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摘要 

 
本論文提出在支援雙模(H.264/AVC 和 MPEG-2)視訊壓縮標準解碼器下的熵

解碼器中，增進解碼表格在記憶體中的使用效率。此熵解碼器採用多張解碼表格

合併演算法並可程式化以包含不同視訊壓縮標準的熵解碼。首先利用單一表格將

字碼分類到不同的群組，只把各個群組的最重要的資訊存於記憶體中，解碼的過

程只需要用字碼的運算和群組資訊就可以算出符號在記憶體中的位址。在這樣的

結構下，可以比傳統的方式節省記憶體的使用量。視訊壓縮標準的表格相當多

張，因此把需要使用的表格的群組資料再做合併以更減少表格間的贅餘部份而減

少記憶體空間。經由修改演算法可以讓熵解碼器以較少的空間及較高的效率來存

放足夠的資訊。 
此論文另外針對視訊無線傳輸的應用下，提出了防止錯誤傳遞的方式而且不

用額外傳輸資料來輔助，也就是幾乎不會增加頻寬成本。這個方式可以利用通道

解碼提供的位元可靠度來決定啟動防止錯誤傳遞的模組，而這個模組裡用記憶體

儲存區塊預測資訊。用這些資訊可以預測出區塊邊界而讓可能出錯的區塊的解碼

不會影響到接下來的區塊。這些資訊的比對是由以記憶體為基礎的可變長度解碼

的方式來決定是否預測成功，在演算上可與傳統的以記憶體為基礎的可變長度解

碼器結合，硬體實作上的複雜度不高。這個提出的方法因為限制了錯誤傳遞的範

圍，可以大幅改善畫質。 
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ABSTRACT 
 

This thesis proposed entropy decoder which can support dual-mode video format 
(H.264/AVC and MPEG-2) decoding and improved memory efficiency. The entropy 
decoder adopts multi-table merging (MTM) algorithm and is programmable. First, for 
a coding table, all codewords are separated into different groups and only the most 
significant information of each group is stored in memory. The decoding can be 
completed by looking up information needed and arithmetic computation such that the 
symbol address is known. Under this type of decoding, memory space can be reduced 
compared to conventional VLC decoder. For multiple tables, the redundancies 
between group information of each table are further exploited and only different parts 
are stored in the memory. By the modified MTM algorithm, the proposed can store 
information needed for the standards with higher memory efficiency and less memory 
space.  

This thesis also proposed a scheme which can stop error propagation without 
transmission of extra data helping stop error propagation, i.e., no additional 
bandwidth overhead. In this method, the stopping error propagation module is 
activated when the bit reliability coming from FEC is low enough. The error 
resynchronization information is stored in the memory and block boundary prediction 
is achieved with the information. Once the block boundary, the following block can 
be correctly decoded and error propagation can be restricted. The searching of 



information used group-based VLC decoding algorithm to determine if prediction is 
finished. In the algorithm level, the method is combined with conventional 
group-based VLC decoding; in the viewpoint of hardware implementation, the 
complexity is low. Owing to stopping error propagation from this scheme, video 
quality is improved drastically. 
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Chapter 1   

Introduction 

1.1 Overview of H.264/AVC 

Fig. 1 The block diagram of H.264 encoder 
 
The newest video coding standard is H.264/AVC which was developed by Joint 

Video Team (JVT). H.264/AVC outperforms the previous video coding standards in 
the coding efficiency. The block diagram of the H.264 encoder is shown in Fig. 1. The 
current frame is predicted either by intra prediction or inter prediction. If the frame is 
an intra frame, all data in the predicted frame come from the current frame. For inter 
frame, the current frame and reference frame are use to compute motion vectors and 
compensated by the reference blocks. After prediction, data of current frame subtract 
that of predicted frame so that only residual data remained. The residual data then 
passes transformation, quantization, reorder and entropy coding and becomes 
bitstream. In the backward path, the predicted frame and the residual data are added to 
form the unfiltered frame for intra prediction. Finally, the reconstructed frame is 
formed by filtering the uF’n. 
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Fig. 2 The block diagram of H.264 decoder 

 
Fig. 2 shows the block diagram of H.264 decoder. The first step of decoding is 

entropy decoding of bitstream. The output data are sent into inverse quantization and 
inverse integer discrete cosine transform. Now, the data is the residual coefficients 
between the current frame and the prediction frame. Next step is to add residual data 
to prediction of current frame (intra or inter). Lastly, the frame passes loop filter to 
reduce the blocking effect. 

 
Table 1 H.264/AVC profiles and the corresponding tools 

Profile 
Tools 

Baseline Main Extended 

CAVLC √ √ √ 
CABAC  √  
FMO √  √ 
Slice group and 

Adaptive Slice Ordering 
√  √ 

I & P Slices √ √ √ 
1/4 pixel MC √ √ √ 
Loop Filter √ √ √ 
Intra Prediction  √ √ √ 
Multiple Reference 

Frame 
√ √ √ 

B Slices  √ √ 
Field Coding  √ √ 
MB-Aff  √ √ 
Weighted Prediction  √ √ 
Data Partitioning   √ 
SP/SI Slices   √  
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For different applications, there are different profiles and tools in H.264/AVC 
which shows as Table 1. Baseline profile is mainly for mobile applications of low bit 
rate such as portable devices because of its lower computation complexity than other 
profiles. Extended profile is based on baseline profile and has error resilient tools for 
video streaming or video on demand (VOD) applications. 

The higher level profile based on baseline profile is main profile which is for 
broadcast application. The computation complexity of main profile is more than that 
of baseline profile. In addition, H.264/AVC has the high profile, high 10 profile, high 
4:2:2 and high 4:4:4 profiles based on main profile for high definition multimedia 
applications. The high profile supports 8x8 integer transform and high 10 profile 
contains high profile with extra support of 10-bit sample precision of the decoded 
pixels. Further, high 4:2:2 profile based on high 10 profile supports 4:2:2 chroma 
sampling precision and 10-bit per sample. Finally, high 4:4:4 profile supports 4:4:4 
chroma sampling and 12-bit per sample.  

From table 1, we can see that there are two entropy coding approaches for 
entropy coding, one is context adaptive variable length coding and the other is context 
adaptive binary arithmetic coding. Although CABAC has better compression rate than 
CAVLC, CABAC has extremely more complex structure which limits the throughput 
of CABAC than CAVLC. Besides, CAVLC is suitable for all profiles in H.264/AVC 
system and it has more flexibility for different applications. Therefore, we still further 
discuss CAVLC in the following sections after the overview of MPEG-2. 

 

1.2 Overview of MPEG-2 

MPEG-2 is a video standard established by Moving Pictures Experts Group 
(MPEG) which is a team of International Standards Organization (ISO). There are 
five profiles in the MPEG-2 system. The simple profile supports 4:2:0 sampling, intra 
and inter prediction. Main profile contains all tools of simple profile plus bi-direction 
prediction. In addition, SNR scalable profile and spatially scalable profile provide the 
base layer and one or more upper layer of coded bitstream for wider and different 
application conditions. Finally, the high profile contains all previous tools and it is for 
the applications where there are no constraints on bit rate. 

There are four levels specified in MPEG-2: High level, High 1440, Main level, 
and Low level. Higher level supports higher resolution of video. Main Profile and 
Main level is the most widely accepted combination for the majority of applications. 
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1.3 VLC and CAVLC 

1.3.1 Huffman Code 

The Huffman code can encode one source with variable length code (VLC) 
based on the probability distribution of the source symbols. For example, a source 
contains four symbols ― { a, b, c, d } and the probability of them are 0.5, 0.25, 0.125 
and 0.125, respectively. Therefore, we can trace the tree structure to assign codewords 
for the symbols as shown in Fig. 3. If we use 2-bits codewords to encode the source, 
the average length is 2 x 0.5 + 2 x 0.25 + 2 x 0.125 + 2 x 0.125 = 2-bits. However, we 
can use VLC such that average length is 1 x 0.5 + 2 x 0.25 + 3 x 0.125 + 3 x 0.125 = 
1.75-bit. For the decoding process, we can just trace the tree from the root to the leaf 
and then back to the root to decode the next symbol. In MPEG-2, we can see that the 
coefficients in the block are encoded by run-level coding. The tables defined the 
mapping between run-level symbols and codewords. 
 

