
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

使用故障區域辨識技術之多重故障矽診斷

Multiple-Fault Silicon Diagnosis Using Faulty
Region Identification

研 究 生 ： 蔡孟家
指導教授 ： 周景揚 博士

中 華 民 國 九 十 七 年 八 月

使用故障區域辨識技術之多重故障矽診斷

Multiple-Fault Silicon Diagnosis Using Faulty
Region Identification

研 究 生：蔡孟家 Student: Meng-Jia Tsai

指導教授：周景揚 博士 Advisor: Dr. Jing-Yang Jou

國 立 交 通 大 學

電子工程學系電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute

of Electronics College of Electrical and Computer Engineering

Institute of Electronics

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Department of Electronics Engineering

August 2008

HsinChu, Taiwan, Republic of China

中 華 民 國 九 十 七 年 八 月

使用故障區域辨識技術之多重故障矽診斷

研究生：蔡孟家 指導教授：周景揚 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

隨著設計複雜度增加和製程更加先進，有些錯誤無法在矽前階段就被驗證的流程

所偵測到，到了晶片上才會顯現出來，因為晶片實體上的限制，存取晶片內的資料非

常困難，如果有錯誤發生，耗費在矽診斷的上時間會愈來愈多，尤其是要找出故障的

位置，因此有許多研究都針對找出錯誤的位置發展。針對多重故障，我們提出一個診

斷的架構，我們的演算法可以辨認一個包含所有故障的區域，設法刪除其中不可能為

錯誤之候選者，剩下的候選者經過評分之後，真正的故障會被排到評分表的前面，我

們修正第一個候選者再測試，透過迭代診斷、修正和再次測試，可大幅增進我們演算

法的效能。由實驗結果顯示，使用此診斷架構確實能夠有效地在很少的迭代中就找完

所有的故障點。

ii

Multiple-Fault Silicon Diagnosis Using Faulty
Region Identification

Student : Meng-Jia Tsai Advisor : Dr. Jing-Yang Jou

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

ABSTRACT

While designs are getting complex and technology becomes advanced, some

errors may escape the verification flows pre-silicon, but exhibit on silicon. Because

of physical limitation of chips, it is difficult to access data in chips. If errors occur,

silicon diagnosis takes more and more time due to the limitation, especially for

locating the fault sites. Thus many researches are developed for finding the fault

locations. Targeting on multiple faults, we propose a diagnosis framework. In the

framework, our algorithm can identify a region covering all faults then it removes

impossible candidates. After the remaining candidates are ranked, real faults can

be arranged to top of the list. We repair the first one and test the circuit again.

With iterative diagnosis, repairing and testing, performance of our algorithm is

enhanced. The experiment results show all fault sites can be identified in a few

iterations with the proposed diagnosis framework.

iii

Acknowledgement

I greatly appreciate my advisor, Professor Jing-Yang Jou, for his guidance,

lead, and support during these two years. He provides many resources and creates

an excellent environment for research. I am proud to be his student and a member

of EDA Lab. I am also grateful to my co-guidance advisor, Professor Chia-Tso

Chao, for his valuable suggestions. I am indebted to Meng-Chen Wu, Geeng-Wei

Lee, and Che-Hua Shih for their discussion and help on my research. Without

them, I cannot cross the barrier and bottleneck.

Specially thanks my partners, Yen-Yu Chen, Yang-Ting Mi, and Kuang-Wei

Chen, for encouragement and friendship. And thanks Cheng-Yeh Wang, Zwei-Mei

Lee, Bu-Ching Lin, and other friends in EE department and on net. They enrich

my life not only in academic field but also society and entertainment. Chatting

with them make me refreshed and released to confidently face the problem. Fi-

nally, I would like to express my sincerely acknowledgements to my family who

is always on my side, encouraging and patient of me.

iv

Contents

摘要 . ii

Abstract . iii

Acknowledgement . iv

Contents . v

List of Tables . vii

List of Figures . viii

1 Introduction . 1

1.1 Previous Works . 3

1.2 Motivation . 5

2 Preliminaries . 7

2.1 Problem Formulation . 8

3 Faulty Region Identification & Ranking 10

3.1 X-region . 11

3.2 Not Stuck-at-0 & Not Stuck-at-1 13

3.3 Faulty Region Identification . 15

3.3.1 Initial X-region Identification 15

3.3.2 X-region Shrinking Algorithm 19

3.4 Ranking . 32

4 Experimental Results . 36

v

4.1 Results for Single Fault . 38

4.2 Results for Multiple Faults Restricted in Length of Diameter of 2 40

4.3 Results for Multiple Faults without Diameter Restriction 42

4.4 Results Using Proposed Diagnosis Framework 45

5 Conclusions and Future Work . 48

References . 50

Vita . 55

vi

List of Tables

3.1 Patterns and responses . 16

4.1 Circuit parameters . 36

4.2 Results of diagnosis for single fault 39

4.3 Results of multiple faults in length of diameter of 2 40

4.4 Comparison with [20] . 41

4.5 X-region shrinking of diagnosis for 3 faults 42

4.6 Fault to the boundary & ranking of diagnosis for 3 faults 43

4.7 X-region shrinking of diagnosis for 5 faults 43

4.8 Fault to the boundary & ranking of diagnosis for 5 faults 44

4.9 X-region shrinking of diagnosis for 8 faults 44

4.10 Fault to the boundary & ranking of diagnosis for 8 faults 45

4.11 Comparison between w/o and w/ the repair step for 3 faults . . . 46

4.12 Comparison between w/o and w/ the repair step for 5 faults . . . 46

4.13 Comparison between w/o and w/ the repair step for 8 faults . . . 47

vii

List of Figures

2.1 Adaptive diagnosis framework . 7

2.2 Two categories of patterns . 8

2.3 Shrink the region to make faults close to the boundary 9

3.1 Diagnosis illustration . 10

3.2 X-region . 11

3.3 The boundary of X-region . 12

3.4 Deduction stops at a gate whose signal is dominated by real fault 14

3.5 Flow of faulty region identification 15

3.6 Fault assumptions, G1 stuck-at-1, net18 stuck-at-1 16

3.7 Active Fan-in for AND in [25] . 17

3.8 Active path tracing from erroneous output G16 17

3.9 Fault simulation may be incorrect if not all real faults covered in

the X-region . 18

3.10 The initial X-region in the example 19

3.11 Example of algebra of 3-value simulation 20

3.12 X-region shrinking algorithm . 20

3.13 Apply pattern (G1, G2, G3, G4, G5) = (11010) for logic simulation 21

3.14 Force values in the X-region to X 21

3.15 Identify good values using gate values 22

viii

3.16 Flipping & mismatch . 23

3.17 Flip net14 at pattern (G1, G2, G3, G4, G5) = (11010) 25

3.18 Remove net14 from the X-region 26

3.19 It cannot identify more good values at pattern (10101) 27

3.20 Identify good values using input information 28

3.21 Is Input Good(tg, p) . 30

3.22 Identification using input values 31

3.23 The auxiliary value helps another identification 31

3.24 Candidates are divided into 2 groups 33

3.25 Full-match candidates are divided into 3 groups 34

3.26 Illustration of sorted candidate list 35

4.1 Fault injection . 37

4.2 Example for diameter . 37

4.3 Distance of fault to boundary . 38

ix

Chapter 1

Introduction

Pre-silicon verification, such as formal verification and stimulus generation,

aims to verify functions of designs and fixes design errors before manufacturing.

However, due to the increasing design complexity, some errors cannot be predicted

and detected in pre-silicon verification flow. They only exhibit on chips [1]. The

process, silicon diagnosis, is utilized to identify the reasons of errors on chips and

feeds the information back to engineers. By silicon diagnosis, engineers can fix the

fault sites or modify the design to prevent the same errors on later manufactured

chips. Unfortunately, the time of silicon diagnosis takes grow rapidly because of

increasing circuit complexity, limited controllable and observable pins on a chip,

limited storage resources on automated-test-equipment(ATE) and many types

of faults on a chip. Silicon diagnosis becomes the most time-consuming step,

even more than 35% of time-to-market [1] up to 50% nowadays [2], and the most

costly step than other aspects of manufacturing [3]. Therefore, an effective silicon

diagnosis methodology is needed to accelerate the process and reduce time-to-

market.

The major part in silicon diagnosis is fault localization [1]. The objective of

fault location is to indicate systematic errors and to pinpoint the root-cause of

the errors. Conventionally, there are two categories of diagnosis algorithm: cause-

effect and effect-cause. In cause-effect algorithm, defects are modeled to logic-

level behavior and simulated with fault simulator to catch the fault syndrome

beforehand. The fault syndromes are stored in the fault dictionary. Once errors

are observed during testing, engineers can search the fault dictionary to find the

matched response and obtain the fault sites quickly. But the dictionary becomes

large due to the increasing design complexity and needs much storage to save even

1

the dictionary compressed. It also needs to consider the combinations of multiple

faults which make the dictionary larger. On the contrary, effect-cause algorithm

locates fault sites without building the fault dictionary. It analyzes test responses

and deduces from erroneous outputs. It determines fault candidates whose signals

probably propagate to the erroneous outputs. Usually fault simulation is used

to validate the deduction. This kind of algorithm is memory-efficient for high

complexity designs.

Fault models are explicitly or implicitly [4,5] utilized in these two categories

of diagnosis algorithms, especially in the fault simulation step, to make quality of

diagnosis more accurate. Fault modelling usually abstracts the defect behavior

to logical behavior. Stuck-at fault is the simple and static fault which is widely

used [6,7]. For example, single stuck-at fault is used for test-pattern generation

and all commercial tools have been built functions for the fault model. However,

it is too restricted and unrealistic because defects may occur at multiple locations

and are unconstant for different patterns. Some faults may not be detected with

patterns generated for single stuck-at fault and more than 41% defects cannot be

diagnosed with single stuck-at fault [5]. For detection, n-detection technique can

be used with single stuck-at fault model to enhance the probability of detecting

faults. In [8], 5-detection technique increases the probability of detection from

75% to 99% on bridge fault without additionally complex fault models. For

diagnosis, an alternative approach to enhance single stuck-at fault is multiple

stuck-at fault model. Several faults such as bridge fault [9,10], transition fault

[5,11], and open-interconnect fault [12] can be transformed to multiple stuck-at

faults and diagnosed indirectly. It preserves the concision of stuck-at fault and

accurately represents real defects than single stuck-at fault model. For multiple

stuck-at fault model, existing fault simulator can be employed with only a little

modification. Hence, there are many researches for diagnosing multiple stuck-at

faults [13–17]. Other researches for multiple-fault diagnosis can also be applied

for locating multiple stuck-at faults [6,12,18–22].

