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Design of An Error-robust Memory-based VLC

Decoder for Dual-mode Video Decoding

Student : Wei-Chin Lee Advisor ;: Dr. Chen-Yi1 Lee

Department of Electronics Engineering
Institute of Electronics
National Chiao Tung University

ABSTRACT

This thesis proposed entropy decoder which can-support dual-mode video format
(H.264/AVC and MPEG-2) decoding and improved -memory efficiency. The entropy
decoder adopts multi-table merging (MTM) algorithm and is programmable. First, for
a coding table, all codewords are separated into different groups and only the most
significant information of each group is stored in memory. The decoding can be
completed by looking up information needed and arithmetic computation such that the
symbol address is known. Under this type of decoding, memory space can be reduced
compared to conventional VLC decoder. For multiple tables, the redundancies
between group information of each table are further exploited and only different parts
are stored in the memory. By the modified MTM algorithm, the proposed can store
information needed for the standards with higher memory efficiency and less memory
space.

This thesis also proposed a scheme which can stop error propagation without
transmission of extra data helping stop error propagation, i.e., no additional
bandwidth overhead. In this method, the stopping error propagation module is
activated when the bit reliability coming from FEC is low enough. The error
resynchronization information is stored in the memory and block boundary prediction
is achieved with the information. Once the block boundary, the following block can

be correctly decoded and error propagation can be restricted. The searching of



information used group-based VLC decoding algorithm to determine if prediction is
finished. In the algorithm level, the method is combined with conventional
group-based VLC decoding; in the viewpoint of hardware implementation, the
complexity is low. Owing to stopping error propagation from this scheme, video
quality is improved drastically.
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Chapter 1

Introduction

1.1 Overview of H.264/AVC

" D, X Entropy
A (O 7 o s i e
curmen

ME
F o Inter
[lefer;ncejl - v
{107 2 previously P
ENCOIEd Tamas) Choose —
Intra re;i::"h Intra
prediction p B
F o .
. u
..“E.':'.m' ‘ Filter " O : i =
! +

Fig. 1 Theblock diagram of H.264 encoder

The newest video coding standard is H.264/AVC which was developed by Joint
Video Team (JVT). H.264/AVC outperforms the previous video coding standards in
the coding efficiency. The block diagram of the H.264 encoder is shown in Fig. 1. The
current frame is predicted either by intra prediction or inter prediction. If the frame is
an intra frame, all data in the predicted frame come from the current frame. For inter
frame, the current frame and reference frame are use to compute motion vectors and
compensated by the reference blocks. After prediction, data of current frame subtract
that of predicted frame so that only residual data remained. The residual data then
passes transformation, quantization, reorder and entropy coding and becomes
bitstream. In the backward path, the predicted frame and the residual data are added to
form the unfiltered frame for intra prediction. Finally, the reconstructed frame is

formed by filtering the uF’n.
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Fig. 2 The block diagram of H.264 decoder

Fig. 2 shows the block diagram of H.264 decoder. The first step of decoding is
entropy decoding of bitstream. The output data are sent into inverse quantization and
inverse integer discrete cosine transform. Now, the data is the residual coefficients
between the current frame and the prediction frame. Next step is to add residual data
to prediction of current frame (intra or inter). Lastly, the frame passes loop filter to

reduce the blocking effect.

Table 1 H.264/AVC profiles and the corresponding tools

Profile Baseline Main Extended
Tools
CAVLC \ v v
CABAC v
FMO v v
Slice group and \ \
Adaptive Slice Ordering
I & P Slices \ \ \
1/4 pixel MC \ \ \
Loop Filter \ V \
Intra Prediction \ \ \
Multiple Reference \ \ \
Frame
B Slices V \
Field Coding V \
MB-Aff ol v
Weighted Prediction v \
Data Partitioning \
SP/SI Slices \




For different applications, there are different profiles and tools in H.264/AVC
which shows as Table 1. Baseline profile is mainly for mobile applications of low bit
rate such as portable devices because of its lower computation complexity than other
profiles. Extended profile is based on baseline profile and has error resilient tools for
video streaming or video on demand (VOD) applications.

The higher level profile based on baseline profile is main profile which is for
broadcast application. The computation complexity of main profile is more than that
of baseline profile. In addition, H.264/AVC has the high profile, high 10 profile, high
4:2:2 and high 4:4:4 profiles based on main profile for high definition multimedia
applications. The high profile supports 8x8 integer transform and high 10 profile
contains high profile with extra support of 10-bit sample precision of the decoded
pixels. Further, high 4:2:2 profile based on high 10 profile supports 4:2:2 chroma
sampling precision and 10-bit per sample. Finally, high 4:4:4 profile supports 4:4:4
chroma sampling and 12-bit per sample.

From table 1, we can see that there are two entropy coding approaches for
entropy coding, one is context adaptive variable length coding and the other is context
adaptive binary arithmetic coding. Although/ CABAC has better compression rate than
CAVLC, CABAC has extremely more complex sttucture which limits the throughput
of CABAC than CAVLC. Besides, CAVLC is suitable for all profiles in H.264/AVC
system and it has more flexibility for different applications. Therefore, we still further
discuss CAVLC in the following sectionsTafterthe overview of MPEG-2.

1.2 Overview of MPEG-2

MPEG-2 is a video standard established by Moving Pictures Experts Group
(MPEG) which is a team of International Standards Organization (ISO). There are
five profiles in the MPEG-2 system. The simple profile supports 4:2:0 sampling, intra
and inter prediction. Main profile contains all tools of simple profile plus bi-direction
prediction. In addition, SNR scalable profile and spatially scalable profile provide the
base layer and one or more upper layer of coded bitstream for wider and different
application conditions. Finally, the high profile contains all previous tools and it is for
the applications where there are no constraints on bit rate.

There are four levels specified in MPEG-2: High level, High 1440, Main level,
and Low level. Higher level supports higher resolution of video. Main Profile and

Main level is the most widely accepted combination for the majority of applications.



1.3 VLC and CAVLC

1.3.1 Huffman Code

The Huffman code can encode one source with variable length code (VLC)
based on the probability distribution of the source symbols. For example, a source
contains four symbols — { a, b, ¢, d } and the probability of them are 0.5, 0.25, 0.125
and 0.125, respectively. Therefore, we can trace the tree structure to assign codewords
for the symbols as shown in Fig. 3. If we use 2-bits codewords to encode the source,
the average length is 2 x 0.5 + 2 x 0.25 +2 x 0.125 + 2 x 0.125 = 2-bits. However, we
can use VLC such that average lengthis 1 x 0.5 +2 x 0.25+3 x 0.125 + 3 x 0.125 =
1.75-bit. For the decoding process, we can just trace the tree from the root to the leaf
and then back to the root to decode the next symbol. In MPEG-2, we can see that the
coefficients in the block are encoded by run-level coding. The tables defined the

mapping between run-level symbols and:¢odewords.

1
a
Symbol | Probability | Codeword R ol

a 0.5 1
b 0.25 01
c 0.125 001 1
d 0.125 000

O 4

Fig. 3 The distribution of symbols and the Huffman tree.

1.3.2 CAVLC Decoding

The entropy coding of baseline profile in H.264 is extension of VLC because of
the context-adaptive property. The so-called context adaptation means to use different
probability model under different conditions and assign corresponding VLCs.
Therefore, the VLCs separately assigned can achieve better coding efficiency than
only use one VLC for all conditions. In CAVLC, there are several tables for one



symbol according to the context conditions. The encoding and decoding process is
still by look-up tables.

It is important to consider the throughput when design CAVLC decoder. The
number of macroblocks must be decoded per second for different resolution shown in
Table 2. In addition, application of baseline profile is mainly mobile devices, thus the

power consumption issue must also be taken into account.

Table 2 The throughput of decoding CAVLC under different resolution
30 frames per second (fps)

HD HD
720p 1080
MB/sec | 2970 11880 9000 36000 | 40500 | 108000 | 244800

QCIF CIF QVGA | VGA Dl

1.4 Error Robustness

Nowadays, wireless video transmission is.more and more popular in daily life.
Over wireless channel, noise interferencepaffects the data correctness and then the
source decoder will accept erroneous data. For wireless video transmission, the data
are variable in length. Therefore, even only one bit 1s corrupted, the whole bitstream
may lose synchronization which*degrades video quality drastically.

In channel coding, there are many coding techniques to protect transmitted data
by appending redundancy to achieve error correction. Another method is to detect
error and signal the request of re-transmission of video data. These two methods need
higher bandwidth. However, in some application, the bandwidth is limited and the less
redundancy added on data, the less capability of error correction. Besides, forward
error correction code can not promise totally correct all erroneous data and decoder
input may still have remained erroneous bits in it.