 
 

Symbol Probability Codeword
a 0.5 1 
b 0.25 01 
c 0.125 001 
d 0.125 000 

 
 

Fig. 3 The distribution of symbols and the Huffman tree. 
 

1.3.2 CAVLC Decoding 

The entropy coding of baseline profile in H.264 is extension of VLC because of 
the context-adaptive property. The so-called context adaptation means to use different 
probability model under different conditions and assign corresponding VLCs. 
Therefore, the VLCs separately assigned can achieve better coding efficiency than 
only use one VLC for all conditions. In CAVLC, there are several tables for one 
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symbol according to the context conditions. The encoding and decoding process is 
still by look-up tables. 

It is important to consider the throughput when design CAVLC decoder. The 
number of macroblocks must be decoded per second for different resolution shown in 
Table 2. In addition, application of baseline profile is mainly mobile devices, thus the 
power consumption issue must also be taken into account. 
 

Table 2 The throughput of decoding CAVLC under different resolution 
 30 frames per second (fps) 

 QCIF CIF QVGA VGA D1 
HD 

720p 
HD 

1080 
MB/sec 2970 11880 9000 36000 40500 108000 244800  

 

1.4 Error Robustness 

Nowadays, wireless video transmission is more and more popular in daily life. 
Over wireless channel, noise interference affects the data correctness and then the 
source decoder will accept erroneous data. For wireless video transmission, the data 
are variable in length. Therefore, even only one bit is corrupted, the whole bitstream 
may lose synchronization which degrades video quality drastically.  

In channel coding, there are many coding techniques to protect transmitted data 
by appending redundancy to achieve error correction. Another method is to detect 
error and signal the request of re-transmission of video data. These two methods need 
higher bandwidth. However, in some application, the bandwidth is limited and the less 
redundancy added on data, the less capability of error correction. Besides, forward 
error correction code can not promise totally correct all erroneous data and decoder 
input may still have remained erroneous bits in it.  

There are some schemes to improve the error robustness in the decoder side. For 
example, error concealment replaces the corrupted block by surrounding blocks which 
is correctly decoded and improves the video quality. Nevertheless, an error detection 
module must also help to find the location of corrupted blocks. 

Soft-input decoding is another method to reduce bit error rate (BER) of the 
decoder input bitstream. Soft-input decoding uses channel information to find the 
maximum likelihood or maximum a posteriori path of the trellis diagram. In advance, 
joint source–channel design (JCSD) can improved BER performance by considering 
trellis structure and symbols probability of source and channel concurrently. 
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1.5 Motivation 

A video decoder can support multi-standard video format is very significant in 
today’s applications. Most data in the video bitstream is composed of coefficients of 
blocks. In addition, the first stage of the video decoder is VLC entropy decoder which 
maps codewords to symbols. As a result, an entropy decoder which is programmable 
and compatible to different standards with enough throughputs is necessary. Besides, 
the symbol format of coefficients data is represented by a pair of Run and Level while 
that of CAVLC is quite different from this. 

For the video transmission over wireless environment, we have to find methods 
to reduce the effect of error propagation. The challenge lies in less information or 
redundancy remained in the input bitstream of video decoder that can help to detect 
error and even correct error. Although the whole video transceiver can set as 
automatically repeat request for the corrupted data, that is, receiver signals a flag to 
transmitter to re-transmit data. This method results in increasing usage of bandwidth. 
If soft-input decoding or JSCD is used, high complexity and cost are inappropriate to 
hardware implementation. 
 

1.6 Organization of the Thesis 

The chapter 2 will discuss the previous works about VLC decoder of different 
implementation and target applications first. Then the previous works of error robust 
on decoder side only or JSCD will be mentioned. Chapter 3 will show the CAVLC 
operation and the design of memory-based VLC decoder supporting multiple 
standards. In the memory-based VLC decoder, multi-table merging algorithm is used 
and the allocation of memory is considered. Next, we will show the hardware 
architecture and implementation result in chapter 4. Chapter 5 proposes an algorithm 
used to find the block boundaries in frames stops error propagation under the 
condition that channel information is known. Also, the simulation result will be in the 
chapter 6. Chapter 7 will show the conclusion about the whole design of multi-mode 
and memory-based VLC decoder with error robustness. 
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Chapter 2   

Previous Work 

2.1 CAVLC Decoding Process 

 There are five syntax elements in CAVLC：Coefficient_Token (Coeff_Token), 
TrailingOnes_Sign (T1s_Sign), Level_Prefix, Level_Suffix, Total_Zeros and 
Run_Before. They are decoded in order defined by the following rules and the block 
data composed of these syntax elements is shown in Fig. 4 
 
1. The first decoded syntax element is Coeff_Token, which includes to symbol: 

Total_Coeff and TrailingOnes. Total_Coeff represents number of non-zero 
coefficients in this block and TrailingOnes represents number of coefficient with 
magnitude one and it is 3 at most. The sub-tables are select by nC parameter 
from system. nC is positive for luma and -1 for chroma. 

2. TrailingOnes_Sign is decoded by getting TrailingOnes bits from bitstream. 
3. Level_Prefix is decoded by leading one detector and is equal to number of zeros 

before the leading one. 
4. Then, a parameter called SuffixLength is initially set to 0 or 1 if Total_Coeff is 

greater than 10 and TrailingOnes is less than 3. LevelSuffixSize is set to 
SuffixLength with two except case: 1. Level_Prefix is equal to 14 and 
SuffixLength is equal to 0. 2. Level_Prefix is equal to 15. LevelSuffixSize is set to 
4 in case1 and 12 in case2. Next, Level_Suffix is decoded by getting 
LevelSuffixSize bits from bitstream and is set as 0 if LevelSuffixSize is 0. 

5. Select Total_Zeros sub-tables according to Total_Coeff. If Total_Zeros is 0, the 
decoding process is finished. 

6. The Zeros_Left is set as Total_Zeros. Run_Before is subtracted from Zeros_Left 
and the result is assigned to Zeros_Left until Zeros_Left is 0.  

 

Fig. 4 Sequential syntax elements decoding in CAVLC 
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2.2VLC Decoder 

There are several ways to implement VLC decoder such as memory-based 
technique, hardwired implementation. [1] proposed group-based algorithm to classify 
VLC codewords into different groups such that memory just stored group information. 
In [1], the symbol addresses are calculated by input bit-stream and group information. 
Last, the symbol memory stored all symbols are accessed to output decoded symbols. 
The codec can support a coding table with 256-entry 12-bit symbols and 16-bit 
codewords. Furthermore, [2] proposed the multi-table-merging algorithm to reduce 
memory space and codec can support JPEG, MPEG-2 and MPEG-4 coding tables. [3] 
used cache and table partitioning on the group-based VLC decoder to achieve power 
reduction for MPEG-2. The decoding method in [4] decodes some short codewords 
by arithmetic operation and the others are mapped into memory to reduce memory 
access. But [4] was just for Coeff_Token tables and its sequential searching in the 
memory would lead to low throughput. The scheme proposed by [5] and [6] is that 
decode short codewords with arithmetic operation while other codewords are decoded 
by conventional decoding to saving memory access.  

 

 

 
Fig. 5 Examples of short codewords, they can be decoded by arithmetic decoding 

from the equation in [6]. 
 