2

1.1 Previous Works

Region-based technique [18–20] assumes that faults locate in a user-specified

region. The distance is the minimum number of wires needed to traverse from a

fault to the center [18]. Distance between faults and the center of region must be

less than a specified radius. Region-based technique forces output values of the

region to unknown in simulation. The target region probably contains real faults

and its unknown signals may propagate to erroneous outputs. All sites in the

circuit have to be center of regions for examination. Thus region-based technique

needs to simulate many times to identify the candidate regions. However, we do

not know the length of radius in reality. If it begins from radius 1, as the radius

becomes larger, time of diagnosis grows exponentially in the experimental results

of [18]. In [23], faults may occur nearby. A realistic algorithm is still needed for

this problem. Unknown model is first proposed in [4]. It considers faulty signals

in simulation to be unknown instead of accurately modeling the behavior. Thus

it is suitable for complex defects. It is also utilized in [6,12] without a specified

region. In [12], it selects initial candidates using path-trace counts with unknown

model then prunes impossible ones and validates with 3-value simulation for open-

interconnect problem. In [6], it also simulates single-unknown candidate under

single-location-at-a-time(SLAT) assumption and calculates scores of candidates

for Byzantine faults.

SLAT-based algorithms are popular in diagnosis [6,17,23–25] recent years.

In [5], SLAT properties are completely explained. SLAT-based algorithms assume

that faulty signals converge on one site even multiple defects existing and only

considers fault location rather than fault behavior. The condition of faulty signals

converging on one site is equivalent to activate a fault site and explains the

faulty syndrome at a failing pattern. Therefore, it only selects failing patterns

which have SLAT properties to analyze. The fault sites which explain more

SLAT patterns are more possible in real fault sets, and the possible fault sets

are combinations of different fault sites which explain all failing patterns. SLAT-

3

based algorithms are efficient because there is only single fault at each failing

pattern. Besides, SLAT-based algorithms are model independent because they do

not consider fault behavior and root-cause of each SLAT pattern can be unrelated.

However, SLAT-based algorithms do not mention how to identify the fault sites

if they are far from the convergent point. It is difficult to diagnose with SLAT if

there are multiple faulty signals diverged, masked or interacting to cancel fault

effects [17].

In [6,18,22,23,25], the ranking approach is utilized. While there are too many

candidates and candidates cannot be tried entirely, it should start verifying from

the most possible one. Candidates are sorted with scores and usually the higher

ones of the candidate list are arranged former. No candidate will be eliminated

during the procedure to prevent wrong elimination with heuristic determination.

The worst case is that all candidates need to be tried to obtained all faults. In

these papers, the ranking approach formulates scores with matching criterion.

Generally a match is that values on one output pin from simulation and test

response are the same, whereas a mismatch is the values in different status. Scores

at a pattern are functions of numbers of matches and mismatches. The partial

match, a portion of scores, is that the value on one output pin from simulation

is unknown [18]. In [25], it divides mismatch into two parts, not-explained and

mis-predict signals. Not-explained signals are signals correct at test responses

while simulation responses incorrect. In contrast, mis-predict signals are signals

incorrect at test responses while simulation responses correct. In [22], an input

vector is curable if simulation responses are all consistent with test responses while

pseudo faults are injected. The curable-vectors are considered more important

than other patterns so that the candidates causing the vectors are sorted prior to

others. Structural relationship is considered in [6]. Candidates far from outputs

are are more potential than near ones.

After fault sites are identified, the design needs to be modified and re-spin

to prevent errors occur in next production. But mask-cost grows exponentially

4

as technology being advanced. Large percent of expense is for active devices

[26]. Thus placing Design-for-Debugging(DfD) components on chip, such as spare

cells, makes chips be repaired with focused-ion-beam(FIB) or engineering-change-

order(ECO). They modified metal layers or mask of metal layers without rewriting

a new one to reduce the expense [27]. Although chips may be oxidized due to

package uncovered, the success probability is acceptable.

1.2 Motivation

In reality, we do not know the distance among faults, hence we cannot assume

a limited region covering all faults which is proposed in the research of region-

based model [18,20]. For the limited storage of automated test equipment(ATE),

a small set of patterns is usually generated for fault detection. One pattern may

activate as many fault sites as possible at the same time. Many faulty signals are

excited while many faults exist. While faults are close to each other, there can

be many patterns causing faulty signals to cancel each other on some primary

outputs [17]. Multiple faults activated simultaneously or close to each other are

difficult to be diagnosed with SLAT-based algorithm.

In this thesis, we target on multiple stuck-at faults on gates in gate-level

circuits. We do not assume number of faults and the distance among faults in

our methodology. Our idea is to find a region covering all faults even they are

masked or their effects can be cancelled. Then we do not identify the faults

directly. We remove the impossible candidates to prune the size of candidates.

During the pruning, we must guarantee real faults are not removed. Therefore,

we can find faults in the region. To verify that we obtain the real faults, we can

repair the most possible candidate and test the circuit again. If there is still any

error, we have to try another site in the reported region. However, the responses

also provide information about fault locations. Combining with repairing and

testing information each iteration, we can adaptively find all faults.

5

The rest of the thesis is organized as follows. Chapter 2 introduces the

proposed diagnosis framework, the assumptions and objective for our problem.

In Chapter 3, the proposed algorithms, faulty region identification and ranking,

are explained. The experimental results are shown in Chapter 4. Finally, Chapter

5 concludes the thesis.

6

Chapter 2

Preliminaries

We propose the adaptive diagnosis framework shown in Figure 2.1. Given

a circuit-under-test(CUT) and test patterns, we can obtain the test responses

from ATE in testing step. If any error at primary outputs is obtained, there

must be faults detected. The following procedure is our algorithm, faulty region

identification and ranking, to find where is the root-cause. In these two steps, all

fault candidates are contained in a region and then they are reduced and sorted

in a ranked list with scores. The first candidate in the ranked list is the most

possible one to be a real fault.

Figure 2.1: Adaptive diagnosis framework

We fix the first one and do testing again. A different set of response could

be obtained if a fault is repaired. The procedure is run until there is no error

obtained at primary outputs and scan dumps.

7

2.1 Problem Formulation

In this thesis we assume the circuit is a full-scan and verified one. In the

full-scan scheme, all register are controllable and observable and the scan-chains

are assumed fault-free. Test patterns can be shifted in and the responses are

captured at next cycle. Behaviors of a sequential circuit are the same as a com-

binational circuit in test mode. Pseudo primary inputs(PPI) and outputs(PPO)

which are the outputs and inputs of registers can be regarded the same as primary

inputs(PI) and outputs(PO). While we mention the primary inputs and outputs

in this article, they are also combined with PPIs and PPOs. Subsequently, it

is exhaustively verified before fabrication. Given a set of test patterns, if there

is any error obtained in testing, there must be some faults on silicon to cause

the syndrome. We assume the syndrome can be reproduced while applying the

same patterns again. Erroneous outputs(EPO) are output pins whose signals are

inconsistent in testing and logic simulation. Failing patterns are patterns in the

test set which detect the faults and some outputs are EPOs. Passing patterns

are the other patterns in the test set and all of the responses are consistent in

testing and logic simulation. An example is shown in Figure 2.2.

(a) Failing pattern (b) Passing pattern

Figure 2.2: Two categories of patterns

Given a circuit, test patterns and test responses, we can check if there are

errors, then apply the proposed diagnosis algorithm to find the root-cause of

errors. The algorithm reports a region covering all faults and candidates in the

region are sorted in a ranked list. In the algorithm we remove the impossible

8

candidates from the region. The objective is to make real faults very close to

the boundary of region and to the top of the ranked list. Thus we can obtain

one of the faults closest to the boundary by utilizing structural information. The

illustration is shown in Figure 2.3. We can also obtain the first fault in the ranked

list in a few trials according to the order of the list.

Figure 2.3: Shrink the region to make faults close to the boundary

In addition, there is repair step in our diagnosis framework. We want to

repair one candidate at a time and then test it again. We assume there are

Design-for-Debugging(DfD) components built in the circuit such as spare cells.

Applying the existing repair techniques causes only small side effects that can be

ignored. If one fault is repaired, the test responses may be different from previous

ones. Therefore, we can identify the fault sites and fix them adaptively.

9

Chapter 3

Faulty Region Identification &

Ranking

In this chapter, we describe the details in faulty region identification and

ranking which are two parts of our proposed framework. The other steps are

referred to other researches. There are three concepts used in faulty region iden-

tification: X-region, not stuck-at-0 & not stuck-at-1 properties, and the X-region

shrinking algorithm. We define the first two and then describe the X-region

shrinking algorithm which is integrated in the flow of faulty region identification.

The last is ranking.

At beginning of faulty region identification, we identify an initial fault can-

didate set, X-region, and the candidates are gates. The illustration is shown in

Figure 3.1(a). If we can guarantee a fault candidate is fault-free, the candidate

is impossible to be a real fault and can be removed from the candidate set. Thus

the size of candidate set is decreased with the elimination as illustrated in Figure

3.1(b). In other words, the X-region is shrunk.

(a) The initial X-region (b) Shrinking the X-region (c) Ranking the X-region

Figure 3.1: Diagnosis illustration

10

To remove fault-free candidates, we use the X-region shrinking algorithm to

identify candidates with the not stuck-at-0 and not stuck-at-1 properties in the

X-region described in section 3.2. A candidate with one of the properties helps

the algorithm identify another fault and candidates with both two properties can

be removed. Hence it iteratively decreases the size of X-region without losing real

faults. Correctness of the identification is proved in later section.

After shrinking the X-region, impossible faults do not exist in the X-region.

Finding real faults in this compact region is easier than the initial one. Finally,

we rank the remaining candidates in the X-region to figure out the most possible

fault site. It is shown in Figure 3.1(c). The closer faults located to the boundary,

the easier they can be caught.

3.1 X-region

The X-region is a candidate set which contains all real faults. It is the

substance operated by our algorithm and obtained in the first step described in

section 3.3.1. Gates outside of the X-region are fault-free. The boundary is the

edge between inside and outside of the region. The illustration of the X-region is

shown in Figure 3.2.

Figure 3.2: X-region

Faults are detected once the faulty signals propagate through the boundary

11

to primary outputs. In other words, obtaining faulty signals on boundary gates

means they are on the error propagation paths of activated faults. Faults can be

either on the boundary or inside the X-region. In our algorithm, we deduce the

correctness of gates from the boundary to the inside of X-region. The definition

of the boundary is as follows.

Definition 3.1. (The boundary of X-region)

A gate g is said on the boundary of X-region if g ∈ X-region and there exists

at least one fan-out gate of g /∈ X-region. e.g. in Figure 3.3, G1, G2, G3, G4,

G16, net14, net17 and net18 are in the X-region. G2, net14, and G16 are on the

boundary.

