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多攝影機運動捕捉系統中基於人體模型之姿態

估測研究 

研究生：蕭晴駿      指導教授：王聖智 博士 

 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

摘要 

 不論在安全監控、人機互動、電腦動畫或甚至醫學應用上，人物

動作的擷取與分析是個相當重要的議題。在本論文中，我們提出一個

在多攝影機環境下，利用人體模型估測目標人物的姿勢與行為。我們

使用流形嵌入技術中的拉普拉斯特徵映射，將三維人形的幾何形狀忠

實地轉移到另一個容易切割分析的高維度空間，正確地切割出三維人

形的各個部位並且找出三維人形的骨骼架構，以利後續行為分析的動

作。當擷取出三維人形的骨骼架構後，我們利用粒子群體最佳化在高

維度空間中有效地找出最佳姿態估測結果。我們的系統由影像的擷取

至姿態的估測完全自動化，並且不需要在人體上貼附感應物，即可結

合肢體的運動限制和時間軸上的動作流暢限制，估測多種動作。 
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Student : Ching-Chun Hsiao   Advisor : Dr. Sheng-Jyh Wang 
 

Department of Electronics Engineering, Institute of Electronics 

National Chiao Tung University 

Abstract 

 In this thesis, we propose a 3-D human body pose estimation method 

using multiple cameras. The reconstructed human body is transformed to 

a high dimensional space using our modified Laplacian Eigenmap. In this 

eigenspace, the body parts can be segmented more efficiently and easily. 

Then, the 3-D skeletons of the human body are extracted to obtain the 

kinematic information. Finally, pose estimation is performed by fitting a 

prior 3-D model to the extracted skeleton via particle swarm optimization 

(PSO). PSO is suitable for the optimization problem with nonlinear cost 

functions and doesn’t need too much computational cost. Furthermore, 

with our proposed human model, the motion constraints can be easily 

combined with the optimization process. Temporal consistency of the 

pose estimation results is also achieved by adding temporal constraints 

over PSO. Our method can deal with various kinds of motion and has 

robust pose estimation results.  
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Chapter 1.  Introduction 
Human motion capture is to estimate the configuration of human body parts 

using inputs from one or more video streams. It has gained in popularity among 
surveillance, human-machine interaction, computer animation and medical 
applications. Typically, a motion capture system can be classified into marker-based 
or markerless. Marker-based motion capture systems require the human body be 
equipped with markers. However, the use of markers is very cumbersome and may 
restrict the freedom in observation. Furthermore, this approach is expensive and it is 
hard to align kinematic motion to marker data. Recently, there have been two main 
approaches, monocular approach and multi-camera approach, for markerless motion 
capture system. The advantages of monocular approach are simple hardware setup 
and lower cost. However, as shown in Figure 1-1, there exist depth ambiguities when 
only one silhouette is available. Hence, multi-camera approaches, which reconstruct 
3-D human bodies from a set of silhouettes, are preferred to offer more information 
for motion capture systems. With more view angles we can alleviate the occlusion 
problem and make the motion capture system more robust. 

 
Figure 1-1 Depth ambiguity problems exist in monocular approaches[20] 

 
In this thesis, we propose a markerless motion capture system equipped with 

multiple cameras. First, a 3-D human body represented by voxels is reconstructed 
from multiple video streams. A modified Laplacian Eigenmap algorithm is used to 
transform the 3-D voxel data into a high dimensional space. With this manifold 
embedding method, different body parts are mapped into discriminative branches and 
can be easily segmented. Unlike other approaches, this approach relieves the 
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dependence on human model and the training database. After the segmentation of 
body parts, skeletons are extracted to describe the kinematic motion of the human 
body. Human shapes are usually deformed while skeletons can encode most of the 
motion information. As the skeletons are extracted from the 3-D human bodies, we 
use the particle swarm optimization (PSO) technique to deal with the pose estimation 
problem. The experimental results show that our system can handle various kinds of 
poses and can ensure temporal consistency and motion constraints. 

This thesis is organized as follows. In Chapter2, we introduce the background of 
motion capture systems. In Chapter3, we discuss the properties of the Laplacian 
Eigenmap and the proposed pose estimation approach. Experimental results are 
shown in Chapter4. Finally, we will make a brief conclusion in Chapter5. 
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Chapter 2. Backgrounds 
In this chapter, we will introduce a few motion capture approaches developed in 

recent years. Firstly, a brief introduction to motion capture and its functional 
taxonomy are discussed in Chapter 2.1. Since we’ll focus on markerless motion 
capture systems equipped with multiple cameras, related algorithms are also 
mentioned in Section 2.2. 

2.1 Motion Capture Systems 
Some popular motion capture algorithms are to be reviewed in this section. Since 

systems with markers are costly and ineffective, we mainly discuss markerless motion 
capture systems, which have drawn much attention in recent years. According to the 
survey in [26], we can decompose markerless approaches into several submodules 
based on the following functional taxonomy: 

 Initialization: the initialization of motion capture systems tends to acquire 
some prior knowledge for pose analysis. The prior knowledge may include 
kinematic structure, 3-D human shape, and so on. 

 Tracking: this process typically includes foreground detection and 
continuous target tracking in the video. 

 Pose estimation: given some prior knowledge obtained in the initialization 
step, this process tries to estimate the posture of a specific person. 

 Recognition: this process identifies the activities or behaviors of the target 
person, such as running, walking, and so on. 

 
In the proposed motion capture system, we mainly focus on the initialization 

module and the pose estimation module. The module of initialization aims to obtain 
reliable prior knowledge for pose estimation and recognition. Due to error 
propagation, incorrect prior knowledge may lead to wrong pose estimation. In the 
following discussion, we will focus on a few algorithms which are related to 
initialization and pose estimation. 

In general, markerless motion capture systems can be classified into model based 
systems and model free systems, depending on whether a prior human model is used 
in the system. In the following sections, we will introduce several popular motion 
capture systems in each of these two categories. 
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2.1.1 Model-Based Systems 

Model based systems use an explicit model to capture the motion of a specific 
person. Depending on whether the system is monocular or multi-view, the model can 
be either 2-D or 3-D. In the following subsections, we will briefly introduce 
model-based systems based on these two system types. 

2.1.1.1 Monocular Motion Capture 

Monocular motion capture systems only use one camera and deal with the 
problems in the 2-D image planes. For 2-D model-based motion capture systems, 
contour human models, stick models, and cardboard models are commonly used. 

 
Figure 2-1 2-D human model examples (a) The 2-D skeleton human model consists of 17 
kinematic chains (b) flesh the model in (a) by conical sections[15] 

 
Deutscher [15] modified the particle filtering algorithm to estimate the posture in 

the 2-D image plane. Given foreground silhouettes, 2-D human models as shown in 
Figure 2-1 are used to fit the detected human bodies. In this approach, human models 
are composed of 17 chains connected by joints. Each joint has its degree of freedom 
(DOF) and the whole model adds up to 29 DOF. Pose estimation is performed by 
fitting the human model to the foreground silhouettes. The fitting result, as illustrated 
in Figure 2-1 (b), describes the posture of the person. However, the searching space of 
this approach is too large due to the high DOF. Even though the particle filter has 
been a useful tool in data fitting, it may get trapped in a local maximum and does 
require lots of computation in a search space of high dimensionality. In [15], the 
anneal particle filtering is adopted to effectively find the global maximum. However, 
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depth ambiguities still exist and the processing speed is far too slow (about 1 hour for 
a 5-second footage). 

 

Figure 2-2 The pose estimation results in [15] 

 

2.1.1.2 Multiple View Motion Capture 

Estimating posture from 2-D images only is rather difficult. This is because the 
self occlusion problem and the depth ambiguity problem cannot be properly handled. 
In order to obtain more robust motion capture results, 3-D data are more preferable. In 
[5], the reconstruction of a “visual hull” based on images from multiple cameras is 
introduced. A visual hull is defined as the 3-D shape formed by the intersection of 
visual cones projected from the 2-D silhouettes, as illustrated in Figure 2-3 [5]. The 
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visual hull of an object can be thought to be a close approximation of the object based 
on the observations from different viewpoints. 

 
Figure 2-3 The visual hull is constructed by volume intersection [5] 

 
The visual hull can be represented by voxels and several algorithms have been 

developed to construct the visual hull based on a set of silhouette. In practice, we 
don’t actually compute the visual cones and their intersection. It’s computationally 
costly and difficult to find their intersection parts. Instead, when implementing the 
visual hull reconstruction algorithm, voxels are back projected to the image planes to 
check whether their projections fall into the region of the foreground silhouettes. Then, 
the silhouettes on multiple cameras vote to decide whether a voxel belongs to the 
visual hull. Szeliski [24] proposed an octree representation of the voxel space where 
the resolution of voxels is variable according to their projections on the image planes. 
It can reconstruct a visual hull from coarse resolution to fine resolution. However, this 
approach is sensitive to the hypothesis of visibility. Kehl [22] introduced a fast visual 
hull construction method. A voxel look-up table is built to record the projection 
position in each image plane for all the voxels. To speed up the process while 
maintaining the high-resolution voxels, the projection is approximated by a cross 
patch. As shown in Figure 2-4, Voxels 7, 12 and 15 project to the same position in the 
image plane. Hence, they are recorded in the look-up table of that pixel. Once that 
pixel is labeled as “foreground”, these voxels may belong to the visual hull. 
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Figure 2-4 A look up table is kept to record the voxels which are projected into the same 
pixel [21] 

 
To model the 3-D shape of the visual hull, Mikic [13] adopted a twist framework 

that has been used to model the kinematic chains for robots. Sixteen rotation axes and 
five kinematic chains of the body joints are formulated using twists and product of 
exponentials. Based on a torso-centered coordinate system, the rotation and shift of 
the body parts can be easily manipulated. Given voxel data reconstructed from 6 
calibrated and synchronized cameras, pose estimation is performed by first doing 
template fitting and then using Bayesian network for refinement. However, the 
initialization of this approach is based on template fitting, which cannot deal with self 
occlusion. Moreover, this approach requires that the target person be dressed in tight 
clothes. 

 
Figure 2-5 3-D articulated human body model used in [13] 
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Figure 2-6 The flow chart of Mikic’s approach [13] 

 
Kehl [22] proposed a stochastic meta descent (SMD) optimization method to fit 

the body model to the visual hull. SMD is the generalization of gradient descent. It 
adapts its local step size to offer more rapid convergence and uses stochastic sampling 
to avoid being trapped in a local minimum. 