There are some schemes to improve the error robustness in the decoder side. For
example, error concealment replaces the corrupted block by surrounding blocks which
is correctly decoded and improves the video quality. Nevertheless, an error detection
module must also help to find the location of corrupted blocks.

Soft-input decoding is another method to reduce bit error rate (BER) of the
decoder input bitstream. Soft-input decoding uses channel information to find the
maximum likelihood or maximum a posteriori path of the trellis diagram. In advance,
joint source—channel design (JCSD) can improved BER performance by considering

trellis structure and symbols probability of source and channel concurrently.



1.5 Motivation

A video decoder can support multi-standard video format is very significant in
today’s applications. Most data in the video bitstream is composed of coefficients of
blocks. In addition, the first stage of the video decoder is VLC entropy decoder which
maps codewords to symbols. As a result, an entropy decoder which is programmable
and compatible to different standards with enough throughputs is necessary. Besides,
the symbol format of coefficients data is represented by a pair of Run and Level while
that of CAVLC is quite different from this.

For the video transmission over wireless environment, we have to find methods
to reduce the effect of error propagation. The challenge lies in less information or
redundancy remained in the input bitstream of video decoder that can help to detect
error and even correct error. Although the whole video transceiver can set as
automatically repeat request for the corrupted data, that is, receiver signals a flag to
transmitter to re-transmit data. This method results in increasing usage of bandwidth.
If soft-input decoding or JSCD is usedy highreomplexity and cost are inappropriate to

hardware implementation.

1.6 Organization of the Thesis

The chapter 2 will discuss the previous works about VLC decoder of different
implementation and target applications first. Then the previous works of error robust
on decoder side only or JSCD will be mentioned. Chapter 3 will show the CAVLC
operation and the design of memory-based VLC decoder supporting multiple
standards. In the memory-based VLC decoder, multi-table merging algorithm is used
and the allocation of memory is considered. Next, we will show the hardware
architecture and implementation result in chapter 4. Chapter 5 proposes an algorithm
used to find the block boundaries in frames stops error propagation under the
condition that channel information is known. Also, the simulation result will be in the
chapter 6. Chapter 7 will show the conclusion about the whole design of multi-mode

and memory-based VLC decoder with error robustness.



Chapter 2

Previous Work

2.1 CAVLC Decoding Process

There are five syntax elements in CAVLC : Coefficient_Token (Coeff_Token),
TrailingOnes_Sign  (T1s_Sign), Level_Prefix, Level Suffix, Total_Zeros and
Run_Before. They are decoded in order defined by the following rules and the block

data composed of these syntax elements is shown in Fig. 4

1. The first decoded syntax element is Coeff_Token, which includes to symbol:
Total_Coeff and TrailingOnes. Total Coeff represents number of non-zero
coefficients in this block and TratlingOnes fepresents number of coefficient with
magnitude one and it is 3-at most.-The sub-tables are select by nC parameter
from system. nC is positive for luma and <1 for chroma.

TrailingOnes_Sign is decoded by getting TFrailingOnes bits from bitstream.

3. Level _Prefix is decoded by leading one detector and is equal to number of zeros
before the leading one.

4. Then, a parameter called SuffixLength is initially set to 0 or 1 if Total_Coeff is
greater than 10 and TrailingOnes is less than 3. LevelSuffixSize is set to
SuffixLength with two except case: 1. Level Prefix is equal to 14 and
SuffixLength is equal to 0. 2. Level_Prefix is equal to 15. LevelSuffixSize is set to
4 in casel and 12 in case2. Next, Level Suffix is decoded by getting
LevelSuffixSize bits from bitstream and is set as 0 if LevelSuffixSize is 0.

5. Select Total_Zeros sub-tables according to Total Coeff. If Total_Zeros is 0, the
decoding process is finished.

6. The Zeros_Left is set as Total _Zeros. Run_Before is subtracted from Zeros_Left
and the result is assigned to Zeros_Left until Zeros_Left is 0.

Coeffi_Token | TrailingOnes | LevelPrefix | LevelSuffix | TotalZeros | RunBefore

Fig. 4 Sequential syntax elements decoding in CAVLC



2.2VLC Decoder

There are several ways to implement VLC decoder such as memory-based
technique, hardwired implementation. [1] proposed group-based algorithm to classify
VLC codewords into different groups such that memory just stored group information.
In [1], the symbol addresses are calculated by input bit-stream and group information.
Last, the symbol memory stored all symbols are accessed to output decoded symbols.
The codec can support a coding table with 256-entry 12-bit symbols and 16-bit
codewords. Furthermore, [2] proposed the multi-table-merging algorithm to reduce
memory space and codec can support JPEG, MPEG-2 and MPEG-4 coding tables. [3]
used cache and table partitioning on the group-based VLC decoder to achieve power
reduction for MPEG-2. The decoding method in [4] decodes some short codewords
by arithmetic operation and the others are mapped into memory to reduce memory
access. But [4] was just for Coeff Token tables and its sequential searching in the
memory would lead to low throughput. The scheme proposed by [5] and [6] is that
decode short codewords with arithmetie 'operation while other codewords are decoded

by conventional decoding to saving memory.access:

Table 1. Three luma VLC tables

MumCoefiTls | 0 1 2 3

0 1 - -

1 0001 in -

2 00000111 Q30100 i1 -

3 OOOGROLT L | QOO0 1 D101 GGl

{A). Num-VLCO

NumCoeff =TIls = N0

Fig. 5 Examples of short codewords, they can be decoded by arithmetic decoding

from the equation in [6].

For the hardware implementation proposed by [7], it was ROM-based and used
HLLT (hierarchical logic for look-up table, Fig. 6) to improve speed and PCCF

(partial combinational component freezing) to reduce power consumption.
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Fig. 6 The implementation of HLLT partitions the original big LUT into many small
LUTs in [7].

Design of VLC decoder in [8}:was for MPEG-1/2/4 decoding and LUTs are
implemented by hardwire. The codewords are separated into groups in several
look-up tables and one address generator is used to calculate symbol address.

In [9], the multi-symbol for level decoding in CAVLC is proposed to reduce
operation frequency while maintain enough throughput for real-time requirement. [10]
proposed a modified SuffixLength detector to reduce critical path in level decoding .

2.3 Error Robustness on Wireless Video Transmission

Until now, there has been much research on improvement of error robustness to
reduce the effect of error propagation in video decoder, compensation of erroneous
data and correction error. They can be mainly separated into two sections: source
decoder side only and joint source-channel design.

The error robustness mechanism at the source side only includes error detection,
error concealment and error resynchronization. Error detection is to find the location

of error data or bits in the blocks. The simplest error detection is syntax-based error



detection, that is, use some rules that violated regular decoding process. For example,
a codeword is not found or the value of a variable overflows. [11] made some rules of
syntax-based error detection and analyzed the performance of detection. However, the
detection has delay between the correctly detected block and exactly erroneous block
as shown in Fig. 7

a b ¢ d

Figure 7. Origination of macroblock level concealment delay

e Interval [a,b): The slice is correctly decoded from its begin a up to the error at the
position b.

e Interval [b,c): The error is undetected until the position ¢ > b. This part is decoded
incorrectly.

o Interval [c,d]: Starting from the position ¢ until the end of the slice d concealment is
used.

09f P
o8} g

07 I.f

06f ;'I

osl1 I " ormalized Histogram i
. I — — — Cumulative Density Function

0] 8 17 26 35 44 53 61 70 79 88 97
Delay [MB]

Fig. 7 Organization of macroblock level concealment delay and

detection delay in [11]

[12] detected error blocks basically by computing the boundary difference and
used threshold as the determination rule. In Fig. 8, L means “Left” and can be
replaced by T(TOP), R(Right) or B (Bottom) and K2 is the number of available
neighboring blocks of current MB. The temporal boundary checking is shown in Fig.
9. The threshold in this paper is adaptively decided according to the statistics of
decoded MBs in a frame
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Fig. 8 (a) Pixels for average inter-sample difference across boundary (AIDB)
calculation and equation in [[12] with.N=16. (b) Final equation of the AIDB
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Fig. 9 Pixels of Average difference across frames (ADF) calculation and N = 16
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After error detection, error concealment can be activated to compensate the
corrupted blocks. Error resynchronization can be achieved by inserting markers in the
bitstream to know the boundary of the next decoding unit. In H.264/AVC, one frame
can separated into slices and the decoding of one slice would not reference data in
other slices. Therefore, if one slice data is corrupted, the error can be restricted in that
slice thus the resynchronization is achieved. The other method is inserting
refreshment frames, slices or macroblocks so that temporal error propagation can be
stopped. [13], [14] and [15] are joint-source channel design for MPEG-4 video format.
[13] and [14] simulated the performance of using Maximum A Posteriori (MAP)
decoder under additive Markov channels (AMC) and the simulation environment are
shown in Fig. 10. [15] combined the source state space with the channel state space to
one finite state machine (Fig. 11) and the corresponding trellis decoding can be
defined. [16] was a JCSD for H.264 motion vectors data to improve video quality.