Figure 3.3: The boundary of X-region

Signals propagating through fault sites are replaced with faulty signals and

input values of the faults is unknown. Under multiple-fault assumption, fault

masking may occur and one faulty signal in the fan-in cone of another fault could

also be replaced. We do not know the locations of masked faults but only know

these faults may be inside the fan-in cone of the masking faults. For this reason,

unless we know a gate g is fault-free, we cannot distinguish whether the fan-in

gates of g is faulty or not. To detect faulty signal of g, we must make sure that

there is at least one signal propagation path from it to primary outputs that all

gates on the path are fault-free. Then we probably observe the effect from g.

Gates on the boundary are guaranteed to have at least one fault-free fan-out. So

12

we only operate gates on the boundary in the algorithm. The deduction stops

when non-masked real faults are on the boundary in ideal cases. The masked

faults are still in the X-region without losing, but they cannot be accurately

identified.

In our algorithm, we use single-fault simulation to identify fault-free gates

on the boundary. Single-fault simulation is simple and widely used. In [5], there

are some situations that multiple defects behave like a single fault and can be

dealt with single-fault simulation. However, in multiple-fault-effect cases, single-

fault simulation may misdiagnose. It cannot accurately describe multiple-fault

behavior. To overcome this, all values of all gates in the X-region are forced to

be unknown value during our algorithm. The unknown model used in [4,6,12,18–

20,28,29] is setting gate values to unknown. They determine fault candidates

by observing if the unknown signals propagate to erroneous outputs in fault

simulation. The unknown model enhances single-fault simulation then we can

analyze one candidate at a time. If we inject a fault in the X-region and observe

an error at primary outputs in simulation, we can claim the error is from the

injected fault even under multiple fault condition. The algorithm is in section

3.3.2.

3.2 Not Stuck-at-0 & Not Stuck-at-1

Conventional stuck-at fault model is widely used. In the model, there is

one of three states: stuck-at-0, stuck-at-1, or fault-free on a gate. But in our

algorithm, we import the concept of not stuck-at-0 and not stuck-at-1 properties.

If a candidate can be demonstrated that its signal is 0 on chip for a given pattern,

the candidate should not be stuck-at-1. On the other hand, it should not be stuck-

at-0 if its signal is guaranteed 1 on chip. A candidate is claimed fault-free if it

is both not stuck-at-0 and not stuck-at-1 [15,16]. For convenience, we use NSA0

and NSA1 to represent not stuck-at-0 and not stuck-at-1, respectively. For not

13

specifying either 0 or 1, we use v to represent the value and NSAv to represent

not stuck-at-v.

In our algorithm, we want to remove fault-free candidates from the X-region

by identifying they are NSA0 or NSA1. A candidate which is both NSA0 and

NSA1 can be removed. Real faults are at most determined one of these two faults.

The other value of these two fault cannot be determined because it is the same

as the faulty value. Hence it is guaranteed that real faults must not be removed

with the identification. We apply fault simulation in our algorithm to identify

whether a candidate is fault-free. A NSA0 or NSA1 candidate is not necessarily

identified in every patterns. Because stuck-at fault is a kind of static fault [6]

and fault effect occurs while it is activated without special pattern dependency.

An identified NSAv candidate at one pattern is sufficient to explain it is NSAv.

Figure 3.4: Deduction stops at a gate whose signal is dominated by real fault

We apply the X-region shrinking algorithm on the X-region boundary first

and the inputs of the boundary to deduce NSA0 and NSA1 properties. For ideal

case, the operation stops at the time that real faults are deduced. Unfortunately,

some faults and their signal-dominated fan-outs are considered fault-equivalent

[11]. The deduction stops at fault-equivalent gates before touching real faults.

Figure 3.4 shows this situation. It remains redundant fault candidates. We will

measure how far from real faults to the boundary in chapter 4.

14

3.3 Faulty Region Identification

Without number and distance assumptions of faults, we only conservatively

identify a region containing all real faults. After finding the region, we can then

easily catch real faults in it with structural information. The flow of our algorithm

is shown in Figure 3.5.

Figure 3.5: Flow of faulty region identification

In this thesis, we utilize the example to describe how the X-region is shrunk

with the algorithm shown in Figure 3.6. Assume there are two fault in the circuit,

G1 stuck-at-1 and net18 stuck-at-1. The test patterns, simulation responses and

test responses are shown in Table 3.1.

3.3.1 Initial X-region Identification

At the beginning of our algorithm, initial candidates are identified to form

the initial X-region. Candidates are gates which are probably real faults detected

15

Figure 3.6: Fault assumptions, G1 stuck-at-1, net18 stuck-at-1

Test Pats. Sim. Resp. Test Resp. Failing PO

G1 G2 G3 G4 G5 G16 G17 G16 G17
11010 11 01 G16
11001 11 01 G16
11011 11 01 G16
10001 01 01 –
01111 00 10 G16
00010 00 00 –
10101 11 11 –
00110 00 10 G16

Table 3.1: Patterns and responses

by a given test set. With lack of number and distance information of faults,

we only know that faulty signals propagate to primary outputs. Thus we can

back-trace from erroneous outputs to obtain fault candidates.

In [30,31], if an EPO z is observed, the circuit contains a fault in the fan-in

cone of z. For one gate, not all inputs with faulty signals may change the output.

It is sufficient to cover all real faults by tracing the sensitive inputs of a gate

depending on test patterns. Some publications are based on critical path tracing

[12,32–34]. It traces the only one controlling input pin or all non-controlling input

pins of a gate. Otherwise, it stops tracing. It is suitable for single-fault diagnosis,

however, it may lose faults in multiple-fault diagnosis. Two or more controlling

pins of one gate may be inverted simultaneously due to multiple faulty signals.

It should consider this situation to prevent losing real faults.

16

a b x Active Fan-in

0 0 0 a, b

0 1 0 a

1 0 0 b

1 1 1 a, b

Figure 3.7: Active Fan-in for AND in [25]

In [25], active path tracing is used to identify candidates which can effect

erroneous outputs. From an erroneous output, it traces active fan-ins of a gate

if the values changed will modify the gate value. The active fan-ins are likely

be real faults. If there are controlling input pins, all of them are traced to be

candidates. Otherwise, all non-controlling input pins are traced. An example of

two input AND gate is shown in Figure 3.7. Pins a and b are traced when their

values are (0, 0) or (1, 1). Only a or b are traced if there is only one controlling

value, (0), of these pins.

Figure 3.8: Active path tracing from erroneous output G16

An example for tracing from erroneous outputs with active path tracing is

shown in Figure 3.8. Comparing simulation and testing response, the primary

output of G16 is erroneous. The bold connection lines are the traced paths. After

tracing from the erroneous output, G16, net18, net14, and the primary inputs

G2, G3, G4 are candidates.

The X-region has to cover all real faults. However, tracing from one erro-

neous output at a pattern may cover only part of real faults. Traced gates at

17

different patterns may cover different parts of faults. We then unite all traced

gates to ensure all real faults are covered. In addition, it also covers masked

faults. Although it is conservative that the initial X-region becomes large due

to many erroneous outputs, uniting all traced gates is necessary for later step in

the algorithm. With only test vectors and test responses, we can only assume

fault sites and do fault simulation on netlist. Gates outside of the X-region are

fault-free. If there is any fault outside the X-region, simulation results may be

incorrect. The illustration shown in Figure 3.9 describes the situation. During

testing, fault B is sensitized but one error propagation path is blocked by fault A.

There is only one erroneous output of fault B observed. However in simulation,

fault A is assumed fault-free. Simulating the same pattern, error propagation

path of B is not blocked and makes error.

(a) Test response (b) Fault-simulation response

Figure 3.9: Fault simulation may be incorrect if not all real faults covered in the

X-region

In the example shown in Figure 3.10, it traces G1, G2, G3, G4, net14, net17,

net18, and G16 to form the initial X-region. The boundary consists of G2, net14,

and G16. Obviously all real faults, G1 and net18, are covered in the X-region.

18

Figure 3.10: The initial X-region in the example

3.3.2 X-region Shrinking Algorithm

The X-region shrinking algorithm is applied to identify candidates which

are not faulty. It is similar to [20] which distinguishes impossible faulty regions

from possible ones to improve the original region-based methodology in [18]. We

propose a different the X-region shrinking algorithm to find gates belonging to

the X-region are NSA0 and NSA1. It focuses on one target gate at a time with

respect to one pattern to verify if the target gate has good value on chip which

means it is consistent with simulated value. A target gate which is guaranteed to

have good value v on chip indicates that it is NSAv. The target gate is fault-free

and can be removed from the X-region if it is determined to be both NSA0 and

NSA1.

NSA0 and NSA1 deduction is based on fault simulation technique. It utilizes

all patterns, including failing patterns and passing patterns. Under multiple fault

assumption, conventional single-fault simulation may misdiagnose, especially on

the condition that fault effects interact with each other. The interaction may

change faulty signals to good signals, but single fault simulation cannot reflect

the interaction. We apply 3-value simulation on the X-region in the X-region

shrinking algorithm to avoid misdiagnosing and losing real faults. The algebra of

3-value simulation for each gate is from [35]. Assuming there are unknown input

signals, the gate value can be determined if there are controlling input signals.

19

Otherwise, the gate value is unknown. An example is shown in Figure 3.11.

(a) Controlling signal exists (b) No controlling signal

Figure 3.11: Example of algebra of 3-value simulation

Algorithm 1: X-region Shrinking

foreach {p : p ∈ T, T = Test Set} do1

Logic Simulation()2

foreach {g : g ∈ X-region} do3

Value(g) ← X4

end5

foreach {g : g ∈ Boundary and RecordedGood(g, p) = true} do6

Value(g) ← GoodValue(g)7

end8

/* procedure IGV */

Identify Good Values Using Gate Values(Boundary)9

/* procedure IUI */

Identify Good Values Using Input Information(Boundary)10

end11

Figure 3.12: X-region shrinking algorithm

The X-region shrinking algorithm is shown in Figure 3.12. The initial X-

region is obtained with active path tracing. For each pattern, we do logic simula-

tion at line 2 to initialize simulated values on all gates. Gate values belonging to

the X-region are forced to be unknown values at line 3 and on-boundary ones are

reloaded recorded good values to initialize the X-region at line 6 if the values are

identified in later functions. Subsequently, it utilizes gate values to identify good

values and NSA0, NSA1 properties at line 9. If NSA0 and NSA1 properties on

a target gate are identified, the procedure at line 9 remove the target gate from

the X-region. To further identify more good values, we deduce the input values

of a target gate at line 10. The procedure at line 10 helps previous identification

to remove more candidates from the X-region.

20

As shown in Figure 3.13 and Figure 3.14, the circuit is applied a pattern for

logic simulation to get simulated values for all gates. Then gates in the X-region

are forced to be value X which is the unknown symbol in simulation.

