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摘要 

未來的多媒體應用傾向採用極為複雜的演算法來處理大量資料，如高解析影像。純

軟體解決方案可以因應多樣化的多媒體標準。以處理器為主的平台可透過軟體更新以跟

上最新的多媒體標準，如此可以大大的降低研發費用並延長產品在市場的壽命。然而傳

統的單一核心處理器架構並沒有辦法提供足夠的運算能力以滿足多媒體應用的即時運

算需求。多核心處理器可以提供優異的運算能力以及彈性來處理未來高複雜度的多媒體

應用。但是相較於單核心處理器只需處理單一指令流，多核心處理器的程式撰寫非常困

難。多核心處理器程式撰寫非常花費時間而且容易出錯。多核心處理器為程式撰寫帶來

許多挑戰，包含核心間的資料傳輸、同步化以及工作負載平衡。在本論文中，我們在

PlayStation 3 多核心平台上實現可滿足高解析即時需求的 H.264 解碼。我們採用了許多

有效的策略來解決多核心處理器程式撰寫的問題。其中包括利用多層級管線模型來幫助

簡化同步問題、MFC 感知排程來減低資料傳輸問題，以及反覆程序搬移來幫助達成工

作負載平衡。經過這些方法，可節省超過 70%的傳輸處理問題，核心的使用率亦可超過

85%。我們的 H.264 解碼器效能與原始版本相比提昇了 28.13 倍，該 H.264 解碼器每秒

可以解碼超過 25 張的 1080P 高解析度影像。 
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ABSTRACT 

Future multimedia applications tend to adopt extremely complex algorithms to process 
vast amount of data such as high-definition video. Software solutions are preferred, for they 
can rely on software patches to keep up with latest multimedia standards. The development 
cost can be reduced and time-in-market can be extended. However, conventional single core 
processors fail to meet real-time requirements. Multicore architectures provide sufficient 
computing power and great flexibility for tomorrow’s complex applications. However, 
multicore programming is far more difficult compared to conventional programming which 
consider only single instruction stream. Multicore programming is time-consuming and 
error-prone. It brings new challenges including inter-core communication, synchronization 
and load balancing. In this thesis, we fulfill real-time high-definition H.264 decoding on 
PlayStation 3 multicore platform. Several effective strategies are adopted to deal with 
multicore programming issues. Multistage pipeline model are utilized to simplify 
synchronization, MFC-aware scheduling help reduces communication overhead, while 
iterative task migration balance workload among processors. As a result, over 70% of 
communication overhead is hided; processor utilization is raised over 85%. Finally, 28.13 
times performance gain is achieved compared to original JM source decoder, which can 
decode more than 25 1080p high-definition frame per second.  
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 1  INTRODUCTION 

The software-only solutions for media-rich consumer-electronics devices get more and 

more popular because of its low development cost and long time-in-market. Traditional 

computing performance gain is depending on single core development. However, single core 

development is diminishing nowadays because of the limitations of power consumption, 

memory latency, and circuit complexity. Most new processors architectures are branching 

into more cores rather than better cores. Multicore architectures have become the 

mainstream rather than the exception in computing landscape. The problem is how to exploit 

the parallelism and make full utilization of all cores to reach the expected performance gain 

with efficiency.  

1.1 Multimedia Application 

The data rate and compression ratio of multimedia processing are improved as the 

complexity of algorithm grows. In multimedia decoding applications, the high-definition (HD) 
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resolution is a basic requirement in many markets, such as DTV, multimedia games, and 

multimedia playing on monitors. The even higher performance pursued by consumers make 

engineers design more powerful devices while keeping the price low. 

The high-end consumer electronics need to run versatile multimedia applications. For 

examples, audio standards are AAC, MP3, Dolby Digital (AC3), etc. And multimedia 

standards are M-JPEG, MPEG-1, 2, and 4, H.263, H.264, etc. Thus the implementation of 

multimedia coding by software is a cost-effective solution. Processor-based architectures can 

use software patches to keep up with new multimedia applications. However, conventional 

single-core processor architectures are unable to provide sufficient computing power for 

advanced real-time multimedia processing. Thus the parallelisms in multimedia applications 

should be exploited by processor-based system with high performance to meet the real-time 

specifications. We take H.264, the latest multimedia standard available for example and as our 

target. H.264 standard is introduced as following.  

 H.264 Standard 

H.264 / MPEG-4 Part 10 is the latest video compression standard developed by the 

ITU-T Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture 

Experts Group (MPEG). The final drafting work on the first version of the standard was 

completed in May 2003. 

H.264/AVC provides high compression efficiency with lower bit rates. Figure 1-1 shows 

the H.264 decoder block diagram. The decoder receives compressed bitstream from the NAL. 

The data are entropy decoded and reordered to produce a set of quantized coefficients X. 

These are rescaled and inverse transformed to give Dn’. Using the header information 

decoded from the bitstream, then the decoder constructs a prediction macroblock P. P is added 

to Dn’ to produce uF’n which this is filtered to create the decoded macroblock F’n. The 
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characteristics of each block are addressed as following. 

 

Figure 1-1   H.264 Decoder Block Diagram 

 Entropy Decoding 

To eliminate the syntax redundancy, the arithmetic coding is applied. The syntax above 

the slice layer is encoded as fixed- or variable-length codes. At the slice layer and below, 

H.264 standard specifies two types of entropy coding. Elements are coded using Content 

Adaptive Variable Length Coding (CAVLC) or Content Adaptive Binary Arithmetic Coding 

(CABAC) according to the entropy encoding mode. 

 Quantization and Transformation 

H.264/AVC uses three transforms depending on the type of residual data that is to be 

coded: a Hadamard transform for the 4x4 array of luminance DC coefficients in 16x16 

intra-prediction macroblocks, a Hadamard transform for the 2x2 array of chrominance DC 

coefficients and a DCT-based transform for all other 4x4 blocks in the residual data. 

Data within a macroblock are transmitted in the order shown as Figure 1-2. If the 

macroblock is coded in 16x16 intra-prediction, then the block labeled ‘-1’, containing the 

transformed DC coefficient of each 4x4 luminance block, is transmitted first. Next, the 

luminance residual block 0-15 are transmitted in the order shown as Figure 1-2 (the DC 

coefficient in a macroblock coded in 16x16 intra-prediction mode are not sent). Block 16 and 

17 containing a 2x2 array of DC coefficients from the Cb and Cr chrominance components 
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are sent. Finally, chrominance residual blocks 18-25 (without DC coefficients) are sent. 

 

Figure 1-2   Scanning Order of Residual Blocks within a Macroblock 

 Intra Prediction 

In intra mode a prediction block is formed based on previously encoded and 

reconstructed blocks and is subtracted from the current block prior to encoding. The 

prediction block is formed for each 4x4 block or for a 16x16 macroblock for luminance 

samples and 8x8 macroblock for chrominance samples.  

There are a total of nine optional prediction modes for each 4x4 luminance block shown 

as Figure 1-3. The arrows indicate the direction of prediction in each mode. For modes 3-8 the 

predicted samples are formed from a weighted average of the prediction samples A-M. For 

example, if mode 4 is selected, the top-right sample of 4x4 submacroblock is predicted by: 

round(B/4+C/2+D/4). 
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Figure 1-3   4x4 Luminance Prediction Modes 

As an alternative to the 4x4 luminance prediction modes described above, the entire 

16x16 luminance component of a macroblock may be predicted in one operation. Four modes 

are available shown as Figure 1-4. 

 

Figure 1-4   16x16 Luminance Prediction Modes 

Each 8x8 chroma component of an intra coded macroblock is predicted from previously 

encoded chrominance samples above and/or to the left and both chrominance components 

always use the same prediction mode. The four prediction modes are very similar to the 

16x16 luminance prediction modes, except the numbering of the modes is different. The 

modes are DC (mode 0), horizontal (mode 1), vertical (mode 2) and plane (mode 3). 

 Inter Prediction 

Inter prediction creates a prediction model from one or more previously encoded video 

frames. The model is formed by shifting samples in the reference frame(s) (motion 
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compensated prediction). H.264 uses block-based motion compensation similar to previous 

standards. 