(a)
Inter MB
AMC [ MAP ———
Decoder
Intra VB
MPEG-4 | g VLC J—p L MAFP
— AMC
Input| Encoder Exporter Decoder
MV, Control hits & VLC Importer | omtput
> : -
(b)
MY FEC |> AMC (| channel
decoder
Inter
AMC .| channel || MAP
FEC decoder Decoder
lnl:m|MB
I MPEG-4 » VLC/RVLC .| channel | MAP
Input| Encoder Exporter FEC " AMC decoder Decoder
Control bits I_’ VLC/RVLC Importer| oytpyt
» MPEG-4 Decoder | —
(well protected)

Fig. 10 Experimental Set-up for evaluating the performance of the MAP decoder in
(a) [13], (b) [14]
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Fig. 11 Combing source and channgl:state space. (a) source state space. (b) channel

state space. (c) integrated state space.
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Chapter 3
Algorithm of Memory-based VLC

Decoding

3.1 Conventional Group-based VLC Algorithm and Decoding

Flow

This section was previously developed and verified by Bai-Jue Hsieh in [2]. The
intention of this section is to ghickly talk” about the concept of conventional

group-based VLC decoder system and how it works.

3.1.1 Definition of Codeword Groups

For a coding table, we separated codéwords into groups. Codewords in a group
has the following properties:

1. In a group, the codeword can be treated as a binary number which is codeword
length-bit long, called VLC_codenum, since the codeword length is the same.
2. The codeword that has the smallest VLC codenum in a group is denoted

VLC_mincode.

3. A VLC codeoffset is the offset value between the VLC mincode and the

VLC codenum.

For the example shown in Fig. 12, the VLC table has 8 codewords and the
codewords with the same length and prefix are classified as the same group. The
codewords in GO have 4 bits with 2-bit prefix and 2-bit suffix. Therefore, the
VLC codenum are the 0,1,2,3 thus the VLC_codeoffset of Sym5, Sym6, Sym?7 are 1,
2 and 3, respectively. Because 01 and 10 have different prefix so they belong to
different groups although they have the same length. The codewords in G3 have 3 bits
in length and VLC codenum are 6 and 7; the VLC codeoffset are 0 and 1 for Sym3
and Sym4.
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VLC Table

Codeword

Syml |01

Sym2 |10

Sym3 | 110

Sym4 | 111

Syms | 0001

SN

Sym6 | 0010

Sym7 | 0011

Sym8 | 0000

Prefix | Suffix VLC code | VLC code | VLC min
num offset code
Sym§ | 00 00 0 0 J
Go L SymS | 00 01 I I
Sym6 | 00 10 2 7
Sym7| 00 11 3 3
G1 | Syml 01 1 0 N
G3 Sym3 11 0 6 0 N
Symd | 11 7 1

Fig. 12 Grouping of codewords in the table

3.1.2 Intra-Group Decoding Procedure

In the same group, the codewords thave arithmetic relationship from the
VLC codenum, VLC codeoffset;and VLC._mine6de. Thus, only the VLC mincode

information of every group is stored in memoryand we can find the information about

other codewords by means of computation of the offsét. In other words, if the symbols

of the same group are allocated in the continuous location in the symbol memory and

the decoded symbol address can be’known by adding offset amount to a base address.

Fig. 13 shows the information within one group. For example, if the 0000011 is
received, the offset equals to 3 and thus the symbols address is 3 + 60 = 63 to that S3

is decoded.
Symbol Prefix Suffix | VLC codenum | VLC codeoffset | Address
S1 000 0 0 60
S2 001 1 1 61
S3 010 2 2 62
S4 011 3 3 63
S5 0000 100 4 4 64
S6 101 5 5 65
S7 110 6 6 66
S8 111 7 7 67

Fig. 13 One group with address assignment
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3.1.3 Group Searching Scheme

To search the group that the correct symbol locates in, Pseudo Constant Length
Codeword (PCLC) is used. In the table, all codewords are extended to the length of
the longest codeword by appending 0’s behind the codewords. All PCLCs have the
same length and can be view as binary numbers, PCLC codenum. All PCLCs are
organized in ascending order so that PCLC codenumO < PCLC codenuml <
PCLC codenum?2...PCLC codenumn and thus PCLC mincodeO < PCLC_ mincodel
< PCLC_mincode2....PCLC mincoden. Next, the base addresses are assigned to
PCLC mincode and base addrO < base addrl < base addr2.....base addrn. The
example of the intra-/inter- group symbol memory mapping is shown in Fig. 14 and

the group information of the tables is shown in Fig. 15, where the valid bit means

whether the table contains this group or not.

PCLC PCLC symbol
group  symbol _codeword _codenum  address  _codeoffset
S00 00100100 38 0 0
S0t 00100101 a7 1 1
GO 502 00100110 38 2 2
S03 0010011 1! 39 3 3
S10 00110000 48 4 0
5
G1 6
S11 001111igo 56 7 3
G2 S20 010100000 54 8 0
S30 011010000 96 9 0
&3 S$31 o111lo000 112 10 1
G S40 10000000 128 11 0
G5 S50 11 E}_g_q_l_o_gg 192 12 0
S60 111001000 224 13 0
G6  g51  11101i000 232 14 1
S70 11110000 240 15 0
S71 1111001i0 242 16 1
g7  S72 1111010 244 17 2
i 18
S73 11111000 248 19 4
S80 111110 1'?1'! 250 20 0
S81 11111011 251 21 1
G8 ss2 11111100} 252 22 2
s83 1111110 1] 253 23 3

The length of PCLC codewords is §-bit and that of symbol addresses is 5-bil.

Fig. 14 PCLC table and intra-/inter- group symbol memory mapping
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group valid  codelength PCLC_mincode(8-bit}  base_addr(5-bit)

0 1 8 00100100 0 (00000,)
1 1 6 00110000 4 (00100;)
2 1 3 01000000 8 (01000;)
3 1 4 01100000 9 (01001)
4 1 2 10000000 11 (01011z)
5 1 3 11000000 12 (01100)
6 1 5 11100000 13 (01101,)
7 1 7 11110000 15 (011115)
8 1 8 11111010 20 (10100;)
9 0 0 00000000 0 {00000, )

Fig. 15 Group information of the table in Fig. 14

Like the PCLC codenum, a segment of bitstream with the same length of PCLC
can be treated as a binary number, bitstream num. The group searching scheme can
be achieved by computed the (bitstream num — PCLC mincodei). The hit condition
of the decoded symbol located the group Gn is PCLC mincoden < bitstream num <
PCLC_mincoden+1.

The overall decoding process’of the group-based algorithm is as follows: Assume
the bitstream input is 001111100110.....:

1. Do group searching

=>PCLC_mincodel(8’b00110000)<bitstream num'< PCLC_mincode2(8’b01000000)
=>» The matching group: GO

2. Send group information

=>» code length = 6-bit, PCLC mincode = 8’b00110000, base addr(5-bit) = 5’b00100.
3. Find the valid VLC_codeoffset, which is the code length most significant bits
of the result of subtracting the PCLC_mincode from the bitstream_num
=>»Bitstream_num(8’b00111110) — PCLC_mincode(8’b00110000) = 8°b00001110.
=>»The valid VLC codeoffset = 6’b000011= 3.

4. Extract the VLC_codeoffset operand, which has the same word length as the
symbol address

=2 VLC codeoffset = 5’b00011 = 3.

5. Calculate the decoded symbol address

=>»symbol addr = base addr(5’b00100) + VLC codeoffset(5’b00011) =5’b00111= 7.
6. Fetch the decoded symbol

= sym_memory[7] = S11.
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3.2 Conventional Multi-Table Merging Algorithm and Decoding

Flow

This section was previously developed and verified by Bai-Jue Hsieh in [2]. The
intention of this section is to quickly talk about the concept of conventional

multi-table merged VLC decoder system and how it works

3.2.1 Collection of Group Information of All Coding Tables

According to group-based decoding algorithm, group information of all tables
can be known and the PCLCs of groups of a table can be viewed as a codeword in that
table. Therefore, all PCLCs are collected in the ascending order as Fig. 16 shows. In
this figure, all group information items lare ordered according to the magnitude of

PCLC_mincode and there are 13 items.

