

國立交通大學

電子工程學系 電子研究所碩士班

碩 士 論 文

具抗錯力之以記憶體為基礎的雙模視訊標準可變長度

解碼器設計

Design of An Error-robust Memory-based VLC

Decoder for Dual-mode Video Decoding

研究生 ： 李韋磬

指導教授 ： 李鎮宜 教授

中華民國九十七年七月

具抗錯力之以記憶體為基礎的雙模視訊標準可變長度

解碼器設計

Design of An Error-robust Memory-based VLC

Decoder for Dual-mode Video Decoding

研 究 生：李韋磬 Student：Wei-Chin Lee

指導教授：李鎮宜 Advisor：Chen-Yi Lee

國 立 交 通 大 學
電子工程學系 電子研究所 碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

In Partial Fulfillment of the Requirements

For the Degree of Master

In

Electronics Engineering

July 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年七月

具抗錯力之以記憶體為基礎的雙模視訊標準可變長度

解碼器設計

學生：李韋磬 指導教授：李鎮宜 教授

國立交通大學

電子工程學系 電子研究所碩士班

摘要

本論文提出在支援雙模(H.264/AVC 和 MPEG-2)視訊壓縮標準解碼器下的熵

解碼器中，增進解碼表格在記憶體中的使用效率。此熵解碼器採用多張解碼表格

合併演算法並可程式化以包含不同視訊壓縮標準的熵解碼。首先利用單一表格將

字碼分類到不同的群組，只把各個群組的最重要的資訊存於記憶體中，解碼的過

程只需要用字碼的運算和群組資訊就可以算出符號在記憶體中的位址。在這樣的

結構下，可以比傳統的方式節省記憶體的使用量。視訊壓縮標準的表格相當多

張，因此把需要使用的表格的群組資料再做合併以更減少表格間的贅餘部份而減

少記憶體空間。經由修改演算法可以讓熵解碼器以較少的空間及較高的效率來存

放足夠的資訊。
此論文另外針對視訊無線傳輸的應用下，提出了防止錯誤傳遞的方式而且不

用額外傳輸資料來輔助，也就是幾乎不會增加頻寬成本。這個方式可以利用通道

解碼提供的位元可靠度來決定啟動防止錯誤傳遞的模組，而這個模組裡用記憶體

儲存區塊預測資訊。用這些資訊可以預測出區塊邊界而讓可能出錯的區塊的解碼

不會影響到接下來的區塊。這些資訊的比對是由以記憶體為基礎的可變長度解碼

的方式來決定是否預測成功，在演算上可與傳統的以記憶體為基礎的可變長度解

碼器結合，硬體實作上的複雜度不高。這個提出的方法因為限制了錯誤傳遞的範

圍，可以大幅改善畫質。

Design of An Error-robust Memory-based VLC

Decoder for Dual-mode Video Decoding

Student : Wei-Chin Lee Advisor : Dr. Chen-Yi Lee

Department of Electronics Engineering

Institute of Electronics
National Chiao Tung University

ABSTRACT

This thesis proposed entropy decoder which can support dual-mode video format
(H.264/AVC and MPEG-2) decoding and improved memory efficiency. The entropy
decoder adopts multi-table merging (MTM) algorithm and is programmable. First, for
a coding table, all codewords are separated into different groups and only the most
significant information of each group is stored in memory. The decoding can be
completed by looking up information needed and arithmetic computation such that the
symbol address is known. Under this type of decoding, memory space can be reduced
compared to conventional VLC decoder. For multiple tables, the redundancies
between group information of each table are further exploited and only different parts
are stored in the memory. By the modified MTM algorithm, the proposed can store
information needed for the standards with higher memory efficiency and less memory
space.

This thesis also proposed a scheme which can stop error propagation without
transmission of extra data helping stop error propagation, i.e., no additional
bandwidth overhead. In this method, the stopping error propagation module is
activated when the bit reliability coming from FEC is low enough. The error
resynchronization information is stored in the memory and block boundary prediction
is achieved with the information. Once the block boundary, the following block can
be correctly decoded and error propagation can be restricted. The searching of

information used group-based VLC decoding algorithm to determine if prediction is
finished. In the algorithm level, the method is combined with conventional
group-based VLC decoding; in the viewpoint of hardware implementation, the
complexity is low. Owing to stopping error propagation from this scheme, video
quality is improved drastically.

Acknowledgements

I am very grateful to my advisor Dr. Chen-Yi Lee because of his patient guidance

and very valuable comment for my research. I have learned much experience for
research and thinking from him.

Second, I would like to appreciate NSC for the financial support, the teammates
of Si2 multimedia group. My seniors like Tsu-Ming Liu and Yao Li gave a lot of
suggestion for my thinking and skill training. I am very thankful to them and Yu-De
Wu, Yu-Fan Lai. Besides, graduated seniors such as Jun-Yan Yang, Yi-Hung Huang,
Kon-Zeng Hou, Zeng-Chie Hsien, Bin-Chang Lin, Yua-Chih Hong and Da-Jiah Lin
also shared much experience with me for my graduate life. Finally, I want to express
the gratitude for senior Ching-Che Chung’s work on the setting and testing of libraries
and technology process and building of simulation environment. Besides, Dr. Ti-Hao
Chiang and Dr. Hsie-Chia Chang also gave me some precious comment.

Finally, I would like to appreciate my family and my friends for their assistance
and encouragement when I feel stress. I wish all of them are healthy and blest
perpetually.

i

Contents

Chapter 1 Introduction...1

1.1 Overview of H.264/AVC...1
1.2 Overview of MPEG-2...3
1.3 VLC and CAVLC ..4

1.3.1 Huffman Code ...4
1.3.2 CAVLC Decoding..4

1.4 Error Robustness..5
1.5 Motivation ..6
1.6 Organization of the Thesis ...6

Chapter 2 Previous Work ..7
2.1 CAVLC Decoding Process ...7
2.2 VLC Decoder ...8
2.3 Error Robustness on Wireless Video Transmission ..9

Chapter 3 Algorithm of Memory-based VLC Decoding ..14
3.1 Conventional Group-based VLC Algorithm and Decoding Flow..................14

3.1.1 Definition of Codeword Groups..14
3.1.2 Intra-Group Decoding Procedure...15
3.1.3 Group Searching Scheme..16

3.2 Conventional Multi-Table Merging Algorithm and Decoding Flow..............18
3.2.1 Collection of Group Information of All Coding Tables.......................18
3.2.2 Codeword Merging ...18
3.2.3 Prefix Merging ..19
3.2.4 Set Table Information..19
3.2.5 Base Address Merging ..20
3.2.6 Group Information Recovery ..20

3.3 Modified MTM algorithm for Improvement of Memory Efficiency22
3.4 Symbol Memory Allocation..26

Chapter 4 Error Resynchronization ...28
4.1 Concept of Error Resynchronization ...28
4.2 Proposed Scheme for Error Resynchronization ...29
4.3 EOB Construction ..30
4.4 EOB Storage Using Group-based Scheme...32
4.5 Joint with Channel and VLC Source Decoder ...34

Chapter 5 Simulation Result...36

ii

Chapter 6 Hardware Architecture and implementation ..39
6.1 Overview of Hardware Architecture ..39
6.2 Memory-based VLC Decoder ..40
6.3 Improvement of throughput..42
6.4 Implementation Result ...44

Chapter 7 Conclusion and Future Work ..51
References ...52

iii

List of Figures

Fig. 1 The block diagram of H.264 encoder ..1
Fig. 2 The block diagram of H.264 decoder ..2
Fig. 3 The distribution of symbols and the Huffman tree. ...4
Fig. 4 Sequential syntax elements decoding in CAVLC..7
Fig. 5 Examples of short codewords, they can be decoded by arithmetic decoding

from the equation in [6]. ..8
Fig. 6 The implementation of HLLT partitions the original big LUT into many small

LUTs in [7]. ...9
Fig. 7 Organization of macroblock level concealment delay and................................10
Fig. 8 (a) Pixels for average inter-sample difference across boundary (AIDB)

calculation and equation in [12] with N=16. (b) Final equation of the AIDB.11
Fig. 9 Pixels of Average difference across frames (ADF) calculation and N = 16......11
Fig. 10 Experimental Set-up for evaluating the performance of the MAP decoder in (a)

[13] , (b) [14]..12
Fig. 11 Combing source and channel state space. (a) source state space. (b) channel

state space. (c) integrated state space...13
Fig. 12 Grouping of codewords in the table ..15
Fig. 13 One group with address assignment ..15
Fig. 14 PCLC table and intra-/inter- group symbol memory mapping........................16
Fig. 15 Group information of the table in Fig. 14..17
Fig. 16 Part of group information of several tables. ..18
Fig. 17 One portion of the groups after codeword merging process............................19
Fig. 18 Table information and group information..20
Fig. 19 Example of group information recovery ...21
Fig. 20 Base address adjustment procedure. The first number after VLCi. Gn is base

address and the +K is the adjusted amount of base address.25
Fig. 21 Unused locations for the information memory. ...25
Fig. 22 256-entry symbol memory allocation in VLC decoder for MPEG-2 and

H.264 standards.s ...27
Fig. 23 Division of a picture into several slices...28
Fig. 24 The format of EOB ..29
Fig. 25 Distribution of EOB number at different numb of coefficients.......................30
Fig. 26 Checking whether the EOB is unique within the given range or not31
Fig. 27 Reduction phase of intra-checking. The number of EOBs generated from each

iv

frame is reduced...32
Fig. 28 Reduction phase of inter-checking. After this reduction the remained EOBs is

the EOB library stored in memory. ..32
Fig. 29 A portion of groups of EOBs ...34
Fig. 30 Block diagram of the decoder in the wireless transmission environment.35
Fig. 31 Probability of EOBs with length constraints. ..37
Fig. 32 Probability of EOBs that are correctly found in the bitstream.37
Fig. 33 Block diagram: controller, bitstream buffer, Memory-based VCL Decoder,