H.264 supports motion compensation block sizes ranging from 16x16 to 4x4 luminance 

samples with many options between the two. The luminance component of each 16x16 

macroblock may be split up in 4 ways including 16x16, 8x16, 16x8 and 8x8. If the 8x8 mode 

is chosen, each of the four 8x8 macroblock partitions within the macroblock may be split in a 

further 4 ways including 8x8, 4x8, 8x4 and 4x4. These partitions and sub-partitions give rise 

to a large number of possible combinations within each macroblock. This method of 

partitioning macroblocks into motion compensated sub-blocks of varying size is known as 

tree structured motion compensation. 

A separate motion vector is required for each partition or sub-partition. Each motion 

vector must be coded and transmitted. The choice of each partition must be encoded in the 

compressed bitstream. It can cost a significant number of bits to encoding a motion vector for 

each partition. Since there are high correlations between motion vectors of the neighboring 

partitions, the motion vector can be predicted by nearby ones. Hence the motion vector 

prediction is generated by the motion vector of the adjacent partitions. 

In order to increase the accuracy of motion compensation, H.264 supports quarter-pixel 

resolution for luma components and one-eight-pixel resolution for chroma components. If the 

prediction result of sub pixel is better than that of the integer pixel, the sub pixel will be 

chosen. 

The half-pixel samples are obtained by applying a six tap filter with weights (1/32, -5/32, 

20/32, 20/32, -5/32, 1/32). For example, a half pixel ‘b’ in Figure 1-5 is obtained from the six 

horizontal integer neighbors E, F, G, H, I, and J with the formulation: b = ((E- 

5F+20G+20H-5I+J )/32). 
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Furthermore, the quarter-pixel samples can be calculated after all the half-pixel 

macroblock are available. They are produced by linear interpolation between two of their 

adjacent samples. For example, a quarter pixel ‘a’ in Figure 1-5 can be calculated by: a = 

(G+b)/2. 

 

Figure 1-5   Inter Prediction of Luminance Integer-Pixel, Half-Pixel and Quarter-Pixel Positions 

As shown in Figure 1-6, the chrominance samples can be calculated by linear 

interpolation of the neighbor pixels as following equation: 

[(8-dx)(8-dy)A+dx(8-dy)B+(8-dx)dyC+dxdyD]/64 

 

Figure 1-6   Inter Prediction of Chrominance samples 

 Deblocking Filter 
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One drawbacks of the block base video compression mentioned above is the visible 

block boundaries. It is so called blocking effects: the lower bit rate the compression is, the 

more obvious the edges are. To eliminate the blocking effect, a deblocking filter is applied 

after the inverse transform in both encoder and decoder. As shown in Figure 1-7, it is applied 

to vertical or horizontal edges of 4x4 blocks in a macroblock, in the fallowing order: four 

vertical boundaries (a, b, c, then d) of luma, four horizontal boundaries (e, f, g, then h) of lima, 

and two vertical boundaries (i, j) horizontal boundaries (k, l). 

 

Figure 1-7   Edge Filtering Order in a Macroblock 

The filtering is adaptively applied according to the boundary strength and the gradient 

across the boundaries. The boundary strength depends on the compression mode of a 

macroblock, the quantization parameter, motion vector, frame or field coding decision, and 

pixel values. With this filter, subjective quality is significant improved. This filter also 

reduces the bits rate with ratio of 5%–10% compared with non-filtered video with the same 

objective quality. 

 Data Dependencies of H.264/AVC Decoder 

There are highly dependencies in H.264/AVC decoder which causing the difficulty for 

parallel programming. In entropy decoding, the bitstream must be decoded in order. As shown 
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in Figure 1-8, for a macroblock, intra prediction needs the upper macroblock and left 

macroblock to be decoded. A 4x4 luma submacroblock needs the upper 4x4 submacroblock, 

left 4x4 submacroblock and upper right 4x4 submacroblock to be decoded in advance. 

 

Figure 1-8   Dependencies in Intra Prediction Mode 

In inter prediction mode, data dependencies are within the search range of the reference 

frame is need for interpolation as shown in Figure 1-9. 

 

Figure 1-9   Dependencies in Inter Prediction Mode 

In deblocking filter, the four neighbor rows pixels of upper macroblock and four 

neighbor columns pixels of left macroblock are needed as shown in Figure 1-10. 

 

Figure 1-10  Dependencies in Deblocking Filter 
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1.2 Multicore Architecture 

In recent years, processor industry has reached a new market of consumer electronics 

and personal computers. In order to further improve the already high performance of 

processor, the concept of multi-core on a chip comes out. With the improvement of 

semiconductor processes, it’s possible to put many processing cores onto a single processor 

chip. This kind of processor is called as multicore processor.  

A multicore processor combines two or more independent cores into a single package 

composed of a single die. Cores in a multicore device may share a single coherent cache at the 

highest on-device cache level or may have separate caches. The processors also share the 

same interconnect to the rest of the system. Each "core" independently implements 

optimizations such as superscalar execution, pipelining, and multithreading. There are some 

reasons for multicore trend. First, the processor needs more effective performance per Hz, i.e., 

the power would become the bottleneck of processor. The utilization of more processors on a 

system was a common solution in the past. The multi-chip module (MCM) belongs to this 

category. But with the help of semiconductor technology, the integration of many circuits into 

a single chip is feasible. 

1.3 Multicore Programming 

With the advent of multicore architectures, the programmers and consumers may simply 

think that the performance would increase linearly with the number of cores. However, it’s 

always not the case as excepted. The potential problems are the level of parallelism and the 

communication between each core. It’s a complicated job to extract parallelism from the 

program and balance the workload for each core. The communication overhead in a multicore 

system may become the bottleneck when the communication throughput is too huge or the 
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frequency is too high. 

Software benefits from multicore architectures where code can be executed in parallel, 

but traditional programming models are ill-suited to multicore architecture because they 

assume a single instruction stream and a monolithic memory. It is very difficult to 

automatically extract parallelism from a sequential program. The parallelism of task remains 

in the hands of programmer much of time. Thus the key point to improve the performance of 

a multicore processor is the task partition and communication mechanism between each core 

designed by the programmers. A multicore programmer requires concept and understanding of 

parallel programming.  

The key to parallel programming is to locate exploitable concurrency in a task. The first 

basic step for parallelizing program is locate concurrency, then structure the algorithms to 

exploit concurrency, and finally tune for the performance. But achieving parallel 

programming with high performance by just following the basic steps described above is not 

easy, there are also challenges for parallel programming. First are the data dependencies. 

Second, there is overhead in synchronizing concurrent memory accesses or transferring data 

between different processor elements and memory access overhead might exceed any 

performance improvement. Third, partitioning work is often not obvious and can result in 

unequal units of work. Last, what works in one parallel environment might not work in 

another, due to differences in bandwidth, topology, hardware synchronization primitives, and 

so forth. 
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1.4 Streaming Programming Models 

 Parallel Stages Model 

Figure 1-11 shows the parallel stages model. If the target application has low or none 

dependencies among kernels, the task in which there is a large amount of data that can be 

partitioned and acted on at the same time. But a communication mechanism is needed to 

design for this model for dispatching and collecting data. In the case of parallel stages model, 

task-to-task communication remains locally on the core if sufficient local memory size is 

available. Thus, this model inherently results in locality of data, so it is typically making sense 

to use PEs to process different portions of that data in parallel. This model is also well for 

scalable if more data or advanced computing power needed, just adding PEs on the parallel 

stages. 

 

Figure 1-11  Parallel Stages Model 

 Multistage Pipeline Model 

Figure 1-12 shows the Multistage Pipeline Model. If there are dependencies between kernels, 

a task requires sequential stages. The PEs can act as a multistage pipeline. Here, the stream of 
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data is sent into the first PE, which performs the first stage of the processing. The first PE 

then passes the data to the next PE for the next stage of processing. After the last PE has done 

the final stage of processing on its data, that data is returned to the MFC. As with any pipeline 

architecture, parallel processing occurs, with various portions of data in different stages of 

being processed. Multistage pipelining is typically avoided because of the difficulty of load 

balancing. It’s common that a certain task becomes a system bottleneck due to imbalanced 

loads of the processor. In addition, the multistage model increases the data-movement 

requirement because data must be moved for each stage of the pipeline. This model is not well 

for scalable because of repartitioning is needed if we want to add PE in this model.  

