

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

嵌入式系統晶片之匯流排與記憶體設計探索

On-Chip Bus and Memory Architecture Exploration for
Embedded SoC

研究生： 顏于凱

指導教授： 劉志尉

中 華 民 國 九 十 七 年 十 一 月

嵌入式系統晶片之匯流排與記憶體設計探索

On-Chip Bus and Memory Architecture Exploration for

Embedded SoC

研 究 生：顏于凱 Student: Yu-Kai Yen

指導教授：劉志尉 博士 Advisor: Dr. Chih-Wei Liu

國 立 交 通 大 學

電子工程學系 電子研究所班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

In partial Fulfillment of the Requirements for the Degree of

Master of Science

in

Electronics Engineering

November 2008

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 七 年 十 一月

嵌入式系統晶片之匯流排與記憶體設計探索

研究生：顏于凱 指導教授：劉志尉 博士

國立交通大學
電子工程學系 電子研究所

摘要

因具高適應性，可程式化(programmable)之以處理器架構為基礎之系統單晶片

(processor-based SoC)設計，在各式各樣的多媒體與通訊應用中愈來愈受歡迎。整合多核

心或多運算單元於單一晶片上，將使系統晶片上的匯流排(on-chip bus)設計與記憶體的

架構越趨複雜，如何設計符合運算能力的需求並且減少硬體花費與能量消耗是亟需解決

的重要議題。利用設計空間探索(design space exploration)，透過系統模擬技術，可決定

重要的晶片設計參數，使系統單晶片在設計初期，就朝對的方向進行，減少來回重複的

模擬次數，達到快速上市(Time-to-Market)需求。傳統設計空間探索經常會採用全系統模

擬(full-system simulation)方式，然而，系統模擬往往會耗費大量的時間，在本篇論文中，

我們提出一套支援多種抽象層級、多種協定的資料傳輸產生器(traffic generator)，可加速

系統單晶片上匯流排和記憶體架構的設計與探索。此外，我們建立一套完整的設計方

案，包括可針對特定的應用程式碼產生資料傳輸的流程，以及針對指定平台的全系統模

擬環境。我們的資料傳輸產生器提供兩種選擇來加速多顆處理器的系統晶片模擬，分別

稱之為 TG-1 以及 TG-2；TG-1 會事先取出處理器的記憶體存取動作當作資料傳輸的來

源，並在全模擬平台內保留快取記憶體(Cache)的模擬; TG-2 則是事先模擬處理器與快取

記憶體以取得傳輸資料，並且完全簡化在全模擬平台內傳輸產生器之動作。TG-1 能夠

比較精確模擬處理器動作，但是模擬速度較慢，反之，TG-2 模擬速度較快，但是精確

度較低，這兩種作法都可以用來探索以微處理器為架構基礎之系統晶片的廣大設計空

間。在 ARM 處理器架構的系統晶片中，利用我們的資料傳輸產生器建構模擬平台，和

傳統的指令集模擬(ISS)方式相比，可以達到超過 90%的精確度，並且增加到 4 至 6 倍模

擬速度。

On-Chip Bus and Memory Architecture
Exploration for Embedded SoC

 Student: Yu-Kai Yen Advisor: Dr. Chih-Wei Liu

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

ABSTRACT

High adaptive and programmable processor-based SoC becomes popular for various
embedded multimedia and communication applications. More and more computing engines
can be integrated in a single chip. On-chip bus and memory architecture exploration on
embedded SoC is an important issue to reduce cost and power while achieving computation
requirements. Full-system simulation is usually used to perform the design space exploration.
However, simulation is usually time-consuming. In this thesis, we propose a multi-abstraction,
multi-protocol Traffic Generator (TG) to accelerate simulation-based interconnection and
memory architecture exploration on processor-based embedded SoC. The complete design
framework includes a traffic generation flow from specific application source code and a full
system simulation environment for target platform. Our TG supports two choices, called TG-1
and TG-2, to speedup simulation of multicore SoC. TG-1 solution first extracts processor’s
memory access patterns as the traffic source and keeps cache modeling contain in full system
simulation environment. TG-2 solution, on the other hand, off-lined simulates both processor
and cache behavior to produce traffic and completely simplifies TG’s modeling in full system
simulation environment. TG-1 has higher accuracy but slower simulation speed. On the
contrary, TG-2 is faster but lower accuracy. Both solutions could be used for large design
space SoC exploration which has already decided target processor. These TG choices operate
with a same traffic file format and their tool chains support parameterized configuration and
statistical analysis. Utilizing proposed traffic generators in an ARM-based SoC platform, our
TG shows more than 90% accuracy and 4~6 times improvement in simulation speed over
original Instruction Set Simulator (ISS) model.