VLC4.G6A; valid=1l; PCLC mincode=16'b0O0O0O0 0010 0000 0O000=51Z; CL=8; base addr = 1;
VLCO.G8; walid=1; PCLC mincode=16"b0000 0010 0000 0000=512; CL=%; base addr = 45;
VLC1.G8; walid=1; PCLC mincode=16"b0O000 0010 0000 0000=512; CL=9%; base addr = 35;
VLCZ.G7; walid=1; PCLC mincode=16"b0000 0010 0000 0000=512; CL=10; base addr = 7;

VLCZ.GB; wvalid=1l; PCLC mincode=16'b0O0O0O0 0001 0000 0000=2564; CL=10; base addr = 3;
VLCO.G9; wvalid=1l; PCLC mincode=16'bOOO0O 0001 0000 0000=2564; CL=10; base addr = 41;
VLC1.G9; wvalid=1l; PCLC mincode=16'bO0O0O0 0001 0000 0O000=2564; CL=11; base addr = 27;

VLCZ.G9; walid=1; PCLC mincode=16"b0O0O00 0000 1000 0000=128; CL=10; base addr = 1;
VLCO.G10; wvalid=1; PCLC mincode=16"b0O0O00 0000 1000 0000=128; CL=11; base addr = 37;
VLC1.G10; walid=1; PCLC mincode=16"b00O00_0000_1000_0000=128; CL=12; base_addr = 19;

VLCZ.G10; walid=1; PCLC mincode=16"b0O0O00 0000 0100 _0000=64; CL=10; base addr = 0;
VLC1.G11; valid=1; PCLC mincode=16'b0000_ 0000 0100 0000=64; CL=13; base addr = 11;
VLCO0.G11; valid=1; PCLC mincode=16'b0000_0000 0100 _0000=64; CL=13; base addr = 29;

Fig. 16 Part of group information of several tables.

3.2.2 Codeword Merging

From Fig. 16, the PCLCs of some groups are identical to others. If all these

PCLCs are stored, there is much redundancy. As shown in Fig. 17, we can separate
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the groups with the same PCLC into the same group and only one PCLC is stored.
This reduces storage space. We can see that there are 13 items and after codeword

merging, the number of items reduces to 4.

VLC4.GA;  walid=l; merged CL=8; bazse addr = 1;
VLCO.G8; wvalid=1l; PCLC mincode=16'b0000 0010 0000 0000=51Z; CL=9; base addr = 45;
VLC1.GB; walid=1; CL=9; base addr = 35;
VLCZ.GT; wvalld=l; CL=10; base addr = 7;
VLCZ2.GB; walid=l; merged CL=10; bazse addr = 3;
VLCO.G8; wvalid=1l; PCLC mincode=16'b0000 0001 0000 0000=256; CL=11; base addr = 41;
VLC1.GY;  walid=1; CL=11; base addr = 27;
VLCZ2.GY9; walid=1l; merged CL=10; base addr = 1;
VLCO.G10; valid=1l; PCLC mincode=16'b0000 0000 1000 0000=128; CL=11; bhase addr = 37;
VLC1.G10; walid=1; CL=12; base addr = 19;
VLCZ .G10; wvalid=1; merged CL=10; base addr = 0;
VLC1.G11; valid=1; PCLC mincode=16"b0000 0000 0100 0000=64; CL=13; base addr = 11;
VLCD.G11; wvalid=l; CL=13; hase addr = 28;

Fig. 17 One portion of the groups-after codeword merging process.

3.2.3 Prefix Merging

The prefix merging check any two neighbor groups after codeword merging.
When the longest VLC mincode in a group is the prefix the PCLC mincode in the
adjacent codeword group, they can be merged together to one group. In the case of

Fig. 17, there is no prefix merging can be operated.

3.2.4 Set Table Information

After merging process, merged groups and PCLC mincodes are MTM groups
and MTM_PCLC mincodes, respectively. The table information of a coding table
includes the valid-bit and the length of codewords. Because the shortest length of
codeword is 1 bit and the length is from 1-bit to 16-bit, we just store (length-1),i.e. 0 ~
15 in the memory to save memory space. After this shifting operation, the smallest

(length-1) in all the groups is defined as MTM_ CL-1 and stored in the group
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information memory. Therefore, the difference between the larger (length-1) and
(MTM_CL-1) which is defined as CL_diff is stored in the table information memory.
The memory space is further saved because the data redundancy among the lengths in
a MTM group is exploited. The table information and group information are shown in
the Fig. 18.

Table Information MTM Groups
|
|
|
MM Groupll |
VICD w=1;  VLCl v=1;  VICZ v=1; VIC3 v=0; VIC4 v=1; |MTM_ECLC mincode MMM CL-1 hase addr = 45;
CL diff=1; CL diff=1; CL diff=Z; CL diff=0; CL diff=0; |16'B0000 0010 0000 DOOO; 1 base addr = 35;
| base_addr = 7;
| base addr = 1;
UTM GrouplZ |
VICOD w=1;  VICl v=1;  VLCZ v=1;  VIC3 v=0; VLC4 v=0; |MTM_BCLC mincode MMM CL-1  base addr = 44;
CL diff=1; CL diff=1; CL diff=0; CL_diff=0; CL diff=0; |16'h0000_000L_0000_DOOO; 9 base_addr = 27;
| base addr = 3;
UTM Groupl3 |
VICOD w=1;  VICl v=1;  VLCZ v=1;  VIC3 v=0; VLC4 v=0; |MTM_BCLC mincode MMM CL-1  base addr = 3T;
CL diff=1; CL diff=2; CL diff=0; CL_diff=0; CL diff=0; |16'h0000_0000_1000_DOOO; 9 base addr = 9;
| base addr = 1;
MTM Groupld |
VICOD w=1;  VICl v=1;  VLCZ v=1;  VIC3 v=0; VLC4 v=0; |MTM_BCLC mincode MMM CL-1  base addr = 29;
CL diff=3; CL diff=3; CL diff=0; CL_diff=0; CL diff=0; |16'h0000_0000_0100_DOOO; 9 base_addr = 11;
| base addr = 0;

Fig. 18 Table information and group information

3.2.5 Base Address Merging

Although base addresses can be stored for different tables under the given group,
the required memory space is large when the number of tables becomes large. [2]
proposed a method that classify base address in to categories according to the
numbers of table entries. For example, the tablel has 28 entries and table2 has 136
entries, the base addresses of them are classified into two categories: base addrl is
5-bit and base addr2 is 8-bit. With the base address adjustment, different tables with

the same category can use common set of base addresses.

3.2.6 Group Information Recovery

According to table information and group information in Fig. 18, the example of
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group information recovery is shown in Fig. 19. In the first step, (length-1) of
VLC mincode is computed by adding MTM_CL-1 and CL_diff. Second, the most
length bits of the MTM_PCLC are assigned to PCLC mincode while the remained

bits are Os. Finally, the base address is accessed according to base address selection.

Extract VLC1 Group 9 from MTM_Group 12 :
1.CL-1=MTM CL-1+CL diff=9+1=10
2.Keep 11-bit the prefix of the MTM_PCLC_ mincode and mask the suffix to
Zero

MTM_PCLC mincode = 16'd

00000001000
Mask
wee bbb L O
PCLC mincode=160 0000001000
3. Select base address of VLC1.G9 =27
Fig. 19 Example of group information recovery
Finally, Table 4and Table 5 shows:the number of groups of every table and MTM

groups in CAVLC and MPEG-2, respectively. The'number of items is reduced greatly
in both standards.

Table 3 The number of groups of tablesii"CAVLC and the number of MTM groups

# of group after
# of Group # of symbols
MTM
Coeftf Token(0<=nC<2) 17 62 ”
Coeff Token(2<=nC<4) 16 62
Coeff Token(4<=nC<8) 11 62
Coeff Token(8<=nC) 7 62
Coeff Token(nC=-1) 8 14
Total Zeros(TC =1) 9 16
Total Zeros(TC =2) 8 15
Total Zeros(TC =3) 8 14
Total Zeros(TC =4) 7 13
Total Zeros(TC =5) 7 12
Total Zeros(TC =6) 7 11
Total Zeros(TC =7) 8 10
Total Zeros(TC =8) 7 9
Total Zeros(TC =9) 7
Total Zeros(TC =10) 6 7
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Total Zeros(TC =11) 5 6
Total Zeros(TC =12) 5 5
Total Zeros(TC =13) 4 4
Total Zeros(TC =14) 3 3
Total Zeros(TC =15) 2 2
Total Zeros ch (TC =1) 4 4
Total Zeros ch (TC =2) 3 3
Total Zeros ch (TC =3) 2 2
Run_Before(ZL =1) 2 2
Run_Before(ZL = 2) 3 3
Run_Before(ZL = 3) 3 4
Run Before(ZL =4) 4 5
Run Before(ZL =5) 4 6
Run Before(ZL = 6) 5 7
Run_Before(ZL > 1) 11 15

Table 4 The number of groups of tablesjin MPEG2 and the number of MTM groups
*: There are 9 locations are unused because the VI.C=codnum in one groups are not

continuously increment.

