ARBAI RS £
A EL GG

Design of .FFT Processor with

Parallel-l n-Parallel-Out in Normal Order

Pl vt
fdFe v gl

7T Ty R g ik e A E
2
Design of FFT Processor with

Parallel-In-Parallel-Out in Normal Order

Ay A LR Student : Hsiang-Sheng Hu

hERE PR gL Advisor : Dr. Shyh-Jye Jou

EARREIET A
T A AR E R AT L 5T
AL~
A Thesis

Submitted to Department of Electronics Engineering &
Institute of Electronics
College of ‘El ectrical and-Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
In
Electronics Engineering
July 2006
Hsinchu, Taiwan, Republic of China

P ER R4 Lo &L 3

R A 2 R A g 2 R R

23

x{ﬂ

o+
|

b BEgE PR gl

=2 ~ &

4.4

o S S e Y

Ee

PRV R G T T T G e o R B
B 6 SR T S e OMAN) AR 3% e B e i RIS 20 A kv d A
LBl R e e SRR e R SR B S Ll
P S0 T Peid 2 R R R R B e B L 8 g AR g
PAFRRAZ R ERY ARG RS BE RS T T2 T 0 e 2
EpRp o e h S B2 R I ol R R e B
Ao - BE g oo 802.16e o3k s AT 2 F oy &Rl

(DFT-based channel estimation) s+ L {7 "'E}%ﬁ%l »E LT “'E}%ﬁ%l Az Poig & =

zm

{

FRE RS BOEHER 0 R 2 T Rl Y i &2 F
sk g Foo Sl - BT AR N Rl PR 1 2 F % (Partial FFT)
BHR o Bt AT RN DEEE 2 EHHE AT ES FRN- B 2x1

STBC/OFDMA AAFIZ cF ¢ o p B = FRFAIDFF LT 5B 1.28C R A/F

FALE o

=k

DR AR T AR 1 EAES 160 MHZ T H TR u BT EF 7.3 s
BT ARL TS T84 Mz T > - FEETEFLAF S 217 nW o
G ff 5 155792 BAEM #(@ 7 e fM) > €% 90 3 4 1V CMOS Az T - H & 4

% 0.545 mm’ o

Design of FFT Processor with

Parallel-In-Parallel-Out in Normal Order

Student : Hsiang-Sheng Hu Advisor : Dr. Shyh-Jye Jou

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

ABSTRACT

In order to design a parallel-in-parallel-out: Fast Fourier Transform (FFT)
processor suitable for channel estimation in a highly mobile wireless metropolitan
area network (WMAN) baseband receiver, this thesis studies various paralle-in-
parallel-out FFT design techniques from hardware architecture level. Also, in order to
reduce the control complexity.and buffer overhead for data stream-in and stream-out
of the FFT processor, this ithesis proposes a FET processor with parallel-in-
parallel-out in normal order to meet the input data and output data requirement for the
systems requirement. Finally, this thesis proposes a 1024-point FFT processor
architecture with parallel-in-parallel-out in normal order, which can meet the needs of
DFT-based channel estimation in 802.16e communication system. Furthermore,
according to the specia requirement of the DFT-based channel estimation, the thesis
proposes the partial FFT processor architecture suitable for the DFT-based channel
estimation. The FFT/IFFT processor is designed and is implemented together with a

2x1 STBC/OFDMA baseband receiver. The proposed 1024-point FFT/IFFT processor

can achieve the throughput rate up to 1.28 G samples/sec and the execution time
down to 7.3 us when working at 160 MHz. When working at the system required 78.4
MHz, it consumes 21.7 mW with 155792 gates (including memory) that occupy 0.545

mm? by using 90 nm, 1V CMOS process.

= W\
¢

4\
"

FAARR Sy ERR v RS S Rl RA AT e
o BA A By PR XY AL ARI I EARL O ANEI A L
£ ok AR Hrmomo e cnfld A R HFanfI ARy b F RE

B MERAXFIHRT T F Y REL MR R EAAEAZF T2 6 i

Content

(@Xg7=10] (= gt RN 1 011 0o [UTox 1 oo OSSR 1
00 = ok o 1 o S 1

1.2 TheSISOrganiZatiONcc.cceeiueeiieieesieeriesee st eee st ae e st ne e e sneennas 2
Chapter 2 FFT Application in OFDM Communication System...........ccccceevevvennenen. 5
2.1 ConCEPL Of OFDM ...ttt 5

2.2 Introduction Of [EEE 802.16€..........ccccerueierieiinesenieseeee e 6

2.3 DFT-Based Channel EStMation..........ccoviirererierienenese s s 8

2.4 System SPECITICALION.cceeieecieceee e 9
2.4.1 Specification of FFT Processor on Demodulation Path...................... 11

2.4.2 Specification of FFT Processor in Channel Estimation...................... 13

Chapter 3 FFT Algorithms and Architectures..... 5 iv..ocvecveeveee e 15
3.1 Concept of FFT AIgOrthms............ccoo e 15
3.1.1 Radix=2 DIF FFT AlQOrithm.........cco. i sl 16

3.2 Concept Of FET ArChItECIUNES. ..ot ieieeeeeitdese i e e aneste e eeeneesreeneesseenseeneas 18
3.2.1 Pipeline-Based FFT ArChiteCtUrecoovhu.vove feeeeifit e 18

3.2.1.1 Radix-r Multi-Path Delay Commutator Architecture....................... 20

3.2.1.2 Radix-r Single-Path Delay Feedback Architecture..............c..c....... 23
3.2.2Memory-Based FFT ArchiteCture..............ccccooveeieir e 26

3.3 Comparison of Different FEF Architecture...................cccccmianneeneccescennenen. 28

3.4 Partial FET DeSIgN . k. it osmasssmensmsmsssssmssssmssssans <o esssdanss saaseensessessessessensens 29
3.4.1 Coneept of Partial FET ... s i 29

3.4.2 DFEwith only aSubset of Input or Output Points.................ccccee.eee. 29

3.4.3 DFT with Multiple Subsets of Output POINtS...........cccceveveeieeiiennnnns 32

3.4.4 DFT with"Multiple Subsets.ofinput and Output Points..................... 35

3.4.5 Partial FFT Processor Design in'DFT-Based Channel Estimation..... 38

.5 SUMMI@IY ..t sb e sbe e sbe e snnee s 42
Chapter 4 Parallel-In-Parallel-Out FFT/IFFT Processor Architecture Design......... 43
4.1 System Requirement of the FFT/IFFT ProCessorccccvveveeeeseesieeeesieenns 43

4.2 Architecture of the FFT/IFFT ProCESSOIcccuiirirerienienieseeeesiesee s 44

A3 FFT SUb_ MOAUIE DESIQN.....cceeeeeceeceeete et 46
4.3.1 Radix-2/4/8 SDF Processing Elementcccccevvveieveeveecieceeceenn, 46

4.3.2 ComplexX MUILIPHENooiveeiece e 49
A.3.3ROM TaDIE ..o e 54
4.3.4MemMOry AlLOCALION.......cceieeieee et 55

4.3.5 COMMULBLOr DESIGN....ccuveivieieeie ettt s 57

4.3.6 MixXed FFT/IFFT PrOCESSONcccecuiiiieieeieiesiesiesiesiesieees e 62

Vi

4.3.7 Fixed-Point Block Design with Dynamic Scaling..........ccccecevvennenen. 64

4.4 The FFT/IFFT Processor Fixed Point Simulation............ccccovvvvenineeicnennns 66
4.4.1 Fixed Point Simulation for Constant Multiplier in Radix-2/4/8 PE ...67

4.4.2 Fixed Point Simulation for Twiddle Factorcccevvevvnevencncnnenne 68

4.4.3 Fixed Point Simulation for FFT/IFFT Processor.........cccocvvvveeeenenne. 69

4.5 Hardware Implementation RESUILc.coeeiieiieiicie e 71
4.5.1 Comparison for the FFT Processor Design FIOWccccovevveiecneenee. 71

4.5.2 Comparison of Separated Twiddle Factor ROMcccccevveeeenenee. 73

T IS 11010 0= VRO SRRR 75
Chapter 5 Chip Implementation of IEEE 802.16e ReCaIVErccccccvevieveerieennene. 77
5.1 DESIGN FIOW ...ttt nre s 77

5.2 MUIti-FrequenCy DESIONc.cccuviieiiee ettt 79

5.3 Chip Floor Plan.......... i i i 81

5.4 Chip SUMIMAY . il i ctie e s e snnaaaeaia e e e et e steete e e sreeee e e ereenes 83
Chapter 6 Conclusion and FUture WOorkcc.o.cioiisssfit e 85
Reference........ o NS . S DR . L 87

Vii

List of Tables

Table 2-1 Comparisons of |EEE 802.16 standards...........cccceeveeveeieieenieecee e 8
Table 2-2 System specification of IEEE 802.16e transceiver system...........ccccceeueennen. 10
Table 3-1 Comparison of different FFT architecture..........ccccoevveeeiecce e 28
Table 3-2 Control counter and function of FFT with partial output points.................. 34
Table 3-3 Control counter and function of FFT with partial input and output points..36
Table 3-4 Comparison with Partial FFT and Conventional FFTcccocveiveienen. 41
Table 3-5 Reduced operations of partial FFT with radix-2 SDF architecture.............. 42
Table 4-1 FFT/IFFT System reqQUIreMENt..........c.ooeevueeieeieesie e 44
Table 4-2 Twiddle factors value for different PE in different stages...........cccccveuenee. 54
Table 4-3 Address of PE-based TW ROM ineach stage.......cccevvvvvevivecieveesecee e, 55
Table 4-4 Read or write address for, the processing'elements in each stage................. 58
Table 4-5 Scale down block parameter for FFT/IFFT mode...............cccocoeveeceeeenen. 66
Table 4-6 System required SONR for FFT/IFFT proCessor it ..oceeeeveecieceesreene. 67
Table 4-7 Comparison of different version FET PrOCESSOr ... couurvistervereeereeeeeeeenreennn 72
Table 4-8 Comparison.of several high throughput FFT. architectures......................... 75
Table 4-9 Comparison of hardware cost for different architectures...............cco......... 76
Table 5-1 ChipSUMIMEIYcceieeieeaeeaeesneeinesseedinsaihiesssssnnsssnsssesssessasifilhresreessesseeseenees 84

viii

List of Figures

Fig. 2.1 Bandwidth allocation for sub-cannelsin FDM systemcccccceevecevieiieennnn, 5
Fig. 2.2 Bandwidth allocation for sub-channelsin OFDM system...........ccccccceveevieennnne 6
Fig. 2.3 Basic block diagram of an OFDM transceiver System..........cccccceeeevevieesieennnn, 6
Fig. 2.4 Block diagram of DFT-based channel estimationccccecevvveveeieviecieeeans 9
Fig. 2.5 Block diagram of baseband transceiver in IEEE 802.16€..............ccccceeevveueennen. 9
Fig. 2.6 Block diagram of decision feedback DFT-based channel estimation............. 10
Fig. 2.7 FFT Processor with 5 shared MemONi€Sccceecuveeeieeie e 11
Fig. 2.8 Time chart for the 5 memory banks............ccccevveieiiere e 12
Fig. 2.9 FFT processor in decision feedback DFT-based channel estimation.............. 13
Fig. 3.1 Radix-2 DIF FFT algorithm architecture............cccccvevevicieciecececeeseee 17
Fig. 3.2 Radix-2 butterfly modul€l.:. ...l i 18
Fig. 3.3 Vertical projectiomimapping of 8-point radix-2 DIF FFTccocovevvenenee. 19
Fig. 3.4 64-point FFT:with RAMDC architecture........ oo it 21
Fig. 3.5 Modified input stage and output stage of 64-point RAMDC architecture......21
Fig. 3.6 512-point FET with RBMDC architecture..... ..ot ... futeeeifinte e 22
Fig. 3.7 Modified input stage and output stage of 512-point R8BMDC architecture....23
Fig. 3.8 64-point FFT 'with radix-2 SDF architecture:........cccoooooooeee il 24
Fig. 3.9 64-point FFT with R8SDF architecture.................cc.ocooeeiiiiee 25
Fig. 3.10 64-point FFT with R2°SDF.ArChiteCturev.eesbesrtiesseeeseereeeeeeseneene 25
Fig. 3.11 8-point'FFT radix-2/4/8 SDE arChIteCtUre ...vveuese v cvveveesdeesiant e 26
Fig. 3.12 Radix-8 memory-hased:(R8M) FFT-architecture......it occureveceeceeieceee 27
Fig. 3.13 Markel’s pruned 16-point FFT with a subset of nhonzera'input (L=2).......... 30
Fig. 3.14 Skinner’s pruned 16-point FFT with a subset.of nonzero input (L=2)......... 31
Fig. 3.15 Markel’s pruned 16-point FFT.with-asubset of output points (L=2)........... 32
Fig. 3.16 Skinner’s pruned 16-point FET with a'subset of output points (L=2).......... 32
Fig. 3.17 8-point DFT with butterfly function of each butterfly unit output point......33
Fig. 3.18 Example of 8-point DFT with multiple subsets of output points................. 35
Fig. 3.19 Example of 8-point DFT with multiple subsets of input and output points.37
Fig. 3.20 System specification for the partial FFT/IFFT processor.........ccccocvveveeeenee. 38
Fig. 3.21 Pipeline-based partial FFT/IFFT ProCeSSOr........cccoveiveeeesieeieseesaeesee e 39
Fig. 3.22 Partial FFT/IFFT processor in IFFT mode........cccovevveeeceeciece e 40
Fig. 3.23 Fig. 3.24 Partial FFT/IFFT processor in FFT mode..........ccccovvevviieviecinee. 40
Fig. 4.1 Decision feedback DFT-based channel estimation block diagram................. 43
Fig. 4.2 The proposed 1024-point FFT/IFFT processor architecture.............ccccueneee. 45
Fig. 4.3 FFT/IFFT Processing StIUCLUE.........ccueeiveeiecieesieeieseesre e sreesae e sae e 46
Fig. 4.4 Radix-2/4/8 SDF processing element...........ccccvevieieece e 46

Fig. 4.5 Radix-2/4/8 SDF with DIT algorithmccccccovieiieeee e 47

Fig. 4.6 Processing elements of radix-2/4/8 SDF with DIT algorithm........................ 48
Fig. 4.7 Reorder buffer input and output timing flow graph...........cccccevveiviievecenee. 49
Fig. 4.8 Architecture of multiplication Of -j.........cccceeviieiieiie s 50
Fig. 4.9 Architecture of Multiplication Of W ..o 50
Fig. 4.10 Architecture of multiplication by Wg" with CSA tree.........oovvvvveeveerennn. 51
Fig. 4.11 Delay optimized architecture of multiplication by Wg" with CSA tree........ 52
Fig. 4.12 Architecture of complex multiplication............cccccceeveeveiieviere e 53
Fig. 4.13 Modified architecture of complex multiplication............cccccevvvveeieeieeneenne. 53
Fig. 4.14 System requirement for multi-input and multi-output in normal order........ 56
Fig. 4.15 Memory alocation of the FFT/IFFT input data...........ccccceveeveeieceeseceee 57
Fig. 4.16 Memories read write operations for different PEinstage 1.........cccccveue.e. 58
Fig. 4.17 Memories read write.operationsfor different PE in stage 2..........cccceeue.e. 59
Fig. 4.18 Memories read writeoperations for different PEin stage 3...........cccceene.e. 60
Fig. 4.19 State diagram.Of FFET/IFFT ProCESSOr i ceeassiiti e cveeieeeesneeseeeee e 62
Fig. 4.20 The FFT/IFFT processor.in the DF DFT-based CE block.diagram.............. 62
Fig. 4.21 Modified processing elementswith eonjugate operation ii.:..............ccoe.e...e. 63
Fig. 4.22 System required SONR simulation model.. ..ot beveeiae e 67
Fig. 4.23 SQNR versus constant multiplier truncate bits...............cccccileeeveececnecneenn, 68
Fig. 4.24 SONR versus word length of twiddlefactorcccc .l 68
Fig. 4.25 SQNR versus internal worddength in IFFT mode...........ccmueiecnececnee 70
Fig. 4.26 SQNRwversus internal word length in EET maode......... ot 70
Fig. 4.27 Area comparisons for different versions of-FFT processorcce....... 71
Fig. 4.28 Data latency comparisons for different versions of ‘FFT processor 72
Fig. 4.29 Area comparison of .separated twiddle factor ROM-...............ccocovevvennrnne. 73
Fig. 5.1 Cell based chip design flow s e 78
Fig. 5.2 Combination logic circuits between 2 clock domains...........ccccccccveeeveeenee. 79
Fig. 5.3 Default timing check in 2 clock domains..........ccccecveeeceecieceese e 79
Fig. 5.4 Expected timing constrain for DFFBLt0 DFFA2cccocvevevie v 80
Fig. 5.5 Synthesis flow of chip with frequency divider..........cccooovvevieiieiiciece e 81
Fig. 5.6 Floor plan of the 802.16€e baseband reCeiVErcccoveeeieeveiceeseese e 82
Fig. 5.7 Rectangular version floor plan of the 802.16e baseband receiver.................. 82

Chapter 1

| ntroduction

1.1 Background

In many digital signal processing applications, especialy in communication
systems, Fast Fourier Transform (FFT) becomes more important nowadays.
Orthogonal frequency division multiplexing (OFDM)stechnology [1] is used in the
most modern wired Jor; wireless communication systems, such as ADSL, VDSL,
802.11a, DVB-T,7802.16-2004[2], 802.16e [3], which needs'a FFT processor to
transform the data between time domain and ‘frequency domain; however, the FFT
processor is the critical component in many OFDM based communication systems
because the FFT. processor’s hardware complexity is too high. For this reason, many
FFT processors are designed for OFDM based communication systems to make the
FFT processor become efficiency for system implementation.

