

國立交通大學國立交通大學國立交通大學國立交通大學

電子工程學系電子工程學系電子工程學系電子工程學系 電子研究所電子研究所電子研究所電子研究所

碩碩碩碩 士士士士 論論論論 文文文文

應用於具同指令集架構之處理器家族應用於具同指令集架構之處理器家族應用於具同指令集架構之處理器家族應用於具同指令集架構之處理器家族之之之之

高效能雙層式週期精確模型技術高效能雙層式週期精確模型技術高效能雙層式週期精確模型技術高效能雙層式週期精確模型技術

Efficient Two-Layered Cycle-Accurate

Modeling Technique for Processor Family

with Same Instruction Set Architecture

研 究 生：江建德

 指導教授：黃俊達 博士

中 華 民 國 九 十 八 年 二 月

應用於具同指令集架構之處理器家族應用於具同指令集架構之處理器家族應用於具同指令集架構之處理器家族應用於具同指令集架構之處理器家族之之之之

高效能雙層高效能雙層高效能雙層高效能雙層式週期精確模型技術式週期精確模型技術式週期精確模型技術式週期精確模型技術

Efficient Two-Layered Cycle-Accurate

Modeling Technique for Processor Family

with Same Instruction Set Architecture

研 究 生：江建德 Student: Chien-De Chiang

指導教授：黃俊達 博士 Advisor: Dr. Juinn-Dar Huang

國立交通大學

電子工程學系 電子研究所

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical & Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Electronics Engineering & Institute of Electronics

Feb. 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年二月

 i

應用於具同指令集架構之處理器家族應用於具同指令集架構之處理器家族應用於具同指令集架構之處理器家族應用於具同指令集架構之處理器家族之之之之

高效能雙層式週期精確模型技術高效能雙層式週期精確模型技術高效能雙層式週期精確模型技術高效能雙層式週期精確模型技術

研究生：江建德 指導教授：黃俊達 博士

國立交通大學

電子工程學系 電子研究所

摘摘摘摘 要要要要

本論文提出一簡單且快速的處理器模型技術，此技術採用將時序

模型分割為功能與時序兩部份的概念，在本論文中，此二部份分別稱

為功能核心與時序外殼。功能核心實際上為一無時序、高速的指令集

模擬器，適合軟體開發；而時序外殼則提供了額外的時序資訊協助模

擬週期精確的硬體行為。當一使用相同指令集的處理器家族加入了新

成員，依照提出的模型技術，我們只須要替換時序外殼，沿用跟其他

成員相同的功能核心，即可產生此新成員的模型。這技術不僅能確保

各模型的功能與規格吻合，並且能有效縮短建立模型花費的時間。在

本論文中，我們將此技術應用在使用相同指令集架構的一 ARM7-like

與一 ARM9-like 處理器，並在實驗結果中顯示，本論文提出的雙層式

週期精確模型較一般的 RTL 模型模擬速度平均快上約 30 倍。

 ii

Efficient Two-Layered Cycle-Accurate

Modeling Technique for Processor Family

with Same Instruction Set Architecture

Student: Chien-De Chiang Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering &

Institute of Electronics

National Chiao Tung University

ABSTRACT

This thesis proposes a simple and fast processor modeling method utilizing the

concept of partitioning a model into functional and cycle-based timing parts, which

are named functional kernel and timing shell respectively in this thesis. The kernel is

an untimed but high-speed instruction set simulator (ISS) and is suitable for software

development; while the timing shell provides additional cycle-based timing details for

cycle-accurate hardware behavior. When a new processor member is added to the

family, it demands only a new cycle-based timing shell because the kernel is identical

to that of its ancestors sharing the same instruction set architecture (ISA). It not only

helps ensure functional consistency but significantly reduces the model development

time. We take two processors with a same ISA, an ARM7-like one and an ARM9-like

one, as our modeling examples to demonstrate the feasibility of the proposed

technique. Finally, the experimental results show that, on average our two-layered

cycle-accurate model is about 30 times faster than the RTL model in simulation.

