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即時的區域性立體視覺比對演算法分析與設計 

 

研究生：蔡宗憲             指導教授：張添烜博士 

 

國立交通大學 

電子工程學系 電子研究所 

 

摘要 

  

立體視覺廣泛的運用在許多領域，例如自走機器人、自動追蹤的攝影機、甚

至於立體電視。由於許多的應用需要即時的立體視覺系統，因此需要設計一個能

滿足高運算以及高頻寬的積體電路。 

本篇研究提出了一個適合硬體設計的演算法，係基於適應性權重的計算

(Adaptive Weight Generation)演算法結合微型普查(Mini-Census)的比對方式、兩次

聚合(Two-Pass Aggregation)以及量子化指數曼哈頓距離(Quantized Manhattan 

Color Distance)等技巧。微型普查可以減少運算量，從原來的一個視窗的運算變

成只有六個點運算。除此之外，他還加強了原本演算法中對於光線所造成的問題。

兩階段資料匯集和量子化指數曼哈頓距離分別減少了 88.7%和 64.2%的運算複雜

度。相較於原本的權重產生函式，量子化指數曼哈頓距離可以被實現成查表的硬

體電路。 

最後在聯華電子 90 奈米製程下，提出的設計可以在 100MHz 的工作時脈下

達到每秒計算 43張CIF畫面大小及 64個階層的深度估測。晶片總共需要 562,642

個邏輯閘，以及 21.3K 的晶片記憶體。 
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Analysis and Design of Real-Time Local Stereo Matching 
 

Student: Tsung-Hsien Tsai               Advisor: Dr. Tian-Sheuan Chang 

 

Department of Electronics Engineering & Institute of Electronics 

National Chiao Tung University 

 

Abstract 
Stereo matching has been widely used in many fields, such as automatic robots, 

auto-tracking system, and even the 3D-TV. With these real time application demands, 

VLSI implementation becomes necessary to fulfill the high complexity and high 

bandwidth requirements of stereo matching algorithms. 

 In this thesis, we propose a hardware friendly algorithm, based on adaptive 

support weight (ADSW), with mini-census, two-pass aggregation, and quantized 

exponential Manhattan distance techniques. The mini-census reduces the computation 

complexity from a matching block to only 6 points. Besides, it also improves the 

capability of ADSW to deal with the radiometric problem. The two-pass aggregation 

and the quantized Manhattan color distance reduce about 88.7% and 64.2% 

computation of the cost aggregation respectively. Comparing to the original weight 

generation function, the quantized Manhattan color distance can be easily implemented 

by a table based circuit.  

The final design implemented by UMC 90nm CMOS technology can achieve 43 

frames per second and 64 disparities with CIF image size under 100MHz clock rate. 

The chip consumes totally 562,642 K gate counts and 21.3K Bytes internal memory.  
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1. Introduction 

1.1. Background 

The stereo vision is one of the most popular topics in computer vision, and still 

attracts the attention of many researchers. The stereo vision is the process of finding the 

depth or distance information from a pair of images of the same scene. It can be used for 

many applications such as the 3D video conference [1], the Z-keying, and the virtual 

reality [2]. If we obtain the 3D depth map in the high speed, it is possible to merge the 

real and the virtual world in real time.  

The stereo algorithm can be categorized as local and global approach [3]. The 

local approach focuses on finding the similarities of reference and target windows by 

using the block matching or feature matching. The global approach uses the global 

constraints to optimize the result. Since the local approach favors low complexity, they 

are often adopted by real-time implementation. However, these methods often suffer 

from incorrect result on occlusion, uniform texture, and ambiguity.  The global 

approach can solve these problems but suffer from the huge processing time. Although 

some real-time global methods can be implemented through GPU in the graphics card 

or MMX of CPU, the implementation still cost expensive for embedded applications 

since GPU and MMX are not dedicated hardware for stereo algorithms.  

1.2. Motivation and Contribution 

Motivated by the need of high accurate and low cost real-time stereo systems, this 

thesis proposed hardware friendly algorithm based on a state-of-art local approach. The 

goal is to build a dedicated hardware for low cost real-time depth estimator with high 
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accuracy.  

The major contribution in this thesis includes: 

1. We modified the adaptive support algorithm and make it more 

hardware friendly. The modified algorithm has much lower complexity 

and more capability of dealing with radiometric problem. 

2. We analyze the pixel-order and disparity-order data reuse strategies 

with the vertically expanded row and partial column reuse methods. 

3. We implemented and verified the real-time hardware of the proposed 

algorithm (Mini-Census Adaptive Support Weight). 

1.3. Organization of the Thesis 

In Chapter 2, we briefly introduce background of the computational stereo. In 

Chapter 3, we briefly introduce the stereo algorithms and real-time implementations. 

Chapter 4 discusses the detail of the proposed algorithm with the mini-census, two-pass 

aggregation, and quantized exponential Manhattan distance. In addition, the simulation 

result is shown in this chapter. Chapter 5 analyzes the data reuse problem of hardware 

design implemented by aggregation based algorithm. Chapter 6 shows the detail of the 

hardware design and the implementation result. Finally, the conclusion is given after 

Chapter 6. 
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2. Introduction of Computational Stereo 

2.1. Overview 

The concept of computational stereo is to construct the structure in the 

three-dimension space from different view point. The fundamental basis is to evaluate 

the depth of the object by finding the correspondent points of the object projecting on 

the two unique image pairs. The correspondent points are the feature points visible on 

both view point. The process of finding the correspondence is referred as 

correspondence matching. The disparity map for structure reconstruction can be 

computed after the correspondence matching. 

2.2. Epipolar Geometry 

      

       

Fig. 2-1 shows the binocular stereo calibrated with epipolar geometry. OL, OR, and 

f are the two optical centers, and the distance between them is called the baseline. The 

object P is projected on to two points (p and p’). The depth Z of the object P can be 

computed by triangulation. As a result, the formula of depth Z can be written as Z = f/d, 

where f is the focal length of the camera, d is the displacement of the two points, d=x-x’. 

u

v

disparity range

Target Candidate

(x,y) (x-d,y)

Fig. 2‐2 Correspondence matching finds the 

all the matching penalties over a disparity 

range. 

Fig. 2‐1 The epipolar geometry of 

the binocular stereo. 
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(depicted in Fig. 2-1). All the parameter can be obtained during the setup of the system 

except the displacement. Therefore, the goal of computational binocular stereo is to 

estimate the displacement between each corresponding pair of pixels in the target and 

candidate images (depicted in Fig. 2-2). The displacement is referred as disparity and 

the process is referred as disparity estimation. The set of disparity of all the pixels in an 

image is called the disparity map or disparity image.  

2.3. The General Flow of Matching Algorithms 

According to Scharstein and Szeliski [4], the major steps of the stereo algorithms 

consist of three steps: matching cost computation, cost (support) aggregation, and 

disparity computation/optimization. The matching cost in the first step represents the 

dissimilarity of different matching candidates. The cost aggregation is to sums up the 

result of the dissimilarities together, the concept of this is like exchanging the 

information of neighboring pixels. The last step is to compute the final disparity map 

from the matching cost. The details of them will be discussed in the following sections. 

2.3.1. Matching Cost Computation 

The disparities map can be computed by evaluating the matching cost for every 

disparity candidates. The matching cost represents the matching penalties after the 

correspondence matching. The range of the disparity candidates is called the disparity 

range. The correspondence matching is based on finding the correspondence of the 

support region of the reference and candidate pixels. The support region is usually a 

square window, which is called the support window. The match metrics are listed in 

TABLE 2-1. The details can be referred to [3]. The general formula of matching cost 

computation can be written as 
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    ,ݔሺݐݏ݋ܥ ,ݕ ݀ሻ ൌ ,ݔଵሺܫ൫݄݃݊݅ܿݐܽܯ ሻݕ െ ݔଶሺܫ െ ݀,  ,ሻ൯ݕ     ሺ2.1ሻ 

where ܫଵ, ܫଶ, represent the reference and target images. The matching result forms a 

volume of matching cost in 3D space. The absolute difference (AD) is most commonly 

used for many stereo algorithms due to its simplicity. However, the AD has poor quality 

while the test image has the global radiometric changes. The experiment [5] shows that 

the rank and mutual information performs better than AD for global radiometric 

changes and noises due to the match metrics compares the difference of their local 

characteristics rather than absolute difference of luminance. 

