare a trip, we often ask how we can arrange our transportation to reduce
the traveling time to the destination. This is a simple example of the optimization
problem. Typically, an optimization problem can be formulated in mathematics. In
general, we describe these problems by using an objective function with or without
constraints. The objective function and the constraints are composed of several
unknown parameters. Then, we try to find the selection of parameters that gets the
minimum or maximum of the objective function. In other words, we want to find the
values of parameters which make the value of the objective function minimal or
maximal. Depending on the problems we want to solve, the objective function can be
defined in different ways. The objective function may be linear or nonlinear and can
be either continuous or discrete.

So far, many optimization algorithms have already been proposed, like gradient
decent, linear programming, Lagrange multiplier, and Karush-Kuhn-Tucker (KKT)
condition [11], etc. However, these derivative-based and linear constrained algorithms
do not suit the problems that are nonlinear or cannot be differentiated. Hence, people
devise some other algorithms for these kinds of optimization problems. Here, we
briefly introduce two effective algorithms – Particle Swarm Optimization (PSO) and
Differential Evolution (DE).

2.3.1. PARTICLE SWARM OPTIMIZATION

2.3.1.1. CLASSICAL PSO

Kennedy and Eberhart devise the particle swarm optimization algorithm, which
is inspired by a sociological model [12][13]. Each particle represents a trial solution
of the problem that we want to solve. In this algorithm, as implied by the name
“particle swarm”, a large number of particles are generated. The PSO algorithm uses
these particles to carry out multi-agent parallel search. Each particle has its own
memory. They can “remember” their previous best positions that make the objective
function minimal or maximal. In addition, the particles communicate with each other
to get the best global position that achieves the global extreme in the past. One

13

particle moves to its next position according to its previous best position and the
global best position in the past. The particles repeat the same steps and they gradually
converge to the final position.

In mathematics, the objective function can be expressed as

 () ()1 2, , , nf x f x x x= … Eq. 2-1

where x is the variable vector in the n-dimensional space. Here we assume that the
problem we want to solve is a minimization problem and we would like to find a *x
that minimizes Eq. 2-1.

First, a group of particles are initialized randomly. That is, we create a certain
number of particles and allocate their initial positions and velocities randomly. The
velocity defines where the corresponding particle should move to next time. The
position and velocity of the i-th particle at Time t are denoted as t

ix and t
iv ,

respectively. The number of particles is initialized by the user. For each particle, we
calculate the value of the objective function at its current position. Every particle
keeps track of its best previous position that gets the extreme value of the objective
function. We denote the best previous position as iP . In the meantime, we also record
the globally best position, which is denoted as gP . Finally, the next velocity and
position of each particle can be calculated by Eq. 2-2 and Eq. 2-3, respectively.

 () ()1
1 1 2 2

t t t t
i i i i g iv v c P x c P xω ϕ ϕ+ = ⋅ + ⋅ − + ⋅ − Eq. 2-2

 1 1t t t
i i ix x v+ += + Eq. 2-3

where ω is the inertia factor, c1 and c2 are scalars, and 1ϕ and 2ϕ are random
numbers generated from the uniform distribution over the interval [0, 1]. The
aforementioned process is repeated until the stop criterion is reached. The followings
are the pseudo code of the PSO algorithm.

PSEUDO CODE

Initialization: Initialize the positions (0
ix) and velocities (0

iv) of N particles
randomly. Also initialize iP and gP .

Begin
While the stop criterion is not reached

For i = 1 to N

14

Evaluate the value of objective function for each particle: ()t
if x

If () ()t
i if x f P< do

t
i iP x=

End do

If () ()i gf P f P< do

g iP P=

End do
End for
For i = 1 to N

() ()1
1 1 2 2

1 1

ω ϕ ϕ+

+ +

= ⋅ + ⋅ − + ⋅ −

= +

t t t t
i i i i g i

t t t
i i i

v v c P x c P x

x x v

End for
End while

End
Output: the optimal position is * gx P=

The PSO algorithm is simple to implement without heavy computation load. In
addition, it can find the global optimum and does not depend on the form of objective
function (or fitness function). It is an effective optimization algorithm. We can utilize
PSO to deal with complex, high-dimensional and nonlinear optimization problems.

2.3.1.2. DISCRETE BINARY PSO

The PSO algorithm mentioned above is originally operated in continuous domain.
However, many optimization problems are actually in a discrete domain. Hence,
Kennedy and Eberhart proposed the discrete binary version of PSO [14] for discrete
optimization problems. The concept of discrete binary PSO algorithm is the same as
the original PSO algorithm, except a few modifications over the original PSO
algorithm. In the discrete binary space, the variables are only the integers 0 or 1.
Hence we re-define the objective function (or fitness function) to Eq. 2-4:

15

 () ()1 2, , , nf f x x x=x … Eq. 2-4

where x denotes an n-bit string, and xk represents the k-th bit which is 0 or 1 in the bit
string. Similarly, we want to find a *x to minimize Eq. 2-4. The position of the i-th
particle and its d-th bit are denoted by xi and xid. The definition of velocity is different
from the original PSO. In continuous PSO, the velocity is defined for each particle.
Here each dimension has its own velocity which is denoted by vid. That is, each bit has
its own velocity. Moreover, the velocity of the original PSO indicates where the
corresponding particle moves to. However, when we discuss the velocity of binary
PSO, we focus on each single bit and the meaning of velocities is changed. The
meaning of velocity now represents the tendency of the corresponding bit to become 1.
The larger the velocity is, the more likely the corresponding bit becomes 1. Besides,
with the modification of the definition of velocity, the best previous position and the
best previous global position are also treated in a bitwise manner. pid denotes the best
previous d-th bit of the i-th particles and pgd denotes the best previous global d-th bit.
Of course pid and pgd are either 0 or 1. With the above modifications, we rewrite the
velocity updating formula to be

 () ()1
1 2

t t t t
id id id id gd idv v p x p xω ϕ ϕ+ = ⋅ + ⋅ − + ⋅ − Eq. 2-5

where t represents the time instant, ω is the inertia factor, and 1ϕ and 2ϕ are
random numbers generated from the uniform distribution over the interval [0,1]. The
authors used probability to describe the tendency of bit change so the velocities have
to be converted to the interval [0, 1]. They introduce the sigmoid function and
modified the position-updating formula to be defined as below:

() ()()1 1

1

0,1 1

 0

t t
id id

t
id

if rand S v then x

else x

+ +

+

< =

=
 Eq. 2-6

where rand(0,1) is a random number selected from the uniform distribution over [0,
1], and S is a sigmoid function. Eq. 2-7 is the formula of the sigmoid function.

 () 1
1 vS v

e−=
+

 Eq. 2-7

The logistic curve of the sigmoid function is shown in Figure 2-12. This function
transfers the value of vid into the interval [0, 1].

16

Figure 2-12 Sigmoid function

Basically, the binary PSO is very similar to the original PSO. Only the definition of
velocity and the position-updating function are modified. The followings are the
pseudo codes of the DBPSO algorithm.

PSEUDO CODE

Initialization: Initialize the positions (0
ix) and velocities (0

idv) of N particles
randomly. Also initialize pi and pg

Begin
While the stop criterion is not reached

For i = 1 to N
Evaluate the value of objective function of each particle: ()t

if x
If () ()t

i if f<x p do
t

i i=p x
End do

If () ()i gf f<p p do

g i=p p
End do

End for
For i = 1 to N

For d = 1 to n

17

() ()
() ()()

1
1 2

1 1

1

0,1 1

 0

ω ϕ ϕ+

+ +

+

= ⋅ + ⋅ − + ⋅ −

< =

=

t t t t
id id id id gd id

t t
id id

t
id

v v p x p x

if rand S v then x

else x

End for
End for

End while
End
Output: the optimal bit string is * g=x p

The binary PSO inherits the main concept from the original PSO. The particle
swarm still has “memory” in the binary PSO and the particles move toward the region
that so far provides the best solution. The DBPSO is also effective for solving the
discrete binary optimization problems.

2.3.2. DIFFERENTIAL EVOLUTION

Differential evolution is a global optimization algorithm proposed by Storn and
Price [15]. Like PSO, it is one kind of parallel searching techniques. It generates
several numbers of trial parameter vectors at the same time and tries to find the
optimum. DE inherits the ideas from genetic algorithm but it alters the classical
crossover and mutation operqations. The authors present a differential operator to
generating new “offspring” for the searching of the optimum. The block diagram of
the DE algorithm is shown in Figure 2-13.

Figure 2-13 The block diagram of differential evolution algorithm [16]

In the initialization stage, a population is initialized. In other words, a number
of D-dimensional parameter vectors are initialized. The i-th parameter vector in the
g-th generation is denoted as g

ix , and the population size is denoted as N. After the
initialization, DE creates several candidates that may become parts of the population
of the next generation. These candidates are generated by means of “mutation” and
“crossover”. In the mutation stage, we use Eq. 2-8 to generate a “mutant” parameter
vector for each target vector, g

ix :

Initialization Mutation Crossover Selection

18

 ()1 2 3

1g g g g
i r r rv x C x x+ = + ⋅ − Eq. 2-8

where C is a constant in [0, 2] and r1, r2, r3 are the random integers from 1 to N. In
Figure 2-14, we show an example of mutation.

