

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

可平行順序輸入及輸出快速傅立葉轉換

處理器之設計

Design of FFT Processor with

Parallel-In-Parallel-Out in Normal Order

研究生：胡祥甡

指導教授：周世傑 博士

中 華 民 國 九 十 七 年 十一 月

可平行順序輸入及輸出快速傅立葉轉換處理器

之設計

Design of FFT Processor with

Parallel-In-Parallel-Out in Normal Order

研究生：胡祥甡 Student：Hsiang-Sheng Hu

指導教授：周世傑 博士 Advisor：Dr. Shyh-Jye Jou

國立交通大學

電子工程學系 電子研究所碩士班

碩士論文

A Thesis
Submitted to Department of Electronics Engineering &

Institute of Electronics
College of Electrical and Computer Engineering

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master of Science

In
Electronics Engineering

July 2006
Hsinchu, Taiwan, Republic of China

中華民國九十七年十一月

 i

可平行順序輸入及輸出快速傅立葉轉換處理器

之設計

研究生：胡祥甡 指導教授：周世傑 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

為了設計一個具有可平行輸入及平行輸出的快傅立葉轉換處理器以適用於

高速移動無線都會型區域網路(WMAN)基頻接收器中的通道估測方法，本論文由硬

體設計層級研究各種可平行輸入及平行輸出的快速傅立葉轉換硬體架構技術。同

時，為了簡化快速傅立葉轉換電路的資料串列輸入及資料串列輸出所需的控制訊

號複雜度及暫存器使用，本論文提出一個可依序平行輸入及平行輸出的快速傅立

葉轉換電路，以符合系統對快速傅立葉轉換處理器的輸入輸出規格要求。最後，

本論文提出一個可適用於 802.16e 通訊系統中離散傅立葉通道估測法

(DFT-based channel estimation)的可平行順序輸入及平行順序輸出之快速傅立

葉轉換處理器的架構設計。並且根據離散傅立葉通道估測法中對快速傅立葉轉換

的特殊需求，提出一個可適用於此通道估測法的部份傅立葉轉換(Partial FFT)

架構設計。最後，本論文所提出的快速傅立葉轉換處理器已實現於一個 2×1

STBC/OFDMA 基頻接收器中。此傅立葉轉換處理器可達到最高 1.28 G 樣本/秒的

 ii

資料吞吐量；當操作在最大工作頻率 160 MHz下，其資料延遲時間僅需 7.3 us；

當操作在系統給定頻率 78.4 MHz 下，此傅立葉轉換電路消耗功率為 21.7 mW，

面積為 155792 邏輯閘數(包含記憶體)，使用 90 奈米 1V CMOS 製程下，其面積

為 0.545 mm2。

 iii

Design of FFT Processor with

Parallel-In-Parallel-Out in Normal Order

Student：Hsiang-Sheng Hu Advisor：Dr. Shyh-Jye Jou

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

ABSTRACT

In order to design a parallel-in-parallel-out Fast Fourier Transform (FFT)

processor suitable for channel estimation in a highly mobile wireless metropolitan

area network (WMAN) baseband receiver, this thesis studies various parallel-in-

parallel-out FFT design techniques from hardware architecture level. Also, in order to

reduce the control complexity and buffer overhead for data stream-in and stream-out

of the FFT processor, this thesis proposes a FFT processor with parallel-in-

parallel-out in normal order to meet the input data and output data requirement for the

systems requirement. Finally, this thesis proposes a 1024-point FFT processor

architecture with parallel-in-parallel-out in normal order, which can meet the needs of

DFT-based channel estimation in 802.16e communication system. Furthermore,

according to the special requirement of the DFT-based channel estimation, the thesis

proposes the partial FFT processor architecture suitable for the DFT-based channel

estimation. The FFT/IFFT processor is designed and is implemented together with a

2×1 STBC/OFDMA baseband receiver. The proposed 1024-point FFT/IFFT processor

 iv

can achieve the throughput rate up to 1.28 G samples/sec and the execution time

down to 7.3 us when working at 160 MHz. When working at the system required 78.4

MHz, it consumes 21.7 mW with 155792 gates (including memory) that occupy 0.545

mm2 by using 90 nm, 1V CMOS process.

 v

誌 謝

首先我要感謝指導教授 周世傑老師兩年多來的提攜，使我在研究迷惘之

餘，給予我方向與努力的目標，並且在為人處事及研究態度上，都給予我不少寶

貴的建議。

再來，我要感謝 momo學姐的幫忙，總是不吝其煩的幫我解決研究上得困難，

還有陳紹基老師實驗室的學生黃紳叡學長的協助，使得我在理論及實作方面能有

顯著的進步，誠文學長更是分享很多他工作上的經驗，使我研究更加順利，庭楨

學長也給予我很多理論和實作上的幫助，在此感激這些學長姊使我能順利完成研

究。

另外實驗室的好夥伴們，紹維、盈志、小胖、運翔、舒蓉、儷蓉、莊立、…

還有許多許多其他的好同學們，感謝你們總在我最失意時，幫我加油打氣，給予

我許多鼓勵與包容。

最後，感謝我的父母親、家人以及女朋友長久以來的支持與鼓勵，沒有你們

這條研究的路很難堅持下去，謹代表我內心致上最大的感激與敬意。

 vi

Content
Chapter 1 Introduction..1

1.1 Background ..1
1.2 Thesis Organization ...2

Chapter 2 FFT Application in OFDM Communication System.................................5
2.1 Concept of OFDM ...5
2.2 Introduction of IEEE 802.16e ..6
2.3 DFT-Based Channel Estimation...8
2.4 System Specification..9

2.4.1 Specification of FFT Processor on Demodulation Path...................... 11
2.4.2 Specification of FFT Processor in Channel Estimation......................13

Chapter 3 FFT Algorithms and Architectures...15
3.1 Concept of FFT Algorithms ...15

3.1.1 Radix-2 DIF FFT Algorithm...16
3.2 Concept of FFT Architectures..18

3.2.1 Pipeline-Based FFT Architecture ...18
3.2.1.1 Radix-r Multi-Path Delay Commutator Architecture20
3.2.1.2 Radix-r Single-Path Delay Feedback Architecture..........................23
3.2.2 Memory-Based FFT Architecture...26

3.3 Comparison of Different FFT Architecture ...28
3.4 Partial FFT Design...29

3.4.1 Concept of Partial FFT ...29
3.4.2 DFT with only a Subset of Input or Output Points29
3.4.3 DFT with Multiple Subsets of Output Points32
3.4.4 DFT with Multiple Subsets of Input and Output Points35
3.4.5 Partial FFT Processor Design in DFT-Based Channel Estimation38

3.5 Summary..42
Chapter 4 Parallel-In-Parallel-Out FFT/IFFT Processor Architecture Design.........43

4.1 System Requirement of the FFT/IFFT Processor ..43
4.2 Architecture of the FFT/IFFT Processor..44
4.3 FFT Sub_Module Design...46

4.3.1 Radix-2/4/8 SDF Processing Element ..46
4.3.2 Complex Multiplier ..49
4.3.3 ROM Table ...54
4.3.4 Memory Allocation...55
4.3.5 Commutator Design..57
4.3.6 Mixed FFT/IFFT Processor ..62

 vii

4.3.7 Fixed-Point Block Design with Dynamic Scaling..............................64
4.4 The FFT/IFFT Processor Fixed Point Simulation..66

4.4.1 Fixed Point Simulation for Constant Multiplier in Radix-2/4/8 PE ...67
4.4.2 Fixed Point Simulation for Twiddle Factor ..68
4.4.3 Fixed Point Simulation for FFT/IFFT Processor................................69

4.5 Hardware Implementation Result ..71
4.5.1 Comparison for the FFT Processor Design Flow71
4.5.2 Comparison of Separated Twiddle Factor ROM73

4.6 Summary..75
Chapter 5 Chip Implementation of IEEE 802.16e Receiver77

5.1 Design Flow...77
5.2 Multi-Frequency Design ..79
5.3 Chip Floor Plan ..81
5.4 Chip Summary ...83

Chapter 6 Conclusion and Future Work ...85
Reference …………………………………………………………………………….87

 viii

List of Tables
Table 2-1 Comparisons of IEEE 802.16 standards ..8
Table 2-2 System specification of IEEE 802.16e transceiver system..........................10
Table 3-1 Comparison of different FFT architecture ...28
Table 3-2 Control counter and function of FFT with partial output points..................34
Table 3-3 Control counter and function of FFT with partial input and output points..36
Table 3-4 Comparison with Partial FFT and Conventional FFT41
Table 3-5 Reduced operations of partial FFT with radix-2 SDF architecture42
Table 4-1 FFT/IFFT system requirement...44
Table 4-2 Twiddle factors value for different PE in different stages...........................54
Table 4-3 Address of PE-based TW ROM in each stage ...55
Table 4-4 Read or write address for the processing elements in each stage58
Table 4-5 Scale down block parameter for FFT/IFFT mode66
Table 4-6 System required SQNR for FFT/IFFT processor ..67
Table 4-7 Comparison of different version FFT processor..72
Table 4-8 Comparison of several high throughput FFT architectures75
Table 4-9 Comparison of hardware cost for different architectures76
Table 5-1 Chip summary..84

 ix

List of Figures
Fig. 2.1 Bandwidth allocation for sub-cannels in FDM system5
Fig. 2.2 Bandwidth allocation for sub-channels in OFDM system................................6
Fig. 2.3 Basic block diagram of an OFDM transceiver system.....................................6
Fig. 2.4 Block diagram of DFT-based channel estimation ..9
Fig. 2.5 Block diagram of baseband transceiver in IEEE 802.16e9
Fig. 2.6 Block diagram of decision feedback DFT-based channel estimation.............10
Fig. 2.7 FFT Processor with 5 shared memories ...11
Fig. 2.8 Time chart for the 5 memory banks..12
Fig. 2.9 FFT processor in decision feedback DFT-based channel estimation13
Fig. 3.1 Radix-2 DIF FFT algorithm architecture..17
Fig. 3.2 Radix-2 butterfly module..18
Fig. 3.3 Vertical projection mapping of 8-point radix-2 DIF FFT...............................19
Fig. 3.4 64-point FFT with R4MDC architecture ..21
Fig. 3.5 Modified input stage and output stage of 64-point R4MDC architecture21
Fig. 3.6 512-point FFT with R8MDC architecture ..22
Fig. 3.7 Modified input stage and output stage of 512-point R8MDC architecture23
Fig. 3.8 64-point FFT with radix-2 SDF architecture ..24
Fig. 3.9 64-point FFT with R8SDF architecture..25
Fig. 3.10 64-point FFT with R23SDF architecture ..25
Fig. 3.11 8-point FFT radix-2/4/8 SDF architecture ..26
Fig. 3.12 Radix-8 memory-based (R8M) FFT architecture ...27
Fig. 3.13 Markel’s pruned 16-point FFT with a subset of nonzero input (L=2)..........30
Fig. 3.14 Skinner’s pruned 16-point FFT with a subset of nonzero input (L=2).........31
Fig. 3.15 Markel’s pruned 16-point FFT with a subset of output points (L=2)...........32
Fig. 3.16 Skinner’s pruned 16-point FFT with a subset of output points (L=2)..........32
Fig. 3.17 8-point DFT with butterfly function of each butterfly unit output point......33
Fig. 3.18 Example of 8-point DFT with multiple subsets of output points35
Fig. 3.19 Example of 8-point DFT with multiple subsets of input and output points .37
Fig. 3.20 System specification for the partial FFT/IFFT processor.............................38
Fig. 3.21 Pipeline-based partial FFT/IFFT processor ..39
Fig. 3.22 Partial FFT/IFFT processor in IFFT mode ...40
Fig. 3.23 Fig. 3.24 Partial FFT/IFFT processor in FFT mode40
Fig. 4.1 Decision feedback DFT-based channel estimation block diagram.................43
Fig. 4.2 The proposed 1024-point FFT/IFFT processor architecture45
Fig. 4.3 FFT/IFFT processing structure...46
Fig. 4.4 Radix-2/4/8 SDF processing element ...46

 x

Fig. 4.5 Radix-2/4/8 SDF with DIT algorithm ..47
Fig. 4.6 Processing elements of radix-2/4/8 SDF with DIT algorithm........................48
Fig. 4.7 Reorder buffer input and output timing flow graph..49
Fig. 4.8 Architecture of multiplication of -j...50
Fig. 4.9 Architecture of multiplication of W8

1...50
Fig. 4.10 Architecture of multiplication by W8

1 with CSA tree51
Fig. 4.11 Delay optimized architecture of multiplication by W8

1 with CSA tree........52
Fig. 4.12 Architecture of complex multiplication..53
Fig. 4.13 Modified architecture of complex multiplication...53
Fig. 4.14 System requirement for multi-input and multi-output in normal order........56
Fig. 4.15 Memory allocation of the FFT/IFFT input data ...57
Fig. 4.16 Memories read write operations for different PE in stage 1.........................58
Fig. 4.17 Memories read write operations for different PE in stage 2.........................59
Fig. 4.18 Memories read write operations for different PE in stage 3.........................60
Fig. 4.19 State diagram of FFT/IFFT processor ..62
Fig. 4.20 The FFT/IFFT processor in the DF DFT-based CE block diagram..............62
Fig. 4.21 Modified processing elements with conjugate operation63
Fig. 4.22 System required SQNR simulation model..67
Fig. 4.23 SQNR versus constant multiplier truncate bits...68
Fig. 4.24 SQNR versus word length of twiddle factor ..68
Fig. 4.25 SQNR versus internal word length in IFFT mode..70
Fig. 4.26 SQNR versus internal word length in FFT mode ...70
Fig. 4.27 Area comparisons for different versions of FFT processor71
Fig. 4.28 Data latency comparisons for different versions of FFT processor..............72
Fig. 4.29 Area comparison of separated twiddle factor ROM73
Fig. 5.1 Cell based chip design flow..78
Fig. 5.2 Combination logic circuits between 2 clock domains79
Fig. 5.3 Default timing check in 2 clock domains ...79
Fig. 5.4 Expected timing constrain for DFFB1 to DFFA2 ..80
Fig. 5.5 Synthesis flow of chip with frequency divider...81
Fig. 5.6 Floor plan of the 802.16e baseband receiver..82
Fig. 5.7 Rectangular version floor plan of the 802.16e baseband receiver..................82

 1

Chapter 1

Introduction

1.1 Background

In many digital signal processing applications, especially in communication

systems, Fast Fourier Transform (FFT) becomes more important nowadays.

Orthogonal frequency division multiplexing (OFDM) technology [1] is used in the

most modern wired or wireless communication systems, such as ADSL, VDSL,

802.11a, DVB-T, 802.16-2004 [2], 802.16e [3], which needs a FFT processor to

transform the data between time domain and frequency domain; however, the FFT

processor is the critical component in many OFDM based communication systems

because the FFT processor’s hardware complexity is too high. For this reason, many

FFT processors are designed for OFDM based communication systems to make the

FFT processor become efficiency for system implementation.

As the result of growing VLSI technology, improved modulation and channel

estimation can be implemented with reasonable cost. OFDM is an improved

modulation technique that can provide high data rate, immunity to delay spread,

resistance to frequency selective fading, and efficient bandwidth usage. In wireless

communication, OFDM also reduces inter-symbol-interference (ISI) and inter-carrier

interference (ICI) caused by multipath effect. Also the Discrete Fourier Transform

(DFT)-based channel estimation [4] with space time block code (STBC) [5] is

proposed to do channel estimation in OFDM wireless communication system, which

is effective in high mobility channel environment. In these applications, FFT plays an

 2

important role to decide the system performance and hardware cost; thus, a high

throughput FFT processor with low hardware cost is an important module to make

more advanced modulation and channel estimation algorithm to be implemented on

chip reasonable.

