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ABSTRACT

This thesis proposes a simple and fast.processor modeling method utilizing the
concept of partitioning a model into functional and cycle-based timing parts, which
are named functional kernel and timing shell respectively in this thesis. The kernel is
an untimed but high-speed instruction set simulator (ISS) and is suitable for software
development; while the timing shell provides additional cycle-based timing details for
cycle-accurate hardware behavior. When a new processor member is added to the
family, it demands only a new cycle-based timing shell because the kernel is identical
to that of its ancestors sharing the same instruction set architecture (ISA). It not only
helps ensure functional consistency but significantly reduces the model development
time. We take two processors with a same ISA, an ARM7-like one and an ARM9-like
one, as our modeling examples to demonstrate the feasibility of the proposed
technique. Finally, the experimental results show that, on average our two-layered

cycle-accurate model is about 30 times faster than the RTL model in simulation.
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Chapter 1 Introduction

High-level behavioral models are widely demanded in recent ESL design
methodologies [1]. They are usually in different abstraction views for different
purposes as shown in Table 1 [2]. In general, a model with higher abstraction view
has faster simulation speed and relatively shorter development time so that it is
suitable for software development. On the other hand, one with lower abstraction
view is slower in simulation and takes more time to be elaborated. But it can provide
more accurate timing details about the hardware behaviors, which is extremely useful

for system and hardware verification.

Table 1. Different abstraction views

Functional | Event ordering. EL2

View (FV) | Functional spcciﬁcaition and algorithm development.

Programmer’s | Bit accurate!

View (PV) Software development and verification.

Architecture | Cycle approximate.

View (AV) | Architecture exploration and verification.

. . Cycle accurate.
Verification

View (VV)

Hardware verification.

System level verification.

1.1 Motivation

In modern ESL design flows, software and hardware are under development in
parallel so that a set of models in different levels of abstraction views are required
throughout the design process. Conventionally, each member of a processor family
needs its own complete set of those models though all members actually share a same

ISA. Developing all those models for every single processor certainly takes



significant time. Moreover, if those models are developed separately, functional
behaviors among different processors in a same family may likely be variant, which
requires additional debugging efforts to achieve overall consistency.

However, in general, processors in a same family produce the identical output, in
terms of the contents of user-visible registers, output ports and memory, instruction by
instruction since they all share a same ISA. The only difference among them is the
cycle timing behavior due to their different implementation details. For example, two
embedded processors ARM7TDMI and ARM9TDMI both implement the ARMv4T
ISA, while the former has a three-stage pipeline and the latter has a five-stage one.
This fact suggests a great idea that a cycle-accurate model can be partitioned into two
layers, an inner untimed functional kernel and an outer cycle-based timing shell. The
functional kernel is merely elaborated once and ¢an then be shared by all processors
within a family. Each processor-only needs its own specific timing shell. In this way,
not only the model development time-¢can-be-greatly reduced but also the functional

consistency among processors is automatically preserved.

1.2 Contribution

In this thesis, we propose an efficient two-layered architecture for cycle-accurate
processor modeling, in which the untimed functional kernel is only responsible for
generating correct values of user-visible registers, output ports and memory data for
given instructions, while the timing shell is in charge of interacting with the external
system through the cycle-accurate model interface and updating those user-visible
values provided by the functional kernel at the right time (cycle). Hence, when
introducing a new processor member, it is no longer necessary to develop its complete

model but only its specific timing shell. Figure 1 points out the idea.



According to an existing work [3], the simulation performance of PV and AV
models in SystemC are about 500 and 18 times better than that of RTL model.
However, the performance of VV model is not addressed in [3]. Using the newly
proposed technique, we have successfully created the PV model (i.e., functional
kernel) and VV models (i.e., kernel + timing shell) for an ARM7TDMI-like core and
an ARMI9TDMI-like core in SystemC. The experimental results show that our VV
model, which is cycle-accurate, can simulate about 30 times faster than RTL model.
That is, our VV model runs even faster than the cycle-approximate AV model in [3].

Meanwhile, our PV model can run about 860 times faster than RTL model.