 

Figure 1-12  Multistage Pipeline Model 

A hybrid model also can be adopted between parallel stages model and multistage 

pipeline model as shown in Figure 1-13. However, this model has drawbacks of both. Design 

space and complexity in this model is much more raised. 

MPU

PE
PE PE

PE
Split Joint

 

Figure 1-13  Hybrid Pipeline Parallel Model 
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1.5 Thesis Organization 

This work proposed a programming scenario for CBE processor. The target of our 

method is to simplify the programming considerations on multicore with efficiency. The rest 

of this thesis is organized as follows.   

Chapter 2 reviews the experimental platform: Cell Broadband Engine (CBE). A brief 

description of the architecture of Cell processor is the beginning. Two processing units called 

as the Power Processor Element (PPE) and the Synergistic Processor Element (SPE), the 

direct memory access (DMA), and the element interconnect bus (EIB) would be in the 

description. Then the communication mechanisms and associate application programming 

interface (API) are presented. Challenge of programming CBE processor is also made in this 

chapter.  

Chapter 3 proposed a multistage pipeline model for multicore programming and a 

MFC-aware scheduling method for parallelizing MFC and SPU. These two features are 

packed into our design flow. We do computation optimization first for getting 

computation/communication ratio on SPE more precisely. Then analyze workload of each 

kernel on SPE for task allocation and MFC-aware scheduling. Apply iterative task migration 

for modulating workload balance among PEs. After task allocation on PEs is determined, the 

strict multistage pipeline model is generalized and buffer is inserted between PEs for reducing 

synchronization overhead.  

Chapter 4 is the procedure of a case study of parallelizing H.264 decoder on PlayStation 

3 multicore platform with our proposed method. Include the features of H.264 standard. A 

design flow including our proposed methods in chapter 3 is applied on H.264 decoder. The 

results of each optimization stage is showed and discussed.   

Chapter 5 concludes this thesis and provides the future work.  
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 2  CELL PROCESSOR 

Our target PlayStation 3 multicore platform is powered by Cell processor. Cell is a 

microprocessor architecture jointly developed by Sony Computer Entertainment, Toshiba, and 

IBM. Cell is shorthand for Cell Broadband Engine Architecture, commonly abbreviated 

CBEA in full. Cell combines a general-purpose Power Architecture core of modest 

performance with streamlined co-processing elements which greatly accelerate multimedia 

and vector processing applications. Chapter 2.1 introduces the Cell Broadband Engine (CBE) 

architecture. Chapter 2.2 gives overview of Cell Broadband Engine programming issues. 

Chapter 2.3 introduces our related work, including our previous work: real-time motion JPEG 

on PlayStation 3 and a H.264 implementation on CBE processor by Samsung Software 

Laboratories.  

2.1 Cell Architecture 

Figure 2-1 shows a high level block diagram of the CBE processor hardware. The CBE 
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processor is a multicore processor with 9 processor elements in total and a shared coherent 

memory on-a-chip. The functionality of processors can be categorized into two kinds. One is 

the PowerPC Processor Element (PPE) and the other is the Synergistic Processor Element 

(SPE). There are one PPE and eight identical SPEs. All processor elements are connected to 

each other and to the on-chip memory and I/O controllers by the memory-coherent element 

interconnect bus (EIB).  

 

Figure 2-1   Block Diagram of Cell Broadband Engine 

 PowerPC Processor Elements 

The PowerPC Processor Element (PPE) is a general-purpose, dual-threaded, 64-bit RISC 

processor that conforms to the PowerPC Architecture, with the vector/SIMD multimedia 

extensions. The PPE consists of two main units, the PowerPC processor unit (PPU) and the 

PowerPC processor storage subsystem (PPSS) as shown in Figure 2-2. 
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Figure 2-2   PPE Block Diagram 

The PPU performs instruction execution. It has a level-1 (L1) instruction cache and data 

cache and six execution units. It can load 32 bytes and store 16 bytes independently and 

memory-coherently, per processor cycle. The PPSS handles memory requests from the PPU 

and external requests to the PPE from SPEs or I/O devices. It has a unified level-2 (L2) 

instruction and data cache. The PPU and the PPSS and their functional units are shown as 

Figure 2-3. 

 

Figure 2-3   PPE Functional Units 
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PPU could further divided into the following functional units. 

 Instruction Unit (IU) 

The IU contains a 2-way set-associative and reload-on-error 32KB L1 instruction cache. 

The cache-line size is 128 bytes. The IU performs the instruction-fetch, decode, dispatch, 

issue, and completion portions of execution. 

 Branch Unit (BRU) 

The BRU performs the branch functionality. 

 Fixed-Point Unit (FXU) 

The FXU performs fixed-point operations, including add, multiply, divide, compare, shift, 

rotate, and logical instructions.  

 Load and Store Unit (LSU) 

The LSU contains a 4-way set-associative and write-through L1 data cache with 32 KB. 

The cache-line size is 128 bytes. The LSU performs all data accesses, including load and store 

instructions. 

 Vector/Scalar Unit (VSU) 

The VSU contains a floating-point unit (FPU) and a 128-bit vector/SIMD multimedia 

extension unit (VXU), which together execute floating-point and vector/SIMD multimedia 

extension instructions. 

 Memory Management Unit (MMU) 

The MMU contains a 64-entry segment look-aside buffer (SLB) and 1024-entry, unified, 

parity protected translation look-aside buffer (TLB). The MMU manages address translation 

for all memory accesses.  
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The PPSS handles all memory accesses by the PPU and memory-coherence operations 

from the element interconnect bus (EIB). The PPSS has a unified, 512-KB, 8-way 

set-associative, write-back L2 cache with error-correction code (ECC). The cache-line size for 

the L2 is 128 bytes as the same as L1 cache-line size. The PPSS performs data-prefetch for 

the PPU and bus arbitration and pacing onto the EIB. There are MMU, L1 instruction cache, 

and L1 data cache of PPU getting data from PPSS by a shared 32-byte load port. There are 

MMU and L1 data cache of PPU putting data to PPSS by a shared 16-byte store port. The 

interface between the PPSS and EIB supports 16-byte load and 16-byte store buses. One 

storage access occurs at a time, and all accesses appear to occur in program order. The 

interface supports resource allocation management. 

 Synergistic Processor Elements 

The eight Synergistic Processor Elements (SPEs) execute a new single instruction, 

multiple data (SIMD) instruction set—the Synergistic Processor Unit Instruction Set 

Architecture. Each SPE is a 128-bit RISC processor specialized for data-rich, 

compute-intensive SIMD and scalar applications. It consists of two main units, the synergistic 

processor unit (SPU) and the memory flow controller (MFC), as shown in Figure 2-4.  

 

Figure 2-4   SPE Block Diagram 
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The LS is a 256 KB, error-correcting code (ECC)-protected, single-ported, noncaching 

memory. It stores all instructions and data used by the SPU. It supports one access per cycle 

from either SPE software or DMA transfers. SPU instruction prefetches are 128 bytes per 

cycle. SPU data access bandwidth is 16 bytes per cycle, quadword aligned. DMA-access 

bandwidth is 128 bytes per cycle. DMA transfers perform a read-modify-write of LS for 

writes less than a quadword.  

Each SPU has its own MFC. The MFC serves as the SPU’s interface, by means of the 

element interconnect bus (EIB), to main-storage and other processor elements and system 

devices. The MFC’s primary role is to interface its LS-storage domain with the mainstorage 

domain. It does this by means of a DMA controller that moves instructions and data between 

its LS and main storage. The MFC also supports storage protection on the main-storage side 

of its DMA transfers, synchronization between main storage and the LS, and communication 

functions (such as mailbox and signal-notification messaging) with the PPE and other SPEs 

and devices.  

 

Figure 2-5   SPE Functional Units 
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Figure 2-5 shows the SPE functional units. The SPU issues two instructions to its two 

execution pipelines respectively. The pipelines are referred to as even (pipeline 0) and odd 

(pipeline 1). Whether an instruction goes to the odd or even pipeline depends on the 

instruction type. The functional units in SPU are described as follows. 

 SPU Odd Fixed-Point Unit (SFS) 

The SFS executes byte shift, rotate mask, and shuffle operations on quadwords. 