TABLE 2‐1 match metrics for correspondence matching [3] 

MATCH METRIC DEFINITION 

Normalized Cross-Correlation 
෌ ሺܫଵሺݑ, ሻݒ െ ଵഥሻܫ · ሺܫଶሺݑ െ ݀, ሻݒ െ ଶഥሻ௨,௩ܫ

ට෌ ሺܫଵሺݑ, ሻݒ െ ଵഥሻଶܫ · ሺܫଶሺݑ െ ݀, ሻݒ െ ଶഥሻଶ௨,௩ܫ

 

Sum of Squared Difference ෍
௨,௩

൫ܫଵሺݑ, ሻݒ െ ݑଶሺܫ െ ݀,  ሻ൯ଶݒ

Normalized Sum of Squared 

Difference 
෍

௨,௩
ۉ

ۇ
ቀ෌ ሺܫଵሺݑ, ሻݒ െ ଵഥሻ௨,௩ܫ ቁ

ට෌ ሺܫଵሺݑ, ሻݒ െ ଵഥሻଶ௨,௩ܫ

െ
ቀ෌ ሺܫଵሺݑ, ሻݒ െ ଵഥሻ௨,௩ܫ ቁ

ට෌ ሺܫଵሺݑ, ሻݒ െ ଵഥሻଶ௨,௩ܫ ی

ۊ

ଶ

 

Sum of Absolute Difference  ෍ ,ݑଵሺܫ| ሻݒ െ ݑଶሺܫ െ ݀, |ሻݒ
௨,௩

 

Rank 

෍ ,ݑଵᇱሺܫ| ሻݒ െ ݑଶᇱሺܫ െ ݀, |ሻݒ
௨,௩

 

௞ᇱܫ ሺݑ, ሻݒ ൌ෍ ,௞ሺ݉ܫ ݊ሻ ൏ ,ݑ௞ሺܫ ሻݒ
௨,௩

 

Census [6] 
෍ ,ݑଵᇱሺܫ൫ܩܰܫܯܯܣܪ ሻݒ െ ݑଶᇱሺܫ െ ݀, ሻ൯ݒ

௨,௩
 

௞ᇱܫ ሺݑ, ሻݒ ൌ ,௞ሺ݉ܫ௠,௡൫ܯܣܧܴܶܵܶܫܤ ݊ሻ ൏ ,ݑ௞ሺܫ  ሻ൯ݒ

Mutual Information [7] log ቆ
P൫ܫଵሺݑ, ሻݒ ڄ ݑଶሺܫ െ ݀, ሻ൯ݒ

P൫ܫଵሺݑ, ሻ൯ݒ ڄ P൫ܫଶሺݑ െ ݀, ሻ൯ݒ
ቇ 
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2.3.2. Cost Aggregation 

Cost aggregation is to aggregate the cost of correlated pixels over a support window. 

The concept of the cost aggregation is that neighboring pixels may be highly correlated 

to center pixel. The formula of cost aggregation is written as follow 

        ሺ2.2ሻ 

where Costinit is the initial matching cost from the match metrics. The ω is the related 

weight for each cost. The effect of the weight is to limit the influence of unrelated pixels. 

The cost aggregation helps to improve the quality of low texture area since it is lack of 

information. However, this work also blurs the edge of the object when the cost of 

different object is aggregated together. Therefore, the determinant of the weight is of 

vital important for cost aggregation. 

2.3.3. Disparity Computation 

The disparity map can be computed from the matching cost or aggregated cost. The 

simplest way is to select the disparity candidate with minimal cost, and the process of 

this is called winner-takes-all (WTA). The formula of WTA can be expressed as below 

    ,ݔሺݕݐ݅ݎܽ݌ݏ݅݀ ሻݕ ൌ ൛݀௠หܿݐݏ݋ሺݔ, ,ݕ ݀௠ሻ ൌ ,ݔሺݐݏ݋൫ܿ݊݅݉݃ݎܽ ,ݕ ݀௡ሻ൯, ݉, ݊ ߳ ሾ0, ݀௠௔௫ሿൟ,  ሺ2.3ሻ 

where dm is the disparity with the minimal cost over a disparity range. The more robust 

methods with complex disparity optimization will be discussed in 3.2. 

2.4. A Taxonomy Evaluation 

For the computational stereo algorithms, the ambiguous match leads to the poor 

quality for computational result. The ambiguous points include the occlusion, 

low-texture (non-feature), and repetitive patterns. Hence, a taxonomy evaluation [4] is 

,ݔ௔௚௚௥ሺݐݏ݋ܥ ,ݕ ݀ሻ ൌ෍ ෍ ݔ௜௡௜௧ሺݐݏ݋ܥ ൅ ݅, ݕ ൅ ݆, ݀ሻ · ߱ሺݔ, ,ݕ ݅, ݆ሻ
௝௜

, 
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proposed. The evaluation includes three parts: non-occluded area, total area, and 

discontinuous area. The test sequence is shown in TABLE 2-2. The four sequences, 

tsukuba, venus, teddy, and cones, are the most commonly used for performance 

evaluation. The gray level of the ground represents the depth of the object. The pixel 

with brighter gray level means it is closer to the camera or observer, and vice versa. For 

the images of non-occlusion images, the non-occluded regions and occluded regions 

are represented with white and black color respectively. In the discontinuities images, 

the regions near depth discontinuities are represented as white; occluded and unknown 

regions are represented as black, and other regions are represented as gray. The error for 

different three parts is only evaluated in white regions. 
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3. Related Work 

3.1. Overview 

The methods of disparity estimation can be roughly categorized into two types: 

local and global approaches. Local approach determines the disparity of a pixel based 

on the similarity of a support window. These methods can iteratively aggregate or 

regularly diffuse the matching cost over the support window. The local methods have 

low computation complexity and storage requirement, and they are often adopted by 

real-time implementations [8]. Global methods define objective energy functions 

which usually include a data term and a neighboring term. The data term is often a 

transformed version of the matching cost. The neighboring term is represented with a 

smoothness penalty to enforce disparity smoothness. Sometimes the neighboring term 

would also include occlusion penalty and segment constraint to improve the disparity 

estimation result. This is the major difference that set global methods apart from local 

methods.  

3.2. Local Approach 

Among the local methods, the matching cost (dissimilarity measure) often is block 

sum of absolute difference, normalized cross-correlation, census transform, or mutual 

information. Local methods often suffer from incorrect disparity estimation at 

occlusion, low texture, and repeating pattern regions. Although larger supporting 

window and aggregation iteration improve the stereo matching performance at the low 

texture and repeating pattern regions, it harms the performance at occlusion region. 

Because of this trade-off between large and small support windows, the reliable 

variable window size [9-11] was proposed. The window size depends on the reliability 
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measurement of current window size. The adaptive window size enhances the depth for 

low texture area but the issue of occluded and border area still remains. To enhance the 

performance at the occlude and border area, the shiftable window approach is adopted 

[12][13] and the combination of adaptive size and shiftable window is discussed in [14]. 

However, the qualitative result [14] shows that it still difficult result on both low texture 

and border area.  

To solve this issue at the both low texture and border area, the concept of adaptive 

support weight (ADSW) aggregation is proposed by Yoon [15]. This approach 

adaptively changes the weights in a support window according to the color and spatial 

distance between the center and neighboring pixels. Consequently, adaptive support 

weight can achieve the effect of using window with arbitrary size and shape. Once all 

the weighted sums of costs are computed, they are iteratively recomputed to produce a 

smoothed dense disparity map. Later, a segmentation support aggregation was 

proposed [16][17]. The Outlier rejection [16] claimed to have both a very short 

computation time and good stereo matching performance. Recently, a report [18] shows 

that Adaptive weight [15] and Segment support [17] outperform than other aggregation 

based methods. [18-28]. Although adaptive support weight is the state-of-the-art of 

local methods, the complexity is much more than segment based method [18]. 

3.3. Global Approach 

Global methods assume the disparity map with minimum objective energy should 

be very similar to the ground truth. Therefore, global methods focus on optimizing the 

energy function to determine the disparity map. One of the earlier global methods is 

dynamic programming [29]. This method focuses on optimizing the energy associated 

with each scanline during disparity estimation. Although dynamic programming takes 
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the horizontal global information into optimization, vertical correlation between 

scanlines is not considered. As a result, the disparity map of dynamic programming 

often exhibit horizontal streaks, thus reducing the quality of the disparity map. 

Motivated by the need of 2-D optimization during disparity estimation, Roy and Cox 

[30] proposed to model the disparity-image space as a 3-D grid graph. By finding the 

min-cut on this graph, the disparity map with optimum energy is found; this 

optimization algorithm is also known as graph-cut. Unfortunately, the computation and 

storage requirement for running graph-cut on 3-D grid graph is enormous. Later, 

Boykov and Kolmogorov proposed the iterative swap and expansion moves [31][32] 

which also use graph-cut to find the best moves. Unlike Roy and Cox’s method, a 

simpler two-variable graph structure which can be regarded as a 2-D graph was used in 

swap and expansion moves. This simpler graph reduces the computation loading of 

graph-cut. However, the extra iterations of moves compensate the benefit. 