Processor Family Processor Family
Functional Functional
Model Model Kernel Kernel
A B Timing Timing
C Shell A Shell B
Functional Functional
Model Model Kernel Kernel
C D Timing Timing
Shell C Shell D

Figure 1. Models partitioned into a functional kernel and timing shells

1.3 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 presents the two-layered
architecture for the cycle-accurate model. In Chapter 3, the implementation concerns
and details are discussed. The extensive experimental results are reported in Chapter

4. In the end, the concluding remarks for the thesis are presented in Chapter 5.



Chapter 2 Preliminaries

This chapter briefly characterizes the preliminaries of our works. Section 2.1
introduces SystemC, which is used as the modeling language in this thesis. Section
2.2 talks about the timing behaviors of the in-house ARM7TDMI-like and
ARMITDMI-like processors that are modeled for the experiments. In the end, Section

2.3 lists some instruction cycle operations of both processors.

2.1 SystemC

SystemC provides hardware-oriented constructs based on libraries of C++ context
and is easy for the designer to build models for analysis or verification [2]. It also
supports varieties of different abstraction level especially in the region from PV to
VV. In this thesis, we apply SystemC-as modeling language and target on the PV
model and VV model whichzare designed. for software analysis and hardware

verification respectively. Figure:2 shows.the basic components of a common SystemC

model.
Module A
port channel + port
(@]
>0
Q
-]
>
@
|
Module B channel Module C port

Figure 2. The basic components of SystemC model



® Ports: Ports may be input, output, or inout ports, used for communication with
other modules.

® Processes: Processes describe the functionality of module. A module may have
one or more processes.

® Modules: A module can contain one or more hierarchical sub-modules.

® Channels: Channels are used for the communication of processes and the

sub-modules.

2.2 ACARM7 vs. ACARM9

In this thesis, we build models for an ARM7TDMI-like and an ARM9TDMI-like
in-house processor, which are called ACARM7 and. ACARMY respectively, based on
the proposed modeling method. They are general-purposed 32-bit RISC processors
both apply ARM v4T instruction set architecture ‘but have different pipeline stages,
memory system, and timing behaviors: 'The "ARM7TDMI-like processor is 3-stage

pipelined while the ARM9TDMI-like processor has a 5-stage pipeline, as shown in

Figure 3.
instructions
i IF ID EX
i+1 IF ID EX
i+2 IF ID EX

> time
ACARM?Y pipeline

Figure 3a. The pipeline of in house ARM7TDMI-like processor
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instructions

i IF ID EX | MEM | WB
i+1 IF ID EX | MEM | WB
i+2 IF ID EX | MEM | WB

> time
ACARMO pipeline

Figure 3b. The pipeline of in house ARM9TDMI-like processor

In the part of memory system, the ACARM?7 processor employs the von Neumann
memory architecture in which the transferring of instructions and data between
processor core and memory actuallystise the same ports and signals. Due to this, the
ACARMY core cannot access instruction and data in'the same clock cycle as shown in
Figure 4. On the other hand, the ACARMSY processor has a Harvard memory
architecture which has separate sets.of ports for instruction and data and can access

them at the same time.

instructions
STR IF | ID | Ex | o€
i+1 IF | D | EX
i+2 IF | D | EX
i+3 IF | D | EX

> time
ACARM?Y pipeline

Figure 4. A store instruction on ACARM?7 pipeline



Because of the varied pipeline stages, memory architecture and implementation of
other functional blocks, the timing behaviors of ACARM7 and ACARM?9 processor

are quite different although they have the same instruction set architecture.

2.3 Instruction Cycle Operation

Before building a cycle-accurate processor model, we have to know about the cycle
operations of each instruction in all condition including special cases such as data
hazard or competition for hardware resource, and that those information should be
provided by the processor designer. The information has to tell how many cycles the
instruction needs to be executed, in which cycle the processor core can fetch the next
instruction, and so on, then can we know, when the computed results should be
updated to register or output sighals. Table 2 gives an example which indicates the
operations of each execution cycles in normal case and in data hazard case for MUL

instruction executed by ACARMSY processor.

