T
| 4
@
(=
/\~
%

TRE T M 2 AR R A TRt

Analysis and Design of Real-Time Local Stereo Matching

Q-

o aee a
Py 23§

Ip R RRE

PEAR 4 L& 4

TR TR L AL A TR

Analysis and Design of Real-Time Local Stereo Matching

G Student: Tsung-Hsien Tsai
I ke HL

Advisor: Tian-Sheuan Chang

B =z 2 i < 7
TEIAEE L ORI AL

oL % e

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of Requirements
for the Degree of
Master of Science

In
Electrical Engineering

September 2008

Hsinchu, Taiwan, Republic of China

ERRE 4 L& 4

oz
|4
pas
(=
A=
W%

B2

SR R A E Y AF 54T 0 Dldop A B A~ p Bl BioukE s L A
IR T AR W L ot FEWERS ALK kA FL T R - B
M X R EE MR FHE ORI

AEFTHRDNT - BRAANMKRITOFEE o GANGEREEL VY
(Adaptive Weight Generation);# & i % & #c7] 4 & (Mini-Census) et 7 378 ~ & =X
. & (Two-Pass Aggregation) ™ 2 £ + it 35 #ic & #; #F §E &t (Quantized Manhattan
Color Distance) % 77 o ficA| &7 R PEE € > K ken- BART EL R
SR A BEER g2 bl B T R AT R A Y TR DR AT
AR T R R Ak vh RS B 0 T 88.7%Fr 64.2%0iE 4F fe
BeApfot R A€ A2 G050 > 25 M3l vh MERRY AT RS B A& A
WTE -

B ATETF 90 2 £ WART > & A ekt 00 & 100MHz eh1 (EREIR T
EDFE B A3ECIFES <0 2 64 BIFA FR BBl & ¥ 82 7 £ 562,642

BBIER > 2 213K g B sty e

il

Analysis and Design of Real-Time Local Stereo Matching

Student: Tsung-Hsien Tsai Advisor: Dr. Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

Stereo matching has been widely used in many fields, such as automatic robots,
auto-tracking system, and even the 3D-TV. With these real time application demands,
VLSI implementation becomes necessary to fulfill the high complexity and high
bandwidth requirements of stereo matching algorithms.

In this thesis, we propose a hardware friendly algorithm, based on adaptive
support weight (ADSW), with ‘mini-census, two-pass aggregation, and quantized
exponential Manhattan distance techniques. The mini-census reduces the computation
complexity from a matching block to only 6 points. Besides, it also improves the
capability of ADSW to deal with the radiometric problem. The two-pass aggregation
and the quantized Manhattan color distance reduce about 88.7% and 64.2%
computation of the cost aggregation respectively. Comparing to the original weight
generation function, the quantized Manhattan color distance can be easily implemented
by a table based circuit.

The final design implemented by UMC 90nm CMOS technology can achieve 43
frames per second and 64 disparities with CIF image size under 100MHz clock rate.

The chip consumes totally 562,642 K gate counts and 21.3K Bytes internal memory.

il

v

FAO RR A AR L 88 & R A DL R
TR RAN ARE Y NP FAF F IR TP F T g e
RMAOFTRREFARFI - XF2 AT P enfry E4 3 Feang %72 &0 28
4R S AR E A IR AL Dk B
PRy BRFAGCERLEP A AFTFIE ﬁkﬁﬁqémﬁmﬂ
BRE O EMHEEPFE 2 M R ER > L TR L LE R {
R A
R VSP 9 3 % el iR o] B B e B P B R A AR A
BB % Pl RAEH 2 JRARRL, B A 0 GuE R TR A L

CERE RS T AN S e L R TR

44
2

W

Y% o RIS RS PEE LR A5 0K

AR e R 4 R RIS S e e

<l

BERRPE A F BRI B IICERSR 2 B0 5 5 a0 1 IR
PRE - BARESE - a2tV SR | RBA RS R B ErRkBBs RS AP
LI HE O EAAHT A R BRIV REHRFE 22 M

RS g el ARG R RE | R AP M T A

FRSFEAFRL CBARE S P RS A AR folm ke 3
1% IV _li_l;} o

B et s SR A ST AR AR A RSP Y 228G 0 2
G TR R SN AN R E R R e L
(R R HEBEE L AR A P A hE S s ek R P eE e B A 4

R EE S = A

Bt oA FWQ}I;J(%MTF »*;\._‘i‘wur’)g A E L o

vi

TABLE OF CONTENTS

1.

INTRODUCTIONcoiiiiunnieniinniissinsteesssssssssssssesssssssssssssessssssssssssssesssessssssssssesssssssssssssssssssssssns 1
1.1. BACKGROUNDeeiiuitiiiiittes ittt ettt ettt st e e e s e e st a e e s saba e e s sba e e s e nbe e e snraeesanbeeeeas 1
1.2. MOTIVATION AND CONTRIBUTION ...uuvviiiiireeiirteessiteeesineeesistesssireeesenneessiraeessnaeessmneeesnnnessnneeess 1
1.3. ORGANIZATION OF THE THESIS ...uvttiiurteeiirtieisieteesieee st e st e s srae e s st e s ssae e e snae e s snne e e ssnaeesnreeeas 2

INTRODUCTION OF COMPUTATIONAL STEREOQccccoeiunmreiiiiiissssnnennessisssssssnesssssssssssssssesssssns 3
2.1. OVERVIEW wiiiitiieiiitie st e sttt s it s ia s et e st e s ab e e e s sab e s e saba e e s saba e e s s b e e e sesaeeesnaeessnneeesnnaeens 3
2.2. EPIPOLAR GEOMETRY ..ciuutteeiiirtieieitte e sttt sttt e s ettt e s sibae e sba e e s ssae e e snase e ssb e e e s enraeesennaeessanaeesas 3
2.3. THE GENERAL FLOW OF MATCHING ALGORITHMSvviiiiiiiieiiitessireeessreressisneessreeessnne e snneessnaeeseas 4

2.3.1. Matching COSt COMPULALIONeeveeeeeeieieees et eeee sttt e e e e et tsteaa e e e eeesetaaraaaeeesssees 4

2.3.2. COSEAGQGIEGALION ...ttt et ee e e ee e e e 6

2.3.3. Disparity COMPULALION........cceueeeeeeeeieeieieiiieeeeeeee ettt ettt e e e e e e e e e e e e e e e 6
2.4. A TAXONOMY EVALUATION ...eiiiiiiiieiiiiee ittt ettt e st e e sn e e ssae e s s snb e e e s snne e e snnnes 6

RELATED WORKccooiiiiunreniiiiiiiiinnteesinssssssasssesssssssssssssssssssssssssssesssessssssssssssssssssssssnnssssssasssns 9
3.1. OVERVIEW w.eeviiriienireeenneeeennreeeee s B bih et i in e e 9
3.2. LOCAL APPROACH.....ceteiurreeens it e FERTEERR b dasifes e enteeeesmeeesenne e e snaeessnr e e e s b e e e snnaeessareeeeas 9
3.3. GLOBAL APPROACH ..eveiiireiapasineeessimees hiniedsounsio fmash e obbmeesseeesennseessasasesanneessssneessanseessssneesannees 10
34. ADAPTIVE SUPPORT WEIGHT .itesiuvveezhune aibasensannsesssbives baieesenureeessnneesanseesssnesessnsneessosseessssasessnns 12
3.5. REAL-TIME IMPLEMENTATIONS . Tuuti . bayets nueehbhiabisinnsee s shamaesnneeesanseessnnseesssseeesaseessasesessnssessaseesns 13

3.5.1. General PUIrPOSE PrOCESSOI i iisiieeuuureessizibanatasaesaueeesssuiesesssssesssessssssesssssssesssseessssssessnins 14

3.5.2. Graphic ProCeSSiNG URNit.............uuueeeeeeeeieieeee ettt e e ettt tttae e e e ettt e e e e e e ssstasraaaeeessnses 14

3.5.3. Digital Signal ProCeSsSing PrOCESSOLuuuieeeieeueeeeaeeeeeiciieieeeeesesiiasesaaeeesesissseaasesasiens 14

3.5.4. Application-Specific INtegrated CilCUIL................ccueeeevereeeereeeeiieeeeecieeeeeieeeecieeeeesreaeens 15
3.6. SUMMARY L.ttt ittt ettt e s st e e s b e e e s ab et e s s ab e s e s b e e e s s aba e e s e b e e e s ba e e e sraee s e rr e e e sanns 16

PROPOSED MINI-CENSUS ADAPTIVE SUPPORT WEIGHTccccciivummriiiiniinnsnnnensssssssssnnneessnnns 17
4.1. L1 Y0 51Uy T OO PR OPPT PP 17
4.2. THE FLOW OF THE PROPOSED ALGORITHM ..ccuuvrieiiriieieiirieesirieesintesssresesssneessnaeessnaeessnnesssnnnens 17
43. IMIINIZCENSUS ..ttt sttt s e e s e e e s b b e e s abb e e e s sab e s e ssnneessaraeesas 18
4.4. WEIGHT GENERATION AND APPROXIMATIONeeiirtieiiiurirerinntessinreesssnesessnnesssireeessssssesssneessaneeesans 19

4.4.1. The Performance with Different Color SPACEocceeeeeceeeeeeieeeecieeeeeeeeeecieeeaiieaenns 20

4.4.2. TRE COIOI DiISEANCE ...ttt st 21

4.4.3. The Effect Of ProXimity WEIGRT............cccuueeeceeeeeieeeeeeeeeeeieeeeeeeeesteeeeeeaeeaesiaeaaeessenaeeans 22

4.4.4. Quantized EXPONENLIQI FUNCLIONeuuveeeieeeeeeiieeeeeeeeeceteee e eee sttt e e e e e s seeveaaaeeasnaes 22

4.4.5. The FiNQl WEIGNE TADIE..........c.....eeeeeeeeeeeeeeeee ettt e e ettt a e e e et e s e e e eesnses 24
4.5. AGGREGATION ITERATIONetteiiiriieiiiret ettt ettt e st e s st e s sire e e ssb e e s s b e e e sebneesaaneeessarasesnns 25

4.6. TWO-PASS COST AGGREGATION APPROXIMATION ..uvuuueeeeerrrersnseeeeereressnneeeessesssssnssesessssssssnnneeeeeseees 28

4.7. OVERALL SIMULATION RESULT ...vttiiiiieee ittt ettt ettt sman e s s e e s snae e snnnes 28

5. DATA REUSE ANALYSIS OF HARDWARE IMPLEMENTATION.......cccoeiiiiimmmeniinnissssneneessssssssssnnens 29
5.1 OVERVIEW w.eiitiieiiitee et te sttt ettt e st e e st e e s b e e e s bt e e s st e e e s aana e e saba e e s sabae e s nraeesnanaeas 29
5.2. ARCHITECTURE OVERVIEW ...eviiiiiriieiiireeiirteessiteessiae e s ssae e s et e sana e e ssntessssbasesennaeessnnaeessnanesnns 29
5.3. MATCHING COST COMPUTATION REUSEceeiiiuiiiiiiiiieeiiiriee sttt e sine e s srae e srae e s snre e snaee s 31
5.3.1. DiSPAIitY-OrAEr REUSE.......ccccceeeeeeseeeeeeeeeee e eeeteetteea e e ettt e e e eeeststsaaaaaaeesssssassaaaesssinnees 31
5.3.2. PiX@I-Order REUSE............coocueeeeeiiieeeesteee ettt ettt ettt eeaee s 32

5.4. COST AGGREGATION DATA REUSE ..ccuuvviiiiiriieiiitec sttt sttt s e s essnae e s 33
5.4.1. Partial COIUMN REUSE (PCR)oeoeeeeeeeeeeeeeee ettt eeeee ettt tteaeeeeaaaaesiaaaenstsaaeeans 33
5.4.2. Vertically Expanded ROW ReUSE (VERR)...........oueeeeeeeeeeeeeeeeeeetieeeeecieeeeeieaeesiveeaesreaaens 34

5.5. COMPARISON ...uviieiiitieeirtte sttt e st e st e s st e s b e e e s ab e e e s ab e e e s ab b e e s aab e e e s aan b e e sambaeessabaeesebaeessanaees 35
5.6. SUMMARY L.ttt ittt ettt e s et e e s eib e e e s b et s e s b e e e s b e e e s saba e e s e b e e e s e na e e e seraee s e rre e e sanns 35

6. HARDWARE IMPLEMENTATION.....ccccoiiuettiiiiiiisinneesiississssnsseesssssssssssssssssssssssssssssssssssssssansenns 37
6.1. OVERVIEW w.eiitiieiiiiee e ritte sttt ettt e et e e e bt e e s b e e e s bbb e e s s b e e e s eaba s e smba e e s sabaeesenbaeessanaeas 37
6.2. FUNCTIONAL BLOCK ..veeiivvieieiriee s fieaianeneeeesnreeessnimafias eeeseinneeseinaeessresesenaeessanaeessnaeessnneessanaeesas 38
6.2.1. Mini-Census TraNSfOrM Jiuc... ficeciiinianrsiurnesadoesoisstheseisresstsessssesissessssssssssssesssssessssssssssssseesns 38
6.2.2. Weight GENeration ... i eeses iicdes sl i et a e e e areaaa s 39
6.2.3. Aggregation and Winner-TakeS-Allii o oo heBeeiii et 40
6.2.4. Input and OULPUL CoNtrol. ... ol it e ee et et e teeste s teesee s te e e s teessaeeans 41