In order to design a high throughput FFT and also speed up the operations ahead

or behind the FFT processor, a parallel-in-parallel-out FFT will be introduced in this

thesis; also a 1024-point parallel-in-parallel-out in normal order FFT processor design

example used in DFT-based channel estimation in 802.16e will be proposed.

1.2 Thesis Organization

In this thesis, FFT/IFFT designs for robust channel estimation of high-mobility

STBC/OFDMA communication system are proposed. System simulation, architecture

and circuit design, and implementation of FFT/IFFT processor with baseband of

802.16e are carried output in thesis. IEEE 802.16e, DFT-based channel estimation,

and the system block we used, will be introduced in Chapter 2. Since the system block

we used including two kinds of FFT/IFFT processor design, we also introduce the

system requirement for different kind of FFT/IFFT processor: one for OFDMA

demodulation, the other for DFT-based channel estimation. The system requirement of

FFT processor for 802.16e OFDMA demodulation has no difference with other

OFDM communication, thus, the thesis will introduce the conventional FFT processor

we used in Chapter 2. Shared memory concept is used between FFT processor, used

for OFDMA demodulation, and channel estimation. The requirement of FFT/IFFT

processor used in DFT-based channel estimation is different from the conventional

FFT processor by two aspects. One aspect is parallel-in-parallel-out of data and the

other aspect is a FFT processor with several zero value input or several valid output,

called partial FFT processor. The thesis focus on the FFT/IFFT processor hardware

 3

design for channel estimation with parallel-in-parallel-out in normal order, and then

the concept of partial FFT processor design will be demonstrated.

Investigation of the conventional FFT algorithm and various

parallel-in-parallel-out FFT architectures is presented in Chapter 3. The conventional

high throughput FFT processors usually use a pipeline-based FFT architecture which

provide high throughput but also has high hardware cost. Memory-based FFT

architecture has the advantage of low hardware cost, and it can also provide high

throughput by parallel-in-parallel-out with multi-partitioned memories. The

comparisons among the different parallel-in-parallel-out FFT architectures are also

carried out in Chapter 3. The comparison results are helpful to FFT processor design

in our system. At the end of Chapter 3, concept of partial FFT processor design will

be introduced to solve another goal of FFT processor for DFT-based channel

estimation.

The architecture design of FFT processor with parallel-in-parallel-out in normal

order will be proposed in Chapter 4. A novel memory allocation method for

parallel-in-parallel-out in normal are proposed in this chapter. Designs of processing

elements, memory allocation, commutator, scale down block, and coefficient ROM

table for the proposed FFT processor will be introduced, and considered as the key

contribution of this thesis. In the end of Chapter 4, comparisons are carried out for the

hardware implement result with other FFT processor with parallel-in-parallel-out in

normal order.

Backend design flow for the chip of 802.16e receiver will be introduced in

Chapter 5. In order to tape out the chip, two versions of chip implementation results

are presented, one for UMC shuttle, the other for CIC. The chip floor plan and design

flow will be presented in Chapter 5.

In the end of the thesis, the conclusion future works will be presented in Chapter

 4

6.

 5

Chapter 2

FFT Application in OFDM
Communication System

2.1 Concept of OFDM

Orthogonal Frequency Division Multiplexing (OFDM) is based on frequency

division multiplexing (FDM). FDM translates several message signals to different

spectral locations. An example of bandwidth allocation of FDM is shown in Fig. 2.1.

Frequency

SC.1 SC.2 SC.3 SC.4 SC.5 SC.6 SC.7 SC.8

Fig. 2.1 Bandwidth allocation for sub-cannels in FDM system

FDM technique keeps all sub-channels away from overlapping by guard bands to

against the adjacent sub-channels producing inter-channel interference (ICI); however,

guard bands waste the bandwidth efficiency, which is important in communication

system, because it is not used to carry any message signals. OFDM uses orthogonal

sub-carriers to overlap the sub-channels to carry more message signals in the same

bandwidth than FDM as shown in Fig. 2.2.

 6

Fig. 2.2 Bandwidth allocation for sub-channels in OFDM system

A basic block diagram of OFDM system is shown in Fig. 2.3. Fig. 2.3 shows the

transmitter in OFDM system need IFFT module to modulate the message signal,

called OFDM modulation, and the receiver also need FFT module for OFDM

de-modulation; thus, FFT processor is a key block in OFDM transceiver system.

S/P Signal
Mapper IFFT P/S

Guard
Interval
Insertion

D/A Up
Converter

… … …

Channel

S/P
Signal

De-
Mapper

FFT S/P
Guard

Interval
Removal

A/D Down
Converter…Equalizer ………

Data In

Data Out

Fig. 2.3 Basic block diagram of an OFDM transceiver system

2.2 Introduction of IEEE 802.16e

IEEE 802.16 is a broadband wireless access (BWA) standard. The first standard

of IEEE 802.16 approved in December 2001 called IEEE 802.16-2001 [6]. It

delivered a standard, which transmits in 10-66 GHz with only a line-of-sight (LOS)

capability, used in Wireless Metropolitan Area Networks (WiMAN). It uses a single

carrier (SC) physical (PHY) standard. IEEE 802.16a is a extension of IEEE

802.16-2001. It transmits in 2-11 GHz with both LOS and none-light-of-sight (NLOS),

 7

and less distortion by rain than IEEE 802.16-2001. IEEE 802.16-2004 (also called

IEEE 802.16d) is a fixed broadband wireless access (BWA) standard, which

combines both of IEEE 802.16-2001 and IEEE 802.16a standards. IEEE 802.16-2004

describes more detail for media access control layer (MAC) and PHY in 2-66 GHz. It

supports multiple physical layer (PHY) specifications, such as WiMAN-SC,

WiMAN-OFDM, WiMAN-OFDMA, and WiMAN-SCa, operation in different

frequency. For operation frequency in 10-66 GHz, the WiMAN-SC PHY, based on

single carrier, is specified; for operation frequency below 11 GHz, the IEEE

802.16-2004 transmitting in NLOS provides three alternative PHY specifications:

WiMAN-OFDM (based on orthogonal frequency division multiplexing),

WiMAN-OFDMA (based on orthogonal frequency division multiple access),

WiMAN-SCa (based on single carrier). IEEE 802.16e, which is a fixed and mobile

broadband wireless access (BWA) standard, is an enhancement of IEEE 802.16-2004

standard. It fills the gap between very high data rate local area network and very high

mobility cellular system. An extension PHY layer specification called

scalable-OFDMA (SOFDMA), based on WiMAN-OFDMA, provide different FFT

Size for OFDMA, such as 128, 512, 1024, 2048 points. Table 2-1 is the summary of

IEEE 802.16-2001, IEEE 802.16a, and IEEE 802.16e.

 8

Table 2-1 Comparisons of IEEE 802.16 standards

 IEEE 802.16-2001 IEEE 802.16a IEEE 802.16e
Spectrum 10-66 GHz 2-11 GHz 2-6 GHz
Channel Bandwidth 20, 25, 28 MHz 1.5 to 20 MHz 1.5 to 20 MHz
Carrier Single Carrier OFDM/OFDMA OFDM/SOFDMA
FFT Size N/A 256(OFDM)

2048(OFDMA)
256(OFDM)
128/512/1024/2048
(SOFDMA)

Modulation QPSK, 16QAM,
64QAM

QPSK, 16QAM,
64QAM

QPSK, 16QAM,
64QAM

Bit Rate 32-134 Mbps
(28 MHz)

75 Mbps (20
MHz)

15 Mbps (5 MHz)

Channel Conditions LOS Non-LOS Non-LOS
Typical Cell Radius 2-5 Km 7-10 Km, max 50

Km
2-5 Km

Application Fixed Fixed and portable Fixed and mobile

2.3 DFT-Based Channel Estimation

Channel estimation in conventional OFDM system is a simple one-tap equalizer

since the channel gain varies slowly between each adjacent OFDM symbol. However,

in the mobile wireless communication environment, such as the channel in IEEE

802.16e, the channel gain varies rapidly between each adjacent OFDM symbol, so a

one-tap equalizer seems not suitable for the time-varying channel environment. The

one-tap equalizer can be realized as a least square (LS) channel estimator, and it has

low hardware complexity but low performance than minimum-mean-square-error

(MMSE) estimator. MMSE estimator has better performance but the hardware

complexity is too high. DFT-based channel estimation [7-9] is presented to combine

the LS and MMSE estimator, and it reduces the hardware complexity of MMSE

estimator. A simple block diagram of DFT-based channel estimation is shown in Fig.

2.4. R(k) is the received data in sub-carrier k after OFDM demodulation, X(k) is the

 9

decision data, which is determined by the latest OFDM symbol channel estimator, and

H(k) is the channel estimator used in next OFDM symbol.

Fig. 2.4 Block diagram of DFT-based channel estimation

DFT-based channel estimation can provide more accurate channel gain with

lower hardware complexity than the original MMSE estimator. However, it needs

both IFFT block and FFT block to implement the algorithm. Thus, a suitable FFT or

IFFT processor design can reduce the hardware cost of DFT-based channel

estimation.

2.4 System Specification

For mobile WMAN baseband transceiver using standard IEEE 802.16e, we

proposed a baseband transceiver [10]. A simply block diagram of the 2×1 multiple-

input-single-output (MISO) IEEE 802.16e OFDM system is shown in Fig. 2.5. For

chip implementation, we only implement the receiver part of Fig. 2.5. The key system

specifications are listed in Table 2-2.

Fig. 2.5 Block diagram of baseband transceiver in IEEE 802.16e

 10

Table 2-2 System specification of IEEE 802.16e transceiver system

Items Specification
Bandwidth 10 MHz
PHY Layer Specification WiMAN-SOFDMA
FFT Size 1024
Sample Rate 11.2 MHz
Guard Interval 1/8
Constellation QPSK, 16QAM
OFDM Symbol Time 102.9 us

The channel estimation block is a decision feedback (DF) DFT-based channel

estimation [10], which combines the channel estimation and data detection as shown

in Fig. 2.6. The system requirement for channel estimation will be introduced in the

following sections.

Preamble
Match

IFFT
_ch

Gradient
Estimator

Path Selection

Inverse
Hessian Matrix

Calculation

Search Direction
Estimator

Calculation

IFFT
_ch

STBC
Decoder

FFT
_ch

FFT
_ch

Channel
Estimator

Modification

Channel
Estimator

D

Data In

Data Out

Fig. 2.6 Block diagram of decision feedback DFT-based channel estimation

There are two kinds of FFT processor in the receiver part, FFT_dem located of

the synchronization block called OFDM demodulator. FFT_ch and IFFT_ch blocks

are required in channel estimation block. The following sections will introduce the

system specifications of these two kinds of FFT processor.

 11

2.4.1 Specification of FFT Processor on Demodulation Path

The FFT_dem processor in Fig. 2.5 receives the data from synchronization block,

and passes the data to channel estimation and space-time decoding. The input data

format of FFT processor is like that in other OFDM communication system. However,

the output ports have to buffer 2 OFDM symbol since we use 2×1 MISO system with

STBC coding and DF DFT-based channel estimation. For this reason, we design a

conventional memory-based FFT processor [11] with 5 memory banks shown in Fig.

2.7.

Fig. 2.7 FFT Processor with 5 shared memories

SYN_wr is the data from synchronization block, and only one of the memory

banks would be written by synchronization block in an OFDM symbol time. Then, the

written memory bank would be used to do FFT by the FFT processor. In the same

time, the synchronization block is writing the data to another memory bank. After the

two OFDM symbols in a STBC time slot have been calculate by FFT processor, the

memories, which stored the FFT calculation result of this two OFDM symbols, would

be read from channel estimation, called CE_rd, in two OFDM symbol time.

The time chart of 5 memory banks is shown in Fig. 2.8. At the first preamble

 12

symbol, the data from synchronization block are written to MEM_1_0. At the second

and the third symbols, the data from synchronization block are written to MEM_0_0

and MEM_1_1 while the data in MEM_1_0 are calculated by FFT processor and read

by channel estimation. Furthermore, the memory operations for OFDM symbol index

12 is the same as index 0, thus the memory operations of 5 memory banks are

repeated every 12 OFDM symbols.

MEM_1_0

MEM_1_1

MEM_0_1

MEM_0_0 MEM_1_1

MEM_1_0

MEM_0_1 MEM_1_0 MEM_0_2

MEM_1_1

MEM_1_1

MEM_0_0 MEM_1_0

MEM_0_1 MEM_0_2

MEM_0_0 MEM_1_1

MEM_0_1 MEM_1_0 MEM_0_2

MEM_1_1 MEM_0_0 MEM_1_0

MEM_0_1 MEM_1_1

MEM_1_0 MEM_0_0

MEM_0_2

MEM_1_0

MEM_1_0

MEM_0_2

MEM_1_1

MEM_0_0

MEM_1_0

MEM_0_1

MEM_1_0

MEM_0_1

MEM_1_1

MEM_0_2

MEM_1_0

MEM_0_0

MEM_1_1

MEM_0_1

MEM_1_1

MEM_0_1

MEM_1_0

MEM_0_2

0(Preamble) 1 2

3 4 5

6 7 8

9 10 11

12 13

OFDM Symbol Index

Syn_wr to MEM_X

MEM to do FFT

CE1_rd from MEM_X

CE0_rd from MEM_X

OFDM Symbol Index

Syn_wr to MEM_X

MEM to do FFT

CE1_rd from MEM_X

CE0_rd from MEM_X

OFDM Symbol Index

Syn_wr to MEM_X

MEM to do FFT

CE1_rd from MEM_X

CE0_rd from MEM_X

OFDM Symbol Index

Syn_wr to MEM_X

MEM to do FFT

CE1_rd from MEM_X

CE0_rd from MEM_X

OFDM Symbol Index

Syn_wr to MEM_X

MEM to do FFT

CE1_rd from MEM_X

CE0_rd from MEM_X

Fig. 2.8 Time chart for the 5 memory banks

 13

2.4.2 Specification of FFT Processor in Channel Estimation

The FFT_ch and IFFT_ch blocks in decision feedback DFT-based channel

estimation (DF DFT-based CE) are shown in Fig. 2.9. Before introducing the system

requirement, we make a brief description of the DF DFT-based CE. The DF

DFT-based CE has two parts. One is initial channel gain calculated by using the

preamble signals. The operational blocks are preamble match block, two IFFT_ch

blocks, path selection block, inverse hessian matrix calculation, two FFT_ch blocks,

and channel estimator block. The channel gain should be calculated within 2 OFDM

symbol time. The second part is channel gain tracking loop. The operational block s

are gradient estimator, two IFFT_ch blocks, search direction estimator calculation,

two FFT_ch blocks, channel estimator modification block, and the channel estimator

block. The channel gain is calculated by tracking loop with 2 iterations. At the first

iteration, the channel gain variance for the channel estimator modification block is

determined by the pilot signals, called global tracking, since the pilot signals have

higher SNR than data signals. At the second iteration, variance is determined by the

data signals, called local tracking. Both of two parts can use the same IFFT_ch blocks

and FFT_ch blocks.