On the other hand, Scharstein and Szeliski [4] proposed the Bayesian diffusion 

method which iteratively diffuses support at different disparities according to nonlinear 

diffusion strength. This is similar to using different weightings within the support 

window. Later, Sun [15] proposed the belief propagation for disparity estimation based 

on the concept of the Bayesian diffusion. Essentially, belief propagation is similar to 

Bayesian diffusion. Both methods propagate information based on probability model 

between neighboring pixels. However, belief propagation bridges the link of the global 

energy function with information passing, which is absent in Bayesian diffusion. In 

addition, belief propagation uses a more complex updating mechanism, which is used 

to optimize the final energy. As a result, belief propagation has been reported [4][14] to 

produce disparity maps with much better quality than Bayesian diffusion. Currently, the 

disparity map produced by the state-of-art methods combine adaptive support weight, 
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segment constraint, and belief propagation together. Although belief propagation based 

methods are the leading methods in stereo matching performance, they also suffer from 

high computational complexity. 

3.4. Adaptive Support Weight 

Adaptive support weight (ADSW) proposed by Yoon [15] is the state-of-art of 

local approach, which aggregates the cost with the weight adaptively generated by the 

color and spatial distance. The concept of ADSW is that the correlation of the 

neighboring pixels is related to their spatial distance, which is called the proximity 

weight. The correlation of two pixels is related to their color distance, which is called 

the color weight. The weight in the cost aggregation formula (2.2) can be represented as 

    ߱ሺ݌, ሻݍ ൌ ݂ሺ∆ܿ௣௤ሻ · ݂ሺ∆ݏ௣௤ሻ,    ሺ3.1ሻ 

where ∆cpq and ∆spq represent the color distance and spatial distance between pixel p 

and q respectively. The ߱ሺ݌,  ሻ represents the strength of aggregating the cost. Theݍ

color distance of two pixels is measured in the CIELab color space due to it is more 

perceptually uniform. As the distance between two points in color space increases, it is 

reasonable to assume that the similarity is decreased for perceptual stimuli. Especially, 

Euclidean distance correlates strongly with human color discrimination performance. 

Therefore, the perceptual difference between two colors is represented as 

    ,൫ܿ௣ܦ ܿ௤൯ ൌ 1 െ ݌ݔ݁ ቀെ ∆௖೛೜
ఊ
ቁ.      ሺ3.2ሻ 

The strength of aggregating by color similarity is defined as 

    ௖݂൫∆ܿ௣௤൯ ൌ exp ቀെ ∆௖೛೜
ఊ
ቁ.      ሺ3.3ሻ 

In the same way, the strength of aggregating by proximity is defined as 
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    ௣݂൫∆ݏ௣௤൯ ൌ exp ቀെ ∆௦೛೜
ఊ
ቁ .      ሺ3.4ሻ 

According to the (3.3)(3.4), the final weight for aggregating can be rewritten as 

    ߱ሺ݌, ሻݍ ൌ exp ቆെቀ∆௖೛೜
ఊ೎

൅ ∆௦೛೜
ఊೞ
ቁቇ .    ሺ3.5ሻ 

The final weight is the combination of color weight and proximity weight. Hence the 

cost aggregation can be rewritten as 

        ሺ3.6ሻ 

where p and q are the corresponding pixels in the reference image, and ݌ҧௗ ܽ݊݀ ݍതௗ are 

the corresponding pixels in the target image with disparity value d. ݁ሺݍ,  തௗሻ representsݍ

the matching cost computed by using the pixels of q and ݍതௗ. When using the truncated 

AD (absolute difference), it can be expressed as 

        ሺ3.7ሻ 

where ܫଵ and ܫଶ are the reference image and target image respectively. The adaptive 

support weight gives a quality result on both low texture and border area; the occluded 

area can be refined by left-right consistent check. 

3.5. Real‐time Implementations 

The real-time stereo is essential part for automatic mobile, robot, or any other 

tracking system. The issues of implementing the real-time systems are the computing 

complexity, memory size, and bandwidth. Currently, the implementations can be 

categorized as four types: general purpose process, graphic processing unit (GPU), 

݁ሺݍ, തௗሻݍ ൌ ݉݅݊ ቐ ෍ ሻݍଵሺܫ| െ ,|തௗሻݍଶሺܫ ܶ
௖ఢሼோ,ீ,஻ሽ

ቑ, 

,݌ሺܧ ҧௗሻ݌ ൌ
∑ ߱ሺ݌, ,ҧௗ݌ሻ߱ሺݍ ,ݍതௗሻ݁ሺݍ തௗሻ௤ఢே೛,௤ത೏ఢே೛ഥ೏ݍ

∑ ߱ሺ݌, ,ҧௗ݌ሻ߱ሺݍ തௗሻ௤ఢே೛,௤ത೏ఢே೛ഥ೏ݍ

,
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digital signal processor (DSP), and application-specific integrated circuit (ASIC). 

3.5.1. General Purpose Processor 

With the state-of-art processor, some local approach can be implemented to 

compute the disparity image in real-time. These implementations [33] cannot give a 

quality result since they are often simple approach. For a more robust and fast 

implementation of effective aggregation algorithm [34], it can achieve only 18.9 

million disparities per second (MDS), the speed is still far from real-time computing. 

As for the global approach, the complexity of graph-cut and belief propagation is much 

higher than local approach. These methods often take several minutes to compute one 

disparity image. However, a recent implementation [35] shows that dynamic 

programming can be implemented to compute a good disparity result in real-time. 

3.5.2. Graphic Processing Unit 

Recently, the configurable graphic hardware gives another solution for parallel 

computing. The programmer can write CUDA (Compute Unified Device Architecture) 

code, developed by NVIDIA, to accelerate the software. Currently, the solution of using 

GPU provides extremely high bandwidth from 6.4GB/sec to 128GB/sec. The number 

of stream processors is up to 256. (The details of using the GPU can refer to GPGPU 

http://www.gpgpu.org/). With the computing power of GPU and CPU, many algorithms 

generating high quality result [34] [36] [37] [38] can be implemented in real-time. The 

programmable graphics hardware is suitable for different stereo algorithms. 

3.5.3. Digital Signal Processing Processor 

Although the real-time can be implemented by GPU and CPU, the cost is too 

expensive for embedded applications. For a low cost embedded system, the Digital 
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Signal Processor (DSP) would be more cost efficient. The DSP provides a SIMD and 

VLIW instructions, which is very useful for parallel computing for local stereo 

matching. Some real-time local approach is implemented by using DSP [39][40]. 

Therefore, the computing power of DSP is limited, and this constraint the development 

for more accurate disparity estimation algorithms. 

3.5.4. Application-Specific Integrated Circuit 

Comparing to the GPU, the application-specific integrated circuit (ASIC) has 

much more flexibility to design the processing element for the algorithms. The 

matching and data path can be fully customized and achieve high utilization. A simple 

absolute-difference with variable window size is implemented by hariyama [41], which 

can achieve high utilization and low. However, the bandwidth issue and internal 

memory size becomes a bottleneck of designing the hardware. It is a challenge to deal 

with the intermediate result for the algorithms which requires many times of iteration. 

The bandwidth requirement of transferring the intermediate result is extremely high 

and cannot meet the real-time constraint. Besides, the chip area will get large if the 

intermediate result is stored in the internal memory. The trade-off of the bandwidth and 

internal memory size becomes the important issue. To solve this problem, the concept 

of hierarchical approach is proposed. The hierarchical belief propagation (HBP) 

[42][43] reduces the number of aggregation iteration, and this relaxes the problem of 

high external bandwidth. Nevertheless, the FPGA implementation of HBP still requires 

huge block ram. Therefore, although the ASIC design can give a dedicated solution, it 

is still a challenge to design a low cost real-time architecture with iteratively cost 

aggregated and disparity optimized algorithms. 
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3.6. Summary 

Considering the real-time problem, the general purpose processor and DSP has its 

limitation for the more complexity matching algorithms. The acceleration of using 

GPU has high potential for implementing high complex stereo algorithms since it has 

extremely high bandwidth and large numbers of streaming processors. Although the 

GPU solution may be implemented in the embedded system, it still cost expensive. For 

a low cost embedded system, the DSP or ASIC may be a more proper candidate. 

