i * 2% 5 7o PlayStation 3T 52 £ % g x ¥ &
Bl e § B T (7 T H e

Parallelizing Multimedia Applications Using Multistage
Pipeline Madel on PlayStation 3

I
=

iyt toAk

gy FlAH

I

P o3 K| 4 L - & L o~

@ * 2 % %o PlayStation 3 T &2 2A3 5 K oy MR 0 5 4Al

7 T 3 i

Parallelizing Multimedia Applications Using Multistage Pipeline

B

EE

Model on PlayStation 3

S

Student: Cheng-Yu Hung

IO
byl

::T-
TH,
\L.

Advisor: Dr. Chih-Wei Liu

@

T AIART kRt A TR LT

AL~

A-Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

In partial Fulfillment of the Requirements for the Degree of

Master of Science
in
Electronics Engineering
November 2008

Hsinchu, Taiwan, Republic of China

vo¥E o3 R4 L+ - oE L -

)

'~ .

* 2 % 47w PlayStation 3% 5 20 A3 5 K g MU
A0 5 SRR T (T R

Pyrad AL T RlAR BL

iF &

AR d SRR lyEra’%F}’}éP?;ﬁg\—m/ﬁﬁ/z % RS * Lo de® fF47 8 o B

3 e
4 T
=

PR fRAS FV TSR @S PR R B G A hT 0T S 0 AT T
BTG AR > ot T LR WA R ARG g b KA @
S8 - PLo RJE BR RS LG PEERER R E H A R U e h kg

E2Re 5P oA BY UHEREFEY & 4 2 EPE RAIT A KB AT 5 LAY
Jot o ARG EPC AL ER FAILE - 400 S P AL B RN ER F)
B SR AR BN ER AT IR 2 NS SRR B AANERY &

FOPRO S AP RATAGR RAH AT I bR o AP
PlayStation 3 % +5 T &+ 9 I % K% 247 T R H.264 278 o SN+ 0 3F 5
F ool Rk S P R BN E R R AT H ¥ & A1 5 s BT ok FTes
HﬂkﬁﬂﬁfMﬁiﬁﬁﬁﬁkﬁﬂ;#@ﬁ&ﬁ’waﬁ%ﬁﬁﬁﬁ%ﬁag&;
T e SRR S 0 T & AZE T0% B ARSI AL > 11w iR T ST A
85% o 2\ 4 e H.264 275 Bt & B4R AP 2 8 0 28.13 B - 3% H.264 25 BF §)
T N fEFG AT B 25 35 e 1080P B {245 B B i o

Parallelizing Multimedia Applications Using
Multistage Pipeline Model on PlayStation 3

Student: Cheng-Yu Hung Advisor: Dr. Chih-Wei Liu

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

ABSTRACT

Future multimedia applications tend to adopt extremely complex algorithms to process
vast amount of data such as high-definition video. Software solutions are preferred, for they
can rely on software patches to keep up with latest multimedia standards. The development
cost can be reduced and time-in-market €an be extended. However, conventional single core
processors fail to meet real-time ‘requirements. Multicore architectures provide sufficient
computing power and great flexibility -for tomorrow’s complex applications. However,
multicore programming is far more difficult compared to conventional programming which
consider only single instruction stream.Multicore programming is time-consuming and
error-prone. It brings new challenges including inter-core communication, synchronization
and load balancing. In this thesis, we fulfill real-time high-definition H.264 decoding on
PlayStation 3 multicore platform. Several effective strategies are adopted to deal with
multicore programming issues. Multistage pipeline model are utilized to simplify
synchronization, MFC-aware scheduling help reduces communication overhead, while
iterative task migration balance workload among processors. As a result, over 70% of
communication overhead is hided; processor utilization is raised over 85%. Finally, 28.13
times performance gain is achieved compared to original JM source decoder, which can
decode more than 25 1080p high-definition frame per second.

B LRRERTA 3 E R DTS A R R R S AL L e R
B iR S s o

EMESHEED ~FRE RafpffrRlp > tFPE5FR 2 Hh 0 £ AXE
2F s RALEETRMIFTT AR ;’L%*s;\-gi o BRI KIS FRAT KR
BRCRPOBMMEPATRZ? BREELHI T IHASTLLS FE AL L
SR G A e B

BEHME PR EARE PR AT I 0EH N ES g @ g e 4R
??Bw@% FRAFA L FL TR BF AP BB 0 R T A
EFHF v e

BEHARZELZFFHP o BT~ FY 50 Wog o 3 2IRY L B4p 2 42
o BRI R Y B Sk BB SR AT 1 T - TR .

R HT - A Hadd g 740~ P VAN HANK ~ § = 1 2 3»:{,4? o 3B & AP
ERAEEPERROY A S AR LT ME DR o

RS AR g % B S i) 2 BRSPS AR & B
F o BRPE o 2 Bl BRI AR LB TR AR B o i i
T A AR NSRS IR ST

RHTT RAFTHFLA MBI § canid) 201 0 R 3 R BETATAR 079 o

7

RO ’)’jf'ubiﬁ SR o FHANDIRLFEEFLH o

Bois o rmx»v?w»ﬁnrmﬁwmvoua@4~qm»4;iﬁ&ﬁéﬁ?fo

=

1 ¥y

== w22
FEA R

1

5

CONTENTS

INTRODUCTIONtiutetiattte sttt se st bbbt bt h bt h e b e e e et b e ARt AR b e 4R e s b et e b e bt eh bt b eb e e e e nnennenr e 1
1.1 Multimedia APPIICALIONccuiiicieicc et st e s te e e s e e e st e besaesteereeneeseentesrearea 1
H.264 SEANTAIT ..o 2

1.2 MUIICOTE ATCHITECIUIEovieicieic ettt 10
1.3 MUILICOIE PrOGramMMINGccveiuieieieie i ste e steeee e eie st st e teste e et e eseesbestesbeeteeseesbesaesbesbesaeetaeseentesaenreneeans 10
1.4 Streaming Programming MOGEIS...........cciiiiiiiiiicic ittt re et 12
Parallel Stages IMOUEL..........cvcieiie et r e re e e e e teseenne s 12
Multistage PIpeliNE MOEL..........coviiieieciece et nr e 12

LT N 0 T= S T @ (o g o] o PSSR 14
CELL PROCESSOR ...ttt etttk sttt h bbb e bbbkttt e bbbt b e bt se e e neeanenreane s 15
2.1 Cell ATCRITECIUIE ...ttt b ekt b bt n bbb e 15
POWErPC ProCessor EIBMENTSccoeiriiriirircire s 16
SYNergistic ProCessOr EIBMENTS ... i iliiim me e reeeeeeiereese e seese e eee e teseesre e sseerae e eneeseensesrenneas 19

Element INTErcONNECT BUS ..t ey smsar e e saiibse e eensr et 22

Inter Processor ComMMUNICAEION it i ahh ikt i 23

2.2 Cell Programming ENVIFONMENTo it it ame et este e e e e et e tesaestesneetae e enbeseesresre e 25
2.3 RElteU WOIK ..o sk e Ea a0 T dor Don il ket t ettt 28
CELL PROGRAMMING USING MULTISTAGE - PIPELINEAIMODEL........ccoiitiiiiiiieieniiresie s snen 32
3.1 Multistage Pipeling DESIGN FIOWccoiiiiiiie ettt st sae e re e 32
3.2 Multistage Task AIIOCALION.cciiiiieiieieicre sttt et s b e besbeetae e e beseeseesre e 36
TR B 1 = @ 1V T =B Yo 1= (1] 1o SRS 36
I - 1 1Y, o = Ui o] o SR 38
TR T = 1= LT TN \Y/ [T LU F= U T o S 40
H.264 DECODER IMPLEMENTATIONoiitiitiittiteateaitesrenteasesiesmessesees e e asesbs s ssesssessesssanesnesnestesseessesnsanesnesnens 41
4.1 Kernel OPtIMIZALION.......cciciiiiiie ettt se e et st e s besaeete e e esbeseesbesbesbestaeneeseeseenaesrenreas 42
o o o 0] 1 173 S SSRSSR 42

[1 A Lo T33-SR 43

Y o o I O]y 3] o 1=1 0 57- 1o o 1SS 44

4.2 TASK ATOCALION.civiiiicieee bbbt r bbbt b e s 51
ST 1= o (U] [T Yo = 1 (=T o S SSRST 53
4.4 ProcessOr ULHHZATIONcccuiiiiiiiiiee ettt bbbttt 54
4.5 PerformManCe ANAIYSIS.ciuiiiiiieieiisie it e st erie st e te st e e s e e e e e e e tesbesbeaaeetee e eabeseestesbesbeeteeneeneesrenrenrenreas 56
CONCLUSIONS AND FUTURE WORK ...ttt sttt an et anenneane 59

[= == =N L] = T 61

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10
Figure 1-11
Figure 1-12
Figure 1-13
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4

LIST OF FIGURES

H.264 Decoder BIOCK DIAQIaM..........ccciuiiuiieiieieeiicie et se e e e seeste st sre e sne e e s eeesaessesresnens 3
Scanning Order of Residual Blocks within a MacroblocKcccccoveieiciiiii s 4
4x4 Luminance Prediction MOOES........c..oeiiiiiiieinse s 5
16x16 Luminance Prediction MOGES. ... 5
Inter Prediction of Luminance Integer-Pixel, Half-Pixel and Quarter-Pixel Positions................. 7
Inter Prediction of Chrominance SAMPIEScceciiiiiicie i 7
Edge Filtering Order in a MacrobloCKcccciiciiiiiiic e 8
Dependencies in Intra Prediction IMOGEccveiveiiieiisi et sttt sae e sneas 9
Dependencies in Inter Prediction IMOGEcoveiveiiieiise ettt sttt sne s 9
Dependencies in DeblOCKING FILETccviiiiiiieicie e sne s 9
Parallel Stages IMOE........cc.oiiii it e e eesre e 12
Multistage PIpeling MOGELcoveiiiiiii it 13
Hybrid Pipeling Parallel MOgehtiiiiis au e 13
Block Diagram of Cell Broadband. ENQIRe ifia. .. cvovvieiiiiiiiieec e 16
PPE BIOCK Diagram o i et sttt 17
PPE FUNCHIONAI UNIES L1 it afeaie sttt ettt 17
STl Sl =] [oTod S BT To = 0 O RS 19
SPE FUNCHIONAL UNIES ... i i iiifis st 20
Element Interconnect BuS (EIB)o e s 22
Dataflow Planning for Motion JPEG decoding on CBE ProCessor.........cccuveeeeeiieiveniesnesreseenns 29
Performance with Combinations of Optimization TEChNIQUES..........cccccevieiviieiiicieccce e, 30
Strict Multistage PIpeling MOGEL.........cccoiiiiiiiicce e e e 33
Data Flow would be Complicated after Several Migrationscccccevevieieniecieeiesene e 33
1= o 0SS 34
Generalized strict multistage pipeline MOdel ..o 36
HIING DIMA LALENCY......eviitieieiieieitecte e st e s se ettt e e baste e e sae e et e besaestesaaenee e enteseesrenre e 37
Y L O 1T T g I 1ol =0 U] [T o S 38
Filling unhided DIMA TAENCY......ccveiiiiiiiie sttt s re e re e et e re e e 39
Identifying Critical SPE for Task Migrationc.cccovveieieniiie s 39
Task Migration for Adjusting Load BalanCecccovveieiiniie i 40
Buffering between arbitrary tWo PrOCESSOISc.civeiveiiiiiieitese et sre e se e et 40
Modified Process Network of H.264 DECOUETccoviririeeiiieiririeee s 42
Sunflower and RushHour 1080P TeSt SEQUENCEc.vcvevirierieiiece ettt sre s 42
Profiling Result after granularity adjustment of H.264 DecCoder............ccccvvviveieevicneiesnseannns 43
Data Layout OF PIXEIS........oiiieiicieicie sttt r e re e 43

