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摘摘摘摘        要要要要    

 

本論文提出一簡單且快速的處理器模型技術，此技術採用將時序

模型分割為功能與時序兩部份的概念，在本論文中，此二部份分別稱

為功能核心與時序外殼。功能核心實際上為一無時序、高速的指令集

模擬器，適合軟體開發；而時序外殼則提供了額外的時序資訊協助模

擬週期精確的硬體行為。當一使用相同指令集的處理器家族加入了新

成員，依照提出的模型技術，我們只須要替換時序外殼，沿用跟其他

成員相同的功能核心，即可產生此新成員的模型。這技術不僅能確保

各模型的功能與規格吻合，並且能有效縮短建立模型花費的時間。在

本論文中，我們將此技術應用在使用相同指令集架構的一 ARM7-like

與一 ARM9-like 處理器，並在實驗結果中顯示，本論文提出的雙層式

週期精確模型較一般的 RTL 模型模擬速度平均快上約 30 倍。 
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ABSTRACT 

 

This thesis proposes a simple and fast processor modeling method utilizing the 

concept of partitioning a model into functional and cycle-based timing parts, which 

are named functional kernel and timing shell respectively in this thesis. The kernel is 

an untimed but high-speed instruction set simulator (ISS) and is suitable for software 

development; while the timing shell provides additional cycle-based timing details for 

cycle-accurate hardware behavior. When a new processor member is added to the 

family, it demands only a new cycle-based timing shell because the kernel is identical 

to that of its ancestors sharing the same instruction set architecture (ISA). It not only 

helps ensure functional consistency but significantly reduces the model development 

time. We take two processors with a same ISA, an ARM7-like one and an ARM9-like 

one, as our modeling examples to demonstrate the feasibility of the proposed 

technique. Finally, the experimental results show that, on average our two-layered 

cycle-accurate model is about 30 times faster than the RTL model in simulation.  
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Chapter 1 Introduction 

  High-level behavioral models are widely demanded in recent ESL design 

methodologies [1]. They are usually in different abstraction views for different 

purposes as shown in Table 1 [2]. In general, a model with higher abstraction view 

has faster simulation speed and relatively shorter development time so that it is 

suitable for software development. On the other hand, one with lower abstraction 

view is slower in simulation and takes more time to be elaborated. But it can provide 

more accurate timing details about the hardware behaviors, which is extremely useful 

for system and hardware verification. 

 

Table 1. Different abstraction views 

View Accuracy and Purpose 

Functional 

View (FV) 

Event ordering. 

Functional specification and algorithm development. 

Programmer’s 

View (PV) 

Bit accurate. 

Software development and verification. 

Architecture 

View (AV) 

Cycle approximate. 

Architecture exploration and verification. 

Verification 

View (VV) 

Cycle accurate. 

Hardware verification. 

System level verification. 

 

1.1 Motivation 

In modern ESL design flows, software and hardware are under development in 

parallel so that a set of models in different levels of abstraction views are required 

throughout the design process. Conventionally, each member of a processor family 

needs its own complete set of those models though all members actually share a same 

ISA. Developing all those models for every single processor certainly takes 
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significant time.  Moreover, if those models are developed separately, functional 

behaviors among different processors in a same family may likely be variant, which 

requires additional debugging efforts to achieve overall consistency. 

However, in general, processors in a same family produce the identical output, in 

terms of the contents of user-visible registers, output ports and memory, instruction by 

instruction since they all share a same ISA. The only difference among them is the 

cycle timing behavior due to their different implementation details. For example, two 

embedded processors ARM7TDMI and ARM9TDMI both implement the ARMv4T 

ISA, while the former has a three-stage pipeline and the latter has a five-stage one. 

This fact suggests a great idea that a cycle-accurate model can be partitioned into two 

layers, an inner untimed functional kernel and an outer cycle-based timing shell. The 

functional kernel is merely elaborated once and can then be shared by all processors 

within a family. Each processor only needs its own specific timing shell. In this way, 

not only the model development time can be greatly reduced but also the functional 

consistency among processors is automatically preserved. 

