

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

即時的區域性立體視覺比對演算法分析與設計

Analysis and Design of Real-Time Local Stereo Matching

研究生: 蔡宗憲

指導教授: 張添烜

中華民國 九十七年 九月

即時的區域性立體視覺比對演算法分析與設計

Analysis and Design of Real-Time Local Stereo Matching

研 究 生: 蔡宗憲 Student: Tsung-Hsien Tsai
指導教授: 張添烜 博士 Advisor: Tian-Sheuan Chang

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of Requirements
for the Degree of
Master of Science

In
Electrical Engineering

September 2008
Hsinchu, Taiwan, Republic of China

中華民國 九十七年 九月

i

即時的區域性立體視覺比對演算法分析與設計

研究生：蔡宗憲 指導教授：張添烜博士

國立交通大學

電子工程學系 電子研究所

摘要

立體視覺廣泛的運用在許多領域，例如自走機器人、自動追蹤的攝影機、甚

至於立體電視。由於許多的應用需要即時的立體視覺系統，因此需要設計一個能

滿足高運算以及高頻寬的積體電路。

本篇研究提出了一個適合硬體設計的演算法，係基於適應性權重的計算

(Adaptive Weight Generation)演算法結合微型普查(Mini-Census)的比對方式、兩次

聚合(Two-Pass Aggregation)以及量子化指數曼哈頓距離(Quantized Manhattan

Color Distance)等技巧。微型普查可以減少運算量，從原來的一個視窗的運算變

成只有六個點運算。除此之外，他還加強了原本演算法中對於光線所造成的問題。

兩階段資料匯集和量子化指數曼哈頓距離分別減少了 88.7%和 64.2%的運算複雜

度。相較於原本的權重產生函式，量子化指數曼哈頓距離可以被實現成查表的硬

體電路。

最後在聯華電子 90 奈米製程下，提出的設計可以在 100MHz 的工作時脈下

達到每秒計算 43張CIF畫面大小及 64個階層的深度估測。晶片總共需要 562,642

個邏輯閘，以及 21.3K 的晶片記憶體。

ii

iii

Analysis and Design of Real-Time Local Stereo Matching

Student: Tsung-Hsien Tsai Advisor: Dr. Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract
Stereo matching has been widely used in many fields, such as automatic robots,

auto-tracking system, and even the 3D-TV. With these real time application demands,

VLSI implementation becomes necessary to fulfill the high complexity and high

bandwidth requirements of stereo matching algorithms.

 In this thesis, we propose a hardware friendly algorithm, based on adaptive

support weight (ADSW), with mini-census, two-pass aggregation, and quantized

exponential Manhattan distance techniques. The mini-census reduces the computation

complexity from a matching block to only 6 points. Besides, it also improves the

capability of ADSW to deal with the radiometric problem. The two-pass aggregation

and the quantized Manhattan color distance reduce about 88.7% and 64.2%

computation of the cost aggregation respectively. Comparing to the original weight

generation function, the quantized Manhattan color distance can be easily implemented

by a table based circuit.

The final design implemented by UMC 90nm CMOS technology can achieve 43

frames per second and 64 disparities with CIF image size under 100MHz clock rate.

The chip consumes totally 562,642 K gate counts and 21.3K Bytes internal memory.

iv

v

誌 謝

首先，要感謝我的指導教授—張添烜博士，這兩年來給我的支持和鼓勵，研

究方面讓我能在想法上能自由發揮，每當遇到困難的時候都能給予適當指導與足

夠的資源來解決問題。老師不僅是研究上的良師也是生活上的益友，不僅了解學

生的想法也協助學生處理生活上的各種問題。

同時也要感謝我的口試委員們，交大電子王聖智教授和清華電機陳永

昌教授，感謝教授們百忙之中抽空來指導我，各位的寶貴意見讓本論文更

加完備。

 感謝 VSP 實驗室的好伙伴們，特別要謝謝引我入門的張彥中學長，帶領我從

零開始，用嚴謹的態度逐步去解決問題，給予我不少中肯有用的建議並協助我在

論文方面的寫作。感謝張彥中學長、林佑昆學長，你們傳給我的經驗與知識，讓

我受用不盡。感謝李得瑋、郭子筠、林嘉俊和吳秈璟學長給予我許多 IC 設計的

經驗以及研究的建議，也感謝廖英澤學長，在許多採購事物上的經驗傳承。感謝

曾宇晟同學，從大學專題開始一直到 IC 競賽及助教，許多的事情少了你我都沒

辦法一個人做得好，真的非常謝謝你！感謝詹景竹、戴瑋呈和張瑋城同學，我們

各有特色，每天在實驗室一起努力和搞笑是一個難忘的回憶。感謝許博雄及陳奕

均學弟，沒有你們的幫忙，我沒有辦法準時畢業！實驗室的黃筱珊、陳之悠、沈

孟維、許博淵、蔡政君、廖元歆學弟們當然也不能忘記，和你們相處的日子真的

很快樂。

 謝謝我的女友，謝謝你不斷的支持與鼓勵，也讓我對未來的學習之路有了全

新的轉變。也感謝桌球隊的朋友，跟你們一同練球是我最充實的回憶。

 最後要感謝默默支持我的家人們，我的爸媽、姐姐，你們的溫暖是我努力最

大的支柱。

在此，把本論文獻給所有愛我與所有我愛的人。

vi

vii

TABLE OF CONTENTS

1. INTRODUCTION .. 1

1.1. BACKGROUND .. 1

1.2. MOTIVATION AND CONTRIBUTION ... 1

1.3. ORGANIZATION OF THE THESIS .. 2

2. INTRODUCTION OF COMPUTATIONAL STEREO .. 3

2.1. OVERVIEW .. 3

2.2. EPIPOLAR GEOMETRY .. 3

2.3. THE GENERAL FLOW OF MATCHING ALGORITHMS ... 4

2.3.1. Matching Cost Computation ... 4

2.3.2. Cost Aggregation .. 6

2.3.3. Disparity Computation .. 6

2.4. A TAXONOMY EVALUATION ... 6

3. RELATED WORK .. 9

3.1. OVERVIEW .. 9

3.2. LOCAL APPROACH ... 9

3.3. GLOBAL APPROACH .. 10

3.4. ADAPTIVE SUPPORT WEIGHT .. 12

3.5. REAL‐TIME IMPLEMENTATIONS .. 13

3.5.1. General Purpose Processor ... 14

3.5.2. Graphic Processing Unit .. 14

3.5.3. Digital Signal Processing Processor... 14

3.5.4. Application‐Specific Integrated Circuit .. 15

3.6. SUMMARY .. 16

4. PROPOSED MINI‐CENSUS ADAPTIVE SUPPORT WEIGHT .. 17

4.1. INTRODUCTION .. 17

4.2. THE FLOW OF THE PROPOSED ALGORITHM .. 17

4.3. MINI‐CENSUS .. 18

4.4. WEIGHT GENERATION AND APPROXIMATION ... 19

4.4.1. The Performance with Different Color Space .. 20

4.4.2. The Color Distance .. 21

4.4.3. The Effect of Proximity Weight.. 22

4.4.4. Quantized Exponential Function ... 22

4.4.5. The Final Weight Table .. 24

4.5. AGGREGATION ITERATION ... 25

viii

4.6. TWO‐PASS COST AGGREGATION APPROXIMATION ... 28

4.7. OVERALL SIMULATION RESULT ... 28

5. DATA REUSE ANALYSIS OF HARDWARE IMPLEMENTATION ... 29

5.1. OVERVIEW .. 29

5.2. ARCHITECTURE OVERVIEW ... 29

5.3. MATCHING COST COMPUTATION REUSE .. 31

5.3.1. Disparity‐Order Reuse ... 31

5.3.2. Pixel‐Order Reuse .. 32

5.4. COST AGGREGATION DATA REUSE .. 33

5.4.1. Partial Column Reuse (PCR) .. 33

5.4.2. Vertically Expanded Row Reuse (VERR) ... 34

5.5. COMPARISON .. 35

5.6. SUMMARY .. 35

6. HARDWARE IMPLEMENTATION ... 37

6.1. OVERVIEW .. 37

6.2. FUNCTIONAL BLOCK .. 38

6.2.1. Mini‐Census Transform ... 38

6.2.2. Weight Generation ... 39

6.2.3. Aggregation and Winner‐Takes‐All ... 40

6.2.4. Input and Output Control .. 41

6.3. HANDSHAKING ... 42

6.4. ARBITRATION ... 43

6.5. MEMORY .. 45

6.5.1. Memory Update Mechanism .. 45

6.5.2. Memory Size ... 46

6.6. IMPLEMENTATION RESULT .. 48

6.6.1. External Bandwidth .. 48

6.6.2. Area and Gate Counts ... 49

6.7. PERFORMANCE RESULT .. 50

CONCLUSION ... 53

FUTURE WORK .. 53

REFERENCE .. 55

ix

LIST OF FIGURES

FIG. 2‐1 THE EPIPOLAR GEOMETRY OF THE BINOCULAR STEREO. .. 3

FIG. 2‐2 CORRESPONDENCE MATCHING FINDS THE ALL THE MATCHING PENALTIES OVER A DISPARITY RANGE. 3

FIG. 4‐1 THE FLOW OF THE PROPOSED ALGORITHM .. 17

FIG. 4‐2 THE CENSUS TRANSFORM AND MATCHING .. 18

FIG. 4‐3 THE PERFORMANCE COMPARISON WITH DIFFERENT COLOR SPACE .. 20

FIG. 4‐4 THE PEROFORMANCE ANALSYSI OF PROXIMITY WEIGHTING ... 22

FIG. 4‐5 THE WEIGHT FROM QUANTIZED EXPONENTIAL FUNCTION ... 23

FIG. 4‐6 THE PERFORMANCE WITH QUANTIZED EXPONENTIAL FUNCTION .. 24

FIG. 4‐7 THE ERROR RATE WITH THE AGGREGATION ITERATION AND WINDOW SIZE .. 26

FIG. 4‐8 THE MINIMUM ITERATION WITH DIFFERENT SIZE OF SUPPORT WINDOW .. 27

FIG. 5‐1 THE OVERVIEW OF HARDWARE ARCHITECTURE ... 29

FIG. 5‐2 THE TWO DATA REUSE DIRECTIONS WITH DIFFERENT SIZE OF SUPPORT WINDOW ... 31

FIG. 5‐3 THE PARTIAL COLUMN REUSE (PCR) IN 5X5 AGGREGATION WINDOW ... 33

FIG. 5‐4 VERTICALLY EXPANDED ROW REUSE(VERR) .. 34

FIG. 5‐5 THE AVERAGE ACCESS COUNT VERSUS THE NUMBER OF EXPANDED PIXEL ... 35

FIG. 6‐1 THE OVERVIEW OF THE HARDWARE DESIGN ... 37

FIG. 6‐2 THE MODULE OF CENSUS TRANSFORM FOR LEFT AND RIGHT IMAGE .. 38

FIG. 6‐3 THE MODULE OF WEIGHT GENERATION OF VERTICAL AND HORIZONTAL WEIGHTS .. 39

FIG. 6‐4 THE MODULE OF COST AGGREGATION AND ITS PROCESSING ELEMENT ... 40

FIG. 6‐5 THE PING‐PONG BUFFER OF COST AGGREGATION MODULE ... 41

FIG. 6‐6 THE FINITE‐STATE‐MACHINE OF THE INPUT AND OUTPUT CONTROL .. 42

FIG. 6‐7 THE HANDSHAKING MECHANISM BETWEEN DIFFERENT MODULES .. 44

FIG. 6‐8 THE HYBRID OF ROUND‐ROBIN AND FIXED PRIORITY ARBITRATION STRATEGY .. 45

FIG. 6‐9 THE COLUMN BASED CYCLIC BUFFER UPDATE MECHANISM .. 46

FIG. 6‐10 THE MEMORY SIZE OF DIFFERENT MODULE ... 47

FIG. 6‐11 THE PERFORMANCE WITH THE BUS ACCESS LATENCY ... 49

FIG. 6‐12 THE PERCENTAGE OF THE MEMORY AREA AND COMBINATIONAL GATE COUNTS ... 50

FIG. 6‐13 THE IMPLEMENTATION RESULT WITH DIFFERENT METHOD .. 52

x

LIST OF TABLES

TABLE 2‐1 MATCH METRICS FOR CORRESPONDENCE MATCHING [3] ... 5

TABLE 2‐2 THE TEST SEQUENCES OF THE TAXONOMY EVALUATION .. 8

TABLE 4‐1 THE RESULT OF APPROXIMATED COLOR DISTANCE ... 21

TABLE 4‐2 THE WEIGHT TABLE OF PRESERVING 2 MSB BITS .. 25

TABLE 4‐3 THE WEIGHT TABLE OF PRESERVING 1 MSB BIT ... 25

TABLE 4‐4 THE EFFECT OF DIFFERENT TECHNIQUES ... 28

TABLE 5‐1 THE RESULT OF APPROXIMATED COLOR DISTANCE ... 36

TABLE 6‐1 THE IMPLEMENTATION RESULT OF AREA AND GATE COUNTS .. 49

TABLE 6‐2 THE ERROR RATE COMPARISON OF DIFFERENT METHOD ... 51

TABLE 6‐3 THE PERFORMANCE COMPARISON OF DIFFERENT METHOD ... 51

1

1. Introduction

1.1. Background

The stereo vision is one of the most popular topics in computer vision, and still