Level decoder , coefficient buffer ..40
Fig. 34 Total Block Diagram of memory-based VLC decoder....................................41
Fig. 35 Stage and timing diagram..42
Fig. 36 Small Cache for Run (short codewords)..43
Fig. 37 Cycle time of the pre-fetching method ..44
Fig. 38 Throughput of decoding under Foreman sequence under 100MHz.46
Fig. 39 Throughput of decoding under Mobile sequence under 100MHz...................46
Fig. 40 Throughput of decoding for Foreman sequence under 200MHz.47
Fig. 41 Throughput of decoding for Mobile sequence under 200MHz.47
Fig. 42 Power chart of different module in mobile test frame for (a) QP=16, (b)

QP=34 ..48
Fig. 43 Power chart of different module in akiyo test frame for (a) QP=16, (b) QP=34

..49

v

List of Tables

Table 1 H.264/AVC profiles and the corresponding tools ...2
Table 2 The throughput of decoding CAVLC under different resolution5
Table 3 The number of groups of tables in CAVLC and the number of MTM groups21
Table 4 The number of groups of tables in MPEG2 and the number of MTM groups22
Table 5 Space of the conventional MTM without base address adjustment and the

modified memory allocation ..26
Table 6 Estimation of memory usage for different sets of EOBs38
Table 7 Estimation of memory usage for different sets of EOBs.38
Table 8 Memory space for VLC decoder...45
Table 9 Gate count and power of different designs. ..45
Table 10 Comparison of other designs and proposed design.......................................50

1

Chapter 1

Introduction

1.1 Overview of H.264/AVC

Fig. 1 The block diagram of H.264 encoder

The newest video coding standard is H.264/AVC which was developed by Joint

Video Team (JVT). H.264/AVC outperforms the previous video coding standards in
the coding efficiency. The block diagram of the H.264 encoder is shown in Fig. 1. The
current frame is predicted either by intra prediction or inter prediction. If the frame is
an intra frame, all data in the predicted frame come from the current frame. For inter
frame, the current frame and reference frame are use to compute motion vectors and
compensated by the reference blocks. After prediction, data of current frame subtract
that of predicted frame so that only residual data remained. The residual data then
passes transformation, quantization, reorder and entropy coding and becomes
bitstream. In the backward path, the predicted frame and the residual data are added to
form the unfiltered frame for intra prediction. Finally, the reconstructed frame is
formed by filtering the uF’n.

2

Fig. 2 The block diagram of H.264 decoder

Fig. 2 shows the block diagram of H.264 decoder. The first step of decoding is

entropy decoding of bitstream. The output data are sent into inverse quantization and
inverse integer discrete cosine transform. Now, the data is the residual coefficients
between the current frame and the prediction frame. Next step is to add residual data
to prediction of current frame (intra or inter). Lastly, the frame passes loop filter to
reduce the blocking effect.

Table 1 H.264/AVC profiles and the corresponding tools

Profile
Tools

Baseline Main Extended

CAVLC √ √ √
CABAC √
FMO √ √
Slice group and

Adaptive Slice Ordering
√ √

I & P Slices √ √ √
1/4 pixel MC √ √ √
Loop Filter √ √ √
Intra Prediction √ √ √
Multiple Reference

Frame
√ √ √

B Slices √ √
Field Coding √ √
MB-Aff √ √
Weighted Prediction √ √
Data Partitioning √
SP/SI Slices √

3

For different applications, there are different profiles and tools in H.264/AVC
which shows as Table 1. Baseline profile is mainly for mobile applications of low bit
rate such as portable devices because of its lower computation complexity than other
profiles. Extended profile is based on baseline profile and has error resilient tools for
video streaming or video on demand (VOD) applications.

The higher level profile based on baseline profile is main profile which is for
broadcast application. The computation complexity of main profile is more than that
of baseline profile. In addition, H.264/AVC has the high profile, high 10 profile, high
4:2:2 and high 4:4:4 profiles based on main profile for high definition multimedia
applications. The high profile supports 8x8 integer transform and high 10 profile
contains high profile with extra support of 10-bit sample precision of the decoded
pixels. Further, high 4:2:2 profile based on high 10 profile supports 4:2:2 chroma
sampling precision and 10-bit per sample. Finally, high 4:4:4 profile supports 4:4:4
chroma sampling and 12-bit per sample.

From table 1, we can see that there are two entropy coding approaches for
entropy coding, one is context adaptive variable length coding and the other is context
adaptive binary arithmetic coding. Although CABAC has better compression rate than
CAVLC, CABAC has extremely more complex structure which limits the throughput
of CABAC than CAVLC. Besides, CAVLC is suitable for all profiles in H.264/AVC
system and it has more flexibility for different applications. Therefore, we still further
discuss CAVLC in the following sections after the overview of MPEG-2.

1.2 Overview of MPEG-2

MPEG-2 is a video standard established by Moving Pictures Experts Group
(MPEG) which is a team of International Standards Organization (ISO). There are
five profiles in the MPEG-2 system. The simple profile supports 4:2:0 sampling, intra
and inter prediction. Main profile contains all tools of simple profile plus bi-direction
prediction. In addition, SNR scalable profile and spatially scalable profile provide the
base layer and one or more upper layer of coded bitstream for wider and different
application conditions. Finally, the high profile contains all previous tools and it is for
the applications where there are no constraints on bit rate.

There are four levels specified in MPEG-2: High level, High 1440, Main level,
and Low level. Higher level supports higher resolution of video. Main Profile and
Main level is the most widely accepted combination for the majority of applications.

4

1.3 VLC and CAVLC

1.3.1 Huffman Code

The Huffman code can encode one source with variable length code (VLC)
based on the probability distribution of the source symbols. For example, a source
contains four symbols ― { a, b, c, d } and the probability of them are 0.5, 0.25, 0.125
and 0.125, respectively. Therefore, we can trace the tree structure to assign codewords
for the symbols as shown in Fig. 3. If we use 2-bits codewords to encode the source,
the average length is 2 x 0.5 + 2 x 0.25 + 2 x 0.125 + 2 x 0.125 = 2-bits. However, we
can use VLC such that average length is 1 x 0.5 + 2 x 0.25 + 3 x 0.125 + 3 x 0.125 =
1.75-bit. For the decoding process, we can just trace the tree from the root to the leaf
and then back to the root to decode the next symbol. In MPEG-2, we can see that the
coefficients in the block are encoded by run-level coding. The tables defined the
mapping between run-level symbols and codewords.

Symbol Probability Codeword
a 0.5 1
b 0.25 01
c 0.125 001
d 0.125 000

Fig. 3 The distribution of symbols and the Huffman tree.

1.3.2 CAVLC Decoding

The entropy coding of baseline profile in H.264 is extension of VLC because of
the context-adaptive property. The so-called context adaptation means to use different
probability model under different conditions and assign corresponding VLCs.
Therefore, the VLCs separately assigned can achieve better coding efficiency than
only use one VLC for all conditions. In CAVLC, there are several tables for one

5

symbol according to the context conditions. The encoding and decoding process is
still by look-up tables.

It is important to consider the throughput when design CAVLC decoder. The
number of macroblocks must be decoded per second for different resolution shown in
Table 2. In addition, application of baseline profile is mainly mobile devices, thus the
power consumption issue must also be taken into account.

Table 2 The throughput of decoding CAVLC under different resolution
 30 frames per second (fps)

 QCIF CIF QVGA VGA D1
HD

720p
HD

1080
MB/sec 2970 11880 9000 36000 40500 108000 244800

1.4 Error Robustness

Nowadays, wireless video transmission is more and more popular in daily life.
Over wireless channel, noise interference affects the data correctness and then the
source decoder will accept erroneous data. For wireless video transmission, the data
are variable in length. Therefore, even only one bit is corrupted, the whole bitstream
may lose synchronization which degrades video quality drastically.

In channel coding, there are many coding techniques to protect transmitted data
by appending redundancy to achieve error correction. Another method is to detect
error and signal the request of re-transmission of video data. These two methods need
higher bandwidth. However, in some application, the bandwidth is limited and the less
redundancy added on data, the less capability of error correction. Besides, forward
error correction code can not promise totally correct all erroneous data and decoder
input may still have remained erroneous bits in it.

There are some schemes to improve the error robustness in the decoder side. For
example, error concealment replaces the corrupted block by surrounding blocks which
is correctly decoded and improves the video quality. Nevertheless, an error detection
module must also help to find the location of corrupted blocks.

Soft-input decoding is another method to reduce bit error rate (BER) of the
decoder input bitstream. Soft-input decoding uses channel information to find the
maximum likelihood or maximum a posteriori path of the trellis diagram. In advance,
joint source–channel design (JCSD) can improved BER performance by considering
trellis structure and symbols probability of source and channel concurrently.

6

1.5 Motivation

A video decoder can support multi-standard video format is very significant in
today’s applications. Most data in the video bitstream is composed of coefficients of
blocks. In addition, the first stage of the video decoder is VLC entropy decoder which
maps codewords to symbols. As a result, an entropy decoder which is programmable
and compatible to different standards with enough throughputs is necessary. Besides,
the symbol format of coefficients data is represented by a pair of Run and Level while
that of CAVLC is quite different from this.