As the result of growing-\/L Sl technology, improved modulation and channel
estimation can be implemented with reasomable cost. OFDM is an improved
modulation technique that can provide high data rate, immunity to delay spread,
resistance to frequency selective fading, and efficient bandwidth usage. In wireless
communication, OFDM also reduces inter-symbol-interference (1Sl) and inter-carrier
interference (ICl) caused by multipath effect. Also the Discrete Fourier Transform
(DFT)-based channel estimation [4] with space time block code (STBC) [5] is
proposed to do channel estimation in OFDM wireless communication system, which

is effective in high mobility channel environment. In these applications, FFT plays an

important role to decide the system performance and hardware cost; thus, a high
throughput FFT processor with low hardware cost is an important module to make
more advanced modulation and channel estimation algorithm to be implemented on
chip reasonable.

In order to design a high throughput FFT and also speed up the operations ahead
or behind the FFT processor, a parallel-in-parallel-out FFT will be introduced in this
thesis; also a 1024-point parallel-in-parallel-out in normal order FFT processor design

example used in DFT-based channel estimation in 802.16e will be proposed.

1.2 Thesis Organization

In this thesisj-FFT/IFET designs for robust channel estimation of high-mobility
STBC/OFDM A"eommuni cation System are proposed. System simulation, architecture
and circuit design, and implementation of FFT/IFFT processor with baseband of
802.16e are carried output in thesis. IEEE 802.16e, DFT-based channel estimation,
and the system block we used, will beintroduced-in-Chapter 2. Since the system block
we used including two kinds of FFT/IFFT processor design, we also introduce the
system requirement for different kind of FFT/IFET processor: one for OFDMA
demodulation, the other for DFT-based channel estimation. The system requirement of
FFT processor for 802.16e OFDMA demodulation has no difference with other
OFDM communication, thus, the thesis will introduce the conventional FFT processor
we used in Chapter 2. Shared memory concept is used between FFT processor, used
for OFDMA demodulation, and channel estimation. The requirement of FFT/IFFT
processor used in DFT-based channel estimation is different from the conventional
FFT processor by two aspects. One aspect is parallel-in-parallel-out of data and the
other aspect is a FFT processor with several zero value input or several valid output,

called partial FFT processor. The thesis focus on the FFT/IFFT processor hardware

2

design for channel estimation with parallel-in-parallel-out in normal order, and then
the concept of partial FFT processor design will be demonstrated.

Investigation of the conventiona FFT agorithm and various
parallel-in-parallel-out FFT architectures is presented in Chapter 3. The conventional
high throughput FFT processors usualy use a pipeline-based FFT architecture which
provide high throughput but also has high hardware cost. Memory-based FFT
architecture has the advantage of low hardware cost, and it can also provide high
throughput by paralel-in-paralel-out with multi-partitioned memories. The
comparisons among the different parallel-in-parallel-out FFT architectures are also
carried out in Chapter. 3. The comparison results are helpful to FFT processor design
in our system. Atithe end of Chapter 3, concept of partial FFT processor design will
be introduced to solve another goa of FET processor for DFT-based channel
estimation.

The architecture design of FET processor with parallel-in-parallel-out in normal
order will be ‘proposed in Chapter—4=-A=novel=memory . alocation method for
parallel-in-parallel-out in normal are proposed in this chapter. Designs of processing
elements, memory allocation; commutator, scale down bloek, and coefficient ROM
table for the proposed FFT processor will be introduced, and considered as the key
contribution of thisthesis. In the end of Chapter 4, comparisons are carried out for the
hardware implement result with other FFT processor with parallel-in-parallel-out in
normal order.

Backend design flow for the chip of 802.16e receiver will be introduced in
Chapter 5. In order to tape out the chip, two versions of chip implementation results
are presented, one for UMC shuttle, the other for CIC. The chip floor plan and design
flow will be presented in Chapter 5.

In the end of the thesis, the conclusion future works will be presented in Chapter

3

Chapter 2

FFT Application in OFDM
Communication System

2.1 Concept of OFDM

Orthogonal Frequency Division Multiplexing (OFDM) is based on frequency
divison multiplexing (FBM).: FDM transates several message signals to different

spectral locations. An‘example of bandwidth allocation of FDM.is shown in Fig. 2.1.

Cl SC2 . SC3 SC4= SCS5° SCo6 SC7 SC.8

NANAEPEN

Frequency

Fig. 2.1.Bandwidth@location for sub-cannelsin FDM system
FDM technique keeps all*'sub-channels away from overlapping by guard bands to
against the adjacent sub-channels producing inter-channel interference (I1CI); however,
guard bands waste the bandwidth efficiency, which is important in communication
system, because it is not used to carry any message signals. OFDM uses orthogonal
sub-carriers to overlap the sub-channels to carry more message signals in the same

bandwidth than FDM as shown in Fig. 2.2.

SC.2 SC.4 SC.6 SC.8
sc.1lsc.3lsc.5lsc.7l
VYVYYVYY

Bandwidth Saving

Frequency
Fig. 2.2 Bandwidth allocation for sub-channelsin OFDM system
A basic block diagram of OFDM system is shown in Fig. 2.3. Fig. 2.3 shows the
transmitter in OFDM system "need. IFFT module to*modulate the message signal,
caled OFDM modulation, and the receiver also need FET module for OFDM

de-modulation; thuas, FFT processoris akey block in OFDM transceiver system.

Dataln : Signal t :ﬁ Guard U

- P | g o | iFer [l s B ineval | Dia > P
M apper ; Converter —l

o . Insertion
Channel
Data Out >u Signd PE Guard Down J
<« SP|: De- +| Equalizer [i | FFT |: | S/P [« Interval [« A/D [«
Mapper Removal Converter
| VPP e -« o

Fig. 2.3 Basic block diagram of an OFDM transceiver system

2.2 Introduction of | EEE 802.16e

|IEEE 802.16 is a broadband wireless access (BWA) standard. The first standard
of IEEE 802.16 approved in December 2001 called IEEE 802.16-2001 [6]. It
delivered a standard, which transmits in 10-66 GHz with only a line-of-sight (LOS)
capability, used in Wireless Metropolitan Area Networks (WiMAN). It uses a single
carrier (SC) physical (PHY) standard. IEEE 802.16a is a extension of IEEE

802.16-2001. It transmitsin 2-11 GHz with both LOS and none-light-of-sight (NLOS),

6

and less distortion by rain than IEEE 802.16-2001. |IEEE 802.16-2004 (also called
IEEE 802.16d) is a fixed broadband wireless access (BWA) standard, which
combines both of IEEE 802.16-2001 and |EEE 802.16a standards. |EEE 802.16-2004
describes more detail for media access control layer (MAC) and PHY in 2-66 GHz. It
supports multiple physical layer (PHY) specifications, such as WiMAN-SC,
WiMAN-OFDM, WiMAN-OFDMA, and WIMAN-SCa, operation in different
frequency. For operation frequency in 10-66 GHz, the WiMAN-SC PHY, based on
single carrier, is specified; for operation frequency below 11 GHz, the IEEE
802.16-2004 transmitting in. NLOS provides three alternative PHY specifications:
WIMAN-OFDM (based on orthogonal frequency division multiplexing),
WiMAN-OFDMA+ (based; on —orthogonal frequency division. multiple access),
WiMAN-SCa (based on single carrier). |EEE 802.:16e, which iis a fixed and mobile
broadband wireless access (BWA) standard, is an-enhancement of IEEE 802.16-2004
standard. It fills'the gap between very high'data rate |ocal area network and very high
mobility cellular system. -An. =extension==PHY = layer . specification called
scalable-OFDMA“(SOFDMA), based on WIMAN-OFDMA, provide different FFT
Size for OFDMA, such as 128, 512, 1024, 2048 points. Table 2-1 is the summary of

|EEE 802.16-2001, |EEE 802.16a, and | EEE 802.16e.

Table 2-1 Comparisons of |EEE 802.16 standards

|EEE 802.16-2001 | IEEE 802.16a |EEE 802.16e

10-66 GHz 2-11 GHz 2-6 GHz

|| Channel Bandwidth | 20, 25, 286MHz | 15t020MHz | 1.5t0 20 MHz

Single Carrier OFDM/OFDMA OFDM/SOFDMA

N/A 256(0FDM) 256(0OFDM)
2048(OFDMA) | 128/512/1024/2048
(SOFDMA)

Modulation QPSK, 16QAM, | QPSK, 16QAM, | QPSK, 16QAM,

64QAM 64QAM 64QAM

Bit Rate 32-134 Mbps 75 Mbps (20| 15 Mbps (5 MH2)
(28 MH2) MHZz)

Channel Conditions | LOS Non-LOS Non-LOS

Typical Cell Radius [12-5 Km 7-10 Km, max 507 2-5Km
Km

Application Fixed Fixed and portable /| Fixed and mobile

2.3 DFT-Based Channel Estimation

Channel estimation in econventional OFDM system is a simple one-tap equalizer
since the channel gain varies.slowly between each adjacent OFDM symbol. However,
in the mobile wireless communication environment, such as the channel in IEEE
802.16e, the channel gain varies rapidly-between each'adjacent OFDM symbol, so a
one-tap equalizer seems not suitable for the time-varying channel environment. The
one-tap equalizer can be realized as a least square (LS) channel estimator, and it has
low hardware complexity but low performance than minimum-mean-sgquare-error
(MMSE) estimator. MMSE estimator has better performance but the hardware
complexity is too high. DFT-based channel estimation [7-9] is presented to combine
the LS and MMSE estimator, and it reduces the hardware complexity of MMSE
estimator. A ssmple block diagram of DFT-based channel estimation is shown in Fig.

2.4. R(k) is the received data in sub-carrier k after OFDM demodulation, X (k) is the

decision data, which is determined by the latest OFDM symbol channel estimator, and

H(k) isthe channel estimator used in next OFDM symbol.

R(0) —)é—»

X(N-1)

X(0)

R(N-1)

Y

IFFT

Y

X

Y

0 —>»

0 —>

Y

FFT

—» H(0)

> H(N-1)

Fig. 2.4 Block diagram of DFT-based channel estimation

DFT-based channel sestimation can provide more ;accurate channel gain with

lower hardware complexity than the original MMSE estimator. However, it needs

both IFFT blockgand FFT block to/implement the a gorithm. Thus, a suitable FFT or

IFFT processor.. design can-reduce the hardware cost of ' DET-based channel

estimation.

2.4 System-Specification

For mobile WMAN. baseband transceiver using -standard IEEE 802.16e, we

proposed a baseband transceiver [10]. A simply-block diagram of the 2x1 multiple-

input-single-output (M1SO) IEEE 802.16e OFDM system is shown in Fig. 2.5. For

chip implementation, we only implement the receiver part of Fig. 2.5. The key system

specifications are listed in Table 2-2.

Data In
—>

Space-time
Encoding

.
~ L
IFFT

IFFT

Synchronization

-)[FFT_dem

- Data Out
Space-time

Decoding

A

Channel
Estimation

Fig. 2.5 Block diagram of baseband transceiver in IEEE 802.16e

Table 2-2 System specification of |EEE 802.16e transceiver system

Items Specification
Bandwidth 10 MHz
|| PHY Layer Specification | WiMAN-SOFDMA
FFT Size 1024

Sample Rate 11.2 MHz
Guard Interval 1/8
Congtellation QPSK, 16QAM
OFDM Symbol Time 1029 us

The channel estimation block is a decision feedback (DF) DFT-based channel
estimation [10], which combines'the channel estimnation and data detection as shown
in Fig. 2.6. The system requirement for channel estimation'will be introduced in the

following sections:

Data In)
IFFT

Preamble Path Selection

Match

Channel
Estimator

Inverse
Hessian Matrix
Calculation

_\
4 N
FFT Channel
_ch Estimator | _
L) Modification J ™~

™

Gradient
Estimator

Search Direction
Estimator
Calculation

it
) b

—-; (STBC)

Decoder

A A

4 4
Data Out

Fig. 2.6 Block diagram of decision feedback DFT-based channel estimation

There are two kinds of FFT processor in the receiver part, FFT_dem located of
the synchronization block called OFDM demodulator. FFT_ch and IFFT_ch blocks
are required in channel estimation block. The following sections will introduce the

system specifications of these two kinds of FFT processor.

10

2.4.1 Specification of FFT Processor on Demodulation Path

The FFT_dem processor in Fig. 2.5 receives the data from synchronization block,
and passes the data to channel estimation and space-time decoding. The input data
format of FFT processor is like that in other OFDM communication system. However,
the output ports have to buffer 2 OFDM symbol since we use 2x1 MISO system with
STBC coding and DF DFT-based channel estimation. For this reason, we design a

conventional memory-based FFT processor [11] with 5 memory banks shown in Fig.

2.7.
MEM_0_0 MEM_0_1 —y» CEO_rd
FFT
SYN_wr —
A
\ 4
MEM_1_0 MEM_1_1 MEM 1.2 CE1 rd

Fig. 2.7 FFET Processor with 5.shared memories

SYN_wr is the data from synchronization block, and only one of the memory
banks would be written by synchronization block in an OFDM symbol time. Then, the
written memory bank would be used to do FFT by the FFT processor. In the same
time, the synchronization block is writing the data to another memory bank. After the
two OFDM symbols in a STBC time slot have been calculate by FFT processor, the
memories, which stored the FFT calculation result of this two OFDM symbols, would
be read from channel estimation, called CE_rd, in two OFDM symbol time.

The time chart of 5 memory banks is shown in Fig. 2.8. At the first preamble

11

symbol, the data from synchronization block are written to MEM_1 0. At the second
and the third symbols, the data from synchronization block are written to MEM_0 O
and MEM _1 1 whilethe datain MEM_1 0 are calculated by FFT processor and read
by channel estimation. Furthermore, the memory operations for OFDM symbol index
12 is the same as index O, thus the memory operations of 5 memory banks are

repeated every 12 OFDM symbols.

OFDM Symbol Index 0(Preamble) 1 2
Syn_wr to MEM_X MEM_1_0 MEM_0_0 MEM_1 1
— e e ==
MEM to do FFT MEM_1_0 MEM_0_0 MEM_1_1
<« «— «—
CE1_rd from MEM_X MEM_1_1 MEM 1 0
CEO_rd from MEM_X MEM_0_1 MEM 0 2
OFDM Symbol Index 3 4 5
Syn_wr to MEM_X MEM_0.1 MEM_1 0 MEM_0_2
— e e b
MEM to do FFT MEMZ0_1 MEM_1_0 MEM_0_2
> — «—> «—
CE1_rd from MEM_X MEM 1°1 MEM_1 0
CEO_rd from MEM_X MEM_0_0 MEM_0_1
OFDM Symbol Index 6 7 8
Syn_wr to MEM_X MEM_1_1 MEM_0_0 MEM_1_0
- L —_— e e e pa
MEM to do FFT MEM_1 1 MEM_0_O MEM_1_0
> — «— «—
CE1_rd from MEM_X MEM 1 0 MEM_1 1
CEO_rd from MEM_X MEM_0_1 MEM_0Q_2
OFDM Symbol Index 9 10 1
Syn_wr to MEM_X MEM_ 0.1 MEM_1 1 MEM_0_2
— e e e
MEM to do FFT MEM-0 1 MEM_1_1 MEM_0_2
> «—> «—> «—
CE1_rd from MEM_X MEM 1 0 MEM_1 1
CEO_rd from MEM_X MEM 0 0 o MEM_0_1
OFDM Symbol Index 12 13
Syn_wr to MEM_X MEM_1_0 MEM_0_0
MEM to do FFT EM_1_0
> «—>
CE1_rd from MEM_X MEM_1 1 MEM_1_0
CEO_rd from MEM_X MEM_0_1 MEM_0_2

Fig. 2.8 Time chart for the 5 memory banks

12

2.4.2 Specification of FFT Processor in Channel Estimation

The FFT_ch and IFFT_ch blocks in decision feedback DFT-based channel
estimation (DF DFT-based CE) are shown in Fig. 2.9. Before introducing the system
requirement, we make a brief description of the DF DFT-based CE. The DF
DFT-based CE has two parts. One is initial channel gain calculated by using the
preamble signals. The operational blocks are preamble match block, two IFFT_ch
blocks, path selection block, inverse hessian matrix calculation, two FFT_ch blocks,
and channel estimator block. The channel gain should.be calculated within 2 OFDM
symbol time. The second part is channel gain trackingloop. ..The operationa block s
are gradient estimator, two. IFFT-—eh blocks, search direction estimator calculation,
two FFT_ch bloeks, channel ‘estimator ‘modification block; and the channel estimator
block. The channel gain is calculated by tracking loop with 2 iterations. At the first
iteration, the channel gain variance for the channel estimator modification block is
determined by the pilot signals, called-global-tracking; since the pilot signals have
higher SNR than data signals. At the second iteration, variance.is determined by the
data signals, called local tracking: Both of two parts can use the same IFFT_ch blocks

and FFT_ch blocks.