attracts the attention of many researchers. The stereo vision is the process of finding the

depth or distance information from a pair of images of the same scene. It can be used for

many applications such as the 3D video conference [1], the Z-keying, and the virtual

reality [2]. If we obtain the 3D depth map in the high speed, it is possible to merge the

real and the virtual world in real time.

The stereo algorithm can be categorized as local and global approach [3]. The

local approach focuses on finding the similarities of reference and target windows by

using the block matching or feature matching. The global approach uses the global

constraints to optimize the result. Since the local approach favors low complexity, they

are often adopted by real-time implementation. However, these methods often suffer

from incorrect result on occlusion, uniform texture, and ambiguity. The global

approach can solve these problems but suffer from the huge processing time. Although

some real-time global methods can be implemented through GPU in the graphics card

or MMX of CPU, the implementation still cost expensive for embedded applications

since GPU and MMX are not dedicated hardware for stereo algorithms.

1.2. Motivation and Contribution

Motivated by the need of high accurate and low cost real-time stereo systems, this

thesis proposed hardware friendly algorithm based on a state-of-art local approach. The

goal is to build a dedicated hardware for low cost real-time depth estimator with high

2

accuracy.

The major contribution in this thesis includes:

1. We modified the adaptive support algorithm and make it more

hardware friendly. The modified algorithm has much lower complexity

and more capability of dealing with radiometric problem.

2. We analyze the pixel-order and disparity-order data reuse strategies

with the vertically expanded row and partial column reuse methods.

3. We implemented and verified the real-time hardware of the proposed

algorithm (Mini-Census Adaptive Support Weight).

1.3. Organization of the Thesis

In Chapter 2, we briefly introduce background of the computational stereo. In

Chapter 3, we briefly introduce the stereo algorithms and real-time implementations.

Chapter 4 discusses the detail of the proposed algorithm with the mini-census, two-pass

aggregation, and quantized exponential Manhattan distance. In addition, the simulation

result is shown in this chapter. Chapter 5 analyzes the data reuse problem of hardware

design implemented by aggregation based algorithm. Chapter 6 shows the detail of the

hardware design and the implementation result. Finally, the conclusion is given after

Chapter 6.

3

2. Introduction of Computational Stereo

2.1. Overview

The concept of computational stereo is to construct the structure in the

three-dimension space from different view point. The fundamental basis is to evaluate

the depth of the object by finding the correspondent points of the object projecting on

the two unique image pairs. The correspondent points are the feature points visible on

both view point. The process of finding the correspondence is referred as

correspondence matching. The disparity map for structure reconstruction can be

computed after the correspondence matching.

2.2. Epipolar Geometry

Fig. 2-1 shows the binocular stereo calibrated with epipolar geometry. OL, OR, and

f are the two optical centers, and the distance between them is called the baseline. The

object P is projected on to two points (p and p’). The depth Z of the object P can be

computed by triangulation. As a result, the formula of depth Z can be written as Z = f/d,

where f is the focal length of the camera, d is the displacement of the two points, d=x-x’.

u

v

disparity range

Target Candidate

(x,y) (x-d,y)

Fig. 2‐2 Correspondence matching finds the

all the matching penalties over a disparity

range.

Fig. 2‐1 The epipolar geometry of

the binocular stereo.

4

(depicted in Fig. 2-1). All the parameter can be obtained during the setup of the system

except the displacement. Therefore, the goal of computational binocular stereo is to

estimate the displacement between each corresponding pair of pixels in the target and

candidate images (depicted in Fig. 2-2). The displacement is referred as disparity and

the process is referred as disparity estimation. The set of disparity of all the pixels in an

image is called the disparity map or disparity image.

2.3. The General Flow of Matching Algorithms

According to Scharstein and Szeliski [4], the major steps of the stereo algorithms

consist of three steps: matching cost computation, cost (support) aggregation, and

disparity computation/optimization. The matching cost in the first step represents the

dissimilarity of different matching candidates. The cost aggregation is to sums up the

result of the dissimilarities together, the concept of this is like exchanging the

information of neighboring pixels. The last step is to compute the final disparity map

from the matching cost. The details of them will be discussed in the following sections.

2.3.1. Matching Cost Computation

The disparities map can be computed by evaluating the matching cost for every

disparity candidates. The matching cost represents the matching penalties after the

correspondence matching. The range of the disparity candidates is called the disparity

range. The correspondence matching is based on finding the correspondence of the

support region of the reference and candidate pixels. The support region is usually a

square window, which is called the support window. The match metrics are listed in

TABLE 2-1. The details can be referred to [3]. The general formula of matching cost

computation can be written as

5

 ,ݔሺݐݏ݋ܥ ,ݕ ݀ሻ ൌ ,ݔଵሺܫ൫݄݃݊݅ܿݐܽܯ ሻݕ െ ݔଶሺܫ െ ݀, ,ሻ൯ݕ ሺ2.1ሻ

where ܫଵ, ܫଶ, represent the reference and target images. The matching result forms a

volume of matching cost in 3D space. The absolute difference (AD) is most commonly

used for many stereo algorithms due to its simplicity. However, the AD has poor quality

while the test image has the global radiometric changes. The experiment [5] shows that

the rank and mutual information performs better than AD for global radiometric

changes and noises due to the match metrics compares the difference of their local

characteristics rather than absolute difference of luminance.

TABLE 2‐1 match metrics for correspondence matching [3]

MATCH METRIC DEFINITION

Normalized Cross-Correlation
෌ ሺܫଵሺݑ, ሻݒ െ ଵഥሻܫ · ሺܫଶሺݑ െ ݀, ሻݒ െ ଶഥሻ௨,௩ܫ

ට෌ ሺܫଵሺݑ, ሻݒ െ ଵഥሻଶܫ · ሺܫଶሺݑ െ ݀, ሻݒ െ ଶഥሻଶ௨,௩ܫ

Sum of Squared Difference ෍
௨,௩

൫ܫଵሺݑ, ሻݒ െ ݑଶሺܫ െ ݀, ሻ൯ଶݒ

Normalized Sum of Squared

Difference
෍

௨,௩
ۉ

ۇ
ቀ෌ ሺܫଵሺݑ, ሻݒ െ ଵഥሻ௨,௩ܫ ቁ

ට෌ ሺܫଵሺݑ, ሻݒ െ ଵഥሻଶ௨,௩ܫ

െ
ቀ෌ ሺܫଵሺݑ, ሻݒ െ ଵഥሻ௨,௩ܫ ቁ

ට෌ ሺܫଵሺݑ, ሻݒ െ ଵഥሻଶ௨,௩ܫ ی

ۊ

ଶ

Sum of Absolute Difference ෍ ,ݑଵሺܫ| ሻݒ െ ݑଶሺܫ െ ݀, |ሻݒ
௨,௩

Rank

෍ ,ݑଵᇱሺܫ| ሻݒ െ ݑଶᇱሺܫ െ ݀, |ሻݒ
௨,௩

௞ᇱܫ ሺݑ, ሻݒ ൌ෍ ,௞ሺ݉ܫ ݊ሻ ൏ ,ݑ௞ሺܫ ሻݒ
௨,௩

Census [6]
෍ ,ݑଵᇱሺܫ൫ܩܰܫܯܯܣܪ ሻݒ െ ݑଶᇱሺܫ െ ݀, ሻ൯ݒ

௨,௩

௞ᇱܫ ሺݑ, ሻݒ ൌ ,௞ሺ݉ܫ௠,௡൫ܯܣܧܴܶܵܶܫܤ ݊ሻ ൏ ,ݑ௞ሺܫ ሻ൯ݒ

Mutual Information [7] log ቆ
P൫ܫଵሺݑ, ሻݒ ڄ ݑଶሺܫ െ ݀, ሻ൯ݒ

P൫ܫଵሺݑ, ሻ൯ݒ ڄ P൫ܫଶሺݑ െ ݀, ሻ൯ݒ
ቇ

6

2.3.2. Cost Aggregation

Cost aggregation is to aggregate the cost of correlated pixels over a support window.

The concept of the cost aggregation is that neighboring pixels may be highly correlated

to center pixel. The formula of cost aggregation is written as follow

 ሺ2.2ሻ

where Costinit is the initial matching cost from the match metrics. The ω is the related

weight for each cost. The effect of the weight is to limit the influence of unrelated pixels.

The cost aggregation helps to improve the quality of low texture area since it is lack of

information. However, this work also blurs the edge of the object when the cost of

different object is aggregated together. Therefore, the determinant of the weight is of

vital important for cost aggregation.

2.3.3. Disparity Computation

The disparity map can be computed from the matching cost or aggregated cost. The

simplest way is to select the disparity candidate with minimal cost, and the process of

this is called winner-takes-all (WTA). The formula of WTA can be expressed as below

 ,ݔሺݕݐ݅ݎܽ݌ݏ݅݀ ሻݕ ൌ ൛݀௠หܿݐݏ݋ሺݔ, ,ݕ ݀௠ሻ ൌ ,ݔሺݐݏ݋൫ܿ݊݅݉݃ݎܽ ,ݕ ݀௡ሻ൯, ݉, ݊ ߳ ሾ0, ݀௠௔௫ሿൟ, ሺ2.3ሻ

where dm is the disparity with the minimal cost over a disparity range. The more robust

methods with complex disparity optimization will be discussed in 3.2.

2.4. A Taxonomy Evaluation

For the computational stereo algorithms, the ambiguous match leads to the poor

quality for computational result. The ambiguous points include the occlusion,

low-texture (non-feature), and repetitive patterns. Hence, a taxonomy evaluation [4] is

,ݔ௔௚௚௥ሺݐݏ݋ܥ ,ݕ ݀ሻ ൌ෍ ෍ ݔ௜௡௜௧ሺݐݏ݋ܥ ൅ ݅, ݕ ൅ ݆, ݀ሻ · ߱ሺݔ, ,ݕ ݅, ݆ሻ
௝௜

,

7

proposed. The evaluation includes three parts: non-occluded area, total area, and

discontinuous area. The test sequence is shown in TABLE 2-2. The four sequences,

tsukuba, venus, teddy, and cones, are the most commonly used for performance

evaluation. The gray level of the ground represents the depth of the object. The pixel

with brighter gray level means it is closer to the camera or observer, and vice versa. For

the images of non-occlusion images, the non-occluded regions and occluded regions

are represented with white and black color respectively. In the discontinuities images,

the regions near depth discontinuities are represented as white; occluded and unknown

regions are represented as black, and other regions are represented as gray. The error for

different three parts is only evaluated in white regions.