 iii

誌誌誌誌 謝謝謝謝

首先，我要感謝我的指導教授－黃俊達博士，在碩士兩年當中給我的支持

和鼓勵，讓我能有良好的研究環境，在自由的學習風氣之下，培養出獨立研究的

能力，又能隨時給予寶貴的意見及指導，對老師的感激之情，並非以簡短的文句

可以表達。

當然也要感謝養育我長大的父母對我的栽培，沒有他們，就沒有今日的我。

接著要感謝的是所有來參與口試的所有教授們，林永隆教授、和陳宏明教授，百

忙當中抽空前來指導我，讓我受益匪淺，也讓我得到了寶貴的經驗，謝謝你們。

我也要感謝實驗室的同學：威虢、瀚蔚、于翔以及亞謙等諸君，跟大家一

起修課、做實驗、和討論及分析研究成果更是我人生旅途中一段最值得珍惜的回

憶,希望未來在讀書或工作還有機會一起努力。

希望這篇論文能對人類社會有小小的貢獻,如此一來在辛苦也就值得了,再

次謝謝大家的幫忙。

 iv

Contents

Chinese Abstract ..i

English Abstract ..ii

Acknowledgment ...iii

Contents..iv

List of Tables..vi

List of Figures ...vii

Chapter 1 Introduction ..1

1.1 Motivation ...1

1.2 Contribution ..2

1.3 Thesis Organization...3

Chapter 2 Preliminaries ...4

2.1 SystemC ..4

2.2 ACARM7 vs. ACARM9...5

2.3 Instruction Cycle Operations...7

Chapter 3 Model Architecture...8

3.1 Overview ...8

3.2 Function of Each Layer ...9

3.3 Interfaces between Layers ...10

3.4 Modeling Flow ..11

Chapter 4 Model Implementation ...14

4.1 Functional Kernel ..14

4.2 Timing Shell ..15

4.2.1 Time Wheel ..17

 v

4.2.2 Scheduler ..18

4.2.3 More Examples ..19

Chapter 5 Experimental Results ..24

Chapter 6 Conclusions and Future Works...27

References ...28

 vi

List of Tables

Table 1. Different abstraction views ...1

Table 2. Cycle timing for MUL executed by ACARM9...7

Table 3. Contents of result packet ...11

Table 4. Benchmark programs used in experiments and their cycle counts24

Table 5. Performance of ARM7TDMI-like models..25

Table 6. Performance of ARM9TDMI-like models..25

 vii

List of Figures

Figure 1. Models partitioned into a functional kernel and timing shells...........................3

Figure 2. Models partitioned into a functional kernel and timing shells...........................4

Figure 3. Models partitioned into a functional kernel and timing shells...........................5

Figure 4. Models partitioned into a functional kernel and timing shells...........................6

Figure 5. Two-layered architecture for cycle-accurate model ..8

Figure 6. Modeling flow in the timing shell..12

Figure 7. An example of modeling flow ...13

Figure 8. The components of functional kernel ..14

Figure 9. The components of timing shell...16

Figure 10. A simple time wheel ..18

Figure 11. An example of scheduling ...19

Figure 12. The execution steps of a branch instruction...20

Figure 13. The execution steps of two instructions existing data hazard........................22

 1

Chapter 1 Introduction

 High-level behavioral models are widely demanded in recent ESL design

methodologies [1]. They are usually in different abstraction views for different

purposes as shown in Table 1 [2]. In general, a model with higher abstraction view

has faster simulation speed and relatively shorter development time so that it is

suitable for software development. On the other hand, one with lower abstraction

view is slower in simulation and takes more time to be elaborated. But it can provide

more accurate timing details about the hardware behaviors, which is extremely useful

for system and hardware verification.

Table 1. Different abstraction views

View Accuracy and Purpose

Functional

View (FV)

Event ordering.

Functional specification and algorithm development.

Programmer’s

View (PV)

Bit accurate.

Software development and verification.

Architecture

View (AV)

Cycle approximate.

Architecture exploration and verification.

Verification

View (VV)

Cycle accurate.

Hardware verification.

System level verification.

1.1 Motivation

In modern ESL design flows, software and hardware are under development in

parallel so that a set of models in different levels of abstraction views are required

throughout the design process. Conventionally, each member of a processor family

needs its own complete set of those models though all members actually share a same

ISA. Developing all those models for every single processor certainly takes

 2

significant time. Moreover, if those models are developed separately, functional

behaviors among different processors in a same family may likely be variant, which

requires additional debugging efforts to achieve overall consistency.