# of group after
# of Group #.of symbols
MTM
TB14 13 111 )1
TB15 19 111*

3.3 Modified MTM algorithm for Improvement of Memory

Efficiency

Based on the basic concept of MTM algorithm, we applied the algorithm for all
coding tables in CAVLC to achieve programmability. The tables include Coeff _Token
(0<=nC <2,2<=nC <4,4<=nC <38, 8<=nC, nC = -1), Total_Zeros(4x4),
Total_Zeros (chroma DC 2x2) and Run_Before, up to 30 coding tables and the entry
number range is from 2 ~ 62. That is, the conventional MTM algorithm must support
6 categories for 2-entry, 4-entry, 8-entry ...64-entry tables. This will increase the cost

overhead and critical path of the group detector in hardware. Besides, the base address
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adjustment will shift the base address to the maximum value of the group within the
same category hence increase the unused locations in symbol memory. Take
Coeff_Token (0 <=nC <2,2 <=nC <4, 4 <=nC < 8§, 8 <= nC) tables as a example,
these four tables are 62-entry and they should belong to 6-bit address category. Fig. 20
shows that most base addresses are adjusted to meet the requirement and we can see
that the total shift amount is 83+59+53+52=247. The base address implies the symbol
address, as a result, there are 247 entries in symbol memory are unused after the
adjustment procedure. The symbol length of Coeff_Token is 7-bit thus there 247 * 7
=1729 bits are unused.

====== Group0: MTM_CL-1=0 1000_0000_0000_0000 ======
VLCO0.GO 61 +4 +4 +4 45 +5 +7 +23
VLC1.GO 60 +5 +7 +4 +2 +4 +4 +4 +2 +21
VLC2.GO 54 429 +7 +6 +1 +8 +8
VLC3.G0 30 +56 49 +5 +5 +8

====== Groupl: MTM_CL-1=2 0110_0000_0000_0000 ======
VLCI1.G1 59 +5 +7 +4. #2544 ¥4 44 1)

====== Group2: MTM_CL-1=1 0100.0000_0000_0000 ======
VLC0.G1 60 +4 +4 +4 +5 +5°+7
VLCI1.G2 S5T+5 1 +4 +2 #4444 +4'+2
VLC2.G1 46 429 #+7 +6 +1
VLC3.G1 14 456 494545

====== Group3: MTM_CL-1=4 0011_0000_0000_0000 ======
VLC1.G3 S54547 +4 42 +4 +4 +4

====== Group4: MTM_CL-1=2 0010_0000_0000_0000 ======
VLC0.G2 SO +4 +4 +4 45 45
VLC1.G4 ST+547+4 42 +4 +4 +4
VLC2.G2 38 +29 +7 +6 +1
VLC3.G2 6 +5649 +5 45

====== Group5: MTM_CL-1=4 0001_1000_0000_0000 ======
VLC0.G3 58 +4 +4 +4 45

====== Group6: MTM_CL-1=3 0001_0000_0000_0000 ======
VLCO0.G4 56 +4 +4 +4 45
VLCI1.G5 AT 4547 +4 +2 +4 +4
VLC2.G3 30 +29 +7 +6 +1
VLC3.G3 3 45649 +5

====== Group7: MTM_CL-1=5 0000_1100_0000_0000 ======
VLCO0.G5 55+4 +4 +4
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VLC3.G4 2 +56 49

====== Group8: MTM_CL-1=4 0000_1000_0000_0000 ======
VLC0.G6 S3+4 +4 +4
VLC1.G6 43 45 +7 +4 +2 +4
VLC2.G4 22429 +7 +6 +1

====== Group9: MTM_CL-1=5 0000_0100_0000_0000 ======
VLC0.G7 49 +4 +4
VLCI1.G7 3945 +7 +4 +2
VLC2.G5 14 429 +7 46 +1
VLC3.G5 1 +56

====== Groupl0: MTM_CL-1=8 0000_0011_1000_0000 ======
VLC2.G6 13429 +7 +6

====== Groupll: MTM_CL-1=6 0000_0010_0000_0000 ======
VLC0.G8 45 +4
VLCI1.G8 354547 +4 42
VLC2.G7 T +29 47 +6

====== Groupl2: MTM_CL-1=7 0000_0001_0000_0000 ======
VLC0.G9 41 +4
VLC1.G9 27 +5 £l 4 42
VLC2.G8 3 +29+47+6

====== Group13: MTM_CL-1=8 0000_0000_1000_0000 ======
VLC0.G10 37
VLCI1.G10 1945 +7 +4 42
VLC2.G9 1 +29+7

====== Groupl4: MTM_CL-1=9 0000_0000_0100_0000 ======
VLC0.G11 29
VLCI1.G11 114547 +4 42
VLC2.G10 0 +29

====== Groupl5: MTM_CL-1=12  0000_0000_0011_0000 ======
VLC1.G12 9 +5+47+4

====== Groupl6: MTM_CL-1=10  0000_0000_0010_0000 ======
VLC0.G12 21
VLCIL.G13 S +547+4

====== Groupl7: MTM_CL-1=13  0000_0000_0001_0000 ======
VLC0.G13 13
VLC1.G14 1 +5+7

====== Group18: MTM_CL-1=12

(0000_0000_0000_1000




VLC0.G14 5
VLCL.GI15 0 +5

====== Groupl9: MTM_CL-1=15  0000_0000_0000_0100 ======
VLCO0.G15 1

====== Group20: MTM_CL-1=14  0000_0000_0000_0010 ======
VLCO0.G16 0

====== Group2l: MTM_CL-1=0 0000_0000_0000_0000 ======
VLC3.G6 0

Fig. 20 Base address adjustment procedure. The first number after VLCi. Gn is base

address and the +K is the adjusted amount of base address.

From this reason, base address adjustment is not considered as the method of
reducing memory space. Nonetheless, direct record of the base address as MTM
group information also makes many unused locations in the group information
memory. Because there are many small tables in CAVLC and they have short
codewords and a few of entries. Usually, the small tables use just one or two groups
and other groups are invalid for.them. In ‘other words, many entries of group
information are unused if the table,is-small-as shown in Fig. 21. In Fig. 21, “TB”
represents large tables which thave long codewords and many entries while “tb”
represents small tables which almost have short codewords and a few entries. The
blank blocks is the filed that is unused by thetable; 1.e., validbit = 0 for that group of a
table. For example, TBN does not contain. GP0 and valid bit for GPO is 0 while valid
bit for other groups are 1. Also, many fields in the Fig. 21 for tbO~tbm are unused.

TBO| TB1l - ~ | TBN| tbO| tbl| - | tbm

GP( Used

GP1

Unused

GP2

GPk

Fig. 21 Unused locations for the information memory.

25



Due to the above phenomenon, the modified organization of group information
and table information is proposed. First, we use the longest codeword of a table as the
determination of whether the table is large or small. We use 4 as the threshold.
Therefore, there are 14 small tables and 16 large tables among CAVLC. Next, the
practical storage unit is separated in two parts: one for small tables and one for large
tables. By doing this partitioning, the unused locations can be reduced. Originally, the
size of the memory space is (n + m) X k and the total size is reduced to n x k + m x ks,
where ks is number of groups used by small tables, k is number of groups used by
large tables, m is number of small tables, and n is number of large tables. In addition,
the PCLC of small tables is shorter than the longest PCLC among all tables. Therefore,
size of group information can also be reduced. Table 5 shows the comparison of size
for conventional MTM without base address adjustment and the modified memory

allocation.