For the hardware implementation proposed by [7], it was ROM-based and used 

HLLT (hierarchical logic for look-up table, Fig. 6) to improve speed and PCCF 
(partial combinational component freezing) to reduce power consumption. 
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Fig. 6 The implementation of HLLT partitions the original big LUT into many small 

LUTs in [7]. 
 
Design of VLC decoder in [8] was for MPEG-1/2/4 decoding and LUTs are 

implemented by hardwire. The codewords are separated into groups in several 
look-up tables and one address generator is used to calculate symbol address.  

In [9], the multi-symbol for level decoding in CAVLC is proposed to reduce 
operation frequency while maintain enough throughput for real-time requirement. [10] 
proposed a modified SuffixLength detector to reduce critical path in level decoding . 

 

2.3 Error Robustness on Wireless Video Transmission 

Until now, there has been much research on improvement of error robustness to 
reduce the effect of error propagation in video decoder, compensation of erroneous 
data and correction error. They can be mainly separated into two sections: source 
decoder side only and joint source-channel design. 

The error robustness mechanism at the source side only includes error detection, 
error concealment and error resynchronization. Error detection is to find the location 
of error data or bits in the blocks. The simplest error detection is syntax-based error 
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detection, that is, use some rules that violated regular decoding process. For example, 
a codeword is not found or the value of a variable overflows. [11] made some rules of 
syntax-based error detection and analyzed the performance of detection. However, the 
detection has delay between the correctly detected block and exactly erroneous block 
as shown in Fig. 7 

 

 

 

Fig. 7 Organization of macroblock level concealment delay and 
detection delay in [11] 

 
[12] detected error blocks basically by computing the boundary difference and 

used threshold as the determination rule. In Fig. 8, L means “Left” and can be 
replaced by T(TOP), R(Right) or B (Bottom) and K2 is the number of available 
neighboring blocks of current MB. The temporal boundary checking is shown in Fig. 
9. The threshold in this paper is adaptively decided according to the statistics of 
decoded MBs in a frame 
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(a) 

 
(b) 

Fig. 8 (a) Pixels for average inter-sample difference across boundary (AIDB) 
calculation and equation in [12] with N=16. (b) Final equation of the AIDB 
 
 

 

 

 

 

Fig. 9 Pixels of Average difference across frames (ADF) calculation and N = 16 
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After error detection, error concealment can be activated to compensate the 
corrupted blocks. Error resynchronization can be achieved by inserting markers in the 
bitstream to know the boundary of the next decoding unit. In H.264/AVC, one frame 
can separated into slices and the decoding of one slice would not reference data in 
other slices. Therefore, if one slice data is corrupted, the error can be restricted in that 
slice thus the resynchronization is achieved. The other method is inserting 
refreshment frames, slices or macroblocks so that temporal error propagation can be 
stopped. [13], [14] and [15] are joint-source channel design for MPEG-4 video format. 
[13] and [14] simulated the performance of using Maximum A Posteriori (MAP) 
decoder under additive Markov channels (AMC) and the simulation environment are 
shown in Fig. 10. [15] combined the source state space with the channel state space to 
one finite state machine (Fig. 11) and the corresponding trellis decoding can be 
defined. [16] was a JCSD for H.264 motion vectors data to improve video quality. 

 
(a) 

(b) 

Fig. 10 Experimental Set-up for evaluating the performance of the MAP decoder in 
(a) [13] , (b) [14] 
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Fig. 11 Combing source and channel state space. (a) source state space. (b) channel 

state space. (c) integrated state space. 
 

 
 
 
 
 
 
 
 



 

14 

Chapter 3   

Algorithm of Memory-based VLC 

Decoding 

3.1 Conventional Group-based VLC Algorithm and Decoding 

Flow 

This section was previously developed and verified by Bai-Jue Hsieh in [2]. The 
intention of this section is to quickly talk about the concept of conventional 
group-based VLC decoder system and how it works. 

3.1.1 Definition of Codeword Groups 

For a coding table, we separated codewords into groups. Codewords in a group 
has the following properties: 
1. In a group, the codeword can be treated as a binary number which is codeword 

length-bit long, called VLC_codenum, since the codeword length is the same. 
2. The codeword that has the smallest VLC_codenum in a group is denoted 

VLC_mincode. 
3. A VLC_codeoffset is the offset value between the VLC_mincode and the 

VLC_codenum. 
For the example shown in Fig. 12, the VLC table has 8 codewords and the 

codewords with the same length and prefix are classified as the same group. The 
codewords in G0 have 4 bits with 2-bit prefix and 2-bit suffix. Therefore, the 
VLC_codenum are the 0,1,2,3 thus the VLC_codeoffset of Sym5, Sym6, Sym7 are 1, 
2 and 3, respectively. Because 01 and 10 have different prefix so they belong to 
different groups although they have the same length. The codewords in G3 have 3 bits 
in length and VLC_codenum are 6 and 7; the VLC_codeoffset are 0 and 1 for Sym3 
and Sym4. 
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  Prefix Suffix VLC_code 
num 

VLC_code 
offset 

VLC_min
code 

Sym8 00 00 0 0 √ 
Sym5 00 01 1 1  
Sym6 00 10 2 2  

G0 

Sym7 00 11 3 3  
G1 Sym1 01  1 0 √ 
G2 Sym2 10  2 0 √ 

Sym3 11 0 6 0 √ G3 
Sym4 11 1 7 1  

 

 Codeword 
Sym1 01 
Sym2 10 
Sym3 110 
Sym4 111 
Sym5 0001 
Sym6 0010 
Sym7 0011 
Sym8 0000 
 

Fig. 12 Grouping of codewords in the table 
 

3.1.2 Intra-Group Decoding Procedure 

In the same group, the codewords have arithmetic relationship from the 
VLC_codenum, VLC_codeoffset and VLC_mincode. Thus, only the VLC_mincode 
information of every group is stored in memory and we can find the information about 
other codewords by means of computation of the offset. In other words, if the symbols 
of the same group are allocated in the continuous location in the symbol memory and 
the decoded symbol address can be known by adding offset amount to a base address. 

Fig. 13 shows the information within one group. For example, if the 0000011 is 
received, the offset equals to 3 and thus the symbols address is 3 + 60 = 63 to that S3 
is decoded. 
 

Symbol Prefix Suffix VLC_codenum VLC_codeoffset Address 
S1 000 0 0 60 
S2 001 1 1 61 
S3 010 2 2 62 
S4 011 3 3 63 
S5 100 4 4 64 
S6 101 5 5 65 
S7 110 6 6 66 
S8 

0000 

111 7 7 67  
Fig. 13 One group with address assignment 
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3.1.3 Group Searching Scheme 

To search the group that the correct symbol locates in, Pseudo Constant Length 
Codeword (PCLC) is used. In the table, all codewords are extended to the length of 
the longest codeword by appending 0’s behind the codewords. All PCLCs have the 
same length and can be view as binary numbers, PCLC_codenum. All PCLCs are 
organized in ascending order so that PCLC_codenum0 < PCLC_codenum1 < 
PCLC_codenum2…PCLC_codenumn and thus PCLC_mincode0 < PCLC_mincode1 
< PCLC_mincode2….PCLC_mincoden. Next, the base addresses are assigned to 
PCLC_mincode and base_addr0 < base_addr1 < base_addr2…..base_addrn. The 
example of the intra-/inter- group symbol memory mapping is shown in Fig. 14 and 
the group information of the tables is shown in Fig. 15, where the valid bit means 
whether the table contains this group or not. 

 

 
Fig. 14 PCLC table and intra-/inter- group symbol memory mapping 
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Fig. 15 Group information of the table in Fig. 14 
 
Like the PCLC_codenum, a segment of bitstream with the same length of PCLC 

can be treated as a binary number, bitstream_num. The group searching scheme can 
be achieved by computed the (bitstream_num – PCLC_mincodei). The hit condition 
of the decoded symbol located the group Gn is PCLC_mincoden < bitstream_num < 
PCLC_mincoden+1.  