 

1.2 Contribution 

In this thesis, we propose an efficient two-layered architecture for cycle-accurate 

processor modeling, in which the untimed functional kernel is only responsible for 

generating correct values of user-visible registers, output ports and memory data for 

given instructions, while the timing shell is in charge of interacting with the external 

system through the cycle-accurate model interface and updating those user-visible 

values provided by the functional kernel at the right time (cycle). Hence, when 

introducing a new processor member, it is no longer necessary to develop its complete 

model but only its specific timing shell. Figure 1 points out the idea. 
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According to an existing work [3], the simulation performance of PV and AV 

models in SystemC are about 500 and 18 times better than that of RTL model. 

However, the performance of VV model is not addressed in [3]. Using the newly 

proposed technique, we have successfully created the PV model (i.e., functional 

kernel) and VV models (i.e., kernel + timing shell) for an ARM7TDMI-like core and 

an ARM9TDMI-like core in SystemC. The experimental results show that our VV 

model, which is cycle-accurate, can simulate about 30 times faster than RTL model. 

That is, our VV model runs even faster than the cycle-approximate AV model in [3]. 

Meanwhile, our PV model can run about 860 times faster than RTL model. 

 

 

Figure 1. Models partitioned into a functional kernel and timing shells 

 

1.3 Thesis Organization 

  The rest of the thesis is organized as follows: Chapter 2 presents the two-layered 

architecture for the cycle-accurate model. In Chapter 3, the implementation concerns 

and details are discussed. The extensive experimental results are reported in Chapter 

4. In the end, the concluding remarks for the thesis are presented in Chapter 5. 
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Chapter 2 Preliminaries 

This chapter briefly characterizes the preliminaries of our works. Section 2.1 

introduces SystemC, which is used as the modeling language in this thesis. Section 

2.2 talks about the timing behaviors of the in-house ARM7TDMI-like and 

ARM9TDMI-like processors that are modeled for the experiments. In the end, Section 

2.3 lists some instruction cycle operations of both processors. 

2.1 SystemC 

SystemC provides hardware-oriented constructs based on libraries of C++ context 

and is easy for the designer to build models for analysis or verification [2]. It also 

supports varieties of different abstraction level especially in the region from PV to 

VV. In this thesis, we apply SystemC as modeling language and target on the PV 

model and VV model which are designed for software analysis and hardware 

verification respectively. Figure 2 shows the basic components of a common SystemC 

model. 

 

port port

portModule CModule B

process processchannel

channel

c
h
a
n
n
e
l

Module A

 

Figure 2. The basic components of SystemC model 
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� Ports: Ports may be input, output, or inout ports, used for communication with 

other modules. 

� Processes: Processes describe the functionality of module. A module may have 

one or more processes. 

� Modules: A module can contain one or more hierarchical sub-modules. 

� Channels: Channels are used for the communication of processes and the 

sub-modules. 

 

2.2 ACARM7 vs. ACARM9 

In this thesis, we build models for an ARM7TDMI-like and an ARM9TDMI-like 

in-house processor, which are called ACARM7 and ACARM9 respectively, based on 

the proposed modeling method. They are general-purposed 32-bit RISC processors 

both apply ARM v4T instruction set architecture but have different pipeline stages, 

memory system, and timing behaviors. The ARM7TDMI-like processor is 3-stage 

pipelined while the ARM9TDMI-like processor has a 5-stage pipeline, as shown in 

Figure 3. 

 

 

Figure 3a. The pipeline of in house ARM7TDMI-like processor 
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Figure 3b. The pipeline of in house ARM9TDMI-like processor 

 

In the part of memory system, the ACARM7 processor employs the von Neumann 

memory architecture in which the transferring of instructions and data between 

processor core and memory actually use the same ports and signals. Due to this, the 

ACARM7 core cannot access instruction and data in the same clock cycle as shown in 

Figure 4. On the other hand, the ACARM9 processor has a Harvard memory 

architecture which has separate sets of ports for instruction and data and can access 

them at the same time.  

 

 

Figure 4. A store instruction on ACARM7 pipeline 
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Because of the varied pipeline stages, memory architecture and implementation of 

other functional blocks, the timing behaviors of ACARM7 and ACARM9 processor 

are quite different although they have the same instruction set architecture. 