Table 2. Cycle timing for MUL executed by ACARM9

Cycle IA InMREQ, ISEQ INSTR
1 pct12 I cycle [pct8]
Normal 5 b S ovel
Case pe e
[pc+12]
1 pct+12 I cycle [pct8]
Data 2 pctl2 I cycle
Hazard 3 pct+12 S cycle
[pct12]




Chapter 3 Model Architecture

3.1 Overview

To make the proposed layered architecture perfectly work, it is essential to properly
describe the role of each layer and clearly define the interface between layers. Here,
the functional kernel acts as 1-step untimed instruction set simulator (ISS), while the
timing shell provides cycle timing details and communicates with the outside world.
These two layers interact with each other by two mechanisms named command packet
and result packet. The proposed two-layered architecture for cycle-accurate model is

shown in Figure 5.

Command Inouts
Packet P
Functional | I
Kernel | |
| |
1 1
Result
Packet Outputs

Figure 5. Two-layered architecture for cycle-accurate model

In the rest parts of this chapter, section 3.1 will introduce the functions of layers,
the functional kernel and the timing shell; the interfaces between two layers,
command packet and result packet as drawn in Figure 5, are described in section 3.2;

and the flow of entire model will be presented in section 3.3 finally.
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3.2 Function of Each Layer

The functional kernel, which is the inner layer, is actually an untimed instruction
set simulator. Without any ideas about input and output ports which might be timing
related, the functional kernel just fetch an sequential/non-sequential instruction
according to the commands received, and then decodes and executes the instruction to
generate correct result values of registers or output ports base on the instruction set
architecture completely. Note that the functional kernel is only ISA-dependent since it
has nothing to do with the details of pipeline implementation. The new values of
registers and output ports and decoded information of instruction generated by the
functional kernel need more advanced, handling to become timing behaviors of
cycle-approximate or cycle-acturate  'proeéssor’. model observable to outside
environment.

The timing shell, which is the'outer layer;takes charge of the communications with
the outside environment meaning that it'has to sample the input signals and to update
the output signals in correct clock cycle to present the pipeline details and model
behaviors faithfully. As a result, the timing shell is in responsible in the control of
modeling flow, that is, it needs to decide whether to invoke the functional kernel to
execute a new instruction or not in the current clock cycle and then schedule in which
clock cycle the output signals and registers should be updated caused by the
instruction executed according to the result information sent back from the functional
kernel. The detail modeling flow of the timing shell will be introduced in the final

section of this chapter.



3.3 Interfaces between Layers

As shown in Figure 5, the timing shell and the functional kernel communicate with
each other using command packet, which is sent to the functional kernel from the
timing shell, and result packet, which is sent in the reverse way. This sector will
reveal the contents and function of the packets.

The command packet is sent by the timing shell to request the functional kernel to
fetch an instruction and then to execute it. There are two types of command packet,
step packet and interrupt packet. Step packets are issued during normal program
execution flow. A step packet orders the functional kernel to fetch the next
instruction, execute it, update the processor state, and return a result packet.
Alternatively, if an external reset or interrupt arises, an interrupt packet is issued
instead. An interrupt packet inferms thé functional kernel to redirect its instruction
fetch to the corresponding exception handler, execute it, update the state, and return
the results. In every processor- non-stall-cyele, ‘the timing shell always issues a
command packet and the functional kernel always executes the specified instruction
and returns the corresponding result packet. The timing shell will not send a command
packet during a clock cycle if no instruction fetch is needed due to pipeline stall or a
branch and thus the functional kernel won’t take any actions including returning a
result packet.

The result packet sent from the functional kernel contains a part of the instruction
execution outcomes that are necessary for the timing shell to properly update the
output signals. It contains three kinds of information which are instruction
information, register information, and update information, as listed in Table 3. The
instruction information indicates what instruction has just been executed by the

functional kernel so that the timing shell knows the exact sequence about when to