The overall decoding process of the group-based algorithm is as follows: Assume 
the bitstream input is 001111100110…… 
1. Do group searching 

PCLC_mincode1(8’b00110000)<bitstream_num < PCLC_mincode2(8’b01000000) 
The matching group: G0 

2. Send group information 
 code length = 6-bit, PCLC_mincode = 8’b00110000, base_addr(5-bit) = 5’b00100. 

3. Find the valid VLC_codeoffset, which is the code length most significant bits 
of the result of subtracting the PCLC_mincode from the bitstream_num 

Bitstream_num(8’b00111110) – PCLC_mincode(8’b00110000) = 8’b00001110. 
The valid VLC_codeoffset = 6’b000011= 3. 

4. Extract the VLC_codeoffset operand, which has the same word length as the 
symbol address 

VLC_codeoffset = 5’b00011 = 3. 
5. Calculate the decoded symbol address 

symbol_addr = base_addr(5’b00100) + VLC_codeoffset(5’b00011) = 5’b00111= 7. 
6. Fetch the decoded symbol 

 sym_memory[7] = S11. 
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3.2 Conventional Multi-Table Merging Algorithm and Decoding 

Flow 

This section was previously developed and verified by Bai-Jue Hsieh in [2]. The 
intention of this section is to quickly talk about the concept of conventional 
multi-table merged VLC decoder system and how it works 
 

3.2.1 Collection of Group Information of All Coding Tables 

According to group-based decoding algorithm, group information of all tables 
can be known and the PCLCs of groups of a table can be viewed as a codeword in that 
table. Therefore, all PCLCs are collected in the ascending order as Fig. 16 shows. In 
this figure, all group information items are ordered according to the magnitude of 
PCLC_mincode and there are 13 items. 
 

Fig. 16 Part of group information of several tables. 
 

3.2.2 Codeword Merging 

From Fig. 16, the PCLCs of some groups are identical to others. If all these 
PCLCs are stored, there is much redundancy. As shown in Fig. 17, we can separate 
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the groups with the same PCLC into the same group and only one PCLC is stored. 
This reduces storage space. We can see that there are 13 items and after codeword 
merging, the number of items reduces to 4. 
 

Fig. 17 One portion of the groups after codeword merging process. 
 

3.2.3 Prefix Merging 

The prefix merging check any two neighbor groups after codeword merging. 
When the longest VLC_mincode in a group is the prefix the PCLC_mincode in the 
adjacent codeword group, they can be merged together to one group. In the case of 
Fig. 17, there is no prefix merging can be operated.  
 

3.2.4 Set Table Information 

After merging process, merged groups and PCLC_mincodes are MTM groups 
and MTM_PCLC_mincodes, respectively. The table information of a coding table 
includes the valid-bit and the length of codewords. Because the shortest length of 
codeword is 1 bit and the length is from 1-bit to 16-bit, we just store (length-1),i.e. 0 ~ 
15 in the memory to save memory space. After this shifting operation, the smallest 
(length-1) in all the groups is defined as MTM_CL-1 and stored in the group 
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information memory. Therefore, the difference between the larger (length-1) and 
(MTM_CL-1) which is defined as CL_diff is stored in the table information memory. 
The memory space is further saved because the data redundancy among the lengths in 
a MTM group is exploited. The table information and group information are shown in 
the Fig. 18. 
 

Fig. 18 Table information and group information 
 

3.2.5 Base Address Merging 

Although base addresses can be stored for different tables under the given group, 
the required memory space is large when the number of tables becomes large. [2] 
proposed a method that classify base address in to categories according to the 
numbers of table entries. For example, the table1 has 28 entries and table2 has 136 
entries, the base addresses of them are classified into two categories: base_addr1 is 
5-bit and base_addr2 is 8-bit. With the base address adjustment, different tables with 
the same category can use common set of base addresses.  
 

3.2.6 Group Information Recovery 

According to table information and group information in Fig. 18, the example of 



 

21 

group information recovery is shown in Fig. 19. In the first step, (length-1) of 
VLC_mincode is computed by adding MTM_CL-1 and CL_diff. Second, the most 
length bits of the MTM_PCLC are assigned to PCLC_mincode while the remained 
bits are 0s. Finally, the base address is accessed according to base address selection. 
 

Fig. 19 Example of group information recovery 
 

Finally, Table 4and Table 5 shows the number of groups of every table and MTM 
groups in CAVLC and MPEG-2, respectively. The number of items is reduced greatly 
in both standards.  
 

Table 3 The number of groups of tables in CAVLC and the number of MTM groups 

 # of Group # of symbols 
# of group after 

MTM 
Coeff_Token(0<=nC<2) 17 62 
Coeff_Token(2<=nC<4) 16 62 
Coeff_Token(4<=nC<8) 11 62 

Coeff_Token(8<=nC) 7 62 
Coeff_Token(nC= -1 ) 8 14 
Total_Zeros(TC =1) 9 16 
Total_Zeros(TC =2) 8 15 
Total_Zeros(TC =3) 8 14 
Total_Zeros(TC =4) 7 13 
Total_Zeros(TC =5) 7 12 
Total_Zeros(TC =6) 7 11 
Total_Zeros(TC =7) 8 10 
Total_Zeros(TC =8) 7 9 
Total_Zeros(TC =9) 7 8 
Total_Zeros(TC =10) 6 7 
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Total_Zeros(TC =11) 5 6 
Total_Zeros(TC =12) 5 5 
Total_Zeros(TC =13) 4 4 
Total_Zeros(TC =14) 3 3 
Total_Zeros(TC =15) 2 2 

Total_Zeros_ch (TC =1) 4 4 
Total_Zeros_ch (TC =2) 3 3 
Total_Zeros_ch (TC =3) 2 2 

Run_Before(ZL = 1) 2 2 
Run_Before(ZL = 2) 3 3 
Run_Before(ZL = 3) 3 4 
Run_Before(ZL = 4) 4 5 
Run_Before(ZL = 5) 4 6 
Run_Before(ZL = 6) 5 7 
Run_Before(ZL > 1) 11 15  

 
 
Table 4 The number of groups of tables in MPEG2 and the number of MTM groups
*: There are 9 locations are unused because the VLC_codnum in one groups are not 

continuously increment. 

 # of Group # of symbols 
# of group after 

MTM 
TB14 13 111 
TB15 19 111* 

21 
 

 

3.3 Modified MTM algorithm for Improvement of Memory 

Efficiency 

Based on the basic concept of MTM algorithm, we applied the algorithm for all 
coding tables in CAVLC to achieve programmability. The tables include Coeff_Token 
(0 <= nC < 2, 2 <= nC < 4, 4 <= nC < 8, 8 <= nC, nC = -1), Total_Zeros(4x4), 
Total_Zeros (chroma DC 2x2) and Run_Before, up to 30 coding tables and the entry 
number range is from 2 ~ 62. That is, the conventional MTM algorithm must support 
6 categories for 2-entry, 4-entry, 8-entry …64-entry tables. This will increase the cost 
overhead and critical path of the group detector in hardware. Besides, the base address 
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adjustment will shift the base address to the maximum value of the group within the 
same category hence increase the unused locations in symbol memory. Take 
Coeff_Token (0 <= nC < 2, 2 <= nC < 4, 4 <= nC < 8, 8 <= nC) tables as a example, 
these four tables are 62-entry and they should belong to 6-bit address category. Fig. 20 
shows that most base addresses are adjusted to meet the requirement and we can see 
that the total shift amount is 83+59+53+52=247. The base address implies the symbol 
address, as a result, there are 247 entries in symbol memory are unused after the 
adjustment procedure. The symbol length of Coeff_Token is 7-bit thus there 247 * 7 
=1729 bits are unused. 
 