For the video transmission over wireless environment, we have to find methods
to reduce the effect of error propagation. The challenge lies in less information or
redundancy remained in the input bitstream of video decoder that can help to detect
error and even correct error. Although the whole video transceiver can set as
automatically repeat request for the corrupted data, that is, receiver signals a flag to
transmitter to re-transmit data. This method results in increasing usage of bandwidth.
If soft-input decoding or JSCD is used, high complexity and cost are inappropriate to
hardware implementation.

1.6 Organization of the Thesis

The chapter 2 will discuss the previous works about VLC decoder of different
implementation and target applications first. Then the previous works of error robust
on decoder side only or JSCD will be mentioned. Chapter 3 will show the CAVLC
operation and the design of memory-based VLC decoder supporting multiple
standards. In the memory-based VLC decoder, multi-table merging algorithm is used
and the allocation of memory is considered. Next, we will show the hardware
architecture and implementation result in chapter 4. Chapter 5 proposes an algorithm
used to find the block boundaries in frames stops error propagation under the
condition that channel information is known. Also, the simulation result will be in the
chapter 6. Chapter 7 will show the conclusion about the whole design of multi-mode
and memory-based VLC decoder with error robustness.

7

Chapter 2

Previous Work

2.1 CAVLC Decoding Process

 There are five syntax elements in CAVLC：Coefficient_Token (Coeff_Token),
TrailingOnes_Sign (T1s_Sign), Level_Prefix, Level_Suffix, Total_Zeros and
Run_Before. They are decoded in order defined by the following rules and the block
data composed of these syntax elements is shown in Fig. 4

1. The first decoded syntax element is Coeff_Token, which includes to symbol:

Total_Coeff and TrailingOnes. Total_Coeff represents number of non-zero
coefficients in this block and TrailingOnes represents number of coefficient with
magnitude one and it is 3 at most. The sub-tables are select by nC parameter
from system. nC is positive for luma and -1 for chroma.

2. TrailingOnes_Sign is decoded by getting TrailingOnes bits from bitstream.
3. Level_Prefix is decoded by leading one detector and is equal to number of zeros

before the leading one.
4. Then, a parameter called SuffixLength is initially set to 0 or 1 if Total_Coeff is

greater than 10 and TrailingOnes is less than 3. LevelSuffixSize is set to
SuffixLength with two except case: 1. Level_Prefix is equal to 14 and
SuffixLength is equal to 0. 2. Level_Prefix is equal to 15. LevelSuffixSize is set to
4 in case1 and 12 in case2. Next, Level_Suffix is decoded by getting
LevelSuffixSize bits from bitstream and is set as 0 if LevelSuffixSize is 0.

5. Select Total_Zeros sub-tables according to Total_Coeff. If Total_Zeros is 0, the
decoding process is finished.

6. The Zeros_Left is set as Total_Zeros. Run_Before is subtracted from Zeros_Left
and the result is assigned to Zeros_Left until Zeros_Left is 0.

Fig. 4 Sequential syntax elements decoding in CAVLC

8

2.2VLC Decoder

There are several ways to implement VLC decoder such as memory-based
technique, hardwired implementation. [1] proposed group-based algorithm to classify
VLC codewords into different groups such that memory just stored group information.
In [1], the symbol addresses are calculated by input bit-stream and group information.
Last, the symbol memory stored all symbols are accessed to output decoded symbols.
The codec can support a coding table with 256-entry 12-bit symbols and 16-bit
codewords. Furthermore, [2] proposed the multi-table-merging algorithm to reduce
memory space and codec can support JPEG, MPEG-2 and MPEG-4 coding tables. [3]
used cache and table partitioning on the group-based VLC decoder to achieve power
reduction for MPEG-2. The decoding method in [4] decodes some short codewords
by arithmetic operation and the others are mapped into memory to reduce memory
access. But [4] was just for Coeff_Token tables and its sequential searching in the
memory would lead to low throughput. The scheme proposed by [5] and [6] is that
decode short codewords with arithmetic operation while other codewords are decoded
by conventional decoding to saving memory access.

Fig. 5 Examples of short codewords, they can be decoded by arithmetic decoding

from the equation in [6].

For the hardware implementation proposed by [7], it was ROM-based and used

HLLT (hierarchical logic for look-up table, Fig. 6) to improve speed and PCCF
(partial combinational component freezing) to reduce power consumption.

9

Fig. 6 The implementation of HLLT partitions the original big LUT into many small

LUTs in [7].

Design of VLC decoder in [8] was for MPEG-1/2/4 decoding and LUTs are

implemented by hardwire. The codewords are separated into groups in several
look-up tables and one address generator is used to calculate symbol address.

In [9], the multi-symbol for level decoding in CAVLC is proposed to reduce
operation frequency while maintain enough throughput for real-time requirement. [10]
proposed a modified SuffixLength detector to reduce critical path in level decoding .

2.3 Error Robustness on Wireless Video Transmission

Until now, there has been much research on improvement of error robustness to
reduce the effect of error propagation in video decoder, compensation of erroneous
data and correction error. They can be mainly separated into two sections: source
decoder side only and joint source-channel design.

The error robustness mechanism at the source side only includes error detection,
error concealment and error resynchronization. Error detection is to find the location
of error data or bits in the blocks. The simplest error detection is syntax-based error

10

detection, that is, use some rules that violated regular decoding process. For example,
a codeword is not found or the value of a variable overflows. [11] made some rules of
syntax-based error detection and analyzed the performance of detection. However, the
detection has delay between the correctly detected block and exactly erroneous block
as shown in Fig. 7

Fig. 7 Organization of macroblock level concealment delay and
detection delay in [11]

[12] detected error blocks basically by computing the boundary difference and

used threshold as the determination rule. In Fig. 8, L means “Left” and can be
replaced by T(TOP), R(Right) or B (Bottom) and K2 is the number of available
neighboring blocks of current MB. The temporal boundary checking is shown in Fig.
9. The threshold in this paper is adaptively decided according to the statistics of
decoded MBs in a frame

11

(a)

(b)

Fig. 8 (a) Pixels for average inter-sample difference across boundary (AIDB)
calculation and equation in [12] with N=16. (b) Final equation of the AIDB

Fig. 9 Pixels of Average difference across frames (ADF) calculation and N = 16

12

After error detection, error concealment can be activated to compensate the
corrupted blocks. Error resynchronization can be achieved by inserting markers in the
bitstream to know the boundary of the next decoding unit. In H.264/AVC, one frame
can separated into slices and the decoding of one slice would not reference data in
other slices. Therefore, if one slice data is corrupted, the error can be restricted in that
slice thus the resynchronization is achieved. The other method is inserting
refreshment frames, slices or macroblocks so that temporal error propagation can be
stopped. [13], [14] and [15] are joint-source channel design for MPEG-4 video format.
[13] and [14] simulated the performance of using Maximum A Posteriori (MAP)
decoder under additive Markov channels (AMC) and the simulation environment are
shown in Fig. 10. [15] combined the source state space with the channel state space to
one finite state machine (Fig. 11) and the corresponding trellis decoding can be
defined. [16] was a JCSD for H.264 motion vectors data to improve video quality.

(a)

(b)

Fig. 10 Experimental Set-up for evaluating the performance of the MAP decoder in
(a) [13] , (b) [14]

13

Fig. 11 Combing source and channel state space. (a) source state space. (b) channel

state space. (c) integrated state space.

14

Chapter 3

Algorithm of Memory-based VLC

Decoding

3.1 Conventional Group-based VLC Algorithm and Decoding

Flow

This section was previously developed and verified by Bai-Jue Hsieh in [2]. The
intention of this section is to quickly talk about the concept of conventional
group-based VLC decoder system and how it works.

3.1.1 Definition of Codeword Groups

For a coding table, we separated codewords into groups. Codewords in a group
has the following properties:
1. In a group, the codeword can be treated as a binary number which is codeword

length-bit long, called VLC_codenum, since the codeword length is the same.
2. The codeword that has the smallest VLC_codenum in a group is denoted

VLC_mincode.
3. A VLC_codeoffset is the offset value between the VLC_mincode and the

VLC_codenum.
For the example shown in Fig. 12, the VLC table has 8 codewords and the

codewords with the same length and prefix are classified as the same group. The
codewords in G0 have 4 bits with 2-bit prefix and 2-bit suffix. Therefore, the
VLC_codenum are the 0,1,2,3 thus the VLC_codeoffset of Sym5, Sym6, Sym7 are 1,
2 and 3, respectively. Because 01 and 10 have different prefix so they belong to
different groups although they have the same length. The codewords in G3 have 3 bits
in length and VLC_codenum are 6 and 7; the VLC_codeoffset are 0 and 1 for Sym3
and Sym4.

15

 Prefix Suffix VLC_code
num

VLC_code
offset

VLC_min
code

Sym8 00 00 0 0 √
Sym5 00 01 1 1
Sym6 00 10 2 2

G0

Sym7 00 11 3 3
G1 Sym1 01 1 0 √
G2 Sym2 10 2 0 √

Sym3 11 0 6 0 √ G3
Sym4 11 1 7 1

 Codeword
Sym1 01
Sym2 10
Sym3 110
Sym4 111
Sym5 0001
Sym6 0010
Sym7 0011
Sym8 0000

Fig. 12 Grouping of codewords in the table

3.1.2 Intra-Group Decoding Procedure

In the same group, the codewords have arithmetic relationship from the
VLC_codenum, VLC_codeoffset and VLC_mincode. Thus, only the VLC_mincode
information of every group is stored in memory and we can find the information about
other codewords by means of computation of the offset. In other words, if the symbols
of the same group are allocated in the continuous location in the symbol memory and
the decoded symbol address can be known by adding offset amount to a base address.