TAB

G

Di

BLE 2-2 the

Input

round Truth

Non-

occlusion

All

scontinuities

e test sequen

Tsuk

nces of the

kuba

8

taxonomy e

Venus

evaluation

Teddy

Cone

es

9

3. Related Work

3.1. Overview

The methods of disparity estimation can be roughly categorized into two types:

local and global approaches. Local approach determines the disparity of a pixel based

on the similarity of a support window. These methods can iteratively aggregate or

regularly diffuse the matching cost over the support window. The local methods have

low computation complexity and storage requirement, and they are often adopted by

real-time implementations [8]. Global methods define objective energy functions

which usually include a data term and a neighboring term. The data term is often a

transformed version of the matching cost. The neighboring term is represented with a

smoothness penalty to enforce disparity smoothness. Sometimes the neighboring term

would also include occlusion penalty and segment constraint to improve the disparity

estimation result. This is the major difference that set global methods apart from local

methods.

3.2. Local Approach

Among the local methods, the matching cost (dissimilarity measure) often is block

sum of absolute difference, normalized cross-correlation, census transform, or mutual

information. Local methods often suffer from incorrect disparity estimation at

occlusion, low texture, and repeating pattern regions. Although larger supporting

window and aggregation iteration improve the stereo matching performance at the low

texture and repeating pattern regions, it harms the performance at occlusion region.

Because of this trade-off between large and small support windows, the reliable

variable window size [9-11] was proposed. The window size depends on the reliability

10

measurement of current window size. The adaptive window size enhances the depth for

low texture area but the issue of occluded and border area still remains. To enhance the

performance at the occlude and border area, the shiftable window approach is adopted

[12][13] and the combination of adaptive size and shiftable window is discussed in [14].

However, the qualitative result [14] shows that it still difficult result on both low texture

and border area.

To solve this issue at the both low texture and border area, the concept of adaptive

support weight (ADSW) aggregation is proposed by Yoon [15]. This approach

adaptively changes the weights in a support window according to the color and spatial

distance between the center and neighboring pixels. Consequently, adaptive support

weight can achieve the effect of using window with arbitrary size and shape. Once all

the weighted sums of costs are computed, they are iteratively recomputed to produce a

smoothed dense disparity map. Later, a segmentation support aggregation was

proposed [16][17]. The Outlier rejection [16] claimed to have both a very short

computation time and good stereo matching performance. Recently, a report [18] shows

that Adaptive weight [15] and Segment support [17] outperform than other aggregation

based methods. [18-28]. Although adaptive support weight is the state-of-the-art of

local methods, the complexity is much more than segment based method [18].

3.3. Global Approach

Global methods assume the disparity map with minimum objective energy should

be very similar to the ground truth. Therefore, global methods focus on optimizing the

energy function to determine the disparity map. One of the earlier global methods is

dynamic programming [29]. This method focuses on optimizing the energy associated

with each scanline during disparity estimation. Although dynamic programming takes

11

the horizontal global information into optimization, vertical correlation between

scanlines is not considered. As a result, the disparity map of dynamic programming

often exhibit horizontal streaks, thus reducing the quality of the disparity map.

Motivated by the need of 2-D optimization during disparity estimation, Roy and Cox

[30] proposed to model the disparity-image space as a 3-D grid graph. By finding the

min-cut on this graph, the disparity map with optimum energy is found; this

optimization algorithm is also known as graph-cut. Unfortunately, the computation and

storage requirement for running graph-cut on 3-D grid graph is enormous. Later,

Boykov and Kolmogorov proposed the iterative swap and expansion moves [31][32]

which also use graph-cut to find the best moves. Unlike Roy and Cox’s method, a

simpler two-variable graph structure which can be regarded as a 2-D graph was used in

swap and expansion moves. This simpler graph reduces the computation loading of

graph-cut. However, the extra iterations of moves compensate the benefit.

On the other hand, Scharstein and Szeliski [4] proposed the Bayesian diffusion

method which iteratively diffuses support at different disparities according to nonlinear

diffusion strength. This is similar to using different weightings within the support

window. Later, Sun [15] proposed the belief propagation for disparity estimation based

on the concept of the Bayesian diffusion. Essentially, belief propagation is similar to

Bayesian diffusion. Both methods propagate information based on probability model

between neighboring pixels. However, belief propagation bridges the link of the global

energy function with information passing, which is absent in Bayesian diffusion. In

addition, belief propagation uses a more complex updating mechanism, which is used

to optimize the final energy. As a result, belief propagation has been reported [4][14] to

produce disparity maps with much better quality than Bayesian diffusion. Currently, the

disparity map produced by the state-of-art methods combine adaptive support weight,

12

segment constraint, and belief propagation together. Although belief propagation based

methods are the leading methods in stereo matching performance, they also suffer from

high computational complexity.

3.4. Adaptive Support Weight

Adaptive support weight (ADSW) proposed by Yoon [15] is the state-of-art of

local approach, which aggregates the cost with the weight adaptively generated by the

color and spatial distance. The concept of ADSW is that the correlation of the

neighboring pixels is related to their spatial distance, which is called the proximity

weight. The correlation of two pixels is related to their color distance, which is called

the color weight. The weight in the cost aggregation formula (2.2) can be represented as

 ߱ሺ݌, ሻݍ ൌ ݂ሺ∆ܿ௣௤ሻ · ݂ሺ∆ݏ௣௤ሻ, ሺ3.1ሻ

where ∆cpq and ∆spq represent the color distance and spatial distance between pixel p

and q respectively. The ߱ሺ݌, ሻ represents the strength of aggregating the cost. Theݍ

color distance of two pixels is measured in the CIELab color space due to it is more

perceptually uniform. As the distance between two points in color space increases, it is

reasonable to assume that the similarity is decreased for perceptual stimuli. Especially,

Euclidean distance correlates strongly with human color discrimination performance.

Therefore, the perceptual difference between two colors is represented as

 ,൫ܿ௣ܦ ܿ௤൯ ൌ 1 െ ݌ݔ݁ ቀെ ∆௖೛೜
ఊ
ቁ. ሺ3.2ሻ

The strength of aggregating by color similarity is defined as

 ௖݂൫∆ܿ௣௤൯ ൌ exp ቀെ ∆௖೛೜
ఊ
ቁ. ሺ3.3ሻ

In the same way, the strength of aggregating by proximity is defined as

13

 ௣݂൫∆ݏ௣௤൯ ൌ exp ቀെ ∆௦೛೜
ఊ
ቁ . ሺ3.4ሻ

According to the (3.3)(3.4), the final weight for aggregating can be rewritten as

 ߱ሺ݌, ሻݍ ൌ exp ቆെቀ∆௖೛೜
ఊ೎

൅ ∆௦೛೜
ఊೞ
ቁቇ . ሺ3.5ሻ

The final weight is the combination of color weight and proximity weight. Hence the

cost aggregation can be rewritten as

 ሺ3.6ሻ

where p and q are the corresponding pixels in the reference image, and ݌ҧௗ ܽ݊݀ ݍതௗ are

the corresponding pixels in the target image with disparity value d. ݁ሺݍ, തௗሻ representsݍ

the matching cost computed by using the pixels of q and ݍതௗ. When using the truncated

AD (absolute difference), it can be expressed as

 ሺ3.7ሻ

where ܫଵ and ܫଶ are the reference image and target image respectively. The adaptive

support weight gives a quality result on both low texture and border area; the occluded

area can be refined by left-right consistent check.

3.5. Real‐time Implementations

The real-time stereo is essential part for automatic mobile, robot, or any other

tracking system. The issues of implementing the real-time systems are the computing

complexity, memory size, and bandwidth. Currently, the implementations can be

categorized as four types: general purpose process, graphic processing unit (GPU),

݁ሺݍ, തௗሻݍ ൌ ݉݅݊ ቐ ෍ ሻݍଵሺܫ| െ ,|തௗሻݍଶሺܫ ܶ
௖ఢሼோ,ீ,஻ሽ

ቑ,

,݌ሺܧ ҧௗሻ݌ ൌ
∑ ߱ሺ݌, ,ҧௗ݌ሻ߱ሺݍ ,ݍതௗሻ݁ሺݍ തௗሻ௤ఢே೛,௤ത೏ఢே೛ഥ೏ݍ

∑ ߱ሺ݌, ,ҧௗ݌ሻ߱ሺݍ തௗሻ௤ఢே೛,௤ത೏ఢே೛ഥ೏ݍ

,

14

digital signal processor (DSP), and application-specific integrated circuit (ASIC).

3.5.1. General Purpose Processor

With the state-of-art processor, some local approach can be implemented to

compute the disparity image in real-time. These implementations [33] cannot give a

quality result since they are often simple approach. For a more robust and fast

implementation of effective aggregation algorithm [34], it can achieve only 18.9

million disparities per second (MDS), the speed is still far from real-time computing.

As for the global approach, the complexity of graph-cut and belief propagation is much

higher than local approach. These methods often take several minutes to compute one

disparity image. However, a recent implementation [35] shows that dynamic

programming can be implemented to compute a good disparity result in real-time.

3.5.2. Graphic Processing Unit

Recently, the configurable graphic hardware gives another solution for parallel

computing. The programmer can write CUDA (Compute Unified Device Architecture)

code, developed by NVIDIA, to accelerate the software. Currently, the solution of using

GPU provides extremely high bandwidth from 6.4GB/sec to 128GB/sec. The number

of stream processors is up to 256. (The details of using the GPU can refer to GPGPU

http://www.gpgpu.org/). With the computing power of GPU and CPU, many algorithms

generating high quality result [34] [36] [37] [38] can be implemented in real-time. The

programmable graphics hardware is suitable for different stereo algorithms.

3.5.3. Digital Signal Processing Processor

Although the real-time can be implemented by GPU and CPU, the cost is too

expensive for embedded applications. For a low cost embedded system, the Digital

15

Signal Processor (DSP) would be more cost efficient. The DSP provides a SIMD and

VLIW instructions, which is very useful for parallel computing for local stereo

matching. Some real-time local approach is implemented by using DSP [39][40].

Therefore, the computing power of DSP is limited, and this constraint the development

for more accurate disparity estimation algorithms.

3.5.4. Application-Specific Integrated Circuit

Comparing to the GPU, the application-specific integrated circuit (ASIC) has

much more flexibility to design the processing element for the algorithms. The

matching and data path can be fully customized and achieve high utilization. A simple

absolute-difference with variable window size is implemented by hariyama [41], which

can achieve high utilization and low. However, the bandwidth issue and internal

memory size becomes a bottleneck of designing the hardware. It is a challenge to deal

with the intermediate result for the algorithms which requires many times of iteration.

The bandwidth requirement of transferring the intermediate result is extremely high

and cannot meet the real-time constraint. Besides, the chip area will get large if the

intermediate result is stored in the internal memory. The trade-off of the bandwidth and

internal memory size becomes the important issue. To solve this problem, the concept

of hierarchical approach is proposed. The hierarchical belief propagation (HBP)

[42][43] reduces the number of aggregation iteration, and this relaxes the problem of

high external bandwidth. Nevertheless, the FPGA implementation of HBP still requires

huge block ram. Therefore, although the ASIC design can give a dedicated solution, it

is still a challenge to design a low cost real-time architecture with iteratively cost

aggregated and disparity optimized algorithms.

16

3.6. Summary

Considering the real-time problem, the general purpose processor and DSP has its

limitation for the more complexity matching algorithms. The acceleration of using

GPU has high potential for implementing high complex stereo algorithms since it has

extremely high bandwidth and large numbers of streaming processors. Although the

GPU solution may be implemented in the embedded system, it still cost expensive. For

a low cost embedded system, the DSP or ASIC may be a more proper candidate.