However, in general, processors in a same family produce the identical output, in

terms of the contents of user-visible registers, output ports and memory, instruction by

instruction since they all share a same ISA. The only difference among them is the

cycle timing behavior due to their different implementation details. For example, two

embedded processors ARM7TDMI and ARM9TDMI both implement the ARMv4T

ISA, while the former has a three-stage pipeline and the latter has a five-stage one.

This fact suggests a great idea that a cycle-accurate model can be partitioned into two

layers, an inner untimed functional kernel and an outer cycle-based timing shell. The

functional kernel is merely elaborated once and can then be shared by all processors

within a family. Each processor only needs its own specific timing shell. In this way,

not only the model development time can be greatly reduced but also the functional

consistency among processors is automatically preserved.

1.2 Contribution

In this thesis, we propose an efficient two-layered architecture for cycle-accurate

processor modeling, in which the untimed functional kernel is only responsible for

generating correct values of user-visible registers, output ports and memory data for

given instructions, while the timing shell is in charge of interacting with the external

system through the cycle-accurate model interface and updating those user-visible

values provided by the functional kernel at the right time (cycle). Hence, when

introducing a new processor member, it is no longer necessary to develop its complete

model but only its specific timing shell. Figure 1 points out the idea.

 3

According to an existing work [3], the simulation performance of PV and AV

models in SystemC are about 500 and 18 times better than that of RTL model.

However, the performance of VV model is not addressed in [3]. Using the newly

proposed technique, we have successfully created the PV model (i.e., functional

kernel) and VV models (i.e., kernel + timing shell) for an ARM7TDMI-like core and

an ARM9TDMI-like core in SystemC. The experimental results show that our VV

model, which is cycle-accurate, can simulate about 30 times faster than RTL model.

That is, our VV model runs even faster than the cycle-approximate AV model in [3].

Meanwhile, our PV model can run about 860 times faster than RTL model.

Figure 1. Models partitioned into a functional kernel and timing shells

1.3 Thesis Organization

 The rest of the thesis is organized as follows: Chapter 2 presents the two-layered

architecture for the cycle-accurate model. In Chapter 3, the implementation concerns

and details are discussed. The extensive experimental results are reported in Chapter

4. In the end, the concluding remarks for the thesis are presented in Chapter 5.

 4

Chapter 2 Preliminaries

This chapter briefly characterizes the preliminaries of our works. Section 2.1

introduces SystemC, which is used as the modeling language in this thesis. Section

2.2 talks about the timing behaviors of the in-house ARM7TDMI-like and

ARM9TDMI-like processors that are modeled for the experiments. In the end, Section

2.3 lists some instruction cycle operations of both processors.

2.1 SystemC

SystemC provides hardware-oriented constructs based on libraries of C++ context

and is easy for the designer to build models for analysis or verification [2]. It also

supports varieties of different abstraction level especially in the region from PV to

VV. In this thesis, we apply SystemC as modeling language and target on the PV

model and VV model which are designed for software analysis and hardware

verification respectively. Figure 2 shows the basic components of a common SystemC

model.

port port

portModule CModule B

process processchannel

channel

c
h
a
n
n
e
l

Module A

Figure 2. The basic components of SystemC model

 5

� Ports: Ports may be input, output, or inout ports, used for communication with

other modules.

� Processes: Processes describe the functionality of module. A module may have

one or more processes.

� Modules: A module can contain one or more hierarchical sub-modules.

� Channels: Channels are used for the communication of processes and the

sub-modules.

2.2 ACARM7 vs. ACARM9

In this thesis, we build models for an ARM7TDMI-like and an ARM9TDMI-like

in-house processor, which are called ACARM7 and ACARM9 respectively, based on

the proposed modeling method. They are general-purposed 32-bit RISC processors

both apply ARM v4T instruction set architecture but have different pipeline stages,

memory system, and timing behaviors. The ARM7TDMI-like processor is 3-stage

pipelined while the ARM9TDMI-like processor has a 5-stage pipeline, as shown in

Figure 3.

Figure 3a. The pipeline of in house ARM7TDMI-like processor

 6

Figure 3b. The pipeline of in house ARM9TDMI-like processor

In the part of memory system, the ACARM7 processor employs the von Neumann

memory architecture in which the transferring of instructions and data between

processor core and memory actually use the same ports and signals. Due to this, the

ACARM7 core cannot access instruction and data in the same clock cycle as shown in

Figure 4. On the other hand, the ACARM9 processor has a Harvard memory

architecture which has separate sets of ports for instruction and data and can access

them at the same time.