Figure 3.13: Apply pattern (G1, G2, G3, G4, G5) = (11010) for logic simulation

Figure 3.14: Force values in the X-region to X

Following X-region initialization is procedure IGV, Identify Good Values

Using Gate Values at line 9 in Figure 3.12, and the detail is shown in Figure

3.15. We randomly choose a target gate on the boundary with unknown value

and force its value to be the reverse of the simulated value. This is the flipping

step at line 2. The reverse value is a pseudo-faulty signal injected in the circuit.

All forced values are unchangeable during simulation. After 3-value simulation

at line 3 is conducted, if there is mismatch defined in Definition 3.2 at a primary

output comparing with test response, the value on target gate must be consistent

with simulated value and cannot stick at the reverse value. So that the target

gate has a good value and one of NSA0 and NSA1 properties. As shown in Figure

21

Procedure IGV: Identify Good Values Using Gate Values(Boundary)

foreach {g : g ∈ Boundary and Value(g) = X} do1

Flip(g)2

3-Value Simulation()3

foreach {z : z ∈ PO,PO = Primary Output} do4

if Mismatch(z) then5

if NSAValue(g) = GoodValue(g) then6

X-region ← X-region − {g}7

Boundary ← Boundary ∪ {FIg : FIg ⊆ FanIn(g)andFI g ⊂8

X-region}
else9

RecordedGood(g, p) ← true10

NSAValue(g) ← GoodValue(g)′11

end12

break13

end14

end15

end16

Figure 3.15: Identify good values using gate values

3.16, G17 has a mismatch and G2 must have good value 1. In other words, G2

is NSA0. Therefore, procedure IGV utilizes gate-value flipping to identify NSA0

and NSA1 properties. If both NSA0 and NSA1 properties are identified on the

target gate, the target gate can be removed from the X-region at line 7.

Definition 3.2. (Mismatch between 3-value simulation and test response)

Mismatch between 3-value simulation and test response at one primary output

is that the output pin has 0,1 values and are different between 3-value simulation

and test response, e.g. in Figure 3.16, we flip G2 from 1 to 0 and G17 gets a

mismatch because G17 has 1 in test response but 0 in 3-value simulation after

3-value simulation. G2 must have good value 1 and be NSA0.

The target gate actually with good value v is NSAv′. We will force its value

to be good one for next target gate at the same pattern. If simulation results are

unknown or consistent with passing outputs, the target gate may be not activated

or the effect does not propagates to primary outputs. Even erroneous outputs

22

Figure 3.16: Flipping & mismatch

from simulation match real erroneous outputs, we do not know what situation the

target gate is. It can be either a stuck-at fault or just on the error propagation

paths from a combination of real faults inside the X-region. We can only judge

the correctness with mismatch. If there is no mismatch observed at primary

outputs, the situation of target gate is still unknown. The proof is below.

Theorem 3.3. Given an X-region, there is a set of gates on the boundary(BG).

For one pattern, assume there is a set of gates on the boundary whose val-

ues are forced to be good values(BGFG), and a set of gates are forced to be

unknown(BGFU). BGFG is a subset of BG, BGFG ⊂ BG, and its size is

larger or equal to 0, |BGFG| ≥ 0. BGFU contains gates in BG except in

BGFG, BGFU = BG−BGFG. Flipping a gate g, g ∈ BGFU , and simulating,

if there is any mismatch observed at primary outputs, g must have good value the

same as simulated one and should be in BGFG.

Proof. At the same pattern,

1. All gates in BG have unknown values, BG = BGFU . An arbitrary gate

g, g ∈ BGFU , is set to v′ which is reverse of simulated value v. If any

mismatch is observed at outputs, g must have good value v consistent with

simulated one. That is to say g is NSAv′ and g ∈ BGFG. g is forced to be

good value on the boundary for next target gate at the pattern.

23

It is obviously established. Gates in BG are unknown except g. The in-

consistent signal must originate from g. Setting good value on g is the only

way to eliminate the inconsistency.

2. Following procedure IGV, assume there are k gates on the boundary forced

to be good values, |BGFG| = k, and it is valid to set these gates to good

values.

3. Subsequently, we randomly choose the (k + 1)th gate in BGFU . If flipping

the (k + 1)th value causes mismatch, the (k + 1)th gate must have good

value at current pattern.

Supposing setting the (k + 1)th to good value is not valid, there must be

any invalid assignment in previous k gates in BGFG. If i, 1 ≤ i < k, is the

invalid assignment, there must exist j, 1 ≤ j < i, invalid. By the recursive

relationship, it is deduced that the first assignment is invalid. It contradicts

the first assignment. However, first condition is obviously established. The

(k + 1)th assignment must be valid.

By mathematical induction, if there are n gates in BG forced to be good

values and the others are unknown, the (n + 1)th value is good while mismatch

is observed after 3-value simulation.

Theorem 3.3 is for the same pattern. Given another pattern, all statuses on

the boundary have to be reset to unknown or recorded values at the new pattern.

Gate values are set to unknown for two reasons. One reason is that good values

on gates may be different due to a new pattern. The other reason is that even

the boundary gate is NSAv′ and recorded at previous patterns, we do not know

in reality it has good value v at current pattern. There are still two cases on the

boundary gate, stuck-at-v or fault-free, causing different values on the boundary

gate. If it sticks at good value v, obviously the value is good value and the pattern

does not activate the fault. If it is fault-free, the value depends on values of its

fan-ins. It gets good value v if there is no faulty signals in its fan-in cone. On

24

the other hand, it may get faulty value v′ which is reverse of good value if it is

on the error propagation paths of some faults inside its fan-in cone. Setting good

value on it by inheriting the recorded value from previous patterns may make a

mistake. Because of these reasons we need to reset the status to unknown and

do the identification again to check.

Nevertheless there is one exception. Boundary gates on primary inputs can

be set to good values while the value is recorded in previous patterns. Because we

assume that there are no errors on scan-chains, all values fed in primary inputs

are good values. Both two cases, stuck-at-v or fault-free, are guaranteed that the

pins have good values, they can be set to good values and skip procedure IGV.

Figure 3.17: Flip net14 at pattern (G1, G2, G3, G4, G5) = (11010)

As shown in Figure 3.17, G2 is forced to be good value and then next target

net14 is flipped to 0 at the same pattern. The mismatch occurs which means that

net14 must have good value 1 and be NSA0. At another pattern, net14 is chosen

to be the target and flipped to 1. It also makes an mismatch which shows net14

must have good value 0 and be NSA1. Therefore, net14 is NSA0 and NSA1 and

it can be removed from the X-region. G3, G4 are new members of the boundary

shown in Figure 3.18.

In summary, procedure IGV shown in Figure 3.15 utilizes gate-value flipping

to identify good values. Targets on the boundary can be removed from the X-

region if NSA0 and NSA1 properties are identified. Gates in the X-region have

25

(a) net14 is NSA1 at Pattern (G1, G2, G3, G4, G5) =

(01111)

(b) Update the X-region & boundary

Figure 3.18: Remove net14 from the X-region

unknown values except gates on the boundary with good values identified.

In procedure IGV, the condition of observing mismatch is that a pseudo-

faulty signal must propagate through fault-free gates to primary outputs without

blocking by unknown signals after 3-value simulation. However, we flip one value

on the boundary one time and keep the others unknown if they have no identified

good value. Pseudo-faulty signals, especially non-controlling values or gates with

only one fault-free fan-out, are easily blocked by the other signals. The excep-

tions are controlling signals whose computation priority in 3-value simulation is

higher than unknown. The controlling values dominate gate-output signals. Some

boundary gates are recorded not stuck-at controlling values because pseudo-faulty

signals are controlling signals in the process of flipping. But we cannot get not

stuck-at non-controlling ones even if it actually is fault-free. If no mismatch is

observed, no good value is identified. That is the reason that the X-region cannot

26

be shrunk anymore.

In the example after procedure IGV, G1, net17, net18 remain in the X-region

and net17, net18 are NSA0. net17 is actually fault-free but it cannot identify

net17 NSA1 shown in Figure 3.19. The signal can be blocked by the unknown

value of net18.

(a) (b)

Figure 3.19: It cannot identify more good values at pattern (10101)

But without the X-region, the pseudo-faulty signal may propagate to primary

outputs to make mismatch. That is to say while the other gates on the boundary

have good values, the pseudo-faulty signal from the flipping step may propagate to

primary outputs to make mismatch. After a good value is identified in procedure

IGV, we force the target gate to be good value for next identification in the

same pattern. It helps next pseudo-faulty signal propagate to primary outputs.

For this reason, if more good values can be identified, more NSA0 and NSA1

properties can be identified and the X-region can also be shrunk further.

Some situations can be analyzed more and solved. We propose procedure

IUI, Identify Good Value Using Input Information at line 10 of X-region

shrinking algorithm in Figure 3.12, based on the flipping and mismatch concept

using input signals of target gates to further identify more good values. We still

randomly choose a target gate on the boundary with unknown value and then

we deduce the input values of the target gate. Assuming simulated value of the

target gate is v at a pattern, if it is NSAv′ and its input values are good, it

must have good value v. Thus, to verify the target gate with good value v, it

needs any of input pins with identified controlling values or all input pins with

27

Procedure IUI: Identify Good Values Using Input Information(Boundary)

foreach {g : g ∈ Boundary and Value(g) = X} do1

if RecordedGood(g, p) = true then2

continue3

if NSAValue(g) = GoodValue(g) then4

continue5

if g has controlling fan-ins then6

FI ← ControllingFanIn(g)7

foreach {gi : gi ∈ FI} do8

if Is Input Good(gi, p) = true then9

RecordedGood(g, p) ← true10

break11

end12

end13

else14

FI ← NonControllingFanIn(g)15

foreach {gi : gi ∈ FI} do16

if Is Input Good(gi, p) = false then17

break18

end19

if all gi ∈ FI are good then20

RecordedGood(g, p) ← true21

end22

end23

Figure 3.20: Identify good values using input information

identified non-controlling values. The procedure IUI is shown in Figure 3.20.

While the conditions are satisfied, the target gate can be recorded to have good

value. Some target gates can be removed from the X-region because both NSA0

and NSA1 properties are identified, but in this procedure these gates with good

values cannot necessarily be removed. The gates are still NSAv′ rather than

NSAv. This procedure only helps procedure IGV to remove more candidates

from the X-region which cannot be identified by previous one.

Theorem 3.4. Assume at pattern p, simulated value on a boundary gate g is v.

g has unknown value in the X-region at p because it is not demonstrated that it

has the good value. And it has identified NSAv′ property. If actual input values of

g are good values, one controlling value or all non-controlling values, g has good

28

value v consistent with simulated value at pattern p.

Proof. In stuck-at fault model, there are three states: stuck-at-0, stuck-at-1, and

fault-free. The value on a gate is still unknown if only one stuck-at fault state

is distinguished. The remaining states, the other stuck-at state and fault-free

state, may make the gate have different values, e.g. the gate has value 1 if it has

stuck-at-1 fault but has value 0 if it is fault-free at one pattern.