====== Group0: MTM_CL-1=0     1000_0000_0000_0000 ====== 

VLC0.G0  61 +4 +4 +4 +5 +5 +7 +23         

VLC1.G0  60 +5 +7 +4 +2 +4 +4 +4 +2 +21 

VLC2.G0  54 +29 +7 +6 +1 +8 +8                    

VLC3.G0  30 +56 +9 +5 +5 +8 

====== Group1: MTM_CL-1=2     0110_0000_0000_0000 ====== 

VLC1.G1  59 +5 +7 +4 +2 +4 +4 +4 +2  

====== Group2: MTM_CL-1=1     0100_0000_0000_0000 ====== 

VLC0.G1  60 +4 +4 +4 +5 +5 +7          

VLC1.G2  57 +5 +7 +4 +2 +4 +4 +4 +2                     

VLC2.G1  46 +29 +7 +6 +1                  

VLC3.G1  14 +56 +9 +5 +5  

====== Group3: MTM_CL-1=4     0011_0000_0000_0000 ====== 

VLC1.G3  55 +5 +7 +4 +2 +4 +4 +4     

====== Group4: MTM_CL-1=2     0010_0000_0000_0000 ====== 

VLC0.G2  59 +4 +4 +4 +5 +5             

VLC1.G4  51 +5 +7 +4 +2 +4 +4 +4                   

VLC2.G2  38 +29 +7 +6 +1                     

VLC3.G2  6  +56 +9 +5 +5   

====== Group5: MTM_CL-1=4     0001_1000_0000_0000 ====== 

VLC0.G3  58 +4 +4 +4 +5   

====== Group6: MTM_CL-1=3     0001_0000_0000_0000 ====== 

VLC0.G4  56 +4 +4 +4 +5  

VLC1.G5  47 +5 +7 +4 +2 +4 +4                      

VLC2.G3  30 +29 +7 +6 +1                      

VLC3.G3  3  +56 +9 +5 

====== Group7: MTM_CL-1=5     0000_1100_0000_0000 ====== 

VLC0.G5  55 +4 +4 +4                   
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VLC3.G4  2 +56 +9     

====== Group8: MTM_CL-1=4     0000_1000_0000_0000 ====== 

VLC0.G6  53 +4 +4 +4                   

VLC1.G6  43 +5 +7 +4 +2 +4                       

VLC2.G4  22 +29 +7 +6 +1 

====== Group9: MTM_CL-1=5     0000_0100_0000_0000 ====== 

VLC0.G7  49 +4 +4                      

VLC1.G7  39 +5 +7 +4 +2                       

VLC2.G5  14 +29 +7 +6 +1                        

VLC3.G5  1 +56 

====== Group10: MTM_CL-1=8    0000_0011_1000_0000 ====== 

VLC2.G6  13 +29 +7 +6 

====== Group11: MTM_CL-1=6    0000_0010_0000_0000 ====== 

VLC0.G8  45 +4                         

VLC1.G8  35 +5 +7 +4 +2                       

VLC2.G7  7  +29 +7 +6 

====== Group12: MTM_CL-1=7    0000_0001_0000_0000 ====== 

VLC0.G9  41 +4                         

VLC1.G9  27 +5 +7 +4 +2                       

VLC2.G8  3  +29 +7 +6 

====== Group13: MTM_CL-1=8    0000_0000_1000_0000 ====== 

VLC0.G10  37 

VLC1.G10  19 +5 +7 +4 +2                      

VLC2.G9  1  +29 +7 

====== Group14: MTM_CL-1=9    0000_0000_0100_0000 ====== 

VLC0.G11  29 

VLC1.G11  11 +5 +7 +4 +2               

VLC2.G10  0  +29 

====== Group15: MTM_CL-1=12   0000_0000_0011_0000 ====== 

VLC1.G12  9  +5 +7 +4 

====== Group16: MTM_CL-1=10   0000_0000_0010_0000 ====== 

VLC0.G12  21 

VLC1.G13  5  +5 +7 +4  

====== Group17: MTM_CL-1=13   0000_0000_0001_0000 ====== 

VLC0.G13  13 

VLC1.G14  1  +5 +7 

====== Group18: MTM_CL-1=12   0000_0000_0000_1000 ====== 
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VLC0.G14  5 

VLC1.G15  0  +5 

====== Group19: MTM_CL-1=15   0000_0000_0000_0100 ====== 

VLC0.G15  1 

====== Group20: MTM_CL-1=14   0000_0000_0000_0010 ====== 

VLC0.G16  0 

====== Group21: MTM_CL-1=0    0000_0000_0000_0000 ====== 

VLC3.G6  0  
Fig. 20 Base address adjustment procedure. The first number after VLCi. Gn is base 

address and the +K is the adjusted amount of base address. 
 
From this reason, base address adjustment is not considered as the method of 

reducing memory space. Nonetheless, direct record of the base address as MTM 
group information also makes many unused locations in the group information 
memory. Because there are many small tables in CAVLC and they have short 
codewords and a few of entries. Usually, the small tables use just one or two groups 
and other groups are invalid for them. In other words, many entries of group 
information are unused if the table is small as shown in Fig. 21. In Fig. 21, “TB” 
represents large tables which have long codewords and many entries while “tb” 
represents small tables which almost have short codewords and a few entries. The 
blank blocks is the filed that is unused by the table, i.e., validbit = 0 for that group of a 
table. For example, TBN does not contain GP0 and valid bit for GP0 is 0 while valid 
bit for other groups are 1. Also, many fields in the Fig. 21 for tb0~tbm are unused. 
 

 
Fig. 21 Unused locations for the information memory. 
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Due to the above phenomenon, the modified organization of group information 
and table information is proposed. First, we use the longest codeword of a table as the 
determination of whether the table is large or small. We use 4 as the threshold. 
Therefore, there are 14 small tables and 16 large tables among CAVLC. Next, the 
practical storage unit is separated in two parts: one for small tables and one for large 
tables. By doing this partitioning, the unused locations can be reduced. Originally, the 
size of the memory space is (n + m) × k and the total size is reduced to n × k + m × ks, 
where ks is number of groups used by small tables, k is number of groups used by 
large tables, m is number of small tables, and n is number of large tables. In addition, 
the PCLC of small tables is shorter than the longest PCLC among all tables. Therefore, 
size of group information can also be reduced. Table 5 shows the comparison of size 
for conventional MTM without base address adjustment and the modified memory 
allocation. 

 
 

Table 5 Space of the conventional MTM without base address adjustment and the 
modified memory allocation 

 
Group information 

size 
Table information 

size 
Total 

Conventional 
23×(16+4+30×8) 

= 5980 bits 
 

23×30×(1+2) 
= 2070 bits 

 
8050 bits 

Modified 
23×(16+4+16×8) + 

5×(4+2+14×8) 
= 3994 bits 

23×(4×16) + 
5×(14×3) 

= 1620 bits 
5676 bits 

 
 

3.4 Symbol Memory Allocation 

Generally, the symbols are store in the symbol memory and symbol lengths of 
different tables are different. If only one symbol memory is used, the word length 
must be the length of the longest symbols among all tables. This allocation leads to 
some wasted space for shorter symbols. In [2], there are several symbol memories 
with different kinds of word length in order to save the space. The symbol length is 
either 7-bit (Coeff_Token) or 4-bit (Total_Zeros or Run_Before) in CAVLC tables and 
that of MPEG-2(TB14 and TB15) is 11-bit. As a result, 256 × 11 + 256 × 7 + 256 × 4 
= 5632 bits are used in symbol memory. In the proposed allocation, we can use only a 
symbol memory with 256x11 bits to store all symbols in CAVLC, TB14 and TB15. 
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That is, the symbols in Coeff_Token and Total_Zeros/Run_Before can be concatenated 
into 11-bit words and stored in the 256 × 11 symbol memory. The overhead includes a 
mask and the multiplexer to choose the format of the symbol according to the 
standards and decoding tables as shown in Fig. 22. Besides, the start positions of 
tables are stored in a small register files. As CAVLC is used, we can select the most 
significant 7 bits of the memory output for Coeff_Token symbols or the least 
significant 4 bits for Total_Zeros/Run_Before symbols; the whole word is assigned to 
the symbols for MPEG2. 
 