Figure 4. A store instruction on ACARM7 pipeline

 7

Because of the varied pipeline stages, memory architecture and implementation of

other functional blocks, the timing behaviors of ACARM7 and ACARM9 processor

are quite different although they have the same instruction set architecture.

2.3 Instruction Cycle Operation

Before building a cycle-accurate processor model, we have to know about the cycle

operations of each instruction in all condition including special cases such as data

hazard or competition for hardware resource, and that those information should be

provided by the processor designer. The information has to tell how many cycles the

instruction needs to be executed, in which cycle the processor core can fetch the next

instruction, and so on, then can we know when the computed results should be

updated to register or output signals. Table 2 gives an example which indicates the

operations of each execution cycles in normal case and in data hazard case for MUL

instruction executed by ACARM9 processor.

Table 2. Cycle timing for MUL executed by ACARM9

Cycle IA InMREQ, ISEQ INSTR

1 pc+12 I cycle [pc+8]

2 pc+12 S cycle
Normal

Case

 [pc+12]

1 pc+12 I cycle [pc+8]

2 pc+12 I cycle

3 pc+12 S cycle

Data

Hazard

 [pc+12]

 8

Chapter 3 Model Architecture

3.1 Overview

To make the proposed layered architecture perfectly work, it is essential to properly

describe the role of each layer and clearly define the interface between layers. Here,

the functional kernel acts as 1-step untimed instruction set simulator (ISS), while the

timing shell provides cycle timing details and communicates with the outside world.

These two layers interact with each other by two mechanisms named command packet

and result packet. The proposed two-layered architecture for cycle-accurate model is

shown in Figure 5.

Figure 5. Two-layered architecture for cycle-accurate model

In the rest parts of this chapter, section 3.1 will introduce the functions of layers,

the functional kernel and the timing shell; the interfaces between two layers,

command packet and result packet as drawn in Figure 5, are described in section 3.2;

and the flow of entire model will be presented in section 3.3 finally.

 9

3.2 Function of Each Layer

The functional kernel, which is the inner layer, is actually an untimed instruction

set simulator. Without any ideas about input and output ports which might be timing

related, the functional kernel just fetch an sequential/non-sequential instruction

according to the commands received, and then decodes and executes the instruction to

generate correct result values of registers or output ports base on the instruction set

architecture completely. Note that the functional kernel is only ISA-dependent since it

has nothing to do with the details of pipeline implementation. The new values of

registers and output ports and decoded information of instruction generated by the

functional kernel need more advanced handling to become timing behaviors of

cycle-approximate or cycle-accurate processor model observable to outside

environment.

The timing shell, which is the outer layer, takes charge of the communications with

the outside environment meaning that it has to sample the input signals and to update

the output signals in correct clock cycle to present the pipeline details and model

behaviors faithfully. As a result, the timing shell is in responsible in the control of

modeling flow, that is, it needs to decide whether to invoke the functional kernel to

execute a new instruction or not in the current clock cycle and then schedule in which

clock cycle the output signals and registers should be updated caused by the

instruction executed according to the result information sent back from the functional

kernel. The detail modeling flow of the timing shell will be introduced in the final

section of this chapter.

 10

3.3 Interfaces between Layers

As shown in Figure 5, the timing shell and the functional kernel communicate with

each other using command packet, which is sent to the functional kernel from the

timing shell, and result packet, which is sent in the reverse way. This sector will

reveal the contents and function of the packets.

The command packet is sent by the timing shell to request the functional kernel to

fetch an instruction and then to execute it. There are two types of command packet,

step packet and interrupt packet. Step packets are issued during normal program

execution flow. A step packet orders the functional kernel to fetch the next

instruction, execute it, update the processor state, and return a result packet.

Alternatively, if an external reset or interrupt arises, an interrupt packet is issued

instead. An interrupt packet informs the functional kernel to redirect its instruction

fetch to the corresponding exception handler, execute it, update the state, and return

the results. In every processor non-stall cycle, the timing shell always issues a

command packet and the functional kernel always executes the specified instruction

and returns the corresponding result packet. The timing shell will not send a command

packet during a clock cycle if no instruction fetch is needed due to pipeline stall or a

branch and thus the functional kernel won’t take any actions including returning a

result packet.