Figure 2-14 A mutation example of a two dimensional minimization problem [15]

Next, the mutant parameter vectors are carried out crossover to increase the
variance. A trial parameter vector, g

iu , is created for each target vector by means of
crossover. It is generated based on the following equation:

() ()1

,1
,

,

, 0,1 1,
 ,

+
+ ⎧ ≤ =⎪= ⎨

⎪⎩

g
i j intg

i j g
i j

v if rand CR or j rand D
u

x otherwise
 Eq. 2-9

where j is an integer from 1 to D that represents the value of the j-th dimension;
rand(0, 1) is a random real number generated from the uniform distribution over [0, 1];
randint(1, D) is a random integer number chosen from {1, 2,…, D}; and CR represents
the pre-defined crossover constant within the range [0, 1]. In Figure 2-15, we illustrate
the crossover process.

19

Figure 2-15 An example of crossover [15]

Finally, the selection process is performed to decide the next-generation
population. Here we assume that we want to find the minimum of the objective
function. A decision is made by comparing the target vector with the corresponding
trial vector. If the trail vector produces the smaller value of objective function (or
fitness function) than the target vector, the target vector will be replaced by the trail
vector as the next-generation population. On the contrary, the target vector is retained.
Eq. 2-10 formulates the selection process:

() ()1 1

1 ,

 ,

+ +
+

⎧ <⎪= ⎨
⎪⎩

g g g
i i ig

i g
i

u f u f x
x

x otherwise
 Eq. 2-10

where f is the objective function (or fitness function) to be minimized.

Differential evolution imitates the biological behavior and tries to find the global
optimum of the multi-dimensional objective function in the continuous space. It is
also easy to be implemented and is an effective global optimization algorithm.

20

2.4. VIRTUAL VIDEO TOOL

In general, we have to set up real cameras to verify the proposed surveillance
system. From time to time, we need to change the experimental environments and the
adjustment may cost a lot money and time. Hence, using virtual reality for
experiments is another choice to release the dilemma. In the literature, there have
been some examples, like [17] and [18], that use virtual reality tools to help the
development of their surveillance systems.

In [19], Taylor et al. developed a virtual video tool for surveillance simulation
and evaluation. They call it ObjectVideo Virtual Video (OVVV), which is a
modification based on the game engine of Half-Life 2 by Valve Software. It can
simulate static or active cameras and render video streams. In addition, it can also
extract the ground truth from each camera automatically to help performance
evaluation.

Figure 2-16 shows the block diagrams of the OVVV system. The camera server
manages the virtual cameras which are defined by several camera parameters,
including frame rate, orientation, location, and field of view (FOV). This system can
render videos for each virtual camera. The PTZ server controls the PTZ parameters of
each virtual camera. Because of the utilization of TCP/IP (Transmission Control
Protocol/Internet Protocol) protocol, we can access the camera and PTZ servers via
internet. We can get the videos generated by virtual cameras and adjust the PTZ
parameters of each camera remotely through the video client and PTZ client.
Moreover, we do not necessarily operate them on only one computer. In other words,
we can manipulate them even on the computer where the OVVV system is not
installed.

Figure 2-16 OVVV system [19]

21

OVVV system is not just a simple virtual video generator. In order to simulate
real cameras, several kinds of noise and camera distortion can be added optionally,
including additive pixel noise, video ghost, radial distortion, blur, defocus, and jitter.
Users can also change the level of noise or distortion arbitrarily. Based on these
functionalities, we’ll be able to discuss the relationship between noise interference
and the performance of the surveillance system. An example of noise addition is
shown in Figure 2-17. Besides noise and distortion, the OVVV system can also
simulate omni-cameras, such as panoramic and parabolic catadioptric
omni-directional cameras. These two kinds of cameras views are shown in Figure
2-18. These functions can increase the usability for many kinds of surveillance
experiments.

Figure 2-17 The synthetic frames with (right) and without (left) noises [19]

Figure 2-18 The synthetic frames of omnicams: panoramic (left) parabolic

catadioptric (right) omni-directional cameras [19]

OVVV system does not only aim at simulation but evaluation. It can generate the
ground truth to support the evaluation of surveillance systems. It includes both camera
and target ground truth. The camera ground truth consists of camera center, camera
orientation, horizontal FOV, and frame dimensions. The target ground truth consists of
3D world location of target center, target center on image, foreground label map,
bounding box of an entire target, and bounding box of a visible target. Figure 2-19
shows an example of the ground truth. In the left figure of Figure 2-19, the dashed
line represents the bounding box of an entire target and the solid one represents the

22

bounding box of visible target. The different bounding boxes help us to evaluate the
performance of the system under the occlusion situation.

Figure 2-19 A ground truth examples: bounding box (left) and label map (right) [19]

Because the scenarios and scripts are simulated virtually, we can repeat the
experiments with the same experimental environment to improve our surveillance
system. In addition, we can acquire those sequences that are hard to make. We can
also place cameras at any place and can control these cameras easily. Although
eventually we still have to test our surveillance in the real world, the use of the
OVVV tools can shorten the period of system development and increase the
feasibility of the developed system. With the help of the OVVV system, we can
greatly reduce the cost of development.

23

Chapter 3.

CAMERA COORDINATION
Figure 3-1 shows the flow chart of our proposed coordination system. In this

thesis, focus on the coordination of multiple cameras. Here, we assume all
pre-processes, like camera calibration, object detection, face detection, and object
tracking, have already been done. Hence, the 3D locations of the targets and the
orientations of the target faces are available beforehand. Here we utilize the ground
truth of OVVV to accomplish these tasks. In this chapter, we’ll discuss how to
formulate the coordination problem and how to apply a suitable optimization tool to
achieve the goal.

Figure 3-1 Flow chart of our proposed camera coordination system

3.1. PROBLEM FORMULATION

At the start, we define the problem that we want to solve. Unlike the articles we
introduce in Section 2.1, we aim to capture as many frontal high-resolution facial
images as possible during the presence of the monitored targets. In the proposed

Optimization

Camera
Adjustment

Input Video

OVVV

Output Video

24

algorithm, PTZ cameras are allowed to cover more than one target at each time, as
long as the captured facial images are sufficiently clear. Moreover, we allow the
tracking of a target can be handed over from one PTZ camera to another PTZ camera
so that the face of that target can be better observed over time. In the proposed
algorithm, we design our camera coordination system based on two major criteria:
frontal shoot and high-resolution shoot.

To formulate these two criteria, we define the shoot angle θij, and the face width

Wij. In θij and Wij, the subscript i denotes the i-th PTZ camera, while the subscript j

denotes the j-th target. As shown in Figure 3-2, the shoot angle θij represents the angle

between the blue arrow ijcam and the green arrow jface . ijcam indicates the line

connecting the i-th PTZ camera and the j-th target, while jface indicates the facing

orientation of the j-th target. As the j-th target is looking toward the i-th camera, we

have a smaller shoot angle. On the other hand, as shown in Figure 3-3, the shot face

width Wij represents the width of the j-th target’s face in the image captured by the i-th

camera. A larger value of Wij indicates a better observation of the j-th target in the the

i-th camera image.

Figure 3-2 The illustration of θij

Figure 3-3 The illustration of Wij

Wij

j-th Target

The image of camera i

jface

ijcam

Camera i

Person j

ijθ

25

To simplify the computation of θij and Wij, all 3-D vectors are projected onto the
ground plan to form 2-D vectors instead of calculating 3-D vectors directly. In other
words, we only consider the 2D vectors here in order to simplify the computation. In
the simplified forms, the shoot angle and the face width are defined as follows.

 ()θ
⋅

= ij j
ij

ij j

cam face
acos

cam face
 Eq. 3-1

 3

ij xi
ij

Face width in D spaceW f
D

= Eq. 3-2

2
2

xi
i

Image widthf
FOVtan

=
⎛ ⎞⋅ ⎜ ⎟
⎝ ⎠

Eq. 3-3

In the definition of Wij, fxi denotes the focal length of the i-th PTZ camera in the
horizontal direction, Dij is the distance between the i-th camera and the j-th target, and
FOVi is the field of view of the i-th PTZ camera. Eq. 3-2 and Eq. 3-3 originate in the
pinhole camera model. Originally Eq. 3-2 is used only when the face is on the center
of image. However, we do not need a very precise face width in the image. Hence, we
simply define the face width in an approximated way to simplify the computation.