誌 謝

研究生涯轉眼即逝，兩年來受到許多人幫助及鼓勵，才能順利完成碩士學業，在此致上

最深的感激。

感謝劉志尉教授，從我大學專題時的指導至今的照顧，使我在專業知識及研究態度上受

益良多。特別感謝周景揚教授、任建葳教授及周世傑教授，謝謝你們在百忙之中，撥冗

參與論文口試，並對我的研究給予寶貴的意見，讓此篇論文更加完備充實。

感謝林泰吉學長。學長不辭辛勞地對我的研究工作步步導引，並對我的過錯做最大的包

容，有他的指導協助，才能有今日的成果，學長對做事情的態度、對研究的熱誠，永遠

是我心中最好的榜樣。

感謝實驗室學長姐、同學及學弟們。尤其是小 A 學長對我平常的照顧與指導，以及歐、

郭、阿圳、佑昆及 Nelson，感謝學長們在研究生生涯中的各項協助及鼓勵。感謝阿甘、

小黑、國強、聲昀、世賢、安綺、雅婷，謝謝學弟妹們在平時的一切幫忙。

感謝岳泰、Hank、老板、阿德及 Van，有你們的陪伴，我才能順利走過這段研究生涯，

渡過生活中、研究上種種的難關。

感謝我同住的室友們，感謝威年、耀仚，拆夥的室友健中、亦安，謝謝你們讓我在從實

驗室回到住所後，有一份家的感覺。

最後，感謝我最親愛的家人。爸、媽、妹，感謝你們一路上的支持及鼓勵，沒有你們就

沒有今日的我，謝謝你們。

謹將此篇論文獻給所有曾支持我、協助我的人，衷心的感謝並祝福你們。

于凱
謹誌於 新竹

2008 冬

CONTENTS

1 INTRODUCTION .. 1
1.1 Technology Trends .. 1
1.2 SoC Design Tradeoff ... 2
1.3 SoC Design Space Exploration ... 4
1.4 Electronic System Level Simulation Environment ... 6
1.5 Thesis Organization .. 7

2 ARCHITECTURE EXPLORATION FOR EMBEDDED SOC ... 9
2.1 An SoC Exploration Framework ... 9

2.1.1 Full-system simulation platform .. 10
2.1.2 On-chip interconnection and memory architecture analysis .. 11

2.2 Simulation Speed of ESL Simulation .. 16
2.2.1 ESL development tools .. 16
2.2.2 ARM-based SoC platform on ESL .. 18

2.3 Related Work ... 21
2.3.1 TLM-based system evaluation ... 21
2.3.2 Traffic generator ... 25

3 PROPOSED EXPLORATION METHOD ... 31
3.1 Proposed Exploration Design Space ... 31
3.2 Proposed Traffic Generator Based Exploration Method ... 33

3.2.1 Proposed TG-based exploration method .. 34
3.2.2 Off-line traffic generation .. 36
3.2.3 Full system simulation ... 41
3.2.4 Analysis of two proposed TG .. 46

3.3 Verification of Proposed Traffic Generator ... 48
4 EXPERIMENT RESULTS .. 55

4.1 Experiment Setup .. 55
4.2 Experiment Results ... 57

4.2.1 Simulation speed .. 57
4.2.2 Simulation profiling ... 58

4.3 Discussion ... 60
5 CONCLUSIONS .. 63
REFERENCES ... 65

LIST OF FIGURES

Figure 1-1 Product function/chip and industry average “Moore’s Law” trends [1] ... 2
Figure 1-2 Floorplans example for 4, 8 and 16 core processors .. 3
Figure 1-3 System modeling graph [16] .. 6
Figure 2-1 The SystemC-based architecture .. 11
Figure 2-2 The MPARM platform architecture ... 12
Figure 2-3 Simulator performance ... 12
Figure 2-4 Partial crossbar (a) “32” , (b) “54” ... 13
Figure 2-5 Bus traffic analysis (a) bus usage, (b) bus efficiency, (c) bead average latency 14
Figure 2-6 Performance of different architecture configuration .. 15
Figure 2-7 Coware Platform Architect-ConvergenSC [17].. 16
Figure 2-8 Coware Platform Architect analysis GUI [17] ... 18
Figure 2-9 4-ARM platform architecture ... 19
Figure 2-10 Different modeling abstraction for design space exploration ... 23
Figure 2-11 Simulation environment with core/TG model .. 25
Figure 2-12 Traffic modeling formalism ... 28
Figure 2-13 Example trace file (a) MPARM trace (b) TG program ... 29
Figure 3-1 Multicore system architecture .. 32
Figure 3-2 Proposed traffic generator .. 34
Figure 3-3 Proposed exploration flow ... 35
Figure 3-4 Off-line traffic generation of proposed TG-1 ... 36
Figure 3-5 Off-line traffic generation of proposed TG-2 ... 37
Figure 3-6 Purposed traffic timing diagram ... 38
Figure 3-7 Proposed traffic file format (a) Text format (b) Binary format .. 39
Figure 3-8 ESL simulation platform of proposed TG-1 ... 42
Figure 3-9 ESL simulation platform of proposed TG-2 ... 42
Figure 3-10 Proposed TG-1 behavior flow .. 43
Figure 3-11 Proposed TG-2 behavior flow .. 44
Figure 3-12 Single ARM platform architecture ... 49
Figure 4-1 Multiple ARM platform architecture .. 56
Figure 4-2 Simulation speed of different core number .. 58