Figure 4-5

Figure 4-6

Figure 4-7

Figure 4-8

Figure 4-9

Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17
Figure 4-18
Figure 4-19
Figure 4-20
Figure 4-20
Figure 4-21
Figure 4-22
Figure 4-23
Figure 4-24

Un-aligned access for arbitrary 9X9 piXelS.........cccovveieiiiiiiieiicicce e 44
SixX ReGISters fOr EIGQht FIRScvoiiici ittt 45
Byte-ShUffle OPEIatioNcccccviiiicicie ettt re b e re e 45
9x9 Pixels Arrangement for 4x4 Luminance Submacroblock Interpolation...........c..cccecevennee. 46
Inter Prediction of Luminance Sub-PixXel CaSes.........ccuviiirieiiinieieese s 46
Perform SIMD with Register A-F dir€CtlYcccoveiiiiieic e 47
Pack Procedure for Computing i, j, K, [, M, N, 0, Prrereiiiiiiieecesece e 47
Pack Procedure for Computing €, @, S, U, G, I, £, Viereroioicic e 48
Pack Procedure for Computing 1, 2, i, M, 3, 4,5, 6 .cceoiiiiiiiceceee e 48
16 Cases of Luminance INterpolation............cccveieiieieiiiiie e 49
16 Pixels in 2 Registers of a 4x4 SUBMACTOBIOCK ..o 49
Unpack Procedure of @ 16X16 MacrobloCK...........ccccceiiiiieiiiieiice e 50
Computation Optimization Results of Each Kernel..........cccccoovvviieiciies e 50
Profiling RESUILS ON SPEcci ittt sttt st e e esrestesresne s 51
Communication/Computation Ratio of each Kernels............cccvvvvviieeiiiiicic e 52
Task AIOCALION RESUILcoviieiiiiicee s 52
MFC-aware Scheduling Result:ofiHi264, DeCOEr...........ccoevveeiiieie e 53
MFC-SChedUIING RESUITS u. coeus canen et e e shatio s ereeseenreseestestessesseesaeseeseessessessessesssessessessessessensenns 54
Processors Utilizationan SUNfIOWET SEJUENCE &oovieieieice e 55
Processors UtilizatiorEin RUSAHOUFSEAUENCE ..ot .o.voveiveieesieee e 55

Performance Improvement in'EGCHISIER-Of DESIGN FIOWccoccvieriiiniecesece e, 56

LIST OF TABLES

Table 2-1 PPE and SPE SIMD-Support COMPAIISONcccviieierieniesiesiesieseeeeseesieseessessessessessssssessessessessens
Table 4-1 Instructions Needed for Packing Procedure in 16 Cases of Luminance Interpolation...................

Table 4-2 Performances with Different Sequences of Our Optimized H.264 DeCOdErccccevverereiennnns

1 INTRODUCTION

The software-only solutions for media-rich consumer-electronics devices get more and
more popular because of its low development cost and long time-in-market. Traditional
computing performance gain is depending on-single core development. However, single core
development is diminishing nowadays because of the limitations of power consumption,
memory latency, and circuit complexity. Most new processors architectures are branching
into more cores rather than better cores. Multicore architectures have become the
mainstream rather than the exception in computing landscape. The problem is how to exploit
the parallelism and make full utilization of all cores to reach the expected performance gain

with efficiency.

1.1 Multimedia Application

The data rate and compression ratio of multimedia processing are improved as the

complexity of algorithm grows. In multimedia decoding applications, the high-definition (HD)

resolution is a basic requirement in many markets, such as DTV, multimedia games, and
multimedia playing on monitors. The even higher performance pursued by consumers make

engineers design more powerful devices while keeping the price low.

The high-end consumer electronics need to run versatile multimedia applications. For
examples, audio standards are AAC, MP3, Dolby Digital (AC3), etc. And multimedia
standards are M-JPEG, MPEG-1, 2, and 4, H.263, H.264, etc. Thus the implementation of
multimedia coding by software is a cost-effective solution. Processor-based architectures can
use software patches to keep up with new multimedia applications. However, conventional
single-core processor architectures are unable to provide sufficient computing power for
advanced real-time multimedia processing. Thus the parallelisms in multimedia applications
should be exploited by processor-based, system with high performance to meet the real-time
specifications. We take H.264, the latest multimedia standard available for example and as our

target. H.264 standard is introduced-as following.

€ H.264 Standard

H.264 /| MPEG-4 Part 10 is the latest video compression standard developed by the
ITU-T Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture
Experts Group (MPEG). The final drafting work on the first version of the standard was

completed in May 2003.

H.264/AVC provides high compression efficiency with lower bit rates. Figure 1-1 shows
the H.264 decoder block diagram. The decoder receives compressed bitstream from the NAL.
The data are entropy decoded and reordered to produce a set of quantized coefficients X.
These are rescaled and inverse transformed to give Dn’. Using the header information
decoded from the bitstream, then the decoder constructs a prediction macroblock P. P is added

to Dn’ to produce uF’n which this is filtered to create the decoded macroblock F’n. The

characteristics of each block are addressed as following.

Inter

. F‘M MC ——®]
(reference) G P

o
(10r 2 previously Intra
encoded framss)
Intra

prediction

3

uF" xtp X

\ 1 Entropy
le—| { l— 1 le— : le—— p A S—
’ ey Filter __/ T Q Reorder decode NAL

Figure 1-1 H.264 Decoder Block Diagram

e Entropy Decoding

To eliminate the syntax redundancy, the arithmetic coding is applied. The syntax above
the slice layer is encoded as fixed- or variable-length codes. At the slice layer and below,
H.264 standard specifies two types ofsentropy coding. Elements are coded using Content
Adaptive Variable Length Coding (CAVLC). or Content Adaptive Binary Arithmetic Coding

(CABAC) according to the entropy encoding mode.

e Quantization and Transformation

H.264/AVC uses three transforms depending on the type of residual data that is to be
coded: a Hadamard transform for the 4x4 array of luminance DC coefficients in 16x16
intra-prediction macroblocks, a Hadamard transform for the 2x2 array of chrominance DC

coefficients and a DCT-based transform for all other 4x4 blocks in the residual data.

Data within a macroblock are transmitted in the order shown as Figure 1-2. If the
macroblock is coded in 16x16 intra-prediction, then the block labeled “-1’, containing the
transformed DC coefficient of each 4x4 luminance block, is transmitted first. Next, the
luminance residual block 0-15 are transmitted in the order shown as Figure 1-2 (the DC
coefficient in a macroblock coded in 16x16 intra-prediction mode are not sent). Block 16 and

17 containing a 2x2 array of DC coefficients from the Cb and Cr chrominance components

are sent. Finally, chrominance residual blocks 18-25 (without DC coefficients) are sent.

%16 Intra
e only

only)

(16
modi

Luma

Figure 1-2 Scanning Order of Residual Blocks within a Macroblock

e Intra Prediction

In intra mode a predictions block. is. _formed based on previously encoded and
reconstructed blocks and is subtracted from- the ‘current block prior to encoding. The
prediction block is formed for each 4x4 block or: for a 16x16 macroblock for luminance

samples and 8x8 macroblock for chrominance samples.

There are a total of nine optional prediction modes for each 4x4 luminance block shown
as Figure 1-3. The arrows indicate the direction of prediction in each mode. For modes 3-8 the
predicted samples are formed from a weighted average of the prediction samples A-M. For
example, if mode 4 is selected, the top-right sample of 4x4 submacroblock is predicted by:

round(B/4+C/2+D/4).

0 (vertical) 1 (herizantal) 2(DC) 3 (diagenal down-left) 4 (diagonal down-right)

AIBICIDIETFTEH WAJEICTOTETFTGTH] AJB] CIDTE]FTGIH] M ATBICIDTEJFT GIH] M AT EB] CIDTETFTJ H]
n I T e L o N
] [——] N]
K] K > Kl o K K
[T] [Cf=e=o [C]ie [C] E%
5 (vertical-right) 6 (horizontal-down) T (vertical-left) 8 (horizontal-up)
MATEICTOTETFIGIH] ATB] CIDTETFIGIH] M ATBICIDIE[FIGIH] MIATBI CIDTETFTd H]
n LSS ul '_7
7] i\. 7] J_/'
K K K K
'L'\ Tk] 1'/

Figure 1-3 4x4 Luminance Prediction Modes

As an alternative to the 4x4 luminance prediction modes described above, the entire
16x16 luminance component of a macroblock may be predicted in one operation. Four modes

are available shown as Figure 1-4.

0 (vertical) 1 (horizontal) 2(DbC) 3 (plane)
H | H | H H]
e — ¥ / /
—
VI e A : W Mean(H+V}) \ /"
_— /

Figure 1-4 16x16 Luminance Prediction Modes

Each 8x8 chroma component of an intra coded macroblock is predicted from previously
encoded chrominance samples above and/or to the left and both chrominance components
always use the same prediction mode. The four prediction modes are very similar to the
16x16 luminance prediction modes, except the numbering of the modes is different. The

modes are DC (mode 0), horizontal (mode 1), vertical (mode 2) and plane (mode 3).

e Inter Prediction

Inter prediction creates a prediction model from one or more previously encoded video

frames. The model is formed by shifting samples in the reference frame(s) (motion

compensated prediction). H.264 uses block-based motion compensation similar to previous

standards.

H.264 supports motion compensation block sizes ranging from 16x16 to 4x4 luminance
samples with many options between the two. The luminance component of each 16x16
macroblock may be split up in 4 ways including 16x16, 8x16, 16x8 and 8x8. If the 8x8 mode
is chosen, each of the four 8x8 macroblock partitions within the macroblock may be split in a
further 4 ways including 8x8, 4x8, 8x4 and 4x4. These partitions and sub-partitions give rise
to a large number of possible combinations within each macroblock. This method of
partitioning macroblocks into motion compensated sub-blocks of varying size is known as

tree structured motion compensation.

A separate motion vector is required for each partition or sub-partition. Each motion
vector must be coded and transmitted. The choiee of each partition must be encoded in the
compressed bitstream. It can cost a significant number: of bits to encoding a motion vector for
each partition. Since there are high correlations_between motion vectors of the neighboring
partitions, the motion vector can be predicted by nearby ones. Hence the motion vector

prediction is generated by the motion vector of the adjacent partitions.

In order to increase the accuracy of motion compensation, H.264 supports quarter-pixel
resolution for luma components and one-eight-pixel resolution for chroma components. If the
prediction result of sub pixel is better than that of the integer pixel, the sub pixel will be

chosen.

The half-pixel samples are obtained by applying a six tap filter with weights (1/32, -5/32,
20/32, 20/32, -5/32, 1/32). For example, a half pixel ‘b” in Figure 1-5 is obtained from the six
horizontal integer neighbors E, F, G, H, I, and J with the formulation: b = ((E-

5F+20G+20H-51+)/32).

Furthermore, the quarter-pixel samples can be calculated after all the half-pixel
macroblock are available. They are produced by linear interpolation between two of their

adjacent samples. For example, a quarter pixel ‘a’ in Figure 1-5 can be calculated by: a =

(G+b)/2.

A aa B
L] bb D

E F G a b c|H | J
d e g

e ad noi] km ae i
npaqr

K L M] M F Q
R gg 5
T hh u

Figure 1-5 Inter Prediction of LLuminance Integer-Pixel, Half-Pixel and Quarter-Pixel Positions

As shown in Figure 1-6, “the chrominance-'samples can be calculated by linear

interpolation of the neighbor pixels as following equation:

dy

dx 8-dx

8-dy

Figure 1-6 Inter Prediction of Chrominance samples

e Deblocking Filter

One drawbacks of the block base video compression mentioned above is the visible
block boundaries. It is so called blocking effects: the lower bit rate the compression is, the
more obvious the edges are. To eliminate the blocking effect, a deblocking filter is applied
after the inverse transform in both encoder and decoder. As shown in Figure 1-7, it is applied
to vertical or horizontal edges of 4x4 blocks in a macroblock, in the fallowing order: four
vertical boundaries (a, b, ¢, then d) of luma, four horizontal boundaries (e, f, g, then h) of lima,

and two vertical boundaries (i, j) horizontal boundaries (k, I).