Preamble
Match

IFFT
_ch

Gradient
Estimator

Path Selection

Inverse
Hessian Matrix

Calculation

Search Direction
Estimator

Calculation

IFFT
_ch

STBC
Decoder

FFT
_ch

FFT
_ch

Channel
Estimator

Modification

Channel
Estimator

D

Data In

Data Out

Fig. 2.9 FFT processor in decision feedback DFT-based channel estimation

 14

Since the channel estimation included tracking loop, the channel gain should be

calculated within 2 OFDM symbol time before the data buffers for channel estimation

in Fig. 2.7 are updated; thus, data latency is an important issue to implement the

channel estimation block into hardware. With this purpose, a parallel-in-parallel-out

(PIPO) FFT/IFFT processor is necessary for not only increasing the throughput rate of

FFT/IFFT processor but also increasing the throughput rate of other blocks in channel

estimation block.

The DFT-based channel estimation has a special feature for the FFT_ch and

IFFT_ch blocks. Only a subset of output data is required for IFFT_ch output ports.

Also, the input data of FFT_ch block may have several zero points, which are no

required to be computed with other non-zero points. The FFT processors design for

only some subset of input or output points are called partial FFT [23]. The thesis will

introduce the idea of partial FFT processor design for DFT-based channel estimation.

Finally, there are two purposes of FFT processor design, one is a FFT processor

with parallel-in-parallel-out in normal order, and the other is partial FFT processor

design. The thesis will focus on the FFT processor design with parallel-in-parallel-out

in normal order. The partial FFT processor design concept will be introduced in the

end of next chapter.

 15

Chapter 3

FFT Algorithms and Architectures

3.1 Concept of FFT Algorithms

Discrete Fourier Transform (DFT) is a key block in OFDM communication

system, and it is widely used in many applications; however, its computational

complexity is so high that implementation of DFT algorithm directly seems not

feasible to meet low cost design goal. Fortunately, early contributors, particularly

Cooley and Turkey in 1965 [12], employed the redundancy of DFT operations by

iteratively decomposing the computation, called radix-2 FFT algorithm, to reduce the

computation complexity from O(N2) to O(Nlog2N). Based on Cooley and Turkey’s

FFT algorithm, various FFT algorithms were later developed, which provide flexible

choices for implementation.

According to the ways of decomposing DFT, there are two types of FFT

algorithms: one is the decimation-in-time (DIT) decomposition, which decomposes

the time domain input sequence into successively smaller subsequences; the other is

the decimation-in-frequency (DIF) decomposition, which alternately decomposes the

frequency domain output sequence into smaller subsequences.

The basic N-point DFT equation is defined as

1

0
() ()

N
k n

N
n

X k x n W
−

⋅

=

= ⋅∑ (3.1)

where exp(2 /)k n
NW j nk Nπ⋅ = − is the DFT coefficient. Since a complex number

multiplied with a coefficient is equivalent to a vector rotation, the DFT coefficient is

also called twiddle factor.

 16

The key feature of the FFT algorithm is to divide a complete DFT operations

into several small point DFT operations; moreover, the FFT algorithm also uses the

symmetry property of the twiddle factors. First, radix-2 FFT algorithm use the

symmetry property of 2
Nk n k n

N NW W
⋅ + ⋅= − ; then, we can reduce number of

multiplications in Eq. (3.1) by half as shown in Eq. (3.2).

1 1 1

2 2 2
2

0 0 0
() () () () ()

2 2

N N N
Nk n

k n k n
N N N

n n n

N NX k x n W x n W x n x n W
− − − ⋅ + ⋅ ⋅ 

= = =

 = ⋅ + + ⋅ = − + ⋅  
∑ ∑ ∑ (3.2)

Another symmetry feature is in its phase difference of ± 90° as

4
Nk n

k n
N NW j W

 ⋅ +  ⋅  = − ⋅ . Multiplying a complex number with – j, we can just exchange

the real part and imaginary part, and then negate the imaginary part. Therefore, we

can reduce the computational complexity of Eq. (3.1) by using Eq. (3.3).

 4 ()
Nk n

k n k n
N N NA W B W A jB W

 ⋅ + ⋅ ⋅ × + × = − × (3.3)

Finally, symmetry feature of its phase difference of ± 45° is also common in FFT

algorithms. Based on the symmetry, the equation can be reduced to

8 1((1))
2

1 1 1(1) (1) () (() ())
2 2 2

Nk n
k n k n

N N NA W B W A j B W

j B j c jd c d d c j

 ⋅ + ⋅ ⋅ × + × = + − × ×

− × = − × + = + + −

 (3.4)

The multiplication of 1
2

 can be realized by constant multiplications, which

may be customized to shifter and adder, and will be demonstrate in Chapter 4.

According to the symmetry of twiddle factors, the computation complexity of

DFT operation can be reduced to a fraction of the original operation. We will take a

example of radix-2 DIF FFT algorithm in following subsection.

3.1.1 Radix-2 DIF FFT Algorithm

The DIF FFT Algorithm is decomposed the frequency domain output sequence

 17

into small subsequence. Here we take a example of radix-2 DIF FFT algorithm. The

radix-2 DIF FFT algorithm divided the frequency domain sequence into even and odd

parts and using the symmetry of twiddle factor in Eq. (3.2), as shown below.

1 2 1 2

2 1

1 1 1 2 2 2

2 1

1 12 (2) ()
2

1 2 1 2
0 0

/ 2 1 1

1 2 2 / 2
0 0 twiddle

factor
2-point DFT

N/2-point DFT

(2) ()
2

()
2

N
Nk k n n

N
n n

N
k n k n k n

N N
n n

NX k k x n n W

Nx n n W W W

−
+ ⋅ +

= =

−
⋅ ⋅ ⋅

= =

+ = + ⋅

 
= + ⋅ ⋅ ⋅ 

 

∑ ∑

∑ ∑ E55F
14444244443

1444444442444444443

,

1

2

1

2

0,1
0,1,..., (/ 2) 1
0,1
0,1,..., (/ 2) 1

n
n N
k
k N

=
 = −
 =
 = −

 (3.5)

The DFT operation can be divided into 2 stages, one is 2-point DFT, and another

is N/2-point DFT, which is shown below

…
…

…
…

Fig. 3.1 Radix-2 DIF FFT algorithm architecture

After the first decomposition, the N-point DFT operation can be divided into N/2

2-point DFT operation and 2 N/2-point DFT operation, where the 2-point DFT is well

known that the operation can be realized as a radix-2 butterfly (BF) module, shown as

Fig. 3.2.

 18

Fig. 3.2 Radix-2 butterfly module

Similar to the first decomposition, we can further decompose the N/2-point DFTs

into even smaller DFTs until all DFTs are decomposed into 2-point DFT.

3.2 Concept of FFT Architectures

The FFT processor architecture design can be simply divided into two types, one

is pipeline-based FFT architecture [13-15], and the other is memory-based FFT

architecture [16-17]. Pipeline-based FFT architecture has the advantage of high

throughput rate and low data latency, but it also has the disadvantage of high

hardware cost; in contrast, memory-based FFT architecture has low hardware cost but

high data latency.

For both of the FFT processor architectures, to increase the FFT processor

throughput rate, high working clock rate is the simplest way to meet the throughput

constrain; however, it will also increase the FFT processor hardware cost and power

consumption. In this chapter, we will discuss different architectures for high

throughput FFT processors with multi-input-and-multi-output in normal order.

3.2.1 Pipeline-Based FFT Architecture

The pipeline-based FFT architectures are the most popular architectures in many

applications because they are designed for high speed performance and sequence of

data input; but, in order to make the output data in normal order, they usually need a

 19

reorder buffer in output stage, which regular a very high hardware cost. The best way

to obtain the pipeline-based architecture is through vertical projection of signal flow

graph (SFG). Fig. 3.3 shows an example to explain vertical projection mapping of

8-point radix-2 DIF FFT.

Fig. 3.3 Vertical projection mapping of 8-point radix-2 DIF FFT

Each stage obtained by vertical projection is called a processing element (PE),

which contains a delay buffer (Buffer), a radix-2 butterfly unit (Radix-2 BF), and a

complex multiplier. The delay buffer is used to reorder the data input for each stage

butterfly unit. There are two types of the delay buffer, one is called delay-feedback

(DF), and the other is called delay-commutator (DC). According to the structure

difference, pipeline-based FFT architecture can be divided into three types:

single-path delay feedback (SDF) architecture, single-path delay commutator (SDC)

 20

architecture, and multi-path delay commutator (MDC) architecture. Since the SDC

architecture can provide only one-path output data stream, similar to SDF architecture,

and hardware cost is between the SDF and MDC architectures, the SDC architecture

can not provide parallel data stream with least hardware cost. Here we only focus on

SDF and MDC architectures. In the following subsections, we will introduce different

radix-r SDF and MDC pipeline-based FFT architectures, where r is the radix number

for the decimation-in-time (DIT) or decimation in frequency (DIF) algorithm.

3.2.1.1 Radix-r Multi-Path Delay Commutator Architecture

Radix-r MDC architecture [18-19] uses commutator to break the input data into r

parallel data streams flowing forward with correct ordering for the data entering the

butterfly unit by proper delays. Here are two examples to introduce MDC architecture

in the following discussions.

(1). Radix-4 Multi-Path Delay Commutator (R4MDC) Architecture

Fig. 3.4 shows a 64-point FFT with radix-4 multi-path delay commutator

(R4MDC) architecture. In Fig. 3.4, the elements of the R4MDC architecture are

commutators, shift registers, and radix-4 butterfly units. The butterfly unit is also

called arithmetic element (AE). At the beginning, the first 16 points of input data are

delay at the first line of AE1’s inputs, the next 16 points are delay at the second line,

and the next 16 points are delay at the third line. When the 49th point of input data

coming at the forth line, the first butterfly is computing at AE1. With proper delays

and commutation between each AE, the input data of each AE has correct ordering to

compute a radix-4 butterfly in each AE. Finally, the output data of AE3 are

2bit-reverse order of the input data order.

 21

C
om

m
utator

R
adix-4 B

F

C
om

m
utator

R
adix-4 B

F

C
om

m
utator

R
adix-4 B

F

Fig. 3.4 64-point FFT with R4MDC architecture

In order to revise the 64-point FFT of R4MDC architecture with multi-input and

multi-output in normal order, we have to replace the first stage and add a reorder stage

at the output stage, which is shown in Fig. 3.5.

Fig. 3.5 Modified input stage and output stage of 64-point R4MDC architecture

For multi-input in normal order, the first stage has to change the commutator

from one input to four inputs. And, in order to write four data in one cycle to one of

the input shift registers of AE1, the shift registers have to be changed into random

access registers. Thus, the first to the third line of AE1’s inputs shifter registers are

changed into
4
N random access registers. Furthermore, the fourth line have to add a

4×4 random access registers to buffer the input data because the fourth line has four

input data and one output data.

For multi-output in normal order, the output stage has to add a reorder stage to

reorder the output data from bit-reverse order to normal order. By using the similar

way of delay commutator, the output data order will be changed into normal order.

 22

For N-point FFT computation, R4MDC needs 11 4
4

N − registers, 3 · (log4N–1)

complex multipliers, and 8 · log4N complex adders. The latency is 11 5
16

N − cycles.

(2). Radix-8 Multi-Path Delay Commutator (R8MDC) Architecture

Radix-8 multi-path delay commutator (R8MDC) is similar to R4MDC

architecture, it use radix-8 algorithm with MDC architecture, and it can provide

higher throughput rate than R4MDC architecture with 8 parallel data streams. But, it

also has more delay buffers and other arithmetic elements. The 512-point FFT with

R8MDC architecture is shown in Fig. 3.6.

Fig. 3.6 512-point FFT with R8MDC architecture

Also, for multi-output in normal order, the architecture has to revise the first

stage and add a reorder stage at output stage, which is shown in Fig. 3.7. The input

stage and output stage are similar to R4MDC architecture with multi-input and

multi-output in normal order. As a result, reorder stage has more delay buffer when

higher radix is used in MDC architecture.

For N-point FFT computation, R8MDC needs 23 8
8

N − registers, 7×(log8N–1)

complex multipliers, and (24+2T)×log8N complex adders, where the parameter T

indicates the number of adders required in the implementation of multiplications by

constant values. The latency is 23 9
64

N − cycles.

 23

Fig. 3.7 Modified input stage and output stage of 512-point R8MDC architecture

3.2.1.2 Radix-r Single-Path Delay Feedback Architecture

Unlike multi-path delay commutator (MDC) architecture, single-path delay

feedback (SDF) architecture combines the commutator and the radix-r butterfly unit,

and uses delay feedback method to reuse the delay buffer of each stage to reorder the

data input of butterfly unit. The SDF architecture’s hardware is less than the MDC

architecture’s, but the data latency is more than the MDC architecture’s. Moreover,

the SDF has only one path between butterfly units, the throughput rate can’t be higher

even it uses higher radix FFT algorithm. For input and output data in normal order, it

needs a reorder buffer at output stage, and, the buffer size is about N/2 for N-point

DFT with SDF architecture. Also, we take two cases of SDF architecture in the

following discussions.

(1). Radix-2 Single-Path Delay Feedback (R2SDF) Architecture

The radix-2 single-path delay feedback (R2SDF) architecture combines radix-2

MDC architecture’s commutator and radix-2 butterfly unit in R2SDF’s radix-2

butterfly unit shown in Fig. 3.8. Without 2 parallel data streams from the radix-2

butterfly unit output to the next stage, R2SDF only has one output to the next stage,

 24

and the other output is feedback to store in delay buffer; therefore, it is called

single-path delay feedback architecture.

For N-point FFT computation, R2SDF needs N–1 registers, (log2N–1) complex

multipliers, and 2 ×log2N complex adders. The latency is N–1 cycles without reorder

buffer.

R
adix-2 B

F

X

R
adix-2 B

F

X

R
adix-2 B

F

X

R
adix-2 B

F

X

R
adix-2 B

F

X

R
adix-2 B

F

32 16 8 4 2 1

Fig. 3.8 64-point FFT with radix-2 SDF architecture

(2). Radix-8 Single-Path Delay Feedback (R8SDF) Architecture

The block diagram of 64-point radix-8 single-path delay feedback (R8SDF)

architecture is shown in Fig. 3.9. It has less multiplier than the R2SDF architecture,

for 64-point FFT architecture, R8SDF can save 80% of complex multipliers; but it

also has more register banks to store the data for BF unit, which may have more

power consumption.

For N-point FFT computation, R8SDF needs N–1 registers, (log8N–1) complex

multipliers, and (24+2T) ×log8N complex adders. The latency is N–1 cycles without

reorder buffer.

 25

8
8
8

X

8
8
8

8

1
1
1

1
1
1

1

Fig. 3.9 64-point FFT with R8SDF architecture

(3). Radix-2/4/8 Single-Path Delay Feedback (R23SDF) Architecture

Radix-2/4/8 single-path delay feedback (R23SDF) architecture is based on

R2SDF architecture with radix-8 FFT algorithm shown in Fig. 3.10, and, it replaces

the radix-2 butterfly unit with the radix-8 FFT processing element, which is shown in

Fig. 3.11. The numbers of required complex multiplier are the same as R8SDF

architecture, and the numbers of required complex adders are less than R8SDF

architecture; moreover, the partitions of registers are less than R8SDF architecture,

which may have less power consumption.

Fig. 3.10 64-point FFT with R23SDF architecture

 26

For N-point FFT computation, R23SDF needs N–1 registers, (log8N–1) complex

multipliers, and (6+2T) · log8N complex adders. The latency is N–1 cycles without

reorder buffer.