However, the issue of dealing with the intermediate result is big challenge for ASIC

solution due to the limitation of the external bandwidth. This results in the high internal

memory cost for the ASIC solution.

17

4. Proposed Mini‐Census Adaptive Support Weight

4.1. Introduction

In this chapter, we will introduce the proposed algorithm which is modified from

the Adaptive Support Weight [15] introduced in 3.4. We simplified the algorithm and

make it applicable for hardware design. Besides, we also improve its capability of

dealing with the lighting effect by applying census transform [9]. There are three major

challenges of designing the hardware for real-time Adaptive Support Weight. The

challenges are the adaptive weight generating function, iteratively cost aggregation and

data reuse. We will discuss how we solved the problem of the previous two problems in

the proposed algorithm, and discuss the data reuse problem in Chap 5.

4.2. The Flow of the Proposed Algorithm

Fig. 4‐1 The Flow of the Proposed Algorithm

Fig. 4-1 shows the flow of the proposed algorithm. The proposed algorithm

consists of four major steps. First, the mini-census matching cost computation performs

mini-census transform on the captured left and right images and computes the initial

matching cost of each pixel. The second step is the weight generation which generates

the weight coefficients needed in the cost aggregation step. Once the initial matching

cost and weight coefficients are available, the matching cost will be aggregate through

18

a two-pass cost aggregation step. Finally, after the cost aggregation, the disparity map

can be obtained by finding the best disparity with the minimum matching cost through a

Winner-Takes-All method.

4.3. Mini‐Census

The census transform compares the intensity of each pixel within a support

window with the center pixel. If a pixel’s intensity is larger than the center pixel’s

intensity, it is given the label 0, otherwise the label 1. The comparison is done in

raster-scan order. After the comparison of all pixels within the support window, a

binary bitstream is obtained which characterizes the pixel relation between the center

pixel and its surrounding pixels. Since the bitstream represents relative information, the

census transform is therefore much less sensitive to image bias and gain. In addition,

the census transform preserves the depth boundary in disparity maps better than the

traditional SAD does.

Fig. 4‐2 The census transform and matching

To compute the matching cost, the bitstreams b1 of a pixel in current view and the bitstream b2 of the

candidate corresponding pixel in the other view are obtained first, and then the hamming distance

between the two bitstreams is computed and taken as the matching cost. The cost can be defined as

),(),,(21 bbHdyxCost = ሺ4.1ሻ

34 3 13
5 15 23
2 54 30

Hamming Distance = 5

0 1 1
1 X 0
1 0 0

4 68 17
61 51 4
23 3 59

1 0 1
0 X 1
1 1 0

bitstream 2
10101110

Census
Transform

Census
Transform

Candidate BlockCurrent Block bitstream 1
01110100

19

,where H is the hamming distance function. We would refer the hamming distance as

the census cost hereon for brevity. Fig. 4-2 illustrates an example of the census

transform with a 3x3 support window. The bitstreams of the current pixel position and

the candidate corresponding pixel are 01110100 and 10101110. The hamming distance

between the bitstreams is 5; hence, the census cost is 5.

The Mini-Census is a simplified census transform. Instead of a block of pixels,

only 6 significant pixels will be transformed into the bitstream. The Mini-Census can

help reducing the internal memory size of storing the matching cost with minor

matching performance loss.

4.4. Weight Generation and Approximation

The adaptive weight generation is based on the color distance and proximity. The

proximity weight is fixed for a constant size of support window, but the color distance

term is not fixed as the support aggregation window changes position. In the original

Adaptive Support Weight (ADSW), the color distance weight is generated from the

CIE-Lab color space, which uses floating-point numbers to represent a color. However,

using floating-point numbers is not friendly for hardware design. Besides, the

square-root and exponential function used in color distance computation and color

weight generation are not hardware friendly either. To improve the algorithm to be

more hardware implementation friendly, we adopted integer-valued color space,

approximated color distance, and approximated exponential function. Moreover, we

also removed the proximity weight to further reduce computational complexity. The

performance of these improvements is explained in the following subsections.

20

4.4.1. The Performance with Different Color Space

The color space has great impact on the performance of many image processing

algorithms. We evaluate the impact of using different color spaces (YUV, RGB, and

CIE-Lab) on the performance of stereo matching. The best parameters for different size

of support aggregation are different. Hence, to eliminate the effect of different

parameter, we simulate 100 samples for each size of the window to get the best

parameter.

3

5

7

9

11

13

0 10 20 30 40 50 60 70

RGB
Y
YUV
LAB

10

14

18

22

26

30

0 10 20 30 40 50 60 70

RGB
Y
YUV
LAB

15

20

25

30

35

40

0 10 20 30 40 50 60 70

RGB
Y
YUV
LAB

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70

RGB
Y
YUV
LAB

Fig. 4‐3 The performance comparison with different color space

From the Fig. 4-3, the performance of using color spaces with three color

components (YUV, RGB, CIE-Lab) is almost the same. The color space with only

luminance component has the worst performance since it lack the other two dimensions

of the color space. It can be seen that for three-component color spaces, the weight

generated from using different color spaces does not have significant impact on the

21

stereo matching performance. Hence, this implies that we can choose to use any

three-component color space that is suitable for the design. Since YUV and RGB can be

represented using three unsigned integers instead of CIE-Lab’s three floating-point

numbers, YUV and RGB are more suitable for hardware design. We choose to use

YUV in our algorithm because it has been reported to slightly outperform RGB in

stereo matching.

4.4.2. The Color Distance

In ADSW, the color distance is defined as the Euclidean distance in the color space,

which is written as follow

 ሺ4.2ሻ

The square root of the Euclidean distance is a nonlinear operator which is difficult

for the hardware design. On the other hand, the Manhattan distance is more hardware

efficiency. The formula is written as follow

 ሺ4.3ሻ

 TABLE I compares the performance of using the Euclidean and Manhattan color

distance. The result shows that the Manhattan is distance is little better than Euclidean

distance for different error tolerance and different test sequences.

TABLE 4‐1 the result of approximated color distance

Method Error
Tolerance rank

Error Rate %
TSUKUB

A VENUS TEDDY CONES

Euclidean
0

12.2 7.95 21.4 18.0 12.2

Manhattan 11.1 7.22 21.7 16.8 11.1

Euclidean
1

17.3 3.47 0.91 14.3 11.2

Manhattan 16.3 3.08 0.59 14.0 10.1

௖௢௟௢௥ܦ ൌ | ଵܻ െ ଶܻ| ൅ | ଵܷ െ ܷଶ| ൅ | ଵܸ െ ଶܸ|.

௖௢௟௢௥ܦ ൌ ඥሺ ଵܻ െ ଶܻሻଶ ൅ ሺ ଵܷ െ ܷଶሻଶ ൅ ሺ ଵܸ െ ଶܸሻଶ.

22

4.4.3. The Effect of Proximity Weight

Proximity Weighting reduces the effect of pixels farther from the window center

and has been applied to improve the quality of the matching performance. To determine

the necessity of applying the proximity weighting, we compare the performance of

using and not using proximity weighting. Fig. 4-4 shows the error rate with different

support window size. In Fig. 4-4(a), the error rate increased when the window size is

too small. The error rate also increases as the window size increases over 27x27.

However, the error rate after applying the proximity weighting does not increase while

enlarging the window size. This is shown in Fig. 4-4(b). It is the proximity weight that

limits the influence of the farther pixels.

Fig. 4‐4 The Peroformance Analsysi of Proximity Weighting

4.4.4. Quantized Exponential Function

The quantized exponential function is the simplification of the original

exponential weight generating function and it also helps to reduce the complexity of the

aggregation process. The quantized exponential function is a scaled and quantized

version of the original function. The quantized exponential function be represented as

below.

0

5

10

15

20

25

3 15 27 39 51 63 75 87 99 11
1

12
3

13
5

14
7

15
9

17
1

nonocc
all
disc
rank
rms

0

5

10

15

20

25

3 15 27 39 51 63 75 87 99 11
1

12
3

13
5

14
7

15
9

17
1

0

5

10

15

20

25

30

35

40

3 15 27 39 51 63 75 87 99 11
1

12
3

13
5

14
7

15
9

17
1

23

 ሺ4.4ሻ

, the result of the quantized exponential function is acquired by first multiplying the

value of the original exponential function with a scaling factor 2n, and then quantizing it

to perserve only a few MSB bits. The scaling maps the floating number to integer

number, which is more hardware friendly. The preserving bits help to reduce the

complexity of the cost aggregation. In original cost aggregation step, the process is a

sum-of-product of the weight vector and cost vector. If the weight is coded with

one-heart encoding, the product operator can be simplified to shift operator, which is

much more hardware-efficiency. Fig. 4-5 shows the weight from the original and

quantized exponential function with different number of preserved bit. The output of

the quantized exponential function is multiplied by 64 and the quantized. Fig. 4-5c and

Fig. 4-5d are the output of the quantized exponential function with 2 and 1 MSB

preserved respectively.

Fig. 4‐5 The weight from quantized exponential function

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80

Original

‐10

0

10

20

30

40

50

60

70

0 20 40 60 80

x64, Quantized

‐20

0

20

40

60

80

0 20 40 60 80

x64, Quantized, P 2‐bits

0

10

20

30

40

50

60

70

0 20 40 60 80

x 64, Quantize, P 1‐bits

߱௖௢௟௢௥ ൌ ݁ݖ݅ݐ݊ܽݑݍ ቈቆ݁ି
஽೎೚೗೚ೝ
ఊ೎ ቇ ൈ ݈݃݊݅ܽܿݏ ቉ݎ݋ݐ݂ܿܽ

24

Fig. 4‐6 The performance with quantized exponential function

Fig. 4-6 shows the performance of using the quantized exponential function with

different scaling factors and number of preserved MSBs. Fig. 4-6a shows that the

average error rate is decreasing if the scaling factor is smaller than 32. If the scaling

factor is larger than 64, there is no conspicuous difference with the error rate. Hence,

with acceptable quality, the smallest scaling factor can be selected as 64. Fig. 4-6b

shows that there is no conspicuous difference of all the preserved bits. Therefore, we set

the scaling factor as 64 and preserves only one MSB.

4.4.5. The Final Weight Table

After the discussion in 4.1, the weight generating function can be simplified into a

mapping table with the YUV color space, discard of the proximity weight, quantized

exponential function and Manhattan distance. The table is listed in TABLE 4-2, 4-3.

The difference of these two tables is the preserving MSB bits of the quantized

exponential function. According to the Fig. 4-6b, TABLE 4-3 would be is more proper

for hardware design since the weights of which are all the power of two. As a result, the

weight generating Equation (4.4) (4.2) becomes the Equation (4.5) (4.6).