Figure 2-7 Pose estimation and visual hull texturing results in [22] 

 
Instead of using shape models, Menier [7] adapted skeleton models to fit medial 

axis points extracted from visual hulls. This approach reduces the dependency on the 
dimension of human body. These 3-D medial axis points represent the observed 
skeleton data. A generic skeleton model is then fitted with the observed skeleton data 
based on a maximum a posteriori (MAP) estimation. The pose estimation of the first 
frame is based on the fitting process, while non parametric belief propagation is used 
to predict the pose in the following frames. 
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Figure 2-8 The pose estimation scheme of [7] : (a) Input images (b) detected foreground (c) 
reconstructed visual hull (d) extracted medial axis points (e) fitted skeleton model 

 
Due to the high dimensionality of the search space and the complexity of the 

fitness evaluation function, some researchers have adopted particle swarm 
optimization (PSO) method to perform pose estimation. PSO [16] is an optimization 
technique that simulates the social behaviors of animals. Given a fitness function and 
a communication network, particles gradually move to the best position according to 
the self experience and the information obtained from their neighbors. Robertson [8] 
applied PSO to perform skeleton model fitting in a conference room environment, 
where the pose estimation is required only for the upper body. PSO is chosen for its 
ability to deal with nonlinear and non-convex optimization problems. Hierarchical 
and parallel PSO fitting is proved to be robust and computationally inexpensive. 

 

(a) (b) (c) 
Figure 2-9 Hierarchical fitting process: (a) root position and orientation (b) shoulders and 
trunk (c) all are fitted [8] 

 
Model based motion capture systems use a prior model to reduce the search 

space and hence have less complexity. Moreover, they usually assume tight fitting 
clothes and the initialization of the human models has great influence on the accuracy 
of pose estimation. Since template fitting-based initialization cannot well handle self 
occlusion, embedding-based initialization has drawn much attention recently. In 
Section 2.2, we will introduce a few popular manifold embedding methods and 
explain how they are applied to initialize the motion capture systems. These 
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embedding-based methods may produce robust human body labeling results and make 
the initialization process less sensitive to human poses and human models. In this 
thesis, we will also propose a pose estimation method that adopts embedding-based 
initialization. 

2.1.2 Model-Free Systems 

Model-free approaches don’t have an explicit model. For most of this kind of 
motion capture systems, pose estimation is made by comparing the observed data with 
the database or by a pre-learnt mapping relation between the input images from the 
training data and their pose estimation results. 

Agarwal [3] proposed a learning-based pose estimation for monocular motion 
capture systems. A shape descriptor is extracted from silhouettes to overcome the 
foreground segmentation errors. A database is used to train the relevance vector 
machine (RVM) and decisions are made after machine learning. Without the need of 
human models and initialization process, a 3-D pose can be estimated from a single 
silhouette. 

 

Figure 2-10 Pose estimation results from single silhouette [3] 

 
Elgammal [4] applied the manifold learning methods to pose estimation. For the 

learning step, the mapping between silhouettes and 3-D poses are constructed using 
locally linear embedding (LLE), which is a nonlinear manifold embedding method. 
Then, pose estimation is done based on the manifold embedding results. That is, 
given detected silhouettes, its 3-D pose estimation is obtained from the mapping 
relation learned by LLE. 
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Figure 2-11 The flow chart of Elgammal’s method. [4] 

 
Figure 2-12 3-D pose estimation results of Elgammal’s method. [4] 

 
Sagawa [27] proposed an example-based approach to perform pose estimation. 

For each frame, the feature vector is first extracted from the reconstructed 3-D voxel 
data and then compared with the database. The evaluation process is further improved 
by a graphical model of motion that ensures the temporal consistency. 
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Figure 2-13 The flow chart of [27] 

 

 
Figure 2-14 Pose estimation results of [27] 

 
Model-free systems have the advantages of lower computational cost and can 

avoid large search space and nonlinear optimization. However, the performance of a 
model-free motion capture system greatly depends on the database. If the database is 
not diverse enough, the decision may be biased and may result in inaccurate pose 
estimation. 
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2.2 Manifold Learning 
As mentioned earlier, model based motion capture systems have the advantages 

of complexity reduction and robustness. However, a good initialization is required to 
ensure that the system commences with a good body parts labeling and initial guess. 
Template fitting cannot deal with self occlusion while direct fitting human models to 
3-D data results in high dimensionality of the search space. More reliable 
initialization approaches based on manifold learning have been proposed recently. In 
manifold learning, the intrinsic geometric properties are preserved after mapping the 
3-D data to another space. Furthermore, this method makes the body parts labeling 
much easier and reliable. In the following sections, we will firstly introduce some 
manifold learning methods and then discuss how they are applied to motion capture. 

2.2.1 Manifold Embedding Methods 

Manifolds are defined as a topological space which is locally Euclidean [1]. 
Manifold embedding is a topic about how to find a transformed space for the manifold 
that preserves the connectivity and algebraic properties. Usually, manifolds are the 
data lying in the high dimensional space and the transformation helps reduce the 
dimensionality. Therefore, manifold embedding is a useful tool for dimension 
reduction. There have been many manifold embedding methods which can be 
classified into linear approaches and nonlinear ones. Linear manifold embedding 
methods such as principal component analysis (PCA) and multidimensional scaling 
(MDS) assume the data is a linear function of the features. This assumption isn’t 
general and cannot deal with nonlinear cases. More generalized nonlinear approaches 
have been proposed since 2000. ISOMAP, locally linear embedding (LLE) and 
Laplacian Eigenmap (LE) are graph-based methods among the popular manifold 
embedding methods.  

In these graph-based methods, graph models are used to approximate the 
structure of the manifold. A graph-based manifold embedding method typically have 
three basic steps: 

1. Find the k nearest neighbors for each node to construct the graph. 
2. Local properties in the neighborhood of each node are estimated. 
3. Embed the graph globally to another space that preserves the local 

properties estimated in Step2. 
 
ISOMAP [14] is abbreviated from isometric feature mapping. It tries to preserve 
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the geodesic distances. Geodesic distance is a better measure than Euclidean distance 
for manifolds. However, the Euclidean distance is much easier to calculate. Hence, 
the geodesic distance between any two points is approximated by a chain of short 
paths, whose distance is calculated using Euclidean distance. 

 

 
Figure 2-15 The geodesic distance between two points on the manifold “Swiss roll” is 
represented by the solid lines. Their Euclidean distance is the dotted line. It is obvious that 
the geodesic distance is a more reasonable measure to describe the relation between these 
two marked points [14]. 

 
Locally linear embedding (LLE) [25] assumes that manifolds are linear when 

viewed locally. For each node, the k nearest neighbors are selected. Then the LLE 
method reconstructs each node based on the linear combination of their k neighbors. 
The geometric properties are preserved by choosing the linear weights of these 
neighbors to minimize the reconstruction error. 

 

Figure 2-16 Illustration of the three steps of LLE [25]. 

On the other hand, Laplacian Eigenmap (LE) [18] uses graphs and Laplacian of 
the graphs to approximate the manifold structure and the Laplacian Beltrami operator, 
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respectively. Laplacian Beltrami operator is the extension of the second-order 
differential operator, Laplacian, and is defined on manifolds as well as on surfaces. It 
can be shown that the eigenfunctions of the Laplacian Beltrami operator can well 
preserves the intrinsic geometric properties. Similarly, the eigenvectors of the 
Laplacian of the graph provide the appropriate embedding as well. Instead of 
preserving the geodesic distances, LE attempts to make the adjacent nodes in the 
normal space close to each other in the embedding space. By this approach, the 
intrinsic geometric properties can be easily preserved.  

  

(a) Swiss roll (b) Intrinsic structure of the swiss roll 

 
(c) ISOMAP (d) LLE (e) LE 

Figure 2-17 Three manifold embedding results for Swiss roll [2] 

2.2.2 Embedding Based Initialization 

Since manifold embedding methods can preserve geometric properties, some 
embedding based systems have recently been proposed for motion capture. These 
manifold embedding based methods are independent of human models and are hence 
less restricted. Moreover, the embedding spaces possess some useful properties that 
make the initialization process simpler and more robust. 

Chu [9] applied ISOMAP to motion capture systems. The fact that a prior human 
model is no longer needed makes the initialization process less restricted and more 
reliable. For each frame, skeleton points are extracted using ISOMAP. Finally, a 
kinematic model is fitted to each frame to perform pose estimation. ISOMAP can 
transform the 3-D volume data into a pose-independent space, which preserves the 
intrinsic geometric structure. Next, the nonlinear spherical shells (NSS) method is 
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used to perform partitioning and clustering in the embedding space to obtain 
tree-structured principal curves. Finally, the curves are projected back to the normal 
space and the skeleton point features are extracted. Based on the sequence of the 
skeleton curves, a normalized kinematic model can be constructed. Pose estimation is 
done by applying this kinematic model to all frames. 

 

 
Figure 2-18 The processing flow of [9] : (a) the input sequence from multiple cameras (b) 
reconstructed volume data (c) transformed volume data in the 3-D embedding space (d) use 
NSS to obtain skeleton point features (e) project skeleton points back into the normal space 
to obtain the skeleton curves (f) a sequence of skeleton curves (g) a normalized kinematic 
model is estimated from (f) (h) use the normalized kinematic model to perform pose 
estimation 

 
LLE is also applied to human motion capture. Cuzzolin [10] proposed a robust 

body parts labeling method along the temporal axis based on LLE. Temporal 
information is added to help segment the body parts in a consistent way. Unlike 
ISOMAP, LLE can enhance the separation of different body parts, which make the 
body parts segmentation much easier. Moreover, ISOMAP is computationally 
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expensive. For these reasons, 3-D voxel data is transformed to a 3-D embedding space 
via LLE. After transformation, the segmentation is done by k-wise clustering. The 
clustering seeds are propagated through time. The clusters also merge or split 
according to the topology changes to ensure temporal consistency. 

 

 

(a) (b) (c) (d) 
Figure 2-19 The segmentation process of [10]: (a) input 3-D voxel data (b) LLE 
transformation results and branch termination detection (c) segmentation using k-wise 
clustering in the embedded space (d) segmentation results in the normal space 
 

 
Figure 2-20 Clustering seeds are propagated along time to ensure temporal consistency [10]

 



18 
 

In [6], Sundaresan proposed a segmentation approach for pose estimation based 
on Laplacian Eigenmap. Unlike ISOMAP, LE tries to preserve the geometric structure 
instead of geodesic distances. In this approach, different branches in the normal space, 
such as separated body parts, are transformed into distinguishable smooth curves in 
the embedding space. Compared with other popular manifold learning methods, only 
LE and Diffusion map have this special property, as shown in Figure 2-21. This 
property makes the segmentation of 3-D human body a lot easier. Moreover, since 
Diffusion map is only a variation of LE, LE is chosen in this thesis for its low 
computational cost. 

