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Decoupling Controller Design for Linear 
Multivariable Plants 

Ching-An L i  and Tung-Fu Hsieh 

Abstract-We study decouplhg controller design for linear time-io- 
variant square MlMO plants under the unity-feedback codguration. 
For plants with no coincidences of unstable poles and zero%, we &e a 
simpli&d necessary and sutlideut condition for dosed4oop stability. 
The simptitled condition leads to a simple parametrization of tbe set of 
dl achievable decauplca 1/0 maps and an algorithm which allows the 
deslgn of deeoupling controllers to achkve prendgned dosed-loop 
Pok. 

I. INTRODUCTION 
The design of a decoupling controller for linear MIMO system 

has been studied by many researches. Given stable plants, Desoer 
and Chen [4] provided an algorithm to obtain strictly proper con- 
trollers such that the resulting 1/0 map is decoupled. Safonov and 
Chen [8] studied the design of a controller to achieve optimal 
stability margin subject to decoupling and asymptotic tracking con- 
straints. Desoer and Giindes [5] described the set of all diagonal 1/0 
maps and D/O maps achievable by two-input one-output con- 
trollers. Hammer and Khargonekar [7] gave necessary and sufficient 
conditions for a plant to be decouplable by a controller placed in the 
feedback path. Vardulakis [9] showed that if a plant has no 
coincidences of unstable poles and zeros, it can be decoupled by a 
controller under the unity-feedback configuration. 

In this note, we study decoupling controller design for linear 
time-invariant MIMO square plants under the unity-feedback con- 
figuration. For plants with no coincidences of unstable poles and 
zeros, we give a simplified necessary and sufficient condition for 
closed-loop stability. The simplified condition leads to a simple 
parametrization of the set of all achievable diagonal Z/O maps 
and the set of all decoupling controllers. The parametrization is 
simple in that it involves only scalar polynomials satiqfying cer- 
tain interpolation conditions. Finally, we develop an algorithm for 
the design of decoupliig controllers to achieve preassigned closed- 
loop poles. The algorithm does not require the computations of 
coprime factorization, Smith-McMillan form, or structure matrix 
[9]. In addition to inverting a rational matrix, the only computation 
required is solving linear algebraic equations. 

This paper is organized as follows: Section 11 introduces the 
decoupling design problem. In Section 111, we prove the simplified 
stability condition and develop the parametrization results. A design 
algorithm and an illustrative example are given in section IV. 
section V is the conclusion. 
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Fig. 1. Unity-feedback system S( P, C). 

Notations 
a : =  b means a denotes b. R:= the field of real numbers; 

C:= the field of complex numbers. C- := {sECIRe(s) < 0) ;  
C, := { s ~ C l R e ( s )  2 0) .  R[s] :=  the ring of polynomials in s 
with real coefficients; R(s):= the field of rational functions in s 
with real coefficients; Rp(s)(Rpo(s)) := the set of proper (strictly 
proper) rational functions in s with real coefficients. For H(s)  E 
R(S)"~", Y [ H ]  := the set of all zeros of H in C,  B [ H ]  := the 
set of all poles of H in C [2, p. 751, Y + [ H ]  := Y [ H ]  fl C,, and 
9 , [ H ] : =  9 [ H ]  fl C,. A proper transfer matrix H ( ~ ) E  
Rp(s)"X" is stable if and only if 9 [ H l  C C-. For f, gER[sl, 
deg f := degree of f and f I g means f divides g ,  or equivalently, 
g =fh for some haR[s ] .  

II. PROBLEM STATEMENT 
Consider the unity-feedback system S(P ,  C) shown in Fig. 1, 

where P(s)  E Rpo(s)"x" is the given plant, C(s) E R,(S)"~" the 
controller to be designed, (ul, U,) the input, and (yl, y,) the 
output. It is assumed that the dynamical system described by P(s)  
and C(s) contain no unstable hidden modes. Let U := [ ~ r u ! ] ~ a n d  
y : =  since ~ ( s )  is strictly proper, S ( P , C )  IS well 
posed. 
The closed-loop transfer matrix H,, E Rp(s)2nx2n and is given by 

. (2.1) 1 c(z+ PC)-' -CP(Z+ 

PC( z + PC) P( z + CP) = [  
We say that the system S(P, C)  is (internally) stable i d  C is a 
stabilizing controller for P if and only if Hyu is stable. 
The problems studied in this note are the following. Given that 

P(s)  satisfies the following assumDtions: 
PI: P(s )  ER o(s)"x"k nonshgular, that is, det P # 0, 
P2: T + [ P ]  RB+[PI  = 0, 

1) describe the set of all controller C(s) E RJS)"~" for which the 
system S(P, C) is stable and the input-output transfer matrix 
HyZul is nonsingular and diagonal, and 2) develop an algorithm for 
the design of decoupling controllers. Note that the assumptions are 
quite weak: P1 means that there are no trivial inputs or outputs and 
P2 is generically satisfied [9]. It has been shown [9] that P1 and P2 
are sufficient to guarantee the existence of a stabilizing and decou- 
pling controller. 