 
Fig. 22  256-entry symbol memory allocation in VLC decoder for MPEG-2 and 

H.264 standards.s 
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Chapter 4   

Error Resynchronization 

4.1 Concept of Error Resynchronization 

In H.264/AVC error resilient tools, the most important feature is slicing. A slice 
consists of a sequence of macroblocks (Fig. 23) and the intra-prediction in one slice 
does not refer to data belongs to the other slices in one frame. If one slice is corrupted 
during the transmission, the error would not propagate to other slice regions so that 
the corrupted data is restricted within that slice. Insertion of refreshment frames, slices 
or macroblocks is a method to stop error propagation in the temporal domain. In 
addition, [17] mentioned that the insertion of additional markers in the bitstream can 
achieve VLC resynchronization. From these three methods, we can find that the error 
propagation can be stopped in a certain region and the following bitstream can be 
correctly decoded. That is, error resynchronization is achieved. However, these 
methods have bitstream overhead and increase needed data bandwidth. 

 

 
Fig. 23 Division of a picture into several slices. 

     
To achieve resynchronization in block-level without bitstream overhead, 

information remained in bitstream after compression is needed to help find the 
resynchronization point. However, less information left in H.264 bitstream can 
provide error detection ability or resynchronization because of its high compression 
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performance. To accomplish error resynchronization, the position of the next 
decoding unit is necessary so that error will be stopped until the current decoding 
units. In the following sections, we focus on the I-frame error resynchronization 
because I-frames are much important than P-frame and I-frame is reference of 
P-frame. 
 

4.2 Proposed Scheme for Error Resynchronization 

The smallest decoding unit in H.264/AVC is 4x4 block and the position of the 
block can only be known by end of block symbol. Unlike the previous video 
standards, there is no end-of-block symbol in CAVLC. Take MPEG-2 as an example, 
TB-14 and TB-15 define the end of block symbol with codeword “10” and “0110”, 
respectively. As a result, we can try to find the block boundary by searching “10” or 
“0110” in the bitstream. A further insight into the tables makes these two codewords 
mistakenly predict the block boundaries because other codewords also contain “10” or 
“0110”. For instance, codewords of (run, level) = (4, 1), (7, 1) and (2, 2) contain “10” 
in TB-14; codewords of (run, level) = (4, 1), (1, 2) and (16, 1) contain “0110” in 
TB-15.  

From the conventional CAVLC decoding process, a block with non-zero 
coefficients has the following steps to complete the decoding: 1. decoding of total 
coefficients and trailing ones, 2. decoding of sign of trailing ones, 3. decoding of 
levels, 4. decoding of total zeros, 5. decoding of runs before every non-zero 
coefficients. The last two steps are about total zeros and runs. Therefore, we can say 
that end of block consists of these two syntax elements. In bitstream, all combinations 
of the codewords of theses two tables that meet the rule of CAVLC decoding can be 
viewed as the EOBs. Since the constructed EOBs have many possibilities, we can 
choose those ones which are not one segment of combinations of other codewords in 
the other tables. Once the EOBs are known, the block boundaries can be predicted by 
them and thus the error can be limited until the current block. Then, the decoding of 
the next block is resynchronized and correct. The EOB format is shown in Fig. 24. 

 

 
Fig. 24 The format of EOB 
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4.3 EOB Construction 

To know all combinational series of codewords from Total_Zeros(T.Z.) and 
Run_Before(R.B.) tables, we must know all kinds of distribution of coefficients in one 
4x4 block. For different distribution of non-zero coefficients, the combinations of the 
T.Z. codeword and the R.B. codewords are different. The total number of combination 
can be computed by the following equation (1): 

 
16

16
k

k=1

 = C  , where  is the number of coefficients in 4x4 blockTotal k∑
 

(1)

 
 Therefore, there are totally 65535 kinds of EOB and histogram of the distribution is 
shown in Fig. 25. 
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Fig. 25 Distribution of EOB number at different numb of coefficients 
 

The next step verifies the EOBs that are not segments of combination of other 
codewords. The EOB is viewed as a sliding window through the whole bitstream and 
collect those EOBs that only occur at the exact positions. However, the number of 
total EOBs is large and the total bit of the bitstream is much larger, thus the 
simulation time is too long. Therefore, we choose another method to reduce the 
simulation time.  

In this method, 300 I-frames are chosen to generate the all of the EOB’s of each 
frame individually. Next, the number of EOBs in one frame is reduced by eliminating 
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short EOBs because short EOBs are more easily found in other places in the bitstream. 
With EOB positions which are known, the reduced EOBs set is checked in a certain 
range to determine whether one EOB is unique within the given range. As Fig. 4 
shows, the EOB is viewed as a sliding window and check the correlation between the 
EOB and bitstream. The range is set because in real cases, EOB is not necessary to be 
unique globally thus only local uniqueness is checked. 
 

Fig. 26 Checking whether the EOB is unique within the given range or not 
 

After all EOBs and the corresponding bitstream are checked, the EOBs are 
reduced because the EOBs that occurred multiple times are removed as shown in Fig. 
27. The remained EOBs are defined as intra-set. To ensure EOBs can survive in other 
frames, they are also checked their uniqueness in other frames. The further reduced 
set is called the inter-set as shown in Fig. 28. After inter-checking, the remained set 
can be the error resynchronization information and stored in the memory. 
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Fig. 27 Reduction phase of intra-checking. The number of EOBs generated from 
each frame is reduced. 

 
 

Fig. 28 Reduction phase of inter-checking. After this reduction the remained EOBs is 
the EOB library stored in memory. 

4.4 EOB Storage Using Group-based Scheme 

We can treat all EOBs stored in memory as the codewords of a virtual table. 
From the group-based algorithm we know that the symbol of the decoded codeword 
can be accessed by calculation. Therefore, the symbol for EOBs codewords is 
composed of 1-bit hit flag. Thus, a large amount of searching EOBs can be done in a 
fast process. For instance, based on the Fig. 29, if the bitstream is 
0000_0000_0110_0110_0000_0000_0000_0 1011_0100….. 
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1. Do group searching 
PCLC_mincode1(29’b0000_0000_0101_1111_0000_0000_0000_0) < 

bitstream_num < PCLC_mincode2(29’b0000_0000_0110_1011_0000_0000_0000_0) 
The matching group: G1 

2. Send group information 
 code length = 15-bit, PCLC_mincode = 

29’b0000_0000_0110_0100_0000_0000_0000_0, base_addr(6-bit) =6’b1000_00. 
3. Find the valid VLC_codeoffset, which is the code length most significant bits 

of the result of subtracting the PCLC_mincode from the bitstream_num 
Bitstream_num(29’b0000_0000_0110_0110_0000_0000_0000_0) – 

PCLC_mincode(29’b0000_0000_0110_0100_0000_0000_0000_0) = 
29’b0000_0000_0000_0010_0000_0000_0000_0. 

The valid VLC_codeoffset = 15’b0000_0000_0000_001= 1. 
4. Extract the VLC_codeoffset operand, which has the same word length as the 

symbol address 
VLC_codeoffset = 6’b0000_01= 1. 