 
(a) Test image 

  

(b) LE (c) ISOMAP (d) MDS (e) LLE (f) Diffusion map
Figure 2-21 Embedding results using different manifold learning techniques [6] 

 
LE also has two extra important properties: 

 Different branches in the normal space are mapped into different curves in the 
eigenspace. The higher the dimensionality of the eigenspace is, the better the 
discriminative capability is. 

 Braches with the length-over-width ratio greater than 2 can be mapped to smooth 
curves. Moreover, due to the preservation of geometric relationship, one can 
infer the position of the node in the branch by its position in the curve. 
To sum up, n chains whose lengths are twice longer than their widths can be 

mapped into n discriminative smooth curves in the eigenspace whose dimension is 
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between n-1 and 2n. 
After transformation, nodes in the curves can be segmented using spline fitting. 

In the eigenspace, each node has its “site value” which represents its position along 
the chain. The site values are used to extract the skeletons from the visual hull. A 
generic human model is then fitted to the skeleton data in order to estimate the 
posture.  

(a) (b) (c) (d) (e) (f) 
Figure 2-22 Pose estimation process of [6]: (a) input images from multiple cameras (b) 3-D 
voxel data acquired by space carving (c) transform the 3-D data using LE and segment it 
using spline fitting (d) project the segmented chains back into the normal space (e) skeleton 
extraction (f) top-down pose estimation 
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Chapter 3.  Proposed Method 
In this thesis, we proposed an efficient initialization process and a robust 

markerless pose estimation system. The goal of pose estimation is to capture the 
motion of a specific person. The motion of the articulated body parts is described 
using some parameters of a generic human model. The motion capture technique has 
been widely applied to different areas, such as surveillance, computer animation and 
biomechanical engineering. As mentioned earlier, markerless systems are more 
flexible and are applicable to different scenarios. However, the major problems of 
markerless pose estimation systems are the high dimensionality of the search space 
and the difficulties in estimation and labeling caused by deformable muscles. Using 
images from a set of synchronized and calibrated cameras, we can reconstruct the 
visual hull based on volume intersection. Then the 3-D voxel data are transformed 
into an embedding space using our modified Laplacian Eigenmap technique. Body 
parts segmentation is done in the eigenspace and the skeletons of the body parts are 
extracted individually. Finally, we fit the human model into the skeleton data using 
the PSO algorithm. Pose estimation is then iteratively performed for optimization. In , 
we show the flow chart of the proposed system. 

Nth frame of 
camera 1~8 

Visual hull reconstruction

Modified Laplacian 
Eigenmap 

Spline fitting 

Skeleton extraction 

PSO skeleton model 

Pose 
estimation 
results 

Body parts labeling Temporal 
constraints

Motion 
constraints

 

Figure 3-1 The block diagram of the proposed system 
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We have conducted our experiment in both the synthesized world and the real 

world environment. For video synthesis, the ObjectVideo Virtual Video (OVVV) [11] 
is used to simulate different kinds of the camera setup. For the real world environment, 
four cameras mounted on the ceiling of our laboratory are used. We will discuss these 
two different environments and explain why we choose OVVV as our simulation tool. 

3.1 Initialization of Motion Capture 
The initialization of our motion capture systems includes image acquisition, 

camera calibration, visual hull reconstruction, human body parts segmentation, and 
skeleton extraction. We will discuss the initialization of our pose estimation system in 
the following sections.  

3.1.1 Images Acquisition 

Images are acquired in both the virtual world and the real world. As mentioned 
earlier, OVVV is our simulation tool for different camera setups. OVVV is developed 
by ObjectVideo and is based on the game engine offered by “Half Life2.” The 
architecture of OVVV is shown in Figure 3-2. The virtual cameras can be set up 
independently with different locations, PTZ parameters, fields of view, frame 
dimensions and frame rates. After setting up the cameras, virtual video can be 
rendered and simulated for various kinds of scenarios. With the help of OVVV, the 
experimental scenarios can be easily repeated and rearranged. This saves a lot of time 
and cost. On the other hand, for the real world environment, the sequences are 
acquired by four synchronized cameras mounted in the ceiling of our laboratory. The 
configuration of these cameras will be discussed later. 

 
Figure 3-2 The architecture of OVVV [11] 
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3.1.2 Camera Calibration 

Camera calibration provides the internal and external parameters of cameras. For 
the OVVV system, we can obtain these parameters directly from the ground truth. For 
the real environment, on the other hand, we choose [12] as our calibration tool. Chen 
has developed an efficient and robust technique for multiple camera calibration. With 
only two sheets of A4 paper, we can easily obtain the external parameters of four 
cameras. Once we have acquired the calibration data of multiple cameras in an offline 
manner, the visual hull can be reconstructed using the volume intersection method. 

3.1.3 Visual Hull Reconstruction 

Through background subtraction, we can obtain the foreground silhouette of the 
object in each camera. Visual hull reconstruction is then performed by the volume 
intersection technique. For the silhouette of each camera, the lines connected the 
camera center and a silhouette point forms a cone-like area. The intersection of these 
areas is the 3-D approximation of the target person. 

Figure 3-3 Visual hull reconstruction using volume intersection 
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In practice, we project each voxel to the image planes. If the projection falls 
inside one of the silhouettes, it gets one vote. A voxel is classified as “foreground” if 
the number of votes exceeds some predefined threshold. The higher the threshold is, 
the smaller the false alarm rate is. However, the probability of detection may also get 
decreased when we raise the threshold. Basically, this approach is more effective and 
is less computationally expensive than the direct implementation of the volume 
intersection method. 

For the OVVV system, back-projections of voxels are evaluated using the 
calibration ground truth for each camera. Given the rotation angles ( , , x y zθ θ θ ), the 
position (X, Y, Z) and the FOV (field of view) of each camera, the projection of 
voxels can be calculated as follows: 
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Eq. 3-2
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Translation matrix: 
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Camera calibration matrix: 

0 0 0
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1 0 0 0
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C fov

⎡ ⎤
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 Eq. 3-5

Projection matrix: 

* * * *x y zPj C R R R T=  Eq. 3-6
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The back projection of a voxel p: (bp vector) 
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2 32
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TimP imP imP Pj p

imP imP img widthbp
imP imP img lengthbp

=

−⎡ ⎤⎡ ⎤
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 Eq. 3-7

 
For the OVVV system, the calibration of multiple cameras refers to the same 

world coordinate. On the other hand, the four real cameras mounted in the ceiling of 
our laboratory are calibrated using Chen's method, which aligns all cameras’ 
coordinates to one of the cameras’ [12]. After calibration, the visual hull can be 
reconstructed in a similar way. The accuracy of the visual hull depends on several 
factors as listed below: 

 The resolution of the voxels 
 The accuracy of the calibration result 
 The number and the configuration of cameras 
 The synchronization among multiple cameras 
 Foreground detection results 

For these two experimental environments, we use 30mm×30mm×30mm voxels to 
compromise between computational cost and resolution. The calibration and 
synchronization is fairly accurate for the OVVV environment, since the data actually 
comes from the ground truth. In comparison, in the real-world environment, the back 
projections of voxels may deviate around four pixels, which are pretty acceptable. 
Besides, the background subtraction is used to detect foreground. A more precise 
background modeling technique based on the mean-shift algorithm is adapted to 
achieve robust results [19]. The major differences between the OVVV synthetical 
environment and our laboratory environment are the number of cameras and the 
configurations of cameras. In the real-world environment, four PTZ cameras are fixed 
in the ceiling, as shown in Figure 3-4. As for the OVVV environment, we can modify 
the number of cameras and setup of cameras to enhance the accuracy of the visual 
hull. Mündermann [17] suggested that the number of cameras should be more than 7 
to reduce the artifacts in the visual hull. Four cameras aren’t enough to provide 
reliable visual hull. Artifacts, such as ghost legs, will impair the results of body parts 
labeling and pose estimation. To understand how the number of cameras influences 
the reconstruction of visual hulls, we use OVVV to simulate the environment with 
eight cameras. As shown in Figure 3-5, the configuration of virtual cameras is circular, 
with equal height and the cameras are separated by 45 degrees. There are still many 
different setups for eight cameras. According to [17], the configuration with one 
camera above the target person and the others equally separated and surrounding the 
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human body circularly will obtain the most accurate visual hull. To observe the 
artifacts of the visual hull, we first use the camera configuration shown in Figure 3-5. 
As for our experimental environment, most of our sequences are captured under the 
configuration suggested by [17] to alleviate the problem of artifacts. 
 
 

 

Figure 3-4 The setup of four cameras in our laboratory 

 
Figure 3-5 The circular configuration of the OVVV virtual cameras: eight cameras are 
separated by the angle of 45° 
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(a) 

 
(b) 

Figure 3-6 (a) four captured images in our laboratory (b) reconstructed visual hull 
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(a) (b) 

 
(c) 

Figure 3-7 (a)(b) eight captured images in the OVVV simulation environment (c) 
reconstructed visual hull 

 
In Figure 3-6, we can see that the visual hull reconstructed in our laboratory has 

“ghost leg” and lots of artifacts around the arms. The serious artifact problem may 
result in inaccurate body parts labeling and poor pose estimation. For example, we 
don’t know whether a leg is real or just is an artifact. On the other hand, the visual 
hull reconstructed in the OVVV is more accurate. To demonstrate the artifacts in 
visual hulls, we use OVVV to simulate two different environments with eight and 
four cameras separately. The 8-camera environment is just like the figure shown in 
Figure 3-5, while the 4-camera environment is an environment with four of the eight 
cameras in Figure 3-5. 
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(a) (b) 

 
(c) (d) 

 
(e) 

Figure 3-8 (a)(b) eight capture images from Camera1~Camera8. (c) reconstructed visual hull 
from eight cameras. (d) reconstructed visual hull from Camera1~Camera4. (e) the 
superposition of (c) over (d), where the green parts are the visual hull of (c) while the blue 
parts are that of (d). the yellow parts represent the overlap of (c) and (d) 

 

4 cameras 

8 cameras 

intersection 
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For the case of four cameras, four apparent legs appear in the visual hull. 
Compared with that reconstructed from eight cameras, there are also some artifacts 
around the chest and the back. The formation of ghost legs can be easily illustrated in 
Figure 3-9. Due to insufficient number of cameras, ghost legs appear inside the 
intersection of the cone-like volumes. If we back-project the voxels of the four legs 
into the image planes, they all fall inside the silhouettes. Hence, it’s difficult to 
identify which two legs are actually artifacts. 

 

Figure 3-9 The formation of ghost legs: for clearness, the cone-like volume started from 
camera centers are simplified using trapezoid solid. The intersection is represented as red 
and black hexagons. Red hexagons are real visual hull while black ones are artifacts. Two 
circles marked “L” and “R” represented left leg and right leg of a specific person. 