Fig. 13 shows the information within one group. For example, if the 0000011 is
received, the offset equals to 3 and thus the symbols address is 3 + 60 = 63 to that S3
is decoded.

Symbol Prefix Suffix VLC_codenum VLC_codeoffset Address
S1 000 0 0 60
S2 001 1 1 61
S3 010 2 2 62
S4 011 3 3 63
S5 100 4 4 64
S6 101 5 5 65
S7 110 6 6 66
S8

0000

111 7 7 67
Fig. 13 One group with address assignment

16

3.1.3 Group Searching Scheme

To search the group that the correct symbol locates in, Pseudo Constant Length
Codeword (PCLC) is used. In the table, all codewords are extended to the length of
the longest codeword by appending 0’s behind the codewords. All PCLCs have the
same length and can be view as binary numbers, PCLC_codenum. All PCLCs are
organized in ascending order so that PCLC_codenum0 < PCLC_codenum1 <
PCLC_codenum2…PCLC_codenumn and thus PCLC_mincode0 < PCLC_mincode1
< PCLC_mincode2….PCLC_mincoden. Next, the base addresses are assigned to
PCLC_mincode and base_addr0 < base_addr1 < base_addr2…..base_addrn. The
example of the intra-/inter- group symbol memory mapping is shown in Fig. 14 and
the group information of the tables is shown in Fig. 15, where the valid bit means
whether the table contains this group or not.

Fig. 14 PCLC table and intra-/inter- group symbol memory mapping

17

Fig. 15 Group information of the table in Fig. 14

Like the PCLC_codenum, a segment of bitstream with the same length of PCLC

can be treated as a binary number, bitstream_num. The group searching scheme can
be achieved by computed the (bitstream_num – PCLC_mincodei). The hit condition
of the decoded symbol located the group Gn is PCLC_mincoden < bitstream_num <
PCLC_mincoden+1.

The overall decoding process of the group-based algorithm is as follows: Assume
the bitstream input is 001111100110……
1. Do group searching

PCLC_mincode1(8’b00110000)<bitstream_num < PCLC_mincode2(8’b01000000)
The matching group: G0

2. Send group information
 code length = 6-bit, PCLC_mincode = 8’b00110000, base_addr(5-bit) = 5’b00100.

3. Find the valid VLC_codeoffset, which is the code length most significant bits
of the result of subtracting the PCLC_mincode from the bitstream_num

Bitstream_num(8’b00111110) – PCLC_mincode(8’b00110000) = 8’b00001110.
The valid VLC_codeoffset = 6’b000011= 3.

4. Extract the VLC_codeoffset operand, which has the same word length as the
symbol address

VLC_codeoffset = 5’b00011 = 3.
5. Calculate the decoded symbol address

symbol_addr = base_addr(5’b00100) + VLC_codeoffset(5’b00011) = 5’b00111= 7.
6. Fetch the decoded symbol

 sym_memory[7] = S11.

18

3.2 Conventional Multi-Table Merging Algorithm and Decoding

Flow

This section was previously developed and verified by Bai-Jue Hsieh in [2]. The
intention of this section is to quickly talk about the concept of conventional
multi-table merged VLC decoder system and how it works

3.2.1 Collection of Group Information of All Coding Tables

According to group-based decoding algorithm, group information of all tables
can be known and the PCLCs of groups of a table can be viewed as a codeword in that
table. Therefore, all PCLCs are collected in the ascending order as Fig. 16 shows. In
this figure, all group information items are ordered according to the magnitude of
PCLC_mincode and there are 13 items.

Fig. 16 Part of group information of several tables.

3.2.2 Codeword Merging

From Fig. 16, the PCLCs of some groups are identical to others. If all these
PCLCs are stored, there is much redundancy. As shown in Fig. 17, we can separate

19

the groups with the same PCLC into the same group and only one PCLC is stored.
This reduces storage space. We can see that there are 13 items and after codeword
merging, the number of items reduces to 4.

Fig. 17 One portion of the groups after codeword merging process.

3.2.3 Prefix Merging

The prefix merging check any two neighbor groups after codeword merging.
When the longest VLC_mincode in a group is the prefix the PCLC_mincode in the
adjacent codeword group, they can be merged together to one group. In the case of
Fig. 17, there is no prefix merging can be operated.

3.2.4 Set Table Information

After merging process, merged groups and PCLC_mincodes are MTM groups
and MTM_PCLC_mincodes, respectively. The table information of a coding table
includes the valid-bit and the length of codewords. Because the shortest length of
codeword is 1 bit and the length is from 1-bit to 16-bit, we just store (length-1),i.e. 0 ~
15 in the memory to save memory space. After this shifting operation, the smallest
(length-1) in all the groups is defined as MTM_CL-1 and stored in the group

20

information memory. Therefore, the difference between the larger (length-1) and
(MTM_CL-1) which is defined as CL_diff is stored in the table information memory.
The memory space is further saved because the data redundancy among the lengths in
a MTM group is exploited. The table information and group information are shown in
the Fig. 18.

Fig. 18 Table information and group information

3.2.5 Base Address Merging

Although base addresses can be stored for different tables under the given group,
the required memory space is large when the number of tables becomes large. [2]
proposed a method that classify base address in to categories according to the
numbers of table entries. For example, the table1 has 28 entries and table2 has 136
entries, the base addresses of them are classified into two categories: base_addr1 is
5-bit and base_addr2 is 8-bit. With the base address adjustment, different tables with
the same category can use common set of base addresses.

3.2.6 Group Information Recovery

According to table information and group information in Fig. 18, the example of

21

group information recovery is shown in Fig. 19. In the first step, (length-1) of
VLC_mincode is computed by adding MTM_CL-1 and CL_diff. Second, the most
length bits of the MTM_PCLC are assigned to PCLC_mincode while the remained
bits are 0s. Finally, the base address is accessed according to base address selection.

Fig. 19 Example of group information recovery

Finally, Table 4and Table 5 shows the number of groups of every table and MTM
groups in CAVLC and MPEG-2, respectively. The number of items is reduced greatly
in both standards.

Table 3 The number of groups of tables in CAVLC and the number of MTM groups

 # of Group # of symbols
of group after

MTM
Coeff_Token(0<=nC<2) 17 62
Coeff_Token(2<=nC<4) 16 62
Coeff_Token(4<=nC<8) 11 62

Coeff_Token(8<=nC) 7 62
Coeff_Token(nC= -1) 8 14
Total_Zeros(TC =1) 9 16
Total_Zeros(TC =2) 8 15
Total_Zeros(TC =3) 8 14
Total_Zeros(TC =4) 7 13
Total_Zeros(TC =5) 7 12
Total_Zeros(TC =6) 7 11
Total_Zeros(TC =7) 8 10
Total_Zeros(TC =8) 7 9
Total_Zeros(TC =9) 7 8
Total_Zeros(TC =10) 6 7

23

22

Total_Zeros(TC =11) 5 6
Total_Zeros(TC =12) 5 5
Total_Zeros(TC =13) 4 4
Total_Zeros(TC =14) 3 3
Total_Zeros(TC =15) 2 2

Total_Zeros_ch (TC =1) 4 4
Total_Zeros_ch (TC =2) 3 3
Total_Zeros_ch (TC =3) 2 2

Run_Before(ZL = 1) 2 2
Run_Before(ZL = 2) 3 3
Run_Before(ZL = 3) 3 4
Run_Before(ZL = 4) 4 5
Run_Before(ZL = 5) 4 6
Run_Before(ZL = 6) 5 7
Run_Before(ZL > 1) 11 15

Table 4 The number of groups of tables in MPEG2 and the number of MTM groups
*: There are 9 locations are unused because the VLC_codnum in one groups are not

continuously increment.

 # of Group # of symbols
of group after

MTM
TB14 13 111
TB15 19 111*

21

3.3 Modified MTM algorithm for Improvement of Memory

Efficiency

Based on the basic concept of MTM algorithm, we applied the algorithm for all
coding tables in CAVLC to achieve programmability. The tables include Coeff_Token
(0 <= nC < 2, 2 <= nC < 4, 4 <= nC < 8, 8 <= nC, nC = -1), Total_Zeros(4x4),
Total_Zeros (chroma DC 2x2) and Run_Before, up to 30 coding tables and the entry
number range is from 2 ~ 62. That is, the conventional MTM algorithm must support
6 categories for 2-entry, 4-entry, 8-entry …64-entry tables. This will increase the cost
overhead and critical path of the group detector in hardware. Besides, the base address

23

adjustment will shift the base address to the maximum value of the group within the
same category hence increase the unused locations in symbol memory. Take
Coeff_Token (0 <= nC < 2, 2 <= nC < 4, 4 <= nC < 8, 8 <= nC) tables as a example,
these four tables are 62-entry and they should belong to 6-bit address category. Fig. 20
shows that most base addresses are adjusted to meet the requirement and we can see
that the total shift amount is 83+59+53+52=247. The base address implies the symbol
address, as a result, there are 247 entries in symbol memory are unused after the
adjustment procedure. The symbol length of Coeff_Token is 7-bit thus there 247 * 7
=1729 bits are unused.