Data In

\ 4

Path Selection

Channel
Estimator

|/
|| FFT || Channel
_ch Estimator | _
FAY AN Modification J ™

Preamble
Match

»
>

Inverse
Hessian Matrix
Calculation

Gradient
Estimator

Search Direction
Estimator
Calculation

—-k (STBC)

Decoder

A A

A 4
Data Out

Fig. 2.9 FFT processor in decision feedback DFT-based channel estimation

13

Since the channel estimation included tracking loop, the channel gain should be
calculated within 2 OFDM symbol time before the data buffers for channel estimation
in Fig. 2.7 are updated; thus, data latency is an important issue to implement the
channel estimation block into hardware. With this purpose, a parallel-in-parallel-out
(PIPO) FFT/IFFT processor is necessary for not only increasing the throughput rate of
FFT/IFFT processor but also increasing the throughput rate of other blocks in channel
estimation block.

The DFT-based channel estimation has a specia feature for the FFT_ch and
IFFT_ch blocks. Only a subset of output data is required for IFFT_ch output ports.
Also, the input data of FFT_ch block may have several zero points, which are no
required to be computed with other-non-zero points. The FET processors design for
only some subset of input or output points are.called partial FFT [23]. The thesis will
introduce the idea of partial FFT processor designfor DFT-based channel estimation.

Finally, there are two purposes of FET processor design, one is'a FFT processor
with parallel-in=parallel-out’ in-normal-order;-and-the-other isipartial FFT processor
design. The thesis'will focus onithe FFT processor design with parallel-in-parallel-out
in normal order. The partial FET- processor design cencept will be introduced in the

end of next chapter.

14

Chapter 3

FFT Algorithms and Architectures

3.1 Concept of FFT Algorithms

Discrete Fourier Transform (DFT) is a key block in OFDM communication
system, and it is widely used in many applications, however, its computational
complexity is so high that-implementation of DFT salgorithm directly seems not
feasible to meet low'cost design goal. Fortunately, early eontributors, particularly
Cooley and Turkey in 1965-[12], 'lemployed the redundancy of DFT operations by
iteratively decomposing the computation, called radix-2 FET algorithm, to reduce the
computation complexity from O(N?) to O(NlogzN). Based on Cooley and Turkey’s
FFT algorithm, various FFT algorithms were later devel oped, which provide flexible
choices for implementation.

According to the ways of decomposing DFT, there are two types of FFT
algorithms. one is the ‘decimation-in-time (DIT)- decompesition, which decomposes
the time domain input sequence'into successively smaller subsequences; the other is
the decimation-in-frequency (DIF) decomposition, which aternately decomposes the
frequency domain output sequence into smaller subsequences.

The basic N-point DFT equation is defined as

X(K) = & () We (3.1)

n=0

where W™ =exp(- j2pnk/N) is the DFT coefficient. Since a complex number

multiplied with a coefficient is equivalent to a vector rotation, the DFT coefficient is

aso called twiddle factor.

15

The key feature of the FFT agorithm is to divide a complete DFT operations
into several small point DFT operations; moreover, the FFT algorithm also uses the

symmetry property of the twiddle factors. First, radix-2 FFT agorithm use the

N
kn+—
symmetry property of W, 2=-W" ; then, we can reduce number of

multiplicationsin Eq. (3.1) by half as shown in Eq. (3.2).

X(k)= % (n)>Wk”“+a X(n+—)>W 22_ g"(n) X(n+—)

d\’lZ

>Wkm (3.2)

i

Another symmetry feature is_in .its phase difference of + 90° as

k
? 45 = - AW Multiplying a complex number with — j, we can just exchange
the real part and imaginary part, and'then'negate the imaginary part. Therefore, we

can reduce the computational complexity of Eg. (3.1) by using Eg. (3.3).

A W™ +B’ W? 4”—(A jB)" W™ (3.3
Finally, symmetry feature of its phase difference of + 45° isaso'common in FFT

algorithms. Based on the symmeétry; the-equation-can-bereduced to

k +E9
A WIAFB W, 8ﬂ:(A+i(1- i) B) W

1 : V2 : ’ (34)
ﬁ(1_ i) B:E(l- i) (C+jd):$((0+d)+(d' c)j)

The multiplication of can be realized by constant multiplications, which

1

V2

may be customized to shifter and adder, and will be demonstrate in Chapter 4.
According to the symmetry of twiddle factors, the computation complexity of

DFT operation can be reduced to a fraction of the origina operation. We will take a

example of radix-2 DIF FFT algorithm in following subsection.
3.1.1 Radix-2 DIF FFT Algorithm

The DIF FFT Algorithm is decomposed the frequency domain output sequence

16

into small subsequence. Here we take a example of radix-2 DIF FFT agorithm. The
radix-2 DIF FFT algorithm divided the frequency domain sequence into even and odd

parts and using the symmetry of twiddle factor in Eg. (3.2), as shown below.

N
1
2 ¢ N (+ 2k) oy 1)
X(k1+2k2):a éx(znl'*nz)*NN ? inl:O,l
n,=0n =0 i
in,=01..,(N/2)-1
_gred N on Ogiom gm0 1o Lo (N2 (35)
=a Qa X(_n1+n2) W, +>\é/55: A7z '|'k1—07:L
" RAQ A2 A48 e fk,=01...(N/2)- 1
14449802 AANAAAAQAAB
N/2-point DFT

The DFT operation can be divided into 2 stages, one is 2-point DFT, and another

is N/2-point DFT, whichis shown below

x(0) > = X(0)
x(1) 2 A - > X(2)
N/2-point
DFT
X(N/2-1) —> X(N-2)
0
X(N/2) - 5 X(1)
X(N/2+1) = —> X(3)
N/2-point
DFT
W N/2-1
x(N-1) —» = X(N-1)

Fig. 3.1 Radix-2 DIF FFT agorithm architecture
After the first decomposition, the N-point DFT operation can be divided into N/2
2-point DFT operation and 2 N/2-point DFT operation, where the 2-point DFT iswell
known that the operation can be realized as a radix-2 butterfly (BF) module, shown as

Fig. 3.2

17

Ir)

x(n) » X(2k)

W\"
x(n+N/2) X(2k+1)

Fig. 3.2 Radix-2 butterfly module
Similar to the first decomposition, we can further decompose the N/2-point DFTs

into even smaller DFTs until all DFTs are decomposed into 2-point DFT.

3.2 Concept of FET Architectures

The FFT processor architecture design can be'Simply divided into two types, one
is pipeline-based” FFT architecture [13-15}, ‘and the other is memory-based FFT
architecture [16-17]. ' Pipeline-based FFT architecture has the advantage of high
throughput rate and low data latency, but it aso has,the disadvantage of high
hardware cost; in contrast, memory-based FFT architecture has low-hardware cost but
high data latency.

For both of the FFT processor architectures, to-increase the FFT processor
throughput rate, high working'clock rate'is'the smplest way to meet the throughput
constrain; however, it will aso increase the FFT processor hardware cost and power
consumption. In this chapter, we will discuss different architectures for high

throughput FFT processors with multi-input-and-multi-output in normal order.

3.2.1 Pipeline-Based FFT Architecture

The pipeline-based FFT architectures are the most popular architectures in many
applications because they are designed for high speed performance and sequence of

data input; but, in order to make the output data in normal order, they usually need a

18

reorder buffer in output stage, which regular a very high hardware cost. The best way
to obtain the pipeline-based architecture is through vertical projection of signal flow
graph (SFG). Fig. 3.3 shows an example to explain vertical projection mapping of

8-point radix-2 DIF FFT.

x[0]
x[1]
x[2]
x[3]
x[4]
x[5]

x[6]

Fig. 3.3 Vertical projection mapping of 8-point radix-2 DIF FFT

Each stage obtained by vertical projection is called a processing element (PE),
which contains a delay buffer (Buffer), a radix-2 butterfly unit (Radix-2 BF), and a
complex multiplier. The delay buffer is used to reorder the data input for each stage
butterfly unit. There are two types of the delay buffer, one is called delay-feedback
(DF), and the other is called delay-commutator (DC). According to the structure
difference, pipeline-based FFT architecture can be divided into three types:

single-path delay feedback (SDF) architecture, single-path delay commutator (SDC)

19

architecture, and multi-path delay commutator (MDC) architecture. Since the SDC
architecture can provide only one-path output data stream, similar to SDF architecture,
and hardware cost is between the SDF and MDC architectures, the SDC architecture
can not provide parallel data stream with least hardware cost. Here we only focus on
SDF and MDC architectures. In the following subsections, we will introduce different
radix-r SDF and MDC pipeline-based FFT architectures, where r is the radix number

for the decimation-in-time (DIT) or decimation in frequency (DIF) algorithm.
3.2.1.1 Radix-r Multi-Path Delay Commutator Architecture

Radix-r MDC architecture [18-19] uses commutator to break the input datainto r
parallel data streams flowing forward with correct ordering for.the data entering the
butterfly unit by proper delays. Here-are two examplesto introduce M DC architecture

in the following'discussions.

(1). Radix-4 Multi-Path Delay Commutator (R4MDC) Arehitecture

Fig. 3.4 shows. a 64-point” FFT with radix-4 multi-path delay commutator
(RAMDC) architecture. In Fig. 3.4, the elements of the RAMDC architecture are
commutators, shift registers, and radix-4 butterfly units: The butterfly unit is also
called arithmetic element (AE). At the beginning, the first 16 points of input data are
delay at the first line of AEL’s inputs, the next 16 points are delay at the second line,
and the next 16 points are delay at the third line. When the 49" point of input data
coming at the forth line, the first butterfly is computing at AEL. With proper delays
and commutation between each AE, the input data of each AE has correct ordering to
compute a radix-4 butterfly in each AE. Finally, the output data of AE3 are

2bit-reverse order of the input data order.

20

AE1 AE2 AE3

—>O—>48—> :O->12—> :O—>3—> >
(@) g o 9;? — b 9;?
S 2P a4 > S > 8 Pl o > S ¥ 2 PP P>
2 X 2 X 2 X
5 s S s | 5 Mapl B2 o 5 » 1 B
= oy} = oy = o)
= m = m = B

> > 12 | > > 3 > > >

Fig. 3.4 64-point FFT with RAMDC architecture
In order to revise the 64-point FFT of RAMDC architecture with multi-input and
multi-output in normal order, we have to replace the first stage and add a reorder stage

at the output stage, which is shown in Fig. 3:5.

AE1 AE3
—> ‘+16—) > > 12 >
o1 : o
&
>{ 3] 65 bl & o ¥ » 3 o 11 P
s [P % ; =
+$‘+16—)$ g—>2 > & = 10>
H‘4 ~
S Bl Bl S
> = 16 Ly 3 | » 9 >
4

Fig. 3.5 Modified input stage and-output-stageof-64=point RAMDC architecture
For multi-input in-normal rorder, the first stage has-te change the commutator
from one input to four-inputs:/And, in order to writefour data in one cycle to one of
the input shift registers of AE1, the shift registers have to be changed into random

access registers. Thus, the first to the third line of AEL’s inputs shifter registers are

changed into % random access registers. Furthermore, the fourth line have to add a

4x4 random access registers to buffer the input data because the fourth line has four
input data and one output data.

For multi-output in normal order, the output stage has to add a reorder stage to
reorder the output data from bit-reverse order to normal order. By using the similar

way of delay commutator, the output data order will be changed into normal order.

21

For N-point FFT computation, RAMDC needs 1741 N - 4 registers, 3 - (logsN-1)
. .11
complex multipliers, and 8 - logsN complex adders. The latency is 16 N-5 cycles.

(2). Radix-8 Multi-Path Delay Commutator (R8MDC) Architecture

Radix-8 multi-path delay commutator (R8MDC) is similar to R4AMDC
architecture, it use radix-8 algorithm with MDC architecture, and it can provide
higher throughput rate than R4AMDC architecture with 8 parallel data streams. But, it
also has more delay buffers and other arithmetic elements. The 512-point FFT with

R8MDC architecture is shown'in Fig. 3.6.

AE1 AE2 AE3
> “e b > > > > b
il I N H > b
o 20 P P o -J;UH 0 > o>
g || g LJm %)
256 [O Dyl 24 Q P 2P
= ; = A E ;
=N oo =X (0] =% oo
L 192_>EDLW ” L HUJ_H L _>UJ_>
g 1281 T 40 S > T = > T
7 5 I S > > b
> [56 > | >

Fig. 3.6 512-point FFT with R8MDC architecture
Also, for multi-output in.normal order, the arehitecture has to revise the first
stage and add a reorder stage'atioutput stage, which'is shown in Fig. 3.7. The input
stage and output stage are similar to RAMDC architecture with multi-input and
multi-output in normal order. As a result, reorder stage has more delay buffer when

higher radix is used in MDC architecture.
For N-point FFT computation, RBMDC needs 2—83N- 8 registers, 7x(logsN-1)

complex multipliers, and (24+2T)xlogsN complex adders, where the parameter T

indicates the number of adders required in the implementation of multiplications by

constant values. The latency is gN - 9 cycles.

22

>
i\
>
m
w

> ‘—4—)64-) > > 56 >
> —,;-»E-» +P > 55 P>
->g)—,g->g->§ Q;)U->2 :(03—> 54 P>
> 3 sl Q iy 3 > S = b
EIRGEE A]I
g‘#i*w Uu-> : 8 i i
—)2‘—4—)64-)-” mhl s » 9 » 51 >
> —,g->§-> > 6 | » 50 P>
> —,81->g-> > 7 P »| 49 >

Fig. 3.7 Modified input stage and output stage of 512-point RBMDC architecture
3.2.1.2 Radix-r Single-Path Delay Feedback Architecture

Unlike multi-path delay. commutator (MDC) “architecture,. single-path delay
feedback (SDF).architecture combines the commutator and the radix-r butterfly unit,
and uses delay:feedback method to reuse the delay buffer of each stage to reorder the
data input of butterfly unit. The SDF architecture’s hardware is less than the MDC
architecture’s, but the data latency, is more than the MDC architecture’s. Moreover,
the SDF has only one path between butterfly units, the throughput rate can’t be higher
even it uses higher radix FFT agorithm. For input and output data in normal order, it
needs a reorder buffer at output stage, and, the buffer size is about N/2 for N-point
DFT with SDF architecture. Also, we take two cases of SDF architecture in the

following discussions.

(1). Radix-2 Single-Path Delay Feedback (R2SDF) Architecture

The radix-2 single-path delay feedback (R2SDF) architecture combines radix-2
MDC architecture’s commutator and radix-2 butterfly unit in R2SDF’s radix-2
butterfly unit shown in Fig. 3.8. Without 2 paralel data streams from the radix-2

butterfly unit output to the next stage, R2SDF only has one output to the next stage,

23

and the other output is feedback to store in delay buffer; therefore, it is called
single-path delay feedback architecture.
For N-point FFT computation, R2SDF needs N-1 registers, (log.N—-1) complex

multipliers, and 2 xlog,N complex adders. The latency is N-1 cycles without reorder

buffer.

w
N
[ERN
(o2}
oo
N
N
[EEN

1O H O H Oy O

44 Z'lX!pE’H

49 Z-XIpey

49 Z-XIpey

49 Z-XIpey

449 Z-XIpey

49 Z-XIpey
;

Fig. 3.8 64-point FFET with radix-2 SDF architecture
(2). Radix-8'Single-Path Delay Feedback (R8SDF) Architecture

The block diagram of 64-point radix-8 single-path delay feedback (R8SDF)
architecture is shown in Fig. 3:9:1t has tess multiplier than the R2SDF architecture,
for 64-point FFT .architecture, RBSDF can save 80% of complex multipliers; but it
also has more register banks.to store the data for BF unit, which may have more
power consumption.

For N-point FFT computation, R8SDF needs N-1 registers, (logsN-1) complex

multipliers, and (24+2T) xlogsN complex adders. The latency is N-1 cycles without

reorder buffer.