T r € T kK
1] 1 |
|] | |
1] 1 1
1 [} 1 |
ol g .
] ’ : J
r--+--*---r--li h
A 8x8 chroma

a b ¢ d

Boundary filtering: 16x16
luma

Figure 1-7 EdgeFiltering Order in a Macroblock

The filtering is adaptively applied according to the boundary strength and the gradient
across the boundaries. The boundary strength depends on the compression mode of a
macroblock, the quantization parameter, motion vector, frame or field coding decision, and
pixel values. With this filter, subjective quality is significant improved. This filter also
reduces the bits rate with ratio of 5%-10% compared with non-filtered video with the same

objective quality.

e Data Dependencies of H.264/AVC Decoder

There are highly dependencies in H.264/AVC decoder which causing the difficulty for

parallel programming. In entropy decoding, the bitstream must be decoded in order. As shown

in Figure 1-8, for a macroblock, intra prediction needs the upper macroblock and left
macroblock to be decoded. A 4x4 luma submacroblock needs the upper 4x4 submacroblock,

left 4x4 submacroblock and upper right 4x4 submacroblock to be decoded in advance.

Current 7
4 pixels

16 pixels

16 pixels

Figure 1-8 Dependencies in Intra Prediction Mode

In inter prediction mode, data dependencies are within the search range of the reference

"'pl“ l-

frame is need for interpolation as shoWﬂ m“l'—‘lgul":érl 9

J-'."-"

.."b [|_-|h.j"‘.

Figure 1-9 Dependencies in Inter Prediction Mode

In deblocking filter, the four neighbor rows pixels of upper macroblock and four

neighbor columns pixels of left macroblock are needed as shown in Figure 1-10.

: | Current
ﬁ Block

E_:f. 16 pixels

16 pixels

Figure 1-10 Dependencies in Deblocking Filter

1.2 Multicore Architecture

In recent years, processor industry has reached a new market of consumer electronics
and personal computers. In order to further improve the already high performance of
processor, the concept of multi-core on a chip comes out. With the improvement of
semiconductor processes, it’s possible to put many processing cores onto a single processor

chip. This kind of processor is called as multicore processor.

A multicore processor combines two or more independent cores into a single package
composed of a single die. Cores in a multicore device may share a single coherent cache at the
highest on-device cache level or may have separate caches. The processors also share the
same interconnect to the rest of the system. Each "core" independently implements
optimizations such as superscalar execution, pipelining, and multithreading. There are some
reasons for multicore trend. First; the processor-needs more effective performance per Hz, i.e.,
the power would become the bottleneck of processor.-The utilization of more processors on a
system was a common solution in the past.. The ‘multi-chip module (MCM) belongs to this
category. But with the help of semiconductor technology, the integration of many circuits into

a single chip is feasible.

1.3 Multicore Programming

With the advent of multicore architectures, the programmers and consumers may simply
think that the performance would increase linearly with the number of cores. However, it’s
always not the case as excepted. The potential problems are the level of parallelism and the
communication between each core. It’s a complicated job to extract parallelism from the
program and balance the workload for each core. The communication overhead in a multicore

system may become the bottleneck when the communication throughput is too huge or the

10

frequency is too high.

Software benefits from multicore architectures where code can be executed in parallel,
but traditional programming models are ill-suited to multicore architecture because they
assume a single instruction stream and a monolithic memory. It is very difficult to
automatically extract parallelism from a sequential program. The parallelism of task remains
in the hands of programmer much of time. Thus the key point to improve the performance of
a multicore processor is the task partition and communication mechanism between each core
designed by the programmers. A multicore programmer requires concept and understanding of

parallel programming.

The key to parallel programming is to locate exploitable concurrency in a task. The first
basic step for parallelizing program. is locate concurrency, then structure the algorithms to
exploit concurrency, and finally tune: for the ‘performance. But achieving parallel
programming with high performance by just following the basic steps described above is not
easy, there are also challenges for parallel programming. First are the data dependencies.
Second, there is overhead in synchronizing concurrent memory accesses or transferring data
between different processor elements and memory access overhead might exceed any
performance improvement. Third, partitioning work is often not obvious and can result in
unequal units of work. Last, what works in one parallel environment might not work in
another, due to differences in bandwidth, topology, hardware synchronization primitives, and

so forth.

11

1.4 Streaming Programming Models

€ Parallel Stages Model

Figure 1-11 shows the parallel stages model. If the target application has low or none
dependencies among kernels, the task in which there is a large amount of data that can be
partitioned and acted on at the same time. But a communication mechanism is needed to
design for this model for dispatching and collecting data. In the case of parallel stages model,
task-to-task communication remains locally on the core if sufficient local memory size is
available. Thus, this model inherently results in locality of data, so it is typically making sense
to use PEs to process different portions of that data in parallel. This model is also well for
scalable if more data or advanced computing power needed, just adding PEs on the parallel

stages.

— PE

o PE
]

— PE

Figure 1-11 Parallel Stages Model

€ Multistage Pipeline Model

Figure 1-12 shows the Multistage Pipeline Model. If there are dependencies between kernels,

a task requires sequential stages. The PEs can act as a multistage pipeline. Here, the stream of

12

data is sent into the first PE, which performs the first stage of the processing. The first PE
then passes the data to the next PE for the next stage of processing. After the last PE has done
the final stage of processing on its data, that data is returned to the MFC. As with any pipeline
architecture, parallel processing occurs, with various portions of data in different stages of
being processed. Multistage pipelining is typically avoided because of the difficulty of load
balancing. It’s common that a certain task becomes a system bottleneck due to imbalanced
loads of the processor. In addition, the multistage model increases the data-movement
requirement because data must be moved for each stage of the pipeline. This model is not well

for scalable because of repartitioning is needed if we want to add PE in this model.

A

MPU

PE — PE > PE

Figure'1-12 ° Multistage Pipeline Model

A hybrid model also can be adopted between parallel stages model and multistage
pipeline model as shown in Figure 1-13. However, this model has drawbacks of both. Design

space and complexity in this model is much more raised.

MPU

A

PE —

PE —>(split . PE

Figure 1-13 Hybrid Pipeline Parallel Model

13

1.5 Thesis Organization

This work proposed a programming scenario for CBE processor. The target of our
method is to simplify the programming considerations on multicore with efficiency. The rest

of this thesis is organized as follows.

Chapter 2 reviews the experimental platform: Cell Broadband Engine (CBE). A brief
description of the architecture of Cell processor is the beginning. Two processing units called
as the Power Processor Element (PPE) and the Synergistic Processor Element (SPE), the
direct memory access (DMA), and the element interconnect bus (EIB) would be in the
description. Then the communication mechanisms and associate application programming
interface (API) are presented. Challenge of programming CBE processor is also made in this

chapter.

Chapter 3 proposed a multistage pipeline model for multicore programming and a
MFC-aware scheduling method“for ‘parallelizing MFC and SPU. These two features are
packed into our design flow. We‘do" ‘computation optimization first for getting
computation/communication ratio on SPE more precisely. Then analyze workload of each
kernel on SPE for task allocation and MFC-aware scheduling. Apply iterative task migration
for modulating workload balance among PEs. After task allocation on PEs is determined, the
strict multistage pipeline model is generalized and buffer is inserted between PEs for reducing

synchronization overhead.

Chapter 4 is the procedure of a case study of parallelizing H.264 decoder on PlayStation
3 multicore platform with our proposed method. Include the features of H.264 standard. A
design flow including our proposed methods in chapter 3 is applied on H.264 decoder. The

results of each optimization stage is showed and discussed.

Chapter 5 concludes this thesis and provides the future work.

14

2 CELL PROCESSOR

Our target PlayStation 3 multicore platform ‘is. powered by Cell processor. Cell is a
microprocessor architecture jointly developed by Sony Computer Entertainment, Toshiba, and
IBM. Cell is shorthand for Cell".Broadband Engine Architecture, commonly abbreviated
CBEA in full. Cell combines a general-purpose Power Architecture core of modest
performance with streamlined co-processing elements which greatly accelerate multimedia
and vector processing applications. Chapter 2.1 introduces the Cell Broadband Engine (CBE)
architecture. Chapter 2.2 gives overview of Cell Broadband Engine programming issues.
Chapter 2.3 introduces our related work, including our previous work: real-time motion JPEG
on PlayStation 3 and a H.264 implementation on CBE processor by Samsung Software

Laboratories.

2.1 Cell Architecture

Figure 2-1 shows a high level block diagram of the CBE processor hardware. The CBE

15

processor is a multicore processor with 9 processor elements in total and a shared coherent
memory on-a-chip. The functionality of processors can be categorized into two kinds. One is
the PowerPC Processor Element (PPE) and the other is the Synergistic Processor Element
(SPE). There are one PPE and eight identical SPEs. All processor elements are connected to
each other and to the on-chip memory and 1/O controllers by the memory-coherent element

interconnect bus (EIB).

Unitqu SPEA1 SPE3 SPES SPEY

FPPE & 11, |IOIF_1|¢*FlexlO

rLIIIIIIIZIIiTTToToTToTTTT - EIB E

IOIF_Q ¢ FlexIO

SPEO SPE2 SPE4 SPE&

!
1 1
1t
. DDR2 X
'+ PowerXCell 8i only

RAM
BEI Cell Broadband Engine Interface PFE PowerPC Processer Element
Double-Data-Rate 2 Synchronous Dynamic RAM Resource Allocation Management
DDRz Random Access Mamory (SDRAM) Interface .
v "- SPE Synergistic Processor Element
EIB Elernant Interconnact Bus %20 XI10 to DDRZ logic
FlextO Rambus FlexlO Bus XIO Rambus XDR /O (XIO) Gell
I0IF 1O Interface
MIC Memory Interface Controller

Figure 2-1 Block Diagram of Cell Broadband Engine

€ PowerPC Processor Elements

The PowerPC Processor Element (PPE) is a general-purpose, dual-threaded, 64-bit RISC
processor that conforms to the PowerPC Architecture, with the vector/SIMD multimedia
extensions. The PPE consists of two main units, the PowerPC processor unit (PPU) and the

PowerPC processor storage subsystem (PPSS) as shown in Figure 2-2.