III. THE MAIN RESULTS 
In this section, we prove a simplified necessary and sufficient 

condition for closed-loop stability which leads to simple characteri- 
zations of the set of all stabilizing and decoupling controllers and 
the set of all achievable input-output diagonal transfer matrices. 
We start by noting that with the definition 

Q:= C(Z+ PC)-' (3.1) 
the closed-loop transfer matrix in (2.1) becomes 

and in particular, the input-output transfer matrix HU2, = PQ. 
We shall need the following lemma which gives the rehhonbetween 
poles and zeros of a square rational matrix. 
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Lemma 1 12, p. 75, Fact 81: Let H ( s )  E R(S)"~"  be nonsingu- 
lar. Then 

1) b [ H ]  = 9[H-'1; 

3) 9+[WI = 9+[N-'I. 
2) 9 [ H ]  = B[H- ' ] ;  and inparticular, 

Theorem I :  Consider the system S ( P , C )  shown in Fig. 1. 
Suppose P1 and P2 are satisfied, and let Q be as defined in (3.1). 
Under these conditions, S(P,  C) is stable if and only if Q and 
P(Z - QP) are both stable. 

Comment: 1) By definition, to check the stability of S(P,  C), 
we have to check the stability of the four submatrices in (2.1). The 
theorem says that if the plant has the same number of inputs and 
outputs, and has no coincideaces of poles and zeros in C+, only the 
stability of two submatrices has to be checked. 2) It is easy to see 
from (3.2) that if P is stable, then Q is stable implies that S(P,  C) 
is stable. 

Proofi 
(* ) Follows from definition. 
(e) We shall prove that QP and PQ are both stable. 
Let G := P(Z - QP) and Write 

( Z  - QP) = P-'G (3.3) 

where P-' ER(s)"~" by P1. 
Since, by assumption, Q and G are both stable 

y+[(Z-  Qp)] C 9+[PI (3.4) 

and 

9 + [ ( Z -  QP)]  = 9+[P-'G] C 9+[P-'] = T + ; [ P ]  (3.5) 

where we have used Lemma 1 in the last equality. 

p + [ Q P ]  = 9 + [ Z -  QP] C { 9 + [ P ]  n Z+[P]) = 0 (3.6) 

From (3.4), ( 3 . 3 ,  and P2 we have 

and thus QP is stable. 
Write ( Z  - Po) = GP-' and similar arguments as above show 

that 9 + [ k Q ]  =-0. 0 
Since P is strictly proper, Q = C(Z+ PC)-' E R ~ ( S ) " ~ "  if 

and only if C = Q(Z - PQ)-' E R ~ ( s ) " ~ "  [2]. From Theorem 1, 
we see that, by C = Q(Z - P o ) - ' ,  every stabilizing controller 
C E W As) " " is defined by a stable Q E R "( s)" " which satisfies 
- ~ - - p -  ' 

that P(Z - QP) is stable.-The converse icalso true: every stable 
Q E I,( s) " satisfying that P( Z - QP) is stable defines a stabi- 
lizing controller for P. More precisely is the following corollary: 

Corollary I :  Suppose P satisfies P1 and €9. Let Q E R ~ ( s ) " ~ "  
be stable and be such that P(Z - QP) is stable. Under these 
conditions, with C:= Q(Z - PQ)-', the system S(P ,  C) is stable. 

Proofi It is easy to check that the closed-loop transfer matrix 
of S( P, Q( Z - PQ)-') is 

(3.7) 

From the proof of Theorem 1, we see that Q and P( Z - QP) both 
stable implies that PQ and -QP are both stable, and thus the 
assertion follows. 0 

Consequently, for P satisfying P1 and P2, the set of all stabiliz- 
ing controllers is given by 

( Q ( Z -  P Q ) - ' I Q E R ~ ( S ) " ~ "  

is stable and is such that P ( I  - QP) is stable}. (3.8) 