 
Serious artifacts, such as ghost legs, will result in inaccurate body parts 

segmentation. Especially when the calibration isn’t so accurate and the foreground 
detection results have false positive or false negative, it is hard to remove these 
artifacts. In order to avoid serious artifacts in visual hull reconstruction, we choose 
OVVV as our simulation tool to acquire reliable visual hull from eight virtual 
cameras. 
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Top view 
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3.1.4 Human Body Segmentation 

If we can segment each body parts separately, it will help pose estimation a lot. 
The search space is reduced and we can infer the posture based on the segmented 
body parts. Among recent research works, the embedding-based methods have the 
advantage of no model dependency and are robustness for various kinds of stature. 
These methods apply manifold embedding techniques to transform the original 3-D 
voxel data to another embedded space. Having preserved the intrinsic properties of 
the visual hull, the use of transformation makes it much easier to perform human body 
labeling.  

3.1.4.1 Sunaresan’s Method 

In [6], Sundaresan has compared Laplacian Eigenmap with other popular 
manifold embedding methods. The Laplacian Eigenmap method possesses the 
capability of transforming a 3-D long branch into a smooth curve. After applying 
Laplacian Eigenmap, the segmentation of human body parts can be easily performed 
by applying spline fitting over the smooth curves. In Sundaresan’s algorithm, the 
process of body part segmentation can be summarized as follows. 

  
A. Laplacian Eigenmap Transformation 

The first step of the Sundaresan’s algorithm is to transform the visual hull into data 
in a six dimensional eigenspace. A graph G is constructed to record the relationship 
among voxels of the visual hull. For each voxel vi in the visual hull, this approach 
checks the 6-adjacent neighbors of vi. If any of the neighbors, say vj, also belongs 
to the foreground voxels, then vi and vj are connected by an edge. The eigenvectors 
of the Laplacian of the graph corresponding to the six smallest nonzero eigenvalues 
are selected as the basis of the transformation map. In this step, each voxel vi in the 
visual hull is transformed to a 6-D vector ui.  

B. Segmentation in the eigenspace 
In the LE transformation, different body parts are transformed into separated 
smooth branches. The segmentation of body parts is then performed using a spline 
fitting in the eigenspace. The use of spline fitting segments these branches into 
individual curves, with each curve labeling a body part in the normal space. The 
following paragraphs explain three major steps in spline fitting. 
B-1、 Spline initialization 

Points with the largest dimension are chosen as the starting points of branches. 
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Since the Laplacian Eigenmap encodes the geometric relation for the original 
voxel data, these starting points in the eigenspace correspond to the tip of each 
body parts in the normal space. For each branch, the nearest P nodes are 
selected around the starting point. The principal direction of the (P+1) points 
are evaluated using the PCA (Principal Component Analysis) method. Then 
these (P+1) points are projected into the principal direction to get their “site 
values” si. We can think of the principal direction as a ruler and the site values 
as the graduation where the projection of the point falls. 
 

B-2、 Spline fitting 
A 6-D cubic spline f is used to fit the site values si’s. That is, f is chosen to 
minimize the fitting error: 

2( )i i
i

s−∑ u f  Eq. 3-8

 
B-3、 Spline propagation 

The fitting process is propagated using the nearest N points at the end of (P+1) 
points. A new principal direction is recalculated if the angle between it and the 
previous one is greater than some predefined threshold. 
 

B-4、 Spline termination 
The spline propagation continues until the number of outliers exceeds a 
pre-defined threshold OT1. A point is viewed as an outlier if its fitting error is 
greater than a predefined threshold OT2. 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) (h) 

Figure 3-10 The body parts segmentation process of Sundaresan’s method (a) one of the eight 
captured images (b) reconstructed visual hull (c)(d) the Laplacian Eigenmap transformation 
result: dimension1~dimension6 (e) spline initialization for the green branch in dimension1~3 
(f) spline propagation and then termination for the green branch in dimension1~3 (g) six 
segmented braches: black points represent the unfitted ones (h) transform the segmentation 
results back to the normal space. Most of the nodes in the torso part are unfitted. 

 
In Figure 3-10, the spline fitting method handles the segmentation of head and 

four limbs properly. However, the labeling of the trunk failed since its Laplacian 
Eigenmap transformation doesn’t have a thin structure for spline fitting. Even though 
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the Laplacian Eigenmap can transform a long branch into a smooth curve, the ratio of 
the length with respect to the width must be greater than 2 to ensure stable spline 
fitting. If the branch is not long enough, its transformation becomes a thick branch. 
When fitted by a spline, the nodes on the boundary of the thick branch may have 
larger errors and the number of outliers increases rapidly. As a result, thick branches 
usually have a premature termination. This causes the difficulty in segmenting thick 
body parts, such as the trunk of the human body. Furthermore, the site values for thick 
branches cannot be easily calculated. If the starting point is not in the middle of the 
thick branch, the principal direction may deviate from the medial line of that branch. 
Hence, the estimated site values may not be accurate enough. In the following, we 
illustrate this problem by a simple 2-D test image and its transformation into the 3-D 
eigenspace.  

  
(a) (b) 

  
(c) (d) 

Figure 3-11 (a) test image (b) the result of Laplacian Eigenmap transformation. (c) the 
segmentation result in the eigenspace (d) illustration of the failed spline fitting for the thick 
branch. Here, the cyan branch is zoomed in for clearer illustration. The cross and the two 
dashed lines represent the starting point of the cyan branch and the first two principal 
components, respectively. 

 
Figure 3-11 shows that it is difficult to fit a thick branch. From the starting point, 

the number of outliers increases rapidly due to the widely spreading nodes along the 
branch. This makes it difficult to clearly segment the thick branch from the others. 
The deviation of the starting point is also a problem. No matter which principal 
component is chosen for spline fitting, its direction doesn’t follow the actual trend of 
the branch. This may lead to inaccurate site values. Note that the site values play an 
important role in skeleton extraction since they trace the position of each node along 
the branch that encodes the intrinsic structure of the corresponding body part in the 
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normal space. In this thesis, we’ll propose a more efficient way to segment the body 
parts based on a modified Laplacian matrix. Furthermore, a new skeleton extraction 
method is also developed to overcome the problem in the segmentation of thick 
branches.  

3.1.4.2 Modified Body Parts Segmentation Method 
Inspired by Sundaresan’s algorithm, we develop our initialization method based 

on a modification of the Laplacian Eigenmap.. Given n points v1, v2, …, vn in the 
p-dimension, Laplacian Eigenmap aims to find its transformation u1, u2, …, un in the 
r-dimension to minimize the object function: 

2

,
i j ij

i j
u u E−∑  Eq. 3-9

where E is the adjacency matrix of the graph constructed from v1, …,vn. That is, if vj 
is in the neighborhood of vi, then Eij is equal to 1. Otherwise, Eij is set to zero. The 
value of Eij can be defined by a value that is related to the distance between nodes vi 
and vj. Here, we define a heat kernel to compute the value of Eij: 
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i j

ke
−

−
u u

 where k is a predefined parameter.  
Eq. 3-10

Besides Eq. 3-9, an extra constraint is added for the minimization of the object 
function. The constraint says 
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 Eq. 3-11

D is a diagonal matrix whose element Dii represents the degree of Node i. This 
constraint is to normalizing the scaling factor when manifold embedding is performed. 
We can unroll Eq. 3-11 to obtain the following constraints: 
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 Eq. 3-12

In Eq. 3-12, we observe that nodes with more neighbors tend to converge to positions 
around the origin after the transformation. This explains the phenomenon that the tip 
of each body part is transformed to the tip of the branch. 

As aforementioned, the segmentation of trunk is a major difficulty in 
Sundaresan’s method. Since the nodes in the trunk tend to have bigger values of Dii, 
this fact makes the transformed values of the trunk voxels spread around the origin of 
the eigenspace. Having exploited this property of Laplacian Eigenmap, we manage to 
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assign trunk voxels with bigger values of Dii so that their transformed data will shrink 
even closer to the origin. Once these nodes are shrunk to the origin of the 6-D 
eigenspace, the segmentation of the limb parts will become much easier. Since most 
of the nodes in the trunk have their 6-connnection neighbors connected, their 
transformations tend to be drawn to the positions near the origin. Further away from 
the center of the torso, nodes have fewer connectivities and hence are far away from 
the origin in the eigenspace. Once these nodes with larger values of Dii can be shrunk 
even closer to the origin of the 6-D eigenspace, the segmentation of the torso part can 
be performed easily using a simple threshold. Hence, in the modified version, the 
shrinkage of these nodes is accomplished by further increasing the value of Dii to 
those nodes that have larger Dii values in the graph. As a result, to satisfy the 
constraints in Eq. 3-12, the transformation results of these nodes as well as their 
neighbors will be shrunk even closer to the origin in the eigenspace. We illustrate this 
technique by a simple 2-D image firstly. Then we apply this modification over the 
Laplacian Eigenmap to segment visual hulls. 

  
(a) (b) 

 
(c) (d) (e) 

 
(f) (g) (h) 

Figure 3-12 (a) test image (b) the color representation for segmentation results (c) LE 
transformation result in the first three dimensions (d) LE transformation result in the last 
three dimensions (e) segmentation result using the original LE. The white part is unfitted (f) 
modified LE transformation result in the first three dimensions (g) modified LE 
transformation result in the last three dimensions (h) segmentation result using modified LE 
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3rd body part

4th body part 
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6th body part 
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As shown in Figure 3-12, the 24-connectivity neighbors of each foreground pixel 
are checked. If there is a connection, the value of the corresponding Eij in the 
adjacency matrix is assigned to one. Hence, the largest value of the degree of a 
foreground pixel is 24. The original LE transformation results are shown in (c) and (d). 
As stated earlier, the transformation of the torso pixels spread around the origin in the 
6-D eigenspace. Unlike the other body parts, the transformed points are widely 
spreading and cannot be easily fitted using the same threshold. For (f) and (g), we 
increase the value of Eij by 2 for those nodes with 24 connections. Since both torso 
and head have strong connectivity between their neighbors, their transformations are 
shrunk to the origin. The segmentation of each branch in the eigenspace is initialized 
and propagated in a same way as Sundaresan’s method. However, in the modified 
version, the termination of the segmentation process can be more easily detected. 
Here, the growth of the branch stops as the branch approaches the origin of the 
coordinates. The segmentation result is shown in (h). Except for the head, the 
performance of (h) is better than that of (e). Note that these head nodes also converge 
to the origin. This is because the head part has strong connectivity within itself but is 
not long enough to generate a distinct branch in the eigenspace. To avoid the 
shrinkage of the head part, color information is added to the calculation of Eij. In our 
approach, the color difference between two pixels i and j is defined as: 

2 2 2( ) ( ) ( )i j i j i jd r r g g b b− + − + −�  Eq. 3-13

The larger d is, the less similar these two pixels are. Our strategy for using color 
information to assist the calculation of Eij is stated below: 
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 Eq. 3-14

For some threshold thd, the smaller value of d will get higher positive weight on Eij. 
On the other hand, we assign negative weights for those have less color similarity for 
penalty. We can visualize the curve of “color weight” in Figure 3-13.  