PE1

4

PE2

2

PE3

1

PE1 PE2

W8
0

W8
2 W8

0

W8
2

W8
0

W8
1

W8
2

W8
3

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

PE3

Fig. 3.11 8-point FFT radix-2/4/8 SDF architecture

3.2.2 Memory-Based FFT Architecture

Memory-based FFT architecture, unlike pipeline-based FFT architecture, only

has a few arithmetic elements (AE), which also called processing element (PE). There

are two advantage of using memory-based FFT architecture: One is that the hardware

area of the processing elements for N-point DFT computation is the same even N is

very large; the other is that the total number of memory banks are less than

pipeline-based FFT architecture because it used a few PE and need less read or write

 27

operations in the same time. Fig. 3.12 shows a radix-8 memory-based FFT

architecture, it only has one radix-8 butterfly unit and 8 memory banks.

Fig. 3.12 Radix-8 memory-based (R8M) FFT architecture

For multi-input in normal order, different input data in one cycle should write to

different memory banks, but, this requirement is conflict with radix-r FFT algorithm

for memory-based architecture. Similar to the MDC architecture, radix-r

memory-based FFT architecture can add reorder stage at the input stage for parallel

data to be written to different memory banks. Also, for multi-output in normal order, it

needs a reorder stage at the output stage.

Another choice for memory-based FFT architecture with multi-input and

multi-output in normal order is rearrangement of data in memory with higher control

complexity. Next chapter will show the proposed FFT processor architecture based on

this concept.

 28

For N-point FFT computation, R8M needs 7 N+56
8

registers and N words

memory with 8 memory banks, 7 complex multipliers, and (24+2T) complex adders.

The latency is 8
15 8 log
64 8

NN N− + cycles.

3.3 Comparison of Different FFT Architecture

Table 3-1 Comparison of different FFT architecture

 R2SDF R8SDF R23SDF R4MDC R8MDC R8M
Complex

Multipliers
log2N−1 log8N−1 log8N−1 3· log4N−1) 7· log8N−1) 7

Complex
Adders

2· log2N (24+2T)

· log8N

(6+2T)

· log8N

8· log4N (24+2T)

· log8N

24+2T

Memory
Size

N−1 N−1 N−1 7N/4+12 15N/8+56 N

Reorder
Buffer Size

N/2 7N/8 N/2 N−16 N−64 N−64

Data
Latency

3N/2−1 15N/8−1 3N/2−1 11N/16−5 23N/64−9 15N/64−8+

(N/8)log8N

Throughput
Rate

R R R 4R 8R 8R

The comparison of different FFT architecture with multi-input and multi-output

in normal order is shown in Table 3-1, where the N is the FFT size and R is the

internal clock rate of the FFT processor. Due to the FFT algorithms, all architecture

need reorder buffer at input stage or output stage, and the hardware cost of reorder

buffer is so high that the conventional FFT architecture can’t provide an efficient way

to make the output sequence in normal order. For this reason, we have to develop a

FFT processor providing high throughput rate with multi-input and multi-output in

normal order in an efficient way for low hardware cost. As the goal of low hardware

cost, radix-8 memory-based FFT architecture has the least hardware cost for high

throughput rate with the same clock working frequency. However, it also needs a very

 29

large reorder buffer. Therefore, the main issue of the FFT architecture with

multi-input and multi-output in normal order is to reduce the reorder buffer. The

proposed FFT architecture can provide high throughput rate with multi-input and

multi-output in normal order, and does not need any reorder buffer. It will be

introduced in next chapter.

3.4 Partial FFT Design

3.4.1 Concept of Partial FFT

Partial FFT design is a study of redundancies of the standard FFT algorithm due

to a reduction in either the number of input or output points. For most applications,

the input and the output sequence of the DFT operation are equal, but, there are still

some applications where the numbers of input and output points are different, such as

DFT-based channel estimation. Hence, many researches of partial FFT design are

presented to reduce the redundant operations of FFT algorithm. The thesis will

introduce the partial FFT design in two points of view in the following subsections,

one is concerned that only a subset of input or output points of DFT operation are

computed, another point is concerned that multiple subsets of input or output points of

DFT operation are computed. Finally, we propose a partial FFT design, combining the

reducing methods with only a subset and multiple subsets of input or output points of

DFT operation, suitable for DFT-based channel estimation.

3.4.2 DFT with only a Subset of Input or Output Points

There are two conditions we have to design a partial FFT with only a subset of

input or output points, one is that only a narrow spectrum is interested but the

resolution within the band has to be very high; the other is that a very high resolution

 30

spectrum is to pad the input sequence with a large number of zeros. It usually use a

regular FFT to compute the results, but if the number of nonzero input or the number

of output concerned is small compared with the DFT length, it is very inefficient. The

pruning algorithm [25][26] and transform decomposition [27] is presented for

efficient DFT computation with only a subset of input or output points. Because the

transform decomposition method is not suitable in our application, we only introduce

the pruning algorithm in the following.

The pruning algorithm is first developed by Markel [25] for computing only a

subset of input or output points. An example of Markel’s pruned 16-point FFT with a

subset of nonzero input is shown in Fig. 3.13, where the Markel’s pruning algorithm

is based on radix-2 DIF FFT algorithm. We focus on the case that the nonzero input

points are from the first L points of input sequence because this case is similar to the

case of FFT processor in DFT-based channel estimation. As the result from Fig. 3.13,

it reduces 2log (/)N N L× complex additions and 2(/ 2) log (/)N N L N L− +

complex multiplications than the original FFT algorithm, where L is a power of 2.

WN
0

WN
1

WN
0

WN
2

WN
0

WN
2

WN
0

WN
4

WN
0

WN
4

WN
0

WN
4

WN
0

WN
4

x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]
x[8]
x[9]

x[10]
x[11]
x[12]
x[13]
x[14]
x[15]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

X[8]

X[9]

X[10]

X[11]

X[12]

X[13]

X[14]

X[15]

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

Fig. 3.13 Markel’s pruned 16-point FFT with a subset of nonzero input (L=2)

The Skinner develops more efficient pruning algorithm [26] than that of Markel

 31

as shown in Fig. 3.14. However, Skinner’s algorithm is only for L is a power of 2. It

is achieved by pruning a decimation-in-time algorithm instead of the

decimation-in-frequency that Markel’s algorithm is based on. In Skinner’s pruning

algorithm, the first 2log (/)N L stages contain no complex additions and no complex

multiplications, and it means that it reduces 2log (/)N N L× complex additions and

2(/ 2) log (/)N N L complex multiplications. Therefore, the Skinner’s algorithm with

a subset of nonzero input saves N-L of complex multiplications as compared to

Markel’s algorithm when L is a power of 2.

WN
0

WN
1

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]
X[7]
X[8]
X[9]

X[10]
X[11]
X[12]
X[13]
X[14]
X[15]

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x[8]

x[9]

x[10]

x[11]

x[12]

x[13]

x[14]

x[15]

WN
2

WN
3

WN
5

WN
6

WN
7

WN
4

Fig. 3.14 Skinner’s pruned 16-point FFT with a subset of nonzero input (L=2)

The pruning algorithm for FFT with a subset of output points is also presented by

Markel and Skinner as shown in Fig. 3.15 and Fig. 3.16. The Markel pruning

algorithm is based on decimation-in-time algorithm while that of the Skinner’s is

based on decimation-in-frequency algorithm. The Markel’s algorithm can reduce

2log (/)N N L N L− + of complex additions and 2(/ 2) log (/)N N L N L− + of

complex multiplications, and the Skinner’s algorithm can reduce 2log (/)N N L× of

complex additions and 2(/ 2) log (/)N N L of complex multiplications.

 32

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]
X[7]
X[8]
X[9]

X[10]
X[11]
X[12]
X[13]
X[14]
X[15]

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x[8]

x[9]

x[10]

x[11]

x[12]

x[13]

x[14]

x[15]

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

WN
0

WN
4

WN
0

WN
4

WN
0

WN
4

WN
0

WN
4

WN
0

WN
2

WN
0

WN
2

WN
0

WN
1

Fig. 3.15 Markel’s pruned 16-point FFT with a subset of output points (L=2)

Fig. 3.16 Skinner’s pruned 16-point FFT with a subset of output points (L=2)

3.4.3 DFT with Multiple Subsets of Output Points

Conventional partial FFT algorithm can only extract one subset of spectrum. An

efficient partial FFT algorithm for DFT with multiple subsets of output points has

been presented [28], which focus on the control of DFT with multiple subsets of

output points, and an example of 8-point DFT based on the concept [28] is shown in

Fig. 3.17.

 33

(a) Signal flow graph of 8-point DFT

(b) Butterfly function for each butterfly output

Fig. 3.17 8-point DFT with butterfly function of each butterfly unit output point

The signal flow graph of 8-point DFT is shown in Fig. 3.17(a), and the butterfly

function for each butterfly output is shown in Fig. 3.17(b). In order to reduce the

redundant operations of butterfly unit, we have to decide the butterflies need to be

computed and operations for needed butterflies, and an example of 8-point DFT with

multiple subsets of output points is shown in Table 3-2.

 34

Table 3-2 Control counter and function of FFT with partial output points

 Butterfly Counter Butterfly Function

Stage 1 b1b0
Q0 = {0,1} → Normal
Q0 = 0 → Addition
Q0 = 1 → Subtraction

Stage 2 Q0b0
Q1 = {0,1} → Normal
Q1 = 0 → Addition
Q1 = 1 → Subtraction

Stage 3 Q0Q1
Q2 = {0,1} → Normal
Q2 = 0 → Addition
Q2 = 1 → Subtraction

If the multiple output subcarriers, whose indices are [G2 G1 G0], [H2 H1 H0],[I2 I1

I0],…, are interested in the system, the Qn in the Table 3-2 can be defined as Qn =

{Gn∪Hn∪In∪…}; then, the possible results for Qn are {0,1},{0},{1}. The needed

butterflies and operations of the butterflies can be defined as butterfly counter and

butterfly function in Table 3-2. In addition, b1b0 is the original butterfly counter

counting from 0 to 3. It is clearly that all the butterflies should be computed in stage 1,

the stage is defined in Fig. 3.17, for all possible result of output points, but if the Q0

equals to 0 or equals to 1, all the butterflies only compute the addition or subtraction

butterfly function. In stage 2, the butterflies should be computed only if butterfly

counter of the butterflies equals to Q0b0, and the operations is decided by Q1. Similar

to stage 2, in stage 3, the butterflies should be computed only if butterfly counter of

the butterflies equals to Q0Q1, and operations of the butterflies are decided by Q2.

An example of DFT with multiple output points is shown in Fig. 3.18. The

expected signal flow graph is shown in upper side, and the active operations and

butterflies are shown in lower side. In stage 1 and stage 2, the active operations and

butterflies meet the expected signal flow graph, but, in stage 3, the addition operation

of butterfly counter 3 is a redundant operation due to the butterfly function control is

shared with all butterflies. Although there are still redundant operations in this

 35

algorithm, it provides an efficient way to simplify the control of partial FFT.

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

Stage 1 Stage 2 Stage 3

BU Counter 0
Add

BU Counter 0
Sub

BU Counter 0
Add

BU Counter 0
Sub

BU Counter 2
Sub

BU Counter 0
Add

BU Counter 1
Add

BU Counter 2
Add

BU Counter 3
Add

Stage 1 Stage 2 Stage 3

BU Counter 2
Sub

BU Counter 3
Sub

BU Counter 1
Sub

BU Counter 2
Add

BU Counter 3
Add

BU Counter 1
Add

BU Counter 1
Add

BU Counter 3
Add

BU Counter 1
Sub

BU Counter 3
Sub

BU Counter 0
Sub

BU Counter 1
Sub

BU Counter 2
Sub

BU Counter 3
Sub

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

BU Counter 2
Add

Q2={0,1} Q1={0,1} Q0={1}

Fig. 3.18 Example of 8-point DFT with multiple subsets of output points

3.4.4 DFT with Multiple Subsets of Input and Output Points

Based on the algorithm presented in Section 3.4.3, we enhance the algorithm

from only suitable for multiple subsets of output points to both multiple subsets of

input and output points, and the modified butterfly counter and operations is shown in

Table 3-3. Qn represents the multiple output subcarriers’ indices as mentioned in

Section 3.4.3, and Pn represents the multiple nonzero input points’ indices. The new

operation of butterfly function, bypassing input values, is added due to that there are

several zero input points of DFT operation. An example of DFT operation with

multiple nonzero input and output points is shown in Fig. 3.19.

 36

Table 3-3 Control counter and function of FFT with partial input and output points

 Butterfly
Counter

Butterfly Function

P2 = {0,1}
Q0 = {0,1} → Normal
Q0 = 0 → Addition
Q0 = 1 → Subtraction

P2 = 0

Q0 = {0,1} → Bypass upper input to both
 upper and lower output

Q0 = 0 →Bypass upper input to upper output
Q0 = 1 →Bypass upper input to lower output

Stage 1 P1P0

P2 = 1

Q0 = {0,1} → Bypass lower input to both
 upper and lower output

Q0 = 0 →Bypass lower input to upper output
Q0 = 1 →Bypass lower input to lower output

P1 = {0,1}
Q1 = {0,1} → Normal
Q1 = 0 → Addition
Q1 = 1 → Subtraction

P1 = 0

Q1 = {0,1} → Bypass upper input to both
 upper and lower output

Q1 = 0 →Bypass upper input to upper output
Q1 = 1 →Bypass upper input to lower output

Stage 2 Q0P0

P1 = 1

Q1 = {0,1} → Bypass lower input to both
 upper and lower output

Q1 = 0 →Bypass lower input to upper output
Q1 = 1 →Bypass lower input to lower output

P0 = {0,1}
Q2 = {0,1} → Normal
Q2 = 0 → Addition
Q2 = 1 → Subtraction

P0 = 0

Q2 = {0,1} → Bypass upper input to both
 upper and lower output

Q2 = 0 →Bypass upper input to upper output
Q2 = 1 →Bypass upper input to lower output

Stage 3 Q0Q1

P0 = 1

Q2 = {0,1} → Bypass lower input to both
 upper and lower output

Q2 = 0 →Bypass lower input to upper output
Q2 = 1 →Bypass lower input to lower output

 37

P2={0} P1={0,1} P0={1} Q2={0,1} Q1={0,1} Q0={1}

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

Stage 1 Stage 2 Stage 3

BU Counter 0
Add

BU Counter 0
Sub

BU Counter 0
Add

BU Counter 0
Sub

BU Counter 2
Sub

BU Counter 0
Add

BU Counter 1
Add

BU Counter 2
Add

BU Counter 3
Add

Stage 1 Stage 2 Stage 3

BU 2 Bypass
Lower Input

BU 2 Bypass
Lower Input

BU Counter 1
Sub

BU 2 Bypass
Lower Input

BU 2 Bypass
Lower Input

BU Counter 1
Add

BU Counter 1
Add

BU Counter 1
Sub

BU Counter 2
Sub

BU 3 Bypass
Upper Input

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

BU Counter 2
Add

BU Counter 0
Sub

BU 1 Bypass
Upper Input

BU Counter 3
Add

BU Counter 3
Sub

Fig. 3.19 Example of 8-point DFT with multiple subsets of input and output points

Table 3-3 also presents the dependency between the butterfly counter and the

parameter Qn and Pn in each stage. In the first stage, the butterflies needing to be

computed is only dependent on the set of valid input points indices, which is the

parameter Pn. In the second stage, the butterfly counter is dependent on half of the set

of valid input point’s indices and half of the set of valid output point’s indices. In the

final stage the butterfly counter is only dependent on the set of valid output points

indices, Qn. As the result, this algorithm reduces more redundant operations than Fig.