However, the issue of dealing with the intermediate result is big challenge for ASIC 

solution due to the limitation of the external bandwidth. This results in the high internal 

memory cost for the ASIC solution. 
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4. Proposed Mini‐Census Adaptive Support Weight   

4.1. Introduction 

In this chapter, we will introduce the proposed algorithm which is modified from 

the Adaptive Support Weight [15] introduced in 3.4. We simplified the algorithm and 

make it applicable for hardware design. Besides, we also improve its capability of 

dealing with the lighting effect by applying census transform [9]. There are three major 

challenges of designing the hardware for real-time Adaptive Support Weight. The 

challenges are the adaptive weight generating function, iteratively cost aggregation and 

data reuse. We will discuss how we solved the problem of the previous two problems in 

the proposed algorithm, and discuss the data reuse problem in Chap 5. 

4.2. The Flow of the Proposed Algorithm 

 
Fig. 4‐1 The Flow of the Proposed Algorithm 

 

Fig. 4-1 shows the flow of the proposed algorithm. The proposed algorithm 

consists of four major steps. First, the mini-census matching cost computation performs 

mini-census transform on the captured left and right images and computes the initial 

matching cost of each pixel. The second step is the weight generation which generates 

the weight coefficients needed in the cost aggregation step. Once the initial matching 

cost and weight coefficients are available, the matching cost will be aggregate through 
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a two-pass cost aggregation step. Finally, after the cost aggregation, the disparity map 

can be obtained by finding the best disparity with the minimum matching cost through a 

Winner-Takes-All method. 

4.3. Mini‐Census 

The census transform compares the intensity of each pixel within a support 

window with the center pixel. If a pixel’s intensity is larger than the center pixel’s 

intensity, it is given the label 0, otherwise the label 1. The comparison is done in 

raster-scan order. After the comparison of all pixels within the support window, a 

binary bitstream is obtained which characterizes the pixel relation between the center 

pixel and its surrounding pixels. Since the bitstream represents relative information, the 

census transform is therefore much less sensitive to image bias and gain. In addition, 

the census transform preserves the depth boundary in disparity maps better than the 

traditional SAD does.  

 

Fig. 4‐2 The census transform and matching 

 

To compute the matching cost, the bitstreams b1 of a pixel in current view and the bitstream b2 of the 

candidate corresponding pixel in the other view are obtained first, and then the hamming distance 

between the two bitstreams is computed and taken as the matching cost.  The cost can be defined as  

    ),(),,( 21 bbHdyxCost =     ሺ4.1ሻ 
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,where H is the hamming distance function. We would refer the hamming distance as 

the census cost hereon for brevity. Fig. 4-2 illustrates an example of the census 

transform with a 3x3 support window. The bitstreams of the current pixel position and 

the candidate corresponding pixel are 01110100 and 10101110. The hamming distance 

between the bitstreams is 5; hence, the census cost is 5.  

The Mini-Census is a simplified census transform. Instead of a block of pixels, 

only 6 significant pixels will be transformed into the bitstream. The Mini-Census can 

help reducing the internal memory size of storing the matching cost with minor 

matching performance loss. 

4.4. Weight Generation and Approximation 

The adaptive weight generation is based on the color distance and proximity. The 

proximity weight is fixed for a constant size of support window, but the color distance 

term is not fixed as the support aggregation window changes position. In the original 

Adaptive Support Weight (ADSW), the color distance weight is generated from the 

CIE-Lab color space, which uses floating-point numbers to represent a color. However, 

using floating-point numbers is not friendly for hardware design. Besides, the 

square-root and exponential function used in color distance computation and color 

weight generation are not hardware friendly either. To improve the algorithm to be 

more hardware implementation friendly, we adopted integer-valued color space, 

approximated color distance, and approximated exponential function. Moreover, we 

also removed the proximity weight to further reduce computational complexity. The 

performance of these improvements is explained in the following subsections. 
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4.4.1. The Performance with Different Color Space 

The color space has great impact on the performance of many image processing 

algorithms. We evaluate the impact of using different color spaces (YUV, RGB, and 

CIE-Lab) on the performance of stereo matching. The best parameters for different size 

of support aggregation are different. Hence, to eliminate the effect of different 

parameter, we simulate 100 samples for each size of the window to get the best 

parameter.    
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Fig. 4‐3 The performance comparison with different color space 

 

From the Fig. 4-3, the performance of using color spaces with three color 

components (YUV, RGB, CIE-Lab) is almost the same. The color space with only 

luminance component has the worst performance since it lack the other two dimensions 

of the color space. It can be seen that for three-component color spaces, the weight 

generated from using different color spaces does not have significant impact on the 
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stereo matching performance. Hence, this implies that we can choose to use any 

three-component color space that is suitable for the design. Since YUV and RGB can be 

represented using three unsigned integers instead of CIE-Lab’s three floating-point 

numbers, YUV and RGB are more suitable for hardware design. We choose to use 

YUV in our algorithm because it has been reported to slightly outperform RGB in 

stereo matching. 

4.4.2. The Color Distance 

In ADSW, the color distance is defined as the Euclidean distance in the color space, 

which is written as follow  

        ሺ4.2ሻ 

The square root of the Euclidean distance is a nonlinear operator which is difficult 

for the hardware design. On the other hand, the Manhattan distance is more hardware 

efficiency. The formula is written as follow 

        ሺ4.3ሻ 

 TABLE I compares the performance of using the Euclidean and Manhattan color 

distance. The result shows that the Manhattan is distance is little better than Euclidean 

distance for different error tolerance and different test sequences. 

TABLE 4‐1 the result of approximated color distance 

Method Error 
Tolerance rank 

Error Rate % 
TSUKUB

A VENUS TEDDY CONES 

Euclidean 
0 

12.2 7.95 21.4 18.0 12.2 

Manhattan 11.1 7.22 21.7 16.8 11.1 

Euclidean 
1 

17.3 3.47 0.91 14.3 11.2 

Manhattan 16.3 3.08 0.59 14.0 10.1 

௖௢௟௢௥ܦ ൌ | ଵܻ െ ଶܻ| ൅ | ଵܷ െ ܷଶ| ൅ | ଵܸ െ ଶܸ|.

௖௢௟௢௥ܦ ൌ ඥሺ ଵܻ െ ଶܻሻଶ ൅ ሺ ଵܷ െ ܷଶሻଶ ൅ ሺ ଵܸ െ ଶܸሻଶ.
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4.4.3. The Effect of Proximity Weight 

Proximity Weighting reduces the effect of pixels farther from the window center 

and has been applied to improve the quality of the matching performance. To determine 

the necessity of applying the proximity weighting, we compare the performance of 

using and not using proximity weighting. Fig. 4-4 shows the error rate with different 

support window size. In Fig. 4-4(a), the error rate increased when the window size is 

too small. The error rate also increases as the window size increases over 27x27. 

However, the error rate after applying the proximity weighting does not increase while 

enlarging the window size. This is shown in Fig. 4-4(b). It is the proximity weight that 

limits the influence of the farther pixels. 

 

 

Fig. 4‐4 The Peroformance Analsysi of Proximity Weighting 

4.4.4. Quantized Exponential Function 

The quantized exponential function is the simplification of the original 

exponential weight generating function and it also helps to reduce the complexity of the 

aggregation process. The quantized exponential function is a scaled and quantized 

version of the original function. The quantized exponential function be represented as 

below. 
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        ሺ4.4ሻ 

, the result of the quantized exponential function is acquired by first multiplying the 

value of the original exponential function with a scaling factor 2n, and then quantizing it 

to perserve only a few MSB bits. The scaling maps the floating number to integer 

number, which is more hardware friendly. The preserving bits help to reduce the 

complexity of the cost aggregation. In original cost aggregation step, the process is a 

sum-of-product of the weight vector and cost vector. If the weight is coded with 

one-heart encoding, the product operator can be simplified to shift operator, which is 

much more hardware-efficiency. Fig. 4-5 shows the weight from the original and 

quantized exponential function with different number of preserved bit. The output of 

the quantized exponential function is multiplied by 64 and the quantized. Fig. 4-5c and 

Fig. 4-5d are the output of the quantized exponential function with 2 and 1 MSB 

preserved respectively.  

  

Fig. 4‐5 The weight from quantized exponential function 
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Fig. 4‐6 The performance with quantized exponential function 

 

Fig. 4-6 shows the performance of using the quantized exponential function with 

different scaling factors and number of preserved MSBs. Fig. 4-6a shows that the 

average error rate is decreasing if the scaling factor is smaller than 32. If the scaling 

factor is larger than 64, there is no conspicuous difference with the error rate. Hence, 

with acceptable quality, the smallest scaling factor can be selected as 64. Fig. 4-6b 

shows that there is no conspicuous difference of all the preserved bits. Therefore, we set 

the scaling factor as 64 and preserves only one MSB.  