 
Figure 3-13 The color weight curve 

The linear part of the weight curve can be replaced with different kinds of 
functions. The color information is only auxiliary since it’s not necessary that 

d 

color weight 

k+l 

thd 
h 
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different body parts have dissimilar color. Therefore, we restrict the highest “bonus” 
for similar color to be one and the severest “penalty” for dissimilar color to be no less 
than -1. After constructing the adjacency graph based on position and color 
information, we increase the weight of nodes with the largest degree in a similar way 
to shrink them toward the origin. The experimental results are shown below. 

  

(a) (b) 

 
(c) 

Figure 3-14 The segmentation result using position and color information (a)(b) 
transformation and shrinking results in 6-D eigenspace (c) the segmentation result 

 
In Figure 3-14, nodes which correspond to the head remain a distinct branch. The 

color information between torso and head is usually different and hence avoid them 
shrinking together. We apply this idea to the segmentation of visual hull in the 3-D 
space. 

In summary, our body part segmentation method is briefly described as below: 
A. Modified Laplacian Eigenmap  

A-1、 Graph Construction 
Given n voxels v1, …,vn in the visual hull, we construct an adjacency 
graph G for the voxels. In our case, the six adjacent neighbors of each 
voxel are checked. E is defined as the adjacency matrix of the graph. 
Each element Eij of E records the relationship between Node i and Node j. 
For position information, if two nodes are 6-adjacent neighbors, Eij gets 
one point. For color information, we project each voxel into the image 
planes and calculate the similarity between their colors. In our simulation, 
there are eight cameras in total in the scene. If for some camera the value 
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of d, as defined in Eq. 3-13, is less than some threshold, one vote is 
recorded. Therefore, at most 8 votes can be recorded for each 6-adjacent 
neighbor of a node. The extra bonus on Eij is added based on the 
following rule: 

1 2

3

_ 8
_
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0 1   -1 0

ij ij

a total votes
E E b th total votes th

c total votes th
b a c
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⎪= + ≤ <⎨
⎪ <⎩

< < ≤ < <

 Eq. 3-15

Since the original value of Eij is at most 1 for the position information, 
the bonus for the Eij due to the color information is restricted to be no 
more than 1. Please note that the color information is only auxiliary. This 
is because different colors don’t necessarily mean different body parts. 
Here, we simply use color information to prevent a mistaken shrinkage of 
the head part.  

A-2、 Shrinking of Nodes 
After having constructed the adjacency graph, we impose more weights 
on those voxels that have more connections to their neighbors. For a 

Node i, its degree is defined as 
,

ij
j j i

E
≠
∑ . Once we increase the weights of 

these nodes that have the largest degree, the transformation of these 
nodes will shrink toward the origin in the eigenspace. Also, their 
neighbors are drawn towards the origin as well. 

B. Body Parts Segmentation 
The following steps B-1 and B-2 are the same as Sundaresan’s method. However, 
we proposed a more efficient termination method based on the modified LE. 
B-1、 Spline Initialization 

The starting point of a branch is the node that farthest from the origin. P 
nearest points are selected to initialize the piecewise spline fitting. Then 
we perform PCA on these (P+1) points to acquire the principal direction. 
The site values of (P+1) points are calculated by projecting them into the 
principal direction. Finally, a 6-D spline is used to fit the site value to 
minimize the fitting error Eq. 3-8. 

B-2、 Spline Propagation 
Starting from the end of the (P+1) nodes, the nearest N points are selected. 
A new principal direction is calculated based on these N nodes. If the 
angle between the previous and the present principal direction is less than 
some threshold, we can just use the previous one to evaluate the site 
values. Unlike Sundaresan’s method, we don’t have to count the number 
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of outliers. The site values are also fitted using a 6-D spline. 
B-3、 Spline Termination 

The process of spline propagation continues until the nodes are around 
the origin in the eigenspace. If the distance between the end of the spline 
and the origin is less than a pre-defined threshold, we terminate the 
growth process and complete the segmentation of one branch. 

Based our modified body parts segmentation method, the experimental results are 
shown below. 

 

(a) (b) 

 
(c) (d) (e) 

 
(f) (g) (h) 

Figure 3-15 Comparison between Sundaresan’s segmentation method and ours (a) one of the 
eight input images (b) the color representation for the segmentation results (c) the 
segmentation result in the first three dimension of the eigenspace using original LE (d) the 
segmentation result in the last three dimension of the eigenspace using original LE (e) the 
segmentation result in the normal space using original LE (f) the segmentation result in the 
first three dimension of the eigenspace based on our modified method (g) the segmentation 
result in the last three dimension of the eigenspace based on our modified method (h) the 
segmentation result in the normal space using our modified method 
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In Figure 3-15, we show the comparison between the Sundaresan’s method and 
ours. It can be seen that our method map the trunk part to the origin of the eigenspace. 
Hence, after spline fitting, the trunk is well detected and the limb parts of the human 
body, especially the left arm, can be successfully extracted. 

3.1.5 Skeleton Extraction 

Once the segmentation of human body parts is done, we can extract the skeleton 
of the visual hull. Skeleton extraction has the advantage of feature reduction. 
Furthermore, skeletons encode the information of kinematic motion and don’t deform 
for any pose. Therefore, we extract the skeleton data from the visual hull to analysis 
the motion of the human body. So far there has been some research about the skeleton 
extraction. As mentioned in Chapter 2, [7] applied the medial axis technique to extract 
the skeleton. Some research also uses the 3-D thinning methods to achieve the same 
goal. However, these methods are too sensitive to the minor change in the visual hull. 
The extraction results are noisy and have to be trimmed. Sundaresan proposed a more 
efficient way based on the Laplacian Eigenmap segmentation results [6]. Our skeleton 
extraction technique modifies Sundaresan’s method to deal with short and thick 
braches more properly. 

3.1.5.1 Sundaresan’s Method 

Sundaresan utilizes the site values which are obtained from spline fitting process 
to extract the skeleton from visual hulls. The transformation results of Laplacian 
Eigenmap encode the geometric relation between voxels in the normal space. For 
example, the fingertips usually correspond to the starting points of the branches. This 
is because Laplacian Eigenmap manages to make the nodes which are neighbors be 
close to each other and those which have the strongest connectivity scatter near the 
origin in the meanwhile. Therefore, the transformation results for the torso part 
distribute near the origin and the position of the node along the branch infers its 
geometric relation. The relation is also what site values encode. For the voxels of each 
body part, a 3-D cubic spline h is used to minimize the fitting error and extract the 
skeleton. The fitting error is evaluated as: 

2

 
( )

i

i i
v some body part

s
∈

−∑ v h  Eq. 3-16

However, as mentioned earlier, the site values of thick body parts are hard to 
computed since the transformation is not a smooth curve. Therefore, Sundaresan’s 
method has difficulties dealing with the skeleton extraction for the torso part. We 
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modify Sundaresan’s method to “individual skeleton extraction” which is stated in the 
next section. 

3.1.5.2 Modified Skeleton Extraction Method 

Inspired by Sundaresan’s method, we modify it to be suitable for every body part 
no matter how thick it is. Each body part is transformed into a 1-D eigenspace using 
LE separately. Other manifold learning techniques can be used as well. The smallest 
nonzero eigenvalue represents the most important dimension which corresponds to the 
trend of the body part. 1-D spline fitting and site value calculation are performed 
along this dimension. Since the transformation is in a 1-D eigenspace, our method has 
the advantage of being capable of dealing with every body part. The skeleton 
extraction is then performed by finding a 3-D spline h which minimizes Eq. 3-16. The 
experimental results are shown below. 

  

(a) (b) (c) 
Figure 3-16 The skeleton extraction result using proposed method (a) one of the eight input 
images (b) spline fitting and site value calculation in the 1-D eigenspace (c) the extracted 
skeleton 

3.2 PSO Based Pose Estimation 
After skeleton extraction, the posture of the specific person is estimated using a 

prior human model. The joints of the human model have their individual degrees of 
freedom (DOF). In total, there are usually 20 or more parameters in total. Thence, the 
fitting of the human model to the skeleton data is an optimization problem in a very 
high dimensional search space. In this case, it is very challenging to simultaneously 
find the optimal solution for the current skeleton data and to ensure the temporal 
smoothness over time. In the following section, we will discuss the adopted 3-D 
human model and the proposed pose estimation technique. 
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3.2.1 3-D Human Model 

Our human model is a 3-D skeleton model. Here, we adopt the popular twists 
and exponential products formulation which is popular among the human models. 
This mathematical framework helps us in describing the kinematic chains in the 
human body. We will introduce the background of twists formulation firstly and then 
discuss our human model. 

3.2.1.1 Twists and Exponential Products Formulation 

The concept of twists and exponential products for kinematic chains is 
introduced by Murray [23] and is generalized to the application of 3-D human models 
by Mikic [13]. We can view the articulated structure of the human body as kinematic 
chains and the twists framework can be used to describe the rotation of the joints. It 
gives a concise description of the motion parameters and the motion constraints. 
Moreover, the relationship between the parameters and the position of the points in 
the model is simple. In this section, we present the concept of the twists framework 
based on Mikic’s formulation. 

Consider the rotation of a rigid object about a fixed axis as the simplest case. 
Given that the direction of the axis is a unit vector ω א R3 and g א R3 is a point on the 
axis. After rotation by θ radians, the position of a point on the object is denoted as 
p(θ). Its velocity is then expressed as 

( ) ( ( ) )θ θ′ = × −ωp p g  Eq. 3-17

 

Figure 3-17 An object rotates θ radians about a fixed axis ω 

 
We can reformulate Eq. 3-17 in the form of the matrix and homogeneous coordinate 
representation: 

ω

ી 
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where 3,  x x xω ω× = ∀ ∈ℜ� . ξ�  is defined as the twist which describes the rotation 
related to ω and g. It can be shown that the solution to Eq. 3-18 is 
 

2

2

( ) (0)( )( ( )) ( )
1 10 1

(0) (0)
           

1 0 1 1

sin( ) (1 cos( ))

Te e

e

where

e

θ θ

ξθ

θ

θ θ

θ θ

× ×⎡ ⎤− × − × + − ×⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= = + + −

I

I

� �

�

�

�

� �

p pg g

p R t p

R

ω ω

ω

ω ω ωω ω

ω ωω ω
ω ω

Eq. 3-19

Eq. 3-20

eξθ�  is viewed as the exponential map from the initial position of the point p on the 
object to its new position after rotating θ radians. Besides, e θ�ω corresponds to the 
rotation matrix R of the rigid object and t is the translation vector. 