 SPU Load and Store Unit (SLS) 

The SLS executes load and store instructions and hint for branch instructions. It also 

handles DMA requests to the LS. 

 SPU Control Unit (SCN) 

The SCN fetches and issues instructions to the two pipelines. It performs control 

functions such as branch instructions, arbitration of access to the LS and register file, etc. 

 SPU Channel and DMA Unit (SSC) 

The SSC manages communication, data transfer, and control into and out of the SPU. 

 SPU Even Fixed-Point Unit (SFX) 

The SFX executes arithmetic instructions, logical instructions, word SIMD shifts and 

rotations, floating-point comparisons, and floating-point reciprocal and reciprocal square-root 

estimations 

 SPU Floating-Point Unit (SFP) 

The SFP executes single-precision and double-precision floating point instructions, 

16-bit integer multiplies and conversions, and byte operations. The 32-bit multiplies are 

implemented in software using 16-bit multiplies. 
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 Element Interconnect Bus 

Figure 2-6 shows the element interconnect bus (EIB), which is the communication path for 

data commands and data among the PPE, SPEs, main system memory, and external I/O. The 

EIB data network consists of four 16-byte-wide data rings: two running clockwise and the 

other two counterclockwise. Each ring allows up to three concurrent data transfers, as long as 

their paths don’t overlap.  

 

Figure 2-6   Element Interconnect Bus (EIB) 

To initiate a data transfer, bus elements must request data bus access. The EIB data bus 

arbiter processes these requests and decides which ring should handle each request. The 

arbiter always selects one of the two rings that travel in the direction of the shortest transfer, 

thus ensuring that the data won’t need to travel more than halfway around the ring to its 

destination. The arbiter also schedules the transfer to ensure that it won’t interfere with other 
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in-flight transactions. To minimize stall on reads, the arbiter gives priority to requests coming 

from the memory controller. It treats all others equally in round-robin fashion. Thus, certain 

communication patterns will be more efficient than others. 

The EIB operates at half the processor-clock speed. Each EIB unit can simultaneously 

send and receive 16 bytes of data every bus cycle. The EIB’s maximum data bandwidth is 

limited by the rate at which addresses are snooped across all units in the system, which is one 

address per bus cycle. Each snooped address request can potentially transfer up to 128 bytes, 

so in a 3.2GHz Cell processor, the theoretical peak data bandwidth on the EIB is 128 bytes 

x1.6 GHz = 204.8 Gbytes/s. 

However, the actual data bandwidth achieved on the EIB depends on several factors: the 

destination and source’s relative locations, the chance of a new transfer’s interfering with 

transfers in progress, the number of Cell chips in the system, whether data transfers are 

to/from memory or between local stores in the SPEs, and the data arbiter’s efficiency. EIB 

bandwidth would be reduced in some non-ideal cases. 

 Inter Processor Communication 

Cell Broadband Engine (CBE) has many attributes of a shared-memory system. The 

PowerPC Processor Element (PPE) and all Synergistic Processor Elements (SPEs) have 

coherent access to main storage. But the CBE processor is not a traditional shared-memory 

processor. SPE only can execute programs and directly access data from and to its own local 

store (LS). Because of lacking directly accessing to shared memory, SPE must using three 

primary communication mechanisms to communicate with other elements on EIB: DMA 

transfers, mailbox messages, and signal notification. All these three communication 

mechanisms are controlled by SPE’s memory flow controller (MFC). The communication 

mechanisms are summarized as follow: 
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 DMA transfers 

Used to move data and instructions between main storage and a local store(LS). An MFC 

supports naturally aligned DMA transfer sizes of 1, 2, 4, 8, and 16bytes and multiple of 16 

bytes. For naturally aligned 1, 2, 4, and 8-byte transfers, the source and destination addresses 

must have the same 4 least significant bits (LSB). A single DMA command could transfer up 

to 16 KB between an LS and shared memory storage. The throughput of a DMA transfer 

when the source and destination addresses are 128-byte aligned is double as compared to that 

of a mis-aligned transfer within a cache line. It’s because that the mis-aligned transfer is a 

partial cache-line transfer, and actually there may be two bus requests for this transfer. Peak 

performance is achieved when the size of the transfer is a multiple of 128 bytes and both the 

effective address (EA) and the local store address (LSA) of the DMA transfer are 128-byte 

aligned. SPEs rely on asynchronous DMA transfers to hide memory latency and transfer 

overhead by moving data in parallel with synergistic processor unit (SPU) computation. 

A MFC has only 16 entries in MFC SPU command queue. A DMA list is sequence of 

eight-byte list elements, stored in an SPE’s LS, each of which describes a DMA transfer and 

only occupy one of the SPU command queue. DMA list commands can be initiated only by 

SPU programs, not by other devices. A DMA list command can specify up to 2048 DMA 

transfers, each up to 16 KB in length. Thus, a DMA list command can transfer up to 32 MB, 

which is 128 times the size of the 256 KB LS, more than enough to accommodate future 

increases in the size of LS. The space required for the maximum-size DMA list is 16 KB. 

DMA list commands are used to move data between a contiguous area in an SPE’s LS and 

possibly noncontiguous area in the effective address space. 

 Mailboxes 

Used for control communication between an SPE and the PPE or other devices. 
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Supporting the sending and buffering of 32-bit messages. Each SPE can access three mailbox 

channels, each of which is connected to a mailbox register in the SPU’s MFC. Two one-entry 

mailbox channels: the SPU Write Outbound Mailbox and the SPU Write Outbound Interrupt 

Mailbox, which are provided for sending messages from the SPE to the PPE or other device. 

One four-entry mailbox channel: the SPU Read Inbound Mailbox, which is provided for 

sending messages from the PPE, or other SPEs or devices. 

 Signal notification 

Used for control communication from the PPE or other devices. SPE signal-notification 

channels are connected to inbound registers (into the SPE). The PPE, other SPEs, and other 

devices use the signal notification registers to send information, such as a buffer-completion 

synchronization flag, to an SPE. An SPE has two 32-bit signal-notification registers, each of 

which has a corresponding MMIO register that can be written with signal-notification data. 

2.2 Cell Programming Environment 

A source code of C/C++ program can be complied with GCC complier and executed on 

CBE processor with Linux environment. But an un-optimized program would be executed 

sequentially only on PPE without any parallelism. The CBE processor provides a foundation 

for many levels of parallelization. The levels of parallelization are described as follow:  

 SIMD processing 

Both the PowerPC Processing Element (PPE) and the Synergistic Processor Elements 

(SPEs) are capable of Single Instruction Multiple Data (SIMD) computation. In the PPE, 

these operations are supported by the 32-entry vector register file, vector/SIMD multimedia 

extensions to the PowerPC instruction set, and C/C++ intrinsics for the vector/SIMD 

multimedia extensions. In the SPEs, SIMD operations are supported by the 128-entry vector 
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register file, SPU instruction set, and C/C++ intrinsics. 

The vector instruction sets of the PPE and the SPE are very similar. But there are still 

some SIMD-support differences between the PPE and SPE architectures. The differences are 

summarized in Table 2-1.  

Table 2-1  PPE and SPE SIMD-Support Comparison 

Feature PPE SPE 

Number of PEs 1 8 

Modes supported user and supervisor user only 

Number of SIMD registers 32 (128-bit) 128 (128-bit) 

Organization of register 
files 

separate fixed-point, 
floating point, and SIMD 

registers 
unified SIMD registers 

Load latency Variable (cached) fixed 

Addressability 264-byte main storage 256 KB LS, 264-byte main 
storage via DMA  

Memory architecture 2-level caching Software-controlled LS 

SIMD instruction set 
general SIMD, supported by 
PowerPC scalar and control 

instructions 

SIMD only, optimized for 
single-precision floating 
point, 16-bit fixed-point, 

and 32-bit fixed-point 

Single-precision 
floating-point SIMD  

IEEE 754-1985 and 
SPE-compatible 

graphics-rounding mode 
supported 

extended range 

Double-precision 
floating-point SIMD not supported IEEE 754-1985 supported 

Doubleword fixed-point 
SIMD not supported supported 
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 Dual-issue superscalar microarchitecture 

The PPE and SPEs have multiple, parallel execution units and are capable of executing 

two instructions per clock. Dual-issue success depends upon the instructions being issued, 

their address, and the state of the system during execution 

 Hardware multithreading 

The PPE supports two simultaneous threads of execution in hardware, so the PPE can be 

viewed as a two-way multiprocessor with shared dataflow. This gives PPE software the 

effective appearance of two independent processing units 

 Multiple execution units with heterogeneous architecture and differing capabilities 

Each of the nine processor elements provides independent computation and can be 

considered as asymmetric threads of execution. All processor elements have access to the 

coherent main storage for shared-memory multiprocessing. The SPE mailboxes and SPU 

signal notification registers support parallel-processing message-passing. 