5. Calculate the decoded symbol address 
symbol_addr = base_addr(6’b1000_00) + VLC_codeoffset(6’b0000_01) = 

6’b1000_01= 33. 
6. Fetch the decoded symbol 

 sym_memory[33] = S33. 
As a consequence, we can store flag as the S33 in the location of address = 33 
The flag means if hit or miss for the EOB checking. 
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PCLC Length-1 Address  

--------------------------------------------G0-------------------------------------------- 
0000_0000_0110_1111_0000_0000_0000_0 15   [ 40 ] 
0000_0000_0110_1100_0000_0000_0000_0 15   [ 37 ] 
0000_0000_0110_1011_0000_0000_0000_0 15   [ 36 ] 
--------------------------------------------G1-------------------------------------------- 
0000_0000_0110_1010_0000_0000_0000_0 14   [ 35 ] 
0000_0000_0110_1000_0000_0000_0000_0 14   [ 34 ] 
0000_0000_0110_0110_0000_0000_0000_0 14   [ 33 ] 
0000_0000_0110_0100_0000_0000_0000_0 14   [ 32 ] 
--------------------------------------------G2-------------------------------------------- 
0000_0000_0101_1111_0000_0000_0000_0 15   [ 31 ] 
--------------------------------------------G3-------------------------------------------- 
0000_0000_0101_1110_0000_0000_0000_0 14   [ 30 ] 
0000_0000_0101_1100_0000_0000_0000_0 14   [ 29 ] 
--------------------------------------------G4-------------------------------------------- 
0000_0000_0011_1110_0000_0000_0000_0 14   [ 28 ] 
0000_0000_0011_1100_0000_0000_0000_0 14   [ 27 ] 
0000_0000_0011_1010_0000_0000_0000_0 14   [ 26 ] 
0000_0000_0011_1000_0000_0000_0000_0 14   [ 25 ] 
0000_0000_0011_0110_0000_0000_0000_0 14   [ 24 ] 
0000_0000_0011_0100_0000_0000_0000_0 14   [ 23 ] 
0000_0000_0011_0000_0000_0000_0000_0 14   [ 21 ] 
0000_0000_0010_1110_0000_0000_0000_0 14   [ 20 ] 
0000_0000_0010_1100_0000_0000_0000_0 14   [ 19 ]  

Fig. 29 A portion of groups of EOBs 
 

4.5 Joint with Channel and VLC Source Decoder 

The bock diagram is shown in Fig. 30. In this error resynchronization scheme, 
we assume that channel information is available. The system includes the channel side 
and source side. The source decoder can use the bit reliability which is the 
information comes from channel to determine when to check EOB. Once the bit 
reliability is lower than a threshold, we activate the searching EOB by the method in 
the last section for the following bit-stream. If the hit flag is accessed from memory, 
we think it as the EOB of a 4x4 block and thus we can decode the next block from the 
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actually bit position. Besides, the method is mainly for random error type.  
 

Bit Reliability

Error Bitstream

Channel Source

Channel FEC Video DecoderVLC 
Decoder

Fig. 30 Block diagram of the decoder in the wireless transmission environment. 
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Chapter 5   

Simulation Result 

From the proposed algorithm, block boundary prediction by EOBs is a 
probability issue and EOBs are also VLC, therefore, the length of EOBs has effect on 
the probability of prediction. On one hand, longer EOB codewords has lower 
occurrence probability. On the other hand, longer EOB codewords are removed more 
hardly and have more probability of being in the EOB library finally. 

The probability of EOBs that meet length constraints are shown in Fig. 31 and 
the calculation equation (2) is as follows:  

 
# of EOBs(length > L)occurred probability = 

Total # of EOBs (2)

 
 

All testing frames are QCIF format and the first 100 frames is the first 100 frames 
from akiyo sequence, 200~299 frames is the first 100 frames from foreman sequence 
and the last 100 frames is the last 100 frames from foreman sequence. Fig. 32 shows 
the probability of correctly found EOBs under three different length constraints. The 
simulation shows that probability is very close when length is 8 and 10 bits at least 
and the probability of EOBs (L > 14) is lower. 
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Fig. 31 Probability of EOBs with length constraints. 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 25 49 73 97 121 145 169 193 217 241 265 289

Frame Number

P
ro

ba
bi

lit
y

Length > 8

Length > 10

Length > 14

Fig. 32 Probability of EOBs that are correctly found in the bitstream. 
 



 

38 

Table 6 and Table 7 show the memory space for different sets of EOBs. Different 
grouping strategy makes memory space of group information and symbol quite 
different. If we separate EOBs into groups by position of leading one (prefix), number 
of groups is small while the maximum symbol address is large. In contrary, we 
separate EOBs into groups by prefix and length condition, number of group is large 
while maximum symbol address is much smaller than the previous one. 
 

Table 6 Estimation of memory usage for different sets of EOBs  
Grouping by prefix only 

. Length 
 8 10 14 

number of group 17 17 17 
max. symbol 

address 
160975 282645 639418 

PCLC 29 29 29 
symbol memory 1024*256 2048*256 8192*128 

base address 10 11 13 
group information 

memory 
17*(29+5+10) 17*(29+5+11) 17*(29+4+13) 

Total 262892 525053 1049358  
 
 

Table 7 Estimation of memory usage for different sets of EOBs. 
Grouping by prefix and length 

 Length 
 8 10 14 

number of group 13323 13034 9454 

max. symbol 
address 

20760 20678 23640 

PCLC (bits) 29 29 29 
symbol 

memory(bits) 
1024*32 1024*32 1024*32 

base address(bits) 10 10 10 

group information 
memory(bits) 

13323*(29+5+10) 13034*(29+5+10) 9454*(29+4+10) 

Total(bits) 618980 606264 439290  
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Chapter 6   

Hardware Architecture and 

implementation 

6.1 Overview of Hardware Architecture 

Fig. 33 shows the block diagram of proposed dual-mode memory-based VLC 
decoder. There are mainly five components: 1) Controller, 2) Input Shift Buffer, 3) 
Memory-based VLC Decoder, 4) Coefficient Buffer and 5) Level Decoder. The 
controller assigns the control signals for each syntax element according to nC, 
maxnumcoeff and enable signal from syntax parser. The controller is implemented by 
a finite state machine (FSM). The memory-based VLC decoder can support CAVLC 
and MPEG-2 coefficient decoding. Several control signal are needed to control 
internal memory and these control signal are directly from chip I/O ports so that the 
content can be loaded into memory for different video standards. The level decoder is 
mainly composed by level prefix decoder, level suffix decoder and suffix length. 
Level prefix is composed of a leading 1 detector and level suffix is decoded by getting 
bits from bitstream buffer depending on level suffix size. The coefficients buffer 
consists of 4x4 register array and is controlled by run index and level index such that 
the decoded runs and levels can be put into buffer in order. The input bitstream buffer 
is integrated into higher hierarchical module in the H.264/MPEG2 video decoder, 
which is proposed in [18]. Also, the design is also integrated into the H.264/MPEG2 
video decoder in the previous video decoder [18].  
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Fig. 33 Block diagram: controller, bitstream buffer, Memory-based VCL Decoder, 
Level decoder , coefficient buffer 

 

6.2 Memory-based VLC Decoder 

From the modified MTM algorithm, the VLC decoder has two categories for 
storing group information and table information. They are selected by table index. 
Each group information is extracted to compute offset. The final offset is determined 
by the enable signal from group detectors. The tri-state buffer can viewed as the gate 
for each group. One group has three data items: offset, base address and (length-1). 
For each decoding time, only one set of data among all groups is passed by the 
tri-state buffer while others are floated. After the set of data are passed, (length -1) is 
returned to bitstream shift buffer in the other module and base address is added to 
offset to compute symbol address. Finally, symbol memory is accessed to output 
decoded symbol. 
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Fig. 34 Total Block Diagram of memory-based VLC decoder 
 
The stage partition of memory-based VLC decoder is briefly shown in Fig. 35 

and cycle time of important signals are also shown. The register file generated by 
memory compiler needs one cycle to read data thus the access of group information 
and table information memory is viewed as the first stage. After the first stage, the 
symbol address is known thus the access of symbol memory is the second stage.  