The result packet sent from the functional kernel contains a part of the instruction

execution outcomes that are necessary for the timing shell to properly update the

output signals. It contains three kinds of information which are instruction

information, register information, and update information, as listed in Table 3. The

instruction information indicates what instruction has just been executed by the

functional kernel so that the timing shell knows the exact sequence about when to

 11

update the output values in cycle-by-cycle fashion. The register information contains

a list of registers being read and/or written by the executed instruction so that the

timing shell can correctly detect all kinds of hazards and take proper forwarding or

stall operations. It implies that the timing shell has to know the pipeline details and

that is why every processor needs its own timing shell. The update information holds

updated values so that the timing shell can properly refresh the related output signals.

In brief, under the proposed two-layered architecture, the combination of untimed

functional kernel and timing shell can successfully act as a cycle-accurate model for

sure.

Table 3. Contents of result packet

Group Contents

Instruction

Information

Types of instruction.

For cycle count calculation

Register

Information

Registers been read and/or written.

For hazard detection.

Update

Information

New values

For output signals updates.

3.4 Modeling Flow

The modeling flow controlled by the timing shell is shown in Figure 6. In the

beginning of every clock cycle, the timing shell samples input signals from the

outside of the model, which include reset, interrupts, instruction bus, data input bus,

and so on. Then the commander in the timing shell will determine whether to send a

command packet to the functional kernel based on the sampled input signals and the

current processor states. When the result of an executing instruction is demanded, it

queries the functional kernel by issuing a command packet as the path marked “Y” in

 12

the figure. After receiving a command packet, the functional kernel, which is actually

an ISS, computes then returns the instruction execution outcomes by sending a result

packet back to the timing shell. A mechanism called scheduler, which is the most

important part of timing shell, receives the result packet and makes a schedule which

points out in which cycle the changes in the processor states, registers, and output

signals caused by the instruction should be updated to imitate the timing behaviors of

the model. Finally, an updater will updates those changes to the model outputs,

containing user-visible registers, address bus, data output bus, and so on, according to

the schedule. On the other hand, if no command packet needs be sent, i.e. an stall

cycle, the flow just goes to the step of updating as the path marked “N” in the figure.

Figure 6. Modeling flow in the timing shell

Note that the updater always updates changes whether in a stall cycle or a non-stall

cycle. Since the changes of model outputs caused by an instruction may be in different

clock cycle, a stall cycle means not no change happening.

 13

The figure below shows an example of a proposed 3-stage ACARM7 processor

model executing three arithmetic instructions without any data hazard. The

instructions are computed by the functional kernel as soon as in their pre-fetch stage

and the results are scheduled immediately by the timing shell. In each cycle the timing

shell will update the model outputs according to the schedule such as a value updating

of r1 in cycle i+4 for example.

Figure 7. An example of modeling flow

 14

Chapter 4 Model Implementation

This chapter describes the detail implementation of the proposed two-layered

model, including the functional kernel and the timing shell. Some examples will also

be presented later to show that how the timing shell deals with different pipeline

issues.

4.1 Functional Kernel

As mentioned, the functional kernel actually acts as an untimed ISS. Thus the

primary components inside are instruction execution engine, program counter, register

file, and mirrored instruction/data memory, as depicted in Figure 8. The instruction

executing engine is responsible for instruction decoding and datapath operations. The

entire functional kernel is built solely based on the ISA specification and absolutely

no processor-dependent information can be referred. That is the key reason why the

kernel can be safely shared by every processor implementing the same ISA.

Figure 8. The components of functional kernel

 15

Note that the contents of registers inside the kernel cannot be directly accessed

outside the model. Due to the untimed nature, they usually get updated earlier than

they should be in the model outside as mentioned in the previous chapter. That is

exactly why the timing shell is required for performing proper timing synchronization.

Because the instructions and data from memory outside the model might be timed

and not immediately available, the functional kernel, which computes data as soon as

an instruction is fetched, might not get correct data from outside. To solve it, we

introduce mirrored instruction and data memory for the functional kernel to access.

The word “mirrored” means that the two memory have the same initial and final

contents with those of the outside instruction and data memory even thought there

might be some mismatches during simulation due to different timing domains. Before

each simulation, the initial values of instruction and data need to be loaded into the

mirrored memory.