Table 5 Space of the conventional MTM without base address adjustment and the

modified memory-allocation

Group information Table information
; . Total
size size
23x(16:+4+30%8) 23%30%(1+2)
Conventional = 5980 bits = 2070 bits 8050 bits
23%x(16+4+16%8) + 23%x(4%x16) +
Modified 5%(4+2+14x8) 5%(14x%3) 5676 bits
= 3994 bits = 1620 bits

3.4 Symbol Memory Allocation

Generally, the symbols are store in the symbol memory and symbol lengths of
different tables are different. If only one symbol memory is used, the word length
must be the length of the longest symbols among all tables. This allocation leads to
some wasted space for shorter symbols. In [2], there are several symbol memories
with different kinds of word length in order to save the space. The symbol length is
either 7-bit (Coeff_Token) or 4-bit (Total_Zeros or Run_Before) in CAVLC tables and
that of MPEG-2(TB14 and TB15) is 11-bit. As a result, 256 x 11 + 256 x 7 + 256 x 4
= 5632 bits are used in symbol memory. In the proposed allocation, we can use only a
symbol memory with 256x11 bits to store all symbols in CAVLC, TB14 and TB15.
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That is, the symbols in Coeff_Token and Total _Zeros/Run_Before can be concatenated
into 11-bit words and stored in the 256 x 11 symbol memory. The overhead includes a
mask and the multiplexer to choose the format of the symbol according to the
standards and decoding tables as shown in Fig. 22. Besides, the start positions of
tables are stored in a small register files. As CAVLC is used, we can select the most
significant 7 bits of the memory output for Coeff Token symbols or the least
significant 4 bits for Total_Zeros/Run_Before symbols; the whole word is assigned to
the symbols for MPEG2.

5 bits 6 bits
Run Level
— Y »— — =

— — —MPEG-2
H.264

-

7 bits 4 bits

Total Zeros/
Coeff Token Run_Before

C Masks for different tables ] 1T'b1111 1110000
11'b0000 0001 111

Fig. 22 256-entry symbol memory allocation in VLC decoder for MPEG-2 and
H.264 standards.s
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Chapter 4

Error Resynchronization

4.1 Concept of Error Resynchronization

In H.264/AVC error resilient tools, the most important feature is slicing. A slice
consists of a sequence of macroblocks (Fig. 23) and the intra-prediction in one slice
does not refer to data belongs to the other slices in one frame. If one slice is corrupted
during the transmission, the error would not propagate to other slice regions so that
the corrupted data is restricted within that slice. Insertion of refreshment frames, slices
or macroblocks is a method to stop error propagation in the temporal domain. In
addition, [17] mentioned that the insertion of'additional markers in the bitstream can
achieve VLC resynchronization. From these-three methods, we can find that the error
propagation can be stopped in:a certain région and. the following bitstream can be
correctly decoded. That is, error resynchronization is achieved. However, these

methods have bitstream overhead and increase-needed data bandwidth.

Slice #0

Slice#1 | | |

!
|
Slice #2
[ 1]

Fig. 23 Division of a picture into several slices.

To achieve resynchronization in block-level without bitstream overhead,
information remained in bitstream after compression is needed to help find the
resynchronization point. However, less information left in H.264 bitstream can

provide error detection ability or resynchronization because of its high compression
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performance. To accomplish error resynchronization, the position of the next
decoding unit is necessary so that error will be stopped until the current decoding
units. In the following sections, we focus on the I-frame error resynchronization
because I-frames are much important than P-frame and I-frame is reference of

P-frame.

4.2 Proposed Scheme for Error Resynchronization

The smallest decoding unit in H.264/AVC is 4x4 block and the position of the
block can only be known by end of block symbol. Unlike the previous video
standards, there is no end-of-block symbol in CAVLC. Take MPEG-2 as an example,
TB-14 and TB-15 define the end of block symbol with codeword “10” and “01107,
respectively. As a result, we can try to find the block boundary by searching “10” or
“0110” in the bitstream. A further insight into the tables makes these two codewords
mistakenly predict the block boundaries because other codewords also contain “10” or
“0110”. For instance, codewords of (rumj level) = (4, 1), (7, 1) and (2, 2) contain “10”
in TB-14; codewords of (run, level) = (4,.1); (1;:2) and (16, 1) contain “0110” in
TB-15.

From the conventional CAVLC decoding process, a block with non-zero
coefficients has the following steps. to€omplete the decoding: 1. decoding of total
coefficients and trailing ones, 2.°decoding of sign of trailing ones, 3. decoding of
levels, 4. decoding of total zeros, 5. decoding of runs before every non-zero
coefficients. The last two steps are about total zeros and runs. Therefore, we can say
that end of block consists of these two syntax elements. In bitstream, all combinations
of the codewords of theses two tables that meet the rule of CAVLC decoding can be
viewed as the EOBs. Since the constructed EOBs have many possibilities, we can
choose those ones which are not one segment of combinations of other codewords in
the other tables. Once the EOBs are known, the block boundaries can be predicted by
them and thus the error can be limited until the current block. Then, the decoding of

the next block is resynchronized and correct. The EOB format is shown in Fig. 24.

EOB structure -

Total_Zeros | Run_beforel | Run_before2 | -.--------- Run_beforeN

N: # of non-zero coefficients in the 4x4 block
Fig. 24 The format of EOB
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4.3 EOB Construction

To know all combinational series of codewords from Total Zeros(T.Z.) and
Run_Before(R.B.) tables, we must know all kinds of distribution of coefficients in one
4x4 block. For different distribution of non-zero coefficients, the combinations of the
T.Z. codeword and the R.B. codewords are different. The total number of combination

can be computed by the following equation (1):

16
Total = Z C,° , where k is the number of coefficients in 4x4 block (1)

k=1

Therefore, there are totally 65535 kinds of EOB and histogram of the distribution is
shown in Fig. 25.

14000 12870
000 F 11i4()—11i40
m i
S 10000 8008 8008
w8000 | m =
* 6000 [ 4638 4638
4000 1820 1820
2000 |16 120560 |—| |—| 560 120 16
O | | [ | | | | [ | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# of coeff. in 4x4 block

Fig. 25 Distribution of EOB number at different numb of coefficients

The next step verifies the EOBs that are not segments of combination of other
codewords. The EOB is viewed as a sliding window through the whole bitstream and
collect those EOBs that only occur at the exact positions. However, the number of
total EOBs is large and the total bit of the bitstream is much larger, thus the
simulation time is too long. Therefore, we choose another method to reduce the
simulation time.

In this method, 300 I-frames are chosen to generate the all of the EOB’s of each

frame individually. Next, the number of EOBs in one frame is reduced by eliminating
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short EOBs because short EOBs are more easily found in other places in the bitstream.
With EOB positions which are known, the reduced EOBs set is checked in a certain
range to determine whether one EOB is unique within the given range. As Fig. 4
shows, the EOB is viewed as a sliding window and check the correlation between the
EOB and bitstream. The range is set because in real cases, EOB is not necessary to be

unique globally thus only local uniqueness is checked.

Whole Bitstream

End of
Block Range

\I Segment I/ \

Range

Sliding direction
Fig. 26 Checking whether the EOB is unique within the given range or not

After all EOBs and the corresponding bitstream are checked, the EOBs are
reduced because the EOBs that occurred multiple times are removed as shown in Fig.
27. The remained EOBs are defined as intra-set. To ensure EOBs can survive in other
frames, they are also checked their uniqueness in other frames. The further reduced
set is called the inter-set as shown in Fig. 28. After inter-checking, the remained set

can be the error resynchronization information and stored in the memory.
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Total set Total set

Frame 0 0 0 c

Total set 1 Total set

Frame 1 I c}
0 O
0 O
0 O

':> Verification 'j‘>

@)
@)

(©]

Total setN_ 1 Total setN_ 1

Frame N-1 c_l

Fig. 27 Reduction phase of intra-checking. The number of EOBs generated from

each frame is reduced.

Co ed . . O
= Verification ¢ Frame

Clo ed 1
— Verification Frame Total set
ﬁ> BUE
Library

N-1

(

(ONONG)
(ONONG)
O Q0

Co ed . .
s Verification Frame

Fig. 28 Reduction phase of inter-checking. After this reduction the remained EOBs is

the EOB library stored in memory.

4.4 EOB Storage Using Group-based Scheme

We can treat all EOBs stored in memory as the codewords of a virtual table.
From the group-based algorithm we know that the symbol of the decoded codeword
can be accessed by calculation. Therefore, the symbol for EOBs codewords is
composed of 1-bit hit flag. Thus, a large amount of searching EOBs can be done in a
fast process. For instance, based on the Fig. 29, if the bitstream is
0000 0000 0110 0110_0000_0000_0000 0 1011_0100.....
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1. Do group searching

=>PCLC_mincode1(29°60000 0000 0101 _1111_0000 0000 0000 _0) <

bitstream_num < PCLC_mincode2(29°b0000_0000 0110 _1011_0000_0000_0000_0)

=>» The matching group: G1

2. Send group information

=>» code length = 15-bit, PCLC mincode =

29°b0000_0000 _0110_0100_0000_0000 0000 0, base _addr(6-bit) =6"b1000_00.

3. Find the valid VLC_codeoffset, which is the code length most significant bits
of the result of subtracting the PCLC_mincode from the bitstream_num

=>Bitstream_num(29°b0000_0000 0110 _0110_0000 0000 _0000_0) -

PCLC_mincode(29°50000 0000 0110 _0100 0000 _0000_0000_0) =

29°b0000_0000_0000 0010 _0000_0000_0000 0.