The shoot angle and the face width are two different physical quantities. In
addition, the desired tendencies of the two quantities are different. Basically, we
prefer to capture a facial image with a smaller shoot angle but a larger face width.
Therefore, we apply two mapping functions Nθ() and Nw() over θij and Wij to convert
them into two normalized measures. The two different quantities can be unified after
normalizing. Here we define the values to become lager after normalizing when the
performance we desire is became well. In other words, we set higher “scores” for
better capture situations. For example, we hope that θij is as small as possible so that
we can see more frontal face. Therefore, the value of Nθ(x) becomes lager as the x
becomes smaller. These two mapping functions are defined as follows and are
illustrated in Figure 3-4 and Figure 3-5.

 ()
()1

, 0
2

 0 , otherwise

r kr k x x th
N x th

θθ
θ

θ θ

+⎧ ⋅
− + ≤ <⎪= ⎨
⎪
⎩

 Eq. 3-4

26

 () ()

()

 0 ,
1

,
2

1
 ,

2

min

WW W min
W min max

max min max min

W
max

x th
r kr k r k thN x x th x th

th th th th
r k

x th

⎧
⎪ <
⎪

−⎪ ⋅ ⋅ ⋅
= − + ≤ <⎨ − −⎪
⎪ +
⎪ ≥
⎩

 Eq. 3-5

In Eq. 3-4 and Eq. 3-5, k is a positive constant that controls the dynamic range
of Nθ() and Nw(). rθ and rW are real numbers within the range [0, 1] and they control
the slopes of Nθ() and Nw(). thθ, thmin, and thmax are pre-defined thresholds. thθ
represents the worst situation that can be allowed for capturing the frontal face. thmin
represents the minimum face width for clear observation. On the other hand, when the
face width is wider than thmax, we think the facial image has achieved the level of
perfect observation. These thresholds can be varied by the users for different
applications.

Figure 3-4 Normalized function of the bias angle

0
x

()WN x

()1
2

Wr k
−

maxth

()1
2

Wr k
+

minth

0

()N xθ

x

()1
2
r

kθ−

()1
2
r

kθ+

thθ

27

Figure 3-5 Normalized function of the face width

The physical meaning of thθ is the worst situation for capturing the frontal face.
In other words, we hardly clearly see (or identify) someone’s face when the angle
between face vector and camera vector exceeds thθ. Similarly, thmin and thmax represent
the worst and best case of face width in the image respectively. When the face width
is smaller then thmin, we also hardly see the clear face because of the low resolution.
Conversely, when the face width reaches or exceeds the threshold, thmax, we can
clearly to identify this face. The function of rθ and rW are to adjust the slopes of the
linear part of the normalized functions and the maximal and minimal values of the
normalized functions. It will affect the weightings of the orientation and clearness.
For example, if rW becomes smaller, the largest and smallest values of the normalized
function will be closer and the difference between them is smaller. That means the
discrimination of the face resolution is decreased. Under the extreme condition, if we
let the rW be zero (and it will make the slope zero), any face width will get the same
normalized value. That makes no difference no matter what the face width is after the
normalization.

The goal is that our system finds a camera coordination way to make each θij as
small as possible while make each Wij as large as possible. With the definitions of Nθ

and NW, we then define Eval() (Eq. 3-6) for the face capture of the j-th target by the
i-th camera. It is defined to evaluate the different coordination. The large the value of
Eval() is, the better the performance of coordination is.

 () () ()
1 1

m n

ij ij W ij
i j

Eval AP ap N N Wθ θ
= =

= ∑∑ Eq. 3-6

In Eq. 3-6, m and n are the number of cameras and targets respectively. AP denotes a
set of camera assignments and is defined as Eq. 3-7:

 { } , 1, 2, , , 1, 2, ,ijAP ap i m j n= = =… … Eq. 3-7

apij represents the binary assignment parameters. apij is equal to 1 if the i-th camera is
assigned to monitor the j-th target, and apij is equal to 0 otherwise. Hence, for a
camera assignment AP, Eval(AP) represents the overall observation levels of the n
targets by all m cameras. When more targets can be better observed by their
corresponding cameras, with smaller shoot angles and larger face widths, we have a
larger Eval(AP). Hence, the goal of the proposed camera coordination system is
simply to find the optimal camera assignment that reaches the largest Eval(AP).
Moreover, as these n targets keep moving within the monitored scene, we need to

28

adaptively adjust the assignment of cameras to achieve the most preferable
observation.

Besides, to simplify the problem, we also add one extra constraint over Eq. 3-6.
The constraint is stated in Eq. 3-8:

1

1, 1, 2, ,
m

ik
i

ap k n
=

= =∑ … Eq. 3-8

This constraint implies that we only take into account the camera view that is assigned
to the target even though that target may also appear in some other views.

Because there are two criteria, one target has two observation level, the level of
orientation (shoot angle) and the level of clearness (face width). They are the values
of the two normalized functions, Nθ and NW, respectively. The zero values of the
normalized functions mean that the situation of orientation or clearness is too bad to
identify the target’s face. Here, we multiply these two scores together to form the final
score. This is because we consider these two scores to be dependent. We consider that
if one of the scores for a target is low, we will not be able to clearly see that target
even though the other score is high. Hence, as one score is high but the other one is
low, the final score is still low. In addition, when the performance of orientation or
clearness is lower than a threshold, according to Eq. 3-4 or Eq. 3-5, the value of Eq.
3-6 (total score) is set to zero.

We add all the targets’ overall observation levels together to evaluate the
performance of camera coordination for all targets. Obviously, according to the
mapping functions we define, the value of the evaluation function (Eq. 3-6) will
become larger if the performance of coordination gets better. That is to say, more
frontal and higher resolution faces. Thus, the goal is that we want to find a set of
camera assignment (assigned parameters), AP, which makes the evaluation function
maximal. In other words, we want to find an optimal AP here.

3.2. SIGNIFICANCE WEIGHT

In theory, we can always find an optimal AP for the evaluation function at any
time instant. However, people’s behavior is highly diverse. It is very likely that even
with the optimal camera assignment we still cannot clearly capture all people’s faces
at some time instants. In addition, the evaluation function takes all people into

29

account and the evaluation function is actually a tradeoff among all cameras. It may
happen that some people’s observation levels are sacrificed to gain other people’s
observation levels. Hence, the proposed system cannot guarantee that all people’s
faces are always clearly observed.

Because the evaluation function takes all people into account, sometimes the
tradeoff situation happens when we carry out the optimization. It means that maybe
some people’s observation level is sacrificed to increase some other people’s
observation level. The increased value of evaluation function may be larger than the
sacrificed value so the system will prefer this kind of coordination during the
optimization process. Figure 3-6 shows an example of the optimization tradeoff. In
Figure 3-6, two different cases are illustrated. Compared with Figure 3-6(a), Camera 2
in Figure 3-6(b) cannot capture Person 3’s frontal face and we lose some scores on it.
However, the FOV of Camera 1 becomes small because Camera 1 only needs to take
charge of Person 1 and Person 2. As the FOV becomes smaller, the scores of Person 1
and Person 2 increase. The total increased amount is larger than the decreased amount
and the total scores become higher.

The cases that the system cannot always cover all people’s faces are unavoidable.
However, we still hope to clearly see the unclear faces in the next moment. We hope
we’ll be able to clearly see all people’s face during some periods of time and try to
capture as many frontal high-resolution facial images as possible.

To deal with this problem, we assign each target a significance weight to
represent the priority of that target. In other word, it represents the importance of the
target. This weight will increase if the target hasn’t been clearly observed in the past
few moments. On the contrary, if that target has already been clearly observed for a
while, we decrease its significance weight. Here, target’s “clearness” is defined by
his/her observation level. The zero observation level means that the corresponding
target cannot be observed at all.

30

(a) (b)

Figure 3-6 (a) lower (b) higher overall observation level

3.2.1. WEIGHTING UPDATE

The usage of significance weight is to help the clear capture of targets’ faces. The
values of weights are closely related to the situation that targets cannot be clearly
captured. The trend of significance weight roughly follows the states of the clearness.
Here, we design the adjustment of significance weight to include three major states:
rise, hold, and decline.

3.2.1.1. RISE STATE

The weight increases continuously in the rise state. When the face of a target
cannot be clearly captured, we linearly increase its significance weight. When the
weight is raised, the system will pay more attention to that target and it’s more likely
that the target can be better observed. The value of weight is 0 initially. When a
target’s face is unclear, his or her weight starts to increase. If the unclear situation is
continuous, the value will also increase continuously. It will stop increasing when the
unclear situation is improved.

3.2.1.2. HOLD STATE

Once if the system has adjusted its camera coordination to take clear facial

Camera 1

Camera 2

People

1
2

3

4 5

Camera 1

Camera 2

People

1
2

3

4 5

31

picture of that target, the significance weight will be held at a high value for a while.
At this time, we stop to increase the value of the significance weight because we have
already clearly seen the target’s face. Although we stop to increase the weight, we do
not decrease the value of weight immediately. This is because we hope we can clearly
see the person’s face for a while, but not just a short glimpse. Hence, the significance
weight is held in the holding state for a pre-defined period to ensure the target’s face
can be clearly observed for a long enough period.