 ሺ4.5ሻ

Scaling Factor

A
ve
ra
ge

 E
rr
or
 R
at
e

0

2

4

6

8

10

12

14

16

18

20

1 4 16 64 256

0

2

4

6

8

10

12

14

0 2 4 6 8

NONOCC

ALL

DISC

Preserved MSB Bits

A
ve
ra
ge

 E
rr
or
 R
at
e

߱௖௢௟௢௥ሺݔ, ,ݕ ݅, ݆ሻ ൌ ܾ݈ܶܽ݁ሾܦ௖௢௟௢௥ሺݔ, ,ݕ ݅, ݆ሻሿ

25

 ሺ4.6ሻ

TABLE 4‐2 The weight table of preserving 2 MSB bits

Distance Weight Distance Weight Distance Weight Distance Weight

0 64 8 20 16 6 24 2

1 55 9 17 17 5 25 1

2 48 10 12 18 4 26 1

3 40 11 12 19 4 27 1

4 36 12 10 20 3 28 1

5 24 13 10 21 3 29 1

6 24 14 8 22 2

7 20 15 6 23 2

TABLE 4‐3 The weight table of preserving 1 MSB bit

Distance Weight Distance Weight Distance Weight Distance Weight

0 64 8 16 16 4 24 2

1 32 9 16 17 4 25 1

2 32 10 8 18 4 26 1

3 32 11 8 19 4 27 1

4 32 12 8 20 2 28 1

5 16 13 8 21 2 29 1

6 16 14 8 22 2

7 16 15 4 23 2

4.5. Aggregation Iteration

The aggregation based method refines the depth result by iteratively aggregating

the matching cost. The cost aggregation formula is defined as

 ሺ4.7ሻ

,where Costt and Costt+1 is the aggregated cost at iteration t and t+1, and r are the width

and height of the aggregation window. The iterative aggregation poses a challenge for

,ݔ௧ାଵሺݐݏ݋ܥ ,ݕ ݀ሻ ൌ ෍ ෍ ݔ௧ሺݐݏ݋ܥ ൅ ݅, ݕ ൅ ݆, ݀ሻ · ߱௖௢௟௢௥ሺݔ, ,ݕ ݅, ݆ሻ
௥

௝ୀି௥

௥

௜ୀି௥

,ݔ௖௢௟௢௥ሺܦ ,ݕ ݅, ݆ሻ ൌ ห ሺܻ௫,௬ሻ െ ሺܻ௫ା௜,௬ା௝ሻห ൅ ห ሺܷ௫,௬ሻ െ ሺܷ௫ା௜,௬ା௝ሻห ൅ ห ሺܸ௫,௬ሻ െ ሺܸ௫ା௜,௬ା௝ሻห

26

real-time hardware design due to the inter-iteration dependence which limits the

parallelism and the huge memory storage and wide bandwidth requirement. Hence, the

reduction of aggregation iterations is important issue.

Fig. 4‐7 The error rate with the aggregation iteration and window size

The best number of cost aggregation iteration is based on the window size and

aggregation algorithm. Fig. 4-7 shows the error rate distribution over the aggregation

iteration and window size plane based on the ADSW. From the figure, the best iteration

number with the lowest error rate is related to the support window size. The cost

aggregation with the smaller window size requires more iterations to achieve lower

error rate. On the opposite, the aggregation with larger window size requires fewer

iterations. Moreover, the area with lowest error rate exists only with larger window size.

Hence, the performance with larger window size is better than smaller size.

5

7

9

11

13

15

17

21

25

29

33

37

41

1 4 7 10 13 16 19 22 25 28 31 34 37

40 ‐50

30 ‐40

20 ‐30

10 ‐20

0 ‐10

5

7

9

11

13

15

17

21

25

29

33

37

41

1 4 7 10 13 16 19 22 25 28 31 34 37

40‐50

30‐40

20‐30

10‐20

0‐10

5

7

9

11

13

15

17

21

25

29

33

37

41

1 4 7 10 13 16 19 22 25 28 31 34 37

60‐80

40‐60

20‐40

0‐20

5

7

9

11

13

15

17

21

25

29

33

37

41

1 4 7 10 13 16 19 22 25 28 31 34 37

60‐80

40‐60

20‐40

0‐20

27

Fig. 4‐8 the minimum iteration with different size of support window

Fig. 4-8 shows the minimum iteration to achieve the lowest error rate. The trend of

the curve is also plotted on the figure. For the all evaluation regions and the rank, the

minimum number of iteration is reduced while the window size increased. Note that if

the window size is larger than 39, only one aggregation iteration is required to achieve

the lowest error rate. However, it is tough for hardware design to adopt such a larger

window size and more than one iteration. Hence, the design must trade some

performance with this. As a result, the adopted window size and the number of

aggregation iteration are 31 pixels and 1 respectively for this design. The performance

is acceptable from Fig. 4-7 and Fig. 4-8.

Non‐Occluded All

Discontinuities RANK

Support Window Size Support Window Size

Support Window SizeSupport Window Size

0

5

10

15

20

25

30

35

11 15 19 23 27 31 35 39 43 47 51 55 59

0

5

10

15

20

25

30

35

11 15 19 23 27 31 35 39 43 47 51 55 59

0

1

2

3

4

5

6

7

8

11 15 19 23 27 31 35 39 43 47 51 55 59

0

2

4

6

8

10

12

14

16

18

20

11 15 19 23 27 31 35 39 43 47 51 55 59

28

4.6. Two‐Pass Cost Aggregation Approximation

The window based cost aggregation sums up the cost over the support window

with related weight. The process requires high computational resources. Fortunately,

the process of window based aggregation is separable [44]. The original formula is

written as equation (4.7). The separate aggregation is written as equation (4.8) and

(4.9). The first aggregation is processed with vertical direction and the second

aggregation is with the horizontal direction. The separate cost aggregation can reduce

the computation complexity. For instance, if the window size is (r+1) * (r+1) and the

disparity range is D. The original complexity is proportional to O(r2D). For the separate

aggregation, the complexity is proportional to O(2rD). Besides, this approximation also

helps reducing the internal bandwidth of the hardware design.

 ሺ4.8ሻ

 ሺ4.9ሻ

4.7. Overall Simulation Result

 TABLE 4‐4 the effect of different techniques

Method ET Error Rate % Exec.
Time(sec)TSUKUBA VENUS TEDDY CONES

Original

0

1.85 1.19 13.3 9.79 95.65
+MC+2P 3.47 0.91 14.3 11.2 4.75

+MC+2P+ Manhattan 3.08 0.59 14 10.1 3.12
+MC+2P+ Manhattan +Truc(64,2) 3.03 0.61 14 10.1 2.52

+MC+2P+ Manhattan+Truc(64,1) 3.06 0.66 13.9 10.1 1.84
Original

1

18.8 8.40 23.9 19.7 95.65
+MC+2P 12.2 7.95 21.4 18.0 4.75

+MC+2P+ Manhattan 11.1 7.22 21.7 16.8 3.12
+MC+2P +Manhattan +Truc(64,2) 11.0 7.22 21.6 16.8 2.52

+MC+2P +Manhattan +Truc(64,1) 11.2 7.17 21.4 16.7 1.84

Costtା1ሺx, y, dሻ ൌ ෍ Tሺx, ൅i y, dሻ · ωሺx, y, i, 0ሻ
୰

iୀି୰

Tሺx, y, dሻ ൌ ෍ Costtሺx, y ൅ j, dሻ · ωሺx, y, 0, jሻ
୰

jୀି୰

29

5. Data Reuse Analysis of Hardware Implementation

5.1. Overview

External memory bandwidth and internal memory size have been major

bottlenecks in designing VLSI architecture for real-time stereo matching hardware

because of large amount of pixel data and disparity range. To address these bottlenecks,

this chapter explores the impact of data reuse on disparity-order and pixel-order with

the partial column reuse (PCR) and vertically expanded row reuse (VERR) techniques

we proposed. The analysis result suggests that the disparity-order reuse with both PCR

and VERR techniques is suitable for low memory cost and low external bandwidth

design, whereas the pixel-order reuse with both techniques is more suitable for low

computation resource requirement. However, the implementation of disparity-order

requires high internal bandwidth. Hence, our final implementation adopted a hybrid of

both the disparity-order and pixel-order reuse with VERR technique.

5.2. Architecture Overview

Fig. 5‐1 the overview of hardware architecture

30

On implementing aggregation based method under real-time constraint, there are

many solutions to the data reuse issue. We will use the hardware architecture shown in

Fig. 5-1 to explain different solutions.

In the matching cost computation, if data reused along the disparity axis is

preferred, the computation of all the matching costs of a pixel is computed before

jumping to the next pixel. This allows the data within the matching cost support

window to be reused. However, the cost aggregation sums the initial matching costs of

the same disparity together, which would prefer the initial costs to be output along the

spatial X-Y plane than the disparity axis. As a result, to compute the aggregated cost

within an aggregation window, all the matching costs at each disparity must be stored

before the aggregation can be performed. These initial matching costs form a cuboid in

the disparity-spatial D-X-Y space. The volume of this cube represents the memory size

needed to store the initial costs. One way to reduce the storage requirement is to avoid

the conflict in data reuse direction. For instance, change the reuse direction in the

matching cost computation to the X-Y plane so that it meets the processing direction in

the cost aggregation. Although doing so removes the conflict between the matching

cost computation and the cost aggregation, the conflict between the cost aggregation

and the disparity computation exists. To determine the disparity of a pixel, the disparity

computation needs to have all the aggregated matching costs at each disparity for that

pixel. However, the aggregated costs are generated in the X-Y plane direction, which is

different from the direction preferred by the disparity computation. Consequently,

additional storage would be required to store the aggregated costs. These conflicts in

the data generation and reuse directions play a key role in determining the storage

requirement. Therefore, it is important to derive the best data reuse strategy which

resolves these conflicts so that the storage requirement can be minimized.

31

5.3. Matching Cost Computation Reuse

The data reuse in the matching cost computation can be categorized into two types

according to the reuse order. The details of these data reuse method are explained

below.

5.3.1. Disparity-Order Reuse

Fig. 5‐2 the two data reuse directions with different size of support window

 The disparity-order reuse reuses the data in the matching window of different

disparities. Fig. 5-2(a) illustrates how disparity-order reuse works. When we compute

the disparity of a pixel in the left image, the matching window in the right image would

slide leftward within the disparity range. In other words, the matching cost of different

disparities for a pixel in the left image is first computed. Then the matching cost

computation of the next pixel in the left image is performed. With the disparity-order

reuse, the overlapped data within the matching window in the right image shown in Fig.

5-2(a) can be reused to compute the matching cost at different disparities. As a result, if

Left Image Right Image Y

D

Matching Cost

X

Y

X

Y

Left Image Right Image Y

D
X

Y

X

Y
Matching Cost

(a) Matching Cost Generating in Disparity Direction

(b) Matching Cost Generating in XY Plane

Data Reuse Region
X

X
Data Reuse Region

32

the pixel data are stored in external memory, there is no need for repeating accesses of

the overlapped pixels. Hence, the bandwidth requirement to external memory can be

reduced. However, the order of matching cost generation is different from the order of

the matching cost consumption in the following cost aggregation step. This would

result in additional memory storage requirement.

5.3.2. Pixel-Order Reuse

Comparing to the disparity-order reuse, the pixel-order reuse reuses the data

overlapped by the neighboring matching window in both left and right images. Fig.

5-2(b) illustrates the detail of the pixel-order reuse. The matching cost of the same

disparity for each pixel is first computed. Then the cost of the next disparity for each

pixel is computed. As a result, the matching window in the left and the right images

both slides synchronously with the same disparity offset. With the pixel-order reuse, the

overlapped data within the matching windows shown in Fig. 5-2(b) can be reused.

Therefore, the pixel-order reuse can also reduce the external memory bandwidth

requirement. In contrast to the disparity-order reuse, the order of matching cost

generation is the same as the order of the cost consumed by the following cost

aggregation step. Hence, the buffer size between the two steps can be reduced.

However, the data reuse can only be exploited during the cost computation of one

single disparity. There is no data reuse between the computations of different disparities.

Once all the computation of the previous disparity has been completed for all the pixels

in the whole image, pixel data have to be read from the external memory again. Unless

all the previously read pixel data could be stored within the internal memory, otherwise

repeating external memory accesses are inevitable.

33

5.4. Cost Aggregation Data Reuse

In addition to the data reuse in the matching cost computation, there are two data

reuse methods in the cost aggregation. The details of these two data reuse methods are

explained as follows.

5.4.1. Partial Column Reuse (PCR)

The partial column reuse method reduces the local memory size in the cost

aggregation by distributing the computation of aggregated cost to each column. Instead

of computing the aggregated cost after all the initial costs in an aggregation window are

available, the PCR computes the partial sum of a column after the initial costs of this

column are available. As a result, the size of the local memory can be reduced from a

window to only one column. Moreover, the partial sum of each column can contribute

to the aggregated cost of multiple overlapped windows. Storing partial column cost

requires less local memory size than storing all the initial matching costs in a column.