LIST OF TABLES

Table 2-1 Simulation result .. 20
Table 2-2 Design space of cache .. 21
Table 2-3 TG instruction set .. 28
Table 3-1 Proposed exploration design space .. 33
Table 3-2 Traffic format ... 40
Table 3-3 Design space of experiment single ARM platform .. 50
Table 3-4 Execution time of FIR benchmark ... 51
Table 3-5 Execution time of JPEG benchmark .. 53
Table 4-1 Design choice of multiple ARM platform ... 56
Table 4-2 Comparison of simulation speed ... 57
Table 4-3 Runtime simulation profiling of two TGs .. 59
Table 4-4 Off-line traffic generation effort .. 59

 1

 1 INTRODUCTION

Silicon technology now allows us to build chips consisting of billions of transistors. This

technology has enabled new levels of system integration onto a single chip, and at the same

time has completely revolutionized how chip design is done. The demand for more powerful

products and the huge capacity of today’s silicon technology have moved System-on-Chip

(SoC) designs form leading edge to mainstream design practice. These chips have one, and

often several, processors on chip, as well as large amount of memory, bus-based architectures,

peripherals, coprocessors, and I/O channels. SoC design complexity, including of hardware

and software designs, has rapidly increased as the process improve. System level design and

verification is the main issue of today’s SoC design.

1.1 Technology Trends

The demand for more computing power has never stopped. Figure 1-1 shows chips’

transistors and functionality increase follow “Moore’s Law”. More and more components

 2

could be integrated into a single chip, including large amount of memory, multiple processors

units, high complexity interconnection network and reusable intellectual property (IP).

Figure 1-1 Product function/chip and industry average “Moore’s Law” trends [1]

As complexity increase, geometry shrinks, and time-to-market pressures continue to

escalate, chip designers are turning to a modified flow to produce today’s larger SoC designs.

System level design exploration is needed because design tradeoff is unpredictable. Chip

designers are changing their design flow form waterfall model to spiral model and combining

top-down and bottom-up methodology [2]. Engineers simultaneously develop top-level

system specifications, system-level verification suites, and timing budgets for the final chip

integrations. That means they are addressing all aspects of hardware and software design

concurrently: functionality, timing, physical design, and verification. Designers must consider

power, area and performance issue of SoC at system-level design. On-chip interconnection

and memory architecture exploration are the key problems for SoC design.

1.2 SoC Design Tradeoff

Modern SoC are moving towards designs that feature multiple processing cores on a

 3

single chip. These designs have the potential to provide higher peak throughput, higher design

scalability, and greater performance/power ratios than monolithic designs. However, in spite

of the growing trend to put multiple cores on the chip, a deep understanding is lacking in the

literature of the design space of the interconnection framework, and particularly how it

interacts with the rest of the multicore architecture. For a given number of cores, the “best”

interconnection architecture depends on a myriad of factors, including performance objectives,

power/area budget, bandwidth requirements, technology, and even the system software.

Figure 1-2 Floorplans example for 4, 8 and 16 core processors

More cores in a chip bring more problems. First, connecting multicores in a chip is a big

issue. This is because power, area, latency, and bandwidth are all first-order design constraints

for on-chip interconnects. Second, the design choices for the cores, caches, and

interconnection interact to a much greater degree. For example, an aggressive interconnect

design consumes power and area resources that then constrains the number, size, and design

of the cores and caches. Figure 1-2 shows a floorplan example for 4, 8 and 16 core processors

[3]. Increasing the number of cores places conflicting demands on the interconnection –

requiring higher bandwidth while decreasing available real estate. Cache size and interconnect

bandwidth design exploration is a critical tradeoff of multicore SoC. Except these design

choices, memory and interconnect configuration are also big design challenges. For example,

cache line size is related to communication packet size which may cause the performance and

power consumption tradeoff [4]. The choices of interconnect network architecture is also an

 4

important issue of design exploration [5].