====== Group0: MTM_CL-1=0 1000_0000_0000_0000 ======

VLC0.G0 61 +4 +4 +4 +5 +5 +7 +23

VLC1.G0 60 +5 +7 +4 +2 +4 +4 +4 +2 +21

VLC2.G0 54 +29 +7 +6 +1 +8 +8

VLC3.G0 30 +56 +9 +5 +5 +8

====== Group1: MTM_CL-1=2 0110_0000_0000_0000 ======

VLC1.G1 59 +5 +7 +4 +2 +4 +4 +4 +2

====== Group2: MTM_CL-1=1 0100_0000_0000_0000 ======

VLC0.G1 60 +4 +4 +4 +5 +5 +7

VLC1.G2 57 +5 +7 +4 +2 +4 +4 +4 +2

VLC2.G1 46 +29 +7 +6 +1

VLC3.G1 14 +56 +9 +5 +5

====== Group3: MTM_CL-1=4 0011_0000_0000_0000 ======

VLC1.G3 55 +5 +7 +4 +2 +4 +4 +4

====== Group4: MTM_CL-1=2 0010_0000_0000_0000 ======

VLC0.G2 59 +4 +4 +4 +5 +5

VLC1.G4 51 +5 +7 +4 +2 +4 +4 +4

VLC2.G2 38 +29 +7 +6 +1

VLC3.G2 6 +56 +9 +5 +5

====== Group5: MTM_CL-1=4 0001_1000_0000_0000 ======

VLC0.G3 58 +4 +4 +4 +5

====== Group6: MTM_CL-1=3 0001_0000_0000_0000 ======

VLC0.G4 56 +4 +4 +4 +5

VLC1.G5 47 +5 +7 +4 +2 +4 +4

VLC2.G3 30 +29 +7 +6 +1

VLC3.G3 3 +56 +9 +5

====== Group7: MTM_CL-1=5 0000_1100_0000_0000 ======

VLC0.G5 55 +4 +4 +4

24

VLC3.G4 2 +56 +9

====== Group8: MTM_CL-1=4 0000_1000_0000_0000 ======

VLC0.G6 53 +4 +4 +4

VLC1.G6 43 +5 +7 +4 +2 +4

VLC2.G4 22 +29 +7 +6 +1

====== Group9: MTM_CL-1=5 0000_0100_0000_0000 ======

VLC0.G7 49 +4 +4

VLC1.G7 39 +5 +7 +4 +2

VLC2.G5 14 +29 +7 +6 +1

VLC3.G5 1 +56

====== Group10: MTM_CL-1=8 0000_0011_1000_0000 ======

VLC2.G6 13 +29 +7 +6

====== Group11: MTM_CL-1=6 0000_0010_0000_0000 ======

VLC0.G8 45 +4

VLC1.G8 35 +5 +7 +4 +2

VLC2.G7 7 +29 +7 +6

====== Group12: MTM_CL-1=7 0000_0001_0000_0000 ======

VLC0.G9 41 +4

VLC1.G9 27 +5 +7 +4 +2

VLC2.G8 3 +29 +7 +6

====== Group13: MTM_CL-1=8 0000_0000_1000_0000 ======

VLC0.G10 37

VLC1.G10 19 +5 +7 +4 +2

VLC2.G9 1 +29 +7

====== Group14: MTM_CL-1=9 0000_0000_0100_0000 ======

VLC0.G11 29

VLC1.G11 11 +5 +7 +4 +2

VLC2.G10 0 +29

====== Group15: MTM_CL-1=12 0000_0000_0011_0000 ======

VLC1.G12 9 +5 +7 +4

====== Group16: MTM_CL-1=10 0000_0000_0010_0000 ======

VLC0.G12 21

VLC1.G13 5 +5 +7 +4

====== Group17: MTM_CL-1=13 0000_0000_0001_0000 ======

VLC0.G13 13

VLC1.G14 1 +5 +7

====== Group18: MTM_CL-1=12 0000_0000_0000_1000 ======

25

VLC0.G14 5

VLC1.G15 0 +5

====== Group19: MTM_CL-1=15 0000_0000_0000_0100 ======

VLC0.G15 1

====== Group20: MTM_CL-1=14 0000_0000_0000_0010 ======

VLC0.G16 0

====== Group21: MTM_CL-1=0 0000_0000_0000_0000 ======

VLC3.G6 0
Fig. 20 Base address adjustment procedure. The first number after VLCi. Gn is base

address and the +K is the adjusted amount of base address.

From this reason, base address adjustment is not considered as the method of

reducing memory space. Nonetheless, direct record of the base address as MTM
group information also makes many unused locations in the group information
memory. Because there are many small tables in CAVLC and they have short
codewords and a few of entries. Usually, the small tables use just one or two groups
and other groups are invalid for them. In other words, many entries of group
information are unused if the table is small as shown in Fig. 21. In Fig. 21, “TB”
represents large tables which have long codewords and many entries while “tb”
represents small tables which almost have short codewords and a few entries. The
blank blocks is the filed that is unused by the table, i.e., validbit = 0 for that group of a
table. For example, TBN does not contain GP0 and valid bit for GP0 is 0 while valid
bit for other groups are 1. Also, many fields in the Fig. 21 for tb0~tbm are unused.

Fig. 21 Unused locations for the information memory.

26

Due to the above phenomenon, the modified organization of group information
and table information is proposed. First, we use the longest codeword of a table as the
determination of whether the table is large or small. We use 4 as the threshold.
Therefore, there are 14 small tables and 16 large tables among CAVLC. Next, the
practical storage unit is separated in two parts: one for small tables and one for large
tables. By doing this partitioning, the unused locations can be reduced. Originally, the
size of the memory space is (n + m) × k and the total size is reduced to n × k + m × ks,
where ks is number of groups used by small tables, k is number of groups used by
large tables, m is number of small tables, and n is number of large tables. In addition,
the PCLC of small tables is shorter than the longest PCLC among all tables. Therefore,
size of group information can also be reduced. Table 5 shows the comparison of size
for conventional MTM without base address adjustment and the modified memory
allocation.

Table 5 Space of the conventional MTM without base address adjustment and the
modified memory allocation

Group information

size
Table information

size
Total

Conventional
23×(16+4+30×8)

= 5980 bits

23×30×(1+2)
= 2070 bits

8050 bits

Modified
23×(16+4+16×8) +

5×(4+2+14×8)
= 3994 bits

23×(4×16) +
5×(14×3)

= 1620 bits
5676 bits

3.4 Symbol Memory Allocation

Generally, the symbols are store in the symbol memory and symbol lengths of
different tables are different. If only one symbol memory is used, the word length
must be the length of the longest symbols among all tables. This allocation leads to
some wasted space for shorter symbols. In [2], there are several symbol memories
with different kinds of word length in order to save the space. The symbol length is
either 7-bit (Coeff_Token) or 4-bit (Total_Zeros or Run_Before) in CAVLC tables and
that of MPEG-2(TB14 and TB15) is 11-bit. As a result, 256 × 11 + 256 × 7 + 256 × 4
= 5632 bits are used in symbol memory. In the proposed allocation, we can use only a
symbol memory with 256x11 bits to store all symbols in CAVLC, TB14 and TB15.

27

That is, the symbols in Coeff_Token and Total_Zeros/Run_Before can be concatenated
into 11-bit words and stored in the 256 × 11 symbol memory. The overhead includes a
mask and the multiplexer to choose the format of the symbol according to the
standards and decoding tables as shown in Fig. 22. Besides, the start positions of
tables are stored in a small register files. As CAVLC is used, we can select the most
significant 7 bits of the memory output for Coeff_Token symbols or the least
significant 4 bits for Total_Zeros/Run_Before symbols; the whole word is assigned to
the symbols for MPEG2.

Fig. 22 256-entry symbol memory allocation in VLC decoder for MPEG-2 and

H.264 standards.s

28

Chapter 4

Error Resynchronization

4.1 Concept of Error Resynchronization

In H.264/AVC error resilient tools, the most important feature is slicing. A slice
consists of a sequence of macroblocks (Fig. 23) and the intra-prediction in one slice
does not refer to data belongs to the other slices in one frame. If one slice is corrupted
during the transmission, the error would not propagate to other slice regions so that
the corrupted data is restricted within that slice. Insertion of refreshment frames, slices
or macroblocks is a method to stop error propagation in the temporal domain. In
addition, [17] mentioned that the insertion of additional markers in the bitstream can
achieve VLC resynchronization. From these three methods, we can find that the error
propagation can be stopped in a certain region and the following bitstream can be
correctly decoded. That is, error resynchronization is achieved. However, these
methods have bitstream overhead and increase needed data bandwidth.

Fig. 23 Division of a picture into several slices.

To achieve resynchronization in block-level without bitstream overhead,

information remained in bitstream after compression is needed to help find the
resynchronization point. However, less information left in H.264 bitstream can
provide error detection ability or resynchronization because of its high compression

29

performance. To accomplish error resynchronization, the position of the next
decoding unit is necessary so that error will be stopped until the current decoding
units. In the following sections, we focus on the I-frame error resynchronization
because I-frames are much important than P-frame and I-frame is reference of
P-frame.

4.2 Proposed Scheme for Error Resynchronization

The smallest decoding unit in H.264/AVC is 4x4 block and the position of the
block can only be known by end of block symbol. Unlike the previous video
standards, there is no end-of-block symbol in CAVLC. Take MPEG-2 as an example,
TB-14 and TB-15 define the end of block symbol with codeword “10” and “0110”,
respectively. As a result, we can try to find the block boundary by searching “10” or
“0110” in the bitstream. A further insight into the tables makes these two codewords
mistakenly predict the block boundaries because other codewords also contain “10” or
“0110”. For instance, codewords of (run, level) = (4, 1), (7, 1) and (2, 2) contain “10”
in TB-14; codewords of (run, level) = (4, 1), (1, 2) and (16, 1) contain “0110” in
TB-15.