6.3. HANDSHAKING ...ceeuvvieiiriieieiree e vbe o s e e EER R s s b ettt esiae e e sna e e e s sib e e e sb b e e s amb e e e s sab e s e sennneessaraeesan 42
6.4. ARBITRATION ..ceuttieiitteesrtt e s et e e sir e e e st e s e b e e s b e e e s aab e e e e sa b e e et sba e e s sabaeessabaeesasbeeesanaeessnreeesanns 43
6.5. IVIEMIORY ..ttt st a e s s e e e s s b e e e s e na e e e sra e e s e bt e e snra e 45
6.5.1. Memory Update MECHANISMc.cc.eeueeeeeeeeeeceeeeee ettt eee ettt a e e e e sttaaa e e e e e s saaeeaas 45
6.5.2. MEBIMOIY SiZE ..ottt ettt ettt ettt ettt ettt e et e ——————— 46

6.6. IMPLEMENTATION RESULT ..ceiiuitiiiiiites ittt ettt et e s smn e snae e s snne e s smne e s saneeeeas 48
6.6.1. EXternQl BANAWIGLAcooueeiuiieiieeieeeeee ettt 48
6.6.2. Areq ANd GALE COUNLS........eeveeeiieieeee ettt ettt ettt s e sne e 49

6.7. PERFORMANCE RESULT ...uvtieiiiriie ittt sttt ettt e s s sena e s sba e e s sba e e s snne e s sanaeeeas 50
L0011 ol U] [0 53
FUTURE WORK ...iiiiiiiiiiiiiieieiess s sssse s s s saass s e s s s s saas s s e s se s ssanne e e s s s ssssssanssesssessssssnnnnsssssnss 53
REFERENCE.......ccuuiiiiiiiiiiiiiiieiiirieiireeeisreaes s reaes st rass st rass s ssassssrsnssssasssssstenssssssnsssssensssstennsssrenns 55

viii

LIST OF FIGURES

FIG. 2-1 THE EPIPOLAR GEOMETRY OF THE BINOCULAR STEREO. ...ueeteeeieeiuureeeeeeeeasiusseeeeesseaisnssessessssssssssessesssnsssssessens 3
FIG. 2-2 CORRESPONDENCE MATCHING FINDS THE ALL THE MATCHING PENALTIES OVER A DISPARITY RANGE.............ce...... 3
FIG. 4-1 THE FLOW OF THE PROPOSED ALGORITHIMuvtvurerurerrreeeereeeseseseseseseseeeeeseeesseeseeeseeeeesesesssseesesesesasasasssaanns 17
FIG. 4-2 THE CENSUS TRANSFORM AND MATCHING ..vvvvvvevererererreeeserereseseseseseseseseseeeseeeeeeesesesessseseseeesesssesasasasassaens 18
FIG. 4-3 THE PERFORMANCE COMPARISON WITH DIFFERENT COLOR SPACE ...vvvvvvvvvvrrsereersereeresesereseseseresesseeseessesesseees 20
FIG. 4-4 THE PEROFORMANCE ANALSYSI OF PROXIMITY WEIGHTING ...uuuuvuvvvuvurererererereresesessresessseseseseeesersesseeseseesseens 22
FIG. 4-5 THE WEIGHT FROM QUANTIZED EXPONENTIAL FUNCTIONuuuvuvevererarsressseresssssesesssesesessssseseesssrsesseesserereeens 23
FIG. 4-6 THE PERFORMANCE WITH QUANTIZED EXPONENTIAL FUNCTIONuuvuvuvvvvrererereresssssssssesesesesesesesseeseesseesesene 24
FIG. 4-7 THE ERROR RATE WITH THE AGGREGATION ITERATION AND WINDOW SIZE.....cceeeeeeeeiuurrereeeeeeinrrereeesseesnnsneeeas 26
FIG. 4-8 THE MINIMUM ITERATION WITH DIFFERENT SIZE OF SUPPORT WINDOWuuuvviireeeeeeiirireeeeeeeesnrrereeessesnnnnes 27
FIG. 5-1 THE OVERVIEW OF HARDWARE ARCHITECTUREuuuvuturereseseresesesesssssssesesesssssssesmesmsesesesessessrersrseeremesasesanens 29
FIG. 5-2 THE TWO DATA REUSE DIRECTIONS WITH DIFFERENT SIZE OF SUPPORT WINDOW ...ccceeeeurrrireeeeeeinrrareeeeeesnnnns 31
FIG. 5-3 THE PARTIAL COLUMN REUSE (PCR) IN 5X5 AGGREGATION WINDOWuveeeeeureeeeeireeeesireeeeeseeeessseeessneeens 33
FIG. 5-4 VERTICALLY EXPANDED ROW REUSE(VERR)eiiiiiriieeetii e ettt ettt ettt e e et e e naea e evaea e 34
FIG. 5-5 THE AVERAGE ACCESS COUNT VERSUS THE NUMBER OF EXPANDED PIXEL ...uuvvereeeeeesiunreeeeeeseesnnsreseeessensnnssenens 35
FIG. 6-1 THE OVERVIEW OF THE HARDWARE DESIGNE.uuusuuuuuuuuuunnzsnsandhunnnnnnnnnnnsnsssnsnssnnnns 37
FIG. 6-2 THE MODULE OF CENSUS TRANSFORMFOR LEFT-AND RIGHT IIMAGE..........0uvvvevererererererererererererereeereeeseeeeeene 38
FIG. 6-3 THE MODULE OF WEIGHT GENERATION OF VERTICAL AND HORIZONTAL WEIGHTSvvvvvvvvvvrerererererssererereserenen 39
FIG. 6-4 THE MODULE OF COST AGGREGATION'AND ITSIPROCESSING.ELEMENT0vvvvvverreereeeereeerererereseseresesereseeeeeene 40
FIG. 6-5 THE PING-PONG BUFFER OF COST AGGREGATION MODULE ...tk it e vurrrervrererererererererererererererereeseeeeeeeseseeeens 41
FIG. 6-6 THE FINITE-STATE-MACHINE OF THE INPUT AND OUTPUT CONTROLvvvvvvvevererererersrsrerersssreseseseresesememeeseeeee 42
FIG. 6-7 THE HANDSHAKING MECHANISM BETWEEN DIFFERENT MODULES ..ceveeeieetutieeeeeeeesiunreeeeesseennsseseeessesnsseeneas 44
FIG. 6-8 THE HYBRID OF ROUND-ROBIN AND FIXED PRIORITY ARBITRATION STRATEGY ...eeeeeeeeiunrirreeeeeeinnreneeessensnnseenens 45
FIG. 6-9 THE COLUMN BASED CYCLIC BUFFER UPDATE MECHANISMuvvvvvrreuerereressererererereseseseseseseseseserseeseessssesseens 46
FIG. 6-10 THE MEMORY SIZE OF DIFFERENT MODULEuvuvuvuveruresereresssesesssesesesesesesssesesmeseseseeesmsesrsrerersseresesasssasans 47
FIG. 6-11 THE PERFORMANCE WITH THE BUS ACCESS LATENCY ...vuvuvuuevuvurersresssssssesessssssssssmesssesesseeseessssseeseeereeeserens 49
FIG. 6-12 THE PERCENTAGE OF THE MEMORY AREA AND COMBINATIONAL GATE COUNTS .eeeeeeeeiirrrreeeeeesinrrnreeeseennnnns 50
FIG. 6-13 THE IMPLEMENTATION RESULT WITH DIFFERENT METHOD ...uuuvuvuvururererereresesesessseresssesesesesemessesesesessseeeseee 52

X

LIST OF TABLES

TABLE 2-1 MATCH METRICS FOR CORRESPONDENCE MATCHING [3] ..uvviiiiiieeeiiiieeeiieeecteeeeeteeeeeteee e teee e e e eeaneeas 5
TABLE 2-2 THE TEST SEQUENCES OF THE TAXONOMY EVALUATION .iiuuiiirteeeeeeaaiieteeeeeesainreeeaesesannneeeeeesssannnnneeeens 8
TABLE 4-1 THE RESULT OF APPROXIMATED COLOR DISTANCEetteeeeasuuureeeeeseaaunneeeeeessaaunseeeeesssansnsseesesesannssneeeeens 21
TABLE 4-2 THE WEIGHT TABLE OF PRESERVING 2 IMISB BITScetiieiiieiiiitete ettt ettt e e e e s e ee s 25
TABLE 4-3 THE WEIGHT TABLE OF PRESERVING 1 IMISB BITeeitiieiiieiietee ettt e e e 25
TABLE 4-4 THE EFFECT OF DIFFERENT TECHNIQUESectteeeiauertteeeeeeaaurtteeeeesaaunteeeeeseeeaunsreeeeessesannsaeeeesssasnseeeens 28
TABLE 5-1 THE RESULT OF APPROXIMATED COLOR DISTANCEttteeeeasuuureeeeeseaanunneeeeeessaaunseeeeesesanunsseesesesannseseeeeens 36
TABLE 6-1 THE IMPLEMENTATION RESULT OF AREA AND GATE COUNTSvvttreeeeaunreeeeessaainreeeeeessesnnseeeeesssannnnneeeens 49
TABLE 6-2 THE ERROR RATE COMPARISON OF DIFFERENT METHOD ..uuuitittteeeaeiuereeeeesseeinreeeeeseseannneeeeesssannnneeeens 51
TABLE 6-3 THE PERFORMANCE COMPARISON OF DIFFERENT METHODvvttteeeeaiunreeeeeseeeinreeeeeeesennneeeeesssennnnneeeens 51

1. Introduction

1.1. Background

The stereo vision is one of the most popular topics in computer vision, and still
attracts the attention of many researchers. The stereo vision is the process of finding the
depth or distance information from a pair of images of the same scene. It can be used for
many applications such as the 3D video conference [1], the Z-keying, and the virtual
reality [2]. If we obtain the 3D depth map in the high speed, it is possible to merge the
real and the virtual world in real time.

The stereo algorithm can be categorized as local and global approach [3]. The
local approach focuses on finding the similarities-of reference and target windows by
using the block matching or feature matching. The global approach uses the global
constraints to optimize the result. Since the local approach favors low complexity, they
are often adopted by real-time implementation:/However, these methods often suffer
from incorrect result on occlusion, uniform texture, and ambiguity. The global
approach can solve these problems but suffer from the huge processing time. Although
some real-time global methods can be implemented through GPU in the graphics card
or MMX of CPU, the implementation still cost expensive for embedded applications

since GPU and MMX are not dedicated hardware for stereo algorithms.

1.2. Motivation and Contribution

Motivated by the need of high accurate and low cost real-time stereo systems, this
thesis proposed hardware friendly algorithm based on a state-of-art local approach. The

goal is to build a dedicated hardware for low cost real-time depth estimator with high

accuracy.

The major contribution in this thesis includes:

1. We modified the adaptive support algorithm and make it more
hardware friendly. The modified algorithm has much lower complexity
and more capability of dealing with radiometric problem.

2. We analyze the pixel-order and disparity-order data reuse strategies
with the vertically expanded row and partial column reuse methods.

3. We implemented and verified the real-time hardware of the proposed

algorithm (Mini-Census Adaptive Support Weight).

1.3. Organization of the Thesis

In Chapter 2, we briefly introduce background of the computational stereo. In
Chapter 3, we briefly introduce-the.stereo algorithms and real-time implementations.
Chapter 4 discusses the detail ofithe propesed-algorithm with the mini-census, two-pass
aggregation, and quantized exponential Manhattan distance. In addition, the simulation
result is shown in this chapter. Chapter 5 analyzes the data reuse problem of hardware
design implemented by aggregation based algorithm. Chapter 6 shows the detail of the
hardware design and the implementation result. Finally, the conclusion is given after

Chapter 6.

2. Introduction of Computational Stereo

2.1. Overview

The concept of computational stereo is to construct the structure in the
three-dimension space from different view point. The fundamental basis is to evaluate
the depth of the object by finding the correspondent points of the object projecting on
the two unique image pairs. The correspondent points are the feature points visible on
both view point. The process of finding the correspondence is referred as
correspondence matching. The disparity map for structure reconstruction can be

computed after the correspondence matching.

2.2. Epipolar Geometry

P
A A
A
disparity range
. 7\ u parity rang
! \ °)
S l) (xdy)
f
A\ Target Candidate
O « » Or
T

Fig. 2-1 The epipolar geometry of Fig. 2-2 Correspondence matching finds the
the binocular stereo. all the matching penalties over a disparity

range.