Fig. 5-3 illustrates an example of the PCR with a 5x5 aggregation window size. An

aggregated cost requires the partial sum of five initial cost columns. With the PCR, the

current partial column sum in Fig. 3 can be reused to contribute to the aggregated cost

of windows 1 to 5.

Fig. 5‐3 The partial column reuse (PCR) in 5x5 aggregation window

Aggregation Windows Window 1 Window 2

Window 3 Window 4 Window 5

34

5.4.2. Vertically Expanded Row Reuse (VERR)

The vertically expanded row reuse reduces the bandwidth requirement to the cost

aggregation engine by deliberately access additional rows of initial costs. If there’s no

VERR, when the aggregation finishes processing the current row and jumps to the next

row, the overlapped data between the windows at the previous row and the current row

have to be read from the cost computation engine again. Fig. 4 shows an example of the

situation that the data are overlapped. To avoid accessing the already accessed costs, the

VERR vertically expand the rows of initial costs to be read so that they can be reused to

compute multiple rows of aggregated cost.

Fig. 5‐4 Vertically Expanded row reuse(VERR)

Fig. 5-4 shows how VERR reduces redundant access of the overlapped data.

Without the VERR, most of the data in the windows are overlapped for many times.

Consequently, these overlapped data are read repeatedly multiple times. In contrast,

with the VERR, the portion of overlapped data becomes much smaller than the case

without the VERR. Moreover, the overlapped data in the VERR case only overlap once.

This implies that with the VERR, the repeating accesses of the overlapped data would

be fewer than the case without the VERR.

35

Fig. 5-5 plots the relationship between the average access count of an initial

matching cost and the value k given an aggregation window size of 25x25. The value k

represents the number of expanded rows. It can be observed that the average access

count decreases as k increases. This suggests that with more rows expanded, less

bandwidth is needed. However, increasing the value of k will also increase the local

memory size and computing resource requirement.

Fig. 5‐5 The average access count versus the number of expanded pixel

5.5. Comparison

TABLE I compares the estimated memory size and bandwidth requirement of the

disparity-order and pixel-order reuse methods. The target disparity image is 352x288

pixels large with 64 disparity levels. The real-time constraint is 30 fps. The architecture

is assumed to operate at 100MHz clock with a 32-bit data port to the external memory.

The size of support window in the matching cost computation and cost aggregation are

9x9 and 25x25 pixels respectively.

5.6. Summary

This chapter explores the impact of disparity-order and pixel-order data reuse in

the matching cost computation and proposed the partial column reuse (PCR) and

0

5

10

15

20

25

30

0 5 10 15 20 25

A
ve
ra
ng
e
A
cc
es
s
Co

un
t

Expanded Pixels

Access Count VS Expanded Pixels

36

vertically expanded row reuse (VERR) techniques for the cost aggregation. The

analysis and comparison conclude that the architecture using the disparity-order reuse

with both the PCR and VERR techniques is suitable for the design of low memory cost

with high computation resource. On the other hand, the architecture using pixel-order

reuse with VERR technique requires less computation resource, but needs large internal

memory in storing the aggregated cost.

TABLE 5‐1 the result of approximated color distance

Section Property
Disparity-Order Pixel-Order

Original +PCR +VERR +PCR
+VERR Original +PCR +VERR +PCR

+VERR

Step 1 Internal Memory
Size (KBytes) 2.4 2.4 2.6 2.6 2.2 2.2 2.4 2.4

Bandwidth
Requirement from
External DRAM
(MBytes/sec)

3.3 3.2 0.9 0.9 207.9 207.9 10.1 10.1

Step 2 Internal Memory
Size (KBytes) 40.0 1.6 44.8 1.8 0.6 0 1.8 0.1

Bandwidth
Requirement from
Cost Computation
Engine
(MBytes/sec)

158.7 158.7 44.3 44.3 158.7 158.7 9.2 9.2

Step 3 Internal Memory
Size (KBytes) 0.1 0.1 0.1 0.1 228.1 0.0 228.1 228.1

Total

Internal Memory
Size (KBytes) 42.5 4.1 47.6 4.5 230.9 2.2 232.3 230.5

Bandwidth
Requirement from
External DRAM
(MBytes/sec)

3.3 3.2 0.9 0.9 207.9 207.9 10.1 10.1

Real-time
Constraint (30 fps) Meet Meet Meet Meet Fail Fail Meet Meet

37

6. Hardware Implementation

6.1. Overview

Fig. 6‐1 the overview of the hardware design

The architecture of the design is shown in Fig. 6-1. The design of the MCADSW

contains five major parts, which are the arbitration, memory controller, census

transform, weight generation, and the cost aggregation. The memory controller

communicates with the bus and the module granted by the arbiter. For the inside of each

part, the blue block is the combinational logic and control of the finite-state-machine

(FSM). The red block is the memory buffer used by each part. The detail will be

discussed in the rest of this chapter.

38

6.2. Functional Block

This chapter introduces the details of the hardware implementation, including the

input and output control, census transform, weight generating, aggregation, and

winner-takes-all.

6.2.1. Mini-Census Transform

Fig. 6‐2 the module of census transform for left and right image

 Fig. 6-2 shows the architecture of the mini-census transform. This architecture

contains three blocks: input image buffer, update control and mini-census transform.

The mini-census transform compares 7 pixels distributed within 5x5 window to

calculate one census result. The generation of one census result requires multiple loads

from the input image data. Therefore, to reduce the times of data load from the input

image, the input is buffered and reused. The input controller stores the input image in

the register first. After one word of the data is stored in the register, it will be transferred

to the memory buffer. The output control reads the data from the buffer to the register

and census block. The register stores the data of center pixels, and the other pixels are

transferred to census block. The census block compares the pixels to the center pixels,

and then it generates the comparison result. This update control maintains the content

of the memory buffer. The update control contains a table storing the validation for each

39

column of the memory buffer. The access of the memory buffer from input and output

control is prohibited without checking the status of the validation table. This favors the

synchronization between the input and output control.

6.2.2. Weight Generation

Fig. 6‐3 the module of weight generation of vertical and horizontal weights

Fig. 6-3 shows the architecture of the weight generation. The architecture is

similar to the architecture of census transform discussed in 6.2.1. However, there are

two differences. The first difference is that the input control requires three dimension of

color space. Therefore, there should be three input controls and three input buffers. The

second difference is that there is additional buffer for output control, which is used for

horizontal weight generation. The input control is similar to the one in census transform,

only the address control and data size is slight different. After the input buffer is ready,

the weight generation block starts to calculate the vertical weight and horizontal weight.

The weight generation firstly loads the image data from the input image buffer to

40

generate the vertical weight by looking up the weight table. The input Y, U, and V

images are also stored in the BUFFYUV during the generation of vertical weight. After

the vertical weight is generated, the horizontal weight is generated by reading the buffer

BUFFYUV.

6.2.3. Aggregation and Winner-Takes-All

Fig. 6‐4 the module of cost aggregation and its processing element

The Fig. 6-4(a) shows the architecture details of the aggregation and

winner-takes-all(WTA). At first, the hamming distance is calculated by the left and

right census results, which are CSL and CSR on the figure. The 0~30 hamming

distances or called initial cost are sent to the processing element. And then the vertical

aggregated cost is calculated by the summation of the shifted initial costs. Fig. 6-4(b)

shows the detail of the PE. The initial costs are firstly shifted by the associated weights,

and then they are summed together. The calculated vertical aggregated cost will be

stored in a ping-pong buffer. The second pass aggregation reads the vertical aggregated

cost from the ping-pong buffer. The same, the horizontal aggregated cost is shifted and

summed. The final cost will be sent to the winner-takes-all block, which compares the

Disparity Reg

CSL0~30 VCost0~30PE

VW0

PE

VW1

PE

VW2

PE

VW3

PE

VW7

PE
VW4

CSL0~30
CSR0~30

CSL0~30
CSR0~30

CSL0~30
CSR0~30

CSL0~30
CSR0~30

CSL0~30
CSR0~30

PE

HW0

VCost0~30 PE

HW1

VCost0~30 PE

HW2

Depth

Min Cost Buffer

>>
Disparity

>>
VW0

>>

>>

>>

>>

>>

CSR0~30

Winner-Takes-All

Cost0

Cost0~30

Cost0~30

Cost0~30

Cost0~30

Cost0~30

Cost0~30
HCost0~30

HCost0~30

HCost0~30

HCost0~30

HCost0~30

HCost0~30

VW1

Cost1

VW2

Cost2

VW3

Cost3

VW4

Cost4

VW30

Cost30

+

+

+

+

s0

s1

s2

s3

s4

s5

s6

s7

+

s29

s30

+

t00

+

+

t01

t02

+

t03

t04

+

t05

t14

t15

+
v0u1

+

u2

u3

+

u6

u7

+

+

+

v1

v2

v3

+

(a) Aggregation and Winner-Takes-All (b) Processing Element of Cost Aggregation

Out

41

cost with the minimal cost. If the aggregated cost is smaller than the minimum cost, it

will replace the minimum cost, and become the disparity candidate, which is stored in

the disparity register. The final depth is the shifted disparity normalized to the range of

the luminance.

Fig. 6-5 shows the detail of the ping-pong buffer in Fig. 6-4. There are 48 entries

for each of the buffer. The figure shows the status of each entry. The color of white,

light blue, deep blue and orange means that the entry is empty, being written, ready for

reading, and being read respectively. At the first, all the entries are empty, and then the

vertical aggregated cost is written into the buffer. After all the entries of the buffer 1 is

all ready, the vertical weight will be written into the buffer 2. To generate three

horizontal aggregated cost, 33 ready entries are required. Therefore, the vertical weight

will be calculated after 40 entries are ready. After that, three entries will be cleared

since the data are available anymore. The speed of update and consumption of the

buffer are at balanced. Hence, the weight can be calculated continuously.

Fig. 6‐5 the ping‐pong buffer of cost aggregation module

6.2.4. Input and Output Control

 Fig. 6-6 shows the concept of the input and output control used by most of the

modules in this design. The control deals with the handshaking mechanism which will

be discussed in 6.3. Firstly, the state is at WAIT state. The input control waits for the

Address Address

Buffer 1 Buffer 2
Empty Write ReadReady Empty Write Ready Read

42

update of invalid column of internal memory, which will be discussed in 6.5.1. Once

the internal memory need an update, the input control sends the request signal to the

transmitter, and wait for the data at the REQUEST state. The state changes to SEND

state while receiving the data. After all, it will return to WAIT state after a transaction.

On the opposite, the output control waits for the validation of internal memory at the

WAIT state. Once is the internal memory is valid, it will send the ready signal to

receiver, and waits for the request at the READY state. It will switch to SEND state

once the request signal is received. The same, it returns to WAIT state after a

transaction.

Fig. 6‐6 the finite‐state‐machine of the input and output control

6.3. Handshaking

In this design, there are three handshaking mechanisms, request-valid,

request-grant, and ready-request, which are shown in Fig. 6-7. The first request-valid is

a one to one communication between two modules. For this mechanism, the receiver

sends the request signal to transmitter, and then the transmitter sends a bunch of data

with the valid signal. The request-valid mechanism is used for transmission of a bunch

data between two modules. The second request-grant is also a one to one

43

communication mechanism. The mechanism of request-grant is that the transmitter

sends the request to receive at first, and then the receiver sends grant signal to the

transmitter. Once the transmitter receives one grant signal, it sends one data. The

difference from request-valid is that the receiver is not guaranteed that it can receive a

bunch of data continuously from the transmitter. Hence, the transmitter must wait for

the receiver. The latest one is the ready-request, which is used for many to one data

communication between several modules. The transmitters send the ready signals to the

receiver. After all the ready signals are received by receiver, the receiver sends the

request signals to the transmitters. Once any of the transmitters receives the request

signal, it sends a bunch of data continuously for certain cycles, which are 384 cycles in

this design. The usage of the ready-request is that it can be used to synchronize the data

from different input path.