From the conventional CAVLC decoding process, a block with non-zero
coefficients has the following steps to complete the decoding: 1. decoding of total
coefficients and trailing ones, 2. decoding of sign of trailing ones, 3. decoding of
levels, 4. decoding of total zeros, 5. decoding of runs before every non-zero
coefficients. The last two steps are about total zeros and runs. Therefore, we can say
that end of block consists of these two syntax elements. In bitstream, all combinations
of the codewords of theses two tables that meet the rule of CAVLC decoding can be
viewed as the EOBs. Since the constructed EOBs have many possibilities, we can
choose those ones which are not one segment of combinations of other codewords in
the other tables. Once the EOBs are known, the block boundaries can be predicted by
them and thus the error can be limited until the current block. Then, the decoding of
the next block is resynchronized and correct. The EOB format is shown in Fig. 24.

Fig. 24 The format of EOB

30

4.3 EOB Construction

To know all combinational series of codewords from Total_Zeros(T.Z.) and
Run_Before(R.B.) tables, we must know all kinds of distribution of coefficients in one
4x4 block. For different distribution of non-zero coefficients, the combinations of the
T.Z. codeword and the R.B. codewords are different. The total number of combination
can be computed by the following equation (1):

16

16
k

k=1

 = C , where is the number of coefficients in 4x4 blockTotal k∑

(1)

 Therefore, there are totally 65535 kinds of EOB and histogram of the distribution is
shown in Fig. 25.

16 120 560
1820

4638

8008

11440
12870

11440

8008

4638

1820
560 120 16

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

of coeff. in 4x4 block

of

 E
O

B
s

Fig. 25 Distribution of EOB number at different numb of coefficients

The next step verifies the EOBs that are not segments of combination of other
codewords. The EOB is viewed as a sliding window through the whole bitstream and
collect those EOBs that only occur at the exact positions. However, the number of
total EOBs is large and the total bit of the bitstream is much larger, thus the
simulation time is too long. Therefore, we choose another method to reduce the
simulation time.

In this method, 300 I-frames are chosen to generate the all of the EOB’s of each
frame individually. Next, the number of EOBs in one frame is reduced by eliminating

31

short EOBs because short EOBs are more easily found in other places in the bitstream.
With EOB positions which are known, the reduced EOBs set is checked in a certain
range to determine whether one EOB is unique within the given range. As Fig. 4
shows, the EOB is viewed as a sliding window and check the correlation between the
EOB and bitstream. The range is set because in real cases, EOB is not necessary to be
unique globally thus only local uniqueness is checked.

Fig. 26 Checking whether the EOB is unique within the given range or not

After all EOBs and the corresponding bitstream are checked, the EOBs are
reduced because the EOBs that occurred multiple times are removed as shown in Fig.
27. The remained EOBs are defined as intra-set. To ensure EOBs can survive in other
frames, they are also checked their uniqueness in other frames. The further reduced
set is called the inter-set as shown in Fig. 28. After inter-checking, the remained set
can be the error resynchronization information and stored in the memory.

32

Fig. 27 Reduction phase of intra-checking. The number of EOBs generated from
each frame is reduced.

Fig. 28 Reduction phase of inter-checking. After this reduction the remained EOBs is
the EOB library stored in memory.

4.4 EOB Storage Using Group-based Scheme

We can treat all EOBs stored in memory as the codewords of a virtual table.
From the group-based algorithm we know that the symbol of the decoded codeword
can be accessed by calculation. Therefore, the symbol for EOBs codewords is
composed of 1-bit hit flag. Thus, a large amount of searching EOBs can be done in a
fast process. For instance, based on the Fig. 29, if the bitstream is
0000_0000_0110_0110_0000_0000_0000_0 1011_0100…..

33

1. Do group searching
PCLC_mincode1(29’b0000_0000_0101_1111_0000_0000_0000_0) <

bitstream_num < PCLC_mincode2(29’b0000_0000_0110_1011_0000_0000_0000_0)
The matching group: G1

2. Send group information
 code length = 15-bit, PCLC_mincode =

29’b0000_0000_0110_0100_0000_0000_0000_0, base_addr(6-bit) =6’b1000_00.
3. Find the valid VLC_codeoffset, which is the code length most significant bits

of the result of subtracting the PCLC_mincode from the bitstream_num
Bitstream_num(29’b0000_0000_0110_0110_0000_0000_0000_0) –

PCLC_mincode(29’b0000_0000_0110_0100_0000_0000_0000_0) =
29’b0000_0000_0000_0010_0000_0000_0000_0.

The valid VLC_codeoffset = 15’b0000_0000_0000_001= 1.
4. Extract the VLC_codeoffset operand, which has the same word length as the

symbol address
VLC_codeoffset = 6’b0000_01= 1.

5. Calculate the decoded symbol address
symbol_addr = base_addr(6’b1000_00) + VLC_codeoffset(6’b0000_01) =

6’b1000_01= 33.
6. Fetch the decoded symbol

 sym_memory[33] = S33.
As a consequence, we can store flag as the S33 in the location of address = 33
The flag means if hit or miss for the EOB checking.

34

PCLC Length-1 Address

--G0--
0000_0000_0110_1111_0000_0000_0000_0 15 [40]
0000_0000_0110_1100_0000_0000_0000_0 15 [37]
0000_0000_0110_1011_0000_0000_0000_0 15 [36]
--G1--
0000_0000_0110_1010_0000_0000_0000_0 14 [35]
0000_0000_0110_1000_0000_0000_0000_0 14 [34]
0000_0000_0110_0110_0000_0000_0000_0 14 [33]
0000_0000_0110_0100_0000_0000_0000_0 14 [32]
--G2--
0000_0000_0101_1111_0000_0000_0000_0 15 [31]
--G3--
0000_0000_0101_1110_0000_0000_0000_0 14 [30]
0000_0000_0101_1100_0000_0000_0000_0 14 [29]
--G4--
0000_0000_0011_1110_0000_0000_0000_0 14 [28]
0000_0000_0011_1100_0000_0000_0000_0 14 [27]
0000_0000_0011_1010_0000_0000_0000_0 14 [26]
0000_0000_0011_1000_0000_0000_0000_0 14 [25]
0000_0000_0011_0110_0000_0000_0000_0 14 [24]
0000_0000_0011_0100_0000_0000_0000_0 14 [23]
0000_0000_0011_0000_0000_0000_0000_0 14 [21]
0000_0000_0010_1110_0000_0000_0000_0 14 [20]
0000_0000_0010_1100_0000_0000_0000_0 14 [19]

Fig. 29 A portion of groups of EOBs

4.5 Joint with Channel and VLC Source Decoder

The bock diagram is shown in Fig. 30. In this error resynchronization scheme,
we assume that channel information is available. The system includes the channel side
and source side. The source decoder can use the bit reliability which is the
information comes from channel to determine when to check EOB. Once the bit
reliability is lower than a threshold, we activate the searching EOB by the method in
the last section for the following bit-stream. If the hit flag is accessed from memory,
we think it as the EOB of a 4x4 block and thus we can decode the next block from the

35

actually bit position. Besides, the method is mainly for random error type.

Bit Reliability

Error Bitstream

Channel Source

Channel FEC Video DecoderVLC
Decoder

Fig. 30 Block diagram of the decoder in the wireless transmission environment.

36

Chapter 5

Simulation Result

From the proposed algorithm, block boundary prediction by EOBs is a
probability issue and EOBs are also VLC, therefore, the length of EOBs has effect on
the probability of prediction. On one hand, longer EOB codewords has lower
occurrence probability. On the other hand, longer EOB codewords are removed more
hardly and have more probability of being in the EOB library finally.

The probability of EOBs that meet length constraints are shown in Fig. 31 and
the calculation equation (2) is as follows:

of EOBs(length > L)occurred probability =

Total # of EOBs (2)

All testing frames are QCIF format and the first 100 frames is the first 100 frames
from akiyo sequence, 200~299 frames is the first 100 frames from foreman sequence
and the last 100 frames is the last 100 frames from foreman sequence. Fig. 32 shows
the probability of correctly found EOBs under three different length constraints. The
simulation shows that probability is very close when length is 8 and 10 bits at least
and the probability of EOBs (L > 14) is lower.

37

0

0.1

0.2

0.3

0.4

0.5

0.6

1 25 49 73 97 121 145 169 193 217 241 265 289 Frame Number

Pr
ob

ab
ili

ty Length > 8

Length > 10

Length > 14

Fig. 31 Probability of EOBs with length constraints.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 25 49 73 97 121 145 169 193 217 241 265 289

Frame Number

P
ro

ba
bi

lit
y

Length > 8

Length > 10

Length > 14

Fig. 32 Probability of EOBs that are correctly found in the bitstream.

38

Table 6 and Table 7 show the memory space for different sets of EOBs. Different
grouping strategy makes memory space of group information and symbol quite
different. If we separate EOBs into groups by position of leading one (prefix), number
of groups is small while the maximum symbol address is large. In contrary, we
separate EOBs into groups by prefix and length condition, number of group is large
while maximum symbol address is much smaller than the previous one.