 

2.3 Instruction Cycle Operation 

Before building a cycle-accurate processor model, we have to know about the cycle 

operations of each instruction in all condition including special cases such as data 

hazard or competition for hardware resource, and that those information should be 

provided by the processor designer. The information has to tell how many cycles the 

instruction needs to be executed, in which cycle the processor core can fetch the next 

instruction, and so on, then can we know when the computed results should be 

updated to register or output signals. Table 2 gives an example which indicates the 

operations of each execution cycles in normal case and in data hazard case for MUL 

instruction executed by ACARM9 processor. 

 

Table 2. Cycle timing for MUL executed by ACARM9 

Cycle IA InMREQ, ISEQ INSTR 

1 pc+12 I cycle [pc+8] 

2 pc+12 S cycle  
Normal 

Case 

   [pc+12] 

1 pc+12 I cycle [pc+8] 

2 pc+12 I cycle  

3 pc+12 S cycle  

Data 

Hazard 

   [pc+12] 
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Chapter 3 Model Architecture 

3.1 Overview 

To make the proposed layered architecture perfectly work, it is essential to properly 

describe the role of each layer and clearly define the interface between layers. Here, 

the functional kernel acts as 1-step untimed instruction set simulator (ISS), while the 

timing shell provides cycle timing details and communicates with the outside world. 

These two layers interact with each other by two mechanisms named command packet 

and result packet. The proposed two-layered architecture for cycle-accurate model is 

shown in Figure 5. 

 

 

Figure 5. Two-layered architecture for cycle-accurate model 

 

In the rest parts of this chapter, section 3.1 will introduce the functions of layers, 

the functional kernel and the timing shell; the interfaces between two layers, 

command packet and result packet as drawn in Figure 5, are described in section 3.2; 

and the flow of entire model will be presented in section 3.3 finally. 
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3.2 Function of Each Layer 

The functional kernel, which is the inner layer, is actually an untimed instruction 

set simulator. Without any ideas about input and output ports which might be timing 

related, the functional kernel just fetch an sequential/non-sequential instruction 

according to the commands received, and then decodes and executes the instruction to 

generate correct result values of registers or output ports base on the instruction set 

architecture completely. Note that the functional kernel is only ISA-dependent since it 

has nothing to do with the details of pipeline implementation. The new values of 

registers and output ports and decoded information of instruction generated by the 

functional kernel need more advanced handling to become timing behaviors of 

cycle-approximate or cycle-accurate processor model observable to outside 

environment. 

The timing shell, which is the outer layer, takes charge of the communications with 

the outside environment meaning that it has to sample the input signals and to update 

the output signals in correct clock cycle to present the pipeline details and model 

behaviors faithfully. As a result, the timing shell is in responsible in the control of 

modeling flow, that is, it needs to decide whether to invoke the functional kernel to 

execute a new instruction or not in the current clock cycle and then schedule in which 

clock cycle the output signals and registers should be updated caused by the 

instruction executed according to the result information sent back from the functional 

kernel. The detail modeling flow of the timing shell will be introduced in the final 

section of this chapter. 
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3.3 Interfaces between Layers 

As shown in Figure 5, the timing shell and the functional kernel communicate with 

each other using command packet, which is sent to the functional kernel from the 

timing shell, and result packet, which is sent in the reverse way. This sector will 

reveal the contents and function of the packets. 

The command packet is sent by the timing shell to request the functional kernel to 

fetch an instruction and then to execute it. There are two types of command packet, 

step packet and interrupt packet. Step packets are issued during normal program 

execution flow. A step packet orders the functional kernel to fetch the next 

instruction, execute it, update the processor state, and return a result packet. 

Alternatively, if an external reset or interrupt arises, an interrupt packet is issued 

instead. An interrupt packet informs the functional kernel to redirect its instruction 

fetch to the corresponding exception handler, execute it, update the state, and return 

the results. In every processor non-stall cycle, the timing shell always issues a 

command packet and the functional kernel always executes the specified instruction 

and returns the corresponding result packet. The timing shell will not send a command 

packet during a clock cycle if no instruction fetch is needed due to pipeline stall or a 

branch and thus the functional kernel won’t take any actions including returning a 

result packet. 