3.2.1.3. DECLINE STATE

After keeping a period of “hold”, the significance weight of the target is
decreased gradually as long as the target’s face can be clearly captured. This is
because we have paid attention to the target for a long enough period in the holding
state and the target is no longer as important as before. Similar to the rise state, we
reduce the value linearly. The value will be continuously reduced to zero as long as
the target’s face can be clearly captured continuously.

These three states are alternately taken place until the weight comes back to the
initial state, that is, the zero value. Once a target’s face becomes unclear, his/her
weight is in the “rise” state again. As the target’s face can be clearly observed, the
state switches to “hold” for a while. If the face is continuously clear after a period of
time, the state will switch to the “decline” state. However, if the face becomes unclear
suddenly during the “hold” or “decline” state, it will switch back to the “rise” state to
enforce a higher priority in capturing the clear image of that face.

Figure 3-7 Variation of the significance weight over time

An example of the switching of these three states is illustrated in Figure 3-7. At
the beginning, the target’s face is not clear within the “rise” state. T represents the

time

weight
Initial State
Rise State
Hold State
Decline State

T T

32

holding time. As illustrated in Figure 3-7, whenever the unclear condition happens,
the “rise” state takes place again. On the other hand, as the target can be clearly
observed for a while, the weight drops to zero in the “decline” state.

3.2.2. UPPER BOUND OF UNCLEAR PERIOD

Although the significance weight can help us in alleviating unclear observation,
it still takes a while for an unclear observed target to get clearly observed. In some
situations, the lag can be too long for practical usage. Hence, we put an upper bound
over the unclear period. If the time period that a target hasn’t been clear observed
exceeds a pre-defined threshold, its significance weight is dramatically raised to a
very large value. This pushes the camera coordination system to take quick response
to take good care of that target.

As we dramatically raise the weight to a very large value, the people who are
unclear before will have a very high priority to be clearly captured. Similar to the hold
state mentioned in Section 3.2.1.2, this large value is also held for a long enough
period. However, this period can be different than the aforementioned “hold” period.
Moreover, the value of the weight is reset to zero this time when the high-value hold
process ends, as illustrated in Figure 3-8.

On the other hand, we also take the value of significance weight into account.
When the value of the weight increases to a certain level but the corresponding target
is still not captured well, we also adjust the target’s significance weight to a very high
value, as illustrated in Figure 3-9.

33

Figure 3-8 Illustration of the weighting variation for the case of time limitation

Figure 3-9 Illustration of the weighting variation for the case of weighting limitation

time

weighting
Initial State
Raising State
Holding State
Diminishing State

T Tlh

time

weighting
Initial State
Raising State
Holding State
Diminishing State

T TlhTth

34

3.2.3. COMBINING WEIGHT WITH EVALUATION

Because we want to take significance weight into account when we adjust the
camera coordination, we incorporate significance weight into the evaluation function.
Our object is that a target with higher weight will have a higher priority to be clearly
captured. To realize the concept of importance weight, we add penalty term into the
definition of Eval(). If a target is assigned to a camera which cannot clearly capture
his/her face by an AP, the evaluated value of the AP will be added a penalty term.
This causes a value to be deducted from the original evaluated value. Hence, we
redefine the evaluation function as below:

 () () ()()
1 1

m n

ij ij W ij ij
i j

Eval AP ap N N W pvθ θ
= =

= −∑∑ Eq. 3-9

where the penalty term pvij is defined as

 ij ij j ppv cf sw c= ⋅ ⋅ Eq. 3-10

In Eq. 3-10, swj stands for the significance weight of the j-th target, cfij represents the
clear factor of the j-th target with respect to the i-th camera, and cp is a controlling
parameter. The clear factor cfij is equal to 0 if the j-th target can be clearly observed
by the i-th camera. Otherwise, cfij is equal to 1. Apparently, the penalty value is
determined by the significance weight. The higher the weight is, the larger the penalty
value is. With the inclusion of the penalty term, the camera coordination system can
automatically pay more attention to these targets with larger significance weights.

3.3. MODIFIED DISCRETE BINARY PSO

In Eq. 3-9, we redefine our problem and want to find an AP to maximize the
evaluation function. In mathematics, this is simply an optimization problem.
Unfortunately, Eq. 3-9 has a nonlinear and non-differentiable form. To find the
optimal AP, these classical optimization algorithms, like the gradient descent
algorithm, cannot be used. Instead, we adopt the particle swarm optimization
algorithm [12] mentioned in Section 2.3.1 to tackle this problem. Due to the binary
nature of the assignment parameters, we actually adopt the discrete binary particle
swarm optimization proposed in [14]. Moreover, since we have added one constraint
in the evaluation function, we further make some modifications over the discrete

35

binary particle swarm optimization algorithm to tackle the problem.

According to the discrete binary PSO algorithm, the evaluation function Eq. 3-9
is equal to the objective function in Eq. 2-4. We want to find an AP that maximizes
the evaluation function. AP is equivalent to the x in Eq. 2-4. Here, we can consider it
as a bit string composed of a set of apij. An AP can be thought as a particle position
too. In the first step of DBPSO, we will generate a number of AP’s first.

3.3.1. PARTICLE GENERATION

In the modified DBPSO, each particle represents a possible AP. In the original
form of PSO, particles are randomly generated in the initial stage. The use of random
particles increases the probability of finding the global optimum. However, this also
causes a large number of iterations. To speed up the computations, we develop two
simple but effective schemes to generate particles. At the first scheme, we utilize
clustering to generate a reasonable initial guess about AP and use it to produce
particles. In addition to the initial clustering over the monitored targets, we also utilize
the temporal information in the second scheme to speed up the optimization process
in subsequent frames.

3.3.1.1. FEATURE SPACE

In our approach, we consider that the people with similar characteristics should
be assigned to the same camera. The characteristics we think are people’s positions
and orientations. For the sake of efficiency, people who are close to each other and
have similar face orientations are more likely to be assigned to the same camera.
Hence, we use the clustering technique first for the design of camera coordination.

We first create a feature space and convert people’s characteristics into this space.
In other words, the characteristics of each person correspond to a data point in the
feature space. Here, we define the feature space based on people’s positions and
orientations. We then perform clustering over the data points. For people’s positions,
we consider the 2D coordinates (X,Y). For people’s orientations, we use the inner
product of the camera vector and the face vector. The camera vector and face vector
are illustrated in Figure 3-2. Here, we do not directly use the inner product of these
two vectors. Instead, we check the cosine of the included angle between these two
vectors.

36

However, position and orientation are very different physical quantities. Hence,
we further normalize these two quantities. Since the value of the cosine of the
included angle is within the range [-1, 1], we normalize the positions to be within the
same range. That is, the origin of the (X,Y) coordinates is translated to the center of
the space. Then, the new coordinates of X and Y are divided by the half width of the
space to get the normalized coordinates (X’ ,Y’), as illustrated in Figure 3-10.

Figure 3-10 An example of coordinate normalization

In Figure 3-10, we use a to normalize the position because it is longer than b. With
this normalization, the values of X’ and Y’ are in the range [-1, 1].

Assume m is the number of cameras. We define the dimension of the feature
space to be m+2. For example, as we install four PTZ cameras, the feature space has 6
dimensions and each target corresponds to a 6-D data point as expressed in Eq. 3-11:

 ()1 2 3 4X', Y', , , , IP IP IP IPλ λ Eq. 3-11

where λ is a scalar to balance between positions and orientations. In Eq. 3-11, X’ and

Y’ represent the normalized coordinates of the target on the ground plane. Both X’

and Y’ have the range [-1, 1]. IPi represents the normalized inner product between

jface and ijcam . IPi has the range [-1, 1]. Moreover, because the orientation

characteristic has m dimensions but the position one only has two, we use λ to balance

it. In this case, we choose λ = 2.

X

Y
X1

Y1
Moving place

Translation to the center

Person

a

b

() 1 1X YX', Y' ,
/ 2 / 2a a

⎛ ⎞= ⎜ ⎟
⎝ ⎠

37

3.3.1.2. GENERATION BY CLUSTERING

After converting each target into a data point in the m+2 dimensional feature
space, we choose the k-means clustering algorithm [8] to cluster n targets into m
clusters. After clustering, we assign each group to a camera. Since the centroid of
each group represent the mean of the clusters, we use these centroids to help the
assignment of cameras. For each camera, the values of IP’s of the centroids are
compared with each other. We assign to that camera the group of feature points which
has the smallest IP. For example, assume we have four PTZ cameras and four groups.
For Camera 1, four IP1’s are compared and the group which has the smallest IP1 is
assigned to Camera 1. The same process is carried out for the remaining cameras.

This clustering creates the initial guess about the optimal camera assignment.
That is to say, we obtain an initial AP (a set of apij). We then randomly generate a few
particles around the initial AP. For example, assume there are six people and three
PTZ cameras. Initially, the first and second, third and fourth, and fifth and sixth
people are assigned to Camera 1, Camera 2, and Camera 3, respectively. Here, we
change one target’s assignment at one time. If the first target is selected, we then
randomly choose a camera for the target to be assigned to. Of course, since the
original assignment of the first target is Camera 1, Camera 1 is excluded from the
random selection process. After the random selection, we get a new AP, which is very
close to the initial AP.