1.3 SoC Design Space Exploration

Design Space Exploration (DSE) for SoC is important to reduce cost and power while

achieving computation requirements. In order to understand the cost and performance tradeoff

among alternative design choices, many works have build up exploration methodology for

evaluating and analyzing or predicting performance value. Here, we introduce several kinds

of approaches.

 Static analysis approach

This solution is often used to characterize local behavior with models to evaluate latency,

energy or area. AMAT [6] is a popular model of approximate cycle evaluation for multi-level

memory hierarchy system. Y. Cho et al. [7] analyzed application source code and extract

memory access pattern. They built up an analysis bus model for evaluating latencies on

on-chip buses. A. Muttreja et al. [8] performed micro-modeling, pre-characterizing reusable

software components to construct high-level models to estimate performance and energy

components to construct high-level models to estimate performance and energy consumption.

Static analysis approach may combine with hardware and software models to predict the

approximate cost/performance value. The property of this model is the fast analysis capability.

However, this approach has lower accuracy.

 Dynamic simulation approach

This approach will produce a real case simulation for specific application. Trace based

simulation is always used for cache or bus architecture power and performance evaluation,

sometimes will combine with analytical models for DSE. W. T. Shiue, and C. Chakrabarti [9]

 5

used a trace-driven cache simulator and combined the AMAT model for energy and

performance evaluation. T. D. Givargis et al. [10] used a cache simulator plus cache and bus

analytical model for cache and bus co-design. Partial or full system simulation is also used in

many works. A. Asaduzzaman et al. [11] combined cache and full simulators to explore

system architecture on specific application. Simulation-based approach offers a precise and

detail analysis for exploration but may need long simulation time.

 Hybrid approach

Many works combined static and dynamic approach in exploration procedure. They may

use some search heuristics to reduce design space. W. Fornaciari et al. [12] analyzed small

benchmarks to order the design parameters by importance then simulated follow the degree of

sensitivity. E. Ipek et al. [14] simulated several design point and used their models to predict

the system performance and design tradeoff. T. Givargis et al. [14] analyzed dependency

between design choices and reduced design space need to simulate. These hybrid approaches

prune the large design choices and try to scale down simulation times.

Modern design space exploration has been proved that simulation is needed because

large amount of design choices on SoC make system behavior unpredictable. Simulation

provides precise and realistic performance analysis and trade-off exploration for all

architectures configuration, for example, on-chip bus and memory hierarchy. However,

simulation speed is the main problem that designers want to reduce. SoC designers need a fast

and accurate system level simulation environment whatever how they use search heuristics for

reducing simulation times. In this thesis, we will focus on system level simulation-based

exploration approach. We will propose a high accuracy, high speed embedded SoC simulation

methodology.

 6

1.4 Electronic System Level Simulation Environment

Electronic System Level (ESL) design and verification is an emerging electronic design

methodology that focuses on the higher abstraction level concerns first and foremost. The

basic premise is to model the behavior of the entire system using a high-level language such

as C, C++, or SystemC [15]. Designers raise the abstraction level of system models for

different system level design stage. Figure 1-3 shows different abstraction level of modeling

[16]. Node A to F represent high to low abstraction level which means fast to slow

implementation and simulation speed. X-axis in the graph represents computation and y-axis

represents communication abstraction model. Engineers could implement different system

models at proper design stage.

Figure 1-3 System modeling graph [16]

Electronic System Level (ESL) is now an established approach in most of the world’s

leading System-on-a-chip (SoC) design companies, and has been used increasingly in system

design. ESL tools such as CoWare Platform Architect [17], ARM RealView MaxSim [18],

Synopsys System Studio [19], etc, support designers to build up high flexibility simulation

environment at different abstraction level. Engineers use these platforms for HW/SW

 7

co-design, detail performance analysis, verification and design space exploration.

1.5 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 introduces a simulation-based

simulation framework and shows its problem of simulation speed. Other speedup techniques

are also described here. Chapter 3 addresses our proposed Traffic Generate (TG) based

exploration framework. An integrated traffic generation flow is presented as well. Moreover,

the verification of the proposed TGs’ accuracy shows in Chapter 3. Chapter 4 shows an

experiment of multicore platform simulation. We will present how much speedup of our

proposed solution. Finally, Chapter 5 concludes this thesis and describes the future works.