We can generalize this formulation to an open kinematic chain with m connected 
links. These links have their own rotation axes and different rotation angles. Let K(0) 
be the rigid body transformation which describes the position of the point on the last 
object of the chain, in terms of the base of the chain for the initial configuration. After 
the chain rotates Θ=[θ1 θ2 … θm]T for each link, the transformation K(Θ) can be 
reevaluated as: 

1 1 2 2
( ) ( )

( ) (0)
0 1

m me e eξ θξ θ ξ θ Θ Θ⎡ ⎤
Θ = = ⎢ ⎥

⎣ ⎦

�� � "
R t

K K , Eq. 3-21

where R(Θ) is the rotation matrix and t(Θ) is the translation matrix. The exponential 
product shown in the Eq. 3-21 can be used to describe the position of the points on an 
open kinematic chain properly. 
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Figure 3-18 The rigid body transformation of an open kinematic chain 

 

3.2.1.2 3-D Skeleton Model 

In our model, a human body is a 3-D skeleton composed of 12 segments and 23 
parameters. as illustrated in Figure 3-19. It is based on the twists formulation and the 
position of each point in the model can be described using exponential products.  

 
Figure 3-19 3-D human skeleton model 
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Table 3-1 The notation of the lengths of the body parts 
Body part Length 

Torso L0 
Head L1 

Upper arm(left/right) L2 
Lower arm(left/right) L3 

Thigh(left/right) L4 
Calf(left/right) L5 

Shoulder L6 
Hip L7 

 
The human skeleton model refers to and is modified from Mikic’s 3-D human 

shape model [13]. It consists of 16 rotation axes for 9 joints and the rotation is 
formulated using the twists framework that is referred to the torso coordinate system. 
For the rotation axes, their corresponding rotation angles are denoted as θ1, θ2, …, θ16, 
separately. The lengths of the body parts are decided beforehand based on the stature 
of the target person. To describe the position of each point in the model, we exploit 
the rigid body transformation and twists formulation. Therefore, we have to define the 
initial body configuration to manipulate the model by 16 rotation angles. The initial 
configuration is defined as the pose which is shown in Figure 3-19. The initial values 
of the parameters and the positions of the joints are listed in Table 3-2. 

The positions of the points in the human model can be calculated using twits and 
exponential products formulation. The values of the positions and rotation parameters 
are based on the torso-centered coordinate system. Based on the concepts of the twist 
framework, the position of each point in the human body can be described by the rigid 
body transformation. For example, the position of the wrist in terms of the 
torso-centered coordinate is decided by the kinematic chain which consists of the 
lower arm, the upper arm and the shoulder. The transformation is defined by the 
function K(0) in the initial configuration. When the body starts to move, the 
transformation can be adjusted to K(Θ) via exponential products formulation. 
Furthermore, we have to decide the transformation between the world and 
torso-centered coordinate systems to transform the torso-centered system to the world 
coordinates. The transformation is determined by the rotation and the translation of 
the torso center relative to the origin of the world coordinate. In Mikic’s design, the 
rotation axis of the torso is an arbitrary unit vector ω0 in the world coordinates [13]. 
However, it is not easy to control the orientation of the human model. The orientation 
of the human model determines which part is the right hand side. This information is 
important since the motion constraints for the right side and the motion constraints for 
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the left side are somewhat different. For example, the allowed rotation angle for the 
right elbow is [0,π]. However, it is [-π,0] for the left elbow. With the motion 
constraints, we can make our pose estimation more natural and reasonable. 
Unfortunately, the Mikic’s method does have the problem in defining the orientation 
of the model. In Figure 3-20, we illustrate an example to explain this issue. 

 
Table 3-2 The values of the parameters for the initial configuration 

Joints 
Position (torso-centered 

coordinate) 
Rotation axis Rotation angle 

neck [ ]1 00 0 2 Tp L=  
ω1=[1 0 0]T θ1=0 
ω2=[0 1 0]T θ2=0 

left 
shoulder 

[ ]2 6 00 2 2 Tp L L=  
ω3=[1 0 0]T θ3=0 
ω5=[0 1 0]T θ5=0 
ω7=[0 0 1]T θ7=0 

right 
shoulder 

[ ]3 6 00 2 2 Tp L L= −  
ω4=[1 0 0]T θ4=0 
ω6=[0 1 0]T θ6=0 
ω8=[0 0 1]T θ8=0 

left elbow [ ]4 2 6 00 2 2 Tp L L L= +  ω9=[0 0 1]T θ9=0 

right elbow [ ]5 2 6 00 ( 2) 2 Tp L L L= − +  ω10=[0 0 1]T θ10=0 

left hip [ ]6 7 00 2 2 Tp L L= −  
ω11=[1 0 0]T θ11=0 
ω13=[0 1 0]T θ13=0 

right hip [ ]7 7 00 2 2 Tp L L= − −  
ω12=[1 0 0]T θ12=0 
ω14=[0 1 0]T θ14=0 

left knee [ ]8 7 4 00 2 ( 2) Tp L L L= − +  ω15=[0 1 0]T θ15=0 

right knee [ ]9 7 4 00 2 ( 2) Tp L L L= − − + ω16=[0 1 0]T θ16=0 
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Figure 3-20 The weakness of Mikic’s method 

 
As shown in Figure 3-20, if the initial pose estimation is in the back of the target 

person, it has the wrong body orientation. When we rotate the human model to the 
right orientation, it causes even larger fitting error since the model rotates about the 
axis with an inclined angle. Therefore, the system may pick up the one with wrong 
orientation for our pose estimation result. To determine the right side from the left 
side, Mikic switches the right side and left side of the human model and compares 
their fitting errors. For the case in Figure 3-20, it happens that the smaller fitting error 
actually corresponds to the wrong decision. A more natural thinking is that if we can 
make the model self-spin, the orientation of the human body can be easily 
manipulated and decided. Hence, we redefine the rotation axis of the human body as 
the torso stick of the model. Furthermore, the neck position and torso center control 
the incline of the human model. With self spin, the human model can easily spin to the 
correct orientation to obtain less fitting error. To sum up, the rotation axis of the 
human body is decided by the positions of the neck joint and the torso center. That is, 
the orientation is performed by rotating the human model about the z axis of the torso 
coordinate. 

The total number of the human model parameters is 23 in our case, which 
include 0p̂  (the position of the torso center respect to the world coordinate), 1p̂  
(the position of the neck joint respect to the world coordinate), θ0 (the spin angle) and 
16 rotation angles for each joints. In the following context, we use ^ to indicate the 
positions respect to the world coordinate. Otherwise, the positions are in terms of the 
torso-centered coordinate system. The orientation of the torso is decided by the 
rotation matrix related to 0p̂  and 1p̂ : 

ω0

R
L

L R
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Eq. 3-23

Eq. 3-23 is derived from Eq. 3-20. Furthermore, we can apply the concept of 
exponential product to the calculation of the positions of each point in the human 
model. Consider the position p(0) of an arbitrary point in the model for the initial 
configuration. The rotations which influent the position of p is called the significant 
rotations by Mikic’s definition [13]. For example, if p refers to the position of the 
fingertip, the significant rotations include the rotation angles of the wrist, elbow, and 
shoulder. According to Eq. 3-21, we can find the new position of the point p after the 
pose change from the initial configuration. Assuming there are m significant rotations 
for p, the new position of p will be: 
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Finally, we need to transform the torso-centered coordinate system to the world 
coordinate system via the rotation matrix of the torso. Hence, Eq. 3-24 becomes: 
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We can reformulate Eq. 3-25 in the form of Cartesian coordinate: 

0 1 2 2 1 0ˆ ˆ( ) ( ( ( ( (0) ) ) ) )m mΘ = + + + + +… …p R R R R p t t t p  Eq. 3-26
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3.2.2 PSO Based Pose Estimation 

PSO (Particle Swarm Optimization) has the advantages of being capable of 
dealing with nonconcave and nonlinear cost functions. Moreover, its computational 
cost is usually very light. This PSO method provides a powerful tool for dealing with 
an optimization problem in a high dimensional search space. Inspired by [8], we apply 
PSO to the fitting of the 3-D skeleton model to the extracted skeleton data. 

3.2.2.1 Evaluation Function 

In the process of pose estimation, we fit the 3-D skeleton model defined in Figure 
3-19 to the extracted and labeled skeleton. The skeleton model is composed of 12 line 
segments while the extracted skeleton data consists of many nodes in the 3-D space. 
The evaluation function calculates the error between the model and the extracted data. 
Hence our goal is to find the minima of the evaluation function. The major difference 
between our method and others is that we’ve already segmented the different body 
parts apart. When we fit the model to the extracted data, the correspondence of the 
body parts is restricted to one-to-one. We summarize the calculation of our evaluation 
function as below: 
1. The Euclidean distance between the model and the extracted skeleton 

Since the extracted skeleton data doesn’t have shoulder and hip, we only have to 
consider the other 10 line segments which include head, left/right upper arm, 
left/right lower arm, torso, left/right thigh, left/right calf. For each extracted body 
part i, we sample ni nodes uniformly from mi nodes for the purpose of speeding 
up. Then the same amount of nodes is sampled from every line segment. We 
illustrate the sampling process using Figure 3-21. 
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Figure 3-21 For the dark blue skeleton, we sample 6 nodes and use them to calculate the 
fitting error respect to the 6 different body parts (head, torso, arms, and legs) in the 
human model separately. 6 points are also marked from each body part segment. 

After points sampling, Euclidean distance is calculated for each pair of points. 
We denote ni nodes from ith body part of the extracted skeleton as ai1,ai2, …, aini 
and that from jth body part of the human model as bj1,bj2, …, bjni . The numbers 
are ordered from one end of the body parts. The first problem is that how do we 
know the correspondence of the points between the extracted skeleton and the 
human model. That is, ai1 corresponds to bj1 or bjni. We try these two kinds of 
association and pick up the one with less error. Therefore, for ith body part of the 
extracted skeleton, its fitting error corresponds to jth body part of the human 
model is calculated as: 

, ,

( 1)
, 1 , 1

min( ( , ), ( , ))
i i

i

s t n s t n

ij is jt is j n t
s t s t

Er dist a b dist a b
= =

− +
= =

= ∑ ∑  Eq. 3-27

2. Total error 
From the previous step, we will obtain an 6×6 error matrix Er. Since we’ve 
labeled the body parts for the extracted skeleton, total error is calculated by 
finding the correspondence between body parts of the model and the extracted 
data which will acquire the minimum total error. To compare the fitness among 
different body parts, we should average the values of Erij by their number of 
sampled points. As a result, the total error is calculated by choosing a one-to-one 
mapping between i and j which minimize the sum of the error for 6 body parts. 