We now turn to the problem of deumpling. Since the design 
objective is to make the system decwpled, every achievable diago- 
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nal I/O transfer matrix from u1 to y2 has the form 

where ai, b j ~ I R [ s ] ,  with aj Hurwitz, for j = l ; . . ,  n. 
In the following,-we shall derive necessary and sufficient condi- 

tions on aj  and Pj so that M can be achieved by a stabilizing 
controller, that is, by an element in the set described by (3.8). Write 
P(s)  as . ,  

P ( s )  = . [ Pij-;::+(s)] 
(3.10) 

where Zij(s), Pij-(s) ,  Pij+(s) E R[s] are mutually coprime, 
Pij+(s) is monic with B[Pij+] C C+, and 2'[Pij-] C C-. Write 
P-'(s)  ER(S)"X" as 

p- ' ( s )  = [ Dij-$,i+(~)] (3.11) 

where fl . j(s), Dij-(s), D, +(s) E R[s] are mutually coprime, 
Dij+(s) is monic with 9[dj+1 C C+, and B[Dij-1 C C-. 

From (3.7) and (3.9), with C = Q ( Z  - PQ)-', we have M = 
PQ, thus 

(3.12) 

S k e  qj and Dii+ are coprime and Dij-, ai are Hurwitz, Q is 
stable if and only if 

Dij+lBj, f o r i =  l ; . . , n ,  j =  l ; - . , n .  (3.13) 

Let Dj+(s) be the monic least common multiple of {Dij+(s), 
i = l ; . . ,  n } ,  then (3.13) holds if and only if for some b j i R [ s ]  

I 

= Dj+Bj, for j = l ; . . ,  n. (3.14) 

Also from (3.12) and (3.14), Q is proper if and only if 

Note that (3.15) holds if and-only if 

deg( aj) - deg( bj) 

2 [deg(qj)  - deg(Dij-) - d%(Dij+)] 
I 

+ deg(Dj+), for j = l ; . . ,  R. (3.16) 

Thus, Q is proper and stable if and only if aj and Jj satisfy (3.16) 
and (3.14). 
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Suppose M is chosen so that (3.14) and (3.16) are satisfied, then 

P ( Z -  QP)  = ( I -  P Q ) P =  ( I - M ) P  

(3.17) 

Since 2, and Pij+ are coprime and ai, Pij- are Hurwitz, P ( I  - 
QP) is stable if and only if 

P i j + l ( a i - D i + & ) ,  f o r i =  l ; - . , n , j =  l ; * - , n .  (3.18) 

Let Pi+(s) be the monic least common multiple of {Pi j+(s) ,  
j = l ; . . ,  n} ,  then (3.18) holds if and only if 

Pi+1(ai-Di+/3,) ,  f o r i =  l ; - . , n .  (3.19) 

Let hik E C+, k = 1, * * a ,  t i ,  be the zeros of Pi+(s) with multiplic- 
ity njk and write Pi+(s) as 

Pi+ ( S) = ( s - hi,) s - hj2) ni2 * * ( s - hi,,) "". (3.20) 

Then (3.19) is satisfied if and only if 

(ai - Di+Bi)('-')(s) I s=Aik = 0, 

for i = I ; . . ,  n ,  k = I ; . . ,  t i ,  i = 1;* . ,  nik. (3.21) 

Since Di+ and Pi+ are coprime by assumption P2 and Lemma 1,  
we have Di+(hik) # 0, for i = 1; - * ,  n ,  k = 1; -, ti. It can be 
checked that (3.21) holds if and only if 

for i = I ; . . ,  n ,  k = I ; . . ,  t i ,  I = I ; . . ,  njk (3.22) 

that is 

for i = l ; . . ,  n ,  k = I ; . . ,  ti, i = 1 ; - * ,  njk. (3.23) 

We summarize the aforementioned analysis in the following. 
Theorem 2: Assume that P satisfies P1 and P2. Then an 

input-output transfer matrix Hvzu of the form in (3.9) is achiev- 
able by a stabilizing controller under the unity-feedback codgura- 
tion shown in Fig. 1 if and only if 

Ai := 
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MI: ai is Hurwitz and pi = Di+& for some Biel [s l ,  for 
i = l ; . . ,  n,  
M2: deg(ai) - deg(&) B maxi [deg (Nji)  - deg (Dj i - )  - 

deg(Dji+)] + deg(Di+), for i = l ; . . ,  n ,  

l ; . . ,  n ,  k = 1; . . , t i ,  I =  l ; . - ,n ik ,  where ai, &, etc., are 
defined in (3.9)-(3.14). 