 8

 9

 2 ARCHITECTURE EXPLORATION FOR

EMBEDDED SOC

Embedded SoC are demanding high computing power and try to contain more and more

computing engines in a single chip. Multicore SoC can provide a high degree of flexibility

and represent the most efficient architectural solution for supporting multimedia applications,

characterized by there quest for highly parallel computation. As a consequence, tools for the

simulation of these systems are needed for the design stage, with the distinctive requirement

of simulation speed, accuracy and capability to support designs space exploration. In this

chapter, we introduce an ESL design framework which is based on SystemC as modeling

language. We point out the problem of system-level simulation environment and introduce the

solutions of previous works.

2.1 An SoC Exploration Framework

Supporting the design and architectural exploration of SoCs is a key for accelerating the

 10

design process and converging towards the best-suited architectures for a target application

domain. However, exploration at a very high level or at the register-transfer level is no more

suited for today’s huge and complex system. This framework proposed an MPSoC

architectural template and a simulation-based exploration tool, which operated at the

macro-architectural level, and they demonstrated its usage on a classical MPSoC design

problem, e.g. the analysis of bus-access performance with changing architectures and access

profiles.

2.1.1 Full-system simulation platform

L. Benini et al. built up a multiple ARM processors simulation platform called MPARM

[20]. They integrated multiple C/C++ implementations of Instruction Set Simulator (ISS) in a

simulation platform and embedded those in SystemC [15] wrappers. SystemC provided a

standard and well defined interface for the description of the interconnections between

modules. The wrapper realized the interface and synchronization layer between ISS core

model and the SystemC simulation environment. The cycle-accurate communication

architecture could be connected between ISSs.

The processing modules of the system are represented by cycle accurate models of

cached ARM cores. The module (Figure 2-1) is internally composed of the ARMv7 ISS model,

peripherals (UART, timer, interrupt controller) and a first-level cache simulator written in

C++. And the bus protocol interface was followed by AMBA or STBus protocol which active

by SystemC module. Besides the processing element, AMBA/ STBus bus model and memory

sub-system are all model in SystemC to build up a cycle accurate and bit accurate system. The

experiment result shows simulation speed is in the range of 60000–80000 cycles/sec. The

whole simulator was running on a Pentium 4, 2.26 GHz workstation. The simulation

environment was all built in SystemC which has high flexibility and could be used for

 11

different kinds of design space exploration. Next section would give an example of exploring

on chip communication in MPSoC.

Figure 2-1 The SystemC-based architecture

2.1.2 On-chip interconnection and memory architecture analysis

L. Benini et al. [21] proposed a complete platform for analysis and trade-off exploration

of on-chip communication architecture. They provided a case study that target on exploration

under a number of different architectural configurations and two industry-standard

communication infrastructures: AMBA Advanced High Performance Bus (AHB) from ARM

and STBus interconnect from ST Microelectronics.

They set up the MPARM platform as Figure 2-2. It is composed of (i) four configurable

32-bit ARM processors, (ii) their private memories, (iii) a shared memory, (iv) a hardware

interrupt module, (v) a hardware semaphore module, (vi) the 32-bit interconnection among

them all. Interconnection can be an AMBA AHB bus or a STBus arbitrary topology, resulting

in different versions of the platform. The memory devices’ access latency can be configured to

explore interconnection performance under several conditions. When the simulation starts,

 12

they supposed all data and instruction have been loaded in memory. The platform also

provides Interrupt and semaphore devices for inter-processor communication.

Figure 2-2 The MPARM platform architecture

Figure 2-3 Simulator performance

The simulation environment provides performance profiling and analysis, including (i)

statistics about processor and interconnection performance, (ii) VCD waveforms of all bus

signals, and (iii) traces of memory accesses performed by every core. However, simulation

accuracy and flexibility have to be traded-off with simulation speed. Figure 2-3 shows that the

signal-accurate and cycle-accurate platform running a pipelined matrix multiplications. The

chart depicts simulation performance with the AMBA AHB interconnect, as a function of the

 13

number of processors and of the requested output statistics. The simulation environment was

running on a Pentium 4 2.26 GHz workstation about 62000 to 86000 cycle/second for a 6-

ARM platform.

Figure 2-4 Partial crossbar (a) “32” , (b) “54”

The case study focus on two types of analysis enable by the simulator. The first is a

performance comparison amongst five interconnections: AMBA AHB (AMBA), STBus

configured as a shared bus (ST-BUS), STBus setup as a full crossbar (ST-FC), and two

additional STBus partial crossbar topologies ST-32 and ST-54 (see Figure 2-4). These

interconnections will be tested with the four benchmarks: matrix multiplications performed

independently by each processor (IND) and in pipeline between processors (PIP), with and

without an underlying OS (ASM-IND, ASM-PIP, OS-IND, and OS-PIP respectively). All

these results were measured with 8 kB ARM caches and with 1 wait state memories. The

traffic analysis shows the features of benchmark and the features of two interconnect

protocols and different interconnect architectures performance comparison. Figure 2-5 (a) and

(b) show the bus usage and efficiency, Figure 2-5 (c) compares the average read access

latency of different interconnections.