16

PowerPC Processor Element (PPE)

PowerPC Processor Unit (PPU)

L1 Instruction L1 Data
Cache Cache

PowerPC Processor
Storage Subsystem (PPSS)

L2 Cache

Figure 2-2 PPE Block Diagram

The PPU performs instruction execution. It has a level-1 (L1) instruction cache and data
cache and six execution units. It can load 32 bytes and store 16 bytes independently and
memory-coherently, per processor cycle.. The PPSS handles memory requests from the PPU
and external requests to the PPE from SPEs-or 1/O devices. It has a unified level-2 (L2)

instruction and data cache. ThezPPU and the PPSS and their functional units are shown as

Figure 2-3.
PPE
PowerPC Processing Unit (PPU}
Instruction Unit {IL) Fixed-Point Unit (FXU) Vector and Scalar Unit (VSU)
" \) .
| Branch Unit (BRU) | Load/Store Unit (LSU) FPU+VXU Register
Files
‘ Level-1 (L1) Instruction Cache Level-1 (L1) Data Cache Memary Management Uinit
4 ES (MML)
i
32-byte loads
16-byte stores
PowerPC Processor Storage Subsystem (PPSS)
Level-2 (L2) Unified Cache
3
16-byte loads and stores
Element Interconnect Bus (EIB)
FFU Floating-Point Unit
VKU Vector Media Extension Unit

Figure 2-3 PPE Functional Units

17

PPU could further divided into the following functional units.

e Instruction Unit (1U)

The IU contains a 2-way set-associative and reload-on-error 32KB L1 instruction cache.
The cache-line size is 128 bytes. The IU performs the instruction-fetch, decode, dispatch,

issue, and completion portions of execution.

e Branch Unit (BRU)

The BRU performs the branch functionality.

e Fixed-Point Unit (FXU)

The FXU performs fixed-point operations, including add, multiply, divide, compare, shift,

rotate, and logical instructions.

e Load and Store Unit (LSU)

The LSU contains a 4-way set-associative and-write-through L1 data cache with 32 KB.
The cache-line size is 128 bytes. The LSU performs all data accesses, including load and store

instructions.

e \ector/Scalar Unit (VSU)

The VSU contains a floating-point unit (FPU) and a 128-bit vector/SIMD multimedia
extension unit (VXU), which together execute floating-point and vector/SIMD multimedia

extension instructions.

e Memory Management Unit (MMU)

The MMU contains a 64-entry segment look-aside buffer (SLB) and 1024-entry, unified,
parity protected translation look-aside buffer (TLB). The MMU manages address translation

for all memory accesses.

18

The PPSS handles all memory accesses by the PPU and memory-coherence operations
from the element interconnect bus (EIB). The PPSS has a unified, 512-KB, 8-way
set-associative, write-back L2 cache with error-correction code (ECC). The cache-line size for
the L2 is 128 bytes as the same as L1 cache-line size. The PPSS performs data-prefetch for
the PPU and bus arbitration and pacing onto the EIB. There are MMU, L1 instruction cache,
and L1 data cache of PPU getting data from PPSS by a shared 32-byte load port. There are
MMU and L1 data cache of PPU putting data to PPSS by a shared 16-byte store port. The
interface between the PPSS and EIB supports 16-byte load and 16-byte store buses. One
storage access occurs at a time, and all accesses appear to occur in program order. The

interface supports resource allocation management.

€ Synergistic Processor Elements

The eight Synergistic Processor Elements (SPEs) execute a new single instruction,
multiple data (SIMD) instruction set—the“Synergistic Processor Unit Instruction Set
Architecture. Each SPE is a 128-bit' RISC processor specialized for data-rich,
compute-intensive SIMD and scalar applications. It consists of two main units, the synergistic

processor unit (SPU) and the memory flow controller (MFC), as shown in Figure 2-4.

Synergistic Processor Element (SPE)

Synergistic Processor Unit (SPL)

Local Store (LS)

Memory Flow Controller (MFC)

DMA Controller

Figure 2-4 SPE Block Diagram

19

The LS is a 256 KB, error-correcting code (ECC)-protected, single-ported, noncaching
memory. It stores all instructions and data used by the SPU. It supports one access per cycle
from either SPE software or DMA transfers. SPU instruction prefetches are 128 bytes per
cycle. SPU data access bandwidth is 16 bytes per cycle, quadword aligned. DMA-access
bandwidth is 128 bytes per cycle. DMA transfers perform a read-modify-write of LS for

writes less than a quadword.

Each SPU has its own MFC. The MFC serves as the SPU’s interface, by means of the
element interconnect bus (EIB), to main-storage and other processor elements and system
devices. The MFC’s primary role is to interface its LS-storage domain with the mainstorage
domain. It does this by means of a DMA controller that moves instructions and data between
its LS and main storage. The MFC also, supports storage protection on the main-storage side
of its DMA transfers, synchronization between main.storage and the LS, and communication
functions (such as mailbox and signal-notification messaging) with the PPE and other SPEs

and devices.

Local
Storage
(LS}

Synergistic Execution Unit (SXU)
- - "1 "7""""=>"/"7/"/"¥"/"¥"="”V--"="="=—"="-"="" |
| Odd Pipeline |
I I
I I
I SPU Odd SPU Load SPU SPU Channel I
| Fixed-Paint and Store Control and DMA |
! Unit Unit Unit Unit !
: (SFS) (5LS) (SCH) (SSC) :
I I
I I I
I I
| | SPU
| | Register File
|) Unit
! | {SRF})
I I
I I
! SPU Even SPU |
| Fixed-Point Floating-Point I
| Unit Unit |
I (SFX) (SFP) |
I I
I I
I I
|

Even Pipeline

Figure 2-5 SPE Functional Units

20

Figure 2-5 shows the SPE functional units. The SPU issues two instructions to its two
execution pipelines respectively. The pipelines are referred to as even (pipeline 0) and odd
(pipeline 1). Whether an instruction goes to the odd or even pipeline depends on the

instruction type. The functional units in SPU are described as follows.

e SPU Odd Fixed-Point Unit (SFS)

The SFS executes byte shift, rotate mask, and shuffle operations on quadwords.

e SPU Load and Store Unit (SLS)

The SLS executes load and store instructions and hint for branch instructions. It also

handles DMA requests to the LS.

e SPU Control Unit (SCN)

The SCN fetches and issues..instructions to ‘the two pipelines. It performs control

functions such as branch instructions, arbitration-of access to the LS and register file, etc.

e SPU Channel and DMA Unit (SSC)

The SSC manages communication, data transfer, and control into and out of the SPU.

e SPU Even Fixed-Point Unit (SFX)

The SFX executes arithmetic instructions, logical instructions, word SIMD shifts and
rotations, floating-point comparisons, and floating-point reciprocal and reciprocal square-root

estimations

e SPU Floating-Point Unit (SFP)

The SFP executes single-precision and double-precision floating point instructions,
16-bit integer multiplies and conversions, and byte operations. The 32-bit multiplies are

implemented in software using 16-bit multiplies.

21

€ Element Interconnect Bus

Figure 2-6 shows the element interconnect bus (EIB), which is the communication path for
data commands and data among the PPE, SPEs, main system memory, and external 1/0. The
EIB data network consists of four 16-byte-wide data rings: two running clockwise and the
other two counterclockwise. Each ring allows up to three concurrent data transfers, as long as

their paths don’t overlap.

BRE SPE1 SPE3 SPES SPE7 IOIF1

Y
Y
Y
Y

Y
1
Y
|

[|
|
A

f - |- - - =
(17
Data network Data bus arbiter

-

Y

—
-

Y
Y

1
i
1
A
i

. |

MIC SPEO SPE2 SPE4 SPEB

1
A
A
A
[

BIF Broadband interface
IOIF /O interface

Figure 2-6 Element Interconnect Bus (EIB)

To initiate a data transfer, bus elements must request data bus access. The EIB data bus
arbiter processes these requests and decides which ring should handle each request. The
arbiter always selects one of the two rings that travel in the direction of the shortest transfer,
thus ensuring that the data won’t need to travel more than halfway around the ring to its

destination. The arbiter also schedules the transfer to ensure that it won’t interfere with other

22

in-flight transactions. To minimize stall on reads, the arbiter gives priority to requests coming
from the memory controller. It treats all others equally in round-robin fashion. Thus, certain

communication patterns will be more efficient than others.

The EIB operates at half the processor-clock speed. Each EIB unit can simultaneously
send and receive 16 bytes of data every bus cycle. The EIB’s maximum data bandwidth is
limited by the rate at which addresses are snooped across all units in the system, which is one
address per bus cycle. Each snooped address request can potentially transfer up to 128 bytes,
so in a 3.2GHz Cell processor, the theoretical peak data bandwidth on the EIB is 128 bytes

x1.6 GHz = 204.8 Gbytes/s.

However, the actual data bandwidth achieved on the EIB depends on several factors: the
destination and source’s relative locations, the'.chance of a new transfer’s interfering with
transfers in progress, the number of Cell chips. in the system, whether data transfers are
to/from memory or between local stores.in the SPES; and the data arbiter’s efficiency. EIB

bandwidth would be reduced in some:non-ideal cases.

€ Inter Processor Communication

Cell Broadband Engine (CBE) has many attributes of a shared-memory system. The
PowerPC Processor Element (PPE) and all Synergistic Processor Elements (SPEs) have
coherent access to main storage. But the CBE processor is not a traditional shared-memory
processor. SPE only can execute programs and directly access data from and to its own local
store (LS). Because of lacking directly accessing to shared memory, SPE must using three
primary communication mechanisms to communicate with other elements on EIB: DMA
transfers, mailbox messages, and signal notification. All these three communication
mechanisms are controlled by SPE’s memory flow controller (MFC). The communication

mechanisms are summarized as follow:

23

e DMA transfers

Used to move data and instructions between main storage and a local store(LS). An MFC
supports naturally aligned DMA transfer sizes of 1, 2, 4, 8, and 16bytes and multiple of 16
bytes. For naturally aligned 1, 2, 4, and 8-byte transfers, the source and destination addresses
must have the same 4 least significant bits (LSB). A single DMA command could transfer up
to 16 KB between an LS and shared memory storage. The throughput of a DMA transfer
when the source and destination addresses are 128-byte aligned is double as compared to that
of a mis-aligned transfer within a cache line. It’s because that the mis-aligned transfer is a
partial cache-line transfer, and actually there may be two bus requests for this transfer. Peak
performance is achieved when the size of the transfer is a multiple of 128 bytes and both the
effective address (EA) and the local store address (LSA) of the DMA transfer are 128-byte
aligned. SPEs rely on asynchronous. DMA transfers to hide memory latency and transfer

overhead by moving data in parallel'with synergistic processor unit (SPU) computation.

A MFC has only 16 entries int MFC SPU coammand queue. A DMA list is sequence of
eight-byte list elements, stored in an SPE’s LS, each of which describes a DMA transfer and
only occupy one of the SPU command queue. DMA list commands can be initiated only by
SPU programs, not by other devices. A DMA list command can specify up to 2048 DMA
transfers, each up to 16 KB in length. Thus, a DMA list command can transfer up to 32 MB,
which is 128 times the size of the 256 KB LS, more than enough to accommodate future
increases in the size of LS. The space required for the maximum-size DMA list is 16 KB.
DMA list commands are used to move data between a contiguous area in an SPE’s LS and

possibly noncontiguous area in the effective address space.

e Mailboxes

Used for control communication between an SPE and the PPE or other devices.

24

Supporting the sending and buffering of 32-bit messages. Each SPE can access three mailbox
channels, each of which is connected to a mailbox register in the SPU’s MFC. Two one-entry
mailbox channels: the SPU Write Outbound Mailbox and the SPU Write Outbound Interrupt
Mailbox, which are provided for sending messages from the SPE to the PPE or other device.
One four-entry mailbox channel: the SPU Read Inbound Mailbox, which is provided for

sending messages from the PPE, or other SPEs or devices.
e Signal notification

Used for control communication from the PPE or other devices. SPE signal-notification
channels are connected to inbound registers (into the SPE). The PPE, other SPEs, and other
devices use the signal notification registers to send information, such as a buffer-completion
synchronization flag, to an SPE. An_SPE has two, 32-bit signal-notification registers, each of

which has a corresponding MMIQ register that'can be:written with signal-notification data.

2.2 Cell Programming Environment

A source code of C/C++ program can be complied with GCC complier and executed on
CBE processor with Linux environment. But an un-optimized program would be executed
sequentially only on PPE without any parallelism. The CBE processor provides a foundation

for many levels of parallelization. The levels of parallelization are described as follow:
e SIMD processing

Both the PowerPC Processing Element (PPE) and the Synergistic Processor Elements
(SPEs) are capable of Single Instruction Multiple Data (SIMD) computation. In the PPE,
these operations are supported by the 32-entry vector register file, vector/SIMD multimedia
extensions to the PowerPC instruction set, and C/C++ intrinsics for the vector/SIMD

multimedia extensions. In the SPEs, SIMD operations are supported by the 128-entry vector

25

register file, SPU instruction set, and C/C++ intrinsics.