Fig. 2-1 shows the binocular stereo calibrated with epipolar geometry. O, Og, and
f are the two optical centers, and the distance between them is called the baseline. The
object P is projected on to two points (p and p’). The depth Z of the object P can be
computed by triangulation. As a result, the formula of depth Z can be written as Z = f/d,

where fis the focal length of the camera, d is the displacement of the two points, d=x-x’.
3

(depicted in Fig. 2-1). All the parameter can be obtained during the setup of the system
except the displacement. Therefore, the goal of computational binocular stereo is to
estimate the displacement between each corresponding pair of pixels in the target and
candidate images (depicted in Fig. 2-2). The displacement is referred as disparity and
the process is referred as disparity estimation. The set of disparity of all the pixels in an

image is called the disparity map or disparity image.
2.3. The General Flow of Matching Algorithms

According to Scharstein and Szeliski [4], the major steps of the stereo algorithms
consist of three steps: matching cost computation, cost (support) aggregation, and
disparity computation/optimization. The matching cost in the first step represents the
dissimilarity of different matching eandidates. The cost aggregation is to sums up the
result of the dissimilarities together, the cencept-of this is like exchanging the
information of neighboring pixels. Thelast-step,is to' compute the final disparity map

from the matching cost. The details of them will be discussed in the following sections.

2.3.1. Matching Cost Computation

The disparities map can be computed by evaluating the matching cost for every
disparity candidates. The matching cost represents the matching penalties after the
correspondence matching. The range of the disparity candidates is called the disparity
range. The correspondence matching is based on finding the correspondence of the
support region of the reference and candidate pixels. The support region is usually a
square window, which is called the support window. The match metrics are listed in
TABLE 2-1. The details can be referred to [3]. The general formula of matching cost

computation can be written as

Cost(x,y,d) = Matching(I,(x,y) — L(x — d,y)), 2.1)

where I, I,, represent the reference and target images. The matching result forms a
volume of matching cost in 3D space. The absolute difference (AD) is most commonly
used for many stereo algorithms due to its simplicity. However, the AD has poor quality
while the test image has the global radiometric changes. The experiment [5] shows that
the rank and mutual information performs better than AD for global radiometric
changes and noises due to the match metrics compares the difference of their local

characteristics rather than absolute difference of luminance.

TABLE 2-1 match metrics for correspondence matching [3]

MATCH METRIC DEFINITION
%o (1) = 1) - (= d,v) —)
Normalized Cross-Correlation — —
\/zu,,,(ll(u. v) = [)? - (h(u — d,v) — F)?
2
Sum of Squared Difference Z (11 (u,v) — Li(u—d, v))
u,v
2

Normalized Sum of Squared Z (Zu'v(ll (u,v) — 1_1)) (Zu'u(l1 (u,v) — 1_1))
Difference P\ S @ —R? [T, Gw) - Ry
Sum of Absolute Difference Z |1, (w,v) — L(u—d,v)|

u,v

> @) - Be-d)

u,v

Rank
IL(u,v) = Z L.(m,n) < I (u, v)
u,v
Z HAMMING (I;(w,v) — I;(u — d,v))
Census [6] wy
It (w,v) = BITSTREAM,,, ,, (I (m, 1) < I, (u,v))
P(l,(w,v) -I,(u—d,v

Mutual Information [7] 1 g((1w v) - 1o)))

P(Il(u, v)) . P(Iz(u —d, 17))

2.3.2. Cost Aggregation

Cost aggregation is to aggregate the cost of correlated pixels over a support window.
The concept of the cost aggregation is that neighboring pixels may be highly correlated

to center pixel. The formula of cost aggregation is written as follow

Costaggr(x,y,d) = Z Z Costii(x +i,y +j,d) - w(x,v,i,)), (2.2)
i i

where Cost;y; is the initial matching cost from the match metrics. The o is the related
weight for each cost. The effect of the weight is to limit the influence of unrelated pixels.
The cost aggregation helps to improve the quality of low texture area since it is lack of
information. However, this work also blurs the edge of the object when the cost of
different object is aggregated together. Therefore, the determinant of the weight is of

vital important for cost aggregation:

2.3.3. Disparity Computation

The disparity map can be coniputed from the matching cost or aggregated cost. The
simplest way is to select the disparity candidate with minimal cost, and the process of

this is called winner-takes-all (WTA). The formula of WTA can be expressed as below
disparity(x,y) = {dn|cost(x,y,dn) = argmin(cost(x,y,d,)), mne€[0,dpnarl}, (2:3)

where dy, is the disparity with the minimal cost over a disparity range. The more robust

methods with complex disparity optimization will be discussed in 3.2.

2.4. A Taxonomy Evaluation

For the computational stereo algorithms, the ambiguous match leads to the poor
quality for computational result. The ambiguous points include the occlusion,

low-texture (non-feature), and repetitive patterns. Hence, a taxonomy evaluation [4] is

6

proposed. The evaluation includes three parts: non-occluded area, total area, and
discontinuous area. The test sequence is shown in TABLE 2-2. The four sequences,
tsukuba, venus, teddy, and cones, are the most commonly used for performance
evaluation. The gray level of the ground represents the depth of the object. The pixel
with brighter gray level means it is closer to the camera or observer, and vice versa. For
the images of non-occlusion images, the non-occluded regions and occluded regions
are represented with white and black color respectively. In the discontinuities images,
the regions near depth discontinuities are represented as white; occluded and unknown
regions are represented as black, and other regions are represented as gray. The error for

different three parts is only evaluated in white regions.

TABLE 2-2 the test sequences of the taxonomy evaluation

Tsukuba Venus Teddy Cones

Input

Ground Truth

Non-

occlusion

All

Discontinuities

3. Related Work

3.1. Overview

The methods of disparity estimation can be roughly categorized into two types:
local and global approaches. Local approach determines the disparity of a pixel based
on the similarity of a support window. These methods can iteratively aggregate or
regularly diffuse the matching cost over the support window. The local methods have
low computation complexity and storage requirement, and they are often adopted by
real-time implementations [8]. Global methods define objective energy functions
which usually include a data term and a neighboring term. The data term is often a
transformed version of the matching cost: 'Fhe neighboring term is represented with a
smoothness penalty to enforce disparity;smoothness: Sometimes the neighboring term
would also include occlusion penalty and segment constraint to improve the disparity
estimation result. This is the major difference that'set global methods apart from local

methods.

3.2. Local Approach

Among the local methods, the matching cost (dissimilarity measure) often is block
sum of absolute difference, normalized cross-correlation, census transform, or mutual
information. Local methods often suffer from incorrect disparity estimation at
occlusion, low texture, and repeating pattern regions. Although larger supporting
window and aggregation iteration improve the stereo matching performance at the low
texture and repeating pattern regions, it harms the performance at occlusion region.
Because of this trade-off between large and small support windows, the reliable

variable window size [9-11] was proposed. The window size depends on the reliability
9

measurement of current window size. The adaptive window size enhances the depth for
low texture area but the issue of occluded and border area still remains. To enhance the
performance at the occlude and border area, the shiftable window approach is adopted
[12][13] and the combination of adaptive size and shiftable window is discussed in [14].
However, the qualitative result [14] shows that it still difficult result on both low texture
and border area.

To solve this issue at the both low texture and border area, the concept of adaptive
support weight (ADSW) aggregation is proposed by Yoon [15]. This approach
adaptively changes the weights in a support window according to the color and spatial
distance between the center and neighboring pixels. Consequently, adaptive support
weight can achieve the effect of using window with arbitrary size and shape. Once all
the weighted sums of costs are comiputed, they areiteratively recomputed to produce a
smoothed dense disparity map. JLater, a segmentation support aggregation was
proposed [16][17]. The Outlier rejection{16], claimed to have both a very short
computation time and good stereo matching performance. Recently, a report [18] shows
that Adaptive weight [15] and Segment support [17] outperform than other aggregation
based methods. [18-28]. Although adaptive support weight is the state-of-the-art of

local methods, the complexity is much more than segment based method [18].

3.3. Global Approach

Global methods assume the disparity map with minimum objective energy should
be very similar to the ground truth. Therefore, global methods focus on optimizing the
energy function to determine the disparity map. One of the earlier global methods is
dynamic programming [29]. This method focuses on optimizing the energy associated

with each scanline during disparity estimation. Although dynamic programming takes

10

the horizontal global information into optimization, vertical correlation between
scanlines is not considered. As a result, the disparity map of dynamic programming
often exhibit horizontal streaks, thus reducing the quality of the disparity map.
Motivated by the need of 2-D optimization during disparity estimation, Roy and Cox
[30] proposed to model the disparity-image space as a 3-D grid graph. By finding the
min-cut on this graph, the disparity map with optimum energy is found; this
optimization algorithm is also known as graph-cut. Unfortunately, the computation and
storage requirement for running graph-cut on 3-D grid graph is enormous. Later,
Boykov and Kolmogorov proposed the iterative swap and expansion moves [31][32]
which also use graph-cut to find the best moves. Unlike Roy and Cox’s method, a
simpler two-variable graph structure which can be regarded as a 2-D graph was used in
swap and expansion moves. This:simpler graph teduces the computation loading of
graph-cut. However, the extra iterations of'moves compensate the benefit.

On the other hand, Scharstein and-Szeliski [4] proposed the Bayesian diffusion
method which iteratively diffuses sipport at different disparities according to nonlinear
diffusion strength. This is similar to using different weightings within the support
window. Later, Sun [15] proposed the belief propagation for disparity estimation based
on the concept of the Bayesian diffusion. Essentially, belief propagation is similar to
Bayesian diffusion. Both methods propagate information based on probability model
between neighboring pixels. However, belief propagation bridges the link of the global
energy function with information passing, which is absent in Bayesian diffusion. In
addition, belief propagation uses a more complex updating mechanism, which is used
to optimize the final energy. As a result, belief propagation has been reported [4][14] to
produce disparity maps with much better quality than Bayesian diffusion. Currently, the

disparity map produced by the state-of-art methods combine adaptive support weight,

11

segment constraint, and belief propagation together. Although belief propagation based
methods are the leading methods in stereo matching performance, they also suffer from

high computational complexity.

3.4. Adaptive Support Weight

Adaptive support weight (ADSW) proposed by Yoon [15] is the state-of-art of
local approach, which aggregates the cost with the weight adaptively generated by the
color and spatial distance. The concept of ADSW is that the correlation of the
neighboring pixels is related to their spatial distance, which is called the proximity
weight. The correlation of two pixels is related to their color distance, which is called

the color weight. The weight in the cost aggregation formula (2.2) can be represented as
w(p,q) = f(ACpq) 4 f(ASpq)x 3.1

where Ac,, and As,, representthe color distance and spatial distance between pixel p
and q respectively. The w(p, q)-represents-the strength of aggregating the cost. The
color distance of two pixels is measured in'the CIELab color space due to it is more
perceptually uniform. As the distance between two points in color space increases, it is
reasonable to assume that the similarity is decreased for perceptual stimuli. Especially,
Euclidean distance correlates strongly with human color discrimination performance.

Therefore, the perceptual difference between two colors is represented as
D(cpcqg) =1—exp (— AC%). (3.2)

The strength of aggregating by color similarity is defined as

Acpq

fe(Bepg) = exp (—=22). (33)

In the same way, the strength of aggregating by proximity is defined as
12

fo(Bspq) = exp (_ Asyﬂ) . (3.4)
According to the (3.3)(3.4), the final weight for aggregating can be rewritten as

w(p,q) =exp <— (Acﬂ + m)) . (3.5)

Ye Ys
The final weight is the combination of color weight and proximity weight. Hence the

cost aggregation can be rewritten as

quNp,ﬁdeNﬁd o, QwPa,qa)e(q, qq)
quNp,ﬁdeNﬁd w(P, Q)wPq, qq)

E(p,pa) = (3.6)

where p and q are the corresponding pixels in the reference image, and p,; and g, are
the corresponding pixels in the target image with disparity value d. e(q, g;) represents
the matching cost computed by using the’pixels.of g.and g;. When using the truncated

AD (absolute difference), it can-be‘expressed as

e(q,qd>=mm{ > |11<q)—12(qd>|.T}, 37)

ce{R,G,B}

where I; and I, are the reference image and target image respectively. The adaptive
support weight gives a quality result on both low texture and border area; the occluded

area can be refined by left-right consistent check.

3.5. Real-time Implementations

The real-time stereo is essential part for automatic mobile, robot, or any other
tracking system. The issues of implementing the real-time systems are the computing
complexity, memory size, and bandwidth. Currently, the implementations can be

categorized as four types: general purpose process, graphic processing unit (GPU),

13

digital signal processor (DSP), and application-specific integrated circuit (ASIC).

3.5.1. General Purpose Processor

With the state-of-art processor, some local approach can be implemented to
compute the disparity image in real-time. These implementations [33] cannot give a
quality result since they are often simple approach. For a more robust and fast
implementation of effective aggregation algorithm [34], it can achieve only 18.9
million disparities per second (MDS), the speed is still far from real-time computing.
As for the global approach, the complexity of graph-cut and belief propagation is much
higher than local approach. These methods often take several minutes to compute one
disparity image. However, a recent implementation [35] shows that dynamic

programming can be implemented to«¢ompute a:good disparity result in real-time.