 14

(a)

(b)

(c)

Figure 2-5 Bus traffic analysis (a) bus usage, (b) bus efficiency, (c) bead average latency

 15

The second type of analysis is an architectural design space exploration. Based on the

most meaningful benchmark (OS-PIP), they explored performance in presence of different

system parameters like cache size, memory latencies and compiler optimizations. Figure 2-6

shows total execution time of the OS-PIP benchmark, in scenarios having different cache and

memory access latency setting. The result shows when comparing more efficient

interconnections to less efficient ones, gains are lowest when traffic is lightest. Under the

same configuration of cache and memory access latency, the execution time gain of choosing

one interconnection could be up to 2.1 times.

Figure 2-6 Performance of different architecture configuration

L. Benini et al. present a multicore SoC simulation environment that could be used to

evaluate and explore architectures at a high level of accuracy. Same work could also be found

in [5] which added AMBA AXI in case study. The MPARM ESL simulation environment

proved capable of analyzing in detail similarities and differences between those architectures.

However, the multicore ESL simulation environment has a critical problem: the simulation

speed may not be fast enough for today’s SoC design. We will show the problem in next

section.

 16

2.2 Simulation Speed of ESL Simulation

In this section we well show an example to point out problems of multicore ESL

simulation environment. The example platform was built on a modern ESL development tool

and simulated at higher TLM modeling environment. We will first introduce the ESL tool

environment and then the example platform we built and then we will show the problems.

2.2.1 ESL development tools

Figure 2-7 Coware Platform Architect-ConvergenSC [17]

CoWare Inc. CoWare Platform Architect [17] is the SystemC-based graphical

environment for capturing the entire product platform and the dash board for initiating the

platform analysis functions. Platform Architect speeds the concurrent design of SoCs with

embedded software, enabling users to rapidly create and validate SoC designs at the

 17

transaction level in SystemC. Together with CoWare Model Designer and the CoWare Model

Library, CoWare Platform Architect enables most comprehensive system-level design solution

available for SystemC. Figure 2-7 shows the graphical environment of CoWare Platform

Architect.

Properties of CoWare Platform Architect are listed below.

(A) Rapid capture and configuration of hierarchical SoC platforms

(B) Superior architecture and performance analysis for SystemC

(C) Rapid exploration of complex interconnect and memory architectures

(D) Advanced simulation, debug, and analysis for software development

(E) Automated integration of RTL blocks into the TLM system

(F) Automated creation of highly reusable, user-defined SystemC peripheral

components and unit tests

(G) Standards-based SystemC TLM modeling guidelines and examples using SCML

(H) Comprehensive SystemC IP model availability with the CoWare Model Library

With the property (H), Coware support model library includes a range of processor

models from leading vendors such as ARM and MIPS, transaction-level bus models and RTL

bus generators for common bus specifications such as AMBA, AXI, and OCP-IP, Denali

MMAV memory models, and peripheral models such as the ARM PrimeCells. With the

property (G), Platform Architect's native SystemC simulation environment is compatible with

IEEE 1666 SystemC Language Reference Manual (LRM), Open SystemC Initiative (OSCI)

transaction-level modeling (TLM) [22], and Open Core Protocol International Partnership

(OCP-IP) TLM standards [23], providing support for all SystemC constructs for use by all

members of a design team. Platform Architect also supports the OCSI SystemC Verification

(SCV) 1.0 library extensions for transaction recording.

 18

With the property (B) and (D), Coware Platform Architect support hardware and

software profiling and analysis (see Figure 2-8). The analysis includes VCD trace dump, bus

statistic analysis such as bus utilization and access latency, etc. Besides, the processors

models support debuggers, for example, GDB. Designers can build up a complete SoC

simulation environment composed with reused IP or user defined components in SystemC

model. With the benefit of SystemC language, the environment could be simulated at different

abstraction level for different design stage. In conclusion, CoWare Platform Architect supplies

an ESL development environment for design exploration, verification and performance

analysis. The ESL tool could bring better and faster SoC-based convergent products to

market.