24

[ee] Noel Neel Neo) Neo} Noo] Noel

| TA A A A A A

Rk~

| TA A A A A A

49 8-xipey
49 8-xipey

YVVYVYVYY V; |

o(x)
N\

A 4

YVVYVVYVYY V{ |

Fg. 3.9 .64-point FET with R8SDF architecture
(3). Radix-2/4/8 Single:Path Delay Feedback (R2°SDF) Architecture

Radix-2/4/8 single-path delay feedback (R2°SDF) -architecture is based on
R2SDF architeeture with radix-8 FFT algorithm shown in Fig. 3.10, and, it replaces
the radix-2 butterfly unit with the'radix-8 FFET processing element, which is shown in
Fig. 3.11. The numbers of required complex multiplier are the same as R8SDF
architecture, and the numbers of required _complex adders are less than R8SDF
architecture; moreover, the partitions‘of ‘registers are less than R8SDF architecture,

which may have less power consumption.

32 16 8 4 2 1

) U U) U)
— m » m :m-»@-»m » m » ml—

- N w - N w

Fig. 3.10 64-point FFT with R2°SDF architecture

25

For N-point FFT computation, R2°SDF needs N-1 registers, (logsN—1) complex
multipliers, and (6+2T) - logsN complex adders. The latency is N-1 cycles without

reorder buffer.

x[0] X[0]
x[1] X[4]
x[2] X[2]
x[3] X[6]
x[4] X[1]
x[5] X[5]
x[6] X[3]
x[7] X[7]
4 2 1
PE1 PE2 PE3
— —> —> >

Fig. 3.11 8-point FFET radix-2/4/8 SDF architecture

3.2.2 Memory-Based FFT Architecture

Memory-based FFT architecture, unlike pipeline-based FFT architecture, only
has afew arithmetic elements (AE), which also called processing element (PE). There
are two advantage of using memory-based FFT architecture: One is that the hardware
area of the processing elements for N-point DFT computation is the same even N is
very large; the other is that the total number of memory banks are less than

pipeline-based FFT architecture because it used a few PE and need less read or write

26

operations in the same time. Fig. 3.12 shows a radix-8 memory-based FFT

architecture, it only has one radix-8 butterfly unit and 8 memory banks.

Memory
Bank 1 D EEE—
Bank 2 D S—
Bank 8 <
4 D
—
Radix-8 BF
e
_ J

Fig. 3.12 Radix-8 memory=based-(R8M)-FFT architecture

For multi-input-in normal erder, different input data in-one-Ccycle should write to
different memory banks, but, this requirement is conflict with radix-r FFT algorithm
for memory-based architecture. - Similar. to ‘the MDC architecture, radix-r
memory-based FFT architecture can add reorder stage at the input stage for paralel
datato be written to different memory banks. Also, for multi-output in normal order, it
needs areorder stage at the output stage.

Another choice for memory-based FFT architecture with multi-input and
multi-output in normal order is rearrangement of data in memory with higher control
complexity. Next chapter will show the proposed FFT processor architecture based on

this concept.

27

For N-point FFT computation, R8M needsg N+56 registers and N words
memory with 8 memory banks, 7 complex multipliers, and (24+2T) complex adders.

Thelatency is gN- 8+%I098N cycles.

3.3 Comparison of Different FFT Architecture

Table 3-1 Comparison of different FFT architecture

R8SDF | R2°SDF | RAMDC | R8MDC

Complex logeN—1 | logsN-1 | 3-logsN-1) | 7- logsN—1)
Multipliers
Complex (24+2T) (6+2T) 8 logsN (24+2T)
Adders - logsN - 1ogsN - logsN
Memory N-=1 N-1 7N/4+12 15N/8+56

Size
Reorder 7N/8 N/2
Buffer Size
Data 15N/8-1 11N/16-5 15N/64—8+
Latency (N/8)logeN
Throughput 8R
Rate

The comparison of different FFT architecture with multi-input and multi-output
in normal order is shown in Table 3-1, where the' N is the FFT size and R is the
internal clock rate of the FFT processor. Due to the FFT algorithms, all architecture
need reorder buffer at input stage or output stage, and the hardware cost of reorder
buffer is so high that the conventional FFT architecture can’t provide an efficient way
to make the output sequence in normal order. For this reason, we have to develop a
FFT processor providing high throughput rate with multi-input and multi-output in
normal order in an efficient way for low hardware cost. As the goal of low hardware
cost, radix-8 memory-based FFT architecture has the least hardware cost for high

throughput rate with the same clock working frequency. However, it a'so needs avery

28

large reorder buffer. Therefore, the main issue of the FFT architecture with
multi-input and multi-output in normal order is to reduce the reorder buffer. The
proposed FFT architecture can provide high throughput rate with multi-input and
multi-output in normal order, and does not need any reorder buffer. It will be

introduced in next chapter.

3.4 Partial FFT Design

3.4.1 Concept of Partial FFT

Partial FFT design‘is a study of redundancies of .the standard FFT algorithm due
to a reduction in éither the.number-of Input or output.points. FGr most applications,
the input and the output sequence of-the DFT operation are equal, but, there are still
some applications where the numbers of input and output points are different, such as
DFT-based channel 'estimation. Hence, many researches of partial' FFT design are
presented to reduce the redumdant-operations=of=FFT algorithm. The thesis will
introduce the partial: FFT design'in two points of view in the following subsections,
one is concerned that anly assubset of input or output points of DFT operation are
computed, another point is concerned that multipl e subsets of input or output points of
DFT operation are computed. Finally, we propose a partial FFT design, combining the
reducing methods with only a subset and multiple subsets of input or output points of

DFT operation, suitable for DFT-based channel estimation.

3.4.2 DFT with only a Subset of Input or Output Points

There are two conditions we have to design a partial FFT with only a subset of
input or output points, one is that only a narrow spectrum is interested but the

resolution within the band has to be very high; the other is that a very high resolution

29

spectrum is to pad the input sequence with a large number of zeros. It usually use a
regular FFT to compute the results, but if the number of nonzero input or the number
of output concerned is small compared with the DFT length, it is very inefficient. The
pruning agorithm [25][26] and transform decomposition [27] is presented for
efficient DFT computation with only a subset of input or output points. Because the
transform decomposition method is not suitable in our application, we only introduce
the pruning algorithm in the following.

The pruning algorithm is first developed by Markel [25] for computing only a
subset of input or output points: An example of Markel’s pruned 16-point FFT with a
subset of nonzero input'is shown in Fig. 3.13, where the Markel’s pruning algorithm
is based on radix-2 DIF. FET algorithm. We focus on the case that the nonzero input
points are from‘the first L points of imput sequence because this case is similar to the
case of FFT processor in DFT-based channel estimation. As the result from Fig. 3.13,
it reduces N“log,(N/L) complex additions and (N/2)leg,(N/L)- N+L

complex multiplications than the original-FFT-algorithm; where'L IS a power of 2.

X[0] - X[0]
X[1] \ \ \ 0>< Wi X[8]
x[2] \\\\ O - X[4]
x[3] AN WN4>< Wi X[12]

N
X[4] N\ \WN2 - X[2]
5] ANWE < Wy X{20]
x[6] N X[6]
x[8] W”j - X[1]
(0] BN N < Wy (o]

X(10] xw . Xs)

x[11] " Wy W s

X[12] ~ - X[3]

(13] = \\ ==

x[14] \WN4>< - X[7]

x[15] Wy W x[15]

Fig. 3.13 Markel’s pruned 16-point FFT with a subset of nonzero input (L=2)

The Skinner develops more efficient pruning algorithm [26] than that of Markel

30

as shown in Fig. 3.14. However, Skinner’s algorithm is only for L is a power of 2. It
is achieved by pruning a decimation-in-time algorithm instead of the
decimation-in-frequency that Markel’s algorithm is based on. In Skinner’s pruning
algorithm, thefirst log,(N/L) stages contain no complex additions and no complex
multiplications, and it means that it reduces N log,(N/L) complex additions and
(N/2)log,(N/L) complex multiplications. Therefore, the Skinner’s algorithm with
a subset of nonzero input saves N-L of complex multiplications as compared to

Markel’s algorithm when L is a power of 2.

x[0] X[0]
X[8] \ \ \ \ / X[1]
x[4] X[2]
X[12] X[3]
X[2] X[4]
X[10] X[5]
X[6] X[6]
x[14] X[7]
x[1] X[8]
x[9] X[9]
X[5] X[10]
X[13] X[11]
X[3] X[12]
X[11] X[13]
X[7] X[14]
X[15] X[15]

Fig. 3.14 Skinner’s pruned' 16-point FFT with a subset of nonzero input (L=2)

The pruning agorithm for FFT with a subset of output pointsis also presented by
Markel and Skinner as shown in Fig. 3.15 and Fig. 3.16. The Markel pruning
algorithm is based on decimation-in-time algorithm while that of the Skinner’s is
based on decimation-in-frequency algorithm. The Markel’s algorithm can reduce
Nlog,(N/L)- N+L of complex additions and (N/2)log,(N/L)- N+L of
complex multiplications, and the Skinner’s algorithm can reduce N~ log,(N/L) of

complex additionsand (N/2)log,(N/L) of complex multiplications.

31

x[0] X[0]
X[8] WNO>< / / / X[l]
"] — W X(2]
x12] = w : X[3]
x[2] Wy X[4]

RT——— i

X[5]
(6] W“°7 X[6]
x[14] wf = i’ A X[7]
X[1] — X[8]
x[9] WNO>< / /WN1 X[9]
X[5] 0><WNZ/ X[10]
x[13] Wy - X[11]
x(3] o X[12]
WNO>< / W,y
x[11] — X[13]

X[7] WNO/ X[14]
x[15] WN0>< Wy*

X[15]

Fig. 3.15 Markel s pruned 16-point FFT with asubset of output points (L=2)

x[0] X[0]
x[1] D / ; £ L, e X[8]
x[2] X[4]
x[3] X[12]
x[4] X[2]
x[5] X[10]
x[6] IR0 X[6]
X[7] A A’A‘A A‘A X[14]
x[8] X[1]
x[9] X[9]

x[10] X[9]

x[11] X[13]

x[12] X[3]

x[13] X[11]

x[14] X[7]

X[15] X[15]

Fig. 3.16 Skinner’s pruned 16-point FFT with a subset of output points (L=2)
3.4.3 DFT with Multiple Subsets of Output Points

Conventional partial FFT algorithm can only extract one subset of spectrum. An
efficient partial FFT algorithm for DFT with multiple subsets of output points has
been presented [28], which focus on the control of DFT with multiple subsets of
output points, and an example of 8-point DFT based on the concept [28] is shown in

Fig. 3.17.

32

x[0]
x[1]
X[2]
x[3]
x[4]
x[5]
x[6]
x[7]

x[0] —
X[1] —
X[2] —
X[3] —=
x[4] —
X[5] ——
x[6] —
X[7] ——

Stage 1

Stage 2

Stage 3

N/

N\
NXX/

XXXX

/ XX\

AN

/N

A PR
A

(a) Signal flow graph-of 8-point DFT

Stage 1 Stage 2 Stage 3
BU Counter 0 BU Counter 0 BU Counter 0
Add Add Add
BU Counter 1 BU Counter 1 BU Counter 0
Add Add Sub
BU Counter 2 BU Counter 0 BU Counter 1
Add Sub Add
BU Counter 3 BU Counter 1 BU Counter 1
Add Sub Sub
BU Counter 0 BU Counter 2 BU Counter 2
Sub Add Add
BU Counter 1 BU Counter 3 BU Counter 2
Sub Add Sub
BU Counter 2 BU Counter 2 BU Counter 3
Sub Sub Add
BU Counter 3 BU Counter 3 BU Counter 3
Sub Sub Sub

(b) Butterfly function for each butterfly output

X[0]
X[4]
X[2]
X[6]
X[1]
X[5]
X[3]
X[7]

X[0]
X[4]
X[2]
X[6]
X[1]
X[5]
X[3]
X[7]

Fig. 3.17 8-point DFT with butterfly function of each butterfly unit output point

The signal flow graph of 8-point DFT is shown in Fig. 3.17(a), and the butterfly
function for each butterfly output is shown in Fig. 3.17(b). In order to reduce the
redundant operations of butterfly unit, we have to decide the butterflies need to be

computed and operations for needed butterflies, and an example of 8-point DFT with

multiple subsets of output pointsis shown in Table 3-2.

33

Table 3-2 Control counter and function of FFT with partial output points

Butterfly Counter | Butterfly Function
Qo={0,1} — Norma
b1bo Qo = 0 — Addition
Qo =1 — Subtraction
Q:1={0,1} — Normal

Q1 =0— Addition
Q1 =1 — Subtraction
Q2.={0,1} — Normal
Q2 =0— Addition
Q2 =1 — Subtraction

If the multiple output subcarriers, whose indices are [G, G1 Go], [H2 Hi Ho],[l2 |1
lo],..., are interested in'the system, the Q, in the Table 3-2.can be defined as Q, =
{GhUHnUInU.. }; then, the possible results for Q, are {0,1},{0} ,{1}. The needed
butterflies and ‘operations of the butterflies.can be defined as butterfly counter and
butterfly function in Table 3-2. In addition, bibg is the origina butterfly counter
counting from0to 3. It is clearly that-al the butterflies should be computed in stage 1,
the stage is defined in Fig. 3.17, foral possibleresult of output points, but if the Qo
equals to 0 or equalsto'l, all thebuttertlies only compute the addition or subtraction
butterfly function. In stage 2,-the butterflies should be computed only if butterfly
counter of the butterflies equals te Qolg, and the operations is decided by Q;. Similar
to stage 2, in stage 3, the butterflies should be computed only if butterfly counter of
the butterflies equals to QoQ1, and operations of the butterflies are decided by Qo.

An example of DFT with multiple output points is shown in Fig. 3.18. The
expected signal flow graph is shown in upper side, and the active operations and
butterflies are shown in lower side. In stage 1 and stage 2, the active operations and
butterflies meet the expected signal flow graph, but, in stage 3, the addition operation
of butterfly counter 3 is a redundant operation due to the butterfly function control is

shared with all butterflies. Although there are still redundant operations in this

34

algorithm, it provides an efficient way to simplify the control of partial FFT.

Q2={0,1} Q:={0,1} Qo={1}
Stage 1 Stage 2 Stage 3
X[0]

X[1]

X[2]

B8] —

i[4] ‘\ X[1]
EONNN < s
o NN

X[7] X[7]
Stage 1 Stage 2 Stage 3

X[0] —

X[1] —

x[2] —=

X[3] =

x[4] —— BU Cg;tr)ltero BU C:(;Jgterz BU C:ggterz L X[1]
x[5] =—i BU Csolzjgterl BU C:(l;(;lterS BU CSoStr)lterZ L X[5]
x[6] —— BU Csolljk?ter 2 BU Csolljtr:ter 2 BU C:(;Jgter 3

x[7] BU CSoLlJJQter3 BU Cé)lljjtr:terS BU CSoLljJSterS L X[7]

Fig. 3.18 Example of 8-paint DFT with multiple subsets of output points

3.4.4 DFT with Multiple Subsets.of .l nput-and Output Points

Based on the algorithm presented in Section 3.4.3, we enhance the algorithm
from only suitable for multiple subsets of output points to both multiple subsets of
input and output points, and the modified butterfly counter and operationsis shown in
Table 3-3. Qn represents the multiple output subcarriers’ indices as mentioned in
Section 3.4.3, and P, represents the multiple nonzero input points’ indices. The new
operation of butterfly function, bypassing input values, is added due to that there are
several zero input points of DFT operation. An example of DFT operation with

multiple nonzero input and output pointsis shown in Fig. 3.19.

35

Table 3-3 Control counter and function of FFT with partial input and output points

Butterfly
Counter

Butterfly Function

Qo={0,1} — Norma
Qo =0 — Addition
Qo =1 — Subtraction

Qo ={0,1} — Bypass upper input to both
upper and lower output

Qo = 0 —Bypass upper input to upper output

Qo = 1 —Bypass upper input to lower output

Qo ={0,1} — Bypasslower input to both
upper and lower output

Qo = O —Bypass lewer input to upper output

Qo = 1 —Bypass lower.input to lower output

Q1 ={0,1} — Normal
Q1 = 0— Addition
Q1 =1 — Subtraction

Q1 ={0;1} =5 Bypass upperinput to both
upper and lower output

Qi = 0 —>Bypass upper input to upper output

Q:.=1 —Bypass upper input to lower output

Q1 =4{ 0,1} — Bypassilower input to both
upper andlower output

Q1 = 0 —»Bypass lower input to upper output

Q¢=1d=>Bypassiower input to lower output

Q2={0;1} — Normal
Q. =0 — Addition
Q2 =1 — Subtraction

Q2 ={0,1} — Bypass upper input to both
upper and lower output

Q2 = 0 —Bypass upper input to upper output

Q2 = 1 —Bypass upper input to lower output

Q2 ={0,1} — Bypasslower input to both
upper and lower output

Q2 = 0 —Bypass lower input to upper output

Q2 = 1 —Bypass lower input to lower output

36

P>={0} P1={0,1} Po={1} Q2={0,1} Q:={0,1} Qo={1}

Stage 1 Stage 2 Stage 3
x[1]
X[3]
X[1]
>< b
X[7]
Stage 1 Stage 2 Stage 3
X[1] —
X[3] —=
BU 2 Bypass X[1]
Lower Input
BU 1 Bypass BU Counter 3 BU 2 Bypass X[5]
Upper Input Add Lower Input
BU 2 Bypass
Lower Input
BU 3 Bypass BU Counter 3 BU 2 Bypass X[7]
Upper Input Sub Lower Input

Fig. 3.19 Example of 8-paint DET with. multiple subsets of input-and output points

Table 3-3 also presents the dependency between.the butterfly counter and the
parameter Q, and P, in each stage. In"the first stage, the butterflies needing to be
computed is only dependent on the set of valid input points indices, which is the
parameter P,. In the second stage, the butterfly counter is dependent on half of the set
of valid input point’s indices and half of the set of valid output point’sindices. In the
final stage the butterfly counter is only dependent on the set of valid output points
indices, Q,. As the result, this agorithm reduces more redundant operations than Fig.
3.18 due to multiple zero input points, and it is helpful to design the partial FFT in

DFT-based channel estimation, and it will be explained later.