Table 6 Estimation of memory usage for different sets of EOBs
Grouping by prefix only

. Length
 8 10 14

number of group 17 17 17
max. symbol

address
160975 282645 639418

PCLC 29 29 29
symbol memory 1024*256 2048*256 8192*128

base address 10 11 13
group information

memory
17*(29+5+10) 17*(29+5+11) 17*(29+4+13)

Total 262892 525053 1049358

Table 7 Estimation of memory usage for different sets of EOBs.
Grouping by prefix and length

 Length
 8 10 14

number of group 13323 13034 9454

max. symbol
address

20760 20678 23640

PCLC (bits) 29 29 29
symbol

memory(bits)
1024*32 1024*32 1024*32

base address(bits) 10 10 10

group information
memory(bits)

13323*(29+5+10) 13034*(29+5+10) 9454*(29+4+10)

Total(bits) 618980 606264 439290

39

Chapter 6

Hardware Architecture and

implementation

6.1 Overview of Hardware Architecture

Fig. 33 shows the block diagram of proposed dual-mode memory-based VLC
decoder. There are mainly five components: 1) Controller, 2) Input Shift Buffer, 3)
Memory-based VLC Decoder, 4) Coefficient Buffer and 5) Level Decoder. The
controller assigns the control signals for each syntax element according to nC,
maxnumcoeff and enable signal from syntax parser. The controller is implemented by
a finite state machine (FSM). The memory-based VLC decoder can support CAVLC
and MPEG-2 coefficient decoding. Several control signal are needed to control
internal memory and these control signal are directly from chip I/O ports so that the
content can be loaded into memory for different video standards. The level decoder is
mainly composed by level prefix decoder, level suffix decoder and suffix length.
Level prefix is composed of a leading 1 detector and level suffix is decoded by getting
bits from bitstream buffer depending on level suffix size. The coefficients buffer
consists of 4x4 register array and is controlled by run index and level index such that
the decoded runs and levels can be put into buffer in order. The input bitstream buffer
is integrated into higher hierarchical module in the H.264/MPEG2 video decoder,
which is proposed in [18]. Also, the design is also integrated into the H.264/MPEG2
video decoder in the previous video decoder [18].

40

Input Bitstream
Buffer

CAVLC Controller

Memory-based VLC
Decoder

Level Decoder

Coefficient
Buffer

Buffer
Controller

nC

is_cavlc

load group information enable

load table information enable

load symbol enable
load data
load address

length

symbol 1

symbol 2

is_RBis_CT is_TZ

enable_lut

Symbol
Selector

nC

run index

level index

input
bistream

input
bistream

is_LP is_LS

level

symbol end

level end
length

Length
Selector

is_CT
is_TZ
is_RB

11

4

4

4

4

12

5

5

16

5
5

5

maxnumcoeff 5

Fig. 33 Block diagram: controller, bitstream buffer, Memory-based VCL Decoder,
Level decoder , coefficient buffer

6.2 Memory-based VLC Decoder

From the modified MTM algorithm, the VLC decoder has two categories for
storing group information and table information. They are selected by table index.
Each group information is extracted to compute offset. The final offset is determined
by the enable signal from group detectors. The tri-state buffer can viewed as the gate
for each group. One group has three data items: offset, base address and (length-1).
For each decoding time, only one set of data among all groups is passed by the
tri-state buffer while others are floated. After the set of data are passed, (length -1) is
returned to bitstream shift buffer in the other module and base address is added to
offset to compute symbol address. Finally, symbol memory is accessed to output
decoded symbol.

41

Group Information
Memory 1

Table Information
Memory 1

Group
Information
Memory 2

Table Information
Memory 2

Group
Detectors

length-1

offset

baes_address

Symbol
Memory 1

Symbol
Memory 2

PCLC
Recovery

MTM_PCLCi

CL-1length_
diff sign bit

of offset

input bitstream

length-1

enable

decoded
symbol 1

decoded
symbol 2

table index

16

16

4 4

8

8

8

11

7

5

3

Fig. 34 Total Block Diagram of memory-based VLC decoder

The stage partition of memory-based VLC decoder is briefly shown in Fig. 35

and cycle time of important signals are also shown. The register file generated by
memory compiler needs one cycle to read data thus the access of group information
and table information memory is viewed as the first stage. After the first stage, the
symbol address is known thus the access of symbol memory is the second stage.

The group information and table information memory can be accessed when the
table used to decode is known. The example of cycle time is shown as in Fig. 35. The
first cycle is reading of memory and address computation and the decoded symbol is
outputted in the second cycle. The in_valid signal represents the input bitstream and
table idx is valid. The symbol is valid until the second cycle. In the third cycle, next
valid data is sent after the controller received the Symbol_valid signal.

42

Address
Calculation

input bitstream

Memory Stage Memory Stage

Group, Table
Information Symbol

CLK

table index

Bitstream

16
16

8 11
5

11

Fig. 35 Stage and timing diagram

6.3 Improvement of throughput

According to the VLC property, shorter codewords occurred more frequently
than long codewords. According to observation of CAVLC decoding, decoding of

43

Run_Before consumes many cycles for a block especially in low-QP video and most
codewords of Run_Before tables are short. Therefore, we assume that the short
codeword stores information of Run_Before such as length of codewords, symbols
and table index.

Fig. 36 shows the block diagrams of memory-based VLC decoder with cache.
Only some important signals are annotated for simplicity. Again, the controller send
the read_en and write_en signal to activate reading or writing of the cache. If cache
hit occurs, the memory-based VLC decoder is disabled and the decoded symbol and
length is from the cache. If cache missed, conventional VLC decoder is enabled and
the symbol and length are stored in the cache. Looking up cache can be done in one
cycle while decoding of memory-based VLC decoder need three cycles. As a result,
adding cache is a good method to improve the throughput of the whole decoding.

Short Codeword
Cache

in_bitstream

Zerosleft

read_enwrite_en

in_length

in_symbol

16

4

2

2

out_length

out_symbol

hit

2

2

Memory-based VLC
Decoder

CAVLC Controller

enable

dec_length

dec_symbol

is_RB

4

11

1

1

0

0

Symbol

Length

Fig. 36 Small Cache for Run (short codewords)

In addition to adding cache, one method is also proposed to improve throughput
further. In Fig. 35, the table index is known after the FSM is in Coeff_Token and
Total_Zeros states. From the conditions of table transition, the next table used to
decode can be known earlier than these two states. As a consequence, group

44

information and table information can be accessed once the condition is known and
the conventional three-cycle stage is reduced to two-cycle stage as shown in Fig. 37.
In this figure, current Information Memory_out is known before in_valid is high or in
the same cycle as in_valid is high. Therefore, the pre-fetching mechanism can achieve
one symbol decoding every two cycles. This method can further improve throughput
compared to the original design in this thesis.

in_valid

table index

Bitstream

Information
Memory_out

Symbol
Memory_out

Symbol

Length-1

Symbol_valid

1 2 3 4 5 6 7 8 9

CLK

In 1 In 3 In 5 In 7

address 1 address 3 address 7address 5

symbol 1 symbol 3 symbol 5 symbol 7

symbol 1 symbol 3 symbol 5 symbol 7

length 1 length 3 length 5 length 7

Fig. 37 Cycle time of the pre-fetching method

6.4 Implementation Result

In hardware implementation, the group information for MTM_PCLC and
(MTM_CL-1) are stored in registers because they are used in the same time.
Therefore, this leads to more gate count and less memory space. In summary, the
memory space is shown in Table 8.

45

Table 8 Memory space for VLC decoder

 Storage content Number of bits Physical space
Table information

memory
Valid bit and

CL_diff
16 x 23 x 4+

14 x 5 x 3
16 x 23 x 4+

16 x 5 x 3
Group information

memory Base address 16 x 23 x 8 +
14 x 5 x 8

16 x 23 x 8 +
16 x 5 x 8

C.T and TZ/RB
Run-Level 256 x 11 256 x 11

Symbol memory
C.T for CAVLC 16 x 7 16 x 7

Total 8114 bits 8224 bits

The gate count and power consumption of the designs are shown in Table 9.

From this table, the gate count of these design are similar. However, the power
consumption of memory-based VLC decoder with cache only is lower than that of
memory-based VLC decoder without cache. This shows that the cache storing
frequent codewords without replacement can achieve power reduction and improve
throughput. The throughput of foreman and mobile sequences under different QP are
shown in Fig. 38 and Fig. 39, respectively. From these two figures, the proposed
design can achieve HD 720p even for very low QPs under 100MHz. The design can
also meet requirement of HD1080p when operation frequency is 200MHz as shown in
Fig. 40 and Fig. 41.

Table 9 Gate count and power of different designs.
 Gate Count Power Consumption(mW)

Memory-based VLC
decoder

15.4 k 1.132

Memory-based VLC
decoder + cache

17.2 k 1.078

Memory-based VLC
decoder + pre-fetch

17.2k 1.017

46

forman.yuv

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10 14 18 22 26 30 34 38 QP

cy
ce

ls
 /

M
B

Serial

memory-based

memory-based + cache

memory-based + cache +
prefetch

HD720p, 30fps

HD1080p, 30fps

Fig. 38 Throughput of decoding under Foreman sequence under 100MHz.

mobile.yuv

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10 14 18 22 26 30 34 38 QP

cy
cl

es
 /
 M

B

serial

memory-based

memory-based + cache

memory-based + cache +
prefetch

HD720p, 30fps

HD1080p, 30fps

Fig. 39 Throughput of decoding under Mobile sequence under 100MHz.

47

foreman.yuv

0

200

400

600

800

1000

1200

10 14 18 22 26 30 34 38 QP

cy
cl

es
 /

M
B

Serial

memory-based

memory-based +
cache

memory-based +
cache + prefetch

HD720p, 30fps

HD1080p, 30fps

Fig. 40 Throughput of decoding for Foreman sequence under 200MHz.

mobile.yuv

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10 14 18 22 26 30 34 38 QP

cy
cl

es
 /

M
B

Serial

memory-based

memory-based +
cache

memory-based +
cache + prefetch

HD720p, 30fps

HD1080p, 30fps

Fig. 41 Throughput of decoding for Mobile sequence under 200MHz.