The result packet sent from the functional kernel contains a part of the instruction 

execution outcomes that are necessary for the timing shell to properly update the 

output signals. It contains three kinds of information which are instruction 

information, register information, and update information, as listed in Table 3. The 

instruction information indicates what instruction has just been executed by the 

functional kernel so that the timing shell knows the exact sequence about when to 
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update the output values in cycle-by-cycle fashion. The register information contains 

a list of registers being read and/or written by the executed instruction so that the 

timing shell can correctly detect all kinds of hazards and take proper forwarding or 

stall operations. It implies that the timing shell has to know the pipeline details and 

that is why every processor needs its own timing shell. The update information holds 

updated values so that the timing shell can properly refresh the related output signals. 

In brief, under the proposed two-layered architecture, the combination of untimed 

functional kernel and timing shell can successfully act as a cycle-accurate model for 

sure. 

 

Table 3. Contents of result packet 

Group Contents 

Instruction 

Information 

Types of instruction. 

For cycle count calculation 

Register 

Information 

Registers been read and/or written. 

For hazard detection. 

Update 

Information 

New values 

For output signals updates. 

 

3.4 Modeling Flow 

The modeling flow controlled by the timing shell is shown in Figure 6. In the 

beginning of every clock cycle, the timing shell samples input signals from the 

outside of the model, which include reset, interrupts, instruction bus, data input bus, 

and so on. Then the commander in the timing shell will determine whether to send a 

command packet to the functional kernel based on the sampled input signals and the 

current processor states. When the result of an executing instruction is demanded, it 

queries the functional kernel by issuing a command packet as the path marked “Y” in 
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the figure. After receiving a command packet, the functional kernel, which is actually 

an ISS, computes then returns the instruction execution outcomes by sending a result 

packet back to the timing shell. A mechanism called scheduler, which is the most 

important part of timing shell, receives the result packet and makes a schedule which 

points out in which cycle the changes in the processor states, registers, and output 

signals caused by the instruction should be updated to imitate the timing behaviors of 

the model. Finally, an updater will updates those changes to the model outputs, 

containing user-visible registers, address bus, data output bus, and so on, according to 

the schedule. On the other hand, if no command packet needs be sent, i.e. an stall 

cycle, the flow just goes to the step of updating as the path marked “N” in the figure. 

 

 

Figure 6. Modeling flow in the timing shell 

 

Note that the updater always updates changes whether in a stall cycle or a non-stall 

cycle. Since the changes of model outputs caused by an instruction may be in different 

clock cycle, a stall cycle means not no change happening. 
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The figure below shows an example of a proposed 3-stage ACARM7 processor 

model executing three arithmetic instructions without any data hazard. The 

instructions are computed by the functional kernel as soon as in their pre-fetch stage 

and the results are scheduled immediately by the timing shell. In each cycle the timing 

shell will update the model outputs according to the schedule such as a value updating 

of r1 in cycle i+4 for example. 

 

 

Figure 7. An example of modeling flow 
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Chapter 4 Model Implementation 

This chapter describes the detail implementation of the proposed two-layered 

model, including the functional kernel and the timing shell. Some examples will also 

be presented later to show that how the timing shell deals with different pipeline 

issues. 

 

4.1 Functional Kernel 

As mentioned, the functional kernel actually acts as an untimed ISS. Thus the 

primary components inside are instruction execution engine, program counter, register 

file, and mirrored instruction/data memory, as depicted in Figure 8. The instruction 

executing engine is responsible for instruction decoding and datapath operations. The 

entire functional kernel is built solely based on the ISA specification and absolutely 

no processor-dependent information can be referred. That is the key reason why the 

kernel can be safely shared by every processor implementing the same ISA. 

 

 

Figure 8. The components of functional kernel 
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Note that the contents of registers inside the kernel cannot be directly accessed 

outside the model. Due to the untimed nature, they usually get updated earlier than 

they should be in the model outside as mentioned in the previous chapter. That is 

exactly why the timing shell is required for performing proper timing synchronization. 