The vector instruction sets of the PPE and the SPE are very similar. But there are still

some SIMD-support differences between the PPE and SPE architectures. The differences are

summarized in Table 2-1.

Table 2-1 PPE and SPE SIMD-Support Comparison

Feature PPE SPE
Number of PEs 1 8
Modes supported user and supervisor user only

Number of SIMD registers

32 (128-hit)

128 (128-bit)

Organization of register
files

separate fixed:point,
floating point,-and SIMD
registers

unified SIMD registers

Load latency

Variable (cached)

fixed

Addressability

2%-byte main storage

256 KB LS, 2%*-byte main
storage via DMA

Memory architecture

2-level caching

Software-controlled LS

SIMD instruction set

general SIMD, supported by
PowerPC scalar and control
instructions

SIMD only, optimized for
single-precision floating
point, 16-bit fixed-point,

and 32-bit fixed-point

Single-precision
floating-point SIMD

IEEE 754-1985 and
SPE-compatible
graphics-rounding mode
supported

extended range

Double-precision
floating-point SIMD

not supported

IEEE 754-1985 supported

Doubleword fixed-point
SIMD

not supported

supported

26

e Dual-issue superscalar microarchitecture

The PPE and SPEs have multiple, parallel execution units and are capable of executing
two instructions per clock. Dual-issue success depends upon the instructions being issued,

their address, and the state of the system during execution

e Hardware multithreading

The PPE supports two simultaneous threads of execution in hardware, so the PPE can be
viewed as a two-way multiprocessor with shared dataflow. This gives PPE software the

effective appearance of two independent processing units

e Multiple execution units with heterogeneous architecture and differing capabilities

Each of the nine processor elements pravides independent computation and can be
considered as asymmetric threads of execution. Allprocessor elements have access to the
coherent main storage for shared-memory multiprocessing. The SPE mailboxes and SPU

signal notification registers support-parallel-processing message-passing.

e Multiple CBE processors

Two CBE processors can be directly connected by means of the Cell Broadband Engine
interface unit in a shared memory configuration. Multiple CBE processors can be loosely

clustered in a distributed-memory configuration.

While these levels of parallelization are provided, there are still challenges for CBE

processor programming.

e Asymmetric multicore platform

PPE is intended primary for control processing. SPEs are intended for data-rich

computations allocated to them by the PPE. Task partition and allocation between PPE and

27

SPEs are should be carefully handled for load balancing and utilization. If the load between
PPE and SPEs are imbalanced, the PPE or SPE with heaviest workload would be the

bottleneck of the overall performance.

e Distributed memory architecture

Each SPE gets data from main memory through DMA transfer. DMA transfers are
dynamic allocated by DMA arbiter on CBE processor. Too much DMA request at a time slice
would cause the DMA transfer being the bottleneck of the overall performance. DMA
commands are issued by MFC parallel with SPU computation. Hiding latency of moving data

by this characteristic is an important technique in Cell programming.

e Limited scratch memory

There is only 256-KB local store (LS)for.€ach SPE. The 256 KB LS stores both data and
instructions. So the data quantity fetched into LS"for computation should be carefully

considered.

We adopted Sony, PlayStation 3 as our multicore platform. PlayStation 3 has 1 CBE
processor which has 1 PPE and only 6 SPEs for productive. There is 256 MB memory in
PlayStation 3. PlayStation 3 is a much more economical solution for construct Cell
programming environment compared to Cell Blade, which has 2 CBE processor each has 1
PPE and 8 SPEs and 2GB main memory available. We installed Fedora 7 as our operating

system running on PPE. GCC complier at -O3 level is adopted.

2.3 Related work

Our previous work is a frame-based data-partition on CBE processor as shown in Figure

2-7. In this work, we parallelized a motion JPEG decoder on CBE processor with 20x

28

improvement by using 6 SPEs. The dataflow planning starts from the input stream dividing by
the PPE. The PPE allocates the encoded frames to the 6 SPEs in round-robin fashion. Each
SPE is responsible for the decoding of an entire frame. The SPE returns the decoded frame
and the PPE display the contents in the frame buffer. When all frames are returned, the PPE

ceases the decoding process and destroys the threads.

file £J

l) PPE
encoded frame#
[T J2]3J4]5]6]7]8]9JwofJuu]12]13]14]
\\\
\ \
SPE 1 SPE 2 SPE 3 SPE 4 SPE 5 SPE 6
> DMA
\i \ Y L4 A Y
(1.7] [28..] [309.. |.[410,...] [511,..] [612 .. |
decoded frame#
> PPE
Frame Buffer

Figure 2-7 Dataflow Planning for Motion JPEG decoding on CBE processor

There are 3 optimization techniques applied previous work. They are vectorization,
parallelization, and dataflow optimization. The performance with combinations of these

techniques is shown in Figure 2-8.

29

fps

110 108.9

100
90
80
70
60
50
40
30
20 10.0

10 5.1 4.7
0 -
Original Vectorization Parallelization ~ Parallelization ~ Parallelization Parallelization

Dataflow Opt. Vectorization ~ Vectorization
Dataflow Opt.

52.3
46.8

Figure 2-8 Performance:with Combinations of Optimization Techniques

Previous work shows that-data partitioning technique can achieve high utilization on
SPEs for dependency-free part of a multimedia application. Unfortunately, some multimedia

like H.264 standards with highly dependency is ill-suited in this manner.

In [12], D. Bader and S. Patel implement a MPEG-2 decoder on Cell Blade. They
achieve 371.9 fps with 16 SPEs. They also used parallel stage, fully data partition. They
offloaded whole application on SPE. Their problem is they used nearly all local store(LS).

There is few space for memory optimization like double buffering.

In [13], Samsung Software Laboratories implemented H.264 decoder on CBE processor
with 1 PPE and 4 SPEs. They only take PPE profiling into consideration and offload the most
computation intensive functions on SPEs by intuition. They used 1/4 frame as a iteration to
reduce the synchronization overhead and achieved 20 fps with 3.5x performance
improvement in 1080P sequences compared to original source code on PPE. Their result

shows that PPE is 95.3% busy in whole decoding process but three SPEs in charging for

30

Motion Compensation are only 68.1% busy. The only SPE computes Deblocking has 63.5%
utilization. Their first step shows low utilization in SPEs and full loaded PPE. The bottleneck
of their first implementation is the full loaded PPE. Much more functions on PPE needed to

be offloaded on SPE for load balance.

In [14], Samsung Software Laboratories shows their improved second implementation.
They used 1 PPE and 3 SPEs. Utilization of SPEs is raised by offloading more function of
PPE to SPE. Modulate load balance between PPE and SPEs with a simple dynamic load
balancing mechanism. The achieve 35 fps in 1080P test sequence and a nearly full utilization

in PPE and 2 SPEs.

But in our work, we offload functions of PPE as much as possible to ease of PPE loading
because our only PPE on PlayStation3 ‘needs to handle the OS with Linux kernel
simultaneously. Our policy is offloading |functions.en SPEs as much as possible including
computation and DMA transfer-Then hiding DMA latency by parallelizing MFC and SPU,
achieve load balancing between SPEs and raise utilization of all SPEs with proposed design

flow.

31

3 CELL PROGRAMMING USING

MULTISTAGE PIPELINE MODEL

In our thesis, a strict multistage® pipeline model based design flow including task
allocation, MFC-aware scheduling'and iterative task-migration is adopted. We provide guides
for solving these three NP-complete problems in-our design flow. We can get comparable
performance gain by these guidelines“with efficiency. Strict multistage pipeline model
provides a fast way for considering task migration with efficiency. Simplify the data flow in
multicore programming. MFC-scheduling“is" for parallelizing MFC and SPU as much as

possible for hiding latency. We can hide most DMA latency with this method.

3.1 Multistage Pipeline Design Flow

In our design flow, a strict multistage pipeline model was adopted as shown in Figure 3-1.
The start point and end point of the stream is the shared memory. Only the first and last
processor can access shared memory. Each SPE only can access its precedence or successor’s
local store (LS). If a task on a SPE is going to be migrated for loading balance. Only previous
SPE and next SPE could be chosen to migrate. If performance gain is not as much as we
estimated when load balance achieved. We added another available SPE at start point or end

point.

32

This strict multistage pipeline model much simplifies the design space of task migration.
Considering which processor for task migrating is a complicated work. More cores adopted
for parallelizing application, more choices for migration. Strict multistage pipeline model
limits the choice on precedence and successor. There are always only two choices for
considering regardless of the number of cores we have. The data flow between SPEs and
shared memory is much simplified is strict multistage pipeline model. If we don’t restrict the
model at first, the data flow between shared memory and local stores (LS) would be very
complicated after several iteration of task migration as shown in Figure 3-2. In strict

multistage pipeline model, data flow wouldn’t be more and more complex after several

migrations.
PPU
SPU
SPU
Figure 3-2

MFC

PPU Cache
SPU MFC
SPU MFC
Figure 3-1

Cache

MFC

Shared Memory

Shared Memory

MFC

MFC

MFC

MFC

MFC

Strict Multistage Pipeline Model

MFC

SPU

SPU

SPU

SPU

SPU

SPU

Data Flow would be Complicated after Several Migrations

33

Single Core
Optimization

Target application source code

Computation optimization

Multi Core

Workload analysis and =
Optimization

task allocation

e

MFC-aware scheduling

e

Task migration Task repartitioning

Buffering ‘ Parallelized application

Figure 3-3 Design Flow

Figure 3-8 briefly described our design flow. A design flow based on strict multistage pipeline

model is adopted. Input of design flow is the application source code. First, we do

computation optimization on application kernels with some conventional techniques including

algebra simplification, SIMD, loop unrolling and software pipelining. Local optimization as

better as possible is also important in multicore programming. The optimization effort in this

stage influences the result of each step in our design flow afterwards.

Offloading kernels on SPE induces communication overhead. Communication overhead

is comparable with computation time in some memory intensive kernel like motion

compensation of H.264 decoding. How to hide DMA latency is an important issue in SPE

programming. In order to hide DMA latency well, we must estimate DMA overhead as

precisely as possible. Additionally, the computation time needed on PPE and on SPE might be

different because their architectures are different in nature. SPE architecture is aim for high

speed computation but poor for branching. PPE is opposite to SPE. So we should profile on

SPE to analysis each kernel’s workload including computation and communication time.

34

In workload analysis on SPE, we sort communication overhead on SPE into two kinds.
One is DMA issue time needed by SPU. SPU issue DMA commands to MFC costs additional
cycles. Another overhead is DMA wait time. The length of DMA wait time is between MFC
gets the DMA command and MFC complete the DMA command. DMA wait time needed
depending on the input/output data size and data addresses in main memory is continuous or
not. After computation optimization, we can get computation/communication ratio of each
kernel much more precisely. So we make workload analysis on SPE for getting

computation/communication ratio of each kernel which is going to be offloaded on SPEs.

After workload analysis, we allocate kernels on SPEs according to the workload analysis.
We estimate the number of SPEs we needed for meet our performance constraint and the
communication time we can hide roughly. Then start the allocation. We provide task
allocation guides for solving this NP-complete problem with efficiency. The steps of task

allocation is described in chapter 3.2.

After kernels allocated on strict multistage pipeline model, we apply MFC-aware
scheduling on each SPE to hide DMA fatency. MFC-aware scheduling parallelizes MFC and
SPU for hiding DMA latencies. We also provide. guides for this NP-complete problem. The
detail of MFC-aware scheduling:is described in chapter 3.3.