37

3.4.5 Partial FFT Processor Design in DFT-Based Channel Estimation

There are two purposes for designing partiadl FFT in DFT-based channel
estimation. The first one is that the partial FFT processor should compute the IDFT
operations with N points of input and NxGlI points of output and DFT operations with
NxGlI points of input and N points of output as discussed in Section 2.3. The second
one is that the partial FFT should reduce the redundant operations due to the non
regular input or output points. For example, the IDFT operations with zero input
points of guard band and.redundant output points.of non-usable of multi-path
response shall be avoided: Hence, we design the partial FFT for different purposes by
the algorithm mentioned in Section;3:4.3 and Section 3.4.4.

The partiaFET processor specification of the propesed DF DFT-based CE in
802.16e baseband receiver is that the FFT size is 1024 points and the'guard interval is
1/8. Thus, we'have to design a partial "FET/IFFT processor for IDFT operation with
1024 points input transform t0:128points-output-and-DFT operation with 128 points

nonzero input transferm:to 1024 points output as shown in-Fig. 3:20.

h[0] h'[0]
H[0] —> > > — H'[0]
Matrix
Operation
h[127] h'[127]
IFFT FFT
0 —»
H[1023] —>» 0 —> — H'[1023]

Fig. 3.20 System specification for the partial FFT/IFFT processor
For this purpose, the FFT and IFFT blocks in DF DFT-based CE is well suitable

for partia FFT/IFFT design with only a subset of input / only a subset of output

38

points. A pipeline-based architecture for the partial FFT is presented in Fig. 3.21,
which used the concept of Section 3.4.3 and combined the IFFT and FFT in the same

hardware.

7 Bank 127 Words Memory

A A A A

A 4 A 4 A 4 A 4

Data In 128-point FFT Data Out
- F - 5
Processing Elements
Twiddle Factor
ROM
X

I

A 4

Y

A

A

1 Bank 128 Words Memory

Fig. 3.21 Pipeline-based partial FFT/IFET processor

The active block of partial FET/IFFT processor in IFFT mode;is shown in Fig.
3.22. Due to the DIF agorithm, the 1024-peint-IFFT operation can be partitioned into
8 128-point IDFT operations jand.combining the output data of;128-point IDFT
operations with aradix-8 butterfly. Since we onty: need to compute the first subset of
output points, we use.only a complex adder to replace the radix-8 butterfly unit. As
the result, we used only‘a 128-point FFT/IFET processor to compute the 128-point
IDFT operation and a 128 words memory to buffer the combining output data. Finally,

we sent the data out from the 128 words buffer memory.

39

7 Bank 127 Words Memory

A A A A

Y A Y A

Data In 128-point FFT d Data Out
; — —>
Processing Elements
Twiddle Factor
ROM
X

1 Bank 128 Words Memory [«

Fig. 3.22 Partial FFT/IFET processor in IFFT mode

The active block of jpartial FFT/IFFT processor. in FFT mode is shown in Fig.
3.23. Due to the DIT agorithm, the 1024-point FFT_operation can be partitioned into
8 128-point DFT;operations with.aimadified input by radix-8 butterfly unit. Since the
non-zero input points of DFT operations are only in.the first subset ef input points, we
use only a complex multiplier to replace the radix-8 butterfly unit. Therefore, the
partial FFT/IFET processor in FFT.mode will first buffer the input'data in 128 words
memory, and then read the data from memaries:by-multiplying with suitable twiddle
factors to send as the input of 128-point FFT/IFFT processor. Finally, the output data

order isabit-reversal order of input.order.

7 Bank 127 Words Memory

A A A A

A 4 Y A 4 A 4

Data In _nAi Data Out
128 pomt FFT
Processing Elements

Twiddle Factor
ROM

Y

1 Bank 128 Words Memory

Fig. 3.23 Fig. 3.24 Partial FFT/IFFT processor in FFT mode

40

Moreover, we can use the concept of DFT with multiple subsets of input and
output points in our 128-point FFT processing element with suitable control. It is
useful to reduce the redundant operations due to zero input points of guard band or
none usable multi-path response. In our proposed DFT-based channel estimation, the
path selector will only choose 8 path impulses of the 128 output points for IDFT
operation by system simulation. Hence, we can increase the partial FFT control in
128-point FFT processing elements to reduce more redundant operations.

The comparison of hardware complexity is shown in Table 3-4, the proposed
partial FFT can reduce 75.1%of the memory size, 22.3% of the complex multipliers,
and 30% of the complex adders as compared with traditional radix-2 SDF FFT
architecture. Furthermore, with increasing the partial :\FFT control for the 128-point
FFT processor shown in Table 3-5, the proposed partial FFT ‘can reduce maximum
65.3% of multiplication operations and 49.5% of addition operations, which may save

more power if the 8 valid output point’sindices have common bits.

Table 3-4 Comparison with-Partial-FFT-and-Conventional FFT

Conventional Partial FFT with
Radix-2 SDF Radix-2 SDF
Memory Size (words) 1023(100%) 255(24.9%)
Complex Multiplier 9(100%) 7(77.7%)
Complex Adder 20(100%) 14(70.0%)

Data L atency 1023(100%) 1023(100%)

41

Table 3-5 Reduced operations of partial FFT with radix-2 SDF architecture

Original
FFT

Modified
Architecture
Partial FFT

Modified
Control
Partial FFT

4608

3584

Max 3584

Max 65.3%

Operations of
Complex
Multiplications

(100%) (77.7%) (77.7%)
Min 1600
(34.7%)
Max 8064
(78.8%)
Min 5176

(50.5%)

8064 Max 49.5%

(78.8%)

10240
(100%)

Operations of
Complex Additions

3.5 Summary

This chapter introduces:the method of+.designing ‘a:paralel-in-paralel-out FFT
processor and partial 'FFT/IFFT processor. In order to tape out the,chip of 802.16e
baseband recelver, a paralel-in-parallel-out FFT processor is more urgent to make the
DFT-based channel estimation to-be achievement. Hence, this thesis.only focus on the
hardware implementation of ‘a parallel-in-parallel-out FFT processor, and the partial
FFT processor design can be a future work to improve.our.system. Next chapter will
introduce the design of FFT/IFFT processor with parallel-in-parallel-out in normal

order.

42

Chapter 4

Parallel-In-Parallel-Out FFT/IFFT
Processor Architecture Design

4.1 System Requirement of the FFT/IFFT Processor

The decision feedback DFT-based channel estimation (DF DFT-based CE) block
diagram is shown in Fig. 4.1,"it needs FFT_ch and IFET ch blocks with parallel-in-
parallel-out to speed up the circuits blocks before or after the FFT_ch and IFFT_ch

blocks with parallél:computation.

Data In N - 9 N
—1,| Preamble =] || IFFT ~| Path Selection Y | | FFT Channel
Match ch ch Estimator
4 Inverse / P
Hessian Matrix A A A 2
Calculation D |
+ i N * * N
®»] Gradient || IFFT Search Direction || FFT Channel <t
»{ Estimator > _ch L Estimator <4 _ch .| Estimator |_
T+ / | Calculation ', "] Modification |
3 STBC <
Decoder —&
4 4
Data Out

Fig. 4.1 Decision feedback DFT-based channel estimation block diagram
From the analysis of high throughput FFT/IFFT processor architecture with
multi-input and multi-output in Chapter 3, memory-based architecture is the best
choice for the lowest hardware cost without data latency concerned. In order to speed
up the memory-based FFT/IFFT architecture to meet the data latency of system
requirement, parallel memory-based architecture is used in our FFT/IFFT processor

design. Furthermore, to reduce the hardware cost and control complexity of the

43

processing elements, we use pipeline-based SDF processing elements to replace the
radix-r butterfly units of the memory-based architecture. As a result, the proposed
FFT/IFFT processor is based on paralel memory-based FFT architecture with
pipeline-based SDF processing elements. The system requirement of the FFT/IFFT
processor is shown in Table 4-1.

Table 4-1 FFT/IFFT system requirement

Items Specification

System Clock Rate 78.4 MHz

FFT Size 1024 points

No. of Inputs or-Outputs of FFT processor | 8

Data L atency

The FFT_ch/IFFT_ch'blocks have to be designed as the 1024-point FFT/IFFT
processor with'8 inputs-and 8 outputs working at the system clock rate of 78.4 MHz
and the data latency of the FFT/IFFT. processor must less than 1/4 OFDM symbol

time which is about 25 us.

4.2 Architecture of the FFT/I FFT Processor

According to Chapter 3, we focus on the memory-based FFT processor design
with parallel-in-parallel-out in normal order. The conventional memory-based FFT
processor with 1 PE and 1 dual-port memory can not achieve the goal of 8
parallel-in-parallel-out data streams. Thus, first, we change the memory from 1
dual-port memory to 8 dual-port memories to achieve the goa of 8 paralld-in-
parallel-out data streams. However, the data latency is too long for the memory-based
FFT processor with only 1 PE. A FFT/IFFT processor with 4 PE and 8 memory banks

is designed to reduce the data latency. In the later discussion, we will show that the

FFT/IFFT processor with 4 PE and 8 memory banks can achieve the best hardware
efficiency. The 1024-point FFT/IFFT processor architecture is shown in Fig. 4.2, and
it combines paralel radix-8 memory-based architecture and radix-2/4/8
pipeline-based SDF processing elements. The FFT/IFFT Processor has 8 banks of
single port memory, 4 radix-2/4/8 SDF processing elements (PES), 2 radix-2 butterfly

units, and 2 commutators between memories and PEs.

8 Memory Banks

»i
-
»i
-
i
-
i
)
»i
-
»i
-
<
Radix-2/4/8 SDF >IN
adix-
> PEO J » [
P <
) >
o <
x A
> Radix-2/4/8 SDF ">/ | >
g > PE1 18
» >/ 3
3 3
- g. Radix-2/4/8 SDF ' 2 g.
Jds PE2 - »| S
1. » T
8 <
BN =
3 ! o O e
= +| Radix-2/4/8 SDF >
» » PE3 K,

Fig. 4.2 The proposed 1024-point FFT/IFFT processor architecture
According to radix-8 FFT agorithm, 1024-point DFT must use 4 stage of
computation with the last stage is a radix-2 computation. If the last stage still uses
radix-2/4/8 SDF PE, it wastes 1024 cycles to compute a radix-2 computation because
the data of 3" stage had already written to memory. The last stage can save 25% data
latency of the FFT/IFFT computation time by adding a radix-2 butterfly unit at the

output of radix-2/4/8 SDF PE, which is shown in Fig. 4.3.

45

New Stage 3

Stage 1 Stage2 | Stage3 Stage4 ﬂ:
1024 points | RAx-2/478 | Radix-2/4/8 | Radix-2/4/8]
P PE PE PE Radix2 |

Fig. 4.3 FFT/IFFT processing structure
The proposed architecture may submit 8 parallel-in-parallel-out data streams, and
the execution cycles are (1024/4) x (logg(1024) —1) = 768 cycles, which means the
data latency is 768/78.4 = 9.79 us (satisfy the system requirement). The detail sub_

module design is described in the next section.

4.3 FFT Sub_Module Design

4.3.1 Radix-2/4/8 SDF Processing:Element

The radix=2/4/8 SDF processing element.architecture-[29] is shown in Fig. 4.4,
which contains:3 processing elements' of radix-2/4/8 SDF architecture, a reorder

buffer, atwiddlefactorr ROM, a complex multiplier,-and a fixed-point block.

. Complex

== Eaﬂx-_Z/i/B_SEF _______ Multiplier
Py
| 4 2 1 3 =
| | D © < >_q§'
| IEE 3
| PE1 PE2 PE3 I~ 2 S
> > > r = >

L—_— (/) e e |

Fig. 4.4 Radix-2/4/8 SDF processing element
We use radix-2/4/8 SDF architecture with decimation-in-time (DIT) algorithm to
implement because the radix-8 DIT algorithm has less quantization error than DIF
algorithm [12]. This is because the quantization error is caused by constant multiplier.
In DIF agorithm, the constant multiplier isin the PE1 while the constant multiplier is

inthe PE3 in DIT algorithm as shown in Fig. 4.6(c). The path of the quantization error

46

passing in DIF algorithm is longer than that in DIT algorithm; hence, we choose DIT
algorithm to implement the radix-2/4/8 SDF PE. Fig. 4.5 shows the radix-2/4/8 SDF

architecture with DIT algorithm. The detail of the processing elementsis shown in Fig.

4.6.
PE1 PE2 PE3
RS % .
i X i
2] = | X(2
A\ X) |
<131 X X) : : — (6]
1 s 7

x[5]) ' X[5]
X7 =L N A T B X[7]

PE1 PE2 PE3

|
l
l
l

Fig. 4.5 Radix-2/4/8 SDF with DIT algorithm

47

Upper Input
Upper Output

» Lower Output

)
%

Lower Input
PE1l
@
Upper Input
Upper Output
Lower Qutput
Lower Input
PE2
(b)
Upper Input

Upper Output

—3» Lower Output

Lower Input :

Jgie

(©)
Fig. 4.6 Processing elements of radix-2/4/8 SDF with DIT agorithm

48

The reorder buffer contains 3 registers, and the timing flow of the reorder buffer
is shown in Fig. 4.7. It requires 3 unit time delays to make the output data in normal
order. The red line is the writing cycle for input data to be written to reorder buffer,
and the green line is the reading cycle for output datato be read from reorder buffer or
input. In addition, there are 3 modes for the read or write order which will repeat

every 24 cycles.

. Mode 0 o Mode 1 o Mode 2 o Mode 0 R

Input (0[4]2|6(1[5]|3|7|0[4[2]|6]1|5(|3|7|0(4(2]|6|1|5[3|7|0|4[2|6]|1|5|3|7
*\‘\‘\J\‘ \

Buf 0 ojojo|e|e\6|6i6|6(4)4]|4|4|4]14]|7|7|7|2]2]2]|5|5|5[/0|0[0|6|6]|6]|6
¥ ¥

Buf 1 Al\al4(4(\al4|7(T7]7]2]2]2]5|/5|/5|/0|0|0|6|6|6|6|6|6|4|4|4|4]14]|4

Buf 2 212(21%5|5|5|0|0|0|6|6|6|6|6]|6|4(4|414]4|4|7|7]|7|2]|2]2]|5]|5
| |
* *

Output 0|1]12|3|4|5|6|7|0[1]2]|3|4|5|6]|7|0|1|2|3]|4|5|6|7|0|1[2|3|4

A\ 4

Time

Fig. 4.7 Reorder bufferiinput and output timing flow graph

4.3.2 Complex Multiplier

There are three types of complex multiplication in ‘our design, the first one is
multiplication of — j, the second one’is multiplication of a constant twiddle factor Wg',

W4, and the least one is multiplication of a complex twiddle factor.
(1). Multiplication of —j:

The multiplication by —j can be realized by interchanging the real part and
imaginary part of input, then negate the imaginary part of output, which is shown in
Fig. 4.8. The only hardware is multiply by -1 which can be realized with an inverter

and an adder.

49

(A+Bj) ~j=B-A]

A Real Part

B » Imaginary Part

Fig. 4.8 Architecture of multiplication of -j

(2). Multiplication of constant twiddle factor Ws*, Wg:

Multiplication of constant -twiddle factor Ws', Wg® can be defined as the

following equation.

(A+B) W =(A+B))" (1/52) @D=(N2)((A+B)¥(B-Aj) (41)
(A+B)) WE = (A+Bj) W) (4.2)

From Eq«(4.1), the constant complex-multiplier can be implemented by one real
adder, one realgsubtraction, and two real constant multipliers as shown in Fig. 4.9.
Also, from Eq. (4.2); the constant complex-multiplication of Wg® can use the same
hardware of multiplication by Wsg' and multiplication’ by. —j. In addition, the
multiplication by real constant value can be realized as shifter and adders [20], where
the constant value (1/,/ 2)’s binary representation is 0.10110101, 9 bits fixed-point of
1// 2 ; thus, the multiplication by (1/,/ 2) can be realized with shifter and carry-save

adder (CSA) tree, also called Wallace tree, shown in Fig. 4.10.