Because the instructions and data from memory outside the model might be timed 

and not immediately available, the functional kernel, which computes data as soon as 

an instruction is fetched, might not get correct data from outside. To solve it, we 

introduce mirrored instruction and data memory for the functional kernel to access. 

The word “mirrored” means that the two memory have the same initial and final 

contents with those of the outside instruction and data memory even thought there 

might be some mismatches during simulation due to different timing domains. Before 

each simulation, the initial values of instruction and data need to be loaded into the 

mirrored memory. 

To maximize the model performance, the functional kernel is implemented in pure 

C++ without invoking any routines provided by SystemC libraries [4]. It is applicable 

since the functional kernel is completely untimed. It is also worth mentioning that the 

kernel itself can be promoted as a PV model or even a standalone ISS just by adding a 

very simple software wrapper. 

 

4.2 Timing Shell 

In contrast to the functional kernel, the timing shell is completely nothing to do 

with the instruction evaluation. Its job is to properly communicate with the external 

system under a target abstraction view. The main tasks of the timing shell are: 

sampling the external inputs to identify incoming instructions and interrupts, querying 

the functional kernel and getting the execution results, and updating the outputs at the 



 16

right time based on the desired abstraction view. It can directly pass the results from 

the kernel to the model outside just as a PV model does; or it can perform certain 

scheduling to make the model behave as a cycle-approximate model (AV) or even a 

cycle-accurate model (VV). 

 

 

Figure 9. The components of timing shell 

 

Figure 9 presents the architecture overview of the timing shell. At the beginning of 

a cycle, the timing shell checks the processor state and interrupt inputs to determine 

whether this cycle should be stalled. For a non-stall cycle, in which the processor 

needs to execute a new instruction, the shell issues a command packet (step or 

interrupt) to the kernel and receives a result packet from the kernel. Then a scheduler 

inside the shell is responsible for correctly scheduling output update events based on 
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the information carried in result packets. For a stall cycle, on the other hand, there 

would be no activity between the kernel and the shell. 

 

4.2.1 Time Wheel 

In the previous chapter, we have introduced the modeling flow of the timing shell 

and the mechanism called “scheduler” used to make an updating schedule, which is 

actually a time wheel table in the timing shell as shown in Figure 9. The time wheel is 

adopted to record the future update events in coming cycles. Each time slot in a time 

wheel represents a specific real cycle in the system and carries the necessary 

information to properly update the outputs in that cycle. In addition, it also records 

whether the cycle should be stalled possibly due to a branch instruction or a detected 

hazard. The information mentioned above is written into the time wheel by the 

scheduler. It is not uncommon that update events carried by a result packet are placed 

into several slots since virtually all processors nowadays are pipelined. As time 

advances, the time wheel also moves one cycle ahead, the events recorded in the most 

recent slot are carried out, and thus the corresponding output signals are updated 

accordingly. 

A time wheel may looks like in Figure 10. Each row in the table means a time slot 

and contains information about whether to invoke the functional kernel, which is 

indicated by the first element, and information about which model output needs to be 

updated and their new values. A pointer which tells the current time slot will move 

down circularly in every clock cycle. The commander and the updater can then access 

the current time slot in the time wheel for the information they need. 
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Figure 10. An example of time wheel 

 

4.2.2 Scheduler 

The scheduler is another key component inside the timing shell. It must know all 

implementation details, such as instruction cycle timing, actions taken in each pipeline 

stage, control/data dependency among various types of instructions, hazard detection 

principles, and forwarding/stall mechanism, of the modeled processor. That is, it must 

have complete knowledge about exactly how in reality the modeled processor 

schedules all output update events in cycle-accurate fashion. 

Taking a simple arithmetic instruction executed on 5-stage ACARM9 processor as 

example, if the instruction is in the pre-fetch stage during cycle i, then the result 

should be write back to the register in cycle i+5, as shown in Figure 11a. 