3.18 due to multiple zero input points, and it is helpful to design the partial FFT in

DFT-based channel estimation, and it will be explained later.

 38

3.4.5 Partial FFT Processor Design in DFT-Based Channel Estimation

There are two purposes for designing partial FFT in DFT-based channel

estimation. The first one is that the partial FFT processor should compute the IDFT

operations with N points of input and N×GI points of output and DFT operations with

N×GI points of input and N points of output as discussed in Section 2.3. The second

one is that the partial FFT should reduce the redundant operations due to the non

regular input or output points. For example, the IDFT operations with zero input

points of guard band and redundant output points of non-usable of multi-path

response shall be avoided. Hence, we design the partial FFT for different purposes by

the algorithm mentioned in Section 3.4.3 and Section 3.4.4.

The partial FFT processor specification of the proposed DF DFT-based CE in

802.16e baseband receiver is that the FFT size is 1024 points and the guard interval is

1/8. Thus, we have to design a partial FFT/IFFT processor for IDFT operation with

1024 points input transform to 128 points output and DFT operation with 128 points

nonzero input transform to 1024 points output as shown in Fig. 3.20.

Fig. 3.20 System specification for the partial FFT/IFFT processor

For this purpose, the FFT and IFFT blocks in DF DFT-based CE is well suitable

for partial FFT/IFFT design with only a subset of input / only a subset of output

 39

points. A pipeline-based architecture for the partial FFT is presented in Fig. 3.21,

which used the concept of Section 3.4.3 and combined the IFFT and FFT in the same

hardware.

Fig. 3.21 Pipeline-based partial FFT/IFFT processor

The active block of partial FFT/IFFT processor in IFFT mode is shown in Fig.

3.22. Due to the DIF algorithm, the 1024-point IFFT operation can be partitioned into

8 128-point IDFT operations and combining the output data of 128-point IDFT

operations with a radix-8 butterfly. Since we only need to compute the first subset of

output points, we use only a complex adder to replace the radix-8 butterfly unit. As

the result, we used only a 128-point FFT/IFFT processor to compute the 128-point

IDFT operation and a 128 words memory to buffer the combining output data. Finally,

we sent the data out from the 128 words buffer memory.

 40

Fig. 3.22 Partial FFT/IFFT processor in IFFT mode

The active block of partial FFT/IFFT processor in FFT mode is shown in Fig.

3.23. Due to the DIT algorithm, the 1024-point FFT operation can be partitioned into

8 128-point DFT operations with a modified input by radix-8 butterfly unit. Since the

non-zero input points of DFT operations are only in the first subset of input points, we

use only a complex multiplier to replace the radix-8 butterfly unit. Therefore, the

partial FFT/IFFT processor in FFT mode will first buffer the input data in 128 words

memory, and then read the data from memories by multiplying with suitable twiddle

factors to send as the input of 128-point FFT/IFFT processor. Finally, the output data

order is a bit-reversal order of input order.

Fig. 3.23 Fig. 3.24 Partial FFT/IFFT processor in FFT mode

 41

Moreover, we can use the concept of DFT with multiple subsets of input and

output points in our 128-point FFT processing element with suitable control. It is

useful to reduce the redundant operations due to zero input points of guard band or

none usable multi-path response. In our proposed DFT-based channel estimation, the

path selector will only choose 8 path impulses of the 128 output points for IDFT

operation by system simulation. Hence, we can increase the partial FFT control in

128-point FFT processing elements to reduce more redundant operations.

The comparison of hardware complexity is shown in Table 3-4, the proposed

partial FFT can reduce 75.1% of the memory size, 22.3% of the complex multipliers,

and 30% of the complex adders as compared with traditional radix-2 SDF FFT

architecture. Furthermore, with increasing the partial FFT control for the 128-point

FFT processor shown in Table 3-5, the proposed partial FFT can reduce maximum

65.3% of multiplication operations and 49.5% of addition operations, which may save

more power if the 8 valid output point’s indices have common bits.

Table 3-4 Comparison with Partial FFT and Conventional FFT

 Conventional
Radix-2 SDF

Partial FFT with
Radix-2 SDF

Memory Size (words) 1023(100%) 255(24.9%)
Complex Multiplier 9(100%) 7(77.7%)
Complex Adder 20(100%) 14(70.0%)
Data Latency 1023(100%) 1023(100%)

 42

Table 3-5 Reduced operations of partial FFT with radix-2 SDF architecture

 Original
FFT

Modified
Architecture
Partial FFT

Modified
Control
Partial FFT

Reduced

Operations of
Complex
Multiplications

4608
(100%)

3584
(77.7%)

Max 3584
(77.7%)
Min 1600
(34.7%)

Max 65.3%

Operations of
Complex Additions

10240
(100%)

8064
(78.8%)

Max 8064
(78.8%)
Min 5176
(50.5%)

Max 49.5%

3.5 Summary

This chapter introduces the method of designing a parallel-in-parallel-out FFT

processor and partial FFT/IFFT processor. In order to tape out the chip of 802.16e

baseband receiver, a parallel-in-parallel-out FFT processor is more urgent to make the

DFT-based channel estimation to be achievement. Hence, this thesis only focus on the

hardware implementation of a parallel-in-parallel-out FFT processor, and the partial

FFT processor design can be a future work to improve our system. Next chapter will

introduce the design of FFT/IFFT processor with parallel-in-parallel-out in normal

order.

 43

Chapter 4

Parallel-In-Parallel-Out FFT/IFFT
Processor Architecture Design

4.1 System Requirement of the FFT/IFFT Processor

The decision feedback DFT-based channel estimation (DF DFT-based CE) block

diagram is shown in Fig. 4.1, it needs FFT_ch and IFFT_ch blocks with parallel-in-

parallel-out to speed up the circuits blocks before or after the FFT_ch and IFFT_ch

blocks with parallel computation.

Fig. 4.1 Decision feedback DFT-based channel estimation block diagram

From the analysis of high throughput FFT/IFFT processor architecture with

multi-input and multi-output in Chapter 3, memory-based architecture is the best

choice for the lowest hardware cost without data latency concerned. In order to speed

up the memory-based FFT/IFFT architecture to meet the data latency of system

requirement, parallel memory-based architecture is used in our FFT/IFFT processor

design. Furthermore, to reduce the hardware cost and control complexity of the

 44

processing elements, we use pipeline-based SDF processing elements to replace the

radix-r butterfly units of the memory-based architecture. As a result, the proposed

FFT/IFFT processor is based on parallel memory-based FFT architecture with

pipeline-based SDF processing elements. The system requirement of the FFT/IFFT

processor is shown in Table 4-1.

Table 4-1 FFT/IFFT system requirement

Items Specification

System Clock Rate 78.4 MHz

FFT Size 1024 points

No. of Inputs or Outputs of FFT processor 8

Data Latency 25 us

The FFT_ch/IFFT_ch blocks have to be designed as the 1024-point FFT/IFFT

processor with 8 inputs and 8 outputs working at the system clock rate of 78.4 MHz

and the data latency of the FFT/IFFT processor must less than 1/4 OFDM symbol

time which is about 25 us.

4.2 Architecture of the FFT/IFFT Processor

According to Chapter 3, we focus on the memory-based FFT processor design

with parallel-in-parallel-out in normal order. The conventional memory-based FFT

processor with 1 PE and 1 dual-port memory can not achieve the goal of 8

parallel-in-parallel-out data streams. Thus, first, we change the memory from 1

dual-port memory to 8 dual-port memories to achieve the goal of 8 parallel-in-

parallel-out data streams. However, the data latency is too long for the memory-based

FFT processor with only 1 PE. A FFT/IFFT processor with 4 PE and 8 memory banks

is designed to reduce the data latency. In the later discussion, we will show that the

 45

FFT/IFFT processor with 4 PE and 8 memory banks can achieve the best hardware

efficiency. The 1024-point FFT/IFFT processor architecture is shown in Fig. 4.2, and

it combines parallel radix-8 memory-based architecture and radix-2/4/8

pipeline-based SDF processing elements. The FFT/IFFT Processor has 8 banks of

single port memory, 4 radix-2/4/8 SDF processing elements (PEs), 2 radix-2 butterfly

units, and 2 commutators between memories and PEs.

Radix-2/4/8 SDF
PE0

Radix-2/4/8 SDF
PE1

Radix-2/4/8 SDF
PE2

Radix-2/4/8 SDF
PE3

R
adix-2

C
om

m
utator

R
adix-2

C
om

m
utator

8 Memory Banks

Fig. 4.2 The proposed 1024-point FFT/IFFT processor architecture

According to radix-8 FFT algorithm, 1024-point DFT must use 4 stage of

computation with the last stage is a radix-2 computation. If the last stage still uses

radix-2/4/8 SDF PE, it wastes 1024 cycles to compute a radix-2 computation because

the data of 3rd stage had already written to memory. The last stage can save 25% data

latency of the FFT/IFFT computation time by adding a radix-2 butterfly unit at the

output of radix-2/4/8 SDF PE, which is shown in Fig. 4.3.

 46

Fig. 4.3 FFT/IFFT processing structure

The proposed architecture may submit 8 parallel-in-parallel-out data streams, and

the execution cycles are (1024/4) × (log8(1024)－1) = 768 cycles, which means the

data latency is 768/78.4 = 9.79 us (satisfy the system requirement). The detail sub_

module design is described in the next section.

4.3 FFT Sub_Module Design

4.3.1 Radix-2/4/8 SDF Processing Element

The radix-2/4/8 SDF processing element architecture [29] is shown in Fig. 4.4,

which contains 3 processing elements of radix-2/4/8 SDF architecture, a reorder

buffer, a twiddle factor ROM, a complex multiplier, and a fixed-point block.

PE1

4

PE2

2

PE3

1 R
eorder
B

uffer

R
O

M Fixed P
oint

Radix-2/4/8 SDF
Complex
Multiplier

Fig. 4.4 Radix-2/4/8 SDF processing element

We use radix-2/4/8 SDF architecture with decimation-in-time (DIT) algorithm to

implement because the radix-8 DIT algorithm has less quantization error than DIF

algorithm [12]. This is because the quantization error is caused by constant multiplier.

In DIF algorithm, the constant multiplier is in the PE1 while the constant multiplier is

in the PE3 in DIT algorithm as shown in Fig. 4.6(c). The path of the quantization error

 47

passing in DIF algorithm is longer than that in DIT algorithm; hence, we choose DIT

algorithm to implement the radix-2/4/8 SDF PE. Fig. 4.5 shows the radix-2/4/8 SDF

architecture with DIT algorithm. The detail of the processing elements is shown in Fig.

4.6.

PE1

4

PE2

2

PE3

1

PE1 PE2

W8
0

W8
2

W8
0

W8
2

W8
0

W8
1

W8
2

W8
3

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

PE3

Fig. 4.5 Radix-2/4/8 SDF with DIT algorithm

 48

j

PE1

Upper Input

Lower Input
Lower Output

Upper Output

(a)

(b)

(c)

Fig. 4.6 Processing elements of radix-2/4/8 SDF with DIT algorithm

 49

The reorder buffer contains 3 registers, and the timing flow of the reorder buffer

is shown in Fig. 4.7. It requires 3 unit time delays to make the output data in normal

order. The red line is the writing cycle for input data to be written to reorder buffer,

and the green line is the reading cycle for output data to be read from reorder buffer or

input. In addition, there are 3 modes for the read or write order which will repeat

every 24 cycles.

0Input

Buf_0

Buf_1

Buf_2

4 2 6 1 5 3 7 0 4 2 6 1 5 3 7 0 4 2 6 1 5 3 7 0 4 2 6 1 5 3 7

0 0

4

0

4

2

6

4

2

6

4

2

6

7

5

6

7

0

4

7

0

4

2

0

4

2

6

4

2

6

4

5

6

4

5

6

7

5

6

7

0

6

7

0

4

2

0

4

2

6

4

2

6

4

5

6

4

5

6

4

5

6

7

0

6

7

0

4

7

0

4

2

6

4

2

6

4

2

6

4

5

6

4

5

6

4

5

6

4

5

Output 0 1 2 5 6 73 4 0 1 2 5 6 73 4 0 1 2 5 6 73 4 0 1 2 3 4

Time

Mode 0 Mode 1 Mode 2 Mode 0

Fig. 4.7 Reorder buffer input and output timing flow graph

4.3.2 Complex Multiplier

There are three types of complex multiplication in our design, the first one is

multiplication of – j, the second one is multiplication of a constant twiddle factor W8
1,

W8
3, and the least one is multiplication of a complex twiddle factor.

(1). Multiplication of – j:

The multiplication by –j can be realized by interchanging the real part and

imaginary part of input, then negate the imaginary part of output, which is shown in

Fig. 4.8. The only hardware is multiply by -1 which can be realized with an inverter

and an adder.

 50

Fig. 4.8 Architecture of multiplication of -j

(2). Multiplication of constant twiddle factor W8
1, W8

3 :

Multiplication of constant twiddle factor W8
1, W8

3 can be defined as the

following equation.

 () () ()()1
8() () 1 2 (1-) 1 2 (-)A Bj W A Bj j A B B A j+ × = + × × = × + + (4.1)

 3 1
8 8() () (-)A Bj W A Bj W j+ × = + × × (4.2)

From Eq. (4.1), the constant complex multiplier can be implemented by one real

adder, one real subtraction, and two real constant multipliers as shown in Fig. 4.9.

Also, from Eq. (4.2), the constant complex multiplication of W8
3 can use the same

hardware of multiplication by W8
1 and multiplication by –j. In addition, the

multiplication by real constant value can be realized as shifter and adders [20], where

the constant value (1/√2)’s binary representation is 0.10110101, 9 bits fixed-point of

1/√2 ; thus, the multiplication by (1/√2) can be realized with shifter and carry-save

adder (CSA) tree, also called Wallace tree, shown in Fig. 4.10.

A

B

Real Part

Imaginary Part

()1 2

()1 2

Fig. 4.9 Architecture of multiplication of W8

1

 51

C
SA

 Tree
C

SA
 Tree

Fig. 4.10 Architecture of multiplication by W8
1 with CSA tree

From Fig. 4.10, the architecture replace the constant multiplier with shifters,

CSA tree, and a carry-propagation adder which reduce the hardware cost. However,

this architecture needs to pass 2 carry-propagation adders which are not efficient for

delay optimization. For the reason of delay optimization, we modify Eq. (4.1) as

follow:

() ()()

() ()() () ()()
1 2 (-)

 1 2 1 2 (1 2 - 1 2)

A B B A j

A B B A j

× + +

= + +
 (4.3)

The architecture can be realized without adder or subtraction before the CSA tree

as shown in Fig. 4.11, and the total delay is reduced to one inverter, one CSA tree,

and one carry-propagation adder. In addition, the compensation bits for negative

number of A are combined and realized as a input of CSA Tree.

 52

>> 1

>> 3

>> 4

>> 6

>> 8 Real Part

Imaginary
Part

>> 1

>> 3

>> 4

>> 6

>> 8A

>> 1

>> 3

>> 4

>> 6

>> 8
>> 1

>> 3

>> 4

>> 6

>> 8
5 Compensation Bits
for Negative Input A

B

Fig. 4.11 Delay optimized architecture of multiplication by W8

1 with CSA tree

(3). Multiplication of complex twiddle factor:

A complex multiplier needs four real multipliers, one real addition, and one real

subtraction, which can express as:

 () () () ()A Bj C Dj AC BD AD BC j+ × + = − + + (4.4)

 53

Fig. 4.12 Architecture of complex multiplication

The complex multiplier is about 4 times area of real multiplier shown as Fig.