After MFC-aware scheduling, the-latency hided in each SPE is diverse because of the
computation/communication ratio in‘each SPE is different. As a result, MFC-aware
scheduling may unbalance the workload among SPEs. So we have to do task migration after
MFC-aware scheduling for modulating workload balance among all processors. An iterative
task migration is adopted, which addressed in detail in chapter 3-4.

After task migration, tasks allocation is determined. If the performance is far from
expected or load balance is still worse without any improvement probability. Repartitioning

tasks into smaller granularities is needed. Then rerun the design flow from workload analysis.

After the result of task migration, the strict multistage pipeline model is generalized as
shown in Figure 3-4. Original data flow is restricted by multistage pipeline model. In fact, not
all parameters need to go through previous SPEs. Some parameter can be accessed from
shared memory directly. This stage also reduces local store (LS) usage of each SPE. The
remaining local store (LS) could be used for buffering. The strategy of buffering is described

in chapter 3.5.

35

PPU Cache MFC SPU

Shared Memory

SPU MFC MFC SPU

SPU MFC |a » MFC SPU

Figure 3-4 Generalized strict multistage pipeline model

3.2 Multistage Task Allocation

According to workload analysis, we can get computation/communication ratio of each
kernel which is going to be allocated on SPE. There are several parameters we must estimate
before allocation. We estimate the number of SPE needed for meet our required performance
first to form our multistage pipeline model. Second, we assume that 60%~70% DMA latency

can be hided in general scheduling result.

In our allocation procedure, each- SPE has:a given quota. The quota of each SPE is
determined by the total workload. \We fill the quota of 'SPEs by task allocation and allocate as
balance as possible.

Then we start allocation on SPEs with strict multistage pipeline model. The allocating

steps are described as follow:
e Step 1: We allocate task with the most workload with dependency first.

e Step 2: Then allocating adjacent tasks in previous task with dependency, allocating these

tasks for fill quota of a SPE as much as possible.

e Backto step 1 for allocating a task with the most workload with dependency.

3.3 MFC-aware Scheduling

Once we offload a kernel on SPE. The kernel needs input/output data through DMA
transfer. The procedure of a kernel executing on SPE is shown in Figure 3-5. The SPU first
issues DMA command for getting input data from main memory. Then SPU wait till MFC
complete the DMA transfer for computing input data. Then output data to main memory by

issuing DMA command and wait for MFC completion.

36

We can observe that when waiting for MFC doing DMA transfer, SPU is idle. We can
schedule other kernel’s computation to SPU when waiting for DMA transfer for hiding DMA
latency. But getting the best scheduling result is a NP complete problem. A scenario needed

for hiding DMA latency with efficiency is needed.

DMA Input Issue(A) DMA Wait DMA Output Issue(A) DMA Wait
SPU A Computation(A) y
= >
§ DOMA ;
MFC DMA Input(A) 1 Output Time
(A)
CO{“P Computat S
utation i e
(B) ion®) e
Y T

Computation(C)

Figure 3-5, . - Hiding DMA Latency

We can schedule tasks without dependencies arbitrarily. MFC-aware scheduling can hide
most of DMA latencies with highly efficiency. Take:Figure 3-6 as an example. When task
offload on SPE, it needs to load data for computation, then save data by DMA after execution.
We take the DMA time for our”MFC-aware scheduling consideration. The steps of our

proposed MFC-aware scheduling are as follows
e Step 1: MFC-list optimization.

B Use MFC-list command to perform scatter load/store.
e Step 2: MFC-latency hiding.

B Schedule vertex pair connected by most heavy edge repeatedly. This step is aim for
hiding the longest DMA latencies in a iteration.

€ Source vertex like load is scheduled as soon as possible.
€ Sink vertex like execution, save and wait are scheduled as late as possible.

B Overlap operation from different iterations, most DMA latencies can be hided by
this operation.

e Step 3: MFC-check minimization

B Group MFC-check commands, this can hide some DMA latency occasionally.

37

01

00000 EO®

POEEOEEEE®E

Figure 3-6_“-MFC-aware-Scheduling

3.4 Task Migration

After MFC-aware scheduling, the load balance would be worse because our task
allocation is done before MFC-aware scheduling. The latency hided on each SPEs is quite
different depending on each SPE’s computation/communication ratio. So task migration

needed for modulating workload balance in this stage. There are two phases in task migration.

The first is trivial migration. We examine all the SPEs finding DMA latencies not hided.
If there is any DMA latency not hided on a SPE, we find a proper task in adjacent SPE to fill
the unhided DMA latency. This step can reduce the overall unhided DMA latency. This step is

shown in Figure 3-7.

38

DMA EXE EXE

SPE,.| (A) (A) (B)
EXE
SPE, ©

Figure 3-7 Filling unhided DMA latency

Second, we do a iterative task migration for load balancing. We identify the critical SPE
by getting the utilization of each SPE. For example in Figure 3-8, SPE1 is the most critical
one because of its utilization. We should migrate one of tasks on SPEL1 to its adjacent for
adjusting load balance as shown in Figure 3-9. The steps of iterative task migration are

described as follows:

e Step 1: Identify the most critical SPE for task migration. And analysis the critical SPE

which is computation dominating or communication dominating.

e Step 2: Analyze precedence and successor of the critical SPE, including their utilization
and the computation/communication space for hiding. Select the one with more space for

migrating task from the critical SPE:

e Step 3: Choose a task in critical SPE with proper. computation/communication ratio and

migrate it to the chosen SPE:

e Analyze the workload balance. Back'ta'step 1 if the workload balance is not well.

uonezInn

SPEO SPE1 SPE2 SPE3
Figure 3-8 Identifying Critical SPE for Task Migration

39

SPE, |

SPE, \)
SPE,

Figure 3-9 Task Migration for Adjusting Load Balance

3.5 Pipeline Modulating

The last step of our design flow is buffering in local store. The potential problem in our
multistage pipeline model is synchronization. The most serious factor is our OS handled by
the PPE. PPE is the start point in our strict multistage pipeline model. Once PPE is required
by OS thread, synchronization between all PPE and SPEs is influenced. Second factor is the
application nature. Sometimes worklead of kernel:is depending on its input data or parameter.
If the workload of a kernel differs fromlits iterations, the synchronization is influenced, too.
Reducing iteration times is the ‘most effective way for synchronization overhead reduction.
Fortunately, we can add buffer between arbitrary two SPEs easily. Because the data flow in
our model is simple for buffering."\We. can insert buffer as much as possible until the local
store (LS) of a SPE is full. Moreover, we can distribute more buffers for the SPE which is

more unstable in iterations. Figure 3-10 shows an example of buffering.

~ T~ ~TI- ~ I}~ -1~
PPE SPEO SPE1 SPE2 SPE3
~TIT~ ~{IIT~ (I~ -~

Figure 3-10 Buffering between arbitrary two Processors

40

4 H.264 DECODER IMPLEMENTATION

In our thesis, we adopt JM H.264/AVC decoder for verifying our proposed design flow.
We apply our design flow feature such as multistage pipeline model, task allocation,

MFC-aware scheduling and iterative migration on official JM H.264 decoder.

Our programming environment is Seny.-PlayStation 3, the feature of this multicore

platform is summarized as below:

e 1 CBE processor, which has-1 2-threaded PPE and 6 SPEs.
e 256MB main memory

e Fedora 7 with Linux kernel running on PPE

e SDK 3.1 with GCC complier -O3

Our H.264 decoder spec is summarized as below:
e |, Pframe
e 1 reference frame
e Searchrange: +16
e Prediction mode : all
e Blocksize: all
e 1080P, 25fps

e Source: JM 9.2 decoder

41

4.1 Kernel Optimization

€ PPE Profiling

In our profiling, we divided motion compensation into luma MC and chroma for

advanced profiling. The modified process network of H.264 decoder is shown in Figure 4-1.

Header

\

VLD » Residue DB Filter

Luma
MC

Chroma
MC

Intra-Pred

Figure 4-1 Modified Process Network of H.264 Decoder

In multimedia decoding applicatidris"m'a'rket the high-definition (HD) resolution is a
basic requirement. So we adopted fwo 10$¢P fuII HD test sequences for profiling. Sunflower
and RushHour 1080P (shown as Flgure 4- 2) Wlth 500 frames was analyzed.

Figure 4-2 Sunflower and RushHour 1080P Test Sequence

The profiling result of PPE is shown in Figure 4-3.

42

Profiling Result

13% 1% gq,

14% O Intra Prediction

M Residue Coding
OVLD

O De-Blocking Filter
B .uma MC

O Chroma MC

22%

41%

Figure 4-3 Profiling Result after granularity adjustment of H.264 Decoder

We can recognize that luminance motion compensation, chrominance motion
compensation and de-blocking filter are the most workload intensive part. Local optimization
should be first applied on these parts. Motion‘compensation is the most computation intensive
kernel in H.264 decoding. Therefore, wertakemotion compensation for example describing

the way we offload a kernel on a:SPE.

€ Data Alignment

Data in CBE processor must be aligned with a 128-bit-boundry for DMA transfers and
SIMD operations. In our work, we allocate memory for pixels and vectors by using a frame as
a unit and 128-bit-boundry aligned as shown in Figure 4-4. The address of pixels and vectors

are continuous in x-direction.

128-bit-boundary aligned
A

x-direction width: 1920 pixels 1

-
-

address : x -
address : x+1920x(pixel size)e—

1]

Figure 4-4 Data Layout of pixels

43

€ Motion Compensation

Motion compensation is the most computation intensive part of H.264 decoder. Each 4x4
submacroblock has a separate motion vector. A 6-tap filter is used for 1/2 motion
compensation. Moreover, each 4x4 submacroblock needs 9x9 pixels for compensation. It also
means offloading this kernel on SPE needs high DMA bandwidth. Addresses of 9x9 pixels are
non-continuous. A DMA command can only transfer continuous data in main memory. But

there are only 16 entries in MFC SPU command queue.

The overhead of accessing a macroblock based pixels and vectors would be minimized in
this data arrangement. But there are still extra efforts in unaligned access. For example, access
arbitrary 9x9 pixels for luminance compensation needs transferring 18x9 pixels (each pixel

size is 2 bytes) at least because of data un-alignment as shown in Figure 4-5.

128-bit—boundary/ Data we transferred {' Data we actually needed
OOO0OO0O0OQOODOOOOOOOOO

elefe
00O
00O
OO0
OO0
OO0

00O
00O
00O

O O @&
O ()
O @S
O @OPhs
O GO0
OO O

O OO0
O0O0O0O0O
O000O0

< " e)e)
@O O
> X 18
@& EO
w048 O
O O

OO OO0
O0O0O0O
0000

O00O0
O0O0O0O
OO0O0O0O
OO0O0O0O
OO0O0O
OO0O0O

O00O0O
OO0O0O0O
0000

O000O
O00O0
O00O0O
O00O0O
O00O0O
O00O0O

O00O0O
O00O0
O00O0O

OO00O0O0O0OO0OOOO

OOO0O0O0OOO
Figure 4-5

OCOO0O0O0OOO000O0O0

Un-aligned access for arbitrary 9x9 pixels

To overcome the problem of limited MFC SPU command queue. We write DMA list on
SPU’s LS first for issuing a large number of DMA command with only one entry in MFC
SPU command queue. DMA list is used to move data between a contiguous area in an SPE’s
LS and possibly noncontiguous area in the effective address space. It can specify up to 2048
DMA transfers, each up to 16KB in length.

In CBE processor, 128-bit-wide SIMD registers can contain 8 half-word integers. We can
compute the 8 result of 6-tap FIR at once with 6 128-bit wide registers as shown in Figure 4-6.
9 instructions needed for computing 8 6-tap FIR results with (A+F)-(((B+E)-(C+D)<<2))x5. 4
extra instructions needed if A+F-5(B+E)+20(C+D) adopted, because 32-bit multiplication is
not supported in CBE processor SIMD.