3.5.2. Graphic Processing Unit

Recently, the configurable graphic hardware 'gives another solution for parallel
computing. The programmer can write CUDA (Compute Unified Device Architecture)
code, developed by NVIDIA, to accelerate the software. Currently, the solution of using
GPU provides extremely high bandwidth from 6.4GB/sec to 128GB/sec. The number
of stream processors is up to 256. (The details of using the GPU can refer to GPGPU
http://www.gpgpu.org/). With the computing power of GPU and CPU, many algorithms
generating high quality result [34] [36] [37] [38] can be implemented in real-time. The

programmable graphics hardware is suitable for different stereo algorithms.

3.5.3. Digital Signal Processing Processor

Although the real-time can be implemented by GPU and CPU, the cost is too

expensive for embedded applications. For a low cost embedded system, the Digital

14

Signal Processor (DSP) would be more cost efficient. The DSP provides a SIMD and
VLIW instructions, which is very useful for parallel computing for local stereo
matching. Some real-time local approach is implemented by using DSP [39][40].
Therefore, the computing power of DSP is limited, and this constraint the development

for more accurate disparity estimation algorithms.

3.5.4. Application-Specific Integrated Circuit

Comparing to the GPU, the application-specific integrated circuit (ASIC) has
much more flexibility to design the processing element for the algorithms. The
matching and data path can be fully customized and achieve high utilization. A simple
absolute-difference with variable window size is implemented by hariyama [41], which
can achieve high utilization and low. However, the bandwidth issue and internal
memory size becomes a bottlengck of designing the hardware. It is a challenge to deal
with the intermediate result forithe algorithms which requires many times of iteration.
The bandwidth requirement of transferring the intérmediate result is extremely high
and cannot meet the real-time constraint. Besides, the chip area will get large if the
intermediate result is stored in the internal memory. The trade-off of the bandwidth and
internal memory size becomes the important issue. To solve this problem, the concept
of hierarchical approach is proposed. The hierarchical belief propagation (HBP)
[42][43] reduces the number of aggregation iteration, and this relaxes the problem of
high external bandwidth. Nevertheless, the FPGA implementation of HBP still requires
huge block ram. Therefore, although the ASIC design can give a dedicated solution, it
is still a challenge to design a low cost real-time architecture with iteratively cost

aggregated and disparity optimized algorithms.

15

3.6. Summary

Considering the real-time problem, the general purpose processor and DSP has its
limitation for the more complexity matching algorithms. The acceleration of using
GPU has high potential for implementing high complex stereo algorithms since it has
extremely high bandwidth and large numbers of streaming processors. Although the
GPU solution may be implemented in the embedded system, it still cost expensive. For
a low cost embedded system, the DSP or ASIC may be a more proper candidate.
However, the issue of dealing with the intermediate result is big challenge for ASIC
solution due to the limitation of the external bandwidth. This results in the high internal

memory cost for the ASIC solution.

16

4. Proposed Mini-Census Adaptive Support Weight

4.1. Introduction

In this chapter, we will introduce the proposed algorithm which is modified from
the Adaptive Support Weight [15] introduced in 3.4. We simplified the algorithm and
make it applicable for hardware design. Besides, we also improve its capability of
dealing with the lighting effect by applying census transform [9]. There are three major
challenges of designing the hardware for real-time Adaptive Support Weight. The
challenges are the adaptive weight generating function, iteratively cost aggregation and
data reuse. We will discuss how we solved the problem of the previous two problems in

the proposed algorithm, and discuss the;data reuse problem in Chap 5.

4.2. The Flow of the Proposed Algorithm

Weight
n) Generating

Left Image l
\4 \4
B

-G Vertical Horizontal Winner-Takes-All
Transf —> —» Ta - >
. ransform & —J> S Aggregation Cost Aggregation (WTA) [
Matching *) ‘I

Right Image Depth

Fig. 4-1 The Flow of the Proposed Algorithm

Fig. 4-1 shows the flow of the proposed algorithm. The proposed algorithm
consists of four major steps. First, the mini-census matching cost computation performs
mini-census transform on the captured left and right images and computes the initial
matching cost of each pixel. The second step is the weight generation which generates
the weight coefficients needed in the cost aggregation step. Once the initial matching
cost and weight coefficients are available, the matching cost will be aggregate through

17

a two-pass cost aggregation step. Finally, after the cost aggregation, the disparity map
can be obtained by finding the best disparity with the minimum matching cost through a

Winner-Takes-All method.

4.3. Mini-Census

The census transform compares the intensity of each pixel within a support
window with the center pixel. If a pixel’s intensity is larger than the center pixel’s
intensity, it is given the label 0, otherwise the label 1. The comparison is done in
raster-scan order. After the comparison of all pixels within the support window, a
binary bitstream is obtained which characterizes the pixel relation between the center
pixel and its surrounding pixels. Since the bitstream represents relative information, the
census transform is therefore much less sensitive'to image bias and gain. In addition,
the census transform preserves-the.depth boundary m disparity maps better than the

traditional SAD does.

34 3 13 Census 0 1 1 4 68 17 Census 1 0 1
5 (15|23| Transform |1 |[X |0 61|51| 4 | Transform | |X| 1
2 154(30 1100 2313159 1{1]0
Current Block bitstream 1 Candidate Block bitstream 2

01110100 10101110
L |

Hamming Distance =5

Fig. 4-2 The census transform and matching

To compute the matching cost, the bitstreams b; of a pixel in current view and the bitstream b, of the
candidate corresponding pixel in the other view are obtained first, and then the hamming distance

between the two bitstreams is computed and taken as the matching cost. The cost can be defined as

Cost(x,y,d) = H(b,,b,) (4.1)

18

,where H is the hamming distance function. We would refer the hamming distance as
the census cost hereon for brevity. Fig. 4-2 illustrates an example of the census
transform with a 3x3 support window. The bitstreams of the current pixel position and
the candidate corresponding pixel are 01110100 and 10101110. The hamming distance
between the bitstreams is 5; hence, the census cost is 5.

The Mini-Census is a simplified census transform. Instead of a block of pixels,
only 6 significant pixels will be transformed into the bitstream. The Mini-Census can
help reducing the internal memory size of storing the matching cost with minor

matching performance loss.

4.4. Weight Generation and Approximation

The adaptive weight generation 1s based on the color distance and proximity. The
proximity weight is fixed for a eonstant size of support window, but the color distance
term is not fixed as the support-aggregation.-window-changes position. In the original
Adaptive Support Weight (ADSW), the color distance weight is generated from the
CIE-Lab color space, which uses floating-point numbers to represent a color. However,
using floating-point numbers is not friendly for hardware design. Besides, the
square-root and exponential function used in color distance computation and color
weight generation are not hardware friendly either. To improve the algorithm to be
more hardware implementation friendly, we adopted integer-valued color space,
approximated color distance, and approximated exponential function. Moreover, we
also removed the proximity weight to further reduce computational complexity. The

performance of these improvements is explained in the following subsections.

19

4.4.1. The Performance with Different Color Space

The color space has great impact on the performance of many image processing
algorithms. We evaluate the impact of using different color spaces (YUV, RGB, and
CIE-Lab) on the performance of stereo matching. The best parameters for different size
of support aggregation are different. Hence, to eliminate the effect of different

parameter, we simulate 100 samples for each size of the window to get the best

parameter.
Non-Occluded ALL
18
13 —RGB \ ——RGB
—_Y 16 —
11 YUV \ YUV
= \ — LAB . ——LAB
L 9]
5 \ 512
p o < \
e’ 210 —~
= = _/
5 —] Ing - I
3 6 r
0 10 20 30 40 50 .60 70~ - 40 10 20 30 40 50 60 70
Support Window Size : r, ; | Support Window Size
Discontinuity . | - Average Rank
30 40
\ — RGB s
26 Y | 35
\ YUV
22 \ — LAB | 30
X X
8 18 — 8 25
(3] (T
P V o«
S 14 _,lA‘ S 20
s s
10 15
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Support Window Size Support Window Size

Fig. 4-3 The performance comparison with different color space

From the Fig. 4-3, the performance of using color spaces with three color
components (YUV, RGB, CIE-Lab) is almost the same. The color space with only
luminance component has the worst performance since it lack the other two dimensions
of the color space. It can be seen that for three-component color spaces, the weight

generated from using different color spaces does not have significant impact on the

20

stereo matching performance. Hence, this implies that we can choose to use any
three-component color space that is suitable for the design. Since YUV and RGB can be
represented using three unsigned integers instead of CIE-Lab’s three floating-point
numbers, YUV and RGB are more suitable for hardware design. We choose to use
YUV in our algorithm because it has been reported to slightly outperform RGB in

stereo matching.

4.4.2. The Color Distance

In ADSW, the color distance is defined as the Euclidean distance in the color space,

which is written as follow

Dcolor = \/(YI - YZ)Z + (Ul - Uz)z + (Vl - Vz)z- (4-2)

The square root of the Euclidean distance is'a nonlinear operator which is difficult
for the hardware design. On theiother hand, the Manhattan distance is more hardware

efficiency. The formula is written“as follow

Deotor = Yy = Yol + Uy — Up| + |V, = V5. (4.3)

TABLE I compares the performance of using the Euclidean and Manhattan color
distance. The result shows that the Manhattan is distance is little better than Euclidean

distance for different error tolerance and different test sequences.

TABLE 4-1 the result of approximated color distance

Error Error Rate %

Method | roerance rank TSUA*\(UB VENUS TEDDY CONES
Euclidean 12.2 7.95 21.4 18.0 12.2
Manhattan 0 11.1 7.22 21.7 16.8 11.1
Euclidean 173 3.47 0.91 143 11.2
Manhattan : 16.3 3.08 0.59 14.0 10.1

21

4.4.3. The Effect of Proximity Weight

Proximity Weighting reduces the effect of pixels farther from the window center
and has been applied to improve the quality of the matching performance. To determine
the necessity of applying the proximity weighting, we compare the performance of
using and not using proximity weighting. Fig. 4-4 shows the error rate with different
support window size. In Fig. 4-4(a), the error rate increased when the window size is
too small. The error rate also increases as the window size increases over 27x27.
However, the error rate after applying the proximity weighting does not increase while
enlarging the window size. This is shown in Fig. 4-4(b). It is the proximity weight that

limits the influence of the farther pixels.

With Spatial Weighting Without Spatial Weighting
40 25
35
20 — nonocc
30
—all
X X 15 disc
2 2 ~ 2
1] T —rank
LT o 10
u) —
5 5 rms
= 10 o
w w 5
5
0 T 0
"ORBEBRESITBERR "ARBEBREITIRABIAR
HHHHHHHHHHHH
Support Window Size Support Window Size

Fig. 4-4 The Peroformance Analsysi of Proximity Weighting

4.4.4. Quantized Exponential Function

The quantized exponential function is the simplification of the original
exponential weight generating function and it also helps to reduce the complexity of the
aggregation process. The quantized exponential function is a scaled and quantized
version of the original function. The quantized exponential function be represented as

below.

22

(4.4)

Weolor = quantize

_ De¢otor .
e Y X scaling factor

, the result of the quantized exponential function is acquired by first multiplying the
value of the original exponential function with a scaling factor 2", and then quantizing it
to perserve only a few MSB bits. The scaling maps the floating number to integer
number, which is more hardware friendly. The preserving bits help to reduce the
complexity of the cost aggregation. In original cost aggregation step, the process is a
sum-of-product of the weight vector and cost vector. If the weight is coded with
one-heart encoding, the product operator can be simplified to shift operator, which is
much more hardware-efficiency. Fig. 4-5 shows the weight from the original and
quantized exponential function with different number of preserved bit. The output of
the quantized exponential function isthultiplied by 64 and the quantized. Fig. 4-5¢ and
Fig. 4-5d are the output of the‘rquantized exi)oneﬁtial function with 2 and 1 MSB

preserved respectively.

Original ‘ *" x64, Quantized
12 70
1 60
50

038 \ " \
0.6 \

\ 30
0.4 \

\ 20 \C

0.2 10
0 .¥ = 1 0 \L

0 20 40 60 80 10 20 o 0 0

x64, Quantized, P 2-bits x64, Quantize, P 1-bits

70

80

60

60 50
40 40
_ 30
20
“& 20
10
20 40 60 80 N

-20 0

0 20 40 60 80

Fig. 4-5 The weight from quantized exponential function

23

20 14

12

10

== NONOCC
8 T ——a—a—a—a | =
DISC

Average Error Rate
s
Average Error Rate

Scaling Factor Preserved MSB Bits

Fig. 4-6 The performance with quantized exponential function

Fig. 4-6 shows the performance of using the quantized exponential function with
different scaling factors and number of preserved MSBs. Fig. 4-6a shows that the
average error rate is decreasing if the scaling factor is smaller than 32. If the scaling
factor is larger than 64, there is no conspicuous difference with the error rate. Hence,
with acceptable quality, the smallést scaling féctor can be selected as 64. Fig. 4-6b
shows that there is no conspicuous difference of all.the preserved bits. Therefore, we set

the scaling factor as 64 and preserves.only-one-MSB.

4.4.5. The Final Weight Table

After the discussion in 4.1, the weight generating function can be simplified into a
mapping table with the YUV color space, discard of the proximity weight, quantized
exponential function and Manhattan distance. The table is listed in TABLE 4-2, 4-3.
The difference of these two tables is the preserving MSB bits of the quantized
exponential function. According to the Fig. 4-6b, TABLE 4-3 would be is more proper
for hardware design since the weights of which are all the power of two. As a result, the

weight generating Equation (4.4) (4.2) becomes the Equation (4.5) (4.6).