From the above steps, we can obtain the fitting error given the values of 23 
parameters. Next, we apply PSO to find the best match pose for the extracted 
skeleton. 

world coordinate 
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3.2.2.2 Hierarchical PSO Fitting Process 

Our pose estimation is performed by fitting the human model to the extracted 
skeleton. Since there are 23 parameters in total, it can be modeled as the optimization 
problem in the high dimensional search space. A swarm of particles and an evaluation 
function f are defined in the search space with the dimensionality of D. Each particle 
is represented as a vector pi = [pi1 pi2 … piD]T with D elements. Furthermore, every 
particle has its associative velocity vi=[vi1 vi2 … viD]T to guide its motion. In every 
iteration, the value of the evaluation function is computed and recorded for each 
particle. Two kinds of information are evaluated. The first kind of the information is 
the best position so far for each particle, recorded as bi. This bi is to keep the 
information of self experience. The second kind of the information is the globally best 
position, denoted as gb. gb is evaluated by finding the minimal value of f so far. The 
new location of each particle is then updated using the information of self experience 
and the globally best position. Gradually, most particles will converge to the optimal 
position which has the minimal value of f(p). The basic PSO based pose estimation 
process is described by the pseudo code: 
Let the number of particles to be NP0 with dimension D. Each dimension represents 
one parameter for the human model. In our case, D is equal to 23. The allowed 
values for each particle is [a,b]. 

for each particle i 
the position of the particle: pi=rand(a,b) 
(rand(a,b) means a random scalar or vector in the range of [a,b]) 
initialize the velocity of the particle: vi=[0 0…0]T 

initialize the current best position of the particle: bi = pi 

end of for 
initialize the current globally best position: gb = arg(min( ( )))

i

if
p

p  
while the stop condition isn’t satisfied 

do 
for each particle i  

update its velocity and position 
vi = t1*vi+t2*rand(0,1)*(bi-pi)+t3*rand(0,1)*(gb-pi) 
(t1, t2 and t3 are some constants) 
pi = pi+vi 

compute the value of fitting error to obtain ei for pi 
if ei < f(bi) 

bi = pi 
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end 
if ei < f(gb) 

gb = pi 
end 

end of while 

Inspired by [1], we fit the model to the extracted skeleton hierarchically. The 
flow chart is shown below: 

Table 3-3 The Hierarchical structure of our fitting process 
stage body parts to be fitted example 

1 torso center 

 

2 
torso center 
torso orientation 

 

3 
torso center 
torso orientation 
head 
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4 

torso center 
torso orientation 
head 
upper arms、thighs 

 

5 

torso center 
torso orientation 
head 
upper arms、thighs 
lower arms、calves 

 

As shown in Table 3-3, we hierarchically fit the human model instead of fitting 
23 parameters at one time. At the first stage, we only consider where the best position 
of the torso center is. Therefore, there are only 3 parameters to be concerned. For the 
case of fewer parameters, fewer particles are needed and they can converge to the 
optimal solution more quickly. We can view the output result of this stage as the rough 
estimation of the position of the torso center. When we proceed to the second stage, 
we can lessen the search range of the torso center and focus on finding the best 
orientation. However, we still need to estimate the parameters of the body parts which 
are evaluated at the previous stages since they can be inaccurate due to being lack of 
the fitness information of the other body parts. Therefore, our hierarchical structure 
accumulates the parameters to be estimated. Furthermore, we lessen the range of 
values of the parameters which are estimated at previous stages. As for the stop 
criteria of the PSO algorithm, we set a threshold to restrict the number of iteration. 
The stages with more parameters to be estimated require more particles and iterations 
to converge to the global optimal solution.  

3.2.2.3 Motion Constraints 

The rotation of joints of the human body is restricted. If we don’t limit the 
rotation angle for each joint, the PSO estimation result may be unnatural and 
inconsistent with the allowed body motion. Referring to [13], we set the following 
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constraints on the rotation angles of the joints. 
Table 3-4 The motion constraint for each joint 

Joint Rotation angle Allowed range 

Neck 
θ1 [-π/2,π/2] 
θ2 [-π/2,π/2] 

Left shoulder 
θ3 [-π,π] 
θ5 [-π,π/2] 
θ7 [-π/2,3*π/4] 

Right shoulder 
θ4 [-π,π] 
θ6 [-π/2,π] 
θ8 [-3*π/4,π/2] 

Left elbow θ9 [-π,0] 
Right elbow θ10 [0,π] 

Left hip 
θ11 [-π/3,π/2] 
θ13 [-π,π/2] 

Right hip 
θ12 [-π/2,π/3] 
θ14 [-π,π/2] 

Left knee θ15 [0,π] 
Right knee θ16 [0,π] 

For Mikic’s method, the orientation of the human model is adjusted by switching the 
angle limits. For example, if we want to switch the right side and left side which are 
defined in Figure 3-19, we have to adjust the angle limits of θ15 and θ16 to [-π,0]. The 
orientation with fewer fitting errors is selected. This is bothersome and not intuitive. 
For our proposed model, the motion constraints remain unchanged even if it goes 
through self spin. The orientation of the human model can be manipulated easily and 
straightly. 

3.2.2.4 Fine Tune the Pose Estimation Results 

It is necessary to fine tune the PSO pose estimation results to make it more 
accurate. At section 3.2.2.2, we have used PSO to fit the model to the extracted 
skeleton. However, the number of parameters to be fitted is gradually getting larger. 
For higher dimension search space, PSO requires more particles and iterations to 
achieve the globally optimal solution. This will spend a lot of time converging to the 
global minimum. To speed up our system, we don’t use mass particles and many 
iterations at the first time of pose estimation. The estimation results of section 3.2.2.3 
are viewed as an initial guess of the body pose. Then the results are fine tuned for 
each body parts separately. When we adjust single body part, fewer parameters have 
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to be considered and hence fewer particles are required and they converge to the 
optimal solution more easily and faster. Therefore, the positions and orientations of 
the torso, head, arms, and legs are fine tuned one by one to obtain more robust 
estimation result. 

3.2.2.5 Temporal Consistency 

The pose of the target person is estimated and the results are refined for each 
frame. Besides the use of the PSO method, we also need to ensure the temporal 
consistency between frames. The motion changes between the current frame and its 
previous frame should be smoothly changing. To ensure the temporal consistency, we 
propagate the values of the estimated parameters from the current frame to the next 
frame. In other words, we restrict the values of the parameters for the next frame to be 
within some range around the estimated results at current frame. However, since an 
incorrect estimation may also propagate over time, we add a re-initialization 
mechanism for each frame.  When the fitting error is larger than some pre-defined 
threshold, we will reinitialize the whole pose estimation process based on the current 
frame only. This can prevent the propagation of errors. 

 

Figure 3-22 The mechanism that ensures the temporal consistency 

In Figure 3-22, the basic PSO means the ordinary PSO with motion constraints. 
Temporal PSO means the one with both motion and temporal constraints. For each 
frame after the reference frame, the errors of basic PSO and temporal PSO are 
compared with each other. If the error of temporal PSO is greater than that of basic 
PSO by some threshold, the propagation process is cut off and the reinitialization 
mechanism is invoked to reset the reference frame. By doing this, we can ensure the 

temporal PSO 

first frame reset the reference frame 

basic PSO 
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temporal consistency and avoid error propagation at the same time. 
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Chapter 4. Experimental Results 
The performance of our proposed method is evaluated via some sequences 

generated by OVVV. In these sequences, we use different actions to test our system. 
The names of sequences are listed below: 
sequence 

NO. 
sequence name 

number of 
frames 

camera 
configuration

s1 Wave_SMG1 38 Figure 3-5 
s2 swing 168 Figure 3-5 
s3 ThrowItem 400 Figure 4-1 
s4 MeleeAttack01 190 Figure 4-1 
s5 sitcouch1 170 Figure 4-1 
s6 d1_t03_Tenements_Look_Out_Door_Close 780 Figure 4-1 
s7 luggagepush 645 Figure 4-1 
s8 walk_all 305 Figure 4-1 
s9 d3_c17_03_throw_from_tower 1110 Figure 4-1 

 
In these sequences, the target person performs different actions. These are 

built-in actions in OVVV. We use the script sequence in the Hammer tool, which is 
developed by the Valve company, to edit and control the motion of the target person. 
Then the virtual video tool offered by ObjectVideo is used to generate the scenarios. 

Eight virtual cameras are set up to capture the images. We use two different 
setups of these cameras to test our system. One setup has been shown in Figure 3-5, 
while the other is shown below. 
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Figure 4-1 The second setup of eight cameras for oursynthetical environment 

 
According to [17], the most favorable camera configuration for the case of eight 
cameras is shown in Figure 4-1. If compard to the configuration in Figure 3-5, this 
configuration may generate visual hulls with fewer artifacts. In each sequence, we 
adjust the rotation and zoom angles of the eight cameras to ensure each camera can 
shoot the whole person. In the capturing of a single video, these parameters of 
cameras are fixed and well calibrated. We use the ground truth offered by OVVV to 
obtain the external and internal parameters of these cameras. The frame size is 320×
240. Since the images are captured by connecting to the server of OVVV through 
internet, the frame rate is influenced by the working state of the computer and the 
internet. In our experiments, we set the frame rate to be approximately 30 frames per 
second. Some experimental results are shown below: 
 
A s1: Wave_SMG1 

The target person waves his hands in this sequence. For the sequence s1, we 
show the detailed results of visual hull reconstruction, body parts segmentation, 
skeleton extraction, and pose estimation. 
 
 
 
 

4 

8 

3 

5 

1 2 

6 
7 
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time 69 time 73 time 77 time 87 

 
time 51 time 55 time 59 time 63 

 
time 69 time 73 time 77 time 87 

 
time 51 time 55 time 59 time 63 

 
time 69 time 73 time 77 time 87 

Figure 4-2 The pose estimation results of s1. The first two rows are the 8 different frames 
captured by the eight different cameras at a specific time instant. The 3rd and 4th rows are the 
reconstructed visual hulls. The 5th and 6th rows are the segmented visual hulls. The extracted 
skeletons are plotted in the 7th and 8th rows. The fitting results are shown in the 9th and 10th 
rows. The last two rows are the pose estimation results. 