The simulated value on the gate is v. If input values of the gate are good,

one controlling value or all non-controlling values, the gate has value v no matter

what the remaining states are because stuck-at-v fault also makes it has value

v.

There are three situations on an input of a target gate on the boundary: on

the boundary, outside the X-region, and inside the X-region. We simply know

the simulated values on each gate, but we cannot deduce the value on the target

gate until we know the actual value of the inputs. If one of the inputs actually

has controlling value or all inputs have non-controlling values, the value of target

gate is determined. Otherwise the target gate is still unknown. The procedure,

Is Input Good at line 9 and 17 of the procedure IUI in Figure 3.20, is shown in

Figure 3.21.

1. If one input is on the boundary, we can know it has good value or not by

searching the database which records good values of all boundary gates at

each pattern.

2. If one input is outside the X-region, the input is fault-free, but value of the

input on chip is not necessarily the same as simulated value. The value

is different from simulated value if the input is on error propagation path

of some faults. To get the actual value, we imply the method based on

the flipping and mismatch concept. If mismatch occurs, the input value

is consistent with simulated value. Otherwise, we continue to recursively

29

Procedure Is Input Good(tg, p)

if tg ∈ Boundary then1

if RecordedGood(tg, p) = true then2

return true3

else if tg /∈ X-region then4

if tg ∈ Primary Input then5

return true6

Flip(tg)7

3-Value Simulation()8

if Check Mismatch() = true then9

return true10

if (∃g : g ∈ FanIn(tg) and GoodValue(g) = ControlValue(tg))11

then
foreach {g : g ∈ FanIn(tg) and12

GoodValue(g) = ControlValue(tg)} do
if Is Input Good(g, p) = true then13

return true14

end15

else16

foreach {g : g ∈ FanIn(tg)} do17

if Is Input Good(g, p) = false then18

return false19

end20

return true21

end22

end23

return false24

Figure 3.21: Is Input Good(tg, p)

deduce the inputs of previous one until we can determine the input value

of boundary gates or cannot deduce anymore. These deduced gates are

fault-free and propagate good values if their inputs control their value to

be good ones. Otherwise, they propagate unknown value.

3. If one input is inside the X-region, we have no idea what the input value is

because it is still unknown.

In the example shown in Figure 3.22, net18 is NSA0 and its inputs are fault-

free. At the given pattern (10101), the simulated value on net18 is 1. The

30

Figure 3.22: Identification using input values

Figure 3.23: The auxiliary value helps another identification

recursive deduction reports that G2 actually has value 0 which is the controlling

value of net18. Therefore, net18 must have value 1 at this pattern. With good

value of net18, pseudo-faulty value of net17 can propagate to primary output

and the mismatch is observed shown in Figure 3.23. net17 can be deduced to be

NSA1.

Summary, we propose procedure IUI in Figure 3.20, based on the flipping

and mismatch concept using input signals of target gates. After assigning these

auxiliary values on boundary gates by checking input conditions, some gates in

procedure IGV could propagate their pseudo-faulty signals to primary outputs.

Then the X-region shrinking algorithm goes back to procedure IGV again. Thus

we can observe mismatches and then further remove fault-free candidates from

the X-region.

31

3.4 Ranking

Ranking is a widely used method for error diagnosis. It sorts candidates with

a given score function proposed in many researches without eliminating any of

candidates. Usually the highest-score candidate is deduced as the most possible

one to be a real fault and at the top of the list. It reflects the confidence degree

rather than real situations. The objective is moving the real faults at top of

the sorted candidate list. In this section, candidates are gates in the X-region

reported from faulty region identification.

One of the score functions is matching criterion. In this thesis, we activate a

candidate c in the circuit at a time and utilizes single-fault simulation to obtain

the response. Then we compare the simulation response with the test response at

a pattern. We only use failing patterns in the ranking technique. A match on an

output pin at one pattern is that both values from fault simulation and test are

the same and erroneous. EPOfsim(c, p) denotes the set of erroneous output pins

from fault simulation at pattern p while c is injected. EPOtest(p) denotes the set

of erroneous output pins from pattern p. |EPOfsim(c, p) ∩ EPOtest(p)| represent

the number of pins in the intersection of EPOfsim(c) and EPOtest at pattern p.

Basically the score for a candidate is the number of total matched pins at the

pattern and the total score for a candidate is the summation of these scores at

different failing patterns, Match Sum. The candidate with higher score is more

potential to be a real fault.

Match Sum(c) =

|failing pat.|∑
p=1

Match(c, p) =

|failing pat.|∑
p=1

|EPOfsim(c, p) ∩ EPOtest(p)|

(3.1)

Particularly, full-match is the condition that EPOfsim(c) equals to EPOtest

at a pattern. In [22] and SLAT-based diagnosis [5,6,17,23], a candidate c with

32

Figure 3.24: Candidates are divided into 2 groups

full-match condition is more important than the others even if candidate c has

less Match Sum. It is the only one fault that explains the failing pattern and

highly probable a real fault. Candidates are divided into two groups: full-match

and not full-match shown in Figure 3.24. We arrange candidates with full-match

condition prior than the others which are not full-match in the candidate list.

FM Det is the total times that full-match condition occurs and FM Sum is the

summation of matched pins of full-match condition at different patterns.

isFM(c, p) =

0 if EPOfsim(c, p) 6= EPOtest(p)

1 if EPOfsim(c, p) = EPOtest(p)

FM Det(c) =

|failing pat.|∑
p=1

isFM(c, p) (3.2)

FM Sum(c) =

|failing pat.|∑
p=1

isFM(c, p) · Match(c, p) (3.3)

Combining with recorded NSA0 and NSA1 properties, some conditions of

scores need to be adjusted. Only candidates on the X-region boundary may be

NSA0 or NSA1. If a fault is on the boundary, it may have an identified NSA0

or NSA1 property. Thus candidates with one of NSA0 and NSA1 properties are

more possible to be real faults than others on the boundary. If these candidates

are full-match simultaneously, they are most likely be real faults. We arrange

candidates on the boundary with NSA0 or NSA1 properties and to be full-match

prior than candidates which are only full-match. In contrast, candidates on the

boundary which do not have NSA0 and NSA1 properties are less likely to be

33

faults. We ignore their full-match scores but keep the matched scores. Till now,

full-match candidates are divided into three groups: full-match candidates with

NSA0 or NSA1 properties, full-match candidates inside X-region, and full-match

candidates without NSA0 and NSA1 properties shown in Figure 3.25.

Figure 3.25: Full-match candidates are divided into 3 groups

Consequently, a NSAv candidate c1 may cause matches in fault simulation,

but it is invalid while a stuck-at-v fault is injected on c1 at a pattern p. We set

the score to be zero. However with the matching criterion, another candidate

c2 whose EPOfsim(c2) have no intersection with EPOtest at the pattern, i.e.

|EPOfsim(c2, p)∩EPOtest(p)| = 0, also gets zero score. It may be that erroneous

outputs entirely different from test or no erroneous outputs while c2 is injected.

Candidate c2 may have matches while another fault exists. Candidate c2 is more

possible to be fault than candidate c1 which is determined invalid but less likely

than others having match. To differentiate these two conditions of zero score, we

adjust the scores of candidates whose EPOfsim have no intersection with EPOtest

to be half of the minimum of matched scores at the pattern. This modification

of score only affects Match Sum.

Match(c, p)= 0.5 · min{Match(c′, p) : Match(c′, p) > 0, c′ ∈ X-region}

if Match(c, p) = 0
(3.4)

Candidates with NSA0 or NSA1 properties and full-match are at top of the

candidate list. They are sorted with FM Det. If any pair of them have the same

scores, they are sorted with FM Sum. Full-match candidates inside X-region

34

are in the middle. Likewise, They are sorted with FM Det first. If there are

candidates with the same scores, they are sorted with FM Sum. The remaining

candidates are sorted with Match Sum. If there are still candidates with the same

scores, distance to the boundary defined in Definition 3.5 is utilized to rearrange

them because we expect that faults are close to the boundary. A candidate with

short distance is former in the candidate list than one with long distance. The

illustration of sorted list is shown in Figure 3.26.

Definition 3.5. (Distance from candidate to the boundary)

Given a gate-level netlist, we model it to a directed graph. Distance from a

candidate to the boundary is the number of edges in the shortest path between

target candidate and one of gates on the boundary. The gates on the boundary

must be in the fan-out cone of target candidate.

Figure 3.26: Illustration of sorted candidate list

35

Chapter 4

Experimental Results

The proposed diagnosis framework is implemented in C++ language and ex-

periments are conducted for full-scanned version of ISCAS’89 benchmark circuits

on a workstation (CPU:2.0GHz, Mem:16GB, OS:Linux). Table 4.1 shows the cir-

cuit parameters. Column 1 gives the circuits’ name, column 2 lists total number

of internal gates in the circuits. Column 3 lists the summation of PIs and PPIs.

Column 4 is similar to the third column and it lists the summation of POs and

PPOs. Column 5 lists total test patterns for these circuits. The input patterns

are generated with ATPG program based on PODEM algorithm [36]. They have

100% fault coverage for single stuck-at fault and are also supported in commercial

tools.

Circuit # of Gates # of PIs+PPIs # of POs+PPOs # of Test Vec.

s1196 529 32 32 201
s1423 657 91 79 82
s713 393 54 42 73
s5378 2779 214 213 317
s13207 7951 700 790 604
s35932 16065 1763 2048 77
s38584 19253 1464 1730 889
s38417 22179 1664 1742 1371

Table 4.1: Circuit parameters

In our experiments, we inject multiple stuck-at faults into the circuits. These

faults can be internal gates, inputs, or outputs. To control these fault locations,

we set upper bound of diameter of the region. We randomly inject a fault as center

of the region with the upper-bound diameter, then other faults are injected near

it randomly. We define the smallest region covering all faults with diameter d.

The illustration is shown in Figure 4.1.

36

(a) Upper bound restriction of

diameter

(b) Measured fault diameter

Figure 4.1: Fault injection

The diameter is utilized to measure how far the faults are. It is defined as

the maximum distance of all the shortest paths between any pair of faults. The

distance of one shortest path is the minimum number of nets between a pair of

faults. An example is shown in Figure 4.2. Assume a region R covers net14,

net17, net18, and G16, the maximum distance is two between net17, net18, and

net14, G16, so the diameter is two for the four sites.

(a) A region R covering net14, net17,

net18, and G16

(b) Diameter of region R

Figure 4.2: Example for diameter

The testing responses should be obtained from ATE, but in this thesis we

obtain the test responses by utilizing multiple-fault simulation for diagnosis. If

there is no error observed in testing, circuits do not need diagnosis and the diag-

nosis framework is stopped. Input parameters of the diagnosis algorithm are the

37

circuits, test patterns, and test responses. We randomly inject faults and do the

diagnosis flow 20 times for each circuits and take average values to be the results.