4.12, which consumes much hardware. Fortunately, the complex multiplier can be

realized by three real multipliers, three real additions, and two real subtractions [30],

which can reduce large area for hardware implementation of complex multiplier. The

equation can be express as:

 () () (() ()) (() ())A Bj C Dj A C D D A B A C D C B A j+ × + = + − + + + + − (4.5)

The hardware architecture of modified complex multiplication is shown in Fig.

4.13.

Fig. 4.13 Modified architecture of complex multiplication

 54

4.3.3 ROM Table

The conventional FFT processors usually stored the required coefficient called

twiddle factor in a look-up table which generally implemented by ROM. Symmetry

property of twiddle factor is used to reduce the hardware cost of twiddle factor ROM.

For instance, the twiddle ROM only stored 0 ~ π/4 of twiddle factor value, and the

other value is based on the symmetry property of these values. However, they also

need a generator to generate the required value. According to our FFT processor

architecture, four processing elements need different twiddle factors in different

stages as shown in Table 4-2.

Table 4-2 Twiddle factors value for different PE in different stages

 PE0 PE1 PE2 PE3

Stage 1 W1024
k·(4n1+0) W1024

k·(4n1+1) W1024
k·(4n1+2) W1024

k·(4n1+3)

Stage 2 W1024
8·k·(4n2+0) W1024

8·k·(4n2+1) W1024
8·k·(4n2+2) W1024

8·k·(4n2+3)

Stage 3 W1024
64·k·(0) W1024

64·k·(1) W1024
64·k·(0) W1024

64·k·(1)

k=0…7, n1=0…31, n2=0…3

There are 3 stages with different twiddle factors for each processing element. In

the first stage, each processing element has 256 different twiddle factors to be stored

in each twiddle factor ROM. In the second stage, 32 different values are stored in

each ROM. In the final stage, only 8 different values are stored in each ROM. As a

result, each twiddle factor ROM has 296 different values to be stored in each twiddle

factor ROM, called PE-based twiddle factor ROM (PE-based TW ROM).

An 8 bits counter is used to generate the address of PE-based TW ROM, and the

binary representation is b7 b6 b5 b4 b3 b2 b1 b0. The address of PE-based TW ROM in

each stage is shown in Table 4-3.

 55

Table 4-3 Address of PE-based TW ROM in each stage

 Twiddle factor ROM Address

Stage 1 0 b7 b6 b5 b4 b3 b2 b1 b0

Stage 2 1 0 0 0 b4 b3 b2 b1 b0

Stage 3 1 0 0 1 0 0 b2 b1 b0

The PE-based TW ROM for each processing element is 15% larger than the

conventional ROM table that only stores 0 ~ π/4 of twiddle factor value. However, no

generator for PE-based TW ROM is needed for the symmetry twiddle factors.

Moreover, the PE-based TW ROM is implemented with combination circuits, and the

area is different for each PE’s ROM due to different number of the same twiddle

factor values in its twiddle factor ROM. For example, PE-based TW ROM for PE1

has many stored twiddle factor equals to one for k, n1, n2, or n3 equals to zero. The

area difference will be shown in next chapter.

4.3.4 Memory Allocation

The system requirement of 1024-point FFT/IFFT processor for multi-input and

multi-output in normal order is shown in Fig. 4.14. The memory must write 8 input

data in normal order in one cycle before FFT/IFFT computation, and read 8 output

data in normal order after FFT/IFFT computation, too.

 56

After FFT
Computation

8 Memory Banks
Time Domain
Sample Index

Time

Frequency Domain
Subcarrier Index

Time

0
1
2
3
4
5
6
7

8
9
10
11
12
13
14
15

1016

1017

1018

1019

1020

1021

1022

1023

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

1016

1017

1018

1019

1020

1021

1022

1023

Multi-input in Normal Order Multi-output in Normal Order

8 Memory Banks

Fig. 4.14 System requirement for multi-input and multi-output in normal order

The memory allocation is an important issue because the memory allocation of

the input data will affect the memory allocation of the output data by 3-digit reversal

for radix-8. For instance, assume the input data index x(n)’s binary index is

x(n9n8n7n6n5n4n3n2n1n0). If we partitioned the input data by {n2n1n0} into the 8

memory banks, the input data order is able to write 8 input data in normal order to

different memory banks, but, the output data location is unable to read 8 output data

in normal order. Assume the binary index of output data X(k) is X(k9k8k7k6k5k4k3k2k1k0),

the memory location is at input data location x(k2k1k0k5k4k3k8k7k6k9), and {k2k1k0} is in

the same memory bank. Since {k2k1k0} is related to {n9n8n7}, an easy way to partition

the input data to 8 memory banks is that each bank select the input data by

{n2n1n0}+{n9n8n7}, and the data location in 8 partitions memory is shown in Fig. 4.15.

By this memory allocation of input data, {k2k1k0} is in the different memory banks.

Thus, the output data location is able to read 8 output data in normal order.

 57

0
8
16
.
.

135
.

262
.
.
.
.
.
.
.
.
.
.

1
9
17
.
.

128
.

263
.
.
.
.
.
.
.
.
.
.

2
10
18
.
.

129
.

256
.
.
.
.
.
.
.
.
.
.

3
11
19
.
.

130
.

257
.

384
.
.
.
.
.
.
.
.

4
12
20
.
.

131
.

258
.
.

512
.
.
.
.
.
.
.

5
13
21
.
.

132
.

259
.
.
.

640
.
.
.
.
.
.

6
14
22
.
.

133
.

260
.
.
.
.

768
.
.
.
.
.

7
15
23
.
.

134
.

261
.
.
.
.
.

896
.
.
.
.

Bank
0 1 5 76432

Input Data Index {A9 A8 A7 A6 A5 A4 A3 A2 A1 A0}
Bank = {A2,A1,A0}+{A9,A8,A7}

Address = {A9 A8 A7 A6 A5 A4 A3 }

Address
0
1
2
.
.

16
.

32
.

48
64
80
96
112

.

.

.

.

Fig. 4.15 Memory allocation of the FFT/IFFT input data

Without reorder buffer, the proposed FFT/IFFT processor can save 46.8 %

memory area than the conventional radix-8 memory-based FFT architecture with

reorder buffer.

4.3.5 Commutator Design

The commutator has an important issue to make the read write operations of

different memory banks to be conflict free. Besides, in memory design, a single port

memory’s area is about half of a dual port memory’s area. For example, a 128 words

× 38 bits dual port memory size is 0.054 mm2, but a 128 words × 38 bits single port

memory size is 0.023 mm2 (The memory is generated by memory compiler using

90nm process technology). The single port memory size is 42.6% of the dual port

memory size. With the commutator, we can change the 4 dual port memories into the

8 single port memories. The read or write address for the 4 PE in each stage is shown

in Table 4-4. A counter is used to read or write the data from the memory for 4 radix-8

 58

PEs, which’s binary index is b7b6b5b4b3b2b1b0, and, p1p0 is the ID of PE, {00,01,10,11}

means {PE0,PE1,PE2,PE3}. The following will show how to design the single port

memory with read write operations conflict free [21][22].

Table 4-4 Read or write address for the processing elements in each stage

 Read or Write Address Address in Memory Bank

Stage1 b2b1b0b7b6b5b4b3p1p0 { b2b1b0}+{ b3p1p0}

Stage2 b7b6b5b2b1b0b4b3p1p0 { b7b6b5}+{ b3p1p0}

Stage3 b7b6b5b4b3p1b2b1b0p0 { b7b6b5}+{ b1b0p0}

The read write operations for stage 1 are shown in Fig. 4.16. According to Fig.

4.16, we need at least 8 pipeline stages for each PE in stage 1; however, 8 pipeline

stages for each PE can’t meet the timing constrain of the processing elements. For the

system timing constrain, we choose 24 pipeline stages in stage 1 to make memory

read write operations conflict free, and also make the timing constrain of the

processing elements meet the system requirement.

B0

B1

B2

B3

B4

B5

B6

B7

Butterfly 0~3

Conflict Free Pipeline Cycle=8+16n
We Choose 24 Cycles for the Pipeline Stages

PE0

PE1

PE2

PE3

PE0

PE0

PE0

PE0

PE0

PE0

PE0

PE1

PE1

PE1

PE1

PE1

PE1

PE2

PE2

PE2

PE2

PE2

PE3

PE3

PE3

PE3

PE3

PE3

PE3

PE2

PE2

PE1 PE0

PE1

PE2

PE3

PE0

PE0

PE0

PE0

PE0

PE0

PE0

PE1

PE1

PE1

PE1

PE1

PE1

PE2

PE2

PE2

PE2

PE2

PE3

PE3

PE3

PE3

PE3

PE3

PE3

PE2

PE2

PE1

PE0

PE0

PE0

PE1

PE1PE2

PE3

PE3

PE3

PE2

PE2

PE1PE0

PE1

PE2

PE3

PE0

PE0

PE0

PE1

PE1PE2

PE0PE1

PE1

PE2

PE2

PE2

PE3

PE3

PE3

PE3

M
em

or
y

Ba
nk

 N
um

be
r

Time

Fig. 4.16 Memories read write operations for different PE in stage 1

 59

(a)

(b)

Fig. 4.17 Memories read write operations for different PE in stage 2

(a) butterfly 0~7 (b) butterfly 32~39

 60

The read write operations for stage 2 are shown in Fig. 4.17. The read write

operations in stage 2 which is not similar to stage 1, change the operations order every

32 butterflies. In addition, the 32 butterflies with the same read write operations are

called inner stage, which is differ to stage defined by FFT algorithm called outer stage.

For this reason, we have to stall cycles every 32 butterflies to wait the data already

written to the memories. Then, after that, we start to read data for next 32 butterflies.

Here we also choose 24 pipeline stages in stage 2 for the system timing constrain.

In stage 3, the read and write operations for PE0 and PE1 is the same as that for

PE2 and PE3. Thus, we have to delay one cycle for PE2 and PE3 reading or writing

the data. The operations are shown in Fig.4.18. In addition, the read write operations

in stage 3, similar to stage 2, have to stall cycles every 32 butterflies, too. Here we

choose 22 pipeline stages in stage 3 for the system timing constrain.

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7

PE0

PE1

PE2

PE3

0 2 4 6 0 2 4

1 3 5 7 1 3 5

0 2 4 6 0 2

1 3 5 7 1 3

PE0

PE1

PE2

PE3

Read

Write

Memory Bank Number

Conflict Free Pipelined Cycles = 2+4n
We Choose 22 Cycles for the Pipeline Stages

Fig. 4.18 Memories read write operations for different PE in stage 3

According to the analysis of the commutator operations, the state diagram of the

proposed FFT/IFFT processor is shown in Fig. 4.19. The state diagram begins with

 61

the IDLE state waiting for the fft_start signal to start the FFT/IFFT computation. Each

stage has 5 states: Rd, Tw, Wr, Wait_Tw, and Wait_Wr. The Rd state is for PE to read

the input data from memories and also triggers the counter of memory reading address.

The Tw state is for PE’s data multiplying by twiddle factor and also triggers the

counter of twiddle factor ROM reading address. The Wr state is for PE to write the

output data to memories and also triggers the counter of memory writing address. The

last 2 states, Wait_Tw/Wait_Wr, are waiting for the reading data in PEs already

multiply with twiddle factor/writing to the memory.

The state is beginning with stage 1 Rd. Then, after suitable pipeline stages, the

current state is changed to the next states, which are stage 1 Rd, stage 1 Tw, stage 1

Wr, stage 1 Wait_Tw, and stage 1 Wait_Wr. After the stage 1 Wait_Wr state has

already done, the current state is changed to 5 states of next stage.

From analysis of read write operations in each stage discussed in Fig. 4.16, Fig.

4.17, and Fig. 4.18, stage 2 and stage 3 has more stall cycles than stage 1 due to the

operations order changed every 32 butterflies. Therefore, there are two signals to

change the current state of the last 3 states in stage 2 and stage 3. One is outer stage

signal triggered every 255 butterflies called outer_stage_inc. The other is inner stage

signal triggered every 32 butterflies called inner_stage_inc. The outer stage and inner

stage is defined as the discussion mentioned before. Thus, there is a loop in stage 2

and stage 3 due to the operations of current state in inner stage or outer stage.

Finally, the state diagram for commutator will make the read write operations of

different memory banks to be conflict free by stall the cycles between inner stages or

outer stages.

 62

IDLE Stage1
Rd

Stage1
Tw

Stage1
Wr

Stage1
Wait_Tw

Stage1
Wait_Wr

Stage2
Rd

Stage2
Tw

Stage2
Wr

Stage2
Wait_Tw

Stage2
Wait_Wr

Stage3
Rd

Stage3
Tw

Stage3
Wr

Stage3
Wait_Tw

Stage3
Wait_WrFinish

fft_start stage1 tw start stage1 wr start

outer
stage
rd incouter stage

tw inc
outer stage

wr inc

inner
stage
rd inc

stage2 tw start stage2 wr start

inner stage
tw inc

outer stage
wr inc

inner stage
wr inc

inner
stage
rd inc

stage3 tw start stage3 wr start

inner stage
tw inc

inner stage
wr inc

outer stage
wr inc

Fig. 4.19 State diagram of FFT/IFFT processor

4.3.6 Mixed FFT/IFFT Processor

For hardware efficiency, we want to use the same FFT/IFFT processor to

compute the FFT and IFFT block, which is shown in Fig. 4.20.

Fig. 4.20 The FFT/IFFT processor in the DF DFT-based CE block diagram

 63

Assume the fast Fourier transform (FFT) equation is defined as

1

0
() ()

N
k n

N
n

X k x n W
−

⋅

=

= ⋅∑ (4.6)

The inverse fast Fourier transform (IFFT) equation is defined as

1

0

1() ()
N

k n
N

k
x n X k W

N

−
− ⋅

=

= ⋅∑ (4.7)

If we take the conjugate of right side in Eq. (4.7), we find

 ()
*1

*

0

1() ()
N

k n
N

k
x n X k W

N

−
⋅

=

 = ⋅  
∑ (4.8)

Therefore, the IFFT function can be performed with FFT and conjugate

operation [11]. The modified processing elements for the proposed FFT/IFFT

processor are shown in Fig. 4.21. With the conjugate operation, we can use only two

FFT/IFFT processors in our system; one computes the upper FFT and IFFT, the other

computes the lower FFT and IFFT.

Fig. 4.21 Modified processing elements with conjugate operation

 64

4.3.7 Fixed-Point Block Design with Dynamic Scaling

The fixed-point block is a truncating block which truncates the output data of the

processing elements before writing to the memories. Due to the system requirement of

FFT and IFFT are different, we have to optimize the fixed-point block for different

condition of FFT or IFFT computation [24].

For IFFT computation, there are 1024 input data. According to 1024-point

radix-8 DIF algorithm, the stage 1 is 8-point DFT multiply with the twiddle factor,

which defined as

4 1 2 34 4

4

1 1 2 3 4

8 1 1 2 3 4

7
(2 16)

1 2 3 4 8 1024
0

(2 16 128)
 (, , ,)

 (2 16 128)

stage

stage

k n n nk n

n

X n n n k
BU n n n k

x n n n n W W ⋅ + +⋅

=

+ + +

=

 
= + + + ⋅ × 

 
∑

 (4.9)

Take the absolute value of both sides in Eq. (4.9), we find

4

7

1 1 2 3 4 max
0

(2 16 128) 8stage
n

X x n n n n x
=

≤ + + + ≤ ×∑ (4.10)

Since the range of IFFT input data x for both real part and imaginary part is -2 ~

+2, which is defined by the system simulation, we find |Xstage1| ≤ 22.6274. If the Xstage1

is defined as A + j·B, 2 2
1 22.6274stageX A B= + ≤ . Thus, both |A| and |B| are

smaller than 22.6274. As the result, we take 6 bits of integer for both real part and

imaginary part of the Xstage1, and the fraction bits of Xstage1 is decided by overall

FFT/IFFT fixed-point simulation.