 

 

Figure 11a. Scheduling result of an arithmetic instruction 
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IA: 0x20

R2: 0x57

The address of the arithmetic 

instruction
i

i+1

i+2

i+3

i+4

i+5

The result is delayedR2: 0x57i+6
 

Figure 11b. Scheduling result of an arithmetic instruction with data hazard 

 

In fact, the timing of an instruction may be affected by other instructions in some 

situations such as data hazard or resource competition. If the previous instruction is a 

load instruction whose result will be used by the arithmetic instruction, then a data 

hazard happens and the result of the arithmetic instruction will be delayed 1 cycle as 

in Figure 11b. To correct compute the effect caused by data hazard and resource 

competition, the scheduler needs to reserve the information of a number of previous 

instructions such as instruction type and registers used. 

 

4.2.3 More Examples 

Figure 12 gives an example which shows how a branch instruction (located at 

address 100 with target address 120) gets executed by an ACARM9 cycle-accurate 

model created by the proposed technique. A branch instruction is not able to stop the 

processor from fetching the next two consecutive instructions because it cannot 

change the instruction fetch flow until the third pipeline stage. However, these two 

fetched instructions are eventually invalidated by the processor, which results in two 

stall cycles. 
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Figure 12. The execution steps of a branch instruction 

 

As shown in Figure 12, the branch instruction is pre-fetched in cycle i. Because it is 

a valid instruction, the shell issues a command packet and gets a result packet in 

return. Then three events describing that the values on the instruction address bus (IA) 
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should be 104/108/120 for cycle i+1/i+2/i+3 are inserted into the time wheel. In 

addition, both cycle i+1 and i+2 are marked as stall cycles as explained. It indicates 

that in those two cycles the instruction is still fetched as usual in the first place. But 

the commander instantly finds it invalid based on the mark recorded in the time slot 

and therefore no longer sends it to the kernel for execution. Notice that even though a 

slot is marked as a stall cycle, there could still be some output update events, which 

are placed in there from earlier cycles. Hence, even in a stall cycle, the shell still has 

to update those model outputs accordingly though there is no request to the kernel and 

of course no response from the kernel in that specific cycle. 

Figure 13 gives another example of a load instruction, which locates in instruction 

address 200, leading an arithmetic instruction in address 204 and there exists data 

hazard between them. The load instruction is pre-fetched in cycle i and its result, 

which modifies R1 to the value 100, is scheduled in WB stage that is the time slot 

representing cycle i+5. After the load instruction is executed, the scheduler reserves 

the information about this instruction for the timing computation of the following 

instructions. In cycle i+1, the arithmetic instruction is pre-fetched and the scheduler 

detects a data hazard due to the previous load instruction according to the information 

it just reserved and marks an stall cycle for the 2
nd
 ID stage of the arithmetic 

instruction which is the time slot representing cycle i+4. Besides, the result of the 

arithmetic instruction, which should modifies R2 to the value F in cycle i+6, is also 

delayed by 1 cycle to the time slot representing cycle i+7. Then the model keeps go 

through without stall cycles until cycle i+4, in which a stall mark is detected by the 

commander. In the stall cycle, the functional kernel won’t be invoked to fetch any 

new instruction and there won’t be updating of instruction address (IA) as a result.  
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Figure 13. The execution steps of two instruction existing data hazard 
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Finally in cycle i+5, the result of the load instruction is updated and because no 

stall mark is detected in the cycle, the timing shell resumes the execution of the 

functional kernel to fetch the next instruction. 
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Chapter 5 Experimental Results 

  To evaluate the performance of the models created by the proposed technique, we 

have implemented PV models and VV models using SystemC for an in-house 

three-stage ARM7TDMI-like processor and an in-house five-stage ARM9TDMI-like 

processor, which is ACARM7 and ACARM9, and compare these models against their 

Verilog RTL counterparts. The benchmark programs adopted in our experiments are 

part of MiBench [5], which is a popular benchmark suite aiming at general embedded 

applications. Seven programs from varied categories, as shown in Table 4, are 

selected for extensive analysis and comparisons, and their execution cycle counts for 

ACARM7 and ACARM9 are also attached.  