4.4.5. The Final Weight Table 

After the discussion in 4.1, the weight generating function can be simplified into a 

mapping table with the YUV color space, discard of the proximity weight, quantized 

exponential function and Manhattan distance. The table is listed in TABLE 4-2, 4-3. 

The difference of these two tables is the preserving MSB bits of the quantized 

exponential function. According to the Fig. 4-6b, TABLE 4-3 would be is more proper 

for hardware design since the weights of which are all the power of two. As a result, the 

weight generating Equation (4.4) (4.2) becomes the Equation (4.5) (4.6). 

        ሺ4.5ሻ 
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        ሺ4.6ሻ 

TABLE 4‐2 The weight table of preserving 2 MSB bits 

Distance Weight  Distance Weight Distance Weight Distance Weight

0 64  8 20 16 6 24 2 

1 55  9 17 17 5 25 1 

2 48  10 12 18 4 26 1 

3 40  11 12 19 4 27 1 

4 36  12 10 20 3 28 1 

5 24  13 10 21 3 29 1 

6 24  14 8 22 2   

7 20  15 6 23 2   

TABLE 4‐3 The weight table of preserving 1 MSB bit 

Distance Weight  Distance Weight Distance Weight Distance Weight

0 64  8 16 16 4 24 2 

1 32  9 16 17 4 25 1 

2 32  10 8 18 4 26 1 

3 32  11 8 19 4 27 1 

4 32  12 8 20 2 28 1 

5 16  13 8 21 2 29 1 

6 16  14 8 22 2   

7 16  15 4 23 2   

4.5. Aggregation Iteration 

The aggregation based method refines the depth result by iteratively aggregating 

the matching cost. The cost aggregation formula is defined as  

          ሺ4.7ሻ 

,where Costt and Costt+1 is the aggregated cost at iteration t and t+1, and r are the width 

and height of the aggregation window. The iterative aggregation poses a challenge for 
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real-time hardware design due to the inter-iteration dependence which limits the 

parallelism and the huge memory storage and wide bandwidth requirement. Hence, the 

reduction of aggregation iterations is important issue. 

 

 
Fig. 4‐7 The error rate with the aggregation iteration and window size 

 

The best number of cost aggregation iteration is based on the window size and 

aggregation algorithm. Fig. 4-7 shows the error rate distribution over the aggregation 

iteration and window size plane based on the ADSW. From the figure, the best iteration 

number with the lowest error rate is related to the support window size. The cost 

aggregation with the smaller window size requires more iterations to achieve lower 

error rate. On the opposite, the aggregation with larger window size requires fewer 

iterations. Moreover, the area with lowest error rate exists only with larger window size. 

Hence, the performance with larger window size is better than smaller size. 
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Fig. 4‐8 the minimum iteration with different size of support window   

 

Fig. 4-8 shows the minimum iteration to achieve the lowest error rate. The trend of 

the curve is also plotted on the figure. For the all evaluation regions and the rank, the 

minimum number of iteration is reduced while the window size increased. Note that if 

the window size is larger than 39, only one aggregation iteration is required to achieve 

the lowest error rate. However, it is tough for hardware design to adopt such a larger 

window size and more than one iteration. Hence, the design must trade some 

performance with this. As a result, the adopted window size and the number of 

aggregation iteration are 31 pixels and 1 respectively for this design. The performance 

is acceptable from Fig. 4-7 and Fig. 4-8. 
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4.6. Two‐Pass Cost Aggregation Approximation 

The window based cost aggregation sums up the cost over the support window 

with related weight. The process requires high computational resources. Fortunately, 

the process of window based aggregation is separable [44]. The original formula is 

written as equation (4.7). The separate aggregation is written as equation (4.8) and  

(4.9). The first aggregation is processed with vertical direction and the second 

aggregation is with the horizontal direction. The separate cost aggregation can reduce 

the computation complexity. For instance, if the window size is (r+1) * (r+1) and the 

disparity range is D. The original complexity is proportional to O(r2D). For the separate 

aggregation, the complexity is proportional to O(2rD). Besides, this approximation also 

helps reducing the internal bandwidth of the hardware design. 

        ሺ4.8ሻ 

        ሺ4.9ሻ 

4.7. Overall Simulation Result 

  TABLE 4‐4 the effect of different techniques 

Method ET Error Rate % Exec. 
Time(sec)TSUKUBA VENUS TEDDY CONES 

Original 

0 

1.85 1.19 13.3 9.79 95.65 
+MC+2P 3.47 0.91 14.3 11.2 4.75 

+MC+2P+ Manhattan 3.08 0.59 14 10.1 3.12 
+MC+2P+ Manhattan +Truc(64,2) 3.03 0.61 14 10.1 2.52 

+MC+2P+ Manhattan+Truc(64,1) 3.06 0.66 13.9 10.1 1.84 
Original 

1 

18.8 8.40 23.9 19.7 95.65 
+MC+2P 12.2 7.95 21.4 18.0 4.75 

+MC+2P+ Manhattan 11.1 7.22 21.7 16.8 3.12 
+MC+2P +Manhattan +Truc(64,2) 11.0 7.22 21.6 16.8 2.52 

+MC+2P +Manhattan +Truc(64,1) 11.2 7.17 21.4 16.7 1.84 

Costtା1ሺx, y, dሻ ൌ ෍ Tሺx, ൅i y, dሻ · ωሺx, y, i, 0ሻ
୰

iୀି୰

Tሺx, y, dሻ ൌ ෍ Costtሺx, y ൅ j, dሻ · ωሺx, y, 0, jሻ
୰

jୀି୰
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5. Data Reuse Analysis of Hardware Implementation 

5.1. Overview 

External memory bandwidth and internal memory size have been major 

bottlenecks in designing VLSI architecture for real-time stereo matching hardware 

because of large amount of pixel data and disparity range. To address these bottlenecks, 

this chapter explores the impact of data reuse on disparity-order and pixel-order with 

the partial column reuse (PCR) and vertically expanded row reuse (VERR) techniques 

we proposed. The analysis result suggests that the disparity-order reuse with both PCR 

and VERR techniques is suitable for low memory cost and low external bandwidth 

design, whereas the pixel-order reuse with both techniques is more suitable for low 

computation resource requirement. However, the implementation of disparity-order 

requires high internal bandwidth. Hence, our final implementation adopted a hybrid of 

both the disparity-order and pixel-order reuse with VERR technique. 

5.2. Architecture Overview 

 
Fig. 5‐1 the overview of hardware architecture 
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On implementing aggregation based method under real-time constraint, there are 

many solutions to the data reuse issue. We will use the hardware architecture shown in 

Fig. 5-1 to explain different solutions.  

In the matching cost computation, if data reused along the disparity axis is 

preferred, the computation of all the matching costs of a pixel is computed before 

jumping to the next pixel. This allows the data within the matching cost support 

window to be reused. However, the cost aggregation sums the initial matching costs of 

the same disparity together, which would prefer the initial costs to be output along the 

spatial X-Y plane than the disparity axis. As a result, to compute the aggregated cost 

within an aggregation window, all the matching costs at each disparity must be stored 

before the aggregation can be performed. These initial matching costs form a cuboid in 

the disparity-spatial D-X-Y space. The volume of this cube represents the memory size 

needed to store the initial costs. One way to reduce the storage requirement is to avoid 

the conflict in data reuse direction. For instance, change the reuse direction in the 

matching cost computation to the X-Y plane so that it meets the processing direction in 

the cost aggregation. Although doing so removes the conflict between the matching 

cost computation and the cost aggregation, the conflict between the cost aggregation 

and the disparity computation exists. To determine the disparity of a pixel, the disparity 

computation needs to have all the aggregated matching costs at each disparity for that 

pixel. However, the aggregated costs are generated in the X-Y plane direction, which is 

different from the direction preferred by the disparity computation. Consequently, 

additional storage would be required to store the aggregated costs. These conflicts in 

the data generation and reuse directions play a key role in determining the storage 

requirement.  Therefore, it is important to derive the best data reuse strategy which 

resolves these conflicts so that the storage requirement can be minimized. 
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5.3. Matching Cost Computation Reuse 

The data reuse in the matching cost computation can be categorized into two types 

according to the reuse order.  The details of these data reuse method are explained 

below. 