=>The valid VLC_codeoffset = 15’0000 0000 0000 _001= 1.

4. Extract the VLC_codeoffset operand, which has the same word length as the
symbol address

=2 VLC codeoffset = 6’b0000 01=1.

5. Calculate the decoded symbol address

=>»symbol_addr = base addr(6’61000.00) . = VLC codeoffset(6’b0000 01) =

6’1000 _01=33.

6. Fetch the decoded symbol

= sym memory[33] = S33.

As a consequence, we can store flag as the S33.in the location of address = 33

The flag means if hit or miss for the EOB checking.
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PCLC Length-1  Address
GO
0000 0000 0110 _1111_0000_0000 0000 0 15 [ 40 ]
0000_0000_0110_1100_0000 _0000_0000_0 15 [37]
0000_0000_0110_1011_0000_0000_0000_0 15 [36]
Gl
0000_0000 0110 _1010_0000_0000_0000 0 14 [35]
0000_0000_0110_1000_0000_0000_0000 0 14 [34]
0000 _0000_0110_0110_0000 _0000_0000_0 14 [33]
0000 0000 0110 _0100_0000_0000_0000 0 14 [32]
G2
0000_0000_ 0101 1111_0000_0000_0000 0 15 [31]
G3
0000 _0000_0101_1110_0000_0000_0000_0 14 [30]
0000_0000_0101_1100_0000_0000_0000 0 14 [29]
G4
0000 0000 0011 _1110_0000 00060 0000 0 14 [ 28]
0000_0000_0011_1100_0000 0000_0000_0 14 [27 ]
0000_0000_0011_1010_0000 “0000_0000" 0 14 [ 26 ]
0000 0000 0011 _1000_0000_0000-06000-0 14 [25]
0000_0000_0011_0110_0000:0000_0000_0 14 [24 ]
0000_0000_0011_0100_0000_0000"'0000 0 14 [23]
0000_0000_0011_0000_0000_0000_0000 0 14 [21]
0000_0000_0010 _1110_0000 _0000_0000_0 14 [20 ]
0000_0000_0010_1100_0000_0000_0000 0 14 [19]

Fig. 29 A portion of groups of EOBs

The bock diagram is shown in Fig. 30. In this error resynchronization scheme,
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4.5 Joint with Channel and VLC Source Decoder

we assume that channel information is available. The system includes the channel side
and source side. The source decoder can use the bit reliability which is the
information comes from channel to determine when to check EOB. Once the bit
reliability is lower than a threshold, we activate the searching EOB by the method in
the last section for the following bit-stream. If the hit flag is accessed from memory,
we think it as the EOB of a 4x4 block and thus we can decode the next block from the




actually bit position. Besides, the method is mainly for random error type.

Channel Source

< =
. >

Error Bitstream
Channel ' > FEC VLC Video Decoder
| Decoder

| Bit Reliability

Fig. 30 Block diagram of the decoder in the wireless transmission environment.
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Chapter 5

Simulation Result

From the proposed algorithm, block boundary prediction by EOBs is a
probability issue and EOBs are also VLC, therefore, the length of EOBs has effect on
the probability of prediction. On one hand, longer EOB codewords has lower
occurrence probability. On the other hand, longer EOB codewords are removed more
hardly and have more probability of being in the EOB library finally.

The probability of EOBs that meet length constraints are shown in Fig. 31 and

the calculation equation (2) is as follows:

# of EOBs(length > L) 5
Total # of EOBs @)

occurred probability =

All testing frames are QCIF format and the first 100 frames is the first 100 frames
from akiyo sequence, 200~299 frames 15 the first 100 frames from foreman sequence
and the last 100 frames is the last 100" frames from-foreman sequence. Fig. 32 shows
the probability of correctly found EOBsunder three different length constraints. The
simulation shows that probability is very close when length is 8 and 10 bits at least
and the probability of EOBs (L > 14) is lower.
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Fig. 31 Probabiljfy of Eéhs with l'éf;gth constraints.
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Fig. 32 Probability of EOBs that are correctly found in the bitstream.
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Table 6 and Table 7 show the memory space for different sets of EOBs. Different
grouping strategy makes memory space of group information and symbol quite
different. If we separate EOBs into groups by position of leading one (prefix), number
of groups is small while the maximum symbol address is large. In contrary, we

separate EOBs into groups by prefix and length condition, number of group is large

while maximum symbol address is much smaller than the previous one.

Table 6 Estimation of memory usage for different sets of EOBs

Grouping by prefix only
Length
8 10 14
number of group 17 17 17
max. symbol
160975 282645 639418
address
PCLC 29 29 29
symbol memory 1024*256 2048%*256 8192*128
base address 10 11 13
group information
17*(29+5+10) 17%(2945+11) 17*(29+4+13)
memory
Total 262892 525053 1049358

Table 7 Estimation of memory usage for different sets of EOBs.

Grouping by prefix and length

Length
8 10 14
number of group 13323 13034 9454
max. symbol
20760 20678 23640
address
PCLC (bits) 29 29 29
symbol
. 1024*32 1024*32 1024*32
memory(bits)
base address(bits) 10 10 10
group information
. 13323*(29+5+10) | 13034*(29+5+10) | 9454*(29+4+10)
memory(bits)
Total(bits) 618980 606264 439290
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Chapter 6
Hardware Architecture and

Implementation

6.1 Overview of Hardware Architecture

Fig. 33 shows the block diagram of proposed dual-mode memory-based VLC
decoder. There are mainly five components: 1) Controller, 2) Input Shift Buffer, 3)
Memory-based VLC Decoder, 4) Coefficient Buffer and 5) Level Decoder. The
controller assigns the control signals for each syntax element according to nC,
maxnumcoeff and enable signal frofin syntax parser. The controller is implemented by
a finite state machine (FSM). The memory-based VLC decoder can support CAVLC
and MPEG-2 coefficient decoding. Several ‘control signal are needed to control
internal memory and these control signal‘are directly from chip I/O ports so that the
content can be loaded into memory fof different video standards. The level decoder is
mainly composed by level prefix decoder, level suffix decoder and suffix length.
Level prefix is composed of a leading 1 detector and level suffix is decoded by getting
bits from bitstream buffer depending on level suffix size. The coefficients buffer
consists of 4x4 register array and is controlled by run index and level index such that
the decoded runs and levels can be put into buffer in order. The input bitstream buftfer
is integrated into higher hierarchical module in the H.264/MPEG2 video decoder,
which is proposed in [18]. Also, the design is also integrated into the H.264/MPEG2

video decoder in the previous video decoder [18].
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load group information enable

load table information enable 1
load symbol enable symbol 1 /1
load data Memory-based VLC
load address Decoder
4
5 symbol 2

length
5 . symbol end
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nC Symbol
Selector

5@ ff 4

Input Bitstream { 16 4
Buffer is CT is TZ is RB Buffey 1 indey’
- CAVLC COI.ltl‘OllCI‘ Controller LL_level index
Length |+— is TZ is LP is LS 4
Selector is RB
maxnumcoeff 5 12 Coefficient
- level Buffer
nC 5 input
is_cavlc bistream Level Decoder
level end
length

Fig. 33 Block diagram: controller, bitstream buffer, Memory-based VCL Decoder,

Level decoder , coefficient-buffer

6.2 Memory-based VLC Decoder

From the modified MTM algorithm, the VLC decoder has two categories for
storing group information and table information. They are selected by table index.
Each group information is extracted to compute offset. The final offset is determined
by the enable signal from group detectors. The tri-state buffer can viewed as the gate
for each group. One group has three data items: offset, base address and (length-1).
For each decoding time, only one set of data among all groups is passed by the
tri-state buffer while others are floated. After the set of data are passed, (length -1) is
returned to bitstream shift buffer in the other module and base address is added to
offset to compute symbol address. Finally, symbol memory is accessed to output

decoded symbol.
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input bitstream 16

length-1
Group Information
Memory 1 MTM_PCLCi
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Recovery
Group
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table index 5 4 4 8
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Memory 1 Group
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Table Information
Memory 2
decoded / Symbol
syrnbol 1 11 Memory 1

decoded 2 Symbol
symbol 2 7 Memory 2

Fig. 34 Total Block-Diagram of meémory-based VLC decoder

The stage partition of memory-based VLC decoder is briefly shown in Fig. 35
and cycle time of important signals are also shown. The register file generated by
memory compiler needs one cycle to read data thus the access of group information
and table information memory is viewed as the first stage. After the first stage, the
symbol address is known thus the access of symbol memory is the second stage.