Weotor (%, y,1,J) = Table[Doior (x, y, i:j)] (4.5)

24

Deotor (69,1,)) = Yy = Yaeriyep | + Ucey) = Uriyp| + Vi) = Virriye] (4-6)
TABLE 4-2 The weight table of preserving 2 MSB bits
Distance | Weight || Distance | Weight Distance | Weight Distance | Weight

0 64 8 20 16 6 24 2
1 55 9 17 17 5 25 1
2 48 10 12 18 4 26 1
3 40 11 12 19 4 27 1
4 36 12 10 20 3 28 |
5 24 13 10 21 3 29 1
6 24 14 8 22 2

7 20 15 6 23 2

TABLE 4-3 The weight table of preserving 1 MSB bit
Distance | Weight Distance | Weight! || "Distance | Weight Distance | Weight

0 64 8 16 16 4 24 2
1 32 9 16 17 4 25 1
2 32 10 8 18 4 26 1
3 32 11 8 19 4 27 1
4 32 12 8 20 2 28 1
5 16 13 8 21 2 29 1
6 16 14 8 22 2

7 16 15 4 23 2

4.5. Aggregation Iteration

The aggregation based method refines the depth result by iteratively aggregating

the matching cost. The cost aggregation formula is defined as

Costys(ty,d) =)

Z COStt(x +iL,y+), d) : wcolor(xty: i'j)

i=—1 j=-1

4.7)

,where Cost; and Cost+1 is the aggregated cost at iteration t and t+1, and r are the width

and height of the aggregation window. The iterative aggregation poses a challenge for

25

real-time hardware design due to the inter-iteration dependence which limits the

parallelism and the huge memory storage and wide bandwidth requirement. Hence, the

reduction of aggregation iterations is important issue.

Non-Occluded

Error Rate %

All

Error Rate %

el [140-50

~

0 30-40

£120-30

010-20

0o-10

CEERT
41 m A [140-50 41
37 00130-40 37
33) U 33
N 020-30 XN
wm 29 wvy 29
225 010-20 =2 25
|2 Amsz o100 S 2
£ 17 R= ¥
; 15 1] ; 15
g 13 n %’ 13
o 11 = Q 11 |
o = Q
S 9 S5 9
wv 7 - (%) 7
5 Ras 5
1 4 7 10 13 16 19 22 25 28 31 34 37 1

Aggregation Iteration

Discontinuities

Error Rate %

4

7 10 13 16 19 22 25 28 31 34 37

Aggregation Iteration

RANK

Error Rate %

.

:-_.L_

T

[60-80

— 14060

" 02040

- Do20

0y

Support Window Size
|

i

1 4 7 10 13 16 19 22 25 28 31

Fig. 4-7 The error rate with the aggregation iteration and window size

T

J

Aggregation Iteration

7 10 13 16 19 22 25 28 31 34 37

Aggregation Iteration

The best number of cost aggregation iteration is based on the window size and

aggregation algorithm. Fig. 4-7 shows the error rate distribution over the aggregation

iteration and window size plane based on the ADSW. From the figure, the best iteration

number with the lowest error rate is related to the support window size. The cost

aggregation with the smaller window size requires more iterations to achieve lower

error rate. On the opposite, the aggregation with larger window size requires fewer

iterations. Moreover, the area with lowest error rate exists only with larger window size.

Hence, the performance with larger window size is better than smaller size.

26

Non-Occluded All

w
wv
w
v

w
o

w
o

N
wv
L

Minimum lteration
N
o
/
Minimum lteration
N
o

(2]
|

N
wv
N -
| — |

i
"
=
(%]

N
o
=
o

(O]

0 III AN REER 0
11 15 19 23 27 31 35 39 43 47 51 55 59 11 15 19 23 27 31 35 39 43 47 51 55 59
Support Window Size Support Window Size
Discontinuities RANK
8 20
18
c 7 \ c \
i} 0216
26 =l
© \ C14
(] [J]
g5 g, 1\
E I\ E 12 \
S 4 S 10
.E .E
£ 3 £
= \I\ =6,
2 HITTHH SHI
: ses T
0 ! ! ! !"""“”Im'o L TNl L
11 15 19 23 27 31 35 39 43 47 51 55 59 11 1_5 19 23 27 31 35 39 43 47 51 55 59
Support Window Sizes e . Support Window Size

Fig. 4-8 the minimum iteration wi'rth‘ dii‘ferent size of support window

Fig. 4-8 shows the minimum iteration to achieve the lowest error rate. The trend of
the curve is also plotted on the figure. For the all evaluation regions and the rank, the
minimum number of iteration is reduced while the window size increased. Note that if
the window size is larger than 39, only one aggregation iteration is required to achieve
the lowest error rate. However, it is tough for hardware design to adopt such a larger
window size and more than one iteration. Hence, the design must trade some
performance with this. As a result, the adopted window size and the number of
aggregation iteration are 31 pixels and 1 respectively for this design. The performance

is acceptable from Fig. 4-7 and Fig. 4-8.

27

4.6. Two-Pass Cost Aggregation Approximation

The window based cost aggregation sums up the cost over the support window

with related weight. The process requires high computational resources. Fortunately,

the process of window based aggregation is separable [44]. The original formula is

written as equation (4.7). The separate aggregation is written as equation (4.8) and

(4.9). The first aggregation is processed with vertical direction and the second

aggregation is with the horizontal direction. The separate cost aggregation can reduce

the computation complexity. For instance, if the window size is (r+1) * (r+1) and the

disparity range is D. The original complexity is proportional to O(r*D). For the separate

aggregation, the complexity is proportional to O(2rD). Besides, this approximation also

helps reducing the internal bandwidth ‘of the hatdware design.

r
T(x,y,d) = Z Cost(x,y +j,d) - 0(x,y,0,)

(4.8)
j=-r
r
Cost (x,y,d) = Z T(x, +iy,d) o(x,y,1,0) (4.9)
4.7. Overall Simulation Result
TABLE 4-4 the effect of different techniques
Method ET Error Rate % _Exec.
TSUKUBA | VENUS | TEDDY | CONES | Time(sec)
Original 1.85 1.19 13.3 9.79 95.65
+MC+2P 3.47 0.91 14.3 11.2 4.75
+MC+2P+ Manhattan 0 3.08 0.59 14 10.1 3.12
+MC+2P+ Manhattan +Truc(64,2) 3.03 0.61 14 10.1 2.52
+MC+2P+ Manhattan+Truc(64,1) 3.06 0.66 13.9 10.1 1.84
Original 18.8 8.40 23.9 19.7 95.65
+MC+2P 12.2 7.95 21.4 18.0 4.75
+MC+2P+ Manhattan 1 11.1 7.22 21.7 16.8 3.12
+MC+2P +Manhattan +Truc(64,2) 11.0 7.22 21.6 16.8 2.52
+MC+2P +Manhattan +Truc(64,1) 11.2 7.17 214 16.7 1.84

28

5. Data Reuse Analysis of Hardware Implementation

5.1. Overview

External memory bandwidth and internal memory size have been major
bottlenecks in designing VLSI architecture for real-time stereo matching hardware
because of large amount of pixel data and disparity range. To address these bottlenecks,
this chapter explores the impact of data reuse on disparity-order and pixel-order with
the partial column reuse (PCR) and vertically expanded row reuse (VERR) techniques
we proposed. The analysis result suggests that the disparity-order reuse with both PCR
and VERR techniques is suitable for low memory cost and low external bandwidth
design, whereas the pixel-order reuse with: both techniques is more suitable for low
computation resource requiremeﬁt. Howev«'s‘r,' Vthe: Timplementation of disparity-order

requires high internal bandwidth-.;Hen‘ce, our:'f:lnal imf;lementation adopted a hybrid of

both the disparity-order and pixel-order reuse with VERR technique.

5.2. Architecture Overview

Buffer
T T T T T \N|\7" "~~~ ~—~—~~"""7"™=7""7""|~—"7~ 7777777 \
[Ll [
| v v || |
| Left Left | L) Weight Disparity |
: Image | | Image | | : 4 Generating Selection
O
| : | Qo :
| Matchi = - |
: atching | : S Aggregation Aggregated | |
| Engine | | g Engine Cost |
! | |
| L Aggregation, WTA |

Fig. 5-1 the overview of hardware architecture

29

On implementing aggregation based method under real-time constraint, there are
many solutions to the data reuse issue. We will use the hardware architecture shown in
Fig. 5-1 to explain different solutions.

In the matching cost computation, if data reused along the disparity axis is
preferred, the computation of all the matching costs of a pixel is computed before
jumping to the next pixel. This allows the data within the matching cost support
window to be reused. However, the cost aggregation sums the initial matching costs of
the same disparity together, which would prefer the initial costs to be output along the
spatial X-Y plane than the disparity axis. As a result, to compute the aggregated cost
within an aggregation window, all the matching costs at each disparity must be stored
before the aggregation can be performed. These initial matching costs form a cuboid in
the disparity-spatial D-X-Y space..The volume of this cube represents the memory size
needed to store the initial costs.“One way to reduce the storage requirement is to avoid
the conflict in data reuse direction. For.instance, change the reuse direction in the
matching cost computation to the X<Y plane so'that it meets the processing direction in
the cost aggregation. Although doing so removes the conflict between the matching
cost computation and the cost aggregation, the conflict between the cost aggregation
and the disparity computation exists. To determine the disparity of a pixel, the disparity
computation needs to have all the aggregated matching costs at each disparity for that
pixel. However, the aggregated costs are generated in the X-Y plane direction, which is
different from the direction preferred by the disparity computation. Consequently,
additional storage would be required to store the aggregated costs. These conflicts in
the data generation and reuse directions play a key role in determining the storage
requirement. Therefore, it is important to derive the best data reuse strategy which

resolves these conflicts so that the storage requirement can be minimized.

30

5.3. Matching Cost Computation Reuse

The data reuse in the matching cost computation can be categorized into two types
according to the reuse order. The details of these data reuse method are explained

below.

5.3.1. Disparity-Order Reuse

Data Reuse Region
X

\f
X

S—

Matchin
1y Leftimage Y Right Image

(a) Matching Cost Generating in Disparity Direction

Data Reuse Region
» X
AN

7. %

Y
X

hin

Wy Leftimage 1Y Right Image

(b) Matching Cost Generatingin XY Plane

Fig. 5-2 the two data reuse directions with different size of support window

The disparity-order reuse reuses the data in the matching window of different
disparities. Fig. 5-2(a) illustrates how disparity-order reuse works. When we compute
the disparity of a pixel in the left image, the matching window in the right image would
slide leftward within the disparity range. In other words, the matching cost of different
disparities for a pixel in the left image is first computed. Then the matching cost
computation of the next pixel in the left image is performed. With the disparity-order
reuse, the overlapped data within the matching window in the right image shown in Fig.

5-2(a) can be reused to compute the matching cost at different disparities. As a result, if

31

the pixel data are stored in external memory, there is no need for repeating accesses of
the overlapped pixels. Hence, the bandwidth requirement to external memory can be
reduced. However, the order of matching cost generation is different from the order of
the matching cost consumption in the following cost aggregation step. This would

result in additional memory storage requirement.

5.3.2. Pixel-Order Reuse

Comparing to the disparity-order reuse, the pixel-order reuse reuses the data
overlapped by the neighboring matching window in both left and right images. Fig.
5-2(b) illustrates the detail of the pixel-order reuse. The matching cost of the same
disparity for each pixel is first computed. Then the cost of the next disparity for each
pixel is computed. As a result, the matching Window in the left and the right images
both slides synchronously with the same disparity.offset. With the pixel-order reuse, the
overlapped data within the matching windows shown in Fig. 5-2(b) can be reused.
Therefore, the pixel-order reusescan also reduce the external memory bandwidth
requirement. In contrast to the disparity-order reuse, the order of matching cost
generation is the same as the order of the cost consumed by the following cost
aggregation step. Hence, the buffer size between the two steps can be reduced.
However, the data reuse can only be exploited during the cost computation of one
single disparity. There is no data reuse between the computations of different disparities.
Once all the computation of the previous disparity has been completed for all the pixels
in the whole image, pixel data have to be read from the external memory again. Unless
all the previously read pixel data could be stored within the internal memory, otherwise

repeating external memory accesses are inevitable.

32

5.4. Cost Aggregation Data Reuse

In addition to the data reuse in the matching cost computation, there are two data
reuse methods in the cost aggregation. The details of these two data reuse methods are

explained as follows.

5.4.1. Partial Column Reuse (PCR)

The partial column reuse method reduces the local memory size in the cost
aggregation by distributing the computation of aggregated cost to each column. Instead
of computing the aggregated cost after all the initial costs in an aggregation window are
available, the PCR computes the partial sum of a column after the initial costs of this
column are available. As a result, the size of.the local memory can be reduced from a
window to only one column. Moreover,,the pattial sSum of each column can contribute
to the aggregated cost of multiple overlapped windows. Storing partial column cost
requires less local memory size than storing-all-the initial matching costs in a column.