(v2)
A >
- -»8()—» Real Part
(v2)
B ; — »@—» Imaginary Part

Fig. 4.9 Architecture of multiplication of Wg

50

Real Part
>
> +

B11 VSO

vV
|

YVY

Imaginary
— Part

811 VSO
vV
+

Fig. 440 Architecture-of multiplication by:\Ws" with GSA tree
From Fig."4.10, the architecture replace the 'constant multiplier with shifters,
CSA tree, and'a carry-propagation adder which reduce the hardware cost. However,
this architecture needs to pass 2 carry-propagation adders which are not efficient for
delay optimization. For the reason-of-delay-optimization, we modify Eq. (4.1) as

follow:
(]/\/E) ((A+B)+(B-A)j)
= (((vv2) as(yR)Bfe(@/¥2)e-(vv2) mi)

The architecture can be realized without adder or subtraction before the CSA tree

(4.3)

as shown in Fig. 4.11, and the total delay is reduced to one inverter, one CSA tree,
and one carry-propagation adder. In addition, the compensation bits for negative

number of A are combined and realized as ainput of CSA Tree.

51

Real Part
>
> | >

i
v
9311 VSO

>
Imaginary

Part

>
5 Compensation Bits—]
for Negative Input A

93l] VSO

Fig. 4.11 Delay optimized architecture of multiplication by Ws" with CSA tree

(3). Multiplication of complex twiddle factor:

A complex multiplier needs four real multipliers, one real addition, and one red
subtraction, which can express as:
(A+Bj)" (C+Dj)=(AC- BD)+(AD+BC)]j (4.9)

52

>
Y
X
+

— —» Real Part

!
X

0
¢
\AA
ﬁ)

-+ > Imaginary Part

|
:

Fig. 4.12 Architecture of complex multiplication

The complex multiplier is about 4 times'area of real multiplier shown as Fig.

4.12, which consumes,much hardware. Fortunately, the cemplex multiplier can be

realized by three real-multipliers, threereal additions, and two real subtractions [30],

which can reduce large area for hardware implementation of ‘complex multiplier. The
equation can beexpress as:

(A+Bj) (C+Djy=(A(C+D)-. D(A+B))+(A(C+D)+C(B- A)j (4.5)

The hardware architecture of modified complex -multiplication is shown in Fig.

4.13.

A —»
B +

— —» Real Part

-+ —> Imaginary Part

$E

i

Fig. 4.13 Modified architecture of complex multiplication

53

4.3.3 ROM Table

The conventional FFT processors usually stored the required coefficient called
twiddle factor in a look-up table which generally implemented by ROM. Symmetry
property of twiddle factor is used to reduce the hardware cost of twiddle factor ROM.
For instance, the twiddle ROM only stored O ~ /4 of twiddle factor value, and the
other value is based on the symmetry property of these values. However, they also
need a generator to generate the required value. According to our FFT processor
architecture, four processing“elements need different twiddle factors in different
stages as shown in Table 4-2.

Table 4-2, Twiddle factorsvalue for different PE in different stages

PEO PE1 PE2 PE3

k-(4n1+0
Wi o4 “NE0)

k-(4n1+1
Wigpg< 4

k:(4n1+2
Wigpq 472

k-(4n1+3
Wigog< 4n1+9)

8'k-(4n2+0
Wh o4 K (4120)

8 k-(4n2+1
Wipgs” <2

8k-(4n2+2
Wigpq® K (4122)

8k-(4n2+3
Wigpq® K (41253

Wigps>** ©

Wioza <@

Wiz, >+ ©

Wig2a>** O

.31,n2=0...3

There are 3 stages with different twiddle factors for each processing element. In
the first stage, each processing element has 256 different twiddle factors to be stored
in each twiddle factor ROM. In the second stage, 32 different values are stored in
each ROM. In the final stage, only 8 different values are stored in each ROM. As a
result, each twiddle factor ROM has 296 different values to be stored in each twiddle
factor ROM, called PE-based twiddle factor ROM (PE-based TW ROM).

An 8 bits counter is used to generate the address of PE-based TW ROM, and the
binary representation is by bg bs b, bs b, by by. The address of PE-based TW ROM in

each stage is shown in Table 4-3.

Table 4-3 Address of PE-based TW ROM in each stage

Twiddle factor ROM Address

0 by bg bs b bz by by b

1000 by bz by by by

100100Db,bs by

The PE-based TW ROM for each processing element is 15% larger than the
conventional ROM table that only stores 0 ~ n/4 of twiddle factor value. However, no
generator for PE-based TW ROM., is needed for the symmetry twiddle factors.
Moreover, the PE-based TW ROM is implemented with eombination circuits, and the
area is different for. each PE’s ROM_due to_different number, of the same twiddle
factor values in.its twiddle factor-ROM. For.example, PE-based TW ROM for PE1
has many stored-twiddle factor equals to one for k; n1, n2, or n3 equals to zero. The

area differencewill be shown in next chapter.

4.3.4 Memory Allocation

The system requirement of 1024-point FFT/IFFT .processor for multi-input and
multi-output in normal order ts shown in Fig.-4:14. The memory must write 8 input
data in normal order in one cycle before FFT/IFFT computation, and read 8 output

datain normal order after FFT/IFFT computation, too.

55

Time Domain Frequency Domain
Sample Index 8 Memory Banks 8 Memory Banks Subcarrier Index

1016 s | [0 —» 1016 0]
1017 9| 1> —»{ 1017 1]
1018 0|2 —»! 1018 0] [2]
1019 1| [—»{ 1019 11| [3]
20| [12] [4 > :> —{1020| [12] [4]
1021 13 ?—) —»| 1021 13 ?
1022 14| [6 P —»{ 1022 14| [6]
1023 15| [7] —»! 1023 15| [7]
“ — After FFT « —
Time Computation Time
Multi-input in Normal Order Multi-output in Normal Order

Fig. 4.14 System requirement for multi-input and'multi-output in normal order

The memory allecation is an important issue because the memory alocation of
the input data willraffect the memory allocation of the output data by 3-digit reversa
for radix-8. For instance, assume-the input data ‘index x(n)’s binary index is
X(ngngn7NgnsnsNsnzning). If we partitioned the input data by {mnng} into the 8
memory banks, the input data order is'able to write 8 input data in'normal order to
different memory banks, but, the output-datartocation-is unable to read 8 output data
in normal order. Assume the binary index of output data X(k) is X(koksk7kskskakskokiko),
the memory location isiat input.data |ocation x(KokiKokskaksksk7ksko), and { kokiko} isin
the same memory bank. Since { kgk;ko} is related to {nongns}, an easy way to partition
the input data to 8 memory banks is that each bank select the input data by
{ noning} +{ ngngn7} , and the data location in 8 partitions memory is shown in Fig. 4.15.
By this memory allocation of input data, { kokiko} is in the different memory banks.

Thus, the output data location is able to read 8 output datain normal order.

56

0 1 2 3 4 5 6 7
Address—— ™\ M N N —\ ~ \
0 0 1 2 3 4 5 6 7
1 8 9 10 11 12 13 14 15
2 16 17 18 19 20 21 22 23
16 135 128 129 130 131 132 133 134
32 262 263 256 257 258 259 260 261
48 : : : 384 :
64 .) . . 512 .
80)) . } . 640 .
96 .) 768 .
112))) 896
w_J w_J L _J) L) UJ I

Input Data'Index {A9A8A7AG6A5A4A3A2A1A0}
Bank={A2,A1,A0}+{A9,A8 AT}
Address={A9A8A7A6A5A4A3}
Fig. 4.15 Memory alocation of the FET/IEFT input data
Without reorder| buffer, the proposed FETAEFT processor can save 46.8 %

memory area than the conventional radix-8 memory-based FFT._architecture with

reorder buffer.

4.3.5 Commutater Design

The commutator has an important issue to make the read write operations of
different memory banks to be conflict free. Besides, in memory design, a single port
memory’s area is about half of a dual port memory’s area. For example, a 128 words
x 38 bits dual port memory size is 0.054 mm?, but a 128 words x 38 bits single port
memory size is 0.023 mm? (The memory is generated by memory compiler using
90nm process technology). The single port memory size is 42.6% of the dual port
memory size. With the commutator, we can change the 4 dual port memories into the
8 single port memories. The read or write address for the 4 PE in each stage is shown

in Table 4-4. A counter is used to read or write the data from the memory for 4 radix-8

57

PEs, which’s binary index is b7bgbsbabsb,bibg, and, pipo isthe ID of PE, {00,01,10,11}
means { PEOQ,PE1,PE2,PE3}. The following will show how to design the single port
memory with read write operations conflict free [21][22].

Table 4-4 Read or write address for the processing elements in each stage

Read or Write Address | Addressin Memory Bank

b2b1b0b7b5b5b4b3p1po { b2blb0} +{ b3p1p0}

bbsbsbobibobabapapo { brbebs} +{ bspipo}

b7bebsabspabobibgpg { brbsbs} +{ bibopo}

The read write operations for stage 1 are shown in/Fig. 4.16. According to Fig.
4.16, we need at least 8 pipeline stages.for each PE in stage 1; however, 8 pipeline
stages for each PE can’t meet the timing-constrain of .the processing elements. For the
system timing.constrain, we choose 24 pipeline stages in stage 1ito make memory
read write operations ‘conilict free, and-also make the timing constrain of the

processing el ements meet the system reguirement.

Conflict Free/Pipeline 'Cycle=8+16n
\We Choose 24 Cycles for the'Pipeline Stages

Butterfly 0~3

'y
yxY v

BO PEO PE3 | PE2 | PE1 | PEO | PE3 | PE2 | PE1 | PEO | PE3 | PE2 | PEL
B1 PE1 | PEO PE3 | PE2 | PE1 | PEO | PE3 | PE2 | PE1 [PEO | PE3 | PE2
B2 PE2 | PE1 | PEO PE3 | PE2 | PE1 | PEO | PE3 | PE2 | PE1 | PEO | PE3

g

£ B3 PE3 | PE2 | PE1 | PEO PE3 | PE2 | PE1 | PEO | PE3 | PE2 | PE1 | PEO

>

Z

<

S B4 PE3 | PE2 | PE1 | PEO PEO | PE3 | PE2 | PE1 | PEO | PE3 | PE2 | PE1

Fay

g

% B5 PE3 | PE2 | PE1 | PEO PE1 | PEO | PE3 | PE2 | PE1 | PEO | PE3 | PE2
B6 PE3 | PE2 | PE1 | PEO PE2 | PE1 | PEO | PE3 | PE2 | PE1 | PEO | PE3
B7 PE3 | PE2 | PE1 | PEO | PE3 | PE2 | PE1 | PEO | PE3 | PE2 | PE1 | PEO

Time

Fig. 4.16 Memories read write operations for different PE in stage 1

58

BO

B1

B2

B3

B4

B5

Memory Bank Number

B6

B7

BO

B1

B2

B3

B4

Memory Bank Number

B5

B6

B7

Conflict Free Pipelined Cycles = 8+16n
We Choose 24 Cycles for the Pipeline Stages

ry
y

Butterfly 0~3

[»

[=
PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO
PE1 | PE1 | PE1 | PE1 | PE1 | PE1 | PE1 | PE1 | PE1 | PE1 | PE1 | PE1 | PE1 | PE1 | PE1 | PE1
PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2
PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3
PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO
PE1 | PE1 | PE1 | PE1 | PE1 | PE1 | PE1 | PE1
PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2
PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3

Time

(@
Conflict Free Pipelined Cycles = 8+16n

| We Choose 24 Cycles for the Pipeline Stages I

[=

| Butterfly 32~35 |

== gl
PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3
PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO
PE1 | PE1 | PE1 | PE1| PE1|PE1|PE1|PE1 | PE1|PE1|PE1|PE1 | PE1|PE1|PE1 | PE1
PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2
PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3 | PE3
PEO | PEO | PEO | PEO | PEO | PEO | PEO | PEO
PE1 | PE1 | PE1 | PE1| PE1 | PE1 | PE1 | PE1
PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2 | PE2

Time

(b)

\/

Fig. 4.17 Memories read write operations for different PE in stage 2

(@) butterfly 0~7 (b) butterfly 32~39

59

The read write operations for stage 2 are shown in Fig. 4.17. The read write
operations in stage 2 which is not similar to stage 1, change the operations order every
32 butterflies. In addition, the 32 butterflies with the same read write operations are
called inner stage, which is differ to stage defined by FFT algorithm called outer stage.
For this reason, we have to stall cycles every 32 butterflies to wait the data already
written to the memories. Then, after that, we start to read data for next 32 butterflies.
Here we also choose 24 pipeline stages in stage 2 for the system timing constrain.

In stage 3, the read and write operations for PEO and PEL is the same as that for
PE2 and PE3. Thus, we have to delay ‘one cycle for'PE2 and PE3 reading or writing
the data. The operations are shown in Fig.4.18. In addition, the read write operations
in stage 3, smilarto stage 2, haveto stall cycles every 32 butterflies, too. Here we

choose 22 pipeline stages in stage 3 for the system timing constrain.

Read Memory Bank Number
PEO o|l2|4)6|[0]|]2]|4|6|[0]|]2]|4|6]|]0|2]4]06F6
PE1 1135|7135 |7|1(|3]5|7|1]|3(|5]7
PE2 o(l2)]4|6|]0|2|4|6|0]|2((4]6|0]2]4]|F86
PE3 1 (357 |1|3|5| 7|13 (5|7]|1]3]|5](|7
Write
PEO 0|l2|4]|]6|0|2]4
PE1 1 13|57 [1]3]65
PE2 0|2)|4]|]6]|0|2
PE3 11357 (1]3

A
\/

Conflict Free Pipelined Cycles = 2+4n
We Choose 22 Cycles for the Pipeline Stages

Fig. 4.18 Memories read write operations for different PE in stage 3
According to the analysis of the commutator operations, the state diagram of the

proposed FFT/IFFT processor is shown in Fig. 4.19. The state diagram begins with

60

the IDLE state waiting for the fft_start signal to start the FFT/IFFT computation. Each
stage has 5 states: Rd, Tw, Wr, Wait_Tw, and Wait Wr. The Rd state is for PE to read
the input data from memories and also triggers the counter of memory reading address.
The Tw state is for PE’s data multiplying by twiddle factor and also triggers the
counter of twiddle factor ROM reading address. The Wr state is for PE to write the
output data to memories and also triggers the counter of memory writing address. The
last 2 states, Wait_Tw/Wait_Wr, are waiting for the reading data in PEs aready
multiply with twiddle factor/writing to the memory.

The state is beginning with stage 1 Rd. Then, after suitable pipeline stages, the
current state is changed to the-next states, which are-stage 1.Rd, stage 1 Tw, stage 1
Wr, stage 1 Waitlilw, and. stage-1-Wait Wr. After the stage & Wait Wr state has
already done, the'current state is changed to 5 states of 'next stage.

From analysis of 'read write operations in each stage discussed in Fig. 4.16, Fig.
4.17, and Fig."4.18, 'stage 2 and stage 3 has more stall cycles than stage 1 due to the
operations order changed every 32-butterflies—Therefore, there are two signals to
change the current state.of the last 3 states in stage 2 and-stage.3. One is outer stage
signal triggered every 255 butterflies called outer -stage inc. The other is inner stage
signal triggered every 32 butterflies called inner_ stage _inc. The outer stage and inner
stage is defined as the discussion mentioned before. Thus, there is a loop in stage 2
and stage 3 due to the operations of current state in inner stage or outer stage.

Finally, the state diagram for commutator will make the read write operations of
different memory banks to be conflict free by stall the cycles between inner stages or

outer stages.

61

fft_start stagel tw start stagel wr start

outer
stage
outer stage rd inc
outer stage
wr inc
ta
Rd .
inner
inner stage stage
wr inc rd inc
outer stage
wr inc
v stage3 tw start stage3 wr start
ta
C inner
stage
rd inc
Fin?sh:

outer stage
Wr inc

Fig. 4.19 State diagram of FFT/IFFT processor

4.3.6 Mixed FET/IFFT Processor

For hardware efficiency, we want to use the same.FFT/IFFT processor to

compute the FFT and IFFT ‘block, whichiis'shown in Fig. 4.20.

Upper FFT/IFFT processor

' |
| | Lower Lower | |
|-§ IFFT FFT 1)
I ch _ch |
(b= N e ————J_ _ V¥ S

Fig. 4.20 The FFT/IFFT processor in the DF DFT-based CE block diagram

62

Assume the fast Fourier transform (FFT) equation is defined as
N-1
X (K) =@ X(n) Wy (4.6)
n=0
The inverse fast Fourier transform (IFFT) equation is defined as
1%t K
x(n)=—a X(K) W™ (4.7)
N k=0

If we take the conjugate of right side in Eq. (4.7), we find

x(n) = %2& (X (K)) W § (4.8)

Therefore, the IFFT function® can be performed with FFT and conjugate
operation [11]. The modified processing elements for..the proposed FFT/IFFT
processor are shown in Fig. 4.21. With'the conjugate operation, we can use only two
FFT/IFFT processors in our system; one computes the upper FET and IFFT, the other

computes the |ower FFT and IFFT.