To maximize the model performance, the functional kernel is implemented in pure

C++ without invoking any routines provided by SystemC libraries [4]. It is applicable

since the functional kernel is completely untimed. It is also worth mentioning that the

kernel itself can be promoted as a PV model or even a standalone ISS just by adding a

very simple software wrapper.

4.2 Timing Shell

In contrast to the functional kernel, the timing shell is completely nothing to do

with the instruction evaluation. Its job is to properly communicate with the external

system under a target abstraction view. The main tasks of the timing shell are:

sampling the external inputs to identify incoming instructions and interrupts, querying

the functional kernel and getting the execution results, and updating the outputs at the

 16

right time based on the desired abstraction view. It can directly pass the results from

the kernel to the model outside just as a PV model does; or it can perform certain

scheduling to make the model behave as a cycle-approximate model (AV) or even a

cycle-accurate model (VV).

Figure 9. The components of timing shell

Figure 9 presents the architecture overview of the timing shell. At the beginning of

a cycle, the timing shell checks the processor state and interrupt inputs to determine

whether this cycle should be stalled. For a non-stall cycle, in which the processor

needs to execute a new instruction, the shell issues a command packet (step or

interrupt) to the kernel and receives a result packet from the kernel. Then a scheduler

inside the shell is responsible for correctly scheduling output update events based on

 17

the information carried in result packets. For a stall cycle, on the other hand, there

would be no activity between the kernel and the shell.

4.2.1 Time Wheel

In the previous chapter, we have introduced the modeling flow of the timing shell

and the mechanism called “scheduler” used to make an updating schedule, which is

actually a time wheel table in the timing shell as shown in Figure 9. The time wheel is

adopted to record the future update events in coming cycles. Each time slot in a time

wheel represents a specific real cycle in the system and carries the necessary

information to properly update the outputs in that cycle. In addition, it also records

whether the cycle should be stalled possibly due to a branch instruction or a detected

hazard. The information mentioned above is written into the time wheel by the

scheduler. It is not uncommon that update events carried by a result packet are placed

into several slots since virtually all processors nowadays are pipelined. As time

advances, the time wheel also moves one cycle ahead, the events recorded in the most

recent slot are carried out, and thus the corresponding output signals are updated

accordingly.

A time wheel may looks like in Figure 10. Each row in the table means a time slot

and contains information about whether to invoke the functional kernel, which is

indicated by the first element, and information about which model output needs to be

updated and their new values. A pointer which tells the current time slot will move

down circularly in every clock cycle. The commander and the updater can then access

the current time slot in the time wheel for the information they need.

 18

Figure 10. An example of time wheel

4.2.2 Scheduler

The scheduler is another key component inside the timing shell. It must know all

implementation details, such as instruction cycle timing, actions taken in each pipeline

stage, control/data dependency among various types of instructions, hazard detection

principles, and forwarding/stall mechanism, of the modeled processor. That is, it must

have complete knowledge about exactly how in reality the modeled processor

schedules all output update events in cycle-accurate fashion.

Taking a simple arithmetic instruction executed on 5-stage ACARM9 processor as

example, if the instruction is in the pre-fetch stage during cycle i, then the result

should be write back to the register in cycle i+5, as shown in Figure 11a.

Figure 11a. Scheduling result of an arithmetic instruction

 19

IA: 0x20

R2: 0x57

The address of the arithmetic

instruction
i

i+1

i+2

i+3

i+4

i+5

The result is delayedR2: 0x57i+6

Figure 11b. Scheduling result of an arithmetic instruction with data hazard

In fact, the timing of an instruction may be affected by other instructions in some

situations such as data hazard or resource competition. If the previous instruction is a

load instruction whose result will be used by the arithmetic instruction, then a data

hazard happens and the result of the arithmetic instruction will be delayed 1 cycle as

in Figure 11b. To correct compute the effect caused by data hazard and resource

competition, the scheduler needs to reserve the information of a number of previous

instructions such as instruction type and registers used.

4.2.3 More Examples

Figure 12 gives an example which shows how a branch instruction (located at

address 100 with target address 120) gets executed by an ACARM9 cycle-accurate

model created by the proposed technique. A branch instruction is not able to stop the

processor from fetching the next two consecutive instructions because it cannot

change the instruction fetch flow until the third pipeline stage. However, these two

fetched instructions are eventually invalidated by the processor, which results in two

stall cycles.