 Multiple CBE processors 

Two CBE processors can be directly connected by means of the Cell Broadband Engine 

interface unit in a shared memory configuration. Multiple CBE processors can be loosely 

clustered in a distributed-memory configuration.  

While these levels of parallelization are provided, there are still challenges for CBE 

processor programming. 

 Asymmetric multicore platform 

PPE is intended primary for control processing. SPEs are intended for data-rich 

computations allocated to them by the PPE. Task partition and allocation between PPE and 
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SPEs are should be carefully handled for load balancing and utilization. If the load between 

PPE and SPEs are imbalanced, the PPE or SPE with heaviest workload would be the 

bottleneck of the overall performance.  

 Distributed memory architecture 

Each SPE gets data from main memory through DMA transfer. DMA transfers are 

dynamic allocated by DMA arbiter on CBE processor. Too much DMA request at a time slice 

would cause the DMA transfer being the bottleneck of the overall performance. DMA 

commands are issued by MFC parallel with SPU computation. Hiding latency of moving data 

by this characteristic is an important technique in Cell programming. 

 Limited scratch memory 

There is only 256-KB local store (LS) for each SPE. The 256 KB LS stores both data and 

instructions. So the data quantity fetched into LS for computation should be carefully 

considered. 

We adopted Sony, PlayStation 3 as our multicore platform. PlayStation 3 has 1 CBE 

processor which has 1 PPE and only 6 SPEs for productive. There is 256 MB memory in 

PlayStation 3. PlayStation 3 is a much more economical solution for construct Cell 

programming environment compared to Cell Blade, which has 2 CBE processor each has 1 

PPE and 8 SPEs and 2GB main memory available. We installed Fedora 7 as our operating 

system running on PPE. GCC complier at -O3 level is adopted.  

2.3 Related work 

Our previous work is a frame-based data-partition on CBE processor as shown in Figure 

2-7. In this work, we parallelized a motion JPEG decoder on CBE processor with 20x 
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improvement by using 6 SPEs. The dataflow planning starts from the input stream dividing by 

the PPE. The PPE allocates the encoded frames to the 6 SPEs in round-robin fashion. Each 

SPE is responsible for the decoding of an entire frame. The SPE returns the decoded frame 

and the PPE display the contents in the frame buffer. When all frames are returned, the PPE 

ceases the decoding process and destroys the threads.  

 

Figure 2-7   Dataflow Planning for Motion JPEG decoding on CBE processor 

There are 3 optimization techniques applied previous work. They are vectorization, 

parallelization, and dataflow optimization. The performance with combinations of these 

techniques is shown in Figure 2-8. 
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Figure 2-8   Performance with Combinations of Optimization Techniques 

Previous work shows that data partitioning technique can achieve high utilization on 

SPEs for dependency-free part of a multimedia application. Unfortunately, some multimedia 

like H.264 standards with highly dependency is ill-suited in this manner.  

In [12], D. Bader and S. Patel implement a MPEG-2 decoder on Cell Blade. They 

achieve 371.9 fps with 16 SPEs. They also used parallel stage, fully data partition. They 

offloaded whole application on SPE. Their problem is they used nearly all local store(LS). 

There is few space for memory optimization like double buffering.  

In [13], Samsung Software Laboratories implemented H.264 decoder on CBE processor 

with 1 PPE and 4 SPEs. They only take PPE profiling into consideration and offload the most 

computation intensive functions on SPEs by intuition. They used 1/4 frame as a iteration to 

reduce the synchronization overhead and achieved 20 fps with 3.5x performance 

improvement in 1080P sequences compared to original source code on PPE. Their result 

shows that PPE is 95.3% busy in whole decoding process but three SPEs in charging for 
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Motion Compensation are only 68.1% busy. The only SPE computes Deblocking has 63.5% 

utilization. Their first step shows low utilization in SPEs and full loaded PPE. The bottleneck 

of their first implementation is the full loaded PPE. Much more functions on PPE needed to 

be offloaded on SPE for load balance. 

In [14], Samsung Software Laboratories shows their improved second implementation. 

They used 1 PPE and 3 SPEs. Utilization of SPEs is raised by offloading more function of 

PPE to SPE. Modulate load balance between PPE and SPEs with a simple dynamic load 

balancing mechanism. The achieve 35 fps in 1080P test sequence and a nearly full utilization 

in PPE and 2 SPEs.  

But in our work, we offload functions of PPE as much as possible to ease of PPE loading 

because our only PPE on PlayStation 3 needs to handle the OS with Linux kernel 

simultaneously. Our policy is offloading functions on SPEs as much as possible including 

computation and DMA transfer. Then hiding DMA latency by parallelizing MFC and SPU, 

achieve load balancing between SPEs and raise utilization of all SPEs with proposed design 

flow. 
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 3  CELL PROGRAMMING USING 

MULTISTAGE PIPELINE MODEL 

In our thesis, a strict multistage pipeline model based design flow including task 

allocation, MFC-aware scheduling and iterative task migration is adopted. We provide guides 

for solving these three NP-complete problems in our design flow. We can get comparable 

performance gain by these guidelines with efficiency. Strict multistage pipeline model 

provides a fast way for considering task migration with efficiency. Simplify the data flow in 

multicore programming. MFC-scheduling is for parallelizing MFC and SPU as much as 

possible for hiding latency. We can hide most DMA latency with this method.  

3.1 Multistage Pipeline Design Flow 

In our design flow, a strict multistage pipeline model was adopted as shown in Figure 3-1. 

The start point and end point of the stream is the shared memory. Only the first and last 

processor can access shared memory. Each SPE only can access its precedence or successor’s 

local store (LS). If a task on a SPE is going to be migrated for loading balance. Only previous 

SPE and next SPE could be chosen to migrate. If performance gain is not as much as we 

estimated when load balance achieved. We added another available SPE at start point or end 

point.  
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Figure 3-1   Strict Multistage Pipeline Model 

This strict multistage pipeline model much simplifies the design space of task migration. 

Considering which processor for task migrating is a complicated work. More cores adopted 

for parallelizing application, more choices for migration. Strict multistage pipeline model 

limits the choice on precedence and successor. There are always only two choices for 

considering regardless of the number of cores we have. The data flow between SPEs and 

shared memory is much simplified is strict multistage pipeline model. If we don’t restrict the 

model at first, the data flow between shared memory and local stores (LS) would be very 

complicated after several iteration of task migration as shown in Figure 3-2. In strict 

multistage pipeline model, data flow wouldn’t be more and more complex after several 

migrations. 

 
Figure 3-2   Data Flow would be Complicated after Several Migrations 
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Figure 3-3   Design Flow 

Figure 3-8 briefly described our design flow. A design flow based on strict multistage pipeline 

model is adopted. Input of design flow is the application source code. First, we do 

computation optimization on application kernels with some conventional techniques including 

algebra simplification, SIMD, loop unrolling and software pipelining. Local optimization as 

better as possible is also important in multicore programming. The optimization effort in this 

stage influences the result of each step in our design flow afterwards.  

Offloading kernels on SPE induces communication overhead. Communication overhead 

is comparable with computation time in some memory intensive kernel like motion 

compensation of H.264 decoding. How to hide DMA latency is an important issue in SPE 

programming. In order to hide DMA latency well, we must estimate DMA overhead as 

precisely as possible. Additionally, the computation time needed on PPE and on SPE might be 

different because their architectures are different in nature. SPE architecture is aim for high 

speed computation but poor for branching. PPE is opposite to SPE. So we should profile on 

SPE to analysis each kernel’s workload including computation and communication time.  
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In workload analysis on SPE, we sort communication overhead on SPE into two kinds. 