The group information and table information memory can be accessed when the
table used to decode is known. The example of cycle time is shown as in Fig. 35. The
first cycle is reading of memory and address computation and the decoded symbol is
outputted in the second cycle. The in_valid signal represents the input bitstream and
table idx is valid. The symbol is valid until the second cycle. In the third cycle, next
valid data is sent after the controller received the Symbol_valid signal.
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input bitstream Bitstream
16
16
Memory Stage Memory Stage
table index Y
5 Group, Table | | Address 8 11 1 {
Information *ﬁ> Calculation Symbol o -
CLK
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Bitstream In 1 S 4 In7
Information
Memory out address:1 address 4 address 7
Symbol symbol 1 symbol 4 symbol 7
Memory out
Symbol symbol 1 symbol 4 symbol 7
Length-1 length 1 length 4 length 7
Symbol wvalid fT fT fT

Fig. 35 Stage and timing diagram

6.3 Improvement of throughput

According to the VLC property, shorter codewords occurred more frequently

than long codewords. According to observation of CAVLC decoding, decoding of
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Run_Before consumes many cycles for a block especially in low-QP video and most
codewords of Run_Before tables are short. Therefore, we assume that the short
codeword stores information of Run_Before such as length of codewords, symbols
and table index.

Fig. 36 shows the block diagrams of memory-based VLC decoder with cache.
Only some important signals are annotated for simplicity. Again, the controller send
the read_en and write_en signal to activate reading or writing of the cache. If cache
hit occurs, the memory-based VLC decoder is disabled and the decoded symbol and
length is from the cache. If cache missed, conventional VLC decoder is enabled and
the symbol and length are stored in the cache. Looking up cache can be done in one
cycle while decoding of memory-based VLC decoder need three cycles. As a result,

adding cache is a good method to improve the throughput of the whole decoding.

i CAVLC Controller
is RB
Zerosleft 4
/t write_en| readen
\ y
2 out symbol o
= Symbol
. >
in_length | )51t Codeword | 1, out length ‘
2 - Cache )|
in_symbol i \

» \ 4

2 ‘ > 0

f—— Length
> 1
N enable
16
in_bitstream Memory-based VLC
11, dec_symbol Decoder
4, dec_length

Fig. 36 Small Cache for Run (short codewords)

In addition to adding cache, one method is also proposed to improve throughput
further. In Fig. 35, the table index is known after the FSM is in Coeff_Token and
Total _Zeros states. From the conditions of table transition, the next table used to

decode can be known earlier than these two states. As a consequence, group
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information and table information can be accessed once the condition is known and
the conventional three-cycle stage is reduced to two-cycle stage as shown in Fig. 37.
In this figure, current Information Memory_out is known before in_valid is high or in
the same cycle as in_valid is high. Therefore, the pre-fetching mechanism can achieve
one symbol decoding every two cycles. This method can further improve throughput

compared to the original design in this thesis.

cax L[ L LU L L
in_valid J fT
table index 1 2 3 4 5 6 7 8 9
Bitstream In 1 In3 In 5 In 7
131 formation address 1 address 3 X address|5 X address|7
emory_out
Symbol symbol I X"symbol|3 X symbol |5 Xsymbol |7
Memory_ out
Symbol symbol |1 X symbol|3 X symbol|5 Xsymbol|7
Length-1 length|1 X length 3 X length|5 X length[7
Symbol_valid

Fig. 37 Cycle time of the pre-fetching method

6.4 Implementation Result

In hardware implementation, the group information for MTM PCLC and
(MTM_CL-1) are stored in registers because they are used in the same time.
Therefore, this leads to more gate count and less memory space. In summary, the

memory space is shown in Table 8.
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Table 8 Memory space for VLC decoder

Storage content Number of bits Physical space
Table information Valid bit and 16 x 23 x 4+ 16 x 23 x 4+
memory CL_diff 14x5x3 16x5x3
Group information Base address 16x23x 8+ 16x23x8+
memory 14x5x8 16 x5x8
C.Tand TZRB 256 x 11 256 x 11
Symbol memory Run-Level
C.T for CAVLC 16 x 7 16x7
Total 8114 bits 8224 bits

The gate count and power consumption of the designs are shown in Table 9.
From this table, the gate count of these design are similar. However, the power
consumption of memory-based VLC decoder with cache only is lower than that of
memory-based VLC decoder without cache. This shows that the cache storing
frequent codewords without replacement can achieve power reduction and improve
throughput. The throughput of foreman-and mobile sequences under different QP are
shown in Fig. 38 and Fig. 39, .fespectively.«From. these two figures, the proposed
design can achieve HD 720p even for very low QPs-under 100MHz. The design can

also meet requirement of HD1080p when‘operation frequency is 200MHz as shown in

Fig. 40 and Fig. 41.

Table 9 Gate count and power of different designs.

Gate Count Power Consumption( mW)
Memory-based VLC
154k 1.132
decoder
Memory-based VLC
17.2k 1.078
decoder + cache
Memory-based VLC
17.2k 1.017
decoder + pre-fetch
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Fig. 40 Throughput of decoding for Foreman sequence under 200MHz.
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Fig. 41 Throughput of decoding for Mobile sequence under 200MHz.
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Fig. 42 and Fig. 43 show power distribution of each main module for test pattern of
mobile and akiyo, respectively. The operating frequency is 100MHz. Memory1 stored
the base addresses and table information for large tables and Memory?2 stored the base

addresses and table information for small tables.
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B Memory?2 3% 7%

[J Symbol_meory
O Others

(b) QP = 34 for mobile
Fig. 42 Power chart of different module in mobile test frame for (a) QP=16, (b)
QP=34
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Fig. 43 Power chart of different module in akiyo test frame for (a) QP=16, (b) QP=34
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Table 10 shows the comparison of the proposed design. We can see that the proposed
design support two different entropy decoding, i.e. MPEG2 and H.264. Besides, the
proposed design has error resilience feature for application of wireless video

transmission. These two features are quite different from the other designs.

Table 10 Comparison of other designs and proposed design

[3] NCKU
[1] NCCU [2] NCU
Trans. on Proposed
TCSVT’ 06 ASSCC’07 ] ]
Multimedia‘“08
Process 0.18um 0.18um 0.18um 0.09um
Technique | Hardwired Hardwired Hardwired Memory-based
Parallel Multi-symbol Modified level o
Features Error resilience
LUT for level detector
Max
N/A 102MHz 213MHz 200MHz
Frequency
Gate
13.1K 13.2K 6.7K 17.2K
Count
Memory
] N/A N/A N/A 8114 bits
(bits)
Target HD1080, HD 1080, HD1080,
HD1080,301fps
Format 301fps 301ps 301fps
. MPEG- H.264
Multi-mode H.264 (CAVLC) MPEG-2, H.264
1/2/4 (CAVLC)
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Chapter 7

Conclusion and Future Work

As we know, entropy decoder of MPEG-2 and H.264/AVC are very different
from each other, such as decoding flow, symbol format and table transition. A
memory-based VLC decoder which support dual-mode vide format (H.264/AVC) and
MPEG-2 with error robustness is proposed in the thesis. The thesis focuses on
improvement of memory efficiency for conventional VLC decoder first. Although
MPEG-2 part is not yet exactly implemented in the decoder, only little overhead like
multiplexers and additional coefficients buffers are needed when MPEG-2 is required
because the memory utilization and size are considered in this design. For CAVLC
decoding, throughput is limited by dependency between syntax elements, hence,
pipeline stage is not adequate for this decoding. However, the decoding of MPEG2
can be pipelined because there symbols are ‘independent. The VLC decoder is
synthesized under 100MHz and-¢an [be promised to support HD720p even under low
QPs. The design can also meet requirement of HD1080p when operation frequency is
200MHz.

In addition, a novel error “resynchronization” is proposed in the thesis. This
method can be combined with conventional memory-based VLC decoding without
extra bandwidth overhead. In this scheme, the EOBs are constructed with length
constraint. The flow of EOB construction is proposed to reduce off-line simulation
time and the analysis of the EOB probability is also presented. After EOB library is
set, group-based decoding of VLC is applied to determine if EOB are found.
Compared to trellis-based JSCD or soft-input VLC decoding, this method makes
hardware implementation can be done and much less complexity.

There is some works can be developed further for this design. First, integrate
MPEG-2 decoding circuit into current design to achieve fully scalability. Second,
some other power reduction schemes are necessary for mobile applications. Third,
from H.264 CAVLC Run_Before tables, we can see that many codewords is
composed of 1’s string, thus, we can use this characteristic to improve boundary
prediction probability. Beside, this can also help to reduce size of EOB library thus
the memory size for error resynchronization information. Finally, the design is

appended channel model to build the whole wireless transmission system.
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