 20

Figure 12. The execution steps of a branch instruction

As shown in Figure 12, the branch instruction is pre-fetched in cycle i. Because it is

a valid instruction, the shell issues a command packet and gets a result packet in

return. Then three events describing that the values on the instruction address bus (IA)

 21

should be 104/108/120 for cycle i+1/i+2/i+3 are inserted into the time wheel. In

addition, both cycle i+1 and i+2 are marked as stall cycles as explained. It indicates

that in those two cycles the instruction is still fetched as usual in the first place. But

the commander instantly finds it invalid based on the mark recorded in the time slot

and therefore no longer sends it to the kernel for execution. Notice that even though a

slot is marked as a stall cycle, there could still be some output update events, which

are placed in there from earlier cycles. Hence, even in a stall cycle, the shell still has

to update those model outputs accordingly though there is no request to the kernel and

of course no response from the kernel in that specific cycle.

Figure 13 gives another example of a load instruction, which locates in instruction

address 200, leading an arithmetic instruction in address 204 and there exists data

hazard between them. The load instruction is pre-fetched in cycle i and its result,

which modifies R1 to the value 100, is scheduled in WB stage that is the time slot

representing cycle i+5. After the load instruction is executed, the scheduler reserves

the information about this instruction for the timing computation of the following

instructions. In cycle i+1, the arithmetic instruction is pre-fetched and the scheduler

detects a data hazard due to the previous load instruction according to the information

it just reserved and marks an stall cycle for the 2
nd
 ID stage of the arithmetic

instruction which is the time slot representing cycle i+4. Besides, the result of the

arithmetic instruction, which should modifies R2 to the value F in cycle i+6, is also

delayed by 1 cycle to the time slot representing cycle i+7. Then the model keeps go

through without stall cycles until cycle i+4, in which a stall mark is detected by the

commander. In the stall cycle, the functional kernel won’t be invoked to fetch any

new instruction and there won’t be updating of instruction address (IA) as a result.

 22

cycle i+1

cycle i Time Wheel

IA=200

cycle i+2

cycle i+3

Time Wheel

IA=204

s

R1=100

R1=100

Time Wheel

IA=208

s

R1=100

R2=F

R2=F

Time Wheel

IA=20C

s

R1=100

R2=F

cycle i+4 Time Wheel

s

R1=100

R2=F

cycle i+5 Time Wheel

R1=100, IA=210

R2=F

Figure 13. The execution steps of two instruction existing data hazard

 23

Finally in cycle i+5, the result of the load instruction is updated and because no

stall mark is detected in the cycle, the timing shell resumes the execution of the

functional kernel to fetch the next instruction.

 24

Chapter 5 Experimental Results

 To evaluate the performance of the models created by the proposed technique, we

have implemented PV models and VV models using SystemC for an in-house

three-stage ARM7TDMI-like processor and an in-house five-stage ARM9TDMI-like

processor, which is ACARM7 and ACARM9, and compare these models against their

Verilog RTL counterparts. The benchmark programs adopted in our experiments are

part of MiBench [5], which is a popular benchmark suite aiming at general embedded

applications. Seven programs from varied categories, as shown in Table 4, are

selected for extensive analysis and comparisons, and their execution cycle counts for

ACARM7 and ACARM9 are also attached.

Table 4. Benchmark programs used in experiments and their cycle counts

Category Benchmark Program ACARM7 ACARM9

bitcount 9088644 7996554
Auto/Industrial

qsort 12075954 12366045

Consumer jpeg 8796271 7356096

Office stringsearch 2916981 2503915

Network dijkstra 12075954 9883181

Security sha 16815477 13308257

Telecomm. CRC32 10011396 8101486

Meanwhile, Cadence NC-Verilog (NCV) is chosen as the simulator for RTL

models. All PV and VV models are compiled using SystemC 2.2.0 library offered by

OSCI [6]. Additionally, when verifying an RTL model, it is highly desirable to have a

golden cycle-accurate model that can be co-simulated within the same environment

for fast on-the-fly instant result comparisons. Hence, after adding Verilog wrappers,

 25

our VV models are also evaluated under Cadence NCSC co-simulation environment.

The experimental results are presented in Table 5 and 6.