In the previous paragraph, we only change one target’s assignment to generate a
new AP. In practice, if the numbers of people and particles increases, we may change
the assignment of more targets to increase the randomness. We can also repeat the
above process several times to generate a number of different random APs as a
portion of the initial particles.

3.3.1.3. GENERATION BY THE LATEST ASSIGNMENT

In addition to the initial clustering over the monitored targets, we also utilize
the temporal information to speed up the optimization process in subsequent frames.
In general, the time interval between two consecutive frames is small and we can
reasonably assume the variations over targets’ positions and orientations are small
between successive frames. Hence, the optimal AP at the previous time instant can be
used as the initial guess of AP at the current time instant. Here, the latest optimal AP

38

can be obtained from latest result of the DBPSO. Then, we use it to generate a number
of different AP’s. The generating process is the same as that in Section 3.3.1.2.

3.3.1.4. GENERATION BY RANDOM SELECTION

Even though we have used the initial clustering and the temporal prediction to
speed up the computations of DBPSO, the optimization process may easily fall into a
local optimum if we only use these particles generated around the initial guess. Hence,
in our implementation, a portion of particles are still randomly generated. These
random AP’s are generated by choosing the assignment from a uniform distribution,
with mutually independent people assignment. For example, we assume there are four
PTZ cameras and each target has four possible assignments. Then, all these four
choices are equally probabilistic.

3.3.2. OPTIMIZATION WITH CONSTRAINTS

The DBPSO [14] technique is performed after the generation of initial particles.
The objective function is defined in Eq. 3-9. Here we want to find a set of assignment
parameters, an AP, which maximizes the objective function. However, the DBPSO
proposed by Kennedy and Eberhart in [14] does not concern the problem with
constraints. Hence, we also make some modification over DBPSO to fit for our
constrained problem.

In our approach, the main optimization process basically follows the algorithm
mentioned in Section 2.3.1.2. First, the best previous position of each particle, pk,ij,
and the best global position, pg,ij, are calculated. Second, the velocity of each apij is
updated by Eq. 2-5 and we rewrite it with respect to the assigned parameters:

 () ()1
, 1 , , 2 , ,

t t t t
k ij ij k ij k ij g ij k ijv v p ap p apω ϕ ϕ+ = ⋅ + ⋅ − + ⋅ − Eq. 3-12

where t represent the time instant, k is the index of particle, ω is the inertia factor,
and 1ϕ and 2ϕ are random numbers generated from the uniform distribution in the
interval between 0 and 1. We choose the inertia factor from the range [0.8 1]. Finally,
the positions of particles are updated according to Eq. 2-6. Here, we only have to
replace the parameter x with ap. Eq. 3-13 is the rewritten formula:

39

() ()()1 1

, ,

1
,

0,1 1

 0

t t
k ij k ij

t
k ij

if rand S v then ap

else ap

+ +

+

< =

=
 Eq. 3-13

where rand(0,1) is a random number selected from a uniform distribution in [0, 1],
and S is the sigmoid function. No matter whether the objective function is a
maximization or minimization problem, the velocity and position updating functions
are the same. All we need to do is to replace the parameter representation.

Similar to the DBPSO algorithm, we repeat this process until the stop criterion is
reached. However, due to the constraint that the assigned parameters must obey Eq.
3-8, we slightly modified the original DBPSO to take into account the constraint. As
before, the positions of particles are updated according to Eq. 3-13. However, because
the random factor is used, we cannot assure that the assigned parameters will be 0 or 1.
Naturally the constraint formulated in Eq. 3-8 is not guaranteed to be obeyed. Once if
the constraint fails, we try to “repair” the assigned parameters to make them fit the
constraint. The illegal situation occurs as one target is either assigned to more than
one camera or assigned to no camera after the DBPSO process.

To “repair” the assignment means that we have to design a method to alter the
“wrong” particles of the DBPSO. For the case that some target is assigned to more
than one camera, we modify the assigned parameters in the apik set for the target k and
make only one assigned parameter be 1. The simplest approach is to randomly select
one assigned parameter to be 1 among the assigned parameters which are 1 for this
target. However, as we physically implemented this simple method, the experiments
showed that the particles usually do not converge quickly in a few iterations. Hence,
we developed an alternative method that has a better performance. In the following,
we’ll explain how we modify the original DBPSO to fit the constraint.

According to the concept of PSO, the particles will gradually move toward the
best position based on its previous best experience and the best global experience. We
utilize this concept and take these two positions into account as we carry out the
repair process.

40

Figure 3-11 The illustration of constraint repair of each iteration of binary PSO

When the assigned parameters for someone have multiple 1’s, only a single “1”
will retain while the others will be set zero. Every assigned parameter has its

New Particle Position
ap1k ap2k ap3k ap4k

1 1 0 1

Previous Best Position
ap1k ap2k ap3k ap4k

0 0 0 1

Global Best Position
ap1k ap2k ap3k ap4k

1 0 0 0

Repair Weighting
ap1k ap2k ap3k ap4k
C+1 1 1 C+1

1

rand(0, 1)

Scalar, C

Weighted Random Values
ap1k ap2k ap3k ap4k

(C+1)R1 R2 R3 (C+1) R4

Possibility, P(apik)
ap1k ap2k ap3k ap4k

(C+1)R1 R2 0 (C+1) R4

Comparing
apik = 1, if P (apik) is max.
apik = 0, otherwise

Repaired Result (example)
ap1k ap2k ap3k ap4k

1 0 0 0

41

possibility to be 1 during the process of selection. In our approach, the assigned
parameter which has the highest possibility of becoming 1 is retained. Here, if the
assigned parameter is 1 and its best previous value or the best previous global value is
1, it has higher possibility to retain as 1 in the repair process. That is to say, we tend to
choose the best local or global position when we encounter the constraint violation.

In the repair process, we randomly generate the possibilities for each assigned
parameter at the start. Then, we determine their weights according to its best previous
position and the best previous global position. Finally, the possibilities of the assigned
parameters are compared with each other. The assigned parameter that has the highest
possibilities will be kept while the others are set zero. Figure 3-11 shows an example
of the repair process. Here we assume that there are four PTZ cameras that aim at the
k-th target. We multiply the best previously assigned value and the best global
assigned value by a scalar, C, and add them together to form the repair weight. We
also add an extra one for all repair weights to keep them from being 0. Then, every
repair weighting is multiplied by a random number in [0, 1] to get the weighted
random value for each assigned parameter. After multiplying the weighted random
value with the new assignment, we compare the possibilities and keep the assigned
parameter whose possibility is the highest.

On the other hand, if the assigned parameters of a target are all zero,.we slightly
modify the repair process. As illustrated in Figure 3-12, we directly take the weighted
random values as the possibility and choose one ap to be 1 by comparing this
possibility. Compared with the original process, we only leave out the multiplication
of the unrepaired assigned parameters. The core concept is basically the same.

In the repair process, C is a weighting factor that affects the tendency of the
repair process. The value of C cannot be negative. If C becomes larger, the system
will prefer to choose the best previous assignment or the best global assignment. On
the contrary, if C becomes smaller, the repair process will be more like a random
selection. Finally, in Figure 3-13, we show the block diagram of the modified
optimization process.

42

Figure 3-12 Repair process for the no assignment case

Figure 3-13 Block diagram of the optimization process

Modified Binary
PSO

Particle
Generation

Significance weigh

Input Video

OVVV

PSO
Buffer

New Particle Position
ap1k ap2k ap3k ap4k

0 0 0 0

Weighted Random Values,
Possibility, P(apik)

ap1k ap2k ap3k ap4k
(C+1)R1 R2 R3 (C+1) R4

Comparing
apik = 1, if P (apik) is max.
apik = 0, otherwise

Repaired Result (example)
ap1k ap2k ap3k ap4k

1 0 0 0

43

3.4. CAMERA ASSIGNMENT

After carrying out the modified DBPSO, we get an optimal AP. This AP is the
globally optimal result found by the optimization process. So far, the cameras still
have no idea about who to look and where to look. Hence, we have to further convert
AP into the assignments of cameras.

3.4.1. WHO TO LOOK?

Every camera assignment should be determined before estimating the focusing
location. Because apij decide whether the i-th camera should take charge of the j-th
target, it is very easy to know the assignment of targets. We simply need to collect the
values of assigned parameters which are one and then get the assignment for each
camera.

3.4.2. WHERE TO LOOK?

In our system, one PTZ camera does not only capture one target’s facial image.
Hence, we have to adjust the field of view (FOV) of the camera to capture all the
people it wants to capture. In addition, the camera must also adjust its FOV to get as
high resolution as possible.