Figure 2-8 Coware Platform Architect analysis GUI [17]

2.2.2 ARM-based SoC platform on ESL

We build up a 4 ARM11 SoC platform on Coware environment. The platform

architecture is follow by the framework in last section we introduced, MPARM. We use the

Coware Model Library’s processor model: ARM1176-JZS AXI-Model. The ARM model‘s

 19

computational abstraction support Cycle Accurate(CA) or Instruction Accurate(IA) level

modeling, and ARM’s interconnection support Untimed, TLM cycle accurate and pin-accurate

model. The system platform shows in Figure 1-1, we configure the ARM model as IA model

and turn on the cache simulation model (which is embedded in the ARM model). The

behavior of ARM IA model is in single access topology and one cycle latency for all

instruction execution. The cache model has no buffers are modeled due to the

instruction-accurate nature, no critical-word-first cache line loading scheme is used, and all

memory accesses, line fills, and line evictions execute in a blocking fashion. The Bus

Interface Unit (BIU) of ARM cores are configured at TLM Bus Cycle Accurate (TLM-BCA)

level. An ARM core has 4 64-bit AXI ports, I-AXI, D-AXI, P-AXI and D-MAAXI,

respectively for instruction, data, peripheral and DMA accesses.

Full Crossbar (AXI)

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Shared
Memory

ARM 11
I

Cache
D

Cache

BIU

ARM 11
I

Cache
D

Cache

BIU

ARM 11
I

Cache
D

Cache

BIU

ARM 11
I

Cache
D

Cache

BIU

Figure 2-9 4-ARM platform architecture

The interconnection is configured as a full crossbar with AMBA AXI protocol. One cycle

latency for memory access and has one AXI port for every memory component. We use four

512х512 integer JPEG encoding as benchmarks and run on every ARM core independently.

Input file streams and output file streams are all allocated in shared memory. Instruction (I)

and Data (D) cache are set at 4KB size, write-back coherent mode and random replacement

 20

policy.

Table 2-1 shows the simulation result. We setup one to four ARM cores platform to run

benchmarks independently. The execution cycle count shows no big change due to the

crossbar hierarchy. However, the simulation time is much different when core number

increase. The simulation speed is up to 380 k cycle/sec in 1 core platform, however, drops to

96 k cycle/sec in 4 core platform, about four times slow down. This result is same as MPARM

we introduced in section 2.1. More components in a ESL simulation environment, the

simulation speed drops down more quickly. As more and more processor cores would contain

in SoC, the simulation speed would be a problem.

Table 2-1 Simulation result

Platform
Execution Cycle count

(k cycles)
Simulation Time

(sec)
Simulation Speed

 (k cycles/sec)

1 core 60,029 157.521 381.085

2 core 60,029 319.646 187.800

3 core 60,030 476.443 125.996

4 core 60,030 622.727 96.399

The simulation takes 11 minutes to run JPEG benchmark. It is “OK” for one time

simulation. However, designers will use ESL simulation environment for architecture

exploration. During the design space exploration, simulation will be repeat and repeat. There

are two run-time behaviors very difficult to model at a high level: cache behavior and network

contention. Precise simulation of these two behaviors can only be done with a low-level

description of the components. This means days (sometimes months) of simulation for fully

search on design space.

We take an example of cache configuration. Table 2-2 shows the design space example

of I and D cache. The total design choices would be (30)2=900 configurations of level 1

 21

instruction and data cache of a processor. If we consider all processors choose the same

configuration in a 4-ARM platform. It would take about 155 hours for fully search on cache.

If all cores have different design choices, this means (900)4 ≈ 656,100,000,000 choices for

exhausted search. The design space here does not include the interconnect network yet. In a

conclusion, design exploration would take thousands (or even more) of hours for simulation.

The main problem of multicore SoC ESL simulation environment is the slow simulation

speed.

Table 2-2 Design space of cache

Design Target Design Choices

Cache size 4, 8, 16, 32 ,64 kBs

Cache write mode Write-back, Write-through

Cache replacemet policy

Pseudo-random
Round-Robin
Last-recently-use

Total Design Space 30

2.3 Related Work

Many works focus on exploration time. Here, we introduce two ways to speedup

simulation. One way focuses on modeling abstraction, we will introduce in section 2.3.1. The

other way focuses on completely simplifying core’s internal behavior, we will introduce in

section 2.3.2.

2.3.1 TLM-based system evaluation

Transaction Level Modeling is frequently used to accelerate exploration. L. Benini et al.

 22

[20][21][5] has proposed a cycle and bit accurate SystemC exploration framework. Accuracy

of this simulation environment is almost closed to RTL level. The simulation speed is slow

because of high accuracy. Here, we will introduce several frameworks target on speed up

simulation.