One is DMA issue time needed by SPU. SPU issue DMA commands to MFC costs additional 

cycles. Another overhead is DMA wait time. The length of DMA wait time is between MFC 

gets the DMA command and MFC complete the DMA command. DMA wait time needed 

depending on the input/output data size and data addresses in main memory is continuous or 

not. After computation optimization, we can get computation/communication ratio of each 

kernel much more precisely. So we make workload analysis on SPE for getting 

computation/communication ratio of each kernel which is going to be offloaded on SPEs.  

After workload analysis, we allocate kernels on SPEs according to the workload analysis. 

We estimate the number of SPEs we needed for meet our performance constraint and the 

communication time we can hide roughly. Then start the allocation. We provide task 

allocation guides for solving this NP-complete problem with efficiency. The steps of task 

allocation is described in chapter 3.2. 

After kernels allocated on strict multistage pipeline model, we apply MFC-aware 

scheduling on each SPE to hide DMA latency. MFC-aware scheduling parallelizes MFC and 

SPU for hiding DMA latencies. We also provide guides for this NP-complete problem. The 

detail of MFC-aware scheduling is described in chapter 3.3. 

After MFC-aware scheduling, the latency hided in each SPE is diverse because of the 

computation/communication ratio in each SPE is different. As a result, MFC-aware 

scheduling may unbalance the workload among SPEs. So we have to do task migration after 

MFC-aware scheduling for modulating workload balance among all processors. An iterative 

task migration is adopted, which addressed in detail in chapter 3-4.  

After task migration, tasks allocation is determined. If the performance is far from 

expected or load balance is still worse without any improvement probability. Repartitioning 

tasks into smaller granularities is needed. Then rerun the design flow from workload analysis. 

After the result of task migration, the strict multistage pipeline model is generalized as 

shown in Figure 3-4. Original data flow is restricted by multistage pipeline model. In fact, not 

all parameters need to go through previous SPEs. Some parameter can be accessed from 

shared memory directly. This stage also reduces local store (LS) usage of each SPE. The 

remaining local store (LS) could be used for buffering. The strategy of buffering is described 

in chapter 3.5. 
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Figure 3-4   Generalized strict multistage pipeline model 

3.2 Multistage Task Allocation 

According to workload analysis, we can get computation/communication ratio of each 

kernel which is going to be allocated on SPE. There are several parameters we must estimate 

before allocation. We estimate the number of SPE needed for meet our required performance 

first to form our multistage pipeline model. Second, we assume that 60%~70% DMA latency 

can be hided in general scheduling result.  

In our allocation procedure, each SPE has a given quota. The quota of each SPE is 

determined by the total workload. We fill the quota of SPEs by task allocation and allocate as 

balance as possible.  

Then we start allocation on SPEs with strict multistage pipeline model. The allocating 

steps are described as follow: 

 Step 1: We allocate task with the most workload with dependency first.  

 Step 2: Then allocating adjacent tasks in previous task with dependency, allocating these 

tasks for fill quota of a SPE as much as possible.  

 Back to step 1 for allocating a task with the most workload with dependency.  

3.3 MFC-aware Scheduling 

Once we offload a kernel on SPE. The kernel needs input/output data through DMA 

transfer. The procedure of a kernel executing on SPE is shown in Figure 3-5. The SPU first 

issues DMA command for getting input data from main memory. Then SPU wait till MFC 

complete the DMA transfer for computing input data. Then output data to main memory by 

issuing DMA command and wait for MFC completion.  
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We can observe that when waiting for MFC doing DMA transfer, SPU is idle. We can 

schedule other kernel’s computation to SPU when waiting for DMA transfer for hiding DMA 

latency. But getting the best scheduling result is a NP complete problem. A scenario needed 

for hiding DMA latency with efficiency is needed. 

 
Figure 3-5   Hiding DMA Latency 

We can schedule tasks without dependencies arbitrarily. MFC-aware scheduling can hide 

most of DMA latencies with highly efficiency. Take Figure 3-6 as an example. When task 

offload on SPE, it needs to load data for computation, then save data by DMA after execution. 

We take the DMA time for our MFC-aware scheduling consideration. The steps of our 

proposed MFC-aware scheduling are as follows 

 Step 1: MFC-list optimization. 

 Use MFC-list command to perform scatter load/store. 

 Step 2: MFC-latency hiding. 

 Schedule vertex pair connected by most heavy edge repeatedly. This step is aim for 

hiding the longest DMA latencies in a iteration. 

 Source vertex like load is scheduled as soon as possible. 

 Sink vertex like execution, save and wait are scheduled as late as possible. 

 Overlap operation from different iterations, most DMA latencies can be hided by 

this operation.  

 Step 3: MFC-check minimization 

 Group MFC-check commands, this can hide some DMA latency occasionally. 
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Figure 3-6   MFC-aware Scheduling 

3.4 Task Migration 

After MFC-aware scheduling, the load balance would be worse because our task 

allocation is done before MFC-aware scheduling. The latency hided on each SPEs is quite 

different depending on each SPE’s computation/communication ratio. So task migration 

needed for modulating workload balance in this stage. There are two phases in task migration. 

 The first is trivial migration. We examine all the SPEs finding DMA latencies not hided. 

If there is any DMA latency not hided on a SPE, we find a proper task in adjacent SPE to fill 

the unhided DMA latency. This step can reduce the overall unhided DMA latency. This step is 

shown in Figure 3-7. 
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Figure 3-7   Filling unhided DMA latency 

Second, we do a iterative task migration for load balancing. We identify the critical SPE 

by getting the utilization of each SPE. For example in Figure 3-8, SPE1 is the most critical 

one because of its utilization. We should migrate one of tasks on SPE1 to its adjacent for 

adjusting load balance as shown in Figure 3-9. The steps of iterative task migration are 

described as follows: 

 Step 1: Identify the most critical SPE for task migration. And analysis the critical SPE 

which is computation dominating or communication dominating.  

 Step 2: Analyze precedence and successor of the critical SPE, including their utilization 

and the computation/communication space for hiding. Select the one with more space for 

migrating task from the critical SPE.  

 Step 3: Choose a task in critical SPE with proper computation/communication ratio and 

migrate it to the chosen SPE. 

 Analyze the workload balance. Back to step 1 if the workload balance is not well. 

SPE0 SPE1 SPE2 SPE3  
Figure 3-8   Identifying Critical SPE for Task Migration 
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Figure 3-9   Task Migration for Adjusting Load Balance 

3.5 Pipeline Modulating 

The last step of our design flow is buffering in local store. The potential problem in our 

multistage pipeline model is synchronization. The most serious factor is our OS handled by 

the PPE. PPE is the start point in our strict multistage pipeline model. Once PPE is required 

by OS thread, synchronization between all PPE and SPEs is influenced. Second factor is the 

application nature. Sometimes workload of kernel is depending on its input data or parameter. 

If the workload of a kernel differs from its iterations, the synchronization is influenced, too. 

Reducing iteration times is the most effective way for synchronization overhead reduction. 

Fortunately, we can add buffer between arbitrary two SPEs easily. Because the data flow in 

our model is simple for buffering. We can insert buffer as much as possible until the local 

store (LS) of a SPE is full. Moreover, we can distribute more buffers for the SPE which is 

more unstable in iterations. Figure 3-10 shows an example of buffering.  

 
Figure 3-10  Buffering between arbitrary two Processors 
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 4  H.264 DECODER IMPLEMENTATION 

 In our thesis, we adopt JM H.264/AVC decoder for verifying our proposed design flow. 

We apply our design flow feature such as multistage pipeline model, task allocation, 

MFC-aware scheduling and iterative migration on official JM H.264 decoder.  

Our programming environment is Sony PlayStation 3, the feature of this multicore 

platform is summarized as below: 

 1 CBE processor, which has 1 2-threaded PPE and 6 SPEs.  

 256MB main memory 

 Fedora 7 with Linux kernel running on PPE 

 SDK 3.1 with GCC complier -O3 

 

Our H.264 decoder spec is summarized as below: 

 I, P frame  

 1 reference frame 

 Search range: ±16 

 Prediction mode : all 

 Block size: all 

 1080P, 25fps 

 Source: JM 9.2 decoder 
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4.1 Kernel Optimization 

 PPE Profiling 

In our profiling, we divided motion compensation into luma MC and chroma for 

advanced profiling. The modified process network of H.264 decoder is shown in Figure 4-1.  