Table 5. Performance of ARM7TDMI-like models

 RTL@NCV VV@NCSC VV@OSCI PV@OSCI

bitcount 1 11.43 31.76 773.53

jpeg 1 11.45 31.82 868.97

CRC32 1 10.23 29.07 858.06

dijkstra 1 10.94 31.51 968.57

qsort 1 8.51 23.94 727.08

sha 1 10.53 29.55 808.93

strsearch 1 11.86 31.32 1037.50

Avg. 1 10.71 29.85 863.23

Table 6. Performance of ARM9TDMI-like models

 RTL@NCV VV@NCSC VV@OSCI PV@OSCI

bitcount 1 11.77 31.17 784.85

jpeg 1 12.25 32.80 816.67

CRC32 1 11.92 31.71 893.75

dijkstra 1 11.59 31.49 960.00

qsort 1 10.86 27.64 808.51

sha 1 11.44 30.34 796.43

strsearch 1 10.75 34.82 1075.00

Avg. 1 11.51 31.42 876.46

 26

The performance of each configuration given in the tables is normalized to that of

RTL simulation (RTL@NCV). The results suggest that on average the VV model

created by the proposed modeling technique is about 30 times faster than the RTL

model in a pure SystemC environment (VV@OSCI). Note that it is even faster than

the cycle-approximate PV model, which is only 18 times faster, presented in [3].

Moreover, the VV model is about 11 times faster than the RTL model in a hardware

co-verification environment (VV@NCSC). It apparently confirms that building a VV

model in a higher level language with higher abstract view (SystemC) is a fairly good

idea in terms of simulation performance, verification, and model encryption.

Here, we emphasize again that the same functional kernel is actually used for the

PV models of both processors and is implemented without invoking any routines

provided by SystemC libraries for achieving highest possible performance. The

experimental results report that on average the PV model can even simulate almost

three orders faster than the RTL model (PV@OSCI). This makes our PV model very

attractive in software development and system-level verification.

 27

Chapter 6 Conclusions and Future Works

Models in different abstraction views are widely demanded in current ESL design

methodology for analysis, development, and verification of software and/or hardware.

It is not uncommon that several models with varied abstraction levels are needed in a

project. How to correctly build these models in a short time is becoming a critical

issue today.

In this thesis, we propose a processor modeling technique that partitions the

cycle-accurate model into two layers, the functional kernel and the cycle-based timing

shell, where the functional kernel acts as an untimed ISS (or a PV model) while the

timing shell provides detailed cycle-based timing information. In this way, the

functional kernel can be shared within an entire processor family with a same ISA,

and only a customized cycle-based timing shell is required for a processor. Therefore,

not only the model development time can obviously be reduced but also the chances

of functional inconsistency among processors can be greatly minimized.

Finally, the experimental results reveal that our VV model is 30/11 times faster

than the RTL model in a SystemC/co-simulation environment, respectively. Our

cycle-accurate VV model is even faster than the cycle-approximate AV model

presented in an existing art. Our PV model can simulate about 860 times faster than

the RTL model. These results repeatedly highlight the efficiency of models created by

the proposed two-layered modeling technique. For the current version of model, the

interrupts and memory aborts, which may need to flush the execution result in earlier

stage, can’t be simulated by the proposed modeling architecture and they will be our

advanced research in the future works.

 28

References

[1] F. Bacchini, G. Smith, A. Hosseini, A. Parikh, H. T. Chin, P. Urard, E. Girczyc,

and S. Bloch, “Building a common ESL design and verification methodology – is

it just a dream?” Design Automation Conference, pp. 370–371, Jul. 2006.

[2] Open SystemC Initiative (OSCI), “The SystemC community,”

http://www.systemc.org/, 2006.

[3] Y.-J. Lu, C.-T. Lin, C.-F. Wu, S.-A. Hwang, and Y.-H. Lin, “Microprocessor

modeling and simulation with SystemC,” IEEE Int’l Symp. on VLSI Design,

Automation, and Test, pp. 1–4, Apr. 2007.

[4] T. Rissa, A. Donlin, and W. Luk, “Evaluation of SystemC modelling of

reconfigurable embedded systems,” Conf. on Design, Automation and Test in

Europe, vol. 3, pp. 253–258, Mar. 2005.

[5] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.

Brown, “MiBench: a free, commercially representative embedded benchmark

suite,” IEEE Int’l Workshop on Workload Characterization, pp. 3–14, Dec. 2001.

[6] Open SystemC Initiative, http:// www.systemc.org.