Figure 3-14 A camera takes charge of three people

Figure 3-14 is an example where a PTZ camera takes charge of three people. In
this kind case, we determine FOV of the camera first. This FOV cannot be too small
to capture all the people the camera wants to take charge of. On the other hand, we

Camera

People

FOV
1

2 3

44

hope this FOV can be as small as possible so that we can capture higher resolution
images of the faces. In Figure 3-14, we illustrate the selection of FOV that offers the
best resolution in the capture of all three persons’ faces. Here, we check every pair of
targets and find that the pair of Person 1 and Person 3 determine the minimal FOV for
the camera In this case, there are three possible combinations: the pair of Person 1 and
Person 2, the pair of Person 1 and Person 3, and the pair of Person 2 and Person 3.
Only the FOV formed by Person 1 and Person 3 can cover all these three people and it
is the minimal FOV we want to have for this camera.

The FOV of each pair of targets can be easily estimated. We can calculate the
camera-to-person vector first by the positions of the camera and person. Then, we
utilize the inner product and the triangular function to calculate the FOV for that pair.

Figure 3-15 Representation of FOV by vectors

Figure 3-15 shows the vector representation for the FOV. We can calculate 1v and

2v by the positions of the camera and people. Then, we use Eq. 3-14 to estimate the
FOV of the pair of people.

 1 2

1 2

FOV v vacos
v v

⎛ ⎞⋅⎜ ⎟=
⎜ ⎟⋅⎝ ⎠

 Eq. 3-14

After the FOV is determined based on the best combination of target pair, based
on the above process, we use angle bisector theorem to decide the direction in which
the camera should focus on. Figure 3-16 illustrates an angle bisector of a triangle. The
angle bisector theorem is that the angle bisector divides the opposite side into two
parts whose ratio is the same as the ratio of the adjacent sides. We can formulate it by
Eq. 3-15.

1v

2v
People

Camera

FOV

45

Figure 3-16 Angle bisector

 AB BD
AC CD

= Eq. 3-15

In addition, if we have a point that divides a line into two segments and we know the
length ratio of the two segments, we can calculate the coordinate of that point
according to Eq. 3-16:

, 0C B

D

BD m
nCD

mP nPP m n
m n

=

+
= + ≠

+

 Eq. 3-16

where PB and PC are the end point coordinates of the line segment and PD represents
the coordinate of the point of division, as illustrated in Figure 3-17.

Figure 3-17 Internal point of division of a line segment

There is an analogy between Figure 3-15 and Figure 3-16. We can think that point A
corresponds to the camera position while point B and C correspond to the people’s
positions. Obviously, the angle bisector corresponds to the optical axis of the camera.
In order to make the optical axis coincide with the angle bisector, the camera should
directly focus on the intersection point of the optical axis and the line through the two
people. In other words, that point should project on the image center (or principal

B D C

m : n

Angle bisector
A

B CD

46

point). This intersection point can be calculated by Eq. 3-15 and Eq. 3-16, according
to the positions of the camera and people.

3.5. CAMERA CONTROL

After we know the focusing direction and the FOV of cameras, we can adjust
the PTZ parameters to capture people’s faces. We adjust the PTZ parameters based on
a reference coordinate system. Figure 3-18 illustrates the pan and tilt angles of a PTZ
camera with reference to an axis and a plane, respectively. The camera center is at the
origin of the coordination system. The absolute pan angle is defined with respect to
the X axis and the tilt angle is defined with respect to the X-Y plane.

(a) (b)

Figure 3-18 (a) pan and (b) tilt angles with reference to the reference coordinate system

In general, the PTZ cameras can adjust its pan and tilt angles with reference to some
reference axes or planes. We only need to calculate the pan and tilt angles with regard
to the references axis or plane to control the PTZ cameras. Here we illustrate the pan
and tilt angle together in Figure 3-19. O is the origin of this coordinate system and is
also the camera center. P is the focused point and P’ is the point that P projects on the
XY plane. The pan angle, θ, is determined by the angle between positive x-axis and
OP' . Because we can get the coordinates of P’, the pan angle can be calculated by Eq.
3-17:

 '

'

p

p

y
atan

x
θ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 Eq. 3-17

where xp’ and yp’ are the x and y coordinates of point P’, respectively. Because the x
and y coordinates of the point P’ are the same with P, we can rewrite Eq. 3-17 as Eq.
3-18:

Y

Z

φ

X

Y

θ

47

 p

p

y
atan

x
θ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 Eq. 3-18

Figure 3-19 Illustration of pan and tilt angles

On the other hand, the tilt angle, φ, is determined by the angle between the X-Y plane
and OP . In other words, φ is the angle between OP and OP' . Hence, the tilt angle
can be obtained by Eq. 3-19:

' '

p

p p

z
atan

x y
ϕ

⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠

 Eq. 3-19

where xp’ and yp’ are the x and y coordinates of the point P’ and zp is the z coordinate
of point P. We can also rewrite Eq. 3-19 because the x and y coordinates of point P’
are the same with P. Eq. 3-20 states the tilt angle in terms of the coordinates of P:

p

p p

z
atan

x y
ϕ

⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠

 Eq. 3-20

where xp, yp, and zp are the x, y, and z coordinates of the point P, respectively.

Eq. 3-18 and Eq. 3-20 are based on the coordinates of the point P, with the origin
of the coordinate system being the camera center. We have to convert the coordinates
of point P into the coordinates with respect to the camera center before we calculate
the pan and tilt angles of the camera. So far, we have determined the pan and tilt
parameters of the PTZ camera. The zoom parameter will be discussed below.

In general, the PTZ camera seldom sets the FOV directly. On the contrary, it
often sets the focal length to adjust its FOV. Therefore, we need to convert FOV into

X

Y

Z

θ
φ

focused point

camera center

O

P

P'

48

the focal length for the control of the zoom parameter. The formulas that convert the
FOV of a rectilinear lens camera to the focal lengths are stated in following equations:

 ()

 2 2
x

image widthf
horizontal FOVtan

=
⋅

 Eq. 3-21

 ()

 2 2
y

image heightf
vertical FOVtan

=
⋅

 Eq. 3-22

where fx and fy are the horizontal and vertical focal lengths, respectively. According to
these equations and the FOV obtained in Section 3.4, we can calculate the focal length
of each PTZ camera.

3.6. ASSIGNMENT HOLD

However, there is usually a time lag before a PTZ camera moves to its
destination. If we change the camera parameters too rapidly, the cameras might not
correctly move to the destinations we want. For example, a PTZ camera may be
requested to pan right at the n-th frame but pan left at the (n+1)-th frame. However,
since the PTZ camera needs a time lag to move to the destination. The camera does
not actually move to the destination of the n-th frame but instead starts to change the
direction at the (n+1)-th frame. A quick change of commands may not only cause
failures in target tracking but also cause unpleasant observation in target tracking.

A too-fast swing of camera’s pose results from a quick change of the camera
assignment. In other words, it is caused by the fast variations of the optimal results.
Hence, in our system, we intentionally hold the result of optimization over a number
of frames so that the moving states of the PTZ cameras become more consistent and
more smooth over successive frames. Figure 3-20 shows the block diagram of the
camera adjustment. Holding the result of optimization only means that the cameras
keep taking charge of the same people within the holding frames. Camera assignment
still needs to be carried out at each frame because people are still moving and their
positions are changing. Although the holding procedure might cause some errors, the
errors are under control because typically people don’t have abrupt change in
movement during a short period. Of course, some exceptions are unavoidable and
from time to time some people’s faces might not be captured well. When this kind of
situation happens, the mechanism of significance weight starts to function. The details
of the significance weights have discussed in Section 3.2.

49

Figure 3-20 Block diagram of camera adjustment

3.7. OVERALL COORDINATION SYSTEM

To sum up, we show the overall block diagram of the proposed coordination system in
Figure 3-21. There are two main parts in the system – optimization and camera
adjustment. In the optimization stage, we try to find out an optimal solution to capture
as many frontal high-resolution people’s faces as possible in the scene. Here, we
design an evaluation function to achieve this goal and simultaneously avoid some
people from being unobserved for a long time. We find the best coordination by using
the modified discrete binary particle swarm optimization. Based on the coordination,
we control all the PTZ cameras on the camera adjustment stage. The pan, tilt, and
zoom parameters are calculated according to the result of modified DBPSO and the
PTZ cameras move to the assigned destinations to capture targets’ facial image. The
holding process is also added to avoid too-fast swings. .

Camera
Assignment

Frame Num. = Kn

Camera Control

Output Video

Modified Binary
PSO

Holding
Buffer

Significance
Weight

50

Figure 3-21 Overall block diagram of the proposed coordination system

Modified Binary
PSO

Particle
Generation

PSO
Buffer

Input Video

OVVV

Camera
Assignment

Holding
Buffer

Frame Num. = Kn

Camera Control

Output Video

Significance
Weight

51

Chapter 4.

SIMULATIONS
In this chapter, we will show and discuss our experimental results. We utilize OVVV
to simulate and evaluate the proposed coordination system. We create some indoor
environments where a few people are moving around. We use four PTZ cameras,
which are mounted on the ceiling in the four corners of the room, to simulate the
setup of the proposed coordination system. Figure 4-1 illustrates the installation of
these four PTZ cameras in the room. These PTZ cameras are calibrated and we know
their 3D positions. Moreover, the camera ground truth provided by OVVV is also
used to help camera calibration.