The stage 2, stage 3 and stage 4 are calculated as

3 3 3 1 2

3

2 1 2 3 4

8 2 1 2 4 3

7
8 (2)

1 1 2 3 4 8 1024
0

(2 16 128)
 (, , ,)

 (2 16 128)

stage

stage

k n k n n
stage

n

X n n k k
BU n n k k

X n n n k W W⋅ ⋅ +

=

+ + +

=

 
= + + + ⋅ × 

 
∑

 (4.11)

 65

2 2 2 1

2

3 1 2 3 4

8 3 1 3 4 2

7
64

2 8 1024
0

(2 16 128)
 (, , ,)

stage

stage

k n k n
stage

n

X n k k k
BU n k k k

X W W⋅ ⋅

=

+ + +

=

 
= ⋅ × 

 
∑

 (4.12)

1 1

1

4 1 2 3 4

2 4 2 3 4 1

1

3 2
0

(512 64 8)
 (, , ,)

stage

stage

k n
stage

n

X k k k k
BU k k k k

X W ⋅

=

+ + +

=

= ⋅∑

 (4.13)

Take the absolute value of both sides in Eq. (4.11), Eq. (4.12), and Eq. (4.13), we find

3

7

2 1 max
0

64stage stage
n

X X x
=

≤ ≤ ×∑ (4.14)

2

7

3 2 max
0

512stage stage
n

X X x
=

≤ ≤ ×∑ (4.15)

1

1

4 3 max
0

1024stage stage
n

X X x
=

≤ ≤ ×∑ (4.16)

Since the range of IFFT input data x for both real part and imaginary part is -2 ~

+2, we find |Xstage2| ≤ 181.0193, |Xstage3| ≤ 1448.2, and |Xstage4| ≤ 2896.3; thus, we take 9,

12, 13 bits of integer for both real part and imaginary part of the Xstage2, Xstage3, Xstage4.

For FFT computation, there are 8 random nonzero input data of the first 128

input data, defined by system simulation for DF DFT-based CE, and the other input

data are zeros. The range of the FFT input data is the same as the range of the IFFT

input data, which is -2 ~ +2 for both real part and imaginary part.

According to Eq. (4.10), |Xstage1| ≤ 1×|x|max ≤ 2.8284, since x is a nonzero point

only if n4 is equal to zero. As the result, we take 3 bits of integer in stage 1. In stage 2,

the maximum of |Xstage2| occurred when input data are nonzero points with n3 equaling

to 0 to 7; therefore, |Xstage2| ≤ 8×|x|max ≤ 22.6274 and we take 6 bits of integer in stage

2. In stage 3, the maximum of |Xstage3| occurred when input data are nonzero points

with n2 equaling to 0 to 7; therefore, |Xstage3| ≤ 8×|x|max ≤ 22.6274 and we take 6 bits of

integer in stage 3. The Xstage4 is the final stage output data, |Xstage4| ≤ 8×|x|max ≤

 66

22.6274 because only 8 input data are nonzero data, and we take 6 bits of integer in

stage 4. In addition, the fraction bits of Xstage2, Xstage3 and Xstage4, are also defined by

overall FFT/IFFT fixed-point simulation.

The fixed-point block parameter for FFT or IFFT mode is shown in Table 4-5.

Parameter WL in Table 4-5 is the internal word length of FFT/IFFT processor.

Table 4-5 Scale down block parameter for FFT/IFFT mode

IFFT Mode FFT Mode

Integer bits

(bits)

Fraction bits

(bits)

Integer bits

(bits)

Fraction bits

(bits)

Stage 1 6 WL－6 3 WL－3

Stage 2 9 WL－9 6 WL－6

Stage 3 12 WL－12 6 WL－6

Stage 4 13 WL－13 6 WL－6

4.4 The FFT/IFFT Processor Fixed Point Simulation

The proposed FFT/IFFT processor has been modeled in Matlab and C language.

The FFT/IFFT processor performance is evaluated by SQNR (Signal-to-Quantization

Noise Ratio) for the system requirement. The simulation model is shown in Fig. 4.22.

First, we simulate the least truncate bits for input and output data of the

FFT_ch/IFFT_ch block which can meet the system required BER as shown in upper

of Fig. 4.22. Then, we use random pattern to obtain the system required SQNR for the

FFT/IFFT processor for general case of input pattern as shown in lower of Fig. 4.22,

where the truncate bits of input or output are decided by upper of Fig. 4.22.

 67

Fig. 4.22 System required SQNR simulation model

Since we combine the FFT and IFFT block to use the same hardware of

FFT/IFFT processor, we must meet the system requirement for both FFT and IFFT

blocks. The system required SQNR of the FFT_ch/IFFT_ch block decided by Fig.

4.22 is shown in Table 4-6.

Table 4-6 System required SQNR for FFT/IFFT processor

 Required SQNR

IFFT Mode 60.1 dB @ 1024 point input

FFT Mode 81.5 dB @ 8 point input

4.4.1 Fixed Point Simulation for Constant Multiplier in Radix-2/4/8 PE

A constant multiplier can always be composed of several shifters and adders.

The quantization bits of the constant multiplier will affect the FFT/IFFT processor

performance and hardware area.

By Eq. (4.3), the constant value of the multiplier is 1 divided by square root of 2,

the output SQNR versus quantization bits of 1 divided by square root of 2 is shown in

Fig. 4.23; in addition, the binary representation of 1 divided by square root of 2 is

0.101101010000010011110011. According to the system requirement, 8 fraction bits

are the least required truncation bits to meet the system required SQNR 81.5 dB as

shown in Table 4-6.

 68

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

Multiplier truncate bits

S
Q

N
R

 (d
B)

Fig. 4.23 SQNR versus constant multiplier truncate bits

4.4.2 Fixed Point Simulation for Twiddle Factor

We decide 8 fraction bits for constant multiplier to evaluate the performance

with different word length of twiddle factor. The output SQNR versus the word length

of twiddle factor is shown in Fig. 4.24. According to the system requirement, 17 bits

of the twiddle factor are the least bits to meet the required performance.

Fig. 4.24 SQNR versus word length of twiddle factor

 69

4.4.3 Fixed Point Simulation for FFT/IFFT Processor

The dynamic scaling [24] is effective to reduce the internal word length without

reduce the performance, especially in multiple stage of FFT/IFFT computation. In our

application, the IFFT mode is assume 1024 point valid input data as usual. Without

dynamic scaling, the hardware has to keep 13 bits of integer in each stage from the

analysis in Section 4.3.7, which is inefficient. In this situation, dynamic scaling is so

effective that the processor need less internal word length to meet the system

requirement, which is shown in Fig. 4.25. From Fig. 4.25, the processor reduces 30%

of the internal word length, which can reduce much of the hardware area. Another

mode is FFT mode. The FFT mode has 8 point valid input data, so the output has to

keep only 6 bits without dynamic scaling. From the analysis of Section 4.3.7, the

scaling factor can be fixed in stage 1 but can not be fixed in other stage, where the

stages are defined in Fig. 4.3. Fig. 4.26 shows the difference for with and without

dynamic scaling. As the result, it also reduces 15% of the internal word length.

In order to meet the system requirement for both FFT and IFFT mode, we decide

20 bits for internal word length, 8 bits for constant multiplier, and 18 bits for twiddle

factor.

 70

S
Q

N
R

 (d
B

)

Fig. 4.25 SQNR versus internal word length in IFFT mode

14 16 18 20 22 24 26 2840

45

50

55

60

65

70

75

80

85

Internal Word Length (bits)

S
Q

N
R

 (d
B)

Fixed scaling
Dynamic scaling

Fig. 4.26 SQNR versus internal word length in FFT mode

 71

4.5 Hardware Implementation Result

4.5.1 Comparison for the FFT Processor Design Flow

The hardware cost comparisons of 5 versions of FFT processor are shown in Fig.

4.27. The FFT processor contains a 1024x46 bits dual port memory, a processing

element, and a twiddle ROM, called version 1. The version which partition the

memory of version 1 into 8 128x46 bits memory banks are called version 2. The

parallel version of version2 containing 4 processing elements are called version 3.

The version 3 also partition the twiddle factor ROM into 4 smaller twiddle factor

ROMs. Version 4 changes the dual-port memories in version 3 into single-port

memories. The final version is a dynamic scaling version of version 4, which reduces

the area but has the same performance of version 4.

FFT Total Area

0 50 100 150 200 250 300 350

1 DPMEM 1PE 1ROM

8 DPMEM 1PE 1ROM

8 DPMEM 4PE 4ROM

8 SPMEM 4PE 4ROM

Fixed-Point Block with
Dynamic Scaling

MEM Area
Kernel Area
ROM Area

Gate Counts (K)

Better Design

(Version 1)

(Version 2)

(Version 3)

(Version 4)

(Final Version)

Fig. 4.27 Area comparisons for different versions of FFT processor

 72

Fig. 4.28 Data latency comparisons for different versions of FFT processor

Table 4-7 Comparison of different version FFT processor

 Memory
Area
(gates)

Kernel
Area
(gates)

TW ROM
Area
(gates)

Total
Area
(gates)

Data
Latency
(cycles)

1024x46 DPMEM x 1
PE x 1
1024x36 ROM x 1
(Version 1)

68694
(34.0%)

22733
(28.2%)

9849
(100%)

101276
(35.1%)

4096
(100%)

128x46 DPMEM x 8
PE x 1
1024x36 ROM x 1
(Version 2)

202088
(100%)

22733
(28.2%)

9849
(100%)

234670
(81.2%)

3200
(78.1%)

128x46 DPMEM x 8
PE x 4
TW ROM x 4
(Version 3)

202088
(100%)

80418
(100%)

6381
(64.8%)

288887
(100%)

896
(21.9%)

128x46 SPMEM x 8
PE x 4
TW ROM x 4
(Version 4)

87272
(43.2%)

80418
(100%)

6381
(64.8%)

174071
(60.3%)

1169
(28.5%)

Scale down block fixed
(Final version)

77816
(38.5%)

71566
(89.0%)

6410
(65.1%)

155792
(53.9%)

1169
(28.5%)

 73

The comparisons of data latency for 5 versions of FFT processor are shown in

Fig. 4.28 and Table 4-7. The final version reduces 63.5% of data latency as compared

with version 2. Although final version’s data latency is longer than version 3, but the

final version saves 46.1% area as compared with version 3. Besides, the final

version’s data latency is shorter than the system requirement where the data latency of

system requirement is 25us × 78.4 MHz = 1960 cycles. The comparisons of area for 5

versions of FFT processor are also shown in Table 4-7. Version 1 can not achieve the

system requirement for parallel-in-parallel-out, so we ignore the area of version 1 in

comparison. From Fig. 4.27, the final version cans save 61.5%, 10.8% of memory

area as compared with version 2 and version 4. It also saves 11.0% of FFT kernel area

as compared with version 4. Furthermore, the final version saves 34.9% of twiddle

factor ROM area as compared with version 2. Finally, the final version saves 33.6%,

46.1%, 10.5% of total area as compared with version 2, version 3, and version 4.

4.5.2 Comparison of Separated Twiddle Factor ROM

Fig. 4.29 Area comparison of separated twiddle factor ROM

As the discussion in Section 4.3.3, the conventional twiddle factor ROM is

partitioned for different PE called PE-based TW ROM. The PE-based TW ROM is

implemented by combinational circuits using synthesis tool to optimize the area of

 74

each ROM. For instance, PE0 has many twiddle factors with the same number as

discussed in Section 4.3.3. Thus, as the result in Fig. 4.29, the area of PE-based TW

ROM for PE0 is lower than other twiddle factor ROM’s area.

4.5.2 Hardware Implementation Result

As the hardware implementation results shown in Table 4-8, the proposed

1024-point FFT/IFFT processor can achieve the throughput rate up to 1.28 G

samples/sec and the execution time down to 7.3 us when working at 160 MHz. When

working at the system required 78.4 MHz, the execution time is 14.9 us which meets

the system requirement of 25 us, and the power consumption is 21.7 mW with 155792

gates (including memory) that occupy 0.545 mm2 by using 90 nm CMOS 1P9M 1V

process.

Table 4-8 Hardware Implementation of the Proposed FFT/IFFT Processor

Items Specification
FFT Size 1024 points
Process Technology 90 nm CMOS 1P9M 1V
Max Working Frequency 160 MHz
System Working Frequency 78.4 MHz
Throughput Rate 1.28G samples/sec @ 160MHz

Power Consumption
45.1 mW @ 160 MHz
21.7 mW @ 78.4 MHz
(estimate by Design Compiler)

Gate count/Area
155792 gates @ 78.4 MHz
(including memory)/ 0.545mm2

Memory Size 8 x 128 words x 40 bits

Memory Area
77816 gates
(8 bank memories)

Execution Time
7.3 us @ 160 MHz
14.9 us @ 78.4MHz

 75

4.6 Summary

In order to evaluate the proposed FFT/IFFT processor, we compare the

computation complexity and memory requirement in Table 4-8. It is apparent that

compared with R8MDC and radix-8 memory-based, the proposed FFT processor

requires less complex multipliers and no reorder buffer. As the result, the proposed

FFT/IFFT architecture can meet the system requirement with the least hardware

complexity.

Table 4-9 Comparison of several high throughput FFT architectures

 R23SDF R8MDC Radix-8
Memory-Based

Proposed

Complex
Multipliers

3 21 7 4

Complex Adders 20+6T 88+6T 24+2T 28+8T
Memory Banks 13

(dual port)
47

(dual port)
8

(dual port)
8

(single port)
Memory Size

(words)
1023 1976 1024 1024

Reorder Buffer
Size

512 960 960 0

Data Latency
(cycles)

1535 360 872 1160

Throughput Rate
(clock rate is R)

R 8R 8R 8R

Also, we use the proposed FFT processor hardware cost to evaluate the hardware

cost of different architectures, and the results are shown in Table 4-9. It is apparent

that the proposed FFT processor can save about 81.0% and 43.9% complex

multipliers as compared with R8MDC and radix-8 memory-based. The memory bank

composed of single port memory reduces about 64.8% and 32.0% area of R8MDC

and radix-8 memory-based. Moreover, it frees the requirement of reorder buffer which

 76

needs area of 69490 gates. The data latency of the proposed FFT processor is 14.9 us

at 78.4 MHz and meets the system requirement of 25 us. Meeting the system

requirement, the proposed FFT processor has the least hardware cost for low

complexity design.

Table 4-10 Comparison of hardware cost for different architectures

 R8MDC R8M Proposed
Complex
Multipliers

180516
(100%)

60172
(33.3%)

34384
(19%)

Complex Adders 22243
(100%)

6289
(28.2%)

10808
(47.6%)

Memory Banks
47

(dual
port)

8
(dual port)

8
(single
port)

Memory Size
(40bits)

138326
(100%)

71672
(51.8%)

48744
(35.2%)

Reorder Buffer Size 69490
(100%)

69490
(100%)

0
(0%)

Total 410575
(100%)

207623
(50.5%)

93936
(22.9%)

Data Latency
(cycles) 360 872 1169

Throughput Rate
(clock rate is R) 8R 8R 8R

 77

Chapter 5

Chip Implementation of IEEE 802.16e
Receiver

This chapter will introduce the chip design flow for IEEE 802.16e baseband

receiver. The 802.16e baseband receiver is including a frequency divider, a

synchronization block, a FFT processor for FFT_dem block with 5 memory banks,

and a channel estimation block with FFT/IFFT processors for FFT_ch/IFFT_ch

blocks as shown in Fig. 2.5 and Fig. 2.6.