Since the final X-region and ranked candidate list are obtained, we can utilize

distance from fault to the boundary and first-hit-rank to measure the quality of

our algorithm. The distance from fault to the boundary is defined in Definition

4.1 and the illustration is shown in Figure 4.3. First-hit-rank is number of can-

didates needed to investigate before hitting the real one [37]. In other words, the

index of first fault in candidate list is the first-hit-rank.

Definition 4.1. (Distance from fault to the boundary)

Given a gate-level netlist, we model it to a directed graph. Distance from a

fault to the boundary is the number of edges in the shortest path between target

fault and one of gates on the boundary. The gates on the boundary must be in

the fan-out cone of target fault.

Figure 4.3: Distance of fault to boundary

4.1 Results for Single Fault

In this experiment, we inject one fault into the circuit and use our framework

once without the repair step to diagnose. Then we obtain the fault in the reported

38

X-region and ranked list.

Table 4.2 shows the results. Column 1 is the circuit name. Column 2 and

3 are failing patterns and passing patterns which are expressed as percentage of

total patterns. From the column 4 to 7 are the initial X-region, final X-region,

reduction of X-region and the final boundary of X-region. Column 6 is expressed

as percentage of the initial X-region whose equation is (4.1) and the other three

are the number of gates. Column 8 and 9 are the distance from fault to the

boundary and first-hit index. Column 10 is the run time in seconds.

Ckt. Failing
Pat.(%)

Passing
Pat.(%)

Init.
X-R.

Final
X-R.

Red.
(%)

X-R.
Bnd.

Flt. to
Bnd.

1st Hit
Idx.

Run
Time(s)

s1196 17.49 82.51 149.60 22.50 84.96 6.15 0.60 2.45 0.33
s1423 21.89 78.11 132.75 70.85 46.63 21.25 1.50 3.05 0.18
s713 35.07 64.93 145.20 55.15 62.02 24.85 1.95 5.10 0.12
s5378 23.74 76.26 204.65 95.65 53.26 23.35 1.85 4.35 1.55
s13207 37.61 62.39 156.05 98.70 36.75 17.85 2.75 3.50 4.21
s35932 37.53 62.47 54.40 26.65 51.01 7.15 1.20 3.10 2.17
s38584 33.37 66.63 157.30 68.95 56.17 11.90 1.05 2.50 29.04
s38417 33.55 66.45 236.60 99.75 57.84 16.95 2.10 3.35 48.78

Table 4.2: Results of diagnosis for single fault

Red =
(size of Init. X-R.) − (size of Final X-R.)

(size of Init. X-R.)
× 100% (4.1)

For single fault diagnosis, we observe that the X-region are almost halved,

the best s1196 up to 85%, and numbers of gates on the boundary are less. If

the real fault is on the boundary, we can obtained it within number of times less

than the boundary. However, in reality, the real fault may be in the inside of

X-region. The closer fault is to the boundary, the easier we obtain it. Distances

from fault to the boundary measured in the results are less than three including

the fault equivalence condition. That is, the fault can be found within a distance

of three from the boundary. Considering first-hit-rank, the fault can be found in

five-front candidates of the ranked list which is comparable to previous works.

39

4.2 Results for Multiple Faults Restricted in Length

of Diameter of 2

In this experiment, we inject three faults into the circuit and use our frame-

work once without the repair step to diagnose. Then we obtain the faults in the

reported X-region and ranked list. The three faults are restricted in length of

diameter of two which is equivalent to radius one in the experimental settings

of [18,20]. As one of the three faults is obtained, all faults are obtained because

we know they are in the neighborhood of the obtained one. Then we compare

our results with the results in [20].

Ckt. Failing
Pat.(%)

Passing
Pat.(%)

Init.
X-R.

Final
X-R.

Red.
(%)

X-R.
Bnd.

Run
Time(s)

s1196 24.05 75.95 260.00 75.50 70.96 17.50 0.61
s1423 56.95 43.05 269.65 180.05 33.23 49.50 0.31
s713 49.11 50.89 163.55 74.35 54.54 31.85 0.13
s5378 42.97 57.03 340.00 195.05 42.63 41.65 1.91
s13207 45.17 54.83 240.35 124.55 48.18 29.95 5.19
s35932 45.65 54.35 107.25 57.35 46.53 12.35 2.66
s38584 58.79 41.21 483.10 205.75 57.41 47.25 44.21
s38417 43.77 56.23 465.80 253.85 45.50 43.50 58.84

Ckt. Min. Flt.
to Bnd.

Max. Flt.
to Bnd.

Avg. Flt.
to Bnd.

1st Hit
Idx.

2nd Hit
Idx.

3rd Hit
Idx.

s1196 0.20 2.00 1.05 1.80 5.60 9.90
s1423 0.65 2.00 1.32 4.30 8.40 28.80
s713 0.65 2.60 1.63 3.50 9.95 22.50
s5378 1.35 3.80 2.52 10.90 22.70 65.55
s13207 2.35 5.60 4.20 6.50 17.95 31.85
s35932 1.50 2.95 2.27 5.25 13.55 22.25
s38584 0.30 1.70 1.02 1.90 14.30 28.40
s38417 1.60 4.30 2.92 7.15 14.35 75.85

Table 4.3: Results of multiple faults in length of diameter of 2

The upper one of Table 4.3 shows the results for X-region shrinking. Column

1 is the circuit name. Column 2 and 3 are failing patterns and passing patterns

which are expressed as percentage of total patterns. From the column 4 to 7 are

the initial X-region, final X-region, reduction of X-region and the final boundary

of X-region. Column 6 is expressed as percentage of the initial X-region whose

40

equation is (4.1) and the other three are the number of gates. Column 8 is the

run time in seconds. Furthermore, distance from fault to the boundary and hit-

indices of ranked list are also shown in lower one of Table 4.3. Column 1 is also

the circuit name. Column 2 to 4 indicate for minimum, maximum and average of

the distance from faults to the boundary. Column 5 to 8 are hit-indices for these

three faults injected.

As the tables show, the reduction of X-region is almost near 50% and the

best one, s1196, reaches 71%. It is effective to shrink the X-region even there are

multiple faults. The minimum distance from fault to the boundary are almost

less than two which indicates that we can find the first fault within a distance of

two from the boundary. Besides, the index of the first fault obtained is almost

less than ten which is small. Even in the worst case, s5378, it can be obtained

about ten trials.

Comb. Model in [20] Data in Table 4.3

Ckt.
Cand.

Tot. Reg.
(%) Ckt.

1st Hit Idx.
Tot. Gates+IOs

(%)

c432 5.42 s1196 0.30
c499 6.23 s1423 0.52
c880 5.39 s713 0.72
c1355 2.89 s5378 0.34
c1908 1.63 s13207 0.07
c2670 2.65 s35932 0.03
c3540 0.46 s38584 0.01
c5315 0.28 s38417 0.03
c6288 1.57
c7552 1.07

Table 4.4: Comparison with [20]

Table 4.4 is the comparison with [20]. Second column under “Comb. Model

in [20]” is the faulty region versus total regions and second column under “Data

in Table 4.3” is the first identified fault versus total potential fault sites in the

experiment. In [20], some faulty region are identified more than one percent of

total regions. However in our experiment, first of the faults can be identified in

less than one percent of the total fault sites in all cases. The benchmark circuits in

41

the experiments are more complex than in [20]. It is a considerable improvement

for finding the first faulty region with length of diameter of 2 (radius 1).

4.3 Results for Multiple Faults without Diame-

ter Restriction

In this experiment, the diameter of faults is not restricted and randomly

injected. We use our framework once without the repair step to diagnose. Then

we obtain the faults in the reported X-region and ranked list.

We inject 3, 5, and 8 faults for diagnosis which are shown in Table 4.5 to

Table 4.10. In Table 4.5, Table 4.7, and Table 4.9, column 1 is the circuit name.

Column 2 and 3 are failing patterns and passing patterns which are expressed as

percentage of total patterns. Column 4 is the diameter of faults injected. From

the column 5 to 8 are the initial X-region, final X-region, reduction of X-region

and the final boundary of X-region. Column 7 is expressed as percentage of the

initial X-region whose equation is (4.1). Column 9 is the run time in seconds. In

Table 4.6, Table 4.8, and 4.10, column 1 is also the circuit name. Distance from

fault to the boundary is shown in the columns with “Flt. to Bnd.” contained.

The remaining columns are the hit-indices that real faults are detected in order.

Ckt. Failing
Pat.(%)

Passing
Pat.(%)

Flt.
Dia.

Init.
X-R.

Final
X-R.

Red.
(%)

X-R.
Bnd.

Run
Time(s)

s1196 40.67 59.33 3.45 267.50 91.45 65.81 19.75 0.60
s1423 63.90 36.10 4.35 270.65 174.25 35.62 48.90 0.32
s713 67.05 32.95 3.95 224.70 106.55 52.58 42.20 0.19
s5378 55.79 44.21 4.25 474.15 269.35 43.19 59.40 2.47
s13207 55.57 44.43 3.50 294.10 170.30 42.09 32.25 6.62
s35932 59.74 40.26 3.60 392.25 247.55 36.89 47.70 7.01
s38584 58.50 41.50 3.80 200.75 72.60 63.84 19.00 38.78
s38417 54.03 45.97 3.35 622.90 358.15 42.50 62.70 79.58

Table 4.5: X-region shrinking of diagnosis for 3 faults

In Table 4.5, the average length of measured diameters is above three. It is

42

that there are at least three nets between the farthest faults. The fault density

is high and faulty signals probably interact with each other. The results indicate

that almost the X-regions are shrunk above 40% and the best one, s1196, is about

66%. In Table 4.6, it makes one of the faults very close to the boundary, less than

one. Thus it can be obtained on the boundary for most cases. Even the worst

case, it can be obtained in two steps from the boundary. Combining with the aid

of ranking, the first fault can be obtained in less than nine trials. And all faults

which may be masked can be obtained in fifty-five trials except s38417.

Ckt. Min. Flt.
to Bnd.

Max. Flt.
to Bnd.

Avg. Flt.
to Bnd.

1st Hit
Idx.

2nd Hit
Idx.

3rd Hit
Idx.

s1196 0.20 1.75 0.88 2.20 9.70 29.90
s1423 0.25 2.85 1.32 2.90 9.50 54.05
s713 0.60 3.25 1.87 6.80 16.60 47.10
s5378 1.50 3.90 2.77 6.50 12.40 37.10
s13207 2.00 5.60 3.83 8.60 14.95 31.60
s35932 0.30 2.25 1.28 2.50 9.00 48.70
s38584 0.25 1.95 1.00 4.00 20.15 39.15
s38417 2.05 4.75 3.42 7.35 73.65 161.15

Table 4.6: Fault to the boundary & ranking of diagnosis for 3 faults

Ckt. Failing
Pat.(%)

Passing
Pat.(%)

Flt.
Dia.