5.3.1. Disparity-Order Reuse 

 

Fig. 5‐2 the two data reuse directions with different size of support window   

 

  The disparity-order reuse reuses the data in the matching window of different 

disparities. Fig. 5-2(a) illustrates how disparity-order reuse works. When we compute 

the disparity of a pixel in the left image, the matching window in the right image would 

slide leftward within the disparity range. In other words, the matching cost of different 

disparities for a pixel in the left image is first computed. Then the matching cost 

computation of the next pixel in the left image is performed. With the disparity-order 

reuse, the overlapped data within the matching window in the right image shown in Fig. 

5-2(a) can be reused to compute the matching cost at different disparities. As a result, if 
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the pixel data are stored in external memory, there is no need for repeating accesses of 

the overlapped pixels. Hence, the bandwidth requirement to external memory can be 

reduced. However, the order of matching cost generation is different from the order of 

the matching cost consumption in the following cost aggregation step. This would 

result in additional memory storage requirement.  

5.3.2. Pixel-Order Reuse 

Comparing to the disparity-order reuse, the pixel-order reuse reuses the data 

overlapped by the neighboring matching window in both left and right images. Fig. 

5-2(b) illustrates the detail of the pixel-order reuse. The matching cost of the same 

disparity for each pixel is first computed. Then the cost of the next disparity for each 

pixel is computed. As a result, the matching window in the left and the right images 

both slides synchronously with the same disparity offset. With the pixel-order reuse, the 

overlapped data within the matching windows shown in Fig. 5-2(b) can be reused.  

Therefore, the pixel-order reuse can also reduce the external memory bandwidth 

requirement. In contrast to the disparity-order reuse, the order of matching cost 

generation is the same as the order of the cost consumed by the following cost 

aggregation step. Hence, the buffer size between the two steps can be reduced. 

However, the data reuse can only be exploited during the cost computation of one 

single disparity. There is no data reuse between the computations of different disparities. 

Once all the computation of the previous disparity has been completed for all the pixels 

in the whole image, pixel data have to be read from the external memory again. Unless 

all the previously read pixel data could be stored within the internal memory, otherwise 

repeating external memory accesses are inevitable. 
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5.4. Cost Aggregation Data Reuse 

In addition to the data reuse in the matching cost computation, there are two data 

reuse methods in the cost aggregation. The details of these two data reuse methods are 

explained as follows. 

5.4.1. Partial Column Reuse (PCR) 

The partial column reuse method reduces the local memory size in the cost 

aggregation by distributing the computation of aggregated cost to each column. Instead 

of computing the aggregated cost after all the initial costs in an aggregation window are 

available, the PCR computes the partial sum of a column after the initial costs of this 

column are available. As a result, the size of the local memory can be reduced from a 

window to only one column. Moreover, the partial sum of each column can contribute 

to the aggregated cost of multiple overlapped windows. Storing partial column cost 

requires less local memory size than storing all the initial matching costs in a column.  

Fig. 5-3 illustrates an example of the PCR with a 5x5 aggregation window size. An 

aggregated cost requires the partial sum of five initial cost columns.  With the PCR, the 

current partial column sum in Fig. 3 can be reused to contribute to the aggregated cost 

of windows 1 to 5.  

 

 
Fig. 5‐3 The partial column reuse (PCR) in 5x5 aggregation window 

Aggregation Windows Window 1 Window 2

Window 3 Window 4 Window 5
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5.4.2. Vertically Expanded Row Reuse (VERR) 

The vertically expanded row reuse reduces the bandwidth requirement to the cost 

aggregation engine by deliberately access additional rows of initial costs. If there’s no 

VERR, when the aggregation finishes processing the current row and jumps to the next 

row, the overlapped data between the windows at the previous row and the current row 

have to be read from the cost computation engine again. Fig. 4 shows an example of the 

situation that the data are overlapped. To avoid accessing the already accessed costs, the 

VERR vertically expand the rows of initial costs to be read so that they can be reused to 

compute multiple rows of aggregated cost. 

 
Fig. 5‐4 Vertically Expanded row reuse(VERR) 

 

Fig. 5-4 shows how VERR reduces redundant access of the overlapped data. 

Without the VERR, most of the data in the windows are overlapped for many times. 

Consequently, these overlapped data are read repeatedly multiple times. In contrast, 

with the VERR, the portion of overlapped data becomes much smaller than the case 

without the VERR. Moreover, the overlapped data in the VERR case only overlap once. 

This implies that with the VERR, the repeating accesses of the overlapped data would 

be fewer than the case without the VERR.  
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Fig. 5-5 plots the relationship between the average access count of an initial 

matching cost and the value k given an aggregation window size of 25x25. The value k 

represents the number of expanded rows. It can be observed that the average access 

count decreases as k increases. This suggests that with more rows expanded, less 

bandwidth is needed. However, increasing the value of k will also increase the local 

memory size and computing resource requirement. 

 
Fig. 5‐5 The average access count versus the number of expanded pixel 

5.5. Comparison 

TABLE I compares the estimated memory size and bandwidth requirement of the 

disparity-order and pixel-order reuse methods. The target disparity image is 352x288 

pixels large with 64 disparity levels. The real-time constraint is 30 fps. The architecture 

is assumed to operate at 100MHz clock with a 32-bit data port to the external memory. 

The size of support window in the matching cost computation and cost aggregation are 

9x9 and 25x25 pixels respectively. 

5.6. Summary 

This chapter explores the impact of disparity-order and pixel-order data reuse in 

the matching cost computation and proposed the partial column reuse (PCR) and 
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vertically expanded row reuse (VERR) techniques for the cost aggregation. The 

analysis and comparison conclude that the architecture using the disparity-order reuse 

with both the PCR and VERR techniques is suitable for the design of low memory cost 

with high computation resource. On the other hand, the architecture using pixel-order 

reuse with VERR technique requires less computation resource, but needs large internal 

memory in storing the aggregated cost. 

TABLE 5‐1 the result of approximated color distance 

Section Property 
Disparity-Order Pixel-Order 

Original +PCR +VERR +PCR
+VERR Original +PCR +VERR +PCR

+VERR

Step 1 Internal Memory 
Size (KBytes) 2.4 2.4 2.6 2.6 2.2 2.2 2.4 2.4 

 
Bandwidth 
Requirement from 
External DRAM 
(MBytes/sec) 

3.3 3.2 0.9 0.9 207.9 207.9 10.1 10.1 

Step 2 Internal Memory 
Size (KBytes) 40.0 1.6 44.8 1.8 0.6 0 1.8 0.1 

 

Bandwidth 
Requirement from 
Cost Computation 
Engine 
(MBytes/sec) 

158.7 158.7 44.3 44.3 158.7 158.7 9.2 9.2 

Step 3 Internal Memory 
Size (KBytes) 0.1 0.1 0.1 0.1 228.1 0.0 228.1 228.1 

Total 

Internal Memory 
Size (KBytes) 42.5 4.1 47.6 4.5 230.9 2.2 232.3 230.5 

Bandwidth 
Requirement from 
External DRAM 
(MBytes/sec) 

3.3 3.2 0.9 0.9 207.9 207.9 10.1 10.1 

Real-time 
Constraint (30 fps) Meet Meet Meet Meet Fail Fail Meet Meet
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6. Hardware Implementation 

6.1. Overview 

 
Fig. 6‐1 the overview of the hardware design 

 

The architecture of the design is shown in Fig. 6-1. The design of the MCADSW 

contains five major parts, which are the arbitration, memory controller, census 

transform, weight generation, and the cost aggregation. The memory controller 

communicates with the bus and the module granted by the arbiter. For the inside of each 

part, the blue block is the combinational logic and control of the finite-state-machine 

(FSM). The red block is the memory buffer used by each part. The detail will be 

discussed in the rest of this chapter. 
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6.2. Functional Block 

This chapter introduces the details of the hardware implementation, including the 

input and output control, census transform, weight generating, aggregation, and 

winner-takes-all. 

6.2.1. Mini-Census Transform 

   
Fig. 6‐2 the module of census transform for left and right image 

 

 Fig. 6-2 shows the architecture of the mini-census transform. This architecture 

contains three blocks: input image buffer, update control and mini-census transform. 

The mini-census transform compares 7 pixels distributed within 5x5 window to 

calculate one census result. The generation of one census result requires multiple loads 

from the input image data. Therefore, to reduce the times of data load from the input 

image, the input is buffered and reused. The input controller stores the input image in 

the register first. After one word of the data is stored in the register, it will be transferred 

to the memory buffer. The output control reads the data from the buffer to the register 

and census block. The register stores the data of center pixels, and the other pixels are 

transferred to census block. The census block compares the pixels to the center pixels, 

and then it generates the comparison result. This update control maintains the content 

of the memory buffer. The update control contains a table storing the validation for each 
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column of the memory buffer. The access of the memory buffer from input and output 

control is prohibited without checking the status of the validation table. This favors the 

synchronization between the input and output control. 