10



update the output values in cycle-by-cycle fashion. The register information contains
a list of registers being read and/or written by the executed instruction so that the
timing shell can correctly detect all kinds of hazards and take proper forwarding or
stall operations. It implies that the timing shell has to know the pipeline details and
that is why every processor needs its own timing shell. The update information holds
updated values so that the timing shell can properly refresh the related output signals.
In brief, under the proposed two-layered architecture, the combination of untimed

functional kernel and timing shell can successfully act as a cycle-accurate model for

sure.
Table 3. Contents of result packet
Instruction | Types of instruétion. . % '
Information | For cycle count calculation
Register Registeré been read-and/or written.
Information | For hazard detection.
Update New values
Information | For output signals updates.
3.4 Modeling Flow

The modeling flow controlled by the timing shell is shown in Figure 6. In the
beginning of every clock cycle, the timing shell samples input signals from the
outside of the model, which include reset, interrupts, instruction bus, data input bus,
and so on. Then the commander in the timing shell will determine whether to send a
command packet to the functional kernel based on the sampled input signals and the
current processor states. When the result of an executing instruction is demanded, it

queries the functional kernel by issuing a command packet as the path marked “Y” in

11



the figure. After receiving a command packet, the functional kernel, which is actually
an ISS, computes then returns the instruction execution outcomes by sending a result
packet back to the timing shell. A mechanism called scheduler, which is the most
important part of timing shell, receives the result packet and makes a schedule which
points out in which cycle the changes in the processor states, registers, and output
signals caused by the instruction should be updated to imitate the timing behaviors of
the model. Finally, an updater will updates those changes to the model outputs,
containing user-visible registers, address bus, data output bus, and so on, according to
the schedule. On the other hand, if no command packet needs be sent, i.e. an stall

cycle, the flow just goes to the step of updating as the path marked “N” in the figure.

Figure 6. Modeling flow in the timing shell

- C%rggrlz?d Commander Inputs
T I
|
| 1
| Updater Outputs
| |
| |
Result |
Packet |
|
|

Note that the updater always updates changes whether in a stall cycle or a non-stall
cycle. Since the changes of model outputs caused by an instruction may be in different

clock cycle, a stall cycle means not no change happening.
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The figure below shows an example of a proposed 3-stage ACARM?7 processor
model executing three arithmetic instructions without any data hazard. The
instructions are computed by the functional kernel as soon as in their pre-fetch stage
and the results are scheduled immediately by the timing shell. In each cycle the timing
shell will update the model outputs according to the schedule such as a value updating

of rl in cycle i+4 for example.

i i+1 i+2 i+3 i+4 i+5

I I I I I
I I I I I
inst I I I I I
addr1, 12, r3 PF | IF | ID | EXE | |
I I I I I
I I I I I
inst j+1 | | | | |
add r4. 5, 16 | PF | IF | ID | EXE |
I | | I I
inst j+2 I I I I I

add r7, 18, r9 | el PPl PP | BXE
I I I I I
I I I I I
I I I I I
Functional compute | compute | compute | | |
Kernel inst j | Inst j+1 | Inst j+2 | | |
I I I I I
I I I I I
schedule | schedule | schedule | | |
Timing inst j | instj+1 | | instj+2 | | | |
Shell I I I I I

update | update | update | update | update | update

I I I I I
I I I I I

Figure 7. An example of modeling flow
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Chapter 4 Model Implementation

This chapter describes the detail implementation of the proposed two-layered
model, including the functional kernel and the timing shell. Some examples will also
be presented later to show that how the timing shell deals with different pipeline

issues.

4.1 Functional Kernel

As mentioned, the functional kernel actually acts as an untimed ISS. Thus the
primary components inside are instruction execution engine, program counter, register
file, and mirrored instruction/data memory, as depicted in Figure 8. The instruction
executing engine is responsible for instruction decoding and datapath operations. The
entire functional kernel is built solely based on:the ISA specification and absolutely
no processor-dependent information can-be referred.; That is the key reason why the

kernel can be safely shared by evéry processor implementing the same ISA.

Functional Kernel
Mirrored
: Program
Instruction
Counter
Memory )
Instruction
Execution Engine
( Decoder, Datapath )
Mirrored .
Register
Data :
File
Memory

Figure 8. The components of functional kernel
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Note that the contents of registers inside the kernel cannot be directly accessed
outside the model. Due to the untimed nature, they usually get updated earlier than
they should be in the model outside as mentioned in the previous chapter. That is
exactly why the timing shell is required for performing proper timing synchronization.