 
B. s2: swing 

In this sequence, the target person throws a ball. To save space, we only show the 
results of skeleton extraction and pose estimation. The reconstructed visual hulls 
and the labeling of body parts are similar to that of s1. 
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time 32 time 38 time 44 time 50 

 
time 56 time 62 time 68 time 74 

 
time 80 time 86 time 92 time 98 

 
time 110 time 130 time 160 time 190 

Figure 4-3 The pose estimation results of sequence s2. The 1st to 4th rows are the input images 
from one of the eight cameras. The 5th to 8th rows show the extracted skeleton and the fitting 
results. Pose estimation results are shown in the last four rows. 

 
C.  s3: ThrowItem 

In this sequence, the target person throws something. We show the results of 
pose estimation below. 
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time 1 time 41 time 71 time 101 

 
time 126 time 156 time 186 time 206 

 
time 221 time 251 time 281 time 301 

 
time 321 time 351 time 381  time 401 

Figure 4-4 The pose estimation results of sequence s3. The first four rows are the input 
images from one of the eight cameras. The 5th to 8th rows show the skeleton extraction and the 
model fitting results. The last four rows are the results of pose estimation 

 
D. s4: MeleeAttack01 

The target person is struggling in this sequence. The pose estimation results are 
shown below: 
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time 170 time 190 time 210 time 230 

 
time 250 time 270 time 290 time 300 

Figure 4-5 The pose estimation results of sequence s4. The first three rows are the input 
images from one of the eight cameras. The extracted skeleton and its model fitting results are 
shown in the 4th to 6th rows. The last three rows show the pose estimation results. 

 
E. s5: sitcouch1 

The performer is going to sit on a couch in this sequence. We show below the 
pose estimation of this sequence. 
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time 80 time 100 time 110 time 130 

 
time 150 time 170 time 190 time 200 

 
time 30 time 40 time 50 time 60 

 
time 80 time 100 time 110 time 130 

 
time 150 time 170 time 190 time 200 

Figure 4-6 The pose estimation results of sequence s5. The 1st to 3rd rows show the input 
images from one of the eight cameras at 12 different time instants. The 4th to 6th rows are the 
extracted skeleton and the fitting results. The last three rows show the pose estimation results.

 
 
F. s6: d1_t03_Tenements_Look_Out_Door_Close 

In this sequence, the target person looks out the door and then closes the door. 
The pose estimation results are shown below: 
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Figure 4-7 The pose estimation results of sequence s6. Input images from one of the eight 
cameras are shown in the first four rows. 5th to 8th rows are the results of the extracted 
skeleton and model-fitting. The last four rows show the results of pose estimation. 

 
G. s7: luggagepush  

The target person is pushing a piece of luggage in this sequence. The pose 
estimation results are shown below: 
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time 340 time 410 time 480 time 550 

time 570 time 610 time 650 time 690 
Figure 4-8 The pose estimation results of s7. The first three rows are the input images from 
one of the eight cameras. The 4th to 6th rows show the extracted skeleton and model-fitting 
results. The pose estimation results are shown in the last three rows. 

 
H. s8: walk_all 

The target person takes a walk in this sequence. It’s a challenging sequence since 
the hands get partially occluded. It can be seen that our system can still generate 
robust results for this sequence. 
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time 400 time 415 time 430 time 445 

Figure 4-9 The pose estimation results of sequence s8. The 1st to 3rd rows show the input 
images from one of the eight cameras. The 4th to 6th rows are the extracted skeleton and 
model-fitting results. The pose estimation results are shown in the last three rows. 

 
I.  s9: d3_c17_03_throw_from_tower 

In this sequence, the target person lifts something from the ground and then drops 
it. This sequence is also challenging since in the initial pose the person bends his 
back and hangs his arms (Figure 4-10, time 220). This pose is quite different from 
a standing posture. It can be seen that our system can still deal with this sequence 
well. 
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time 1160 time 1200 time 1240 time 1280 

Figure 4-10 The pose estimation results of sequence s9. The first four rows are the input 
images from one of the eight cameras. The next four rows show the extracted skeleton and the 
fitting results. The last four rows are the pose estimation results. 
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Chapter 5. Conclusions 
In this thesis, we proposed a model-based pose estimation technique for multiple 

camera motion capture system. The whole process, which includes initialization and 
pose estimation, is automatic and markerless. For system initialization, we reconstruct 
the 3-D visual hull from multiple foreground silhouettes. We segment the human body 
in the eigenspace, and then extract the skeletons to reduce the dimension of the 
feature space. In the initialization stage, no prior model is needed. Furthermore, we 
modify the Laplacian Eigenmap to make the body parts segmentation easier than 
Sundaresan’s method [6]. After system initialization, a prior 3-D human model is 
fitted to the extracted skeleton based on the PSO algorithm. Our human model allows 
self-spin and combines motion constraints with the pose estimation in a more natural 
way. Moreover, the temporal smoothing process is also achieved by a parameter 
propagation mechanism. The experiment results show that our system can handle the 
pose estimation problem for various kinds of actions. 



76 
 

Reference 

[1] http://www.math.umn.edu/~wittman/mani/ 
[2] http://mathworld.wolfram.com/Manifold.html 
[3] A. Agarwal and B. Triggs, “3-D Human Pose from Silhouettes by Relevance 

Vector Regression,” IEEE Conference on Computer Vision and Pattern 
Recognition, vol. 2, pp. 882-888, June, 2004. 

[4] A. Elgammal, and C. S. Lee, “Inferring 3-D Body Pose from Silhouettes Using 
Activity Manifold Learning, ” IEEE Conference on Computer Vision and Pattern 
Recognition, vol. 2, pp. 681-688, June, 2004. 

[5] A. Laurentini, “How Many 2-D Silhouettes Does It Take to Reconstruct a 3-D 
Object?” Computer Vision and Image Understanding, vol. 67, no.1, pp. 81-87, 
1997. 

[6] A. Sundaresan, and R. Chellappa, “Model Driven Segmentation of Articulating 
Humans in Laplacian Eigenspace,” IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 2007. 

[7] C. Menier, E. Boyer, and B. Raffin,”3-D Skeleton-based Body Pose Recovery,” 
International Symposium on 3-D Data Processing, Visualization and Transmission, 
pp. 389-396, 2006.  

[8] C. Robertson and E. Trucco, “Human Body Posture via Hierarchical Evolutionary 
Optimization,” British Machine Vision Conference, vol. 3, pp. 999-1008, 2006. 

[9] C. W. Chu, O. C. Jenkins, and M. J. Mararić, “Markerless Kinematic Model and 
Motion Capture from Volume Sequences,” IEEE Conference on Computer Vision 
and Pattern Recognition, vol. 2, pp. 475-482, June, 2003. 

[10] F. Cuzzolin, D. Mateus, E. Boyer, and R. Horaud, “Robust Spectral 3-D-Bodypart 
Segmentation along Time,” International Conferences on Computer Vision 2nd 
Workshop on Human Motion, pp. 196-211, 2007. 

[11] G. R. Taylor, A. J. Chosak, and P. C. Brewer, “OVVV: Using Virtual Worlds to 
Design and Evaluate Surveillance Systems, ”IEEE Conference on Computer Vision 
and Pattern Recognition, pp. 1-8, June 2007. 

[12] I. H. Chen and S J. Wang, “Efficient Vision-Based Calibration for Visual 
Surveillance Systems with Multiple PTZ Cameras”, in Proceeding of IEEE 
International Conference on Computer Vision Systems, Jan. 5-7, 2006. 

[13] I. Mikic, M. Trivedi, E. Hunter, and P. Cosman, “Human Body Model Acquisition 
and Tracking Using Voxel Data,” International Journal of Computer Vision, vol.53, 
pp. 199-223, 2003. 



77 
 

[14] J. B. Tenenbaum, V. D. Silva, and J. C. Langford, “A Global Geometric Framework 
for Nonlinear Dimensionality Reduction,” Science, vol. 290, pp. 2319-2323, Dec., 
2000. 

[15] J. Deutscher, A. Blake, and I. Reid, “Articulated Body Motion Capture by 
Annealed Particle Filtering,” Computer Vision and Image Understanding, vol. 2, 
pp. 126-133, June, 2000. 

[16] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” Proceedings of the 
IEEE International Conference on Neural Networks, vol. 4, pp. 1942-1948, 1995. 

[17] L. Mündermann, S. Corazza, A. M. Chaudhari, E. J. Alexander, T. P. Andriacchi, 
“Most Favorable Camera Configuration for a Shape-from-Silhouette Markerless 
Motion Capture System for Biomechanical Analysis,” Proceedings of Society of 
Photo-Optical Instrumentation Engineers, pp. 278-287, Jan., 2005. 

[18] M. Belkin and P. Niyogi, “Laplacian Eigenmaps for Dimensionality Reduction and 
Data Representation,” Neural Comput., pp. 1373-1396, 2003. 

[19] M. Piccardi and T. Jan, “Mean-shift background image modeling,” International 
Conference on Image Processing, vol. 5, pp. 3399–3402, Oct. 2004 

[20] N. R. Howe, “Silhouette Lookup for Automatic Pose Tracking,” Proceedings of the 
Conference on Computer Vision and Pattern Recognition Workshops, pp. 15-22, 
June, 2004.  

[21] R. Kehl, L. V. Gool, “Markerless Tracking of Complex Human Motions from 
Multiple Views,” Computer Vision and Image Understanding, vol. 104, pp. 
190-209, 2006. 

[22] R. Kehl, M. Bray, and L.V. Gool, “Full Body Tracking from Multiple Views Using 
Stochastic Sampling,” IEEE Conference on Computer Vision and Pattern 
Recognition, vol. 2, pp. 129-136, June, 2005. 

[23] R. Murray, Z. Li, S. Sastry, “A Mathematical Introduction to Robotic 
Manipulation,” CRC Press, 1993. 

[24] R. Szeliski, “Rapid Octree Construction from Image Sequences, ” CVGIP: Image 
Understanding, vol. 58, pp. 23-32, 1993. 

[25] S. T. Roweis and L. K. Saul, “Nonlinear Dimensionality Reduction by Locally 
Linear Embedding,” Science, vol. 290, pp. 2323-2326, Dec., 2000. 

[26] T. B. Moeslund, A. Hilton, and V. Krüger, “A Survey of Advances in Vision-based 
Human Motion Capture and Analysis,” Computer Vision and Image Understanding, 
vol. 104, pp. 90-126, 2006. 

[27] Y. Sagawa, M. Shimosaka, T. Mori, and T. Sato, “Fast Online Human Pose 
Estimation via 3-D Voxel Data,” Proceedings of IEEE Conference on Intelligent 
Robots and Systems, pp. 1034-1040, 2007. 