 Co-simulation SystemC platform

S. Boukhechem et al. [24] focused on rising up core’s abstraction level to speed up

simulation. They built up their own ISSs run as a distinct UNIX processes on the host system.

They connect several ISSs with SystemC communication platform models, by using Inter

Process Communication (IPC). Their simulation platform has capability of co-simulating with

RTL hardware model. The interconnection model is based on standard Wishbone bus [25].

This framework is much like MPARM but their ISS model does not directly embedded in

SystemC wrapper. They simulation platform is faster than other cycle accurate models and

RTL level simulation environment.

 Programmer’s view Transaction Level Modeling

R. B. Atitallah et al. [26] proposed a framework that makes fast simulation and

performance evaluation of MPSoC possible early in the design flow, thus reducing the

time-to-market. In this framework, they used Transaction Level Modeling (TLM) [16]

approach to raised modeling abstraction. They presented a new definition of the timed

Programmer’s View (PVT) [27] level which included two complementary modeling sublevels.

The first one, PVT Transaction Accurate (PVT-TA), offers a high simulation speedup factor

over the Cycle Accurate Bit Accurate (CABA) [20] level modeling. The second one, PVT

Event Accurate (PVT-EA), provides a better accuracy with a still acceptable speedup factor.

In the conventional definition of the PVT level, the hardware architecture is specified for

 23

both communication and computation parts, as well as some abstraction of the

communication infrastructure are applied. Standard PVT level does not include timing

specification. Using the “top-down” design approach, they proposed PVT has timing

information with two sublevels: PVT-TA and PVT-EA. Figure 2-10 summarizes their PVT

framework proposal. PVT-TA operates at a relatively high abstraction level and does not take

a specific communication protocol into account. This permits a rapid exploration of a large

solution space by eliminating non-interesting regions from the DSE process. Solutions

selected at the PVT-TA sublevel are then forwarded for a new exploration at the PVT-EA

sublevel. This second sublevel specifies a precise communication protocol and takes

architectural delays into account. Because estimation methodology that we developed for the

PVT-EA is more accurate, it is possible at the price of less simulation speed, to locate the

most efficient architecture configurations. PVT-TA and PVT-EA permit the use of PVT

models in a coherent methodology, and to have accurate estimations.

Figure 2-10 Different modeling abstraction for design space exploration

This framework chose ISS model to be core’s model which is same as MPARM

 24

framework. The cache model is not integrated in core model. Cache model is standalone and

connecting to processor model with easy interface. The interconnection network of system is

model in two type, read and write, and able to implement several protocols, e.g. OCP.

Simulation results show PVT-TA could have 6 to 9 speedup than CABA level; PVT-EA could

have 4 to 7 speedup than CABA level. Modeling effort of PVT-TA and PVT-EA is about

34.6% and 26.4% of CABA.

 Exploration at CCATB abstraction

S. Pasricha et al. [28] proposed a new TLM modeling abstraction called (Cycle Count

Accurate at Transaction Boundaries) (CCATB) for on-chip communication space exploration.

The abstraction level allows faster system prototyping and, more importantly, better

simulation performance, while maintaining cycle count accuracy. CCATB models yield an

average performance speedup of 120% over PA-BCA (Pin-Accurate Bus Cycle Accurate) and

67% over T-BCA (Transaction-based Bus Cycle Accurate) models.

CCATB includes read and write operation for a transaction. Transactions at the CCATB

level are similar to transaction at the TLM level [29] except that the transaction modeling, in

addition, passes bus protocol-specific control and timing information. Unlike PA-BCA and

T-BCA models, they do not maintain accuracy at every cycle boundary. Instead, they raise the

modeling abstraction and maintain cycle count accuracy at transaction boundaries. They also

use ISS as core model and implement in CCATB wrapper. The experiment result shows the

CCATB could have same cycle count value as T-BCA and PA-BCA. Most of important,

CCATB has better simulation performance than PA-BCA and T-BCA. In a summary, CCATB

offers a new cycle accurate abstraction level by sacrificing visibility of signals at every cycle

boundary and give user a faster interconnection modeling. This framework is like PVT

framework; both of them focus on communication modeling.

 25

In a summary, TLM- based simulation is operated at higher abstraction to raise the

simulation speed by sacrifice some fidelity. TLM models focus on communication behavior

abstraction and less care about computation abstraction. During the design flow, design space

can be narrowed down by applying higher abstracted TLM-based exploration first then using

lower abstraction modeling for exact performance estimation. Cycle-accurate exploration is

still required to determine the best design choice. Many works have discussed about TLM

modeling, they have proved that TLM simulation technology do help to speedup design space

exploration.

2.3.2 Traffic generator