Because the instructions and data from memory outside the model might be timed
and not immediately available, the functional kernel, which computes data as soon as
an instruction is fetched, might not get correct data from outside. To solve it, we
introduce mirrored instruction and data memory for the functional kernel to access.
The word “mirrored” means that the two memory have the same initial and final
contents with those of the outside instruction and data memory even thought there
might be some mismatches during simulation due to different timing domains. Before
each simulation, the initial values.of instruction and data need to be loaded into the
mirrored memory.

To maximize the model performance;-the-functional kernel is implemented in pure
C++ without invoking any routines provided by SystemC libraries [4]. It is applicable
since the functional kernel is completely untimed. It is also worth mentioning that the
kernel itself can be promoted as a PV model or even a standalone ISS just by adding a

very simple software wrapper.

4.2 Timing Shell

In contrast to the functional kernel, the timing shell is completely nothing to do
with the instruction evaluation. Its job is to properly communicate with the external
system under a target abstraction view. The main tasks of the timing shell are:
sampling the external inputs to identify incoming instructions and interrupts, querying

the functional kernel and getting the execution results, and updating the outputs at the

15



right time based on the desired abstraction view. It can directly pass the results from
the kernel to the model outside just as a PV model does; or it can perform certain

scheduling to make the model behave as a cycle-approximate model (AV) or even a

)

cycle-accurate model (VV).

S S ng;laetnd Commander Inputs
T |
| —
| ' 1
| Outputs
| |
| f |

Result |
Packet |
|
|

Figure 9. The components of timing shell

Figure 9 presents the architecture overview of the timing shell. At the beginning of
a cycle, the timing shell checks the processor state and interrupt inputs to determine
whether this cycle should be stalled. For a non-stall cycle, in which the processor
needs to execute a new instruction, the shell issues a command packet (step or
interrupt) to the kernel and receives a result packet from the kernel. Then a scheduler

inside the shell is responsible for correctly scheduling output update events based on

16



the information carried in result packets. For a stall cycle, on the other hand, there

would be no activity between the kernel and the shell.

4.2.1 Time Wheel

In the previous chapter, we have introduced the modeling flow of the timing shell
and the mechanism called “scheduler” used to make an updating schedule, which is
actually a time wheel table in the timing shell as shown in Figure 9. The time wheel is
adopted to record the future update events in coming cycles. Each time slot in a time
wheel represents a specific real cycle in the system and carries the necessary
information to properly update the outputs in that cycle. In addition, it also records
whether the cycle should be stalled possibly due to a branch instruction or a detected
hazard. The information mentioned above is written into the time wheel by the
scheduler. It is not uncommon that.update events carried by a result packet are placed
into several slots since virtually all-processors nowadays are pipelined. As time
advances, the time wheel also moves one cycle ahead, the events recorded in the most
recent slot are carried out, and thus the corresponding output signals are updated
accordingly.

A time wheel may looks like in Figure 10. Each row in the table means a time slot
and contains information about whether to invoke the functional kernel, which is
indicated by the first element, and information about which model output needs to be
updated and their new values. A pointer which tells the current time slot will move
down circularly in every clock cycle. The commander and the updater can then access

the current time slot in the time wheel for the information they need.
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Current
Time Slot

[

4.2.2 Scheduler

IA: 0x14 R6: 0x0

IA: 0x18 R3: OxFF R4: Ox8F
DA: 0x20 R1: Ox78

R2: 0x12

IA: Ox1C RO: 0x21

Figure 10. An example of time wheel

The scheduler is another key component inside the timing shell. It must know all

implementation details, such as instruction cycle timing, actions taken in each pipeline

stage, control/data dependency among various types of instructions, hazard detection

principles, and forwarding/stall miechanism; of the modeled processor. That is, it must

have complete knowledge about: exactly how in reality the modeled processor

schedules all output update events in‘cycle-accurate fashion.