5.1 Design Flow

The 802.16e baseband receiver system is modeled in C language. For hardware

implementation, each component uses fixed-point simulation to have the least

performance decreasing as compared with the floating system model. After the word

length of each component is decided, the hardware implementation of each

component is modeled in Verilog language, called RTL design. Besides the

performance analysis, the RTL design of each component in Verilog is verified in

Verilog XL with the result generated by the model in C language, called RTL

verification. If the RTL verification is done, the RTL code is synthesized in synthesis

tool, Design Compiler, with suitable constrain, and we usually have timing overdesign

in this stage because the synthesis tool don’t have the real line delay. The gate-level

netlist generated by synthesis tool is verified with the result generated by RTL

verification in Verilog XL, called gate-level verification. APR (Automatic Place and

Route) tool, such as SOC Encounter, help us to implement the chip from gate-level

netlist and also help us to make sure the chip meet the layout design rule. The layout

 78

file (GDS) generated by APR tool is verified in Calibre by DRC (Design Rule Check)

and LVS (Layout versus Schematic). The post-layout simulation using gate-level

netlist generated by APR tool is used to verify the result as compared with gate-level

simulation. Usually, the chip has post transistor-level simulation before the chip is

taped out. However, the simulation time is too long if the chip has too many

transistors. The 802.16e baseband receiver has over 1 million gates and is too large to

simulate by post transistor-level simulation. Thus, we skip the simulation in this stage.

Finally, the chip is taped out.

Fig. 5.1 Cell based chip design flow

 79

5.2 Multi-Frequency Design

The 802.16e baseband receiver has two clock domains. One is 11.2 MHz for

achieving the required data rate to IEEE 802.16e. The other is 7 times of 11.2 MHz

which equals to 78.4 MHz. Since there are several combinational circuits between the

registers in different clock domain, we have to set the different timing constrain in

those path for the respected timing check. An example of two clock domains is shown

in Fig. 5.2, and the default timing check is shown in Fig. 5.3.

DFF
A1

DFF
A2

DFF
B1

DFF
B2

CLK_A CLK_A

CLK_B CLK_B

Comb. Logic

Fig. 5.2 Combination logic circuits between 2 clock domains

Fig. 5.3 Default timing check in 2 clock domains

 80

The frequency of CLK_A is 3 times of CLK_B, and the 2 different conditions of

timing check in different clock domains are shown in Fig. 5.3. For the upper case of

Fig. 5.3 (DFFA1 to DFFB2), the default timing check leads the timing constrain of

the combination circuits is limited in cycle of CLK_A. And, for the lower case of Fig.

5.3 (DFFB1 to DFFA2), the default timing check also leads the timing constrain of

the combination circuits is limited in cycle of CLK_A. However, in the lower case,

the expected timing constrain of the combination circuits usually is cycle of CLK_B

shown in Fig. 5.4. Therefore, we have to correct the default timing check by setting

the SDC (Synopsys Design Constrain) constrain in synthesis tool. The commands of

SDC constrain for changing the timing constrain from Fig. 5.3 to Fig. 5.4 are

“set_multicycle_path 3 – end – setup – from CLK_B – to CLK_A” and

“set_multicycle_path 2 –end –hold –from CLK_B –to CLK_A”.

Fig. 5.4 Expected timing constrain for DFFB1 to DFFA2

In our case, FFT_dem block gets the signal from synchronization block, and the

synchronization is working at the low clock frequency 11.2 MHz while the FFT_dem

block is working at the high clock frequency 78.4 MHz. Thus, we have to set the

commands for SDC constrain, too, and the commands are similar to the commands

mentioned before.

Since we have two clock domains, frequency divider is used in our baseband

receiver design. In synthesis stage, the frequency divider will introduce the clock

 81

skew, which should be fixed by APR tool if we synthesize the receiver with frequency

divider. Therefore, we separate the receiver into 2 parts, one is frequency divider, and

the other is circuits with 2 ideal clock input. The two parts of receiver are synthesized

individually, and combined in APR tool shown in Fig. 5.5. In addition, the gate-level

verification is verified the gate-level netlist of circuits without frequency divider, and

is simulated with 2 ideal clocks.

802.16e
Receiver

Circuits with 2
Ideal Clock Input

Frequency
Divider

Synthesis

Synthesis

Gate-Level
Netlist

Gate-Level
Netlist

APR Tool

Gate-Level
Simulation with

2 Ideal Clock

Fig. 5.5 Synthesis flow of chip with frequency divider

5.3 Chip Floor Plan

Since the 802.16e baseband receiver is a sequential system, the floor plan of the

baseband receiver is based on the sequential order of the receiver shown in Fig. 5.6.

From Fig. 5.6, the components of the receiver based on the sequential order are

planed from north to south of the whole chip.

As the result of APR, the chip size of the 802.16e baseband receiver is 3211 ×

3211 um2; however, the size of the chip is too large to piece together with other chips

in a shuttle since the shuttle size is 4000 × 4000 um2. In order to tape out with other

chips, a rectangular version of the receiver chip is used to replace the square version

shown in Fig. 5.7. The chip size of rectangular version is 3955 × 2755 um2 which is

large than that of square version but is more flexible to piece together with other chips

in a shuttle.

 82

Fig. 5.6 Floor plan of the 802.16e baseband receiver

Fig. 5.7 Rectangular version floor plan of the 802.16e baseband receiver

 83

5.4 Chip Summary

The chip summary is shown in Table 5-1. The square version is prepared to tape

out from CIC, and the rectangular version is directly taped out from UMC. The cell

library and PAD library is different between the two versions: square version’s library

is from Faraday, and rectangular version’s is from UMC. As the results shown in

Table 5-1, the square version’s working frequency can meet the system specification

while the rectangular version’s can not. In summary, the taped out version chip size is

3955×2755 um2, power consumption is 47.1 mW at 8.2/57.1 MHz, and is using UMC

90nm 1V CMOS process. Moreover, the area of two FFT/IFFT processors for

FFT_ch/IFFT_ch blocks in DF DF-based CE in the taped out chip is 1.711 mm2, and

the power consumption of that is 20.2 mW working at 57.1 MHz.

 84

Table 5-1 Chip summary

Item Specification
 Square Version Rectangular

Version
(taped out)

FFT_ch/IFFT_ch
Processors
(taped out)

Technology UMC 90nm
CMOS 1P9M
1V
(Cell/PAD
from Faraday)

UMC 90nm
CMOS 1P9M
1V
(Cell/PAD from
UMC)

UMC 90nm
CMOS 1P9M 1V
(Cell/PAD from
UMC)

Core 2411×2411 3144×1944
PAD Core 3057×3057 3799×2599 Area(um2)
Chip 3211×3211 3955×2755

1.711 mm2

Working Frequency 11.2/78.4 MHz 8.2/57.1 MHz 57.1 MHz
Power Consumption
(Simulation)

68.5 mW 47.1 mW 20.2 mW

Input 26 26
Output 66 66
Power/GND 66 68
Bias for I/O
PAD
(only for
PAD from
Faraday)

2 N/A
PAD

Total 160 160

N/A

 85

Chapter 6

Conclusion and Future Work

In this thesis, a FFT/IFFT processor with parallel-in-parallel-out in normal order

which is used in a DF DFT-based channel estimation block is proposed. A 802.16e

baseband receiver including this DF DFT-based channel estimation is taped out.

To design a FFT/IFFT processor with parallel-in-parallel-out in normal order, we

analyze different parallel-in-parallel-out FFT architecture, and try to design the

FFT/IFFT processor based on memory-based architecture. Memory allocation helps

us to design a FFT/IFFT processor with parallel-in-parallel-out in normal order, and

commutator design helps us to use single port memories to reduce the area of

memories. These two methods can also be applied to different specification of

parallel-in-parallel-out FFT processor. As the synthesis results, the proposed

1024-point FFT/IFFT processor can achieve the throughput rate up to 1.28 G

samples/sec and the execution time down to 7.3 us when working at 160 MHz. When

working at the system required 78.4 MHz, it consumes 21.7 mW with 155792 gates

(including memory) that occupy 0.545 mm2 by using 90 nm, 1V CMOS process.

A study of partial FFT for DF DFT-based channel estimation is also presented in

this thesis. The pruning algorithm with only a subset of input or output points can help

us to decrease the FFT processor hardware cost, and the multiple subsets of input or

output points help us to save more power in FFT computation. As the analysis, the

proposed partial FFT processor can reduce 75.1% of the memory size, 22.3% of the

complex multipliers, and 30% of the complex adders as compared with traditional

radix-2 SDF FFT architecture. Furthermore, with increasing the partial FFT control

 86

for the proposed partial FFT processor, the proposed partial FFT can reduce

maximum 65.3% of multiplication operations and 49.5% of addition operations,

which may save more power if the 8 valid output point’s indices have common bits.

In the future, since we only implement the FFT/IFFT processor with

parallel-in-parallel-out in normal order, a suitable FFT/IFFT processor for DF

DFT-based channel estimation have to keep on study, such as the FFT/IFFT processor

combining partial FFT algorithm and MIMO FFT concept.

 87

Reference

[1] R.W. Chang, ”Synthesis of Band-Limited Orthogonal Signals for Multichannel
Data Transmission”, Bell Syst. Tech. J., Vol.45, pp. 1775-1796, Dec. 1966.

[2] IEEE, Std. 802.16-2004: Air Interface for Fixed Broadband Wireless Access
Systems, 2004.

[3] IEEE, Std. 802.16e: Air Interface for Fixed and Mobile Broadband Wireless
Access Systems, 2005.

[4] M. Julia., F. G. Garcia, M. Jose, P. B., S. Zazo, “DFT-based channel estimation in
2D-pilot-symbol-aided OFDM wireless systems” IEEE Vehicular Technology
Conference, Vol. 2, pp. 810-814, May 2001.

[5] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data
rate wireless communication: Performance analysis and code construction,”
IEEE Trans. Inform. Theory, Vol. 44, No. 2, pp. 744–765, Mar 1998.

[6] IEEE Std. 802.16-2001 IEEE Standard for Local and Metropolitan area networks
Part 16: Air Interface for Fixed Broadband Wireless Access Systems.

[7] Y. Li, “Channel Estimation for OFDM Systems with Transmitter Diversity in
Mobile Wireless Channels,” IEEE J. Selected Areas in Commun., Vol. 17, pp.
461-471, Mar. 1999.

[8] Y. Li, “Simplified Channel Estimation for OFDM Systems With Multiple
Transmit Antennas,” IEEE Trans. Wireless Commun., Vol. 1, pp. 67-75, Jan.
2002.

[9] J-J V. D. Beek, O. Edfors, M. Sandell, S. K. Wilson and P. O. Brjesson, “On
channel estimation in OFDM systems,” Vehicular Technology Conf., pp.
815-819, 1995.

[10] M. L. Ku and C. C. Huang, “A Derivation on the Equivalence between Newton’s
Method and DF DFT-Based Method for Channel Estimation in OFDM Systems,”
submitted to IEEE Trans.Wireless Commun.

[11] Rabiner, L.R., and Gold, B. “Theory and application of digital signal processing”
(Prentice Hall, 1975).

[12] J. W. Cooley and J. W. Tukey, “An Algorithm for Machine Computation of
Complex Fourier Series,” Math. Computation, Vol. 19, pp. 297-301, April 1965.

[13] S. He and M. Torkelson, “A New Approach to Pipeline FFT Processor,” Parallel
Processing Symposium, pp. 766-770, 1996.

[14] S. He and M. Torkelson, “Designing Pipeline FFT Processor for OFDM (de)
Modulation,” URSI International Symposium on Signals, Systems and
Electronics, pp. 257-262, 1998.

 88

[15] E. H. Wold and A. M. Despain, “Pipeline and Parallel-Pipeline FFT Processors
for VLSI Implementation,” IEEE Transactions on Computers, Vol. 33 No. 5, pp.
414-426, May 1984.

[16] S. Magar, S. Shen, G. Luikuo, M. Fleming, and R. Aguilar, “An application
specific DSP chip set for 100 MHz data rates,” in Proc. Int. Conf. Acoustics,
Speech, and Signal Processing, Vol. 4, pp. 1989-1992, Apr. 1988.

[17] B. M. Bass, “A low-power, high-performance, 1024-point FFT processor,” IEEE
J. Solid-State Circuits, Vol. 34, No. 3, pp. 380–387, Mar. 1999.

[18] Y. W. Lin, H. Y. Liu, and C. Y. Lee, “A 1-GS/s FFT/IFFT Processor for UWB
Applications,” IEEE journal of solid-state circuits, Vol. 40, No. 8, pp. 1726-1735,
Aug 2005.

[19] T. Sansaloni, A. Pe´rez-Pascual, V. Torres and J. Valls, “Efficient pipeline FFT
processors for WLAN MIMO-OFDM systems,” Electronics letters 15th, Vol. 41,
No. 19, Sep 2005.

[20] L. Jia, Y. Gao, J. Isoaho, and H. Tenhunen, “A new VLSI-oriented FFT algorithm
and implement,” in Proc. 11th Annu. IEEE Int. ASIC Conf., pp. 337–341, Sep
1998.

[21] L. G. Johnson, “Conflict Free Memory Addressing for Dedicated FFT
Hardware,” IEEE Transactions on Circuit and System-II: Analog and Digital
Signal Processing, Vol. 39, No.5, pp. 312-316, May 1992.

[22] Y. Ma, “An Effective Memory Addressing Scheme for FFT Processors,” IEEE
Transactions on Signal Processing, Vol. 47, Issue: 3, pp. 907-911, March 1999.

[23] H. V. Sorensen, “Efficient Computation of the DFT with Only a Subset of Input
or Output Points,” IEEE Transactions on signal processing, Vol. 41, No. 3, pp.
1184-1200, March 1993.

[24] Y. W. Lin, H. Y. Liu, and C. Y. Lee, “A Dynamic Scaling FFT Processor for
DVB-T Applications,” IEEE Journal of solid-state circuits, Vol. 39, No. 11, pp.
2005-2013, November 2004.

[25] J. D. Markel, “FFT pruning,” IEEE Trans. Audio Electroacoust., Vol. 19, No. 4,
pp. 305-311, Dec. 1971.

[26] D. P. Skinner, “Pruning the decimation in-time FFT algorithm,” IEEE Trans.
Acoust., Speech, Signal Processing, Vol. 24, No. 2, pp. 193-194, Apr. 1976.

[27] H. V. Sorensen, “Efficient Computation of the DFT with Only a Subset,” IEEE
Transaction on signal processing, Vol. 41, No. 3, March 1993.

[28] C. M. Chen, Y. H. Huang, “Partial Cached-FFT Algorithm for OFDMA
Communications,” IEEE TENCON, Oct 2007.

[29] L. Jia, Y. Gao, J. Isoaho and H. Tenhunen, “A New VLSI-Oriented FFT
Algorithm and Implementation”, IEEE International ASIC Conference, pp.

 89

337-341, Sep 1998.
[30] Xilinx Corporation, “Fast Fourier Transform,” LogiCore v3.1, Nov 2004.