 
Figure 4-1   Modified Process Network of H.264 Decoder 

In multimedia decoding applications market, the high-definition (HD) resolution is a 

basic requirement. So we adopted two 1080P full HD test sequences for profiling. Sunflower 

and RushHour 1080P (shown as Figure 4-2) with 500 frames was analyzed. 

 
Figure 4-2   Sunflower and RushHour 1080P Test Sequence 

The profiling result of PPE is shown in Figure 4-3. 
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Profiling Result
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Figure 4-3   Profiling Result after granularity adjustment of H.264 Decoder 

We can recognize that luminance motion compensation, chrominance motion 

compensation and de-blocking filter are the most workload intensive part. Local optimization 

should be first applied on these parts. Motion compensation is the most computation intensive 

kernel in H.264 decoding. Therefore, we take motion compensation for example describing 

the way we offload a kernel on a SPE.  

 Data Alignment 

Data in CBE processor must be aligned with a 128-bit-boundry for DMA transfers and 

SIMD operations. In our work, we allocate memory for pixels and vectors by using a frame as 

a unit and 128-bit-boundry aligned as shown in Figure 4-4. The address of pixels and vectors 

are continuous in x-direction.  

 
Figure 4-4   Data Layout of pixels 
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 Motion Compensation 

Motion compensation is the most computation intensive part of H.264 decoder. Each 4x4 

submacroblock has a separate motion vector. A 6-tap filter is used for 1/2 motion 

compensation. Moreover, each 4x4 submacroblock needs 9x9 pixels for compensation. It also 

means offloading this kernel on SPE needs high DMA bandwidth. Addresses of 9x9 pixels are 

non-continuous. A DMA command can only transfer continuous data in main memory. But 

there are only 16 entries in MFC SPU command queue. 

The overhead of accessing a macroblock based pixels and vectors would be minimized in 

this data arrangement. But there are still extra efforts in unaligned access. For example, access 

arbitrary 9x9 pixels for luminance compensation needs transferring 18x9 pixels (each pixel 

size is 2 bytes) at least because of data un-alignment as shown in Figure 4-5. 

 
Figure 4-5   Un-aligned access for arbitrary 9x9 pixels 

To overcome the problem of limited MFC SPU command queue. We write DMA list on 

SPU’s LS first for issuing a large number of DMA command with only one entry in MFC 

SPU command queue. DMA list is used to move data between a contiguous area in an SPE’s 

LS and possibly noncontiguous area in the effective address space. It can specify up to 2048 

DMA transfers, each up to 16KB in length. 

In CBE processor, 128-bit-wide SIMD registers can contain 8 half-word integers. We can 

compute the 8 result of 6-tap FIR at once with 6 128-bit wide registers as shown in Figure 4-6. 

9 instructions needed for computing 8 6-tap FIR results with (A+F)-(((B+E)-(C+D)<<2))x5. 4 

extra instructions needed if A+F-5(B+E)+20(C+D) adopted, because 32-bit multiplication is 

not supported in CBE processor SIMD.  
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The bottleneck of SIMD optimization is the pack/unpack procedure. We can perform 

eight 6-tap FIRs (A-5B+20C+20D-5E+F) with six packed registers as shown in Figure 4-6. 

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17 18

0 1 2 3 10 11 12 13

1 2 3 4 11 12 13 14

2 3 4 5 12 13 14 15

3 4 5 6 13 14 15 16

4 5 6 7 14 15 16 17

5 6 7 8 15 16 17 18

- 5x

+ 20x

- 5x

+ 20x

+  
Figure 4-6   Six Registers for Eight FIRs 

However, the addresses of the pixels for performing FIRs are non-continuous in the 

memory layout. 48 instructions needed for packing 6 registers each with 8 pixels are needed 

in the worst case without any optimization. 8 instructions needed for unpacking the 8 pixels 

result. So pack/unpack procedure needed to be specified before/after SIMD operations.  

In the pack/unpack procedure, the most useful instruction is byte-shuffle operation. We 

can arbitrarily select 1 of 32 bytes from two input quadwords for each of the 16 bytes in a 

output quadword according to the parameters of a third input quadword. That means we can 

construct one register by selecting any bytes from the two input registers as we want. Figure 

4-7 shows the byte-shuffle operation.  

0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

d = spu_shuffle(a,b,c);

a

b

c

d a0 a1 a2 a3 a4 a5 a6 a7 b0 b1 b2 b3 b4 b5 b6 b7  
Figure 4-7   Byte-Shuffle Operation 

For each luminance 4x4 submacroblock, 9x9 pixels are needed to perform inter 

prediction. Our 9x9 pixels input is arranged as shown in Figure 4-8. The addresses of pixels 

are continuous in x-direction. So there are more instructions needed for pack if y-direction 

FIRs need to be performed.  

45  



 

 
Figure 4-8   9x9 Pixels Arrangement for 4x4 Luminance Submacroblock Interpolation 
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Figure 4-9   Inter Prediction of Luminance Sub-Pixel Cases 

The procedures of packing are various from the case of sub-pixel we interpolate. The 

cases of sub-pixels interpolation is shown in Figure 4-9. The 9x9 black squares represent 9x9 

pixels needed for luminance 4x4 submacroblock interpolate.  

In the example of computing sub-pixels a, b, c, d, e, f, g, h in Figure 4-9, we don’t need 

any pack procedure. We perform 6-tap FIRs with the register as shown in Figure 4-10 directly.  
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Figure 4-10  Perform SIMD with Register A-F directly 

In the case of computing sub-pixels i, j, k, l, m, n, o, p in Figure 4-9, we need 7 

instructions in pack procedure for SIMD operation. The pack procedure is shown in Figure 

4-11. 

 
Figure 4-11  Pack Procedure for Computing i, j, k, l, m, n, o, p 

In the example of computing sub-pixels c, q, s, u, d, r, t, v in Figure 4-9, we need 10 

instructions in total pack procedure for SIMD operation. The pack procedure is shown in 

Figure 4-12. 
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Figure 4-12  Pack Procedure for Computing c, q, s, u, d, r, t, v 

The most complex case is computing 1, 2, i, m, 3, 4, 5, 6 in Figure 4-9, we need 20 

instructions in total pack procedure. The pack procedure is shown in Figure 4-13.  

 
Figure 4-13  Pack Procedure for Computing 1, 2, i, m, 3, 4, 5, 6 

There are 16 cases in luminance 4x4 submacroblock interpolation as shown in Figure 

4-14. We categorized the cases by instructions needed for pack procedure for SIMD operation. 
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The total instructions needed by each case of a 4x4 submacroblock interpolation are 

summarized in Table 4-1. 

 
Figure 4-14  16 Cases of Luminance Interpolation 

Table 4-1  Instructions Needed for Packing Procedure in 16 Cases of Luminance Interpolation 

Cases Pack Instructions Needed

G 0 

a, b, c 14 

d, h, n 20 

e, g, p, r 26 

f, j, q 36 

i, k 14 

After SIMD operations, the 16 pixels results of a 4x4 luminance submacroblock are in 2 

128-bit-wide registers. There are two possibilities of the 16 pixels layout depending on the 

cases as shown in Figure 4-15. If the layout is the left case, two instructions needed for 

modified into right case.  

 
Figure 4-15  16 Pixels in 2 Registers of a 4x4 Submacroblock 

After a 16x16 macroblock are done. The layout of 16x16 pixels is shown in the left of 

Figure 4-16. 32 instructions are needed for unpacking the whole 16x16 macroblock.  
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Figure 4-16  Unpack Procedure of a 16x16 Macroblock 

The result of computation optimization of each kernel is shown in Figure 4-17. We apply 

loop unrolling in all kernels and SIMD optimization in residue coding, luminance MC, 

chrominance MC and deblocking filter. In fact, there are still a lot of possibilities of 

optimization in official decoder. We do computation optimization just for getting 

computation/communication ratio more precisely. We also show the result of kernels 

offloading on SPEs. Computation time needed on SPE is always shorter then on PPE. 

Because of SPE is designed for high speed computation. But some kernels need a lot of 

communication time on SPE like motion computation. Motion compensation needs to get 

reference pixels, which are most unaligned and not continuous. Therefore, there is high 

communication overhead in motion compensation on SPE.   