Fig. 5-3 illustrates an example of the PCR with a 5x5 aggregation window size. An
aggregated cost requires the partial sum of five initial cost columns. With the PCR, the
current partial column sum in Fig. 3 can be reused to contribute to the aggregated cost

of windows 1 to 5.

° — o |« o
{ [{
{ {
o {
@ @ (]
Aggregation Windows Windr{W 1 EWindow 2
oV ' °
[] o [3
[J ® [
[] ® [3
([) ® ([J
Window 3 Window 4 Window 5

Fig. 5-3 The partial column reuse (PCR) in 5x5 aggregation window
33

5.4.2. Vertically Expanded Row Reuse (VERR)

The vertically expanded row reuse reduces the bandwidth requirement to the cost
aggregation engine by deliberately access additional rows of initial costs. If there’s no
VERR, when the aggregation finishes processing the current row and jumps to the next
row, the overlapped data between the windows at the previous row and the current row
have to be read from the cost computation engine again. Fig. 4 shows an example of the
situation that the data are overlapped. To avoid accessing the already accessed costs, the
VERR vertically expand the rows of initial costs to be read so that they can be reused to

compute multiple rows of aggregated cost.

Time

Y

Original VERR

Vertical Postion

|:| Non-Overlapped Region Overlapped Region

Y

Fig. 5-4 Vertically Expanded row reuse(VERR)

Fig. 5-4 shows how VERR reduces redundant access of the overlapped data.
Without the VERR, most of the data in the windows are overlapped for many times.
Consequently, these overlapped data are read repeatedly multiple times. In contrast,
with the VERR, the portion of overlapped data becomes much smaller than the case
without the VERR. Moreover, the overlapped data in the VERR case only overlap once.
This implies that with the VERR, the repeating accesses of the overlapped data would

be fewer than the case without the VERR.

34

Fig. 5-5 plots the relationship between the average access count of an initial
matching cost and the value Kk given an aggregation window size of 25x25. The value k
represents the number of expanded rows. It can be observed that the average access
count decreases as K increases. This suggests that with more rows expanded, less
bandwidth is needed. However, increasing the value of k will also increase the local

memory size and computing resource requirement.

Access Count VS Expanded Pixels
30

25
20

15 \
10 \

Averange Access Count

0 5 10 15 20 25

Expanded Pixels

Fig. 5-5 The average access-count versus the:number of expanded pixel
5.5. Comparison

TABLE I compares the estimated memory size and bandwidth requirement of the
disparity-order and pixel-order reuse methods. The target disparity image is 352x288
pixels large with 64 disparity levels. The real-time constraint is 30 fps. The architecture
is assumed to operate at 100MHz clock with a 32-bit data port to the external memory.
The size of support window in the matching cost computation and cost aggregation are

9x9 and 25x25 pixels respectively.

5.6. Summary

This chapter explores the impact of disparity-order and pixel-order data reuse in

the matching cost computation and proposed the partial column reuse (PCR) and

35

vertically expanded row reuse (VERR) techniques for the cost aggregation. The
analysis and comparison conclude that the architecture using the disparity-order reuse
with both the PCR and VERR techniques is suitable for the design of low memory cost
with high computation resource. On the other hand, the architecture using pixel-order
reuse with VERR technique requires less computation resource, but needs large internal

memory in storing the aggregated cost.

TABLE 5-1 the result of approximated color distance

Disparity-Order Pixel-Order

Section Property +PCR

Original | +PCR | +VERR | ,UGR. | Original | +PCR | +VERR | FCR

+VERR

Internal Memory
Step 1 Size (KBytes) 2.4 2.4 2.6 2.6 22 22 2.4 2.4

Bandwidth
Requirement from
External DRAM
(MBytes/sec)

33 32 0.9 0.9 207.9 207.9 10.1 10.1

Internal Memory

Size (KBytes) 40.0 1.6 44.8 1.8 0.6 0 1.8 0.1

Step 2

Bandwidth
Requirement from
Cost Computation 158.7 158.7 443 443 158.7 158.7 9.2 9.2
Engine
(MBytes/sec)

Internal Memory

Step 3 Size (KBytes)

0.1 0.1 0.1 0.1 228.1 0.0 228.1 228.1

Internal Memory
Size (KBytes) 425 477 47.6 45 230.9 2.2 232.3 230.5

Bandwidth

Requirement from
Total e 33 32 0.9 0.9 207.9 207.9 10.1 10.1

(MBytes/sec)

Real-time

Constraint (30 fps) Meet Meet Meet Meet Fail Fail Meet Meet

36

6. Hardware Implementation

6.1. Overview

Overview of MCADSW

Arbitration Memory Controller

Memory Controller

CENSUSL CENSUSR WEIGHTGEN

IMGLY IMGRY IMGLY IMGLU IMGLV

v

CENLBUF CENRBUF || WEIGHTBUF

CENLMEM CENRMEM 3 VWBUF m

B ':'ﬂ

- W
*

_______ . LA
v

: WTA DEPTHFIFO
I
I

A .
COST Aggregation, Winner-Takes-All i DEPTH

Fig. 6-1 the overview of the hardware design

The architecture of the design is shown in Fig. 6-1. The design of the MCADSW
contains five major parts, which are the arbitration, memory controller, census
transform, weight generation, and the cost aggregation. The memory controller
communicates with the bus and the module granted by the arbiter. For the inside of each
part, the blue block is the combinational logic and control of the finite-state-machine
(FSM). The red block is the memory buffer used by each part. The detail will be

discussed in the rest of this chapter.
37

6.2. Functional Block

This chapter introduces the details of the hardware implementation, including the

input and output control, census transform, weight generating, aggregation, and

winner-takes-all.

6.2.1. Mini-Census Transform

Update Control

BUFFY

BANKO

Census
>

Output |
Control

BUFFY
BANK1

Input Image Buffer Mini-Census Transform

Fig. 6-2 the module of census transform for leftiandright image

Fig. 6-2 shows the architecture-of the-mini-census transform. This architecture
contains three blocks: input image buffer,;update control and mini-census transform.
The mini-census transform compares 7 pixels distributed within 5x5 window to
calculate one census result. The generation of one census result requires multiple loads
from the input image data. Therefore, to reduce the times of data load from the input
image, the input is buffered and reused. The input controller stores the input image in
the register first. After one word of the data is stored in the register, it will be transferred
to the memory buffer. The output control reads the data from the buffer to the register
and census block. The register stores the data of center pixels, and the other pixels are
transferred to census block. The census block compares the pixels to the center pixels,
and then it generates the comparison result. This update control maintains the content

of the memory buffer. The update control contains a table storing the validation for each

38

column of the memory buffer. The access of the memory buffer from input and output
control is prohibited without checking the status of the validation table. This favors the

synchronization between the input and output control.

6.2.2. Weight Generation

$ Update Control <
”””””””””””””” 1 ‘r""""‘ﬁ"*""i
BUFFY i \L | Y i
BANKO LS T ! Output)
Image Y 'y 3 ! PUt L | 5 Weight
U MR- it Control !
BANK1 ! ’ ! ? 1
| | !
| ‘ " 1
BUFFU I l !
BANKO L I BUFFYUV 1
I _ I [« |
Image U = i |
BUFFU =Pl !
BANK1 ! \ v }
l l » w
! i REG |
Ll |
BUFFV i N i 1
BANKO X ! |
Image V—> P2 b i . |
BUFFV =) 1 Ly Weight |
BANK1 ! i
| ‘ Table !
) I
,,,,,,,,,,,,,,,,,,,,,,,,,,,) |
Inputimage Buffer Weight Generation

Fig. 6-3 the module of weight generation of vertical and horizontal weights

Fig. 6-3 shows the architecture of the weight generation. The architecture is
similar to the architecture of census transform discussed in 6.2.1. However, there are
two differences. The first difference is that the input control requires three dimension of
color space. Therefore, there should be three input controls and three input buffers. The
second difference is that there is additional buffer for output control, which is used for
horizontal weight generation. The input control is similar to the one in census transform,
only the address control and data size is slight different. After the input buffer is ready,
the weight generation block starts to calculate the vertical weight and horizontal weight.

The weight generation firstly loads the image data from the input image buffer to

39

generate the vertical weight by looking up the weight table. The input Y, U, and V

images are also stored in the BUFFYUYV during the generation of vertical weight. After

the vertical weight is generated, the horizontal weight is generated by reading the buffer

BUFFYUWV.

6.2.3. Aggregation and Winner-Takes-All

w7
HCost0~30
B Cost0~30

CSL0~30
CSR0~30

VWO
HCost0~30
CSL0~30 Cost0~30 E
CSR0~30.
VW1
HCost0~30
CSL0-30 Cost0~30 E
CSR0~30.
VW2
HCost0~30
CSL0~30 Cost0~30 E
CSR0~30
Vw3
HCost0~30
CSLO~30 Cost0~30 E
CSR0~30.
Vw4
HCost0~30,
CSL0~30 Cost0~30 ﬁ
CSR0~30 -

¥344N9 ONOd SNId

HWO
VCost0~30
HW1
VCost0~30

VCost0~30 ﬁ
o

Winner-Takes-All

R

Disparity Reg

Disparity.

HCost0~30

HCost0~30

0st0~30

(a) Aggregation and Winner-Takes-All

(b) Processing Element of Cost Aggregation

Fig. 6-4 the module of cost aggregation and its-processing element

The Fig. 6-4(a) shows the architecture details of the aggregation and

winner-takes-all(WTA). At first, the hamming distance is calculated by the left and

right census results, which are CSL and CSR on the figure. The 0~30 hamming

distances or called initial cost are sent to the processing element. And then the vertical

aggregated cost is calculated by the summation of the shifted initial costs. Fig. 6-4(b)

shows the detail of the PE. The initial costs are firstly shifted by the associated weights,

and then they are summed together. The calculated vertical aggregated cost will be

stored in a ping-pong buffer. The second pass aggregation reads the vertical aggregated

cost from the ping-pong buffer. The same, the horizontal aggregated cost is shifted and

summed. The final cost will be sent to the winner-takes-all block, which compares the

40

cost with the minimal cost. If the aggregated cost is smaller than the minimum cost, it
will replace the minimum cost, and become the disparity candidate, which is stored in
the disparity register. The final depth is the shifted disparity normalized to the range of
the luminance.

Fig. 6-5 shows the detail of the ping-pong buffer in Fig. 6-4. There are 48 entries
for each of the buffer. The figure shows the status of each entry. The color of white,
light blue, deep blue and orange means that the entry is empty, being written, ready for
reading, and being read respectively. At the first, all the entries are empty, and then the
vertical aggregated cost is written into the buffer. After all the entries of the buffer 1 is
all ready, the vertical weight will be written into the buffer 2. To generate three
horizontal aggregated cost, 33 ready entries are required. Therefore, the vertical weight
will be calculated after 40 entries are .'rea(-iy. Aﬁer that three entries will be cleared

since the data are available anymore Thé speed of update and consumption of the

buffer are at balanced. Hence, the Welght—eaﬁ—be-calcu'lated continuously.

Address L, O Address

>
2

\4

Cycle

[JEmpty [l Write [l Ready [I]Read l [JEmpty [l Write [lReady [Read
v

Fig. 6-5 the ping-pong buffer of cost aggregation module

6.2.4. Input and Output Control

Fig. 6-6 shows the concept of the input and output control used by most of the
modules in this design. The control deals with the handshaking mechanism which will

be discussed in 6.3. Firstly, the state is at WAIT state. The input control waits for the

41

update of invalid column of internal memory, which will be discussed in 6.5.1. Once
the internal memory need an update, the input control sends the request signal to the
transmitter, and wait for the data at the REQUEST state. The state changes to SEND
state while receiving the data. After all, it will return to WAIT state after a transaction.
On the opposite, the output control waits for the validation of internal memory at the
WAIT state. Once is the internal memory is valid, it will send the ready signal to
receiver, and waits for the request at the READY state. It will switch to SEND state

once the request signal is received. The same, it returns to WAIT state after a

transaction.
Buffer is Empty / Buffer is Ready /
RESET Send Request Data In Valid = 0 RR Se/ndl'(ﬂ‘ Request = 0
Request Ready
Wait Buffe Wait
Buffer is\Full Data In A
Valid =1 Reqyest = 1
Finish . Finish
Transaction Receive Transaction
Not Finsh Not Finsh

Transaction Transaction

(a) FSM of Input Control (b) FSM of Output Control

Fig. 6-6 the finite-state-machine of the input and output control

6.3. Handshaking

In this design, there are three handshaking mechanisms, request-valid,
request-grant, and ready-request, which are shown in Fig. 6-7. The first request-valid is
a one to one communication between two modules. For this mechanism, the receiver
sends the request signal to transmitter, and then the transmitter sends a bunch of data
with the valid signal. The request-valid mechanism is used for transmission of a bunch

data between two modules. The second request-grant is also a one to one

42

communication mechanism. The mechanism of request-grant is that the transmitter
sends the request to receive at first, and then the receiver sends grant signal to the
transmitter. Once the transmitter receives one grant signal, it sends one data. The
difference from request-valid is that the receiver is not guaranteed that it can receive a
bunch of data continuously from the transmitter. Hence, the transmitter must wait for
the receiver. The latest one is the ready-request, which is used for many to one data
communication between several modules. The transmitters send the ready signals to the
receiver. After all the ready signals are received by receiver, the receiver sends the
request signals to the transmitters. Once any of the transmitters receives the request
signal, it sends a bunch of data continuously for certain cycles, which are 384 cycles in
this design. The usage of the ready-request is that it can be used to synchronize the data
from different input path.