Init.
X-R.

Final
X-R.

Red.
(%)

X-R.
Bnd.

Run
Time(s)

s1196 63.46 36.54 4.05 351.10 190.30 45.80 42.95 0.76
s1423 74.45 25.55 4.25 265.85 159.20 40.12 49.80 0.37
s713 78.97 21.03 4.90 270.00 150.70 44.19 55.45 0.20
s5378 48.60 51.40 4.85 491.45 300.20 38.92 57.65 2.54
s13207 72.62 27.38 4.60 238.60 139.50 41.53 21.75 5.38
s35932 75.91 24.09 2.95 278.45 159.75 42.63 34.90 3.43
s38584 77.04 22.96 4.20 409.60 162.60 60.30 33.20 54.43
s38417 73.32 26.68 5.00 816.45 503.70 38.31 81.35 96.05

Table 4.7: X-region shrinking of diagnosis for 5 faults

Consequently in Table 4.7, as faults increase to five, failing patterns also

increase because region of faults occupying also enlarges. The reduction of X-

region are about 40% which is a little less than it for three faults. In Table 4.8,

distances of fault nearest to the boundary are less than one which means that

almost we can obtain one fault on the boundary as quickly as possible. For s5378,

the final boundary is less than 20% of the final X-region. With the aid of ranking,

43

the first fault can be obtained in less than eight trials. All the first three faults

and the forth faults in s1196, s38584, and s38417 can be obtained in top of 20%

of the ranked list. The others are more difficult to obtained because they may be

masked in reality and cannot be detected in testing.

Ckt. Min. Flt.
to Bnd.

Max. Flt.
to Bnd.

Avg. Flt.
to Bnd.

1st Hit
Idx.

2nd Hit
Idx.

3rd Hit
Idx.

4th Hit
Idx.

5th Hit
Idx.

s1196 0.10 3.50 1.48 2.05 5.75 12.30 32.15 55.75
s1423 0.35 3.75 1.84 3.15 6.75 17.55 34.35 71.05
s713 0.55 3.95 2.07 6.70 14.00 24.65 34.50 75.40
s5378 0.80 5.00 2.95 7.85 23.45 46.35 61.15 141.20
s13207 1.00 6.95 3.71 3.70 12.05 17.55 35.65 43.70
s35932 0.25 2.10 1.09 2.05 6.40 12.15 31.45 88.95
s38584 0.30 2.90 1.41 2.75 7.10 11.70 27.10 55.90
s38417 1.00 6.50 3.33 6.25 21.20 32.45 58.70 128.65

Table 4.8: Fault to the boundary & ranking of diagnosis for 5 faults

Ckt. Failing
Pat.(%)

Passing
Pat.(%)

Flt.
Dia.

Init.
X-R.

Final
X-R.

Red.
(%)

X-R.
Bnd.

Run
Time(s)

s1196 78.03 21.97 4.55 427.25 299.35 29.94 61.85 0.96
s1423 88.84 11.16 4.95 371.95 243.40 34.56 68.85 0.52
s713 89.45 10.55 6.00 287.65 172.05 40.19 59.95 0.23
s5378 71.96 28.04 5.95 611.30 386.60 36.76 81.10 2.80
s13207 68.10 31.90 5.40 509.40 317.05 37.76 53.70 10.48
s35932 76.82 23.18 4.45 338.00 174.10 48.49 43.30 3.84
s38584 93.81 6.19 4.80 635.50 230.90 63.67 73.10 63.73
s38417 75.06 24.94 5.50 837.55 474.05 43.40 89.45 97.90

Table 4.9: X-region shrinking of diagnosis for 8 faults

In Table 4.9, failing patterns increase to more than 70% which is very high

percentage. Diameter of faults also increases to more than 4.4. These faults

cause many erroneous outputs which are the roots for path tracing. The initial

X-regions becomes large. In spite of the large regions, the algorithm can remove

more than 30% impossible candidates from the X-region. In Table 4.10, the

minimum distance from fault to the boundary is almost less than one indicating

that one of the faults can be obtained on the boundary. Even the largest number

of the boundary in s38417 among these circuits is less than 20% of its final X-

region. And almost average distance from fault to the boundary is less than

three which indicates that faults are actually near the boundary. For ranking,

44

first fault can also be identified in less than eight trials. All the first four faults

can be identified in the former 20% of the ranked list.

Ckt.
Min.
Flt.
Bnd.

Max.
Flt.
Bnd.

Avg.
Flt.
Bnd.

1st
Hit
Idx.

2nd
Hit
Idx.

3rd
Hit
Idx.

4th
Hit
Idx.

5th
Hit
Idx.

6th
Hit
Idx.

7th
Hit
Idx.

8th
Hit
Idx.

s1196 0.20 4.85 1.99 4.35 11.30 18.80 38.25 55.30 93.60 137.05 181.25
s1423 0.15 4.00 1.46 2.95 7.00 15.50 23.60 49.10 82.90 120.40 156.80
s713 0.35 4.60 2.16 6.30 11.90 16.85 23.30 32.85 49.30 75.25 115.10
s5378 0.50 5.55 2.89 7.60 15.20 27.70 50.85 87.50 128.80 152.00 223.25
s13207 1.15 8.35 4.63 3.90 8.55 42.85 51.45 74.55 112.65 154.65 201.75
s35932 0.25 4.35 2.19 1.35 5.60 14.55 24.95 37.65 49.10 64.40 80.90
s38584 0.10 3.05 1.21 2.65 5.85 9.20 15.85 28.10 52.05 70.75 105.00
s38417 0.70 7.25 4.09 7.60 13.30 23.05 30.15 40.05 122.50 158.15 181.30

Table 4.10: Fault to the boundary & ranking of diagnosis for 8 faults

To sum up, in these experimental results for 3, 5, and 8 faults injected,

the X-region can be shrunk from 30% to 66%. Many remaining candidates are

redundant. With the aid of the measurement, we know that faults are actually

closed to the boundary even the nearest ones are exactly on the boundary which

can be obtained quickly. And in the ranked list, the first fault can be identified

in top ten of the ranked list. Our algorithm can not only make faults near the

boundary but also to the top of the ranked list under multiple fault assumption

without distance restriction from fault to fault.

4.4 Results Using Proposed Diagnosis Frame-

work

In this section we use our diagnosis framework to diagnose. After faulty

region identification and ranking we repair the first candidate in the ranked can-

didate list and test the circuit again. If there is any error, our algorithm is applied

again. Since second iteration, the initial X-region is obtained from the intersec-

tion of the final X-region of previous iteration and the new traced region. We

inject the same 3, 5, 8 faults in previous section for diagnosis and compare the

45

two results. In previous section, we only obtain the faults in reported X-region

and ranked list by using proposed framework once without the repair step.

The results is shown from Table 4.11 to Table 4.13. Column 1 is the circuit

name. Under “Without Repair” and “With Repair” are hit-indices of faults.

Under the “With Repair” are the accumulated number of iterations from first

one. For example in Table 4.11, it needs 2.2 iterations to obtain the first fault

in s1196. And then it just needs 2.95 iterations to catch the second fault. The

summation is 5.15 which is the accumulated number of iterations shown under

“2nd.” The last column is the reduction of indices that all faults are obtained

between without and with repair flows. It is expressed as percentage of data

under “Without Repair” columns. The equation is shown in (4.2).

Red =
(Last Idx. of w/o Repair Step) − (Last Idx. of w/ Repair Step)

(Last Idx. of w/o Repair Step)
× 100%

(4.2)

Ckt. Without Repair Step With Repair Step Red.(%)
1st 2nd 3rd 1st 2nd 3rd

s1196 2.20 9.70 29.90 2.20 5.15 7.00 76.59
s1423 2.90 9.50 54.05 2.90 7.80 15.45 71.42
s713 6.80 16.60 47.10 6.80 12.35 15.40 67.30
s5378 6.50 12.40 37.10 6.50 13.10 27.75 25.20
s13207 8.60 14.95 31.60 8.60 11.15 16.40 48.10
s35932 2.50 9.00 48.70 2.50 6.80 8.45 82.65
s38584 4.00 20.15 39.15 4.00 5.85 6.90 82.38
s38417 7.35 73.65 161.15 7.35 16.60 25.25 84.33

Table 4.11: Comparison between w/o and w/ the repair step for 3 faults

Ckt. Without Repair Step With Repair Step Red.(%)
1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

s1196 2.05 5.75 12.30 32.15 55.75 2.05 4.05 7.10 9.05 10.60 80.99
s1423 3.15 6.75 17.55 34.35 71.05 3.15 9.05 13.35 19.65 24.80 65.10
s713 6.70 14.00 24.65 34.50 75.40 6.70 11.10 14.35 18.15 22.05 70.76
s5378 7.85 23.45 46.35 61.15 141.20 7.85 14.75 22.45 33.80 41.05 70.93
s13207 3.70 12.05 17.55 35.65 43.70 3.70 10.25 13.25 16.95 19.85 54.58
s35932 2.05 6.40 12.15 31.45 88.95 2.05 7.10 9.35 11.75 13.00 85.39
s38584 2.75 7.10 11.70 27.10 55.90 2.75 6.15 11.20 15.00 18.80 66.37
s38417 6.25 21.20 32.45 58.70 128.65 6.25 11.90 18.85 30.75 38.95 69.72

Table 4.12: Comparison between w/o and w/ the repair step for 5 faults

46

In Table 4.11, we obtain significant improvements, the average reduction is

more than 65% and the best is 84%. The least reduction is in s5378 because

the original indices are small enough. All faults can be obtained in less than 28

iterations which can be seen as the top 28 candidates in the ranked list. In table

4.12, indices are reduced more than 65% except in s13207 because the original

indices are also small. All faults can be obtained in less than 15% of the ranked

list used our framework once without the repair step. In Table 4.13, the indices

also can be reduced over 64%. All faults can be obtained in less than 20% of the

ranked lists used our framework once without the repair step among all cases.