Taking a simple arithmetic instruction'executed on 5-stage ACARMO processor as

example, if the instruction is in the pre-fetch stage during cycle i, then the result

should be write back to the register in cycle i1+5, as shown in Figure 11a.

i+1

i+2

i+3

i+4

i+5

IA: 0x20

The address of the arithmetic
instruction

R2: O0x57 |«—— The result is written back

Figure 11a. Scheduling result of an arithmetic instruction
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i IA: 0x20 ;Ir']:?rjgtcii;iss of the arithmetic
i+1
i+2
i+3
i+4
i+5
i+6 R2: 0x57 [«—— The result is delayed

Figure 11b. Scheduling result of an arithmetic instruction with data hazard

In fact, the timing of an instruction may be affected by other instructions in some
situations such as data hazard or resource competition. If the previous instruction is a
load instruction whose result will.be used by the arithmetic instruction, then a data
hazard happens and the result of thelarithmetic.instruction will be delayed 1 cycle as
in Figure 11b. To correct compute. the effect caused by data hazard and resource
competition, the scheduler needs to reserve the information of a number of previous

instructions such as instruction type and registers used.

4.2.3 More Examples

Figure 12 gives an example which shows how a branch instruction (located at
address 100 with target address 120) gets executed by an ACARMO cycle-accurate
model created by the proposed technique. A branch instruction is not able to stop the
processor from fetching the next two consecutive instructions because it cannot
change the instruction fetch flow until the third pipeline stage. However, these two
fetched instructions are eventually invalidated by the processor, which results in two

stall cycles.
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Figure 12. The execution steps of a branch instruction

As shown in Figure 12, the branch instruction is pre-fetched in cycle i. Because it is
a valid instruction, the shell issues a command packet and gets a result packet in

return. Then three events describing that the values on the instruction address bus (IA)

20



should be 104/108/120 for cycle i+1/i+2/i+3 are inserted into the time wheel. In
addition, both cycle i+1 and i+2 are marked as stall cycles as explained. It indicates
that in those two cycles the instruction is still fetched as usual in the first place. But
the commander instantly finds it invalid based on the mark recorded in the time slot
and therefore no longer sends it to the kernel for execution. Notice that even though a
slot is marked as a stall cycle, there could still be some output update events, which
are placed in there from earlier cycles. Hence, even in a stall cycle, the shell still has
to update those model outputs accordingly though there is no request to the kernel and
of course no response from the kernel in that specific cycle.

Figure 13 gives another example of a load instruction, which locates in instruction
address 200, leading an arithmetic instruction in address 204 and there exists data
hazard between them. The load instruction is pre-fetched in cycle i and its result,
which modifies R1 to the value 100, is scheduled in WB stage that is the time slot
representing cycle i+5. After the load-instruction is-executed, the scheduler reserves
the information about this instruction.for the timing computation of the following
instructions. In cycle i+1, the arithmetic instruction is pre-fetched and the scheduler
detects a data hazard due to the previous load instruction according to the information
it just reserved and marks an stall cycle for the 2" 1D stage of the arithmetic
instruction which is the time slot representing cycle i+4. Besides, the result of the
arithmetic instruction, which should modifies R2 to the value F in cycle i+6, is also
delayed by 1 cycle to the time slot representing cycle i+7. Then the model keeps go
through without stall cycles until cycle i+4, in which a stall mark is detected by the
commander. In the stall cycle, the functional kernel won’t be invoked to fetch any

new instruction and there won’t be updating of instruction address (IA) as a result.
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Finally in cycle i+5, the result of the load instruction is updated and because no
stall mark is detected in the cycle, the timing shell resumes the execution of the

functional kernel to fetch the next instruction.

23



Chapter S Experimental Results

To evaluate the performance of the models created by the proposed technique, we
have implemented PV models and VV models using SystemC for an in-house
three-stage ARM7TDMI-like processor and an in-house five-stage ARM9TDMI-like
processor, which is ACARM7 and ACARMY, and compare these models against their
Verilog RTL counterparts. The benchmark programs adopted in our experiments are
part of MiBench [5], which is a popular benchmark suite aiming at general embedded
applications. Seven programs from varied categories, as shown in Table 4, are
selected for extensive analysis and comparisons, and their execution cycle counts for

ACARM7 and ACARMD are also attached.