Figure 4-1 The installation of PTZ cameras

In this thesis, we mainly focus on the coordination of cameras. Here, we assume
the tracking of people has already been done by some means. That is to say, we have
already known each target’s position in advance. Since the ground truth provided by
OVVV contains people’s 3D coordinates on the ground, we use it directly as the
results of people tracking. However, since OVVV does not provide the ground truth
about the 3-D position of people’s faces, we simply define an average adult height and
add this height to the people’s ground positions to approximate the face positions. The

Indoor room

PTZ camera

52

face directions are estimated by the two consecutive frames. We assume that people
always look ahead so their facing direction can be estimated by two consecutive face
positions. With the above assumptions, we are able to each target’s face position and
orientation, as illustrated in Figure 3-2.

Figure 4-2 shows the experiment results of the test sequence SEQ-1. In this
sequence, people walk in groups initially. Then some people leave their partners and
join another group. The first figure illustrates the color labeling for the 9 people in the
scene. Each person is assigned a color and we use this color to plot a bounding box
for that person. In the following figures, we show a few sets of images captured at
different time instants. At each time instant, eight images are captured. They are
captured by four static cameras and four PTZ cameras, locating at different positions.
In each figure, the left four frames are captured by the static cameras, while the right
four frames are captured by the PTZ cameras. The use of static cameras can help the
reader to easily realize the relations among these nine people. On the other hand, the
images captured by the PTZ cameras demonstrate the results of camera coordination.

Color Labels

Time 15

53

Time 35

Time 55

Time 65

54

Time 80

Time 95

Time 110

55

Time 120

Time 135

Figure 4-2 Experimental results of the test sequence SEQ-1

In Figure 4-2, the person p8 is not captured well at Time 65 because of the
tradeoff in optimization, as mentioned in Section 3.2. In fact, this situation started at
Time 61, where the score of p8 drops to zero, as shown in Figure 4-3. In Figure 4-3,
we show all people’s score curves from Time 1 to Time 150, with the best score being
10 while the worst one being 0. Moreover, in this simulation, we set the holding time
to 10. That is, we always hold the camera assignment for 10 frames to see whether
there is any chance that the observation may get improved. Unfortunately, for this
case, the observation of p8 is not improved during the following 10 time instants.
Hence, at Time 71, a new assignment is ignited and the score of p8 gets raised
afterward. Please note that the significance weight of p8 keeps increasing during the
period from Time 61 to Time 70. Hence, at Time 71, p8 has already accumulated a
large value of significance weight and this offers p8 a very high priority in camera
assignment.

56

Figure 4-3 All people’s score curves of Sequence SEQ-1

The variations of weights are illustrated in Figure 4-4. The weight of p8 is raised
starting from Time 61. The significance weight is switched to the holding state at
Time 71 until the face of p8 can be captured. After his face can be well captured, the
weight diminishes to zero at Time 84.

Figure 4-4 All people’s significance weights of Sequence SEQ-1

If we do not apply the concept of significance weight to the coordination system,
the face of p8 will not be seen for a long time. Figure 4-5 shows p8’s score curve
without using the significance weight. We can see that p8 is not well captured during
a long period starting from Time 51 till Time 120. During this period, he gets only
zero score and his face is not observed at all. If he happens to stay in this scene only
during this period, then we’ll never be able to see his face. However, with the use of
significance weight, the period of invisibility can be shortened and the probability of
miss can be lowered.

57

Figure 4-5 Person p8’s score curve of Sequence SEQ-1 without applying significance weight

In this thesis, we set the threshold of tolerable period to 20 frames. That is, as
long as the score value of a target has been continuously zero for 20 successive
frames, we’ll assign that target a very high priority so that our system will try to
capture a clear picture of that target as soon as possible. Here, we adopt the
mechanism mentioned in Section 3.2.2. In order to verify the functionality of this
mechanism, we intentionally slow down the increment rate of the significance weight.
In this case, the significance weight of the unobserved target does not grow fast
enough and the period of being unobserved can easily exceed 20 frames. On the other
hand, the weight threshold is set to be 20. As shown in Figure 4-6 and Figure 4-7, the
value of weight is dramatically raised to 30 at Time 75 because the weight threshold
is reached. The value of weight keeps rising until Time 80 since the holding buffer
changes the assignment at Time 81. On the other hand, the value of weight is also
dramatically raised to 30 at Time 111 because the unobserved time period has reached
the threshold of tolerable period.

Figure 4-6 Illustration of the mechanism of unclear limitation

58

Figure 4-7 shows the corresponding score curve of Figure 4-6. The person gets out of
the zero score at Time 80 and keeps non-zero score for 10 successive time units.

Figure 4-7 The corresponding score curve of Figure 4-6

Figure 4-8 shows the experimental results of the sequence SEQ-2. In SEQ-2,
there are nine people in the scene. Different from SEQ-1, the people in SEQ-2 do not
walk in group. They all walk on different routes with different directions. It is
designed to simulate random walking people.

Legend

Time 15

59

Time 65

Time 95

Time 105

60

Time 125

Time 150

Figure 4-8 Experimental results of the test sequence SEQ-2

Figure 4-9 shows all people’s score curves of the sequence SEQ-2. We can
apparently see some differences between the score curves of SEQ-1 and SEQ-2. The
people’s scores of SEQ-1 are mostly higher than five while the scores of SEQ-2 are
not. This is because the people in SEQ-2 walk in chaos. However, since we want to
capture as many frontal people’s faces as possible at each time instant, some people
may not be well captured. Although the results are not as satisfactory as that of SEQ-1,
each target’s score is still higher than five over a certain period of time. This means
we have clearly captured the frontal faces of all targets for a period of time. This will
help us in recognizing the identity of each person in the monitored scene.

61

Figure 4-9 All people’s score curves of the sequence SEQ-2

Figure 4-10 shows the experimental results of the sequence SEQ-3. There are six
people in SEQ-3. They walk around a table, which can be seen by the static cameras.
They do not walk in groups. Some people sometimes walk closely but sometimes
walk alone. SEQ-3 is used to simulate the scenario that people walk around some
obstacles, like tables or cabinets.

Legend

Time 50

62

Time 90

Time 120

Time 130

63

Time 170

Time 280

Figure 4-10 Experimental results of the test sequence SEQ-3

Figure 4-11 shows all people’s score curves of Sequence SEQ-3. The scores are
high at most of the time. However, we can notice that people’s scores go down
between Time 110 and Time 160. This is because people are changing their directions
around that time. The results show that people are clearly captured except the instants
of changing directions.

64

Figure 4-11 All people’s score curves of sequence SEQ-3

Because the people in the sequence SEQ-3 walk around a big table, they keep
similar conditions for a while. Hence, the PTZ cameras do not need to change their
states rapidly. In SEQ-4, we test a rapid changing case. There are six people in SEQ-4
and they only walk around a chair within a small region. They do not walk in certain
kinds of groups, either. Figure 4-12 shows the experimental results of SEQ-4. We can
notice that the PTZ cameras switch to take charge of different people more frequently.

Legend

Time 25

65

Time 55

Time 115

Time 145

66

Time 225

Time 280

Figure 4-12 Experimental results of the test sequence SEQ-4

Figure 4-13 shows all people’s score curves of SEQ-4. The chances that people’s
scores go down in a short period of time are increased apparently. The status of
“going down” is similar to that in SEQ-3 (see Figure 4-11) but the frequency of
“going down” is much higher in SEQ-4.

Figure 4-13 All people’s score curves of Sequence SEQ-4

67

Figure 4-14 shows the experimental results of the sequence SEQ-5. There are
seven people in the scene of SEQ-5. SEQ-5 is somewhat similar to SEQ-1. The
people also walk in groups in SEQ-5. However, the people in SEQ-5 meet together
and change partners more frequently.

Legend

Time 75

Time 125

68

Time 195

Time 240

Time 250

69

Time 275

Figure 4-14 Experimental results of the test sequence SEQ-5

Figure 4-15 shows all people’s score curves of SEQ-5. Compared to Figure 4-3, we
notice that the number of people whose scores go down are increased. Nevertheless,
these scores still keep high at most of the time.

Figure 4-15 All people’s score curves of Sequence SEQ-5

Table 4-1 shows the statistical results of all experimental sequences. The
“average score” is the average score for all people in a sequence. The “unclear rate” is
the average ratio of the zero-score time units over the total time units. The highest
average score is 10 and the lowest is 0. Here, the dimension of each image frame is
320×240 for all experiments. We set the value of thmax, thmin, and thθ to be 50, 15, and
π/2, respectively. The upper bound of the “unclear period” is set to 20.

According to the average score of all sequences, we can approximate the average
face width in the image and the average shoot angle with respect to the camera. The
average face width is 45 pixels and the average shoot angle is 13 degrees. According
to the average unclear rate, the probability that we cannot identify a target is about
1.61%.