6.2.2. Weight Generation 

 

Fig. 6‐3 the module of weight generation of vertical and horizontal weights 

 

Fig. 6-3 shows the architecture of the weight generation. The architecture is 

similar to the architecture of census transform discussed in 6.2.1. However, there are 

two differences. The first difference is that the input control requires three dimension of 

color space. Therefore, there should be three input controls and three input buffers. The 

second difference is that there is additional buffer for output control, which is used for 

horizontal weight generation. The input control is similar to the one in census transform, 

only the address control and data size is slight different. After the input buffer is ready, 

the weight generation block starts to calculate the vertical weight and horizontal weight. 

The weight generation firstly loads the image data from the input image buffer to 
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generate the vertical weight by looking up the weight table. The input Y, U, and V 

images are also stored in the BUFFYUV during the generation of vertical weight. After 

the vertical weight is generated, the horizontal weight is generated by reading the buffer 

BUFFYUV. 

6.2.3. Aggregation and Winner-Takes-All 

 
Fig. 6‐4 the module of cost aggregation and its processing element 

 

The Fig. 6-4(a) shows the architecture details of the aggregation and 

winner-takes-all(WTA). At first, the hamming distance is calculated by the left and 

right census results, which are CSL and CSR on the figure. The 0~30 hamming 

distances or called initial cost are sent to the processing element. And then the vertical 

aggregated cost is calculated by the summation of the shifted initial costs. Fig. 6-4(b) 

shows the detail of the PE. The initial costs are firstly shifted by the associated weights, 

and then they are summed together. The calculated vertical aggregated cost will be 

stored in a ping-pong buffer. The second pass aggregation reads the vertical aggregated 

cost from the ping-pong buffer. The same, the horizontal aggregated cost is shifted and 

summed. The final cost will be sent to the winner-takes-all block, which compares the 
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cost with the minimal cost. If the aggregated cost is smaller than the minimum cost, it 

will replace the minimum cost, and become the disparity candidate, which is stored in 

the disparity register. The final depth is the shifted disparity normalized to the range of 

the luminance. 

Fig. 6-5 shows the detail of the ping-pong buffer in Fig. 6-4. There are 48 entries 

for each of the buffer. The figure shows the status of each entry. The color of white, 

light blue, deep blue and orange means that the entry is empty, being written, ready for 

reading, and being read respectively. At the first, all the entries are empty, and then the 

vertical aggregated cost is written into the buffer. After all the entries of the buffer 1 is 

all ready, the vertical weight will be written into the buffer 2. To generate three 

horizontal aggregated cost, 33 ready entries are required. Therefore, the vertical weight 

will be calculated after 40 entries are ready. After that, three entries will be cleared 

since the data are available anymore. The speed of update and consumption of the 

buffer are at balanced. Hence, the weight can be calculated continuously. 

 
Fig. 6‐5 the ping‐pong buffer of cost aggregation module 

6.2.4. Input and Output Control 

 Fig. 6-6 shows the concept of the input and output control used by most of the 

modules in this design. The control deals with the handshaking mechanism which will 

be discussed in 6.3. Firstly, the state is at WAIT state. The input control waits for the 

Address Address
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update of invalid column of internal memory, which will be discussed in 6.5.1. Once 

the internal memory need an update, the input control sends the request signal to the 

transmitter, and wait for the data at the REQUEST state. The state changes to SEND 

state while receiving the data. After all, it will return to WAIT state after a transaction. 

On the opposite, the output control waits for the validation of internal memory at the 

WAIT state. Once is the internal memory is valid, it will send the ready signal to 

receiver, and waits for the request at the READY state. It will switch to SEND state 

once the request signal is received. The same, it returns to WAIT state after a 

transaction. 

 

 
Fig. 6‐6 the finite‐state‐machine of the input and output control 

6.3. Handshaking 

In this design, there are three handshaking mechanisms, request-valid, 

request-grant, and ready-request, which are shown in Fig. 6-7. The first request-valid is 

a one to one communication between two modules. For this mechanism, the receiver 

sends the request signal to transmitter, and then the transmitter sends a bunch of data 

with the valid signal. The request-valid mechanism is used for transmission of a bunch 

data between two modules. The second request-grant is also a one to one 
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communication mechanism. The mechanism of request-grant is that the transmitter 

sends the request to receive at first, and then the receiver sends grant signal to the 

transmitter. Once the transmitter receives one grant signal, it sends one data. The 

difference from request-valid is that the receiver is not guaranteed that it can receive a 

bunch of data continuously from the transmitter. Hence, the transmitter must wait for 

the receiver. The latest one is the ready-request, which is used for many to one data 

communication between several modules. The transmitters send the ready signals to the 

receiver. After all the ready signals are received by receiver, the receiver sends the 

request signals to the transmitters. Once any of the transmitters receives the request 

signal, it sends a bunch of data continuously for certain cycles, which are 384 cycles in 

this design. The usage of the ready-request is that it can be used to synchronize the data 

from different input path. 

In Fig. 6-1, the handshaking between different modules follows the three 

handshaking mechanisms we just discussed. The handshaking mechanism between the 

input image buffer and the arbiter follow the request-valid since the communications 

between them are all one to one and there is no need for arbiter to wait for the input 

image buffer. The depth FIFO to the arbiter follows the second request-grant since it 

has to wait for the grant for each transmission from the arbiter. The latest ready-quest 

mechanism is used between the census transform, weight generating and aggregation 

modules. In the aggregation module, the input data paths are from different modules. 

To the guarantee the synchronization of different input path, the ready-quest 

mechanism is applied. 

6.4. Arbitration 

The arbitration of the system is based on the hybrid of round-robin and fixed 
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priority strategy. There are six modules sending the request to the arbiter to get grant of 

using the bus. The depth FIFO has a fixed and highest priority to use the bus due to the 

high penalty of suspending of the aggregation module. If the depth FIFO is full, the 

aggregation module, which is the kernel of the system, will be suspended. To avoid this 

suspension of kernel, the data of the depth FIFO must be written out as soon as possible. 

Hence, it always has the highest priority. As for the other five image buffers follow the 

round-robin strategy. 

 
Fig. 6‐7 the handshaking mechanism between different modules 

 

Fig. 6-8 demonstrates the change of the priority with the time line. It can be 

observed that the depth FIFO always has the highest priority under any circumstances. 

For the other five buffers, the priority rotates if one of them receives the grant from the 

arbiter. Take Fig. 6-8 for example, the “CENSUS IMGLY” firstly gets the grant, the 

(1) Request ‐> Valid
CLK

DATA

VALID

X X X X 0 1 2 3 4 5 6 7 X X 8 9 ... a b c X X X X

REQ

(Internal)  
1  1

(2) Ready ‐> Request

(Internal ) 
many  1

(3) Request ‐> Grant

(Output)  
1  1



45 

 

priority of “CENSUS IMGLY” becomes the lowest of all at the next time. After the 

rotation, the next “CENSUS IMGLU” will get the highest priority of the five modules. 

However, if this module does not send the request, the priority will be also rotated for 

the grant of any module, except for two conditions. One is the module with the lowest 

priority gets the grant. The other one is the “DEPTH FIFO” gets the grant. 

 

 

Fig. 6‐8 the hybrid of round‐robin and fixed priority arbitration strategy 

6.5. Memory 

6.5.1. Memory Update Mechanism 

The update mechanism is a column based cyclic buffer shown in Fig. 6-9. The 

update is based on an update table which stores the status of each column of the 

memory. The status represents if the column of the memory is active or inactive. The 

active column is the column with the data which are being used. The inactive columns 

wait for the update. The set and clear pointer stores the set and clear position of the 

column.  
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Take the figure for example, the active columns 1~5 are being used. During the 

data processing of the active region, the column 6, 7, and 0 will be updated by order. 

After the processing window moves toward right direction with 2 columns, the column 

1 and 2 will be cleared. This update mechanism works in this design due to the 

processing region moves orderly in horizontal direction. However, due to the real-time 

constraint, the implementation of this mechanism requires reading and writing the 

memory at the same time to speed up the memory update flow. 