The group information and table information memory can be accessed when the 
table used to decode is known. The example of cycle time is shown as in Fig. 35. The 
first cycle is reading of memory and address computation and the decoded symbol is 
outputted in the second cycle. The in_valid signal represents the input bitstream and 
table idx is valid. The symbol is valid until the second cycle. In the third cycle, next 
valid data is sent after the controller received the Symbol_valid signal. 
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Fig. 35 Stage and timing diagram 
 
 

6.3 Improvement of throughput 

According to the VLC property, shorter codewords occurred more frequently 
than long codewords. According to observation of CAVLC decoding, decoding of 



 

43 

Run_Before consumes many cycles for a block especially in low-QP video and most 
codewords of Run_Before tables are short. Therefore, we assume that the short 
codeword stores information of Run_Before such as length of codewords, symbols 
and table index.  

Fig. 36 shows the block diagrams of memory-based VLC decoder with cache. 
Only some important signals are annotated for simplicity. Again, the controller send 
the read_en and write_en signal to activate reading or writing of the cache. If cache 
hit occurs, the memory-based VLC decoder is disabled and the decoded symbol and 
length is from the cache. If cache missed, conventional VLC decoder is enabled and 
the symbol and length are stored in the cache. Looking up cache can be done in one 
cycle while decoding of memory-based VLC decoder need three cycles. As a result, 
adding cache is a good method to improve the throughput of the whole decoding.  
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Zerosleft

read_enwrite_en

in_length

in_symbol
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Decoder

CAVLC Controller

enable

dec_length

dec_symbol

is_RB

4

11

1

1

0

0

Symbol

Length

Fig. 36 Small Cache for Run (short codewords) 
 

In addition to adding cache, one method is also proposed to improve throughput 
further. In Fig. 35, the table index is known after the FSM is in Coeff_Token and 
Total_Zeros states. From the conditions of table transition, the next table used to 
decode can be known earlier than these two states. As a consequence, group 
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information and table information can be accessed once the condition is known and 
the conventional three-cycle stage is reduced to two-cycle stage as shown in Fig. 37. 
In this figure, current Information Memory_out is known before in_valid is high or in 
the same cycle as in_valid is high. Therefore, the pre-fetching mechanism can achieve 
one symbol decoding every two cycles. This method can further improve throughput 
compared to the original design in this thesis. 

 

in_valid

table index

Bitstream

Information
Memory_out

Symbol 
Memory_out

Symbol 

Length-1

Symbol_valid

1 2 3 4 5 6 7 8 9

CLK

In 1 In 3 In 5 In 7

address 1 address 3 address 7address 5

symbol 1 symbol 3 symbol 5 symbol 7

symbol 1 symbol 3 symbol 5 symbol 7

length 1 length 3 length 5 length 7

Fig. 37 Cycle time of the pre-fetching method 
 

6.4 Implementation Result 

In hardware implementation, the group information for MTM_PCLC and 
(MTM_CL-1) are stored in registers because they are used in the same time. 
Therefore, this leads to more gate count and less memory space. In summary, the 
memory space is shown in Table 8.  
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Table 8 Memory space for VLC decoder 

 Storage content Number of bits Physical space 
Table information 

memory 
Valid bit and 

CL_diff 
16 x 23 x 4+ 

14 x 5 x 3 
16 x 23 x 4+ 

16 x 5 x 3 
Group information 

memory Base address 16 x 23 x 8 + 
14 x 5 x 8 

16 x 23 x 8 + 
16 x 5 x 8 

C.T and TZ/RB 
Run-Level 256 x 11 256 x 11 

Symbol memory 
C.T for CAVLC 16 x 7 16 x 7 

Total 8114 bits 8224 bits  
 
The gate count and power consumption of the designs are shown in Table 9. 

From this table, the gate count of these design are similar. However, the power 
consumption of memory-based VLC decoder with cache only is lower than that of 
memory-based VLC decoder without cache. This shows that the cache storing 
frequent codewords without replacement can achieve power reduction and improve 
throughput. The throughput of foreman and mobile sequences under different QP are 
shown in Fig. 38 and Fig. 39, respectively. From these two figures, the proposed 
design can achieve HD 720p even for very low QPs under 100MHz. The design can 
also meet requirement of HD1080p when operation frequency is 200MHz as shown in 
Fig. 40 and Fig. 41. 
 

Table 9 Gate count and power of different designs. 
 Gate Count Power Consumption( mW) 

Memory-based VLC 
decoder 

15.4 k 1.132 

Memory-based VLC 
decoder + cache 

17.2 k 1.078 

Memory-based VLC 
decoder + pre-fetch 

17.2k 1.017 
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Fig. 42 and Fig. 43 show power distribution of each main module for test pattern of 
mobile and akiyo, respectively. The operating frequency is 100MHz. Memory1 stored 
the base addresses and table information for large tables and Memory2 stored the base 
addresses and table information for small tables.  
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Table 10 shows the comparison of the proposed design. We can see that the proposed 
design support two different entropy decoding, i.e. MPEG2 and H.264. Besides, the 
proposed design has error resilience feature for application of wireless video 
transmission. These two features are quite different from the other designs.  
 
 

Table 10 Comparison of other designs and proposed design 

 
[1] NCCU 
TCSVT’06 

[2] NCU 
ASSCC’07 

[3] NCKU 
Trans. on 

Multimedia‘08 
Proposed 

Process 0.18um 0.18um 0.18um 0.09um 

Technique Hardwired Hardwired Hardwired Memory-based 

Features 
Parallel 

LUT 
Multi-symbol 

for level 
Modified level 

detector 
Error resilience 

Max 
Frequency 

N/A 102MHz 213MHz 200MHz 

Gate 
Count 

13.1K 13.2K 6.7K 17.2K 

Memory 
(bits) 

N/A N/A N/A 8114 bits 

Target 
Format 

HD1080, 
30fps 

HD1080, 
30fps 

HD1080, 
30fps 

HD1080,30fps 

Multi-mode 
MPEG- 

1/2/4 
H.264 (CAVLC) 

H.264 
(CAVLC) 

MPEG-2, H.264 
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Chapter 7   

Conclusion and Future Work 

As we know, entropy decoder of MPEG-2 and H.264/AVC are very different 
from each other, such as decoding flow, symbol format and table transition. A 
memory-based VLC decoder which support dual-mode vide format (H.264/AVC) and 
MPEG-2 with error robustness is proposed in the thesis. The thesis focuses on 
improvement of memory efficiency for conventional VLC decoder first. Although 
MPEG-2 part is not yet exactly implemented in the decoder, only little overhead like 
multiplexers and additional coefficients buffers are needed when MPEG-2 is required 
because the memory utilization and size are considered in this design. For CAVLC 
decoding, throughput is limited by dependency between syntax elements, hence, 
pipeline stage is not adequate for this decoding. However, the decoding of MPEG2 
can be pipelined because there symbols are independent. The VLC decoder is 
synthesized under 100MHz and can be promised to support HD720p even under low 
QPs. The design can also meet requirement of HD1080p when operation frequency is 
200MHz. 

In addition, a novel error resynchronization is proposed in the thesis. This 
method can be combined with conventional memory-based VLC decoding without 
extra bandwidth overhead. In this scheme, the EOBs are constructed with length 
constraint. The flow of EOB construction is proposed to reduce off-line simulation 
time and the analysis of the EOB probability is also presented. After EOB library is 
set, group-based decoding of VLC is applied to determine if EOB are found. 
Compared to trellis-based JSCD or soft-input VLC decoding, this method makes 
hardware implementation can be done and much less complexity.  

There is some works can be developed further for this design. First, integrate 
MPEG-2 decoding circuit into current design to achieve fully scalability. Second, 
some other power reduction schemes are necessary for mobile applications. Third, 
from H.264 CAVLC Run_Before tables, we can see that many codewords is 
composed of 1’s string, thus, we can use this characteristic to improve boundary 
prediction probability. Beside, this can also help to reduce size of EOB library thus 
the memory size for error resynchronization information. Finally, the design is 
appended channel model to build the whole wireless transmission system. 
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