Ckt. Without Repair Step Red.(%)
1st 2nd 3rd 4th 5th 6th 7th 8th

s1196 4.35 11.30 18.80 38.25 55.30 93.60 137.05 181.25
s1423 2.95 7.00 15.50 23.60 49.10 82.90 120.40 156.80
s713 6.30 11.90 16.85 23.30 32.85 49.30 75.25 115.10
s5378 7.60 15.20 27.70 50.85 87.50 128.80 152.00 223.25
s13207 3.90 8.55 42.85 51.45 74.55 112.65 154.65 201.75
s35932 1.35 5.60 14.55 24.95 37.65 49.10 64.40 80.90
s38584 2.65 5.85 9.20 15.85 28.10 52.05 70.75 105.00
s38417 7.60 13.30 23.05 30.15 40.05 122.50 158.15 181.30

With Repair Step
1st 2nd 3rd 4th 5th 6th 7th 8th

s1196 4.35 8.00 11.05 13.70 20.50 22.65 24.75 27.25 84.97
s1423 2.95 4.90 8.45 12.85 20.05 23.55 29.15 34.05 78.28
s713 6.30 12.40 19.00 25.10 30.70 34.45 38.00 41.25 64.16
s5378 7.55 14.25 20.70 26.95 34.55 47.50 59.05 72.05 67.73
s13207 3.90 7.80 16.20 22.00 29.15 32.95 36.60 39.00 80.67
s35932 1.35 4.00 6.70 9.85 14.45 16.55 19.65 21.15 73.86
s38584 2.65 5.40 9.90 14.50 18.50 22.90 29.70 32.10 69.43
s38417 7.60 12.30 17.05 20.25 29.20 37.95 52.55 65.35 63.95

Table 4.13: Comparison between w/o and w/ the repair step for 8 faults

In conclusion, if one real fault is repaired, the X-region can be further shrunk

and new ranked list is reported. The masked faults may be detected in the next

testing step because the masking faults are removed. Thus it may be former in

the new ranked candidate list than the old one. The hit-indices are significant

reduced and all faults can be obtained in less than 20% of the ranked lists used

our framework once without the repair step.

47

Chapter 5

Conclusions and Future Work

In this thesis, we propose a diagnosis framework to cope with multiple stuck-

at faults. We do not assume number of faults and the distance from fault to

fault. We take masked faults or faults whose effects can be cancelled into account.

Besides, we remove the impossible candidates to prune the search space rather

than identify faults directly.

In the faulty region identification, the initial X-region covers all faults at

beginning and then impossible candidates are removed from the X-region with

X-region shrinking algorithm. Then we apply the ranking technique to sort the

candidates in the final region to make real faults at top of the ranked candidate

list. Accompanied the repair step in the framework, X-region can be further

shrunk and positions of real faults in the ranked candidate list are rearranged.

Real faults are getting much former in the ranked candidate list with each itera-

tions of diagnosis. Therefore, All faults can be identified more quickly than them

identified in the ranked list used our framework once without the repair step.

In our experimental results, the candidate region can be shrunk from 30% to

66% of initial X-region and faults are closed to the boundary even some are exactly

on the boundary. All the first fault can be identified in top 10 of the ranked list.

All faults can be identified in less than 20% of the ranked candidate list used

our framework once without the repair step. It is an significant improvement.

Therefore, with our diagnosis framework, large numbers of impossible candidates

are removed and all real faults can be identified quickly.

There are several ways to improvement our algorithm in the future. We can

enhance our algorithm by developing other contradiction rules to identify more

48

impossible candidates and further shrink the region. We can analyze probability

of number of faults. So that we can develop an algorithm to find combinations of

faults with the highest probability. Besides, we can also target on the partial-scan

or multi-cycle-capture DFT schemes. These schemes have less controllable and

observable points than full-scan one. We need to modify our flows to deal with

them.

49

References

[1] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and

D. Miller, “A Reconfigurable Design-for-Debug Infrastructure for SoCs,” De-

sign Automation Conference, pp. 7–12, 2006.

[2] B. Vermeulen, “Design-for-Debug to Address Next-Generation SoC Debug

Concerns,” International Test Conference, p. 1, 2007.

[3] S. Pateras, “Embedded Diagnosis IP,” Design, Automation and Test in Eu-

rope, pp. 242–243, 2002.

[4] V. Boppana and M. Fujita, “Modeling The Unknown! Towards Model-

Independent Fault and Error Diagnosis,” International Test Conference,

pp. 1094–1101, 1998.

[5] L. M. Huisman, “Diagnosing Arbitrary Defects in Logic Designs Using Sin-

gle Location at A Time (SLAT),” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 23, no. 1, pp. 91–101, 2004.

[6] X. Wen, S. Kajihara, K. Miyase, Y. Yamato, K. K. Saluja, L.-T. Wang,

and K. Kinoshita, “A Per-Test Fault Diagnosis Method Based on The X-

Fault Model,” IEICE Transactions on Information and Systems, vol. E89-D,

no. 11, pp. 2756–2765, 2006.

[7] B. Vermeulen, C. Hora, B. Kruseman, E. J. Marinissen, and R. van Ri-

jsinge, “Trends in Testing Integrated Circuits,” International Test Confer-

ence, pp. 688–697, 2004.

[8] J. H. Patel, “Stuck-at Fault: A Fault Model for The Next Millennium,”

International Test Conference, p. 1166, 1998.

[9] S. D. Millman, E. J. McCluskey, and J. M. Acken, “Diagnosing CMOS Bridg-

ing Faults with Stuck-at Fault Dictionaries,” International Test Conference,

pp. 860–870, 1990.

50

[10] J. Wu and E. M. Rudnick, “Bridge Fault Diagnosis Using Stuck-at Fault

Simulation,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 19, no. 4, pp. 489–495, 2000.

[11] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digi-

tal, Memory, and Mixed-Signal VLSI Circuits. Kluwer Academic Publishers,

2000.

[12] J. B. Liu and A. Veneris, “Incremental Fault Diagnosis,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 2,

pp. 240–251, 2005.

[13] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault Diagnosis and Logic

Debugging Using Boolean Satisfiability,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 24, no. 10, pp. 1606–

1621, 2005.

[14] H. Takahashi, K. O. Boateng, K. K. Saluja, and Y. Takamatsu, “On Diag-

nosing Multiple Stuck-at Faults Using Multiple and Single Fault Simulation

in Combinational Circuits,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 21, no. 3, pp. 362–368, 2002.

[15] M. Abramovici and M. A. Breuer, “Multiple Fault Diagnosis in Combina-

tional Circuits Based on An Effect-Cause Analysis,” IEEE Transactions on

Computers, vol. C-29, no. 6, pp. 451–460, 1980.

[16] M. Abramovici and M. A. Breuer, “Fault Diagnosis Based on Effect-Cause

Analysis: An Introduction,” Design Automation Conference, pp. 69–76,

1980.

[17] Z. Wang, K.-H. Tsai, M. Marek-Sadowska, and J. Rajski, “An Efficient and

Effective Methodology on The Multiple Fault Diagnosis,” International Test

Conference, vol. 1, pp. 329–338, 2003.

51

[18] V. Boppana, R. Mukherjee, J. Jain, M. Fujita, and P. Bollineni, “Multiple

Error Diagnosis Based on XLISTs,” Design Automation Conference, pp. 660–

665, 1999.

[19] A. L. D’Souza and M. S. Hsiao, “Error Diagnosis of Sequential Circuits

Using Region-Based Model,” Journal of Electronic Testing, vol. 21, no. 2,

pp. 115–126, 2005.

[20] N. Sridhar and M. S. Hsiao, “On Efficient Error Diagnosis of Digital Cir-

cuits,” International Test Conference, pp. 678–687, 2001.

[21] R. Desineni and R. Blanton, “Diagnosis of Arbitrary Defects Using Neigh-

borhood Function Extraction,” VLSI Test Symposium, pp. 366–373, 2005.

[22] S.-Y. Huang, “On Improving The Accuracy of Multiple Defect Diagnosis,”

VLSI Test Symposium, pp. 34–39, 2001.

[23] R. Desineni, O. Poku, and R. D. Blanton, “A Logic Diagnosis Methodology

for Improved Localization and Extraction of Accurate Defect Behavior,”

International Test Conference, pp. 1–10, 2006.

[24] Y.-C. Lin, F. Lu, and K.-T. Cheng, “Multiple-Fault Diagnosis Based

on Adaptive Diagnostic Test Pattern Generation,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 5,

pp. 932–942, 2007.

[25] C.-C. Yen, T. Lin, H. Lin, K. Yang, T. Liu, and Y.-C. Hsu, “Diagnosing

Silicon Failures Based on Functional Test Patterns,” International Workshop

on Microprocessor Test and Verification, pp. 94–98, 2006.

[26] A. Balasinski, “Optimization of Sub-100-nm Designs for Mask Cost Re-

duction,” Journal of Microlithography, Microfabrication, and Microsystems,

vol. 3, no. 2, pp. 322–331, 2004.

52

[27] K.-H. Chang, I. L. Markov, and V. Bertacco, “Automating Post-Silicon De-

bugging and Repair,” International Conference on Computer-Aided Design,

pp. 91–98, 2007.

[28] X. Wen, H. Tamamoto, K. K. Saluja, and K. Kinoshita, “Fault Diagnosis for

Physical Defects of Unknown Behaviors,” Asian Test Symposium, pp. 236–

241, 2003.

[29] A. Veneris, J. B. Liu, M. Amiri, and M. S. Abadir, “Incremental Diagnosis

and Correction of Multiple Faults and Errors,” Design, Automation and Test

in Europe, pp. 716–721, 2002.

[30] J. A. Waicukauski and E. Lindbloom, “Failure Diagnosis of Structured

VLSI,” IEEE Design & Test of Computers, vol. 6, no. 4, pp. 49–60, 1989.

[31] I. Pomeranz, S. Venkataraman, S. M. Reddy, and B. Seshadri, “Z-Sets and Z-

Detections: Circuit Characteristics that Simplify Fault Diagnosis,” Design,

Automation and Test in Europe, vol. 1, pp. 68–73, 2004.

[32] P. Girard, C. Landrault, and S. Pravossoudovitch, “Delay-Fault Diagnosis

by Critical-Path Tracing,” IEEE Design & Test of Computers, vol. 9, no. 4,

pp. 27–32, 1992.

[33] M. Abramovici, P. Menon, and D. Miller, “Critical Path Tracing - An Alter-

native to Fault Simulation,” Design Automation Conference, pp. 214–220,

1983.

[34] S. Venkataraman and S. Drummonds, “POIROT: Applications of A Logic

Fault Diagnosis Tool,” IEEE Design & Test of Computers, vol. 18, no. 1,

pp. 19–30, 2001.

[35] S.-Y. Kuo, “Locating Logic Design Errors via Test Generation and Don’t-

Care Propagation,” Design Automation Conference, pp. 466–471, 1992.

53

[36] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for Combi-

national Logic Circuits,” IEEE Transactions on Computers, vol. C-30, no. 3,

pp. 215–222, 1981.

[37] K. Yang and K.-T. Cheng, “Timing-Reasoning-Based Delay Fault Diagno-

sis,” Design, Automation and Test in Europe, vol. 1, pp. 418–423, 2006.

54

Vita

Meng-Jia Tsai was born in Kaohsiung on July 28, 1984. He received the B.S.

degree in Electronics Engineering from National Chiao Tung University in June

2006 and entered the Institute of Electronics, National Chiao Tung University in

September 2006. His major studies were Electronics Design Automation(EDA)

and circuit design. He received the M.S. degree from NCTU in August 2008.

55