Table 4. Benchmark programs. usediinexperiments and their cycle counts

. bitcount ‘ 9088644 7996554
Auto/Industrial -
gsort : 12075954 12366045
Consumer jpeg 8796271 7356096
Office stringsearch 2916981 2503915
Network dijkstra 12075954 9883181
Security sha 16815477 13308257
Telecomm. CRC32 10011396 8101486

Meanwhile, Cadence NC-Verilog (NCV) is chosen as the simulator for RTL
models. All PV and VV models are compiled using SystemC 2.2.0 library offered by
OSCI [6]. Additionally, when verifying an RTL model, it is highly desirable to have a
golden cycle-accurate model that can be co-simulated within the same environment

for fast on-the-fly instant result comparisons. Hence, after adding Verilog wrappers,
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our VV models are also evaluated under Cadence NCSC co-simulation environment.

The experimental results are presented in Table 5 and 6.

Table 5. Performance of ARM7TDMI-like models

bitcount 1 11.43 31.76 773.53
jpeg 1 11.45 31.82 868.97
CRC32 1 10.23 29.07 858.06
dijkstra 1 10.94 31.51 968.57
gsort 1 8.51 23.94 727.08
sha 1 10.53 29.55 808.93
strsearch 1 11.86 31.32 1037.50
Avg. 1 10.71 29.85 863.23

Table 6. Performancé. of AﬁM9TDMI-1ike models

bitcount 1 11.77 31.17 784.85
jpeg 1 12.25 32.80 816.67
CRC32 1 11.92 31.71 893.75
dijkstra 1 11.59 31.49 960.00
gsort 1 10.86 27.64 808.51
sha 1 11.44 30.34 796.43
strsearch 1 10.75 34.82 1075.00
Avg. 1 11.51 31.42 876.46
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The performance of each configuration given in the tables is normalized to that of
RTL simulation (RTL@NCV). The results suggest that on average the VV model
created by the proposed modeling technique is about 30 times faster than the RTL
model in a pure SystemC environment (VV@OSCI). Note that it is even faster than
the cycle-approximate PV model, which is only 18 times faster, presented in [3].
Moreover, the VV model is about 11 times faster than the RTL model in a hardware
co-verification environment (VV@NCSC). It apparently confirms that building a VV
model in a higher level language with higher abstract view (SystemC) is a fairly good
idea in terms of simulation performance, verification, and model encryption.

Here, we emphasize again that the same functional kernel is actually used for the
PV models of both processors and is implemented without invoking any routines
provided by SystemC libraries for achieving highest possible performance. The
experimental results report that-on average-the. PV model can even simulate almost
three orders faster than the RTL model (PV@OSCI). This makes our PV model very

attractive in software development and system-level verification.
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Chapter 6 Conclusions and Future Works

Models in different abstraction views are widely demanded in current ESL design
methodology for analysis, development, and verification of software and/or hardware.
It is not uncommon that several models with varied abstraction levels are needed in a
project. How to correctly build these models in a short time is becoming a critical
issue today.

In this thesis, we propose a processor modeling technique that partitions the
cycle-accurate model into two layers, the functional kernel and the cycle-based timing
shell, where the functional kernel acts as an untimed ISS (or a PV model) while the
timing shell provides detailed cycle-based timing information. In this way, the
functional kernel can be shared within an entire processor family with a same ISA,
and only a customized cycle-based timingishell.is required for a processor. Therefore,
not only the model development time can obviously be reduced but also the chances
of functional inconsistency among processors-can be greatly minimized.

Finally, the experimental results reveal that our VV model is 30/11 times faster
than the RTL model in a SystemC/co-simulation environment, respectively. Our
cycle-accurate VV model is even faster than the cycle-approximate AV model
presented in an existing art. Our PV model can simulate about 860 times faster than
the RTL model. These results repeatedly highlight the efficiency of models created by
the proposed two-layered modeling technique. For the current version of model, the
interrupts and memory aborts, which may need to flush the execution result in earlier
stage, can’t be simulated by the proposed modeling architecture and they will be our

advanced research in the future works.
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