48

Fig. 42 and Fig. 43 show power distribution of each main module for test pattern of
mobile and akiyo, respectively. The operating frequency is 100MHz. Memory1 stored
the base addresses and table information for large tables and Memory2 stored the base
addresses and table information for small tables.

1.44E-04,

12%
9.82E-05,

 8%

4.19E-04,

35%
5.42E-04,

45%

Memory1
Memory2

Symbol_meory
Others

(a) QP = 16 for mobile

4.96E-04,

44%

9.53E-05,

8%

8.60E-05,

7%

4.80E-04,

41%

Memory1

Memory2

Symbol_meory

Others

(b) QP = 34 for mobile
Fig. 42 Power chart of different module in mobile test frame for (a) QP=16, (b)

QP=34

49

4.79E-04,

31%

5.75E-04,

38%

3.82E-04,

 25%

9.38E-05,

6%

Memory1

Memory2

Symbol_meory

Others

(a) QP = 16 for akiyo

5.75E-04,

45%
4.58E-04,

36%

1.45E-04,

11%

9.88E-05,

8%
Memory1

Memory2

Symbol_meory

Others

(b) QP = 34 for akiyo
Fig. 43 Power chart of different module in akiyo test frame for (a) QP=16, (b) QP=34

50

Table 10 shows the comparison of the proposed design. We can see that the proposed
design support two different entropy decoding, i.e. MPEG2 and H.264. Besides, the
proposed design has error resilience feature for application of wireless video
transmission. These two features are quite different from the other designs.

Table 10 Comparison of other designs and proposed design

[1] NCCU
TCSVT’06

[2] NCU
ASSCC’07

[3] NCKU
Trans. on

Multimedia‘08
Proposed

Process 0.18um 0.18um 0.18um 0.09um

Technique Hardwired Hardwired Hardwired Memory-based

Features
Parallel

LUT
Multi-symbol

for level
Modified level

detector
Error resilience

Max
Frequency

N/A 102MHz 213MHz 200MHz

Gate
Count

13.1K 13.2K 6.7K 17.2K

Memory
(bits)

N/A N/A N/A 8114 bits

Target
Format

HD1080,
30fps

HD1080,
30fps

HD1080,
30fps

HD1080,30fps

Multi-mode
MPEG-

1/2/4
H.264 (CAVLC)

H.264
(CAVLC)

MPEG-2, H.264

51

Chapter 7

Conclusion and Future Work

As we know, entropy decoder of MPEG-2 and H.264/AVC are very different
from each other, such as decoding flow, symbol format and table transition. A
memory-based VLC decoder which support dual-mode vide format (H.264/AVC) and
MPEG-2 with error robustness is proposed in the thesis. The thesis focuses on
improvement of memory efficiency for conventional VLC decoder first. Although
MPEG-2 part is not yet exactly implemented in the decoder, only little overhead like
multiplexers and additional coefficients buffers are needed when MPEG-2 is required
because the memory utilization and size are considered in this design. For CAVLC
decoding, throughput is limited by dependency between syntax elements, hence,
pipeline stage is not adequate for this decoding. However, the decoding of MPEG2
can be pipelined because there symbols are independent. The VLC decoder is
synthesized under 100MHz and can be promised to support HD720p even under low
QPs. The design can also meet requirement of HD1080p when operation frequency is
200MHz.

In addition, a novel error resynchronization is proposed in the thesis. This
method can be combined with conventional memory-based VLC decoding without
extra bandwidth overhead. In this scheme, the EOBs are constructed with length
constraint. The flow of EOB construction is proposed to reduce off-line simulation
time and the analysis of the EOB probability is also presented. After EOB library is
set, group-based decoding of VLC is applied to determine if EOB are found.
Compared to trellis-based JSCD or soft-input VLC decoding, this method makes
hardware implementation can be done and much less complexity.

There is some works can be developed further for this design. First, integrate
MPEG-2 decoding circuit into current design to achieve fully scalability. Second,
some other power reduction schemes are necessary for mobile applications. Third,
from H.264 CAVLC Run_Before tables, we can see that many codewords is
composed of 1’s string, thus, we can use this characteristic to improve boundary
prediction probability. Beside, this can also help to reduce size of EOB library thus
the memory size for error resynchronization information. Finally, the design is
appended channel model to build the whole wireless transmission system.

52

References
[1] B. J. Shieh, Y. S. Lee, and C. Y. Lee, “A New Approach of Group-based VLC
Codec System with Full Table Programmable,” IEEE Trans. Circuits and System for
Video Technology, Vol. 11, no. 2, pp.210-221, Feb. 2001.

[2] B. J. Shieh, “Area Efficient and High Throughput Memory-Based VLC Codec
Designs”, Ph. D. dissertation, 2001.

[3] C. H. Liu, B. J. Shieh, and C.Y. Lee, “A Low-Power Group-Based VLD Design,”
Proceedings of the 2004 International Symposium on Circuits and Systems,
vol.2, pp.II 337- II 340, May 2004.

[4] Y. H. Moon, “A New Coeff_Token Decoding Method with Efficient Memory
Access in H.264/AVC Video Coding Standard,” IEEE Trans. Circuit and System for
Video Technology, Vol. 17, no. 6, pp.729-736, June 2007.

[5] Y. H. Moon, G. Y. Kim, and J. H. Kim, “ An Efficient Decoding of CAVLC in
H.264/AVC Video Coding Standard,” IEEE Trans. Consumer Electron. , Vol. 51, no. 3,
pp. 933–938, Aug. 2005.

[6] Chen, Yanling; Cao, Xixin; Peng, Xiaoming; Peng, Chungan; Yu, Dunshan; Zhang,
Xing; “A Memory-Efficient CAVLC Decoding Scheme for H.264/AVC” 10th
International Conference Advanced Communication Technology, Vol. 2, 17-20
Page(s):1135 – 1138, Feb. 2008.

[7] H. C. Chang, C. C. Lin, and J. I. Guo, “ A Novel Low-cost High-performance
VLSI Architecture for MPEG-4 AVC/H.264 CAVLC Decoding,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), pp. 6110–6113, 2005.

[8] C. D. Chien, K. P. Lu, Y. M. Chen, J. I. Guo, Y. S. Chu and C. L. Su, “An
area-efficient variable length decoder IP core design for MPEG-1/2/4 video coding
applications,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 16, issue
9, pp. 1172-1178, Sep. 2006.

[9] Tsung-Han Tsai and De-Lung Fang ,“A Novel Design of CAVLC Decoder with
Low Power Consideration, ” IEEEE,ASSCC, Nov, 2007.

53

[10] Heng-Yao Lin, Ying-Hong Lu, Bin-Da Liu, Jar-Ferr Yang, “A Highly Efficient
VLSI Architecture for H.264/AVC CAVLC Decoder, ” IEEE Transaction on
Multimedia, Vol. 10, No. 1, Jan, 2008.

[11] Superiori, L., Nemethova, O. and Rupp, M. “Performance of a H.264/AVC Error
Detection Algorithm Based on Syntax Analysis, ”the Fourth International Conference
on Advances in Mobile Computing and Multimedia (2006).

[12] Wu, Guan-Lin; Chien, Shao-Yi, “Spatial-Temporal Error Detection Scheme for
Video Transmission over Noisy Channels, ” 9th IEEE International Symposium on
Multimedia, Page(s):78 - 85, Dec. 2007.

[13] Q. Chen and K. P. Subbalakshmi, “Trellis decoding for MPEG-4 streams over
wireless channels,” in Proc. SPIE Electronic Imaging: Image and Video
Communications and Processing, pp. 810–819, Jan. 2003.

[14] Qingyu Chen and K. P. Subbalakshmi, “Joint Source-Channel Decoding for
MPEG-4 Video Transmissioan Over Wireless Channels, ” IEEE Journal on Selected
Areas in Communications, Vol. 21, No. 10, Dec 2003.

[15] Qingyu Chen; Subbalakshmi, K.P, “An Integrated Joint Source-Channel Decoder
for MPEG-4 Coded Video, “ Vehicular Technology Conference, Vol. 1, Page(s):347
- 351 , 6-9 Oct. 2003.

[16] Yue Wang; Songyu Yu, “Joint Source-Channel Decoding for H.264 Coded Video
Stream,” Consumer Electronics, IEEE Transactions, Vol. 51, Issue
4, Page(s):1273 – 1276, Nov. 2005.

[17] O. Nemethova, J. Canadas Rodriguez, M. Rupp, “Improved Detection for H.264
Encoded Video Sequences over Mobile Networks”, Proc. of Eight International
Symposium on Communications Theory and Applications, Ambleside, Lake District,
UK, July 2005.

[18] Tsu-Ming Liu, Ting-An Lin, Sheng-Zen Wang, and Chen-Yi Lee,“ A 125-µW,
Fully Scalable MPEG-2 and H.264/AVC Video Decoder for Mobile Applications”, to
appear in IEEE Journal of Solid-State Circuits, Jan. 2007. (EI/SCI,
NSC94-2215-E-009-045).

54

簡 歷

姓名： 李韋磬

出生地： 台灣，台北市

出生日期： 民國七十三年五月七日

學歷：

 2006年9月~2008年7月 國立交通大學電子研究所系統組碩士班

 2002年9月~2006年6月 國立交通大學電子工程學系

 1999年9月~2002年6月 台北市立大同高中