In Fig. 6-1, the handshaking between different modules follows the three
handshaking mechanisms we just discussed--The handshaking mechanism between the
input image buffer and the arbiter follow the réquest-valid since the communications
between them are all one to one and there is no need for arbiter to wait for the input
image buffer. The depth FIFO to the arbiter follows the second request-grant since it
has to wait for the grant for each transmission from the arbiter. The latest ready-quest
mechanism is used between the census transform, weight generating and aggregation
modules. In the aggregation module, the input data paths are from different modules.
To the guarantee the synchronization of different input path, the ready-quest

mechanism is applied.

6.4. Arbitration

The arbitration of the system is based on the hybrid of round-robin and fixed

43

priority strategy. There are six modules sending the request to the arbiter to get grant of
using the bus. The depth FIFO has a fixed and highest priority to use the bus due to the
high penalty of suspending of the aggregation module. If the depth FIFO is full, the
aggregation module, which is the kernel of the system, will be suspended. To avoid this
suspension of kernel, the data of the depth FIFO must be written out as soon as possible.
Hence, it always has the highest priority. As for the other five image buffers follow the

round-robin strategy.

(1) Request -> Valid
CLK

DATA | % | X | XX |0]1)2]3 4[5 67 X|X |89 . b XX fx|-x
. Pefrxlelaals [efsfefo[x]x]slo] [o[o]ex]x]x]x]
(Internal) VALID _‘

121 REQ

(2) Ready -> Request

e[RO L0 0 00 000 00N
oATA G el o e o[[o] <[[[>]
READY

(Internal) REQ
many > 1 SN—r

(3) Request -> Grant

CLK
(I e
DATA
(Output)
1->1 REQ

GRANT

Fig. 6-7 the handshaking mechanism between different modules

Fig. 6-8 demonstrates the change of the priority with the time line. It can be
observed that the depth FIFO always has the highest priority under any circumstances.
For the other five buffers, the priority rotates if one of them receives the grant from the

arbiter. Take Fig. 6-8 for example, the “CENSUS IMGLY” firstly gets the grant, the

44

priority of “CENSUS IMGLY” becomes the lowest of all at the next time. After the
rotation, the next “CENSUS IMGLU” will get the highest priority of the five modules.
However, if this module does not send the request, the priority will be also rotated for
the grant of any module, except for two conditions. One is the module with the lowest

priority gets the grant. The other one is the “DEPTH FIFO” gets the grant.

Time
DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH
FIFO FIFO FIFO FIFO FIFO FIFO FIFO
- CENSUS | | CENSUS || WEIGHT | | CENSUS || CENSUS || WEIGHT | | WEIGHT
[s) IMGLY IMGRY IMGLV IMGRY IMGRY IMGLV IMGLV
T
> CENSUS | | WEIGHT | | CENSUS | | WEIGHT | | WEIGHT | | CENSUS | | CENSUS
s IMGRY IMGLY IMGLY IMGLY IMGLY IMGLY IMGLY
=
o WEIGHT | | WEIGHT | | CENSUS || WEIGHT | | WEIGHT | | CENSUS || CENSUS
IMGLY IMGLU IMGRY IMGLU IMGLU IMGRY IMGRY
§ WEIGHT | | WEIGHT || WEIGHT |-/ WEIGHT |- WEIGHT | | WEIGHT | | WEIGHT
IMGLU IMGLV IMGLY IMGLV IMGLV IMGLY IMGLY
WEIGHT | | CENSUS | | WEIGHT | | CENSUS | | CENSUS | | WEIGHT | | WEIGHT
IMGLV IMGLY IMGLU IMGLY IMGLY IMGLU IMGLU
N

Fig. 6-8 the hybrid of round-robin and fixed priority arbitration strategy

6.5. Memory

6.5.1. Memory Update Mechanism

The update mechanism is a column based cyclic buffer shown in Fig. 6-9. The
update is based on an update table which stores the status of each column of the
memory. The status represents if the column of the memory is active or inactive. The
active column is the column with the data which are being used. The inactive columns
wait for the update. The set and clear pointer stores the set and clear position of the

column.

45

Take the figure for example, the active columns 1~5 are being used. During the
data processing of the active region, the column 6, 7, and 0 will be updated by order.
After the processing window moves toward right direction with 2 columns, the column
1 and 2 will be cleared. This update mechanism works in this design due to the
processing region moves orderly in horizontal direction. However, due to the real-time
constraint, the implementation of this mechanism requires reading and writing the
memory at the same time to speed up the memory update flow.

Set Pointer Input Data

|:| Active Memory

) Input
E Inactive Memory Control

Output
Control

Clear Pointer

Input Data

Fig. 6-9 the column based cyclic buffer update mechanism

6.5.2. Memory Size

The memory buffer size is one of the most important issues of this design and the
size of it is according to the memory region used in different part shown in Fig. 6-10. In
this figure, the block with the color blue, red, and light yellow represent the
combinational logic, memory buffer and expanded memory buffer respectively. The
memory buffer size is labeled inside the red block. The label represents the buffer size,

and the height multiplied with width.

46

35 x 8 (Bytes) 35 x 8 (Bytes) 31 x 66 (Bytes) x 3
17 x 8 (Bytes) 17 x 8 (Bytes) 17 x 66 (Bytes) x 3
IMGLYBUF IMGRYBUF IMGYUV Buffer

52 x 8 (Bytes) 52 x 8 (Bytes) 48 x 64 (Bytes)

Weight Generation

Weight Generation

Census Transform

CensusL CensusR

v v

CENLBUF CENRBUF VWBUF HWBUF
48x48 (6Bits) 48x111 (6Bits) 1x48(90Bits) 1x48(90Bits)

|

[|

I |

[|

31 x 64 (6Bits) 31 x 128 (6Bits) : 1x96 (90Bits) 1x96 (90Bits) :
17 x 64 (6Bits) 17 x 128 (6Bits) | |
I |

[|

[|

Cost Aggregation, Winner-Takes-All (Kernel)

1 x 18 (Bytes) Depth Map (External Memory)
17 x 18 (Bytes) 360 x 288 (Bytes)

Fig. 6-10 the memory size of dufiaremr mQ)_,ELuIe

b

i, A i
Rl JE -—..f*‘x ‘“x A

The access region of me.'rﬂory buff;‘gﬁds,basq(f on the region of depth being
5.‘

|
soih : l.;_u

calculated and the processing w1@qw» nbinational logic. To explain this figure
'_I '“l
more easily, the detail is discussed froﬁ'l the-‘@iid to the start. At the right-bottom of the

figure, the evaluation of the depth FIFO, the WTA requires 1x18 horizontal aggregated
cost. The calculation of the horizontal aggregated cost requires 1x(18+30) vertical
aggregated cost. Note that the width of horizontal aggregated cost is extended 30
elements than depth FIFO due to the processing window size is 1x31. Similarly, the
Hamming distance will require (30+1)x48 elements due to the window size of vertical
aggregation is 31x1. Moreover, the memory size is 63 times more than original size due
to the disparity range. Fortunately, the huge memory access region of hamming
distances is calculated on the fly. Hence, the memory buffer of the hamming distances
does not exist; therefore, the problem will be pass-through to the former census buffer.

And this will result in the extension of 63 elements in the censusR buffer. The

47

discussion of the rest of memory access region is almost the same from above
discussion, except for the image buffer used by the census transform. The width of
them is much smaller because of the short data life time. Therefore, the data can be
discarded after the census transform and result in the reduction of the width.

Fig. 6-10 shows the final result of the memory size. The size is labeled inside the
block. The result in this is based on the implementation, such as the memory bank, and
the minimal words of the Register-File. The text in the red block is the memory size just
discussed. In Fig. 6-10, the light yellow block is the extension for the vertically
expanded rows reuse discussed in 5.4.2. Take the CENLBUF in census transform as an
example. The 31*64*6 bits is the memory size without VERR. The 17*64*6 bits is the
extension memory size after applying the VERR. Hence the overall size is 48*%64*6 bits.
Note that the memory size 48*64*6 bits is more than the required memory size
48*48*6 bits. The additional 48%18*6 bits 1s used for the run-time update of the column

based cyclic buffer.

6.6. Implementation Result

Our design is targeted at CIF size, 64 disparity range and 30 frames per second.
The clock rate of the system is 100MHz and the bus width is 32 bits. The

implementation result will be discussed at the rest of this chapter.

6.6.1. External Bandwidth

Fig. 6-11(a) shows the simulation result of the execution cycle with different bus
access latency. From the figure, the curve is divided into two segments, both of which
are proportional to the access latency. However, the slopes of them are different. After

the latency is larger than 5, the buffer for the input latency is not enough. Therefore, the

48

execution cycle increased faster. Fig. 6-11(b) shows the FPS with difference bus access
latency. The system can achieve more than 40 FPS if the average access latency is

smaller than 5.

6.0E+06 45 yiy)
.*'.‘
40
o 50E+06 // 'g e \ .
g 4.0E+06 o Real-Time ConstraiN\
[t + @ 30
= Real-Time Constraint; 3.63E+06 (2] 25 : 2-8\,,:\
2 3.06+06 3278406] I 3
5 ._._'__.__./'2.9}&06 % 20 : -<g
@ 20E+06 1 €15 I
w | o 1
1.0E+06 1 w10 !
| 5 1
| |
0.0E+00 — 0 L
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Average Bus Access Latency Average Bus Access Latency
Fig. 6-11 the performance with the bus access latency
6.6.2. Area and Gate Counts
TABLE 6-1 the implementation result of area and gate counts
memory combinational
module name total area cell Area)
size (Byte) gate count
Weight Generation 7,002,961 700,596 10,170 37,586
Weight Buffer 2,041,062 634,522 1,485 6,127
Census L 1,243,590 100,250 224 5,004
Census R 1,243,590 100,250 224 5,004
AggregationtWTA 26,102,290 442,254 0 156,716
Arbiter 38,042 475 0 168
Census Lbuffer 26,226,681 1,842,059 4,608 171,842
Census Rbuffer 26,672,820 1,865,630 4,608 180,195
Total 90,571,035 5,686,036 21,319 562,642

The area and gate count of the simulation result is shown in TABLE 6-1 and Fig.
6-12. The result is synthesized with standard cell library of UMC 90 um. It can be

observed that the aggregation, left census buffer, and right census buffer are dominated

49

in this design. The gate count of aggregation and census buffer are large due to the
requirement of high computation resource and complex demultiplexing of the memory

banks.

1.1% 0.9%

0.9%
W Weight Generation

W Weight Buffer

W CensusL

W CensusR

B Aggregation+WTA
B Arbiter

I Census Lbuffer
 Census Rbuffer

Gate Count Memory Area

Fig. 6-12 the percentage of the memory area and combinational gate counts

6.7. Performance Resu =

programmable GPU. The programmable GPU favors high bandwidth and computation
resource. The image size, disparity range, and FPS of all designs are quite different. It is
difficult to compare difference implementations. Therefore, the million disparity
evaluation (MDE) method has been used. TABLE 6-3 shows the error rate of different

implementation result. The test sequences are from the middlebury vision website.

50

TABLE 6-2 the error rate comparison of different method

Disparity

Design Implementation Image Size Range FPS MDE/s
Proposed Hardware 352x288 64 42 272.5
TrellisDP[45] Hardware (FPGA) 320x240 128 30 294
HBP[43] Hardware (FPGA) 320x240 32 30 73.7
320x240 16 5
EffectAggr [46] Intel C2D 2.14 GHz 463x370 75 167 18.9
RealDP[35] AthlonXP 2800 384x288 50, 100 33,18.9 183, 209
. 512x512 64, 96 35,24 588, 605
CBiased| 36] Geforee 7900 256x256 64, 96 122,87 512,548
. 256x256 64, 96 121, 87 507, 547
SepLaplacian[37] Geforce 7900 519512 64, 96 38,27 637, 679
RealTimeBP[42] Geforce 7900 320x240 16 16 19.6
. Radeon 9800,
RealTimeGPU[38] P4 3GHz 320x240 16 16 19.6
ReliableGPU[34] Radeon 9800 - - 16.6 -
GradientGuided[24] Radeon 9800XT 512x384 40 14.7 117
TABLE 6-3 the performance comparison of different method
Design Publication TSU VEN TED CON SAW MAP
Proposed - 2.80 0.64 13.7 10.1 2.11 3.21
TrellisDP[45] MUE 07 2.63 3.44 - - 1.88 091
HBP[43] Lecture Notes 2.85 1.92 - - 6.25 6.45
EffectAggr [46] ICPR 08 296 3.53 107 4.92 - -
RealDP[35] CVPR 04 2.85 6.42 - - 6.25 6.45
CBiased[36] ICIP 07 4.77 10.2 - - 0.82 0.65
SepLaplacian[37] ICME 07 13.0 - - - - -
Real TimeBP[42] BMVC 06 3.40 1.90 13.2 11.6 - -
RealTimeGPU[38] 3DPVT 06 4.22 2.98 14.4 13.7 - -
ReliableGPU[34] CVPR 05 1.36 1.09 - - 2.35 0.55
GradientGuided[24] 3DIM 05 2.48 391 - - 1.63 0.73

51

Ground Truth TrellisDP

HBP RealDP CBaised

SepLaplacian -‘ , ! RealTimeGPU

ReliableGPU GradientGuided

Fig. 6-13 the implementation result with different method

52

Conclusion

The main contribution of this thesis is to propose a hardware friendly algorithm
and an architecture design for real-time local stereo matching. Our design gives a
quality depth result for real-time application. The proposed algorithm reduces about
95.14% computation complexity comparing to the original ADSW, and the average
quality drop with 1 disparity tolerance is about 0.515%. The implemented design can
achieve 43 frames per second and 64 disparities with CIF image size under 100MHz
clock rate. The chip consumes totally 562,642 K gate counts and 21.3K Bytes internal
memory. Besides, we also consider the bandwidth issue in the system level. The final
bandwidth requirement is only 45MB/s, which is about ninth of the total bandwidth,

and can be easily integrated with othér IP for different kinds of applications.