 

Table 4. Benchmark programs used in experiments and their cycle counts 

Category Benchmark Program ACARM7 ACARM9 

bitcount 9088644 7996554 
Auto/Industrial 

qsort 12075954 12366045 

Consumer jpeg 8796271 7356096 

Office stringsearch 2916981 2503915 

Network dijkstra 12075954 9883181 

Security sha 16815477 13308257 

Telecomm. CRC32 10011396 8101486 

 

Meanwhile, Cadence NC-Verilog (NCV) is chosen as the simulator for RTL 

models. All PV and VV models are compiled using SystemC 2.2.0 library offered by 

OSCI [6]. Additionally, when verifying an RTL model, it is highly desirable to have a 

golden cycle-accurate model that can be co-simulated within the same environment 

for fast on-the-fly instant result comparisons. Hence, after adding Verilog wrappers, 
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our VV models are also evaluated under Cadence NCSC co-simulation environment. 

The experimental results are presented in Table 5 and 6. 

 

Table 5. Performance of ARM7TDMI-like models 

 RTL@NCV VV@NCSC VV@OSCI PV@OSCI 

bitcount 1 11.43 31.76 773.53 

jpeg 1 11.45 31.82 868.97 

CRC32 1 10.23 29.07 858.06 

dijkstra 1 10.94 31.51 968.57 

qsort 1 8.51 23.94 727.08 

sha 1 10.53 29.55 808.93 

strsearch 1 11.86 31.32 1037.50 

Avg. 1 10.71 29.85 863.23 

 

Table 6. Performance of ARM9TDMI-like models 

 RTL@NCV VV@NCSC VV@OSCI PV@OSCI 

bitcount 1 11.77 31.17 784.85 

jpeg 1 12.25 32.80 816.67 

CRC32 1 11.92 31.71 893.75 

dijkstra 1 11.59 31.49 960.00 

qsort 1 10.86 27.64 808.51 

sha 1 11.44 30.34 796.43 

strsearch 1 10.75 34.82 1075.00 

Avg. 1 11.51 31.42 876.46 
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The performance of each configuration given in the tables is normalized to that of 

RTL simulation (RTL@NCV). The results suggest that on average the VV model 

created by the proposed modeling technique is about 30 times faster than the RTL 

model in a pure SystemC environment (VV@OSCI). Note that it is even faster than 

the cycle-approximate PV model, which is only 18 times faster, presented in [3]. 

Moreover, the VV model is about 11 times faster than the RTL model in a hardware 

co-verification environment (VV@NCSC). It apparently confirms that building a VV 

model in a higher level language with higher abstract view (SystemC) is a fairly good 

idea in terms of simulation performance, verification, and model encryption. 

Here, we emphasize again that the same functional kernel is actually used for the 

PV models of both processors and is implemented without invoking any routines 

provided by SystemC libraries for achieving highest possible performance. The 

experimental results report that on average the PV model can even simulate almost 

three orders faster than the RTL model (PV@OSCI). This makes our PV model very 

attractive in software development and system-level verification. 
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Chapter 6 Conclusions and Future Works 

Models in different abstraction views are widely demanded in current ESL design 

methodology for analysis, development, and verification of software and/or hardware. 

It is not uncommon that several models with varied abstraction levels are needed in a 

project. How to correctly build these models in a short time is becoming a critical 

issue today. 

In this thesis, we propose a processor modeling technique that partitions the 

cycle-accurate model into two layers, the functional kernel and the cycle-based timing 

shell, where the functional kernel acts as an untimed ISS (or a PV model) while the 

timing shell provides detailed cycle-based timing information. In this way, the 

functional kernel can be shared within an entire processor family with a same ISA, 

and only a customized cycle-based timing shell is required for a processor. Therefore, 

not only the model development time can obviously be reduced but also the chances 

of functional inconsistency among processors can be greatly minimized. 

Finally, the experimental results reveal that our VV model is 30/11 times faster 

than the RTL model in a SystemC/co-simulation environment, respectively. Our 

cycle-accurate VV model is even faster than the cycle-approximate AV model 

presented in an existing art. Our PV model can simulate about 860 times faster than 

the RTL model. These results repeatedly highlight the efficiency of models created by 

the proposed two-layered modeling technique. For the current version of model, the 

interrupts and memory aborts, which may need to flush the execution result in earlier 

stage, can’t be simulated by the proposed modeling architecture and they will be our 

advanced research in the future works. 
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