44

The bottleneck of SIMD optimization is the pack/unpack procedure. We can perform
eight 6-tap FIRs (A-5B+20C+20D-5E+F) with six packed registers as shown in Figure 4-6.

OOOOOOOOG
@@@@:3:

[o [1 [2 T 3 T 10 [11 [122 [13]

-sx [1] 2] 3 [4] un | 12 [13 | 14 |
+20x |2 | 3 [4 1 5 | 12 [13 | 14 | 15 |
+20x [3 [4 [5 [6 | 13 [14 [15 | 16 |
-sx | 4] 5 | 6 [7 |1 14 | 15 [16 | 17]
+ [5 | 6 | 7 | 8 [15 | 16 | 17 | 18 |

Figure 4-6 Six Registers for Eight FIRs

However, the addresses of the pixels for performing FIRs are non-continuous in the
memory layout. 48 instructions needed for packing 6 registers each with 8 pixels are needed
in the worst case without any optimization. 8 instructions needed for unpacking the 8 pixels

result. So pack/unpack procedure-neededto be specified before/after SIMD operations.

In the pack/unpack procedure, the most useful instruction is byte-shuffle operation. We
can arbitrarily select 1 of 32 bytes: from two-input quadwords for each of the 16 bytes in a
output quadword according to the parameters-of a third input quadword. That means we can
construct one register by selecting any bytes from the two input registers as we want. Figure

4-7 shows the byte-shuffle operation.

d = spu_shuffle(a,b,c);

clol 1] 2]3|]a]5s5 |67 |16|]17]18]19]2]2]2]23]|

<5

| a0 | al | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | al0 | all | al2 | a13 | al4 | al5 |

b [b0 | bl [b2 | b3 [b4 | b5 | b6 | b7 | b8 | b9 | b10 | b1l | b12 | b13 | b14 | bi5 |

d|a0|a1|a2|a3|a4|a5|a6|a7|b0|bl|b2|b3|b4|b5|b6|b7|

Figure 4-7 Byte-Shuffle Operation

For each luminance 4x4 submacroblock, 9x9 pixels are needed to perform inter
prediction. Our 9x9 pixels input is arranged as shown in Figure 4-8. The addresses of pixels
are continuous in x-direction. So there are more instructions needed for pack if y-direction

FIRs need to be performed.

45

©OO0OO0O000O0)
©OO0OO0O0000O0)
©O0OO0OO0O000O0)
©OO0OO0O000O0)
©O0OO0OO0O0000O0)
COO0OO0O0000O0)
CO0OO0OO0O0000O0)
QOO0 0000O0)
QOO0 0000O0)

Figure 4-8 9x9 Pixels Arrangement for 4x4 Luminance Submacroblock Interpolation

o o oo o o o o O

o o oo 0o o o O oo
o O Onoooxmomo o O
[Le Ld

o O HOOOEO O O

|
|
O& 00O RE 0O
[
O B O O O
[, [
ks O
o O
o O
o O

o O o0 0O o 0O

&=
[l
|

O O O O O O O O O
Figure 4-9 Inter Prediction of Luminance Sub-Pixel Cases

The procedures of packing are various from the case of sub-pixel we interpolate. The
cases of sub-pixels interpolation is shown in Figure 4-9. The 9x9 black squares represent 9x9

pixels needed for luminance 4x4 submacroblock interpolate.

In the example of computing sub-pixels a, b, ¢, d, e, f, g, h in Figure 4-9, we don’t need

any pack procedure. We perform 6-tap FIRs with the register as shown in Figure 4-10 directly.

46

A€ Q O O OO0 0000)
B« OOO0OO0O0O0O0)
C« OO0 0000000)
D«©O OO OO0OO0O0O0C »
E«Q OO OO0 O0O0)
F«O OO OO0OO0O0O0C >
(N eNeNeoNoNoNoNoCHD)
Q©O0OO0O0O000O0
(CNoNoNoNoNoNoNo)ClD)

Figure 4-10 Perform SIMD with Register A-F directly

In the case of computing sub-pixels i, j, k, I, m, n, o, p in Figure 4-9, we need 7
instructions in pack procedure for SIMD operation. The pack procedure is shown in Figure
4-11.

A E
©O00000000 D el oNoNeNe foNeNoNe)
©O00000000 D el eNoNeNe foNeNoNe)
© OO0 0O0 OO0) 2instructions (goog)@'oog)@
© 00000000 M) 00 0 000D
©ooooooo90H . s, OOOOOOOOO
QOO O0O00O0QODF=aTH 1000000000
QOO0 000DC ., 000000000
©@O00000000D .~ 000000000
@ 00000000V ‘ 000000000

B_.C D F

o) 0000

o 0000

5instructions O O\O

——) O 00O

000000000

000000000

000000000

000000000

000000000

Figure 4-11 Pack Procedure for Computing i, j, k, I, m, n, 0, p

In the example of computing sub-pixels c, q, s, u, d, r, t, v in Figure 4-9, we need 10
instructions in total pack procedure for SIMD operation. The pack procedure is shown in
Figure 4-12.

47

Q00000000) ooooo
©QO0OO0O000000) QO 0000000

Q@O0 0000000 ;i uctions ooooo
(ooooooooxo):> QO0OO0OO0000O0
©QO0OO0O000000) ooooo
Q00000000) Q00000000
Q00000000 » ooooo
Q00000000) QO 0000000
Q00000000) ©OO0000000DO0

A0 Q0 O)0O000O0 O0O0O00000O0

O 0l00l00O0O0O0 B0/ O\0 0000
2instructions O OO OO O O O O yingiructions (<000 000000
) 000900000 D<«Q- Q0O OO O O 0O O
Eoo@ooooo 000000000
“0oloolooooo0 o)o)'one [cNcNoNoNe

O 0l0000OO0O0O0 OO0 O0OO0OO0OO0O

00 QOO0 0O0 O 0l00l0OO0O0OO0O
©QO00000000 F<socboooooo

Figure 4-12 Pack Procedure for Computing ¢, q, s, u, d, r, t, v

The most complex case is computing, 1, 2, i, m, 3, 4, 5, 6 in Figure 4-9, we need 20
instructions in total pack procedure:The pack procédure is shown in Figure 4-13.
© 00000000 2 @OO@@OOOO
© 00000000 D . 00 0 0 00
© 0 0 O:000OOT gho @ [O)e) g)(g O 0 O\O
(ooooooooxo)‘:> 00 0 0 Q0
(CNeNeNeNoNeioNoORDA @Oog[ooog)o
©O0O0000000D o eNe o NeNoReNe!
(CHeNoNoNoNecNoNOIOND) @OO%OOS)O
©O0O0000000D 0O oNeRe e
©O0O0000000D O0O0O00000O0
© OY0 O\6 00 0 © JlClCliclclceXeXRe
OO0l0O0j0oO00OO O[] [of|a [o]jloj0 © O
6 instructions ©0l0O0IdO|0OO0 6 instructions el O/[6j0 © O
|:> QOO OQ O/0 O O |:> Q|10 10| 100 © O O
© OO0 00 O\O O O O[] [of|T [O]|0j| 0 © O
O OO0 0|0 0|00 O O[] [of|T [O]|0j| 0 © O
O OO0 0|0 0|00 O Ol [of|a [o]jloj0 © O
\0 0\ 0'0 O/O O O 00O
O0O0O0O0000O0 00O
ABCDEF
Figure 4-13 Pack Procedure for Computing 1, 2,i,m, 3,4, 5, 6

There are 16 cases in luminance 4x4 submacroblock interpolation as shown in Figure

4-14. \We categorized the cases by instructions needed for pack procedure for SIMD operation.

48

The total instructions needed by each case of a 4x4 submacroblock interpolation are
summarized in Table 4-1.

h | i .

n P q T

Figure 4-14 16 Cases of Luminance Interpolation

Table 4-1 Instructions Needed for Packing Procedure in 16 Cases of Luminance Interpolation

Cases | Pack Instructions Needed
G 0
a,b,c 14
d, h,.n 20
e, s pir 26
f, i q 36
i, k 14

After SIMD operations, the 16 pixels results of a 4x4 luminance submacroblock are in 2
128-bit-wide registers. There are two possibilities of the 16 pixels layout depending on the
cases as shown in Figure 4-15. If the layout is the left case, two instructions needed for
modified into right case.

QOO0
OOOO0
® O

Figure 4-15 16 Pixels in 2 Registers of a 4x4 Submacroblock

After a 16x16 macroblock are done. The layout of 16x16 pixels is shown in the left of

Figure 4-16. 32 instructions are needed for unpacking the whole 16x16 macroblock.

49

QOOOOOOVVOOVOVOOVOOVO)

32 instructions

Figure 4-16 Unpack Procedure of a 16x16 Macroblock

The result of computation optimization of each kernel is shown in Figure 4-17. We apply
loop unrolling in all kernels and SIMD optimization in residue coding, luminance MC,
chrominance MC and deblocking filter. In fact, there are still a lot of possibilities of
optimization in official decoder. We do computation optimization just for getting
computation/communication ratio more precisely. We also show the result of kernels
offloading on SPEs. Computation time needed on SPE is always shorter then on PPE.
Because of SPE is designed for high speed computation. But some kernels need a lot of
communication time on SPE like motion ‘computati‘on. Motion compensation needs to get
reference pixels, which are mast unaligned and notj continuous. Therefore, there is high

communication overhead in motion.compensation on-SPE.

250
200
150

100 [] original PPE

50 T [] Optimized PPE

N O iy b) [l Ortimized Computation SPE

30
25
20

Se€cC

|:| Communication SPE

15
10
i —u
0 -
VLD Residue Luma Chroma DB
Coding MC MC Filter

Figure 4-17 Computation Optimization Results of Each Kernel

50

4.2 Task Allocation

After local optimization, we can get computation time of each block with more accuracy.
Then we can profile the kernels which we are going to offload on SPE to get communication
time needed and computation needed. The kernels we are going to offloaded on SPEs
including luminance motion compensation, chrominance motion compensation, residue
coding and deblocking filter. We repartition luma motion compensation into luma
compensation and luma interpolation. Luma compensation is mainly for reference pixels
addresses generating and reference pixels fetching. Chroma motion compensation is also
repartitioned into chroma compensation and chroma interpolation in same manner. Our
profiling result is shown as Figure 4-18. The communication/computation ratio is showed in
Figure 4-20.

Profiling Result on SPE

9%

8% O Residue

B Luma compensation

28%
O Luma interpolation

2% O Chroma compensation

B Chroma interpolation

19%
14% _ _
O Deblocking Filter

Figure 4-18 Profiling Results on SPE

51

Computation/Communication ratio
30.00%
25.00% | .
20.00% |
Ecommunication
15.00% —)
[O computation
10.00% |
0.000/0 L L L L L
Residue Luma Luma Chroma Chroma Deblocking
compensation interpolation compensation interpolation Filter
Figure 4-19 Communication/Computation Ratio of each Kernels
SPEI
PPE W SPE0 SPE2
VLD K—/—r Residue Coding + / Deblocking Filter
] ,‘
Luma Luma
Compensation Interpolation
P
Chroma ~ Chroma
Compensation “ | Interpolation
» Intra Prediction
AN J

Figure 4-20" "Task Allocation Result

This profiling shows that communication requirements of luminance compensation and
chrominance compensation are extremely high. The total time needed of each kernel is far
different from the result of PPE profiling. According to the SPE profiling result, we thought a
independent SPE dedicate for deblocking filter because it’s dependency and
computation/communication ratio. There is not much space for MFC-scheduling on
deblocking filter. And we require another two SPEs for remaining kernels for real time
constraint. Even though, the total workload of remaining kernels are accounting for over
two-third of ratio in SPE profiling. Our task allocation is show as Figure 4-20.