N 4
I

Fig. 4.21 Modified processing elements with conjugate operation

63

4.3.7 Fixed-Point Block Design with Dynamic Scaling

The fixed-point block is atruncating block which truncates the output data of the
processing elements before writing to the memories. Due to the system requirement of
FFT and IFFT are different, we have to optimize the fixed-point block for different
condition of FFT or IFFT computation [24].

For IFFT computation, there are 1024 input data. According to 1024-point
radix-8 DIF algorithm, the stage 1 is 8-point DFT multiply with the twiddle factor,
which defined as

X goger (st 20, #1610, +128K,)
= BUB stagel(nl' n2’ nS’ k4) (49)

é °7 kyon U k,
— pd Xy +2n, +16n3)
=éa x(n +2n;+16n, #1280,) N g Wi, ™
170 u

Take the absolute'value of both sides in Eg: (4.9), we find
7
X | £ Q [X(0+.20, 160, +128n,)| £8" ¥ (4.10)
n, =0
Since the range of |FFT«input data x fer both real part and imaginary part is -2 ~

+2, which is defined by the system simulation, we find [Xsagea| < 22.6274. If the X gage1

is defined as A + j-B, ‘Xstagel =JA’+B* £22.6274. Thus, both |A| and [B| are

smaller than 22.6274. As the result, we take 6 bits of integer for both real part and
imaginary part of the Xgager, and the fraction bits of Xgager is decided by overall
FFT/IFFT fixed-point simulation.

The stage 2, stage 3 and stage 4 are calculated as

X e (1 + 21, +16K, +128K,)
= BUj gageo (M M5, Ky, K5) (4.12)

éJd u
= 88 Xage (N 20, +160, +128K,) W™ Wi mw2m)
€n;=0 a

X gagea (M + 2K, +16k, +128k,)
= BUj gages (i, K3, Ky K5) (4.12)

ég ko0, l] 64k
- = P o
- ea XstageZ *NSZ ’ u \/\/10242
€e1,=0 u

X sagea (512K, + 64k, +8k; +K,)

= BU 2 stage4(k2! k3’ k41 kl) (413)
1
o]
= a Xaage3 >Vv2k1)nl
=0

Take the absolute value of both sidesin Eqg. (4.11), Eq. (4.12), and Eq. (4.13), wefind

7
| X gogea| £ Q | X soger| £ 68 X (4.14)
=0
7
| X goges| £ Q| Xangeo| £5127 X, (4.15)
n,=0
| X gogel gél | X quges| £10247 ||, (4.16)
n,=0

Since the range of IFFT input data x for both real part and imaginary part is -2 ~
+2, we find |Xgagez] < 181.0193, [Xsages| =:1448.2, and [Xsaged| < 2896.3; thus, we take 9,
12, 13 bits of integer for both realpart’and imaginary part of the Xeagez, Xstages, Xstages-

For FFT computation, there.are 8 random-nonzero input data of the first 128
input data, defined by system.simulation for DF DFT-based CE, and the other input
data are zeros. The range of the FFT Inputdata is the same as the range of the IFFT
input data, which is-2 ~ +2 for both real part and imaginary part.

According to Eq. (4.10), |Xsage1| < 1x[X|max < 2.8284, since X is a nonzero point
only if ngisequal to zero. Asthe result, we take 3 bits of integer in stage 1. In stage 2,
the maximum of |Xs«ageo| OCCUrred when input data are nonzero points with n3 equaling
to 0 to 7; therefore, [Xgageo| < 8%|X|max < 22.6274 and we take 6 bits of integer in stage
2. In stage 3, the maximum of |X«ages| OCcUrred when input data are nonzero points
with n2 equaling to 0 to 7; therefore, [Xgages| < 8%[X|max < 22.6274 and we take 6 bits of

integer in stage 3. The Xgaages iS the final stage output data, |Xsages] < 8%[X|max <

65

22.6274 because only 8 input data are nonzero data, and we take 6 bits of integer in
stage 4. In addition, the fraction bits of Xgager, Xstagez aNd Xgages, are aso defined by
overall FFT/IFFT fixed-point simulation.

The fixed-point block parameter for FFT or IFFT mode is shown in Table 4-5.
Parameter WL in Table 4-5 is the internal word length of FFT/IFFT processor.

Table 4-5 Scale down block parameter for FFT/IFFT mode

IFFT Mode FFT Mode

Integer bits | Fraction bits | Integer bits | Fraction bits

(bits) (bits) (bits) (bits)

6 WL—6 3 WL —3

9 WL-=9 WL —6

12 WL —6

WL—6

4.4 The FFT/I FFT Proecessor-Fixed-Point Simulation

The proposed FET/IFFT processor has been modeled in Matlab and C language.
The FFT/IFFT processor ‘performanceis.evaluated by SONR (Signal-to-Quantization
Noise Ratio) for the system requirement. The simulation model is shown in Fig. 4.22.
First, we simulate the least truncate bits for input and output data of the
FFT_ch/IFFT _ch block which can meet the system required BER as shown in upper
of Fig. 4.22. Then, we use random pattern to obtain the system required SQNR for the
FFT/IFFT processor for general case of input pattern as shown in lower of Fig. 4.22,

where the truncate bits of input or output are decided by upper of Fig. 4.22.

66

System Blocks = Floating = System Blocks
before the = FFT_ch/ S after the ,
FFT ch/IFFT ch[”] 8 [P IFFT.ch [?] 8 [P| FFT chiIFFT ch [> Reauired BER
Block T Model o) Block
\ 4 v
= Floating =
Random = FFT_ch/ S .
Data [§ [’ IFFT ch 3 Noise
z Model 2 Required SQNR
Signal

Fig. 4.22 System required SQNR simulation model
Since we combine the FFT and IFFT block to use the same hardware of
FFT/IFFT processor, we must meet the system requirement for both FFT and IFFT
blocks. The system required SQNR of the FFT_ch/IFFT_ch block decided by Fig.
4.22 is shown in Table 4-6.

Table 4-6 System required. SQNR for FET/I FFT processor

Required SONR

IFFT Mode 60.1.0B @ 1024 point input

FFT Made 81.5dB @-8 point input

4.4.1 Fixed Point'Simulation for Constant Multiplier in‘Radix-2/4/8 PE

A constant multiplier ‘can dways be composed of severa shifters and adders.
The quantization bits of the constant multiplier will affect the FFT/IFFT processor
performance and hardware area.

By Eg. (4.3), the constant value of the multiplier is 1 divided by square root of 2,
the output SQONR versus quantization bits of 1 divided by square root of 2 is shown in
Fig. 4.23; in addition, the binary representation of 1 divided by square root of 2 is
0.101101010000010011110011. According to the system requirement, 8 fraction bits
are the least required truncation bits to meet the system required SQNR 81.5 dB as

shown in Table 4-6.

67

140

120t

100t

SQNR (dB)
[e)] (o]
o o

N
o

N
o
T

00 2 4 6 8 10 12 14 16 18 20

Multiplier truncate bits

Fig. 4.23 SQONR versus constant multiplier truncate bits

4.4.2 Fixed Point Simulation for Twiddle Factor

We decide 8 fraction bits for constant multiplier to evaluate.the performance
with different word length of twiddle factor. The output SQNR versus the word length
of twiddle factor.is shown in Fig: 4.24. According to the system requirement, 17 bits

of the twiddle factor are the least bits to meet the required performance.

85 T T T T T T T T

80

75

70

65

SQNR (dB)

60

55

45(1 1 1 1 1 1 1 1
10 11 12 13 14 15 16 17 18 19

Word length of twiddle factor (bits)
Fig. 4.24 SQNR versus word length of twiddle factor

68

4.4.3 Fixed Point Simulation for FFT/IFFT Processor

The dynamic scaling [24] is effective to reduce the internal word length without
reduce the performance, especialy in multiple stage of FFT/IFFT computation. In our
application, the IFFT mode is assume 1024 point valid input data as usual. Without
dynamic scaling, the hardware has to keep 13 bits of integer in each stage from the
analysis in Section 4.3.7, which is inefficient. In this situation, dynamic scaling is so
effective that the processor need less internal word length to meet the system
requirement, which is shown in'Fig. 4.25. From Fig.4.25, the processor reduces 30%
of the internal word length, which can reduce much of the_ hardware area. Another
mode is FFT mode: The FIET-mode-has 8 point valid input data;'so the output has to
keep only 6 bits without dynamic scaling. From the analysis of Section 4.3.7, the
scaling factor can be fixed in stage 1 but can not be fixed in other stage, where the
stages are defined in Fig. 4.3. Fig. 4:26_shows the difference for with and without
dynamic scaling. Asthe result;.it al soreduces15%rof-the internal word length.

In order to meet the system requirement for both FFT--and IFFT mode, we decide
20 bits for internal word length, 8 bits for constant multiplier, and 18 bits for twiddle

factor.

69

65 ' v T T T T

60

557 —6— Fixed scaling

—— Dynamic scaling

SQNR (dB)

50
45
40
35
30
25
20
q
1 5 1 1 1 1 1 1
14 16 18 20 22 24 26
Internal Word Length (bits)
Fig. 4.25 SONR versus internal word length in IFFT mode
85 T T T T T T
80
—6— Fixed scaling
3¢ —— Dynamic scaling
__ 70t
o)
A=)
x 657
o
7)) 60 B

a1
o1
¢

a1
o

N
ol

4014 16 18 20 22 24 26
Internal Word Length (bits)

Fig. 4.26 SONR versus internal word length in FFT mode

70

4.5 Hardware | mplementation Result

4.5.1 Comparison for the FFT Processor Design Flow

The hardware cost comparisons of 5 versions of FFT processor are shown in Fig.
4.27. The FFT processor contains a 1024x46 bits dual port memory, a processing
element, and a twiddle ROM, called version 1. The version which partition the
memory of version 1 into 8 128x46 bits memory banks are called version 2. The
parallel version of version2.containing 4 processing elements are called version 3.
The version 3 aso partition the twiddle factor ROM into 4 smaller twiddle factor
ROMs. Version 4:changes the -dual-port memories.in version 3 into single-port
memories. The final version is adynamic scaling version of version 4, which reduces

the area but hasthe same performance of version 4.

FFT Total Area

Fixed-Point Block with
Dynamic Scaling
(Final Version)

8 SPMEM 4PE 4ROM

(Version 4)
I 8 MEM Area
8 DPMEM 4PE 4ROM R | B Kernel Area
(Version 3) U ROM Area
8 DPMEM 1PE 1ROM B |

(Version 2) L
1 DPMEM 1PE 1ROM
(Version 1)
Gate Counts (K)

0 50 100 150 200 250 300 350

Better Design

Fig. 4.27 Area comparisons for different versions of FFT processor

71

Data Latency

Requirement

Fixed-Point Block with [
Dynamic Scaling
(Final Version)

8 SPMEM 4PE 4ROM
(Version 4)

8 DPMEM 4PE 4ROM
(Version 3)

8 DPMEM 1PE 1ROM
(Version 2)

1 DPMEM 1PE 1ROM
(Version 1)

Cycles (K
0 05 1 15 2 25 3 35 4 45

<
<

Better Design

Fig. 4.28 Data latency comparisons for different versions of FFT processor
Table4-7 Comparison of different version FRT processor

Memory | Kernel TW ROM ('Total Data
Area Area Area Area Latency
(gates) | (gates) | (gates) | (gates) | (cycles)
1024x46 DPMEM x 1 | 68694 22733 9849 101276 | 4096
PEx1 (34.0%)" | (28.2%) | (100%) (35.1%) | (100%)
1024x36 ROM x 1
(Version 1)
128x46 DPMEM % 8 202088 | 22733 9849 234670 | 3200
PEx1 (100%) | (28.2%) | (100%) (81.2%) | (78.1%)
1024x36 ROM x 1
(Version 2)
128x46 DPMEM x 8 202088 | 80418 6381 288887 | 896
PEXx 4 (100%) | (100%) | (64.8%) | (100%) | (21.9%)
TW ROM x 4
(Version 3)
128x46 SPMEM x 8 87272 80418 6381 174071 | 1169
PEX 4 (43.2%) | (100%) | (64.8%) | (60.3%) | (28.5%)
TW ROM x 4
(Version 4)
Scale down block fixed | 77816 71566 6410 155792 | 1169
(Final version) (38.5%) | (89.0%) | (65.1%) | (53.9%) | (28.5%)

72

The comparisons of data latency for 5 versions of FFT processor are shown in
Fig. 4.28 and Table 4-7. The final version reduces 63.5% of data latency as compared
with version 2. Although final version’s data latency is longer than version 3, but the
fina version saves 46.1% area as compared with version 3. Besides, the findl
version’s data latency is shorter than the system requirement where the data latency of
system requirement is 25us x 78.4 MHz = 1960 cycles. The comparisons of areafor 5
versions of FFT processor are aso shown in Table 4-7. Version 1 can not achieve the
system requirement for parallel-in-parallel-out, so we ignore the area of version 1 in
comparison. From Fig. 4.27, the fina version cans'save 61.5%, 10.8% of memory
area as compared with. version.2 and version 4. It also saves 11.0% of FFT kernel area
as compared withiversion 4. Furthermore, the final version saves 34.9% of twiddle
factor ROM area as compared with version 2. Finally; the final version saves 33.6%,

46.1%, 10.5% of total area as compared with version 2, version 3, and version 4.

4.5.2 Comparison of Separated Twiddle Factor ROM

PE3
Twiddle ROM

27%

PE2
Twiddle ROM

25%

Twiddle ROM

Fig. 4.29 Area comparison of separated twiddle factor ROM
As the discussion in Section 4.3.3, the conventiona twiddle factor ROM is
partitioned for different PE called PE-based TW ROM. The PE-based TW ROM is

implemented by combinational circuits using synthesis tool to optimize the area of

73

each ROM. For instance, PEO has many twiddle factors with the same number as
discussed in Section 4.3.3. Thus, as the result in Fig. 4.29, the area of PE-based TW

ROM for PEO islower than other twiddle factor ROM’s area.

4.5.2 Hardware Implementation Result

As the hardware implementation results shown in Table 4-8, the proposed
1024-point FFT/IFFT processor can achieve the throughput rate up to 1.28 G
samples/sec and the execution time down to 7.3 us when working at 160 MHz. When
working at the system required 78.4 MHz, the execution time is 14.9 us which meets
the system requirement of 25 us, and the power consumption is 21.7 mW with 155792
gates (including memory) that occupy 0.545 mm? by using 90.nm CMOS 1P9M 1V
process.

Table 4-8 Hardware |mplementation of .the Proposed FFT/IFFT' Processor

Items Specification

FFT Size 1024 points

Process Technol ogy 90.nm:CMOS 1POM 1V

Max Working Frequency 160 MHz

System Working Freguency 784 MHz

Throughput Rate 1.28G samples/sec @ 160MHz
45.1 mW @ 160 MHz

Power Consumption 21.7mW @ 78.4 MHz
(estimate by Design Compiler)
155792 gates @ 78.4 MHz
(including memory)/ 0.545mm?
Memory Size 8 x 128 words x 40 bits

77816 gates

(8 bank memories)

7.3 us @ 160 MHz

149 us @ 78.4MHz

Gate count/Area

Memory Area

Execution Time

74

4.6 SUmmary

In order to evaluate the proposed FFT/IFFT processor, we compare the
computation complexity and memory requirement in Table 4-8. It is apparent that
compared with RBMDC and radix-8 memory-based, the proposed FFT processor
requires less complex multipliers and no reorder buffer. As the result, the proposed
FFT/IFFT architecture can meet the system requirement with the least hardware
complexity.

Table 4-9 Comparison of several high throughput FFT architectures

Radix-8
Memory-Based

Complex
Multipliers

21

7

Complex Adders

20+6T

88+6T

24+2T

28+8T

Memory Banks

13
(dual port)

47
(dual port)

8
(dual port)

8
(single port)

Memory Size
(words)

1023

1976

1024

1024

Reorder Buffer
Size

912

960

960

Data L atency

15835

360

872

(cycles)
Throughput Rate
(clock rateisR)

Also, we use the proposed FFT processor hardware cost to evaluate the hardware
cost of different architectures, and the results are shown in Table 4-9. It is apparent
that the proposed FFT processor can save about 81.0% and 43.9% complex
multipliers as compared with RBMDC and radix-8 memory-based. The memory bank
composed of single port memory reduces about 64.8% and 32.0% area of RBMDC

and radix-8 memory-based. Moreover, it frees the requirement of reorder buffer which

75

needs area of 69490 gates. The data latency of the proposed FFT processor is 14.9 us
at 784 MHz and meets the system requirement of 25 us. Meeting the system
requirement, the proposed FFT processor has the least hardware cost for low
complexity design.