It follows from Theorem 2 that the set of all achievable diagonal 
If 0 maps is given by 

M3: p:'- ' ) (S) I = (ai fDi+)('-l)(S) I s = A i k ,  for i = 

DI+& o n + @ ,  

{@[T *.. -11 a n  

ai is Hurwitz, ai,  0, satisfy M2 and M3) (3.24) 

and the set of all decoupling controllers is given by 

ai is H M t Z ,  ai, Bj satisfy M2 and M3 . (3.25) 1 
Note that the conditions M1 and M2 are the same as those obtained 
in [4] for stable plants; M3 are the interpolation conditions due to 
the unstable poles of the plant. The conditions are specified "chan- 
nel by channel" and are in a form suitable for computations. 

IV. COMPUTING A DECOUPLING C o m m  

controllers which achieve preassigned closed-loop poles. 

Pi+(@, that is 

~n this section, we give an algorithm for finding decoupling 

Let k, be the total number of zeros (counting multiplicities) of 

t i  

k =  1 
k i : =  njk, fo r i  = I ; . . ,  n (4.1) 

where nik and ti are defined in (3.20). For i = l ; . . ,  n ,  let &(s) 
be a polynomial of degree k, - 1, i.e., 

B j ( S )  := /3ilski-' + / 3 i 2 ~ k ' - 2  + + f l i k i  (4.2) 

and let ai(@ be any Hurwitz polynomial. Then condition M3 
becomes a set of linear equations in the coefficients of &(s). More 
precisely, let 

x i :=  [ Pi1 Biz . * *  Bik i lT  (4.3) 

A i x i  = b,, for i = l ; . . ,  n (4.4) 

then M3 is equivalent to 

where 

... ... A:l Ai, 1 
(k, - 1)Aft-Z ... ... 2Ai, 1 0 

. .  . .  . .  
... $ j - n i l -  1 (n i l  - I)! 0 * * e  0 ( ki  - l)! ( k i  - 2)! 

( k i  - n i l ) !  . .  . .  . .  
Afj; ' xfg 2 ... ... gri Ai,i 1 

( k i  - 1)Afj;2 ( k i  - 2 ) A y  ... ... 2Xifi 1 0 . .  . .  . .  

(4.5) 



4aa 

bi := 
. .  
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Step 3: Compute 

(y1 - D1+& 

0 

Comment: The performance of the ith channel is completely 
determined by the polynomial ai (@ since the zero locations depend 
on the choices of aj(s). In practical design, the ai’s should 
probably be chosen through some optimization procedure with 
inequality constraints 131, 161. 

Example 

(4*6) 

Consider the plant 

r (s + 1) (s - 2) 1 
s(s + 2) s(s + 2) 

P ( s )  = IT =I* 
Each matrix A i  in (4.5) is a ki x ki c o w e n t  Vandermonde 
matrix which is nonsingular [l], and hence, the linear equation 
Aixi = bi has a unique solution for each i .  Thus, for every 
Hurwitz polynomial ai which satisfies M2 with deg Bi = ki - 1, 
there is a unique polynomial Bi of degree ki - 1 so that M3 is 
satisfied. In design, for each channel the poles of Z/O transfer 
functions can be chosen as desired and the zeros, with the C+-zeros 
of the plant properly kept, computed by solving (4.4). 

In general, Ai and bi are complex. Since the hjk’s occur in 
complex conjugate pairs, elementary row operations can be used to 
convert (4.4) into equivalent linear equations which involve only 
real elements and thus all  solutions xi E Rki. 

If the zeros of Pi+(s) are simple, that is, if nik = 1 for all i and 
k,  then Ai  and bi m (4.5) and (4.6) are simply 

Afj-1 hff-2 . . Ai 1 

A i : =  ”r ’ ; *  i ]  
A.!,; 1 hfIi-2 * * * hiti 

It is easy to check that 

P,+(s) = S ,  k, = 1; P ~ + ( s )  = S(S - l ) ,  k2 = 2.  

By computation 

1 s(s + 2) 

4 ( s  + 2) 

(s - 2) 

-s(s - 1) 

s(s + l)(s - 1) 

(s - 2) 

with 

and the 1/0 map can only be chosen to be 

For i = 1, x1 := Ol1, and choose q ( s )  = (s + 4)3. Then by solv- 
ing the equation 

and (4.4) becoma standard Vandermonde equations. - we get 

Algorithm & ( s )  = -32. 

For i = 2, x2 := [&, &IT, and choose az(s) = (s + 2)4. Then 
by solving the equation 

&tu: Given P(s)  in the form as defined in (3.10), with 
assumptions P1 and €2 satisfied. 

Step I :  Compute P-’(s) and put it in the form as defined in 
(3.i i) .  