52

4.3 Scheduling Effect

PPE ‘ VLD, VLD VLD;. VLD ‘
SPEO ‘ RC l LC RC l LC RC l LC ‘
SPE1 ‘ cc ‘ IP ‘ Ll ‘ cl | cc ‘ IP ‘ LI ‘ cl ‘
SPE2 | DB fiter |

RC: Residue Coding LI': Luma Interpolation

LC: Luma Compensation Cl: Chroma Iptgrpolation

CC: Chroma Compensation IP : Intra Prediction

Figure 4-21 MFC-aware Scheduling Result of H.264 Decoder

The scheduling result of main kernels we offloaded is roughly depicted in Figure 4-21.
After task allocation, we apply MFC-aware scheduling on SPEs for hiding memory latency.
However, because of the computation/communication ratio is enough for MFC-scheduling,
there are more possibilities for hiding DMA latencies.. Some tasks with small or tiny
granularities aren’t shown in the figure: In fact, there are a lot of opportunities for hiding
DMA latencies with these tiny granularities. These tiny tasks including address computation,

macroblock position, pixels position calculating and writing DMA list.

Because of the granularity, the result task migration is not shown in the figure. We
migrating some tiny tasks for modulating workload balance. After ring rule relaxing, we apply
buffering as much as possible. As a result of H.264 kernels have high workload variance in
iterations. Kernels in H.264 has problem of workload variance including VLD, residue coding,

luminance motion compensation and deblocking filter.

Figure 4-22 shows the DMA latency we hided with our proposed MFC-aware scheduling in
sunflower and rushhour sequence. We hide over 70% DMA transfer latencies in SPEO. This is
because we allocate more communication then computation in SPEO. There is not much space
for hiding DMA transfer in SPEQ. In SPE1, we hide most of DMA issue time achieving 90%
and 93.5%. There is enough space in SPE1 for hiding most DMA latencies. We also hide
91.2% and 91.5% of DMA Wait time in SPE2 even though the communication does not
critical in SPE2. Repartitioning tasks on SPEO and SPE1 and reallocation tasks may get even

better result in our proposed MFC-aware scheduling.

53

40
35
30
25
20
15
10

(sec)

Result of MFC-scheduling on SPEs:
sunflower

SPEO SPE1 SPE2
(SPE)

OO0 @ O

Computation time
DMA Issue time

DMA Wait time
After MFC-scheduling time

40
35
30
25
20
15
10

(sec)

Result of MFC-scheduling on SPEs:
Rush hour

SPEO SPE1 SPE2
(SPE)

OO0 mE O

Computation time
DMA Issue time

DMA Wait time
After MFC-scheduling time

Figure 4-22 MFC-scheduling Results

4.4 Processor Utilization

Figure 4-23 and Figure 4-24 show the utilization of processors with sunflower and rushhour
sequences. Before buffering, the utilization of SPEs is only about 70%. The most critical
processor in our multistage pipeline model is PPE which needs to handle the OS with Linux

kernel. Insufficient buffering results PPE make influences on overall synchronization. After

54

buffering on local store (LS) of SPEs, the utilizations of all SPEs are enhanced to over 80%.

Buffering reduces the synchronization times between processors. However, PPE is not

benefited from buffering. We in opinion that PPE is influenced by other factors like OS and

VLD may need advanced optimization. We also can see the workload variance between

different sequences. The most critical SPE in sunflower sequence is SPEQ. But the most

critical SPE in rushhour sequence is SPE2. This shows that different sequence has different

workload ratio in each kernel.

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

Utilization of Processors in Sunflower Sequence

O Util. before buffering
B Util. after buffering

PPE SPEO SPE] SPE2

Figure 4-23 Processors Utilization in Sunflower Sequence

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

Utilization of Processors in RushHour Sequence

O Util. before buffering
B Util. after buffering

PPE SPEO SPE1 SPE2

Figure 4-24 Processors Utilization in RushHour Sequence

55

4.5 Performance Analysis

Table 4-2 summarized the overall performance of our H.264 decoder in all kinds of sequences
with different sizes. The performance of our optimized H.264 decoder is scaling well in all

kinds of sequence.

Table 4-2 Performances with Different Sequences of Our Optimized H.264 Decoder

Frame Size Sequence FPS
CIF Foreman 399 fps

480P Mobcal 78.92 fps
480P Shields 71.52 fps
720P Stockholm 44.64 fps
720P shields 44 .84 fps
1080P RushHour 25.25 1ps
1080P SunFlower 25.32 fps

Optimization Results in our Design Flow

30.00
25.32

2500 ¢ 21.49

20.00 f
15.83

15.00 f

(FPS)

10.00
5.92

5.00 f
0.90

0.00 L L L L

Original IM Loop Unrolling ~ Multistage MEFC-aware Buffer for
Decoder and SIMD Pipeline Model ~ Scheduling Reducing Syn.

(Optimization Result)

Figure 4-25 Performance Improvement in Each Step of Design Flow

Figure 4-25 shows the performance improvement in each step of our design flow. The y-axis
represent for frame per second of 1080P high definition sequence. X-axis shows the technique
we applied on the H.264 decoder. Our original source JM decoder only has 0.9 fps on PPE.

After computation optimization, we achieve 5.92 fps with 6.6x by using loop unrolling

56

technique and SIMD. Achieving 15.83 fps after task allocated on SPEs. Then apply
MFC-aware scheduling for hiding DMA latency and achieve 21.49 fps. Finally, we buffering

between Processors as much as possible and achieving 25.32 fps meeting the high-definition
real-time constraint.

57

5 CONCLUSIONS AND FUTURE WORK

In this thesis, we proposed a design flow based on strict multistage pipeline model. Strict
multistage pipeline model is suit for multimedia applications with highly dependency for
achieving loading balance with efficiency. The strict multistage pipeline model limits task
migration choice and data flow,direction for simplifying the multicore programming

considerations.

We provide guides for solving several NP-complete multicore programming problems
including task allocation, MFC-aware ‘scheduling-and task migration. We allocate tasks on
SPEs considering the computation/communication ratio. Use MFC-scheduling to parallelize
MFC and SPU as much as possible. Finally achieve load balance by task migration. These

guides can get acceptable solutions with efficiency.

Synchronization overhead is the most serious problem in the multistage pipeline model.
The factors of causing synchronization overhead are two. One is the workload variance
between kernels. First, the workload of each kernel is different in iterations. The work load of
kernel depends on the decoding sequence content. The second is the OS handled by PPE. OS
thread request PPE occasionally and influence our application synchronization. We reduce
this effect by buffering as much as possible on the limited local store (LS) of SPE. Buffering

can reduce this effect, but not totally solve this phenomenon.

We used proposed design flow based on a strict multistage pipeline model parallelizing
H.264 decoder on PlayStation 3. We locally optimize H.264 decoder with 6.6x performance
gain at first. Then allocate the optimized kernels on proposed multistage pipeline model with

3 SPEs with 17.3x performance gain compare to original source code. MFC-aware scheduling

59

is applied for hiding DMA latency and the H.264 decoder gets 23.88x improvement compare
to original code. Task migration dose not work well in H.264 decoder because the task
granularity is not proper for migrating. Finally, we buffering between all SPEs as deep as
possible for reducing synchronization overhead. We have 28.13x performance gain compared
to original code and almost meet the real time constraint of 1080P test sequence with high
efficiency. The load balance among processors is well and the utilization is nearly achieving

80% in average.

We offload as more kernels as possible on SPEs to ease PPE workload. But the branch
intensive Variable-Length Decoding is not offloaded because it’s nature is not suit for SPE
executing. But PPE loading is unstable in PlayStation 3 platform. OS threads needed handle
occasionally by PPE. It disturbs our proposed multistage pipeline model. Therefore, ease PPE
workload as much as possible is needed because we have several SPEs available. The
synchronization and communication overhead between more SPEs should be taken into

design consideration.

The proposed concept is only-applied on H.264 decoder. We should study more cases
with our proposed manner and revise our design:flow for more multimedia applications. We
will try to extend our MFC-aware scheduling and task allocation strategies for getting more
close to optimal results with efficiency.

60

REFERENCES

[1]

[2]
[3]
[4]

[5]
[6]

[7]
[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

ITU-T Rec. H.264 ISO/IEC 14496-10 AVC, Document JVTD157, 4th Meeting:
Klagenfurt, Austria, July 2002

Cell broadband engine programming tutorial, IBM ,version 2.1, 2007
Cell Broadband Engine Programming Handbook, IBM, version 1.11, May 2008.

Cell broadband engine SDK libraries overview and users guide, IBM, version 2.1,
2007,

SPE runtime management library, IBM, version 2.1, 2007.

C/C++ language extensions for Cell Broadband Engine architecture, IBM, version
2.4, 2007

Cell Broadband Engine architecture, IBM ,version 1.01, 2006

J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, and D. Shippy, “Introduction to
the Cell multiprocessor,” in IBM J. RES. & DEV. VOL. 49 NO. 4/5, 2005

M. Kistler, M. Perrone, and F.Petrini, “Cell multiprocessor communication network:
built for speed,” published by the IEEE-Computer Society, 2006.

“H.264 /| MPEG-4 Part 10 White Paper”, [Online]. Available: http://www.vcodex.com.

I. E. G Richardson, H264and MPEG4 Video Compression Video Coding for Next-
Generation Multimedia, John Wiley & Sons, 2003.

D. Bader and S. Patel “High performance software decoder on the Cell Broadband
Engine,” in Proc. IPDPS, 2008

H. Baik, K. Sihn, Y. Kim, S. Bae, N. Han and H. J. Song, “Analysis and
parallelization of H.264 decoder on Cell Broadband Engine Architecture,” in Proc.
ISSPIT, 2007.

Y. Kim, J. Kim, S. Bae, H. Baik and H. J. Song, “H.264/AVC decoder parallelization
and optimization on asymmetric multicore platform using dynamic load balancing,”
in Proc. ICME, 2008.

E. van der Tol, E. Jaspers, and R. Gelderblom, “Mapping of H.264 decoding on a
multiprocessor architecture,” Proceedings of SPIE, volume 5022, 200

T. Chen, R. Raghavan, J. Dale, and E. Iwata, ” Cell Broadband Engine Architecture
and its first implementation: a performance view,” IBM, 2005

Z. Zhao and P. Liang, "Data Partition for Wavefront Parallelization of H.264 Video
Encoder,” in Proc. ISCAS, May, 2006.

J. Chong, N. Satish, B. Catanzaro, K. Ravindran and K. Keutzer, "Efficient
Parallelization Of H.264 Decoding with Macroblock Level Scheduling," in Proc.
ICME, July 2007.

61

http://www.vcodex.com/

,/_:k;-f-
T M A

I 01983 #F 127 28 p A A E 02006 EBEFR A A BT F 1R 4
F1Ee SHFLR2 U AFTF 18y TR AL 02008 # LRI R E
TOPRERLER . Apme T * 2T oo PlayStation 3 T 520 ft F K BoE AT

5 T T RIRHE, R ARLe -

	 1 Introduction
	1.1 Multimedia Application
	1.2 Multicore Architecture
	1.3 Multicore Programming
	1.4 Streaming Programming Models
	1.5 Thesis Organization

	 2 Cell Processor
	2.1 Cell Architecture
	2.2 Cell Programming Environment
	2.3 Related work

	 3 Cell Programming using Multistage Pipeline Model
	3.1 Multistage Pipeline Design Flow
	3.2 Multistage Task Allocation
	3.3 MFC-aware Scheduling
	3.4 Task Migration
	3.5 Pipeline Modulating
	

	 4 H.264 Decoder Implementation
	4.1 Kernel Optimization
	4.2 Task Allocation
	4.3 Scheduling Effect
	4.4 Processor Utilization
	4.5 Performance Analysis
	

	 5 Conclusions and Future Work
	References