Table 4-10 Comparison of hardware cost for different architectures

R8MDC R8M Proposed

Complex 180516 60172 34384
Multipliers (100%) (33.3%) (19%)
22243 6289 10808
(100%) (28.2%) (47.6%)
47 8 8
Memory Banks dual single
’ foort) (e (porgt)
Memory. Size 138326 71672 48744
(40bits) (100%) (51.8%) (85.2%)
69490 69490 0
(100%) (100%) (0%)
410575 207623 93936
(100%) (50.5%) (22.9%)

360 872 1169

Complex Adders

Reorder Buffer Size

Total

Data Latency
(cycles)
Throughput Rate
(clock rateis R)

8R 8R 8R

76

Chapter 5

Chip I mplementation of | EEE 802.16e
Receiver

This chapter will introduce the chip design flow for IEEE 802.16e baseband
receiver. The 802.16e baseband receiver is including a frequency divider, a
synchronization block, a FFT processor for FFT_dem block with 5 memory banks,
and a channel estimation block with FFT/IFFT iprecessors for FFT_ch/IFFT_ch

blocks as shown in Fig. 2.5 and Fig. 2.6.

5.1 Design‘Flow

The 802.16e baseband receiver system is medeled in C language. For hardware
implementation, each component uses .fixed-point ssmulation to" have the least
performance decreasing as compared with the floating system model. After the word
length of each compenent is decided, the hardware simplementation of each
component is modeled in \Verilog language, called RTL design. Besides the
performance anaysis, the RTL design of each component in Verilog is verified in
Verilog XL with the result generated by the model in C language, called RTL
verification. If the RTL verification is done, the RTL code is synthesized in synthesis
tool, Design Compiler, with suitable constrain, and we usually have timing overdesign
in this stage because the synthesis tool don’t have the real line delay. The gate-level
netlist generated by synthesis tool is verified with the result generated by RTL
verification in Verilog XL, called gate-level verification. APR (Automatic Place and
Route) tool, such as SOC Encounter, help us to implement the chip from gate-level

netlist and also help us to make sure the chip meet the layout design rule. The layout

7

file (GDS) generated by APR tool is verified in Calibre by DRC (Design Rule Check)
and LVS (Layout versus Schematic). The post-layout simulation using gate-level
netlist generated by APR tool is used to verify the result as compared with gate-level
simulation. Usually, the chip has post transistor-level simulation before the chip is
taped out. However, the simulation time is too long if the chip has too many
transistors. The 802.16e baseband receiver has over 1 million gates and istoo large to
simulate by post transistor-level simulation. Thus, we skip the simulation in this stage.

Finally, the chip istaped out.

C++ System Design
2
C+i Fixed Point
System Simulation
2
: Verilog RTL
Verilog XL Simulation
v
Design Compiler Logic Synthesis
L Z
: Verilog Gate-Level
Verilog XL Simulation
2
SOC
Encounter Place and Route
v
Calibre Layout Verification
DRC/LVS
v
) Post Gate-Level
Verilog XL Simulation
v
] Post Transistor-
Nanosim Level Simulation
v
Tape-out

Fig. 5.1 Cell based chip design flow

78

5.2 Multi-Frequency Design

The 802.16e baseband receiver has two clock domains. One is 11.2 MHz for
achieving the required data rate to IEEE 802.16e. The other is 7 times of 11.2 MHz
which equals to 78.4 MHz. Since there are several combinational circuits between the
registers in different clock domain, we have to set the different timing constrain in

those path for the respected timing check. An example of two clock domainsis shown

in Fig. 5.2, and the default timing check is shown in Fig. 5.3.

DFF

Comb. Logic

DFF

Fig. 5.2 Combination logic circuits between2clock domains

CLK_A

CLK B

CLK B

CLK A

DFFALI to.DFFB2

I

SO

Setup relation

Hol

L

d relation

L/

DFFBI1 to DFFA2

Hol

d relation

I

L

Setup relation

L

I

L

Fig. 5.3 Default timing check in 2 clock domains

79

The frequency of CLK_A is 3 times of CLK_B, and the 2 different conditions of
timing check in different clock domains are shown in Fig. 5.3. For the upper case of
Fig. 5.3 (DFFA1 to DFFB2), the default timing check leads the timing constrain of
the combination circuitsis limited in cycle of CLK_A. And, for the lower case of Fig.
5.3 (DFFB1 to DFFA?2), the default timing check also leads the timing constrain of
the combination circuits is limited in cycle of CLK_A. However, in the lower case,
the expected timing constrain of the combination circuits usually is cycle of CLK_B
shown in Fig. 5.4. Therefore, we have to correct the default timing check by setting
the SDC (Synopsys Design Constrain) constrain'in synthesis tool. The commands of
SDC constrain for changing-the timing constrain from Fig. 5.3 to Fig. 54 are
“set_multicycle path 3 - end -+ setup - from CLK B = to CLK_A” and

“sat_multicycle path 2 - end™="hold "~ from'CLK B -ito CLKZA”.

DFFBI1 to DFFA2

CLK B

Hold relation Setup relation

v [PRYLHLTT LTL

Fig. 5.4 Expected timing constrain for DFFB1 to DFFA2

In our case, FFT_dem block gets the signal from synchronization block, and the
synchronization is working at the low clock frequency 11.2 MHz while the FFT_dem
block is working at the high clock frequency 78.4 MHz. Thus, we have to set the
commands for SDC constrain, too, and the commands are similar to the commands
mentioned before.

Since we have two clock domains, frequency divider is used in our baseband

receiver design. In synthesis stage, the frequency divider will introduce the clock

80

skew, which should be fixed by APR tool if we synthesize the receiver with frequency
divider. Therefore, we separate the receiver into 2 parts, one is frequency divider, and
the other is circuits with 2 ideal clock input. The two parts of receiver are synthesized
individually, and combined in APR tool shown in Fig. 5.5. In addition, the gate-level
verification is verified the gate-level netlist of circuits without frequency divider, and

issimulated with 2 ideal clocks.

Gate-Level
Simulation with
2 ldeal Clock

L

Circuits with 2 , Gate-Level
Ideal Clock Input > Synthesis [Netlist

802.16e
Receiver

APR Tool

Frequency . Gate-Level
Divider > Synthesis Netlist

Fig. 5.5 Synthesis flow of chip with frequency divider

5.3 Chip Floor Plan

Since the 802.16e baseband receiver is a sequential system; the floor plan of the
baseband receiver is based on the sequential order of'the receiver shown in Fig. 5.6.
From Fig. 5.6, the components of the receiver based on the sequentia order are
planed from north to south of the whole chip.

As the result of APR, the chip size of the 802.16e baseband receiver is 3211 x
3211 um? however, the size of the chip is too large to piece together with other chips
in a shuttle since the shuttle size is 4000 x 4000 um?. In order to tape out with other
chips, a rectangular version of the receiver chip is used to replace the square version
shown in Fig. 5.7. The chip size of rectangular version is 3955 x 2755 um? which is
large than that of square version but is more flexible to piece together with other chips
inasnuttle.

81

fARRRGARARARE

FFT with 5 Shared
Memories

Synchronization

Channel 1 Channel 2
FFT/NFFT FFET/IFFT

Channel1 Estimator Channel2 Estimator
Buffer Buffer

Other Block of Channel Estimation

i

Channel 1 Estimator
Buffer

FFT with
5 Shared Memories Channel 2

FFT/IFFT

Other Block of
Channel Estimation

Synchronization
Channel 2

FFT/IFFT

Channel 2 Estimator

Fig. 5.7 Rectangular version floor plan of the 802.16e baseband receiver

82

5.4 Chip Summary

The chip summary is shown in Table 5-1. The square version is prepared to tape
out from CIC, and the rectangular version is directly taped out from UMC. The cell
library and PAD library is different between the two versions: square version’s library
is from Faraday, and rectangular version’s is from UMC. As the results shown in
Table 5-1, the square version’s working frequency can meet the system specification
while the rectangular version’s can not. In summary, the taped out version chip sizeis
3955x2755 um?, power consumption is 47.1 mW at 8.2/57.1 MHz, and is using UMC
90nm 1V CMOS process. Moreover, the area of.two FET/IFFT processors for
FFT_ch/IFFT_ch blocks in.DF DF+based CE in the taped out chip is 1.711 mm?, and

the power consumption of that'is20.2 m\W working'at 57.1 MHz.

83

Table 5-1 Chip summary

Specification

Square Version

Rectangular
Version
(taped out)

FFT_ch/IFFT _ch
Processors
(taped out)

Technology

UMC 90nm
CMOS 1POM
v

(Cell/PAD
from Faraday)

UMC 90nm
CMOS 1P9M
v

(Cell/PAD from
UMC)

UMC 90nm
CMOS 1P9M 1V
(Cell/PAD from
UMCQC)

Core

2411x2411

3144x1944

Area(um?)

PAD Core

3057x3057

3799%x2599

Chip

3211%x3211

3955%2755

1.711 mm?

Working Frequency

11.2/78.4 MHz

8.2/57.1 MHz

57.1 MHz

Power Consumption

(Simulation)

68.5-mW\/

47.1 mW

20.2 mW

[nput

26

26

Output

66

66

Power/GND

66

68

Biasfor 1/0
PAD

(only for
PAD from
Faraday)

Total

Chapter 6

Conclusion and Future Work

In this thesis, a FFT/IFFT processor with parallel-in-parallel-out in normal order
which is used in a DF DFT-based channel estimation block is proposed. A 802.16e
baseband receiver including this DF DFT-based channel estimation is taped out.

To design a FFT/IFFT processor with parallel-in-parallel-out in normal order, we
analyze different paralel-in-parallel-out FFT architecture, and try to design the
FFT/IFFT processor based on"memory-based architecture. Memory allocation helps
us to design a FFT/IFFT processor with parallel-in-parallel-out in normal order, and
commutator design helps us to use single port memories t0 reduce the area of
memories. These two methods can also be applied to different specification of
parallel-in-pardlel-out FFT processor.wAs the synthesis results, the proposed
1024-point FFT/LFFT. processor..can achieve the throughput rate up to 1.28 G
samples/sec and the'exeeution time down to 7.3 us when working at 160 MHz. When
working at the system required.78.4 MHz, it consumes 21.7 mW with 155792 gates
(including memory) that occupy 0.545/mm? by using 90 nm, 1V CMOS process.

A study of partial FFT for DF DFT-based channel estimation is also presented in
thisthesis. The pruning algorithm with only a subset of input or output points can help
us to decrease the FFT processor hardware cost, and the multiple subsets of input or
output points help us to save more power in FFT computation. As the anaysis, the
proposed partial FFT processor can reduce 75.1% of the memory size, 22.3% of the
complex multipliers, and 30% of the complex adders as compared with traditional

radix-2 SDF FFT architecture. Furthermore, with increasing the partial FFT control

85

for the proposed partial FFT processor, the proposed partiadl FFT can reduce
maximum 65.3% of multiplication operations and 49.5% of addition operations,
which may save more power if the 8 valid output point’s indices have common bhits.

In the future, since we only implement the FFT/IFFT processor with
parallel-in-parallel-out in normal order, a suitable FFT/IFFT processor for DF
DFT-based channel estimation have to keep on study, such as the FFT/IFFT processor

combining partial FFT algorithm and MIMO FFT concept.

86

Reference

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

R.W. Chang, ”Synthesis of Band-Limited Orthogonal Signals for Multichannel
Data Transmission”, Bell Syst. Tech. J., Vol.45, pp. 1775-1796, Dec. 1966.

|[EEE, Std. 802.16-2004: Air Interface for Fixed Broadband Wireless Access
Systems, 2004.

|IEEE, Std. 802.16e: Air Interface for Fixed and Mobile Broadband Wireless
Access Systems, 2005.

M. dulia,, F. G Garcia, M. Jose, P. B., S. Zazo, “DFT-based channel estimation in
2D-pilot-symbol-aided OFDM wireless systems” IEEE Vehicular Technology
Conference, Vol. 2, pp. 810-814, May 2001.

V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data
rate wireless comimunication: Performance analysis and code construction,”
|[EEE Trans. Inform. Theory, Vol. 44, No. 2, pp. 744-765, Mar 1998.

|EEE Std. 802.16-2001 |EEE Standard fer L ocal and Metropolitan area networks
Part 16: Air Interface for Fixed Broadband Wireless Access Systems.

Y. Li, “Channel 'Estimation for OFDM Systems with Transmitter Diversity in
Mobile Wireless Channels,” |EEE J.»Selected Areasin Commun., Vol. 17, pp.
461-471, Mar. 1999.

Y. Li, “Simplified Channel Estimation for OFDM Systems With Multiple
Transmit Antennas,” |EEE. Trans. Wireless:Commun., Vol. 1, pp. 67-75, Jan.
2002.

JJ V. D. Beek,"O. Edfors, M. Sandell, S. K. Wilson and P. O. Brjesson, “On
channel estimation“in’ OFDM..systems;”= Vehicular Technology Conf., pp.
815-819, 1995.

M. L. Kuand C. C. Huang, “A Derivation on the Equivalence between Newton’s
Method and DF DFT-Based Method for Channel Estimation in OFDM Systems,”
submitted to |EEE Trans.Wireless Commun.

Rabiner, L.R., and Gold, B. “Theory and application of digital signal processing”
(Prentice Hall, 1975).

J. W. Cooley and J. W. Tukey, “An Algorithm for Machine Computation of
Complex Fourier Series,” Math. Computation, Vol. 19, pp. 297-301, April 1965.
S. He and M. Torkelson, “A New Approach to Pipeline FFT Processor,” Parallel
Processing Symposium, pp. 766-770, 1996.

S. He and M. Torkelson, “Designing Pipeline FFT Processor for OFDM (de)
Modulation,” URSI International Symposium on Signals, Systems and
Electronics, pp. 257-262, 1998.

87

[15] E. H. Wold and A. M. Despain, “Pipeline and Parallel-Pipeline FFT Processors
for VLSI Implementation,” |IEEE Transactions on Computers, Vol. 33 No. 5, pp.
414-426, May 1984.

[16] S. Magar, S. Shen, G Luikuo, M. Fleming, and R. Aguilar, “An application
specific DSP chip set for 100 MHz data rates,” in Proc. Int. Conf. Acoustics,
Speech, and Signal Processing, Vol. 4, pp. 1989-1992, Apr. 1988.

[17] B. M. Bass, “A low-power, high-performance, 1024-point FFT processor,” |IEEE
J. Solid-State Circuits, Vol. 34, No. 3, pp. 380-387, Mar. 1999.

[18] Y. W. Lin, H. Y. Liu, and C. Y. Lee, “A 1-GS/s FFT/IFFT Processor for UWB
Applications,” |EEE journal of solid-state circuits, Vol. 40, No. 8, pp. 1726-1735,
Aug 2005.

[19] T. Sansaloni, A. Pe'rez-Pascual, V. Torres and J. Valls, “Efficient pipeline FFT
processors for WLAN MIMO-OFDM systems, 2. Electronics letters 15", Vol. 41,
No. 19, Sep 2005.

[20] L. Jia, Y. Gao, J:lsoaho, and H. Tenhunen, “A new VLSI=oriented FFT algorithm
and implement,” in Proc. 11th Annu. |IEEEInt. ASIC Conf., pp. 337-341, Sep
1998.

[21] L. G Johnson, “Canflict Free Memory .Addressing for. Dedicated FFT
Hardware;” |EEE Transactions on Circuit and System-11: Analog and Digital
Signal Processing, Vol. 39, No.5, pp.-312-316, May 1992.

[22] Y. Ma, “An Effective Memory /Addressing Scheme for FET Processors,” |IEEE
Transactions on Signal Proeessing,. \ol. 47, 1ssue. 3, pp. 907-911, March 1999.

[23] H. V. Sorensen, “Efficient Computation-of the DFT with' Only a Subset of Input
or Output Points,” IEEE Transactions on signa processing, Vol. 41, No. 3, pp.
1184-1200, March.1993.

[24] Y. W. Lin, H. Y. Liu,;and C. YuLee,“A Dynamic Scaling FFT Processor for
DVB-T Applications,” |IEEE Journal of solid-state circuits, Vol. 39, No. 11, pp.
2005-2013, November 2004.

[25] J. D. Markel, “FFT pruning,” IEEE Trans. Audio Electroacoust., Vol. 19, No. 4,
pp. 305-311, Dec. 1971.

[26] D. P. Skinner, “Pruning the decimation in-time FFT algorithm,” IEEE Trans.
Acoust., Speech, Signal Processing, Vol. 24, No. 2, pp. 193-194, Apr. 1976.

[27] H. V. Sorensen, “Efficient Computation of the DFT with Only a Subset,” |IEEE
Transaction on signal processing, Vol. 41, No. 3, March 1993.

[28] C. M. Chen, Y. H. Huang, “Partial Cached-FFT Algorithm for OFDMA
Communications,” IEEE TENCON, Oct 2007.

[29] L. Jia, Y. Gao, J. Ispaho and H. Tenhunen, “A New VLSI-Oriented FFT
Algorithm and Implementation”, |EEE Internationa ASIC Conference, pp.

88

337-341, Sep 1998.
[30] Xilinx Corporation, “Fast Fourier Transform,” LogiCore v3.1, Nov 2004.

89