70

Table 4-1 Statistical results of all experimental sequences

Average Score

(min, max) = (1, 10)
Unclear Rate

(%)
SEQ-1 (9) 7.5355 2.00
SEQ-2 (9) 5.0644 3.93
SEQ-3 (6) 7.6656 0.56
SEQ-4 (6) 8.0526 0.17
SEQ-5 (7) 8.3151 1.38
Average 7.3266 1.61

We compare the performance of the proposed modified DBPSO with that of the
original DBPSO. The performance is tested based on the same sequences. The
optimization processes are implemented with 30 particles and the processes stop after
30 iterations. The results are compared in Table 4-2. In Table 4-2, 25 percents of the
results generated by the proposed modified DBPSO are better than that of the original
one. Only 1.4 percents of the results are worse than that of the original DBPSO. In
Table 4-3, we shorten the iteration number from 30 to 20. It canbe seen that as the
number of iterations decreases, the proposed modified DBPSO method performs even
better.

Table 4-2 Comparison between the modified DBPSO and the original DBPSO

(30 iteration)

Better
(%)

Equal
(%)

Worse
(%)

SEQ-1 (9) 55.00 42.50 2.50
SEQ-2 (9) 58.50 37.00 4.50
SEQ-3 (6) 1.39 98.61 0.00
SEQ-4 (6) 0.00 1.00 0.00
SEQ-5 (7) 12.22 87.78 0.00
Average 25.42 73.18 1.40

71

Table 4-3 Comparison between the modified DBPSO and the original DBPSO

(20 iteration)

Better
(%)

Equal
(%)

Worse
(%)

SEQ-1 (9) 76.00 24.00 0.00
SEQ-2 (9) 82.00 11.50 6.50
SEQ-3 (6) 8.89 91.11 0.00
SEQ-4 (6) 3.06 96.94 0.00
SEQ-5 (7) 23.75 76.25 0.00
Average 38.74 59.96 1.30

Table 4-4 shows the comparison of iteration number between the original and
the modified binary PSO. The iteration number of the modified DBPSO is the
iterations executed until the result converges. We compare the number of iterations
that can achieve the same results by using the original DBPSO. The results are shown
in Table 4-4. Here we use 30 particles to carry out this comparison. According to the
statistics, the modified binary PSO in average saves 92-percent iterations. We do the
comparison again by using 20 particles and show the results in Table 4-5. Because of
the decrease in particle number, more iterations are needed to find the optimal
solution. In comparison, the proposed modified DBPSO only need slightly more
iterations to find the optimum.

Table 4-4 Comparison of iteration numbers (30 particles)

MDBPSO
(Iteration)

DBPSO
(Iteration)

Reduction
(%)

SEQ-1 (9) 2.0000 40.2167 95.03
SEQ-2 (9) 2.0000 52.8778 96.22
SEQ-3 (6) 2.0000 9.7472 79.48
SEQ-4 (6) 2.0056 8.4138 76.23
SEQ-5 (7) 2.0028 16.0344 87.53
Average 2.0017 25.4580 92.14

72

Table 4-5 Comparison of iteration number (20 particles)

MDBPSO
(Iteration)

DBPSO
(Iteration)

Reduction
(%)

SEQ-1 (9) 2.0000 50.5444 96.04
SEQ-2 (9) 2.0050 65.2833 96.94
SEQ-3 (6) 2.0028 15.8583 87.39
SEQ-4 (6) 2.0000 12.7194 84.28
SEQ-5 (7) 2.0031 22.8781 91.26
Average 2.0022 33.4567 94.02

73

Chapter 5.

CONCLUSIONS
In this thesis, we construct a coordination system of PTZ cameras to control

multiple PTZ cameras to capture as many frontal high-resolution facial images as
possible. We coordinate multiple PTZ cameras to capture people’s faces according to
their face resolutions on the images and the directions of the frontal faces with respect
to the cameras. We propose the significance weight for each person and the
coordination is affected by these weightings. The significance weight is proposed
because the situation that someone’s face cannot be clearly captured is hardly avoided.
The proposed system aims to control PTZ cameras to clearly capture those targets that
haven’t been clearly observed before. In the proposed system, we define the
evaluation function according to the above factors. We then try to find an optimal
solution for the evaluation function. In other words, we attempt to find the best
coordination approach to capture people’s faces. We utilize discrete binary particle
swarm optimization technique to find the solution. Due to some requirements of our
system, we further modify the DBPSO algorithm to improve the effectiveness. Finally,
the PTZ parameters of PTZ cameras are adjusted according to the result of
optimization.

Because different persons may have different demands, some parameters of the
proposed coordination system can be adjusted by users. Users can define their own
thresholds. For example, the threshold of face width in the images is adjustable. In
addition, the proposed system does not limit the number of PTZ cameras and their
placement. No matter how many PTZ cameras there are, we can still use the proposed
algorithm to accomplish the task of camera coordination.

74

REFERENCES
[1] C. Micheloni, G. L. Foresti and L. Snidaro, “A cooperative multicamera system

for video-surveillance of parking lots,” IEE Symposium on Intelligence
Distributed Surveillance Systems, pp. 1-5, Feb. 2003.

[2] C. Micheloni, G. L. Foresti and L. Snidaro, “A network of co-operative cameras
for visual surveillance,” IEE Proceedings on Vision, Image and Signal
Processing, vol. 152, pp. 205-212, April 2005.

[3] Nyoun Kim, Ig-jae Kim and Hyoung-gon Kim, “Video Surveillance Using
Dynamic Configuration of Multiple Active Cameras,” IEEE International
Conference on Image Processing, pp. 1761-1764, Oct. 2006.

[4] A. Hampapur, L. Brown, J. Connell, A. Ekin, N. Haas, M. Lu, H. Merkl, and S.
Pankanti, “Smart video surveillance: exploring the concept of multiscale
spatiotemporal tracking,” IEEE Signal Processing Magazine, vol. 22, pp. 38-51,
Mar. 2005.

[5] A. Khiat, S. Yous, T. Ogasawara and M. Kidode, “Combining Fixed Stereo and
Active Monocular Cameras into a Platform for Security Applications,” IEEE Int.
Conf. on Robotics and Biomimetics, pp. 1134-1139, Dec. 2006.

[6] Faisal Z. Qureshi and Demetri Terzopoulos, “Surveillance Camera Scheduling: A
Virtual Vision Approach,” Multimedia Systems, vol. 12, pp. 269-283, Dec. 2006.

[7] Faisal Z. Qureshi and Demetri Terzopoulos, “Surveillance in Virtual Reality:
System Design and Multi-Camera Control,” IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1-8, Jun. 2007.

[8] J. B. MacQueen, “Some Methods for Classification and Analysis of Multivariate
Observations,” Proceedings of 5-th Berkeley Symposium on Mathematical Statics
and Probability, Berkeley, University of California Press, pp. 281-297, 1967

[9] J. C. Dunn, “A Fuzzy Relative of the ISODATA Process and Its Use in Detecting
Compact Well-Separated Clusters,” Journal of Cybernetics, vol. 3, pp. 32-57,
1973.

[10] S. C. Johnson, “Hierarchical Clustering Schemes,” Psychometrika, vol. 2, pp.
241-254, 1967.

[11] Edwin K.P. Chong and Stanislaw H. Zak, “An Introduction to Optimization,
second edition,” Wiley Press, Jul. 2001.

[12] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” Proceedings of the
IEEE International Conference on Neural Networks, vol. 4, pp. 1942-1948,
1995.

[13] J. Kennedy, R. C. Eberhart and Y. Shi, “Swarm Intelligence,” Morgan Kaufmann

75

Academic Press, 2001.
[14] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm

algorithm,” IEEE International Conference on Systems, Man, and Cybernetics,
vol. 5, pp. 4104-4109, Oct. 1997.

[15] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces,” Journal of Global
Optimization, vol. 11, pp. 341-359, Dec. 1997.

[16] S. Das and A. Abraham and Amit Konar, “Particle Swarm Optimization and
Differential Evolution Algorithms: Technical Analysis, Applications and
Hybridization Perspectives,” Advances of Computational Intelligence in
Industrial Systems, Studies in Computational Intelligence, pp. 1-38, 2008

[17] F. Qureshi and D. Terzopoulos, “Towards Intelligent Camera Networks: A Virtual
Vision Approach,” In Proc. VSPETS 05, pp. 177-184, 2005.

[18] X. Desurmont, J-B. Hayet, C. Machy, J-F. Delaigle and J-F. Macq, “On the
performance evaluation of tracking systems using multiple pan-tilt-zoom
cameras,” Videometrics IX, part of the IS&T/SPIE Symposium on Electronic
Imaging 2007, pp. 28-30, Jan. 2007.

[19] G. R. Taylor, A. J. Chosak, and P. C. Brewer, “OVVV: Using Virtual Worlds to
Design and Evaluate Surveillance Systems,” IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1-8, June 2007.