In Fig. 6-1, the handshaking between different modules follows the three

handshaking mechanisms we just discussed. The handshaking mechanism between the

input image buffer and the arbiter follow the request-valid since the communications

between them are all one to one and there is no need for arbiter to wait for the input

image buffer. The depth FIFO to the arbiter follows the second request-grant since it

has to wait for the grant for each transmission from the arbiter. The latest ready-quest

mechanism is used between the census transform, weight generating and aggregation

modules. In the aggregation module, the input data paths are from different modules.

To the guarantee the synchronization of different input path, the ready-quest

mechanism is applied.

6.4. Arbitration

The arbitration of the system is based on the hybrid of round-robin and fixed

44

priority strategy. There are six modules sending the request to the arbiter to get grant of

using the bus. The depth FIFO has a fixed and highest priority to use the bus due to the

high penalty of suspending of the aggregation module. If the depth FIFO is full, the

aggregation module, which is the kernel of the system, will be suspended. To avoid this

suspension of kernel, the data of the depth FIFO must be written out as soon as possible.

Hence, it always has the highest priority. As for the other five image buffers follow the

round-robin strategy.

Fig. 6‐7 the handshaking mechanism between different modules

Fig. 6-8 demonstrates the change of the priority with the time line. It can be

observed that the depth FIFO always has the highest priority under any circumstances.

For the other five buffers, the priority rotates if one of them receives the grant from the

arbiter. Take Fig. 6-8 for example, the “CENSUS IMGLY” firstly gets the grant, the

(1) Request ‐> Valid
CLK

DATA

VALID

X X X X 0 1 2 3 4 5 6 7 X X 8 9 ... a b c X X X X

REQ

(Internal)
1 1

(2) Ready ‐> Request

(Internal)
many 1

(3) Request ‐> Grant

(Output)
1 1

45

priority of “CENSUS IMGLY” becomes the lowest of all at the next time. After the

rotation, the next “CENSUS IMGLU” will get the highest priority of the five modules.

However, if this module does not send the request, the priority will be also rotated for

the grant of any module, except for two conditions. One is the module with the lowest

priority gets the grant. The other one is the “DEPTH FIFO” gets the grant.

Fig. 6‐8 the hybrid of round‐robin and fixed priority arbitration strategy

6.5. Memory

6.5.1. Memory Update Mechanism

The update mechanism is a column based cyclic buffer shown in Fig. 6-9. The

update is based on an update table which stores the status of each column of the

memory. The status represents if the column of the memory is active or inactive. The

active column is the column with the data which are being used. The inactive columns

wait for the update. The set and clear pointer stores the set and clear position of the

column.

46

Take the figure for example, the active columns 1~5 are being used. During the

data processing of the active region, the column 6, 7, and 0 will be updated by order.

After the processing window moves toward right direction with 2 columns, the column

1 and 2 will be cleared. This update mechanism works in this design due to the

processing region moves orderly in horizontal direction. However, due to the real-time

constraint, the implementation of this mechanism requires reading and writing the

memory at the same time to speed up the memory update flow.

Fig. 6‐9 the column based cyclic buffer update mechanism

6.5.2. Memory Size

The memory buffer size is one of the most important issues of this design and the

size of it is according to the memory region used in different part shown in Fig. 6-10. In

this figure, the block with the color blue, red, and light yellow represent the

combinational logic, memory buffer and expanded memory buffer respectively. The

memory buffer size is labeled inside the red block. The label represents the buffer size,

and the height multiplied with width.

47

Fig. 6‐10 the memory size of different module

The access region of memory buffer is based on the region of depth being

calculated and the processing window of the combinational logic. To explain this figure

more easily, the detail is discussed from the end to the start. At the right-bottom of the

figure, the evaluation of the depth FIFO, the WTA requires 1x18 horizontal aggregated

cost. The calculation of the horizontal aggregated cost requires 1x(18+30) vertical

aggregated cost. Note that the width of horizontal aggregated cost is extended 30

elements than depth FIFO due to the processing window size is 1x31. Similarly, the

Hamming distance will require (30+1)x48 elements due to the window size of vertical

aggregation is 31x1. Moreover, the memory size is 63 times more than original size due

to the disparity range. Fortunately, the huge memory access region of hamming

distances is calculated on the fly. Hence, the memory buffer of the hamming distances

does not exist; therefore, the problem will be pass-through to the former census buffer.

And this will result in the extension of 63 elements in the censusR buffer. The

48

discussion of the rest of memory access region is almost the same from above

discussion, except for the image buffer used by the census transform. The width of

them is much smaller because of the short data life time. Therefore, the data can be

discarded after the census transform and result in the reduction of the width.

Fig. 6-10 shows the final result of the memory size. The size is labeled inside the

block. The result in this is based on the implementation, such as the memory bank, and

the minimal words of the Register-File. The text in the red block is the memory size just

discussed. In Fig. 6-10, the light yellow block is the extension for the vertically

expanded rows reuse discussed in 5.4.2. Take the CENLBUF in census transform as an

example. The 31*64*6 bits is the memory size without VERR. The 17*64*6 bits is the

extension memory size after applying the VERR. Hence the overall size is 48*64*6 bits.

Note that the memory size 48*64*6 bits is more than the required memory size

48*48*6 bits. The additional 48*18*6 bits is used for the run-time update of the column

based cyclic buffer.

6.6. Implementation Result

Our design is targeted at CIF size, 64 disparity range and 30 frames per second.

The clock rate of the system is 100MHz and the bus width is 32 bits. The

implementation result will be discussed at the rest of this chapter.

6.6.1. External Bandwidth

Fig. 6-11(a) shows the simulation result of the execution cycle with different bus

access latency. From the figure, the curve is divided into two segments, both of which

are proportional to the access latency. However, the slopes of them are different. After

the latency is larger than 5, the buffer for the input latency is not enough. Therefore, the

49

execution cycle increased faster. Fig. 6-11(b) shows the FPS with difference bus access

latency. The system can achieve more than 40 FPS if the average access latency is

smaller than 5.

Fig. 6‐11 the performance with the bus access latency

6.6.2. Area and Gate Counts

 TABLE 6‐1 the implementation result of area and gate counts

module name total area cell Area
memory

size (Byte)
combinational

gate count

Weight Generation 7,002,961 700,596 10,170 37,586

Weight Buffer 2,041,062 634,522 1,485 6,127

Census L 1,243,590 100,250 224 5,004

Census R 1,243,590 100,250 224 5,004

Aggregation+WTA 26,102,290 442,254 0 156,716

Arbiter 38,042 475 0 168

Census Lbuffer 26,226,681 1,842,059 4,608 171,842

Census Rbuffer 26,672,820 1,865,630 4,608 180,195

Total 90,571,035 5,686,036 21,319 562,642

The area and gate count of the simulation result is shown in TABLE 6-1 and Fig.

6-12. The result is synthesized with standard cell library of UMC 90 um. It can be

observed that the aggregation, left census buffer, and right census buffer are dominated

2.91E+06
3.27E+06

3.63E+06

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

0 2 4 6 8 10 12 14 16 18

42

31

28
25

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16 18

50

in this design. The gate count of aggregation and census buffer are large due to the

requirement of high computation resource and complex demultiplexing of the memory

banks.

Fig. 6‐12 the percentage of the memory area and combinational gate counts

6.7. Performance Result

TABLE 6-2, TABLE 6-3 shows the overall comparison of different

implementation result. In TABLE 6-2 most of the implementations are using the

programmable GPU. The programmable GPU favors high bandwidth and computation

resource. The image size, disparity range, and FPS of all designs are quite different. It is

difficult to compare difference implementations. Therefore, the million disparity

evaluation (MDE) method has been used. TABLE 6-3 shows the error rate of different

implementation result. The test sequences are from the middlebury vision website.

6.7%

1.1% 0.9% 0.9%

27.9%

0.0%30.5%

32.0%

14.5%

15.1%

2.1%
2.1%

0.0%
0.0%

33.1%

33.1%

Weight Generation

Weight Buffer

Census L

Census R

Aggregation+WTA

Arbiter

Census Lbuffer

Census Rbuffer

51

TABLE 6‐2 the error rate comparison of different method

DDeessiiggnn IImmpplleemmeennttaattiioonn IImmaaggee SSiizzee DDiissppaarriittyy
RRaannggee FFPPSS MMDDEE//ss

PPrrooppoosseedd HHaarrddwwaarree 335522xx228888 6644 4422 227722..55

TrellisDP[45] Hardware (FPGA) 320x240 128 30 294

HBP[43] Hardware (FPGA) 320x240 32 30 73.7

EffectAggr [46] Intel C2D 2.14 GHz 320x240
463x370

16
75

5
1.67 18.9

RealDP[35] AthlonXP 2800 384x288 50, 100 33, 18.9 183, 209

CBiased[36] Geforce 7900 512x512
256x256

64, 96
64, 96

35, 24
122, 87

588, 605
512, 548

SepLaplacian[37] Geforce 7900 256x256
512x512

64, 96
64, 96

121, 87
38, 27

507, 547
637, 679

RealTimeBP[42] Geforce 7900 320x240 16 16 19.6

RealTimeGPU[38] Radeon 9800,
P4 3GHz 320x240 16 16 19.6

ReliableGPU[34] Radeon 9800 - - 16.6 -

GradientGuided[24] Radeon 9800XT 512x384 40 14.7 117

TABLE 6‐3 the performance comparison of different method

DDeessiiggnn PPuubblliiccaattiioonn TTSSUU VVEENN TTEEDD CCOONN SSAAWW MMAAPP

PPrrooppoosseedd -- 22..8800 00..6644 1133..77 1100..11 2.11 3.21

TrellisDP[45] MUE 07 2.63 3.44 - - 1.88 0.91

HBP[43] Lecture Notes 2.85 1.92 - - 6.25 6.45

EffectAggr [46] ICPR 08 2.96 3.53 10.7 4.92 - -

RealDP[35] CVPR 04 2.85 6.42 - - 6.25 6.45

CBiased[36] ICIP 07 4.77 10.2 - - 0.82 0.65

SepLaplacian[37] ICME 07 13.0 - - - - -

RealTimeBP[42] BMVC 06 3.40 1.90 13.2 11.6 - -

RealTimeGPU[38] 3DPVT 06 4.22 2.98 14.4 13.7 - -

ReliableGPU[34] CVPR 05 1.36 1.09 - - 2.35 0.55

GradientGuided[24] 3DIM 05 2.48 3.91 - - 1.63 0.73

Ground

HB

SepLap

Reliab

Fig. 6‐13 th

d Truth

BP

placian

leGPU

he impleme

entation res

52

Proposed Me

RealDP

RealTimeB

GradientGui

sult with dif

ethod

BP

ided

fferent met

Re

hod

TrellisDP

CBaised

ealTimeGPU

53

Conclusion

The main contribution of this thesis is to propose a hardware friendly algorithm

and an architecture design for real-time local stereo matching. Our design gives a

quality depth result for real-time application. The proposed algorithm reduces about

95.14% computation complexity comparing to the original ADSW, and the average

quality drop with 1 disparity tolerance is about 0.515%. The implemented design can

achieve 43 frames per second and 64 disparities with CIF image size under 100MHz

clock rate. The chip consumes totally 562,642 K gate counts and 21.3K Bytes internal

memory. Besides, we also consider the bandwidth issue in the system level. The final

bandwidth requirement is only 45MB/s, which is about ninth of the total bandwidth,

and can be easily integrated with other IP for different kinds of applications.