Future Work

Although our algorithm gives a quality. result, the disparity map at the occluded
area may be incorrect due to the lack of disparity refinement. Besides, the depth result
may be unreliable if the object is tiny or lack of color information. On the other hand,
the chip area is large and dominated by the large internal storage and multiple RAM
banks. Therefore, the unreliable disparity map area and expensive cost of internal
storage size may limit its application.

There are two issues remained in our work. First, the practicability for different
applications needs to be investigated, such as the scene reconstruction and 3D-TV,
which may require smooth depth on edge and occluded area. The second issue is the
expensive cost of internal memory size. To reduce the internal memory size, there are

three feasible plans, for example, decreasing the bits of census, truncating the

53

intermediate result of cost aggregation, and using memory with single port instead of
dual port. However, the reduction of the memory area is still limited under the data
reuse strategy of the proposed architecture. For a low memory cost implementation,

further research for stereo algorithm or architecture is required.

54

Reference

(1]

(3]

(3]

(7]

P. Kauff, N. Brandenburg, M. Karl, and O. Schreer, “Fast hybrid block- and pixel recursive
disparity analysis for real-time applications in immersive teleconference scenarios,” in
Proceedings of 9 th International Conference in Central Europe on Computer Graphics
Visualization and Computer Vision, pp. 198-205, 2001.

T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka, “A stereo machine for video-rate
dense depth mapping and its new applications,” in Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition, 1996.

M.Z. Brown, D. Burschka, and G. Hager, “Advances in Computational Stereo,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no.8, pp. 993-1008,
August 2003.

D. Scharstein and R. Szeliski, "A Taxonomy and Evaluation of Dense Two-Frame Sterco
Correspondence Algorithms," International Journal 'of Computer Vision, vol. 47, pp. 7-42,
2002.

H. Hirschmuller and D. Scharstein, "Evaluation of Cost Functions for Stereo Matching," in
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 17-22
June 2007

R. Zabih and J. Woodfill, “Non-parametric Local Transforms for Computing Visual
Correspondence,” in Proceedings of third European Conference on Computer Vision, vol. 2,
pp- 151-158, 1994.

G. Egnal, "Mutual information as a stereo correspondence measure," Computer and
Information Science, University of Pennsylvania, Philadelphia, USA, Tech. Rep.

MS-CIS-00-20, 2000.

55

(8]

[11]

[12]

[15]

[16]

M. Hariyama, H. Sasaki, and M.Kameyama, “Architecture of a stereo matching VLSI
processor based on hierarchically parallel memory access,” The 2004 47th Midwest Symposium
on Circuits and Systems, vol 2, pp. 11245- 11247, 2004.

M. Okutomi and T. Kanade, "A locally adaptive window for signal matching," International
Journal of Computer Vision, vol. 7, pp. 143-162, 1992.

M. Hariyama, T. Takeuchi, and M. Kameyama, "Reliable stereo matching for highly-safe
intelligent vehicles and its VLSI implementation," in Proceedings of the IEEE Intelligent
Vehicles Symposium. 1V, pp. 128-133, 2000.

P. B. Chou and C. M. Brown, "The theory and practice of Bayesian image labeling,"
International Journal of Computer Vision, vol. 4, pp. 185-210, 1990.

H. Tao, H. S. Sawhney, and R. Kumar, "A global matching framework for sterco
computation," Proc. Int’l Conf. Computer Vision; vol. 1, pp. 532-539, 2001.

A. F. Bobick and S. S. Intille, "Large Occlusion Stereo," International Journal of Computer
Vision, vol. 33, pp. 181-200, 1999.

S. B. Kang, R. Szeliski, and J. Chai;"Handling.Occlusions in Dense Multi-View Stereo," in
Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 1, 2001.

K.J. Yoon and 1.S. Kweon, “Adaptive Support-weight Approach for Correspondence search,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006.

M. Gerrits, and P. Bekaert, "Local Stereo Matching with Segmentation-based Outlier
Rejection," in Proceedings of the 3rd Canadian Conference on Computer and Robot Vision, pp.
66-66, 07-09 June 2006.

F. Tombari, S. Mattoccia, and L. Di Stefano, "Segmentation-Based Adaptive Support for
Accurate Stereo Correspondence,”" Lecture Notes in Computer Science, vol. 4872, p. 427,

2007.

56

[18]

[21]

[22]

[24]

[25]

F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda, “Classification and evaluation of
cost aggregation methods for stereo correspondence,”" in Proceedings of IEEE International
Conference on Computer Vision and Pattern Recognition, June 24-26, 2008

ISO/IEC JTC1/SC29/WG11 N6501, "Requirements on Multi-view Video Coding," Redmond,
USA, July 2004.

O. Veksler, "Fast variable window for stereo correspondence using integral images," in
Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol.1, pp. I-556-1-561

S. Kang, R. Szeliski, and J. Chai, “Handling occlusions in dense multi-view stereo,” in
Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 103-110, 2001.

H. Hirschmuller, P. R. Innocent, and J. Garibaldi, "Real-Time Correlation-Based Stereo
Vision with Reduced Border-Errors," International Journal of Computer Vision, vol. 47, pp.
229-246, 2002.

S. Chan, Y. Wong, and J. Danie,"'Dense stereo, correspondence based on recursive adaptive
size multi-windowing," Image and Vision Computing New Zealand, pp. 26-28, 2003.

M. Gong and R. Yang, "Image-gradient-guided real-time stereo on graphics hardware," in
Proceedings of Fifth International Conference on 3-D Digital Imaging and Modeling, pp.
548-555, 2005.

C. Demoulin and M. Van Droogenbroeck. “A method based on multiple adaptive windows to
improve the determination of disparity maps,” in Proceedings of IEEE Workshop on Circuit,
Systems and Signal Processing, pp. 615-618, 2005.

Y. Boykov, O. Veksler, and R. Zabih, "A variable window approach to early vision," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 1283-1294, 1998.

57

[27]

[29]

[30]

[31]

[33]

[34]

J. C. Kim, K. M. Lee, B. T. Choi, and S. U. Lee, "A Dense Stereo Matching Using Two-Pass
Dynamic Programming with Generalized Ground Control Points," in Proceedings of IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, 2005.

M. Okutomi, Y. Katayama, and S. Oka, "A Simple Stereo Algorithm to Recover Precise
Object Boundaries and Smooth Surfaces," International Journal of Computer Vision, vol. 47,
pp. 261-273, 2002.

Y. Ohta and T. Kanade, "Stereo by intra- and inter-scanline search using dynamic
programming," IEEE transactions on pattern analysis and machine intelligence, vol. 7, pp.
139-154, 1985.

S. Roy and I. J. Cox, "A Maximum-Flow Formulation of the N-Camera Stereo
Correspondence Problem," in Proceedings of the Sixth International Conference on Computer
Vision, 1998.

Y. Boykov, O. Veksler, and=R..Zabih, "Fast*Approximate Energy Minimization via Graph
Cuts," |IEEE transactions on pattern.analysis-and machine intelligence, pp. 1222-1239, 2001.
Y. Boykov and V. Kolmogorov, "An_ Experimental Comparison of Min-Cut/Max-Flow
Algorithms for Energy Minimization in Vision," IEEE transactions on pattern analysis and
machine intelligence, pp. 1124-1137, 2004.

H. Hirschmuller, "Improvements in real-time correlation-based stereo vision," IEEE Workshop
on Stereo and Multi-Baseline Vision, pp. 141-148, 2001.

G. Minglun and Y. Yee-Hong, "Near real-time reliable stereo matching using programmable
graphics hardware," in Proceedings of IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol.1, pp. 924-931, 2005.

S. Forstmann, Y. Kanou, O. Jun, S. Thuering, and A. Schmitt, "Real-Time Stereo by using
Dynamic Programming," in Proceedings of Computer Vision and Pattern Recognition

Workshop on Real-Time 3D Sensor and Their Use, , 2004, pp. 29-29, 2004.

58

[36]

[38]

[39]

[40]

[41]

[42]

L. Jiangbo, G. Lafruit, and F. Catthoor, "Fast Variable Center-Biased Windowing for
High-Speed Stereo on Programmable Graphics Hardware," in Proceedings of IEEE
International Conference on Image Processing, pp. VI - 568-VI — 571, 2007

L. Jiangbo, S. Rogmans, G. Laftruit, and F. Catthoor, "Real-Time Stereo Correspondence using
a Truncated Separable Laplacian Kernel Approximation on Graphics Hardware," in
Proceedings of IEEE International Conference on Multimedia and Expo, pp. 1946-1949,
2007.

L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister, "High-quality real-time stereo using
adaptive cost aggregation and dynamic programming," in Proceedings of the Third
International Symposium on 3D Data Processing, Visualization, and Transmission
(3DPVT'06), pp. 798-805, 2006.

K. Konolige, “Small Vision Systems: Hardware and' Implementation,” in Proceedings of Eighth
Int'l Symp. Robotics Research; Oct." 1997.

N. Chang, T. M. Lin, T. H. Tsai; - Y.-C.—Tseng,and T. S. Chang, "Real-Time DSP
Implementation on Local Stereo Matehing," in-Proceedings of IEEE International Conference
on Multimedia and Expo, pp. 2090-2093, 2007.

M. Hariyama, T. Takeuchi, and M. Kameyama, "VLSI processor for reliable stereo matching
based on adaptive window-size selection,”" in Proceedings of IEEE International Conference
on Robotics and Automation, vol. 2, 2001.

Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister, "Real-time global stereo
matching using hierarchical belief propagation," in Proceedings of The British Machine Vision
Conference, 2006.

S Park, C Chen, and H Jeong. “VLSI Architecture for MRF Based Stereo Matching,” Lecture

Notes in Computer Science, vol.4599, no., pp.55-64 2007

59

[44]

[46]

M. Gong, R. Yang, and L. Wang, "A Performance Study on Different Cost Aggregation
Approaches Used in Real-Time Stereo Matching," International Journal of Computer Vision,
vol. 75, pp. 283-296, 2007.

S. Park, H. Jeong, K. Pohang, and S. Korea, "Real-time Stereo Vision FPGA Chip with Low
Error Rate," Proceedings of the 2007 International Conference on Multimedia and Ubiquitous
Engineering, pp. 751-756, 2007.

F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda. ‘“Near real-time stereo based on
effective cost aggregation,” in Proceedings of the IEEE International Conference on Computer

Vision and Pattern Recognition, 2008.

60

FE:

ST R R B (L P88 09" ~ 2RIl & 06 ")
Fr2d 223148 £L (AEIIE097 ~ AR5 £ 06")
a2l A 8335kl AL (AWISE097 ~ ARIT&097)
¥ v

B ¢ R

[1] T.H.Tsai, Y.C. Chang, and T. S. Chang, “Hierarchical Decision Table for Bad Pixel Detection
in Stereo Vision” in Proceedings of VLSI Design/CAD Symposium, Spring 2007.

[2] T.H. Tsai, Y. C. Chang, Y. C. Tseng, and T. S. Chang, “Census diffusion with segmentation
constraint for disparity estimation in stereo vision,” in Proceedings of Computer Vision,
Graphics, and Image Processing (CVGIP), Aug. 2007.

7% ¢

[3] N. Chang, T.M. Lin, T.S. Tsai, Y.C. Tseng, and T.S. Chang, "Real-Time DSP Implementation
on Local Stereo Matching," in Proceedings of IEEE International Conference on Multimedia
and Expo, pp.2090-2093, 2-5 July 2007

[4] T.S. Tsai, N.Y.-C. Chang, and T.S. Chang, "Data reuse analysis of local stereo matching," in
Proceedings of IEEE International Symposium on Circuits and Systems, pp.812-815, 18-21

May 2008

61