 
Figure 4-17  Computation Optimization Results of Each Kernel 
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4.2 Task Allocation 

After local optimization, we can get computation time of each block with more accuracy. 

Then we can profile the kernels which we are going to offload on SPE to get communication 

time needed and computation needed. The kernels we are going to offloaded on SPEs 

including luminance motion compensation, chrominance motion compensation, residue 

coding and deblocking filter. We repartition luma motion compensation into luma 

compensation and luma interpolation. Luma compensation is mainly for reference pixels 

addresses generating and reference pixels fetching. Chroma motion compensation is also 

repartitioned into chroma compensation and chroma interpolation in same manner. Our 

profiling result is shown as Figure 4-18. The communication/computation ratio is showed in 

Figure 4-20. 

Profiling Result on SPE
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Figure 4-18  Profiling Results on SPE 
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Figure 4-19  Communication/Computation Ratio of each Kernels 

 
Figure 4-20  Task Allocation Result 

This profiling shows that communication requirements of luminance compensation and 

chrominance compensation are extremely high. The total time needed of each kernel is far 

different from the result of PPE profiling. According to the SPE profiling result, we thought a 

independent SPE dedicate for deblocking filter because it’s dependency and 

computation/communication ratio. There is not much space for MFC-scheduling on 

deblocking filter. And we require another two SPEs for remaining kernels for real time 

constraint. Even though, the total workload of remaining kernels are accounting for over 

two-third of ratio in SPE profiling. Our task allocation is show as Figure 4-20. 
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4.3 Scheduling Effect 

 

Figure 4-21  MFC-aware Scheduling Result of H.264 Decoder 

The scheduling result of main kernels we offloaded is roughly depicted in Figure 4-21. 

After task allocation, we apply MFC-aware scheduling on SPEs for hiding memory latency. 

However, because of the computation/communication ratio is enough for MFC-scheduling, 

there are more possibilities for hiding DMA latencies.. Some tasks with small or tiny 

granularities aren’t shown in the figure. In fact, there are a lot of opportunities for hiding 

DMA latencies with these tiny granularities. These tiny tasks including address computation, 

macroblock position, pixels position calculating and writing DMA list.  

Because of the granularity, the result task migration is not shown in the figure. We 

migrating some tiny tasks for modulating workload balance. After ring rule relaxing, we apply 

buffering as much as possible. As a result of H.264 kernels have high workload variance in 

iterations. Kernels in H.264 has problem of workload variance including VLD, residue coding, 

luminance motion compensation and deblocking filter. 

Figure 4-22 shows the DMA latency we hided with our proposed MFC-aware scheduling in 

sunflower and rushhour sequence. We hide over 70% DMA transfer latencies in SPE0. This is 

because we allocate more communication then computation in SPE0. There is not much space 

for hiding DMA transfer in SPE0. In SPE1, we hide most of DMA issue time achieving 90% 

and 93.5%. There is enough space in SPE1 for hiding most DMA latencies. We also hide 

91.2% and 91.5% of DMA Wait time in SPE2 even though the communication does not 

critical in SPE2. Repartitioning tasks on SPE0 and SPE1 and reallocation tasks may get even 

better result in our proposed MFC-aware scheduling.  
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Figure 4-22  MFC-scheduling Results 

4.4 Processor Utilization 

Figure 4-23 and Figure 4-24 show the utilization of processors with sunflower and rushhour 

sequences. Before buffering, the utilization of SPEs is only about 70%. The most critical 

processor in our multistage pipeline model is PPE which needs to handle the OS with Linux 

kernel. Insufficient buffering results PPE make influences on overall synchronization. After 
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buffering on local store (LS) of SPEs, the utilizations of all SPEs are enhanced to over 80%. 

Buffering reduces the synchronization times between processors. However, PPE is not 

benefited from buffering. We in opinion that PPE is influenced by other factors like OS and 

VLD may need advanced optimization. We also can see the workload variance between 

different sequences. The most critical SPE in sunflower sequence is SPE0. But the most 

critical SPE in rushhour sequence is SPE2. This shows that different sequence has different 

workload ratio in each kernel.  
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Figure 4-23  Processors Utilization in Sunflower Sequence 

Utilization of Processors in RushHour Sequence
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Figure 4-24  Processors Utilization in RushHour Sequence 
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4.5 Performance Analysis 

Table 4-2 summarized the overall performance of our H.264 decoder in all kinds of sequences 

with different sizes. The performance of our optimized H.264 decoder is scaling well in all 

kinds of sequence.  

Table 4-2  Performances with Different Sequences of Our Optimized H.264 Decoder 

Frame Size Sequence FPS 

CIF Foreman 399 fps 

480P Mobcal 78.92 fps 

480P Shields 77.52 fps 

720P Stockholm 44.64 fps 

720P shields 44.84 fps 

1080P RushHour 25.25 fps 

1080P SunFlower 25.32 fps 
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Figure 4-25  Performance Improvement in Each Step of Design Flow 

Figure 4-25 shows the performance improvement in each step of our design flow. The y-axis 

represent for frame per second of 1080P high definition sequence. X-axis shows the technique 

we applied on the H.264 decoder. Our original source JM decoder only has 0.9 fps on PPE. 

After computation optimization, we achieve 5.92 fps with 6.6x by using loop unrolling 
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technique and SIMD. Achieving 15.83 fps after task allocated on SPEs. Then apply 

MFC-aware scheduling for hiding DMA latency and achieve 21.49 fps. Finally, we buffering 

between Processors as much as possible and achieving 25.32 fps meeting the high-definition 

real-time constraint.  
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 5  CONCLUSIONS AND FUTURE WORK 

In this thesis, we proposed a design flow based on strict multistage pipeline model. Strict 

multistage pipeline model is suit for multimedia applications with highly dependency for 

achieving loading balance with efficiency. The strict multistage pipeline model limits task 

migration choice and data flow direction for simplifying the multicore programming 

considerations. 

We provide guides for solving several NP-complete multicore programming problems 

including task allocation, MFC-aware scheduling and task migration. We allocate tasks on 

SPEs considering the computation/communication ratio. Use MFC-scheduling to parallelize 

MFC and SPU as much as possible. Finally achieve load balance by task migration. These 

guides can get acceptable solutions with efficiency.  

Synchronization overhead is the most serious problem in the multistage pipeline model. 

The factors of causing synchronization overhead are two. One is the workload variance 

between kernels. First, the workload of each kernel is different in iterations. The work load of 

kernel depends on the decoding sequence content. The second is the OS handled by PPE. OS 

thread request PPE occasionally and influence our application synchronization. We reduce 

this effect by buffering as much as possible on the limited local store (LS) of SPE. Buffering 

can reduce this effect, but not totally solve this phenomenon.  

We used proposed design flow based on a strict multistage pipeline model parallelizing 

H.264 decoder on PlayStation 3. We locally optimize H.264 decoder with 6.6x performance 

gain at first. Then allocate the optimized kernels on proposed multistage pipeline model with 

3 SPEs with 17.3x performance gain compare to original source code. MFC-aware scheduling 

59  



 

is applied for hiding DMA latency and the H.264 decoder gets 23.88x improvement compare 

to original code. Task migration dose not work well in H.264 decoder because the task 

granularity is not proper for migrating. Finally, we buffering between all SPEs as deep as 

possible for reducing synchronization overhead. We have 28.13x performance gain compared 

to original code and almost meet the real time constraint of 1080P test sequence with high 

efficiency. The load balance among processors is well and the utilization is nearly achieving 

80% in average.  

We offload as more kernels as possible on SPEs to ease PPE workload. But the branch 

intensive Variable-Length Decoding is not offloaded because it’s nature is not suit for SPE 

executing. But PPE loading is unstable in PlayStation 3 platform. OS threads needed handle 

occasionally by PPE. It disturbs our proposed multistage pipeline model. Therefore, ease PPE 

workload as much as possible is needed because we have several SPEs available. The 

synchronization and communication overhead between more SPEs should be taken into 

design consideration.  

The proposed concept is only applied on H.264 decoder. We should study more cases 

with our proposed manner and revise our design flow for more multimedia applications. We 

will try to extend our MFC-aware scheduling and task allocation strategies for getting more 

close to optimal results with efficiency.  
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