Step 2: For i = 1; * e, n, do the following. 
a) Calculate k, defined in (4.1). 
b) With deg Bi = ki - 1, choose any Hurwitz poly- 

nomial a,(s)  for which the condition in (3.16) 
holds. 

c) Solve the linear equation Aixi  = bi defined in A2 x2 

(4.4). - 
d) Set &(s) as that in (4.2). b2 
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we have 

Thus 

x2 = [ ”‘1 = [ -:;I. 
822 

&(s) - (73s  + 8).  

It follows that the I/O transfer matrix is 

1 [ -32(s - 2) 
0 

and the resulting controller is 

(s’ + 12s + 80) (s’ + 9 s  + 106) 

32s( s + 2) -(s+ 1 ) ( 7 3 ~ + 8 )  

(s’ + 12s + 80) (s’ + 9 s  + 106) 

c(s) = 

V. CONCLUSIONS 
For linear time-invariant MIMO square plant under unity-feed- 

back co&guration, we give a simpliiied necessary and sufficient 
d t i o n  for closed-loop stability. We parametrize the set of all  
achievable decoupled 1/0 maps in a way suitable for computation 
and give an algorithm for computing a decoupling controller which 
achieves preassigned closed-loop poles in each channel. The compu- 
tations involved are inverting a rational matrix and solving linear 
algebraic equations. In practical design, the closed-loop pole loca- 
t i o ~  should probably be determined by an Optimization procedure 

inequality constraints. 
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On Normalized Bezout Fractions of Distributed 
LTI Systems 

S. Q. Zhu 

Abstrrret-It is shown that U a transfer matrix with entries in the 
NCVIUI~~DM cl.ss has a bezont fraction, then it has a normobfud one. 
This means that the full power of the theories developed by using 
norrrmlized Bczout MOM can be applied to the transfer matrices with 
entries in the Nevanlha elass. 

I. INTRODUCTION 
In recent years, the so-called stable Bezout fraction theory has 

been quite popular in system and control synthesis. The central 
concepts of this theory are Bezout fractions and normalized 
Bezout fractions. Many methods and techniques in stable Bezout 
fraction theory are based on the use of normalized Bezout fractions, 
for example: 1) to define a graph metric [9]; 2) to provide a 
necessary and su5cient condition for robust stabilization of feed- 
back systems with additive perturbations to a normalized Bezout 
fraction [6]; 3) to give lower and upper bounds for the gap metric 
1121. However, the existence of normalized bezout fractions has not 
been shown for distributed LTI systems. A general framework for 
the study of distributed LTI systems is the Nevanlinna class N ,  
which is the quotient field of the integral domain H,, i.e., the 
Hardy space on the right half-plane. The set of transfer function 
matrices with entries in N includes many cases of interest for 
system and control theory. For example, it covers the following: 1) 
the fitchard-Salamon class, i.e., semigroup systems with un- 
bounded input and output operators [8]; 2) the Callier-Desoer class, 
i.e., systems with finite unstable poles [l], [2]. Curtain [5] proved 
that if a system in the Pritchard-Salmon class is stabilizable and 
detectable, then it is also in the Callier-Desoer class. It was shown 
that a system in the fitchard-Salmon class has a normaked 
Bezout fraction, provided it is stabilizable and detectable [a], 
1111. Callier et al. [3] proved that each SISO system in the 
Callier-Desoer class has a normalized Bezout fraction. But, in 
general, the existence on normalized Bezout fraction is still un- 
known. Hence, the theories developed by using normalized Bezout 
fractions cannot be applied to the MIMO systems in the Callier- 
Desoer class yet, and cannot be applied to some distributed LTI 
systems yet, such as neutral delay systems and wave equations, etc. 
whose transfer matrices have entries in the Nevanlinna class. The 
present note studies this open problem. In this note, it is shown that, 
if a transfer function matrix with entries in the Nevanlinna class N 
has a Bezout fraction, then it has a normalized one. This means 
that the full power of the theories developed by using normalized 
Bezout fractions can be applied to transfer function matrices with 
entries in N having a Bezout fraction. 
This note is organized as follows. Section 11 is a preparation 

section in which we introduce the Hardy space H, and Bezout 
fractions and discuss some properties of transfer function matrices 
with entries in the Nevanlinna class. In Section III, we introduce 
shift-invariant subspaces in the Hardy space H[ and prove the 
existence of normalized right Bezout fractions. Finally, in Section 
lV, we consider the existence of nonnalized left Bezout fractions 
and normalized Bezout fractions of discrete LTI systems. 

E. PRJPAL%TION 

In this section, we introduce transfer function matrices whose 
entries belong to the Nevanlinna class and discuss some properties 
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