 
Fig. 6‐9 the column based cyclic buffer update mechanism 

 

6.5.2. Memory Size 

The memory buffer size is one of the most important issues of this design and the 

size of it is according to the memory region used in different part shown in Fig. 6-10. In 

this figure, the block with the color blue, red, and light yellow represent the 

combinational logic, memory buffer and expanded memory buffer respectively. The 

memory buffer size is labeled inside the red block. The label represents the buffer size, 

and the height multiplied with width. 
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Fig. 6‐10 the memory size of different module 

 

The access region of memory buffer is based on the region of depth being 

calculated and the processing window of the combinational logic. To explain this figure 

more easily, the detail is discussed from the end to the start. At the right-bottom of the 

figure, the evaluation of the depth FIFO, the WTA requires 1x18 horizontal aggregated 

cost. The calculation of the horizontal aggregated cost requires 1x(18+30) vertical 

aggregated cost. Note that the width of horizontal aggregated cost is extended 30 

elements than depth FIFO due to the processing window size is 1x31. Similarly, the 

Hamming distance will require (30+1)x48 elements due to the window size of vertical 

aggregation is 31x1. Moreover, the memory size is 63 times more than original size due 

to the disparity range. Fortunately, the huge memory access region of hamming 

distances is calculated on the fly. Hence, the memory buffer of the hamming distances 

does not exist; therefore, the problem will be pass-through to the former census buffer. 

And this will result in the extension of 63 elements in the censusR buffer. The 
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discussion of the rest of memory access region is almost the same from above 

discussion, except for the image buffer used by the census transform. The width of 

them is much smaller because of the short data life time. Therefore, the data can be 

discarded after the census transform and result in the reduction of the width. 

Fig. 6-10 shows the final result of the memory size. The size is labeled inside the 

block. The result in this is based on the implementation, such as the memory bank, and 

the minimal words of the Register-File. The text in the red block is the memory size just 

discussed. In Fig. 6-10, the light yellow block is the extension for the vertically 

expanded rows reuse discussed in 5.4.2. Take the CENLBUF in census transform as an 

example. The 31*64*6 bits is the memory size without VERR. The 17*64*6 bits is the 

extension memory size after applying the VERR. Hence the overall size is 48*64*6 bits. 

Note that the memory size 48*64*6 bits is more than the required memory size 

48*48*6 bits. The additional 48*18*6 bits is used for the run-time update of the column 

based cyclic buffer. 

6.6. Implementation Result 

Our design is targeted at CIF size, 64 disparity range and 30 frames per second. 

The clock rate of the system is 100MHz and the bus width is 32 bits. The 

implementation result will be discussed at the rest of this chapter.  

6.6.1. External Bandwidth 

Fig. 6-11(a) shows the simulation result of the execution cycle with different bus 

access latency. From the figure, the curve is divided into two segments, both of which 

are proportional to the access latency. However, the slopes of them are different. After 

the latency is larger than 5, the buffer for the input latency is not enough. Therefore, the 
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execution cycle increased faster. Fig. 6-11(b) shows the FPS with difference bus access 

latency. The system can achieve more than 40 FPS if the average access latency is 

smaller than 5. 

 
Fig. 6‐11 the performance with the bus access latency 

 

6.6.2. Area and Gate Counts 

  TABLE 6‐1 the implementation result of area and gate counts 

module name total area cell Area 
memory 

size (Byte) 
combinational

gate count 

Weight Generation 7,002,961 700,596 10,170 37,586

Weight Buffer 2,041,062 634,522 1,485 6,127

Census L 1,243,590 100,250 224 5,004

Census R 1,243,590 100,250 224 5,004

Aggregation+WTA 26,102,290 442,254 0 156,716

Arbiter 38,042 475 0 168

Census Lbuffer 26,226,681 1,842,059 4,608 171,842

Census Rbuffer 26,672,820 1,865,630 4,608 180,195

Total 90,571,035 5,686,036 21,319 562,642

 

The area and gate count of the simulation result is shown in TABLE 6-1 and Fig. 

6-12. The result is synthesized with standard cell library of UMC 90 um. It can be 

observed that the aggregation, left census buffer, and right census buffer are dominated 
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in this design. The gate count of aggregation and census buffer are large due to the 

requirement of high computation resource and complex demultiplexing of the memory 

banks.  

 

Fig. 6‐12 the percentage of the memory area and combinational gate counts 

 

6.7. Performance Result 

TABLE 6-2, TABLE 6-3 shows the overall comparison of different 

implementation result.  In TABLE 6-2 most of the implementations are using the 

programmable GPU. The programmable GPU favors high bandwidth and computation 

resource. The image size, disparity range, and FPS of all designs are quite different. It is 

difficult to compare difference implementations. Therefore, the million disparity 

evaluation (MDE) method has been used. TABLE 6-3 shows the error rate of different 

implementation result. The test sequences are from the middlebury vision website. 
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TABLE 6‐2 the error rate comparison of different method 

DDeessiiggnn   IImmpplleemmeennttaattiioonn  IImmaaggee  SSiizzee  DDiissppaarriittyy 
RRaannggee FFPPSS   MMDDEE//ss  

PPrrooppoosseedd HHaarrddwwaarree 335522xx228888 6644 4422  227722..55 

TrellisDP[45] Hardware (FPGA) 320x240 128 30 294 

HBP[43] Hardware (FPGA) 320x240 32 30 73.7 

EffectAggr [46] Intel C2D 2.14 GHz 320x240 
463x370 

16 
75 

5 
1.67 18.9 

RealDP[35]  AthlonXP 2800 384x288 50, 100 33, 18.9 183, 209

CBiased[36] Geforce 7900 512x512 
256x256 

64, 96 
64, 96 

35, 24 
122, 87 

588, 605
512, 548

SepLaplacian[37]  Geforce 7900 256x256 
512x512 

64, 96 
64, 96 

121, 87 
38, 27 

507, 547
637, 679

RealTimeBP[42] Geforce 7900 320x240 16 16 19.6 

RealTimeGPU[38] Radeon 9800, 
P4 3GHz 320x240 16 16 19.6 

ReliableGPU[34] Radeon 9800 - - 16.6 - 

GradientGuided[24] Radeon 9800XT 512x384 40 14.7 117 

 

TABLE 6‐3 the performance comparison of different method 

DDeessiiggnn   PPuubblliiccaattiioonn  TTSSUU  VVEENN  TTEEDD  CCOONN   SSAAWW   MMAAPP  

PPrrooppoosseedd  --  22..8800 00..6644 1133..77 1100..11   2.11 3.21 

TrellisDP[45] MUE 07  2.63 3.44 -  -  1.88  0.91 

HBP[43] Lecture Notes 2.85 1.92 - - 6.25 6.45 

EffectAggr [46] ICPR 08 2.96 3.53 10.7 4.92 - - 

RealDP[35]  CVPR 04  2.85 6.42 -  -  6.25  6.45 

CBiased[36] ICIP 07 4.77 10.2 - - 0.82 0.65 

SepLaplacian[37]  ICME 07  13.0 -  -  -  -  -  

RealTimeBP[42] BMVC 06  3.40 1.90 13.2 11.6  -  -  

RealTimeGPU[38] 3DPVT 06  4.22 2.98 14.4 13.7  -  -  

ReliableGPU[34] CVPR 05  1.36 1.09 -  -  2.35  0.55 

GradientGuided[24] 3DIM 05 2.48 3.91 - - 1.63 0.73 
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Conclusion 

The main contribution of this thesis is to propose a hardware friendly algorithm 

and an architecture design for real-time local stereo matching. Our design gives a 

quality depth result for real-time application. The proposed algorithm reduces about 

95.14% computation complexity comparing to the original ADSW, and the average 

quality drop with 1 disparity tolerance is about 0.515%. The implemented design can 

achieve 43 frames per second and 64 disparities with CIF image size under 100MHz 

clock rate. The chip consumes totally 562,642 K gate counts and 21.3K Bytes internal 

memory. Besides, we also consider the bandwidth issue in the system level. The final 

bandwidth requirement is only 45MB/s, which is about ninth of the total bandwidth, 

and can be easily integrated with other IP for different kinds of applications. 

Future Work 

Although our algorithm gives a quality result, the disparity map at the occluded 

area may be incorrect due to the lack of disparity refinement. Besides, the depth result 

may be unreliable if the object is tiny or lack of color information. On the other hand, 

the chip area is large and dominated by the large internal storage and multiple RAM 

banks. Therefore, the unreliable disparity map area and expensive cost of internal 

storage size may limit its application.  

There are two issues remained in our work. First, the practicability for different 

applications needs to be investigated, such as the scene reconstruction and 3D-TV, 

which may require smooth depth on edge and occluded area. The second issue is the 

expensive cost of internal memory size. To reduce the internal memory size, there are 

three feasible plans, for example, decreasing the bits of census, truncating the 
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intermediate result of cost aggregation, and using memory with single port instead of 

dual port. However, the reduction of the memory area is still limited under the data 

reuse strategy of the proposed architecture. For a low memory cost implementation, 

further research for stereo algorithm or architecture is required. 
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