Future Work

Although our algorithm gives a quality result, the disparity map at the occluded

area may be incorrect due to the lack of disparity refinement. Besides, the depth result

may be unreliable if the object is tiny or lack of color information. On the other hand,

the chip area is large and dominated by the large internal storage and multiple RAM

banks. Therefore, the unreliable disparity map area and expensive cost of internal

storage size may limit its application.

There are two issues remained in our work. First, the practicability for different

applications needs to be investigated, such as the scene reconstruction and 3D-TV,

which may require smooth depth on edge and occluded area. The second issue is the

expensive cost of internal memory size. To reduce the internal memory size, there are

three feasible plans, for example, decreasing the bits of census, truncating the

54

intermediate result of cost aggregation, and using memory with single port instead of

dual port. However, the reduction of the memory area is still limited under the data

reuse strategy of the proposed architecture. For a low memory cost implementation,

further research for stereo algorithm or architecture is required.

55

Reference

[1] P. Kauff, N. Brandenburg, M. Karl, and O. Schreer, “Fast hybrid block- and pixel recursive

disparity analysis for real-time applications in immersive teleconference scenarios,” in

Proceedings of 9 th International Conference in Central Europe on Computer Graphics

Visualization and Computer Vision, pp. 198-205, 2001.

[2] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka, “A stereo machine for video-rate

dense depth mapping and its new applications,” in Proceedings of the IEEE International

Conference on Computer Vision and Pattern Recognition, 1996.

[3] M.Z. Brown, D. Burschka, and G. Hager, “Advances in Computational Stereo,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no.8, pp. 993-1008,

August 2003.

[4] D. Scharstein and R. Szeliski, "A Taxonomy and Evaluation of Dense Two-Frame Stereo

Correspondence Algorithms," International Journal of Computer Vision, vol. 47, pp. 7-42,

2002.

[5] H. Hirschmuller and D. Scharstein, "Evaluation of Cost Functions for Stereo Matching," in

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 17-22

June 2007

[6] R. Zabih and J. Woodfill, “Non-parametric Local Transforms for Computing Visual

Correspondence,” in Proceedings of third European Conference on Computer Vision, vol. 2,

pp. 151–158, 1994.

[7] G. Egnal, "Mutual information as a stereo correspondence measure," Computer and

Information Science, University of Pennsylvania, Philadelphia, USA, Tech. Rep.

MS-CIS-00-20, 2000.

56

[8] M. Hariyama, H. Sasaki, and M.Kameyama, “Architecture of a stereo matching VLSI

processor based on hierarchically parallel memory access,” The 2004 47th Midwest Symposium

on Circuits and Systems, vol 2, pp. II245- II247, 2004.

[9] M. Okutomi and T. Kanade, "A locally adaptive window for signal matching," International

Journal of Computer Vision, vol. 7, pp. 143-162, 1992.

[10] M. Hariyama, T. Takeuchi, and M. Kameyama, "Reliable stereo matching for highly-safe

intelligent vehicles and its VLSI implementation," in Proceedings of the IEEE Intelligent

Vehicles Symposium. IV, pp. 128-133, 2000.

[11] P. B. Chou and C. M. Brown, "The theory and practice of Bayesian image labeling,"

International Journal of Computer Vision, vol. 4, pp. 185-210, 1990.

[12] H. Tao, H. S. Sawhney, and R. Kumar, "A global matching framework for stereo

computation," Proc. Int’l Conf. Computer Vision, vol. 1, pp. 532-539, 2001.

[13] A. F. Bobick and S. S. Intille, "Large Occlusion Stereo," International Journal of Computer

Vision, vol. 33, pp. 181-200, 1999.

[14] S. B. Kang, R. Szeliski, and J. Chai, "Handling Occlusions in Dense Multi-View Stereo," in

Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, vol. 1, 2001.

[15] K.J. Yoon and I.S. Kweon, “Adaptive Support-weight Approach for Correspondence search,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006.

[16] M. Gerrits, and P. Bekaert, "Local Stereo Matching with Segmentation-based Outlier

Rejection," in Proceedings of the 3rd Canadian Conference on Computer and Robot Vision, pp.

66-66, 07-09 June 2006.

[17] F. Tombari, S. Mattoccia, and L. Di Stefano, "Segmentation-Based Adaptive Support for

Accurate Stereo Correspondence," Lecture Notes in Computer Science, vol. 4872, p. 427,

2007.

57

[18] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda, “Classification and evaluation of

cost aggregation methods for stereo correspondence," in Proceedings of IEEE International

Conference on Computer Vision and Pattern Recognition, June 24-26, 2008

[19] ISO/IEC JTC1/SC29/WG11 N6501, "Requirements on Multi-view Video Coding," Redmond,

USA, July 2004.

[20] O. Veksler, "Fast variable window for stereo correspondence using integral images," in

Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, vol.1, pp. I-556-I-561

[21] S. Kang, R. Szeliski, and J. Chai, “Handling occlusions in dense multi-view stereo,” in

Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pp. 103–110, 2001.

[22] H. Hirschmuller, P. R. Innocent, and J. Garibaldi, "Real-Time Correlation-Based Stereo

Vision with Reduced Border Errors," International Journal of Computer Vision, vol. 47, pp.

229-246, 2002.

[23] S. Chan, Y. Wong, and J. Danie, "Dense stereo correspondence based on recursive adaptive

size multi-windowing," Image and Vision Computing New Zealand, pp. 26-28, 2003.

[24] M. Gong and R. Yang, "Image-gradient-guided real-time stereo on graphics hardware," in

Proceedings of Fifth International Conference on 3-D Digital Imaging and Modeling, pp.

548-555, 2005.

[25] C. Demoulin and M. Van Droogenbroeck. “A method based on multiple adaptive windows to

improve the determination of disparity maps,” in Proceedings of IEEE Workshop on Circuit,

Systems and Signal Processing, pp. 615–618, 2005.

[26] Y. Boykov, O. Veksler, and R. Zabih, "A variable window approach to early vision," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 1283-1294, 1998.

58

[27] J. C. Kim, K. M. Lee, B. T. Choi, and S. U. Lee, "A Dense Stereo Matching Using Two-Pass

Dynamic Programming with Generalized Ground Control Points," in Proceedings of IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, 2005.

[28] M. Okutomi, Y. Katayama, and S. Oka, "A Simple Stereo Algorithm to Recover Precise

Object Boundaries and Smooth Surfaces," International Journal of Computer Vision, vol. 47,

pp. 261-273, 2002.

[29] Y. Ohta and T. Kanade, "Stereo by intra- and inter-scanline search using dynamic

programming," IEEE transactions on pattern analysis and machine intelligence, vol. 7, pp.

139-154, 1985.

[30] S. Roy and I. J. Cox, "A Maximum-Flow Formulation of the N-Camera Stereo

Correspondence Problem," in Proceedings of the Sixth International Conference on Computer

Vision, 1998.

[31] Y. Boykov, O. Veksler, and R. Zabih, "Fast Approximate Energy Minimization via Graph

Cuts," IEEE transactions on pattern analysis and machine intelligence, pp. 1222-1239, 2001.

[32] Y. Boykov and V. Kolmogorov, "An Experimental Comparison of Min-Cut/Max-Flow

Algorithms for Energy Minimization in Vision," IEEE transactions on pattern analysis and

machine intelligence, pp. 1124-1137, 2004.

[33] H. Hirschmuller, "Improvements in real-time correlation-based stereo vision," IEEE Workshop

on Stereo and Multi-Baseline Vision, pp. 141-148, 2001.

[34] G. Minglun and Y. Yee-Hong, "Near real-time reliable stereo matching using programmable

graphics hardware," in Proceedings of IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, vol.1, pp. 924-931, 2005.

[35] S. Forstmann, Y. Kanou, O. Jun, S. Thuering, and A. Schmitt, "Real-Time Stereo by using

Dynamic Programming," in Proceedings of Computer Vision and Pattern Recognition

Workshop on Real-Time 3D Sensor and Their Use, , 2004, pp. 29-29, 2004.

59

[36] L. Jiangbo, G. Lafruit, and F. Catthoor, "Fast Variable Center-Biased Windowing for

High-Speed Stereo on Programmable Graphics Hardware," in Proceedings of IEEE

International Conference on Image Processing, pp. VI - 568-VI – 571, 2007

[37] L. Jiangbo, S. Rogmans, G. Lafruit, and F. Catthoor, "Real-Time Stereo Correspondence using

a Truncated Separable Laplacian Kernel Approximation on Graphics Hardware," in

Proceedings of IEEE International Conference on Multimedia and Expo, pp. 1946-1949,

2007.

[38] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister, "High-quality real-time stereo using

adaptive cost aggregation and dynamic programming," in Proceedings of the Third

International Symposium on 3D Data Processing, Visualization, and Transmission

(3DPVT'06), pp. 798-805, 2006.

[39] K. Konolige, “Small Vision Systems: Hardware and Implementation,” in Proceedings of Eighth

Int'l Symp. Robotics Research, Oct. 1997.

[40] N. Chang, T. M. Lin, T. H. Tsai, Y. C. Tseng, and T. S. Chang, "Real-Time DSP

Implementation on Local Stereo Matching," in Proceedings of IEEE International Conference

on Multimedia and Expo, pp. 2090-2093, 2007.

[41] M. Hariyama, T. Takeuchi, and M. Kameyama, "VLSI processor for reliable stereo matching

based on adaptive window-size selection," in Proceedings of IEEE International Conference

on Robotics and Automation, vol. 2, 2001.

[42] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister, "Real-time global stereo

matching using hierarchical belief propagation," in Proceedings of The British Machine Vision

Conference, 2006.

[43] S Park, C Chen, and H Jeong. “VLSI Architecture for MRF Based Stereo Matching,” Lecture

Notes in Computer Science, vol.4599, no., pp.55-64 2007

60

[44] M. Gong, R. Yang, and L. Wang, "A Performance Study on Different Cost Aggregation

Approaches Used in Real-Time Stereo Matching," International Journal of Computer Vision,

vol. 75, pp. 283-296, 2007.

[45] S. Park, H. Jeong, K. Pohang, and S. Korea, "Real-time Stereo Vision FPGA Chip with Low

Error Rate," Proceedings of the 2007 International Conference on Multimedia and Ubiquitous

Engineering, pp. 751-756, 2007.

 [46] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda. “Near real-time stereo based on

effective cost aggregation,” in Proceedings of the IEEE International Conference on Computer

Vision and Pattern Recognition, 2008.

61

作 者 簡 歷

姓名: 蔡宗憲

籍貫: 台北市

學歷:

台北市立建國高級中學 (民國 88 年 09 月 ~ 民國 91 年 06 月)

國立交通大學電子工程學系 學士 (民國 91 年 09 月 ~ 民國 95 年 06 月)

國立交通大學電子所系統組 碩士 (民國 95 年 09 月 ~ 民國 97 年 09 月)

著作:

國內會議

[1] T. H. Tsai, Y. C. Chang, and T. S. Chang, “Hierarchical Decision Table for Bad Pixel Detection

in Stereo Vision” in Proceedings of VLSI Design/CAD Symposium, Spring 2007.

[2] T. H. Tsai, Y. C. Chang, Y. C. Tseng, and T. S. Chang, “Census diffusion with segmentation

constraint for disparity estimation in stereo vision,” in Proceedings of Computer Vision,

Graphics, and Image Processing (CVGIP), Aug. 2007.

國際會議

[3] N. Chang, T.M. Lin, T.S. Tsai, Y.C. Tseng, and T.S. Chang, "Real-Time DSP Implementation

on Local Stereo Matching," in Proceedings of IEEE International Conference on Multimedia

and Expo, pp.2090-2093, 2-5 July 2007

[4] T.S. Tsai, N.Y.-C. Chang, and T.S. Chang, "Data reuse analysis of local stereo matching," in

Proceedings of IEEE International Symposium on Circuits and Systems, pp.812-815, 18-21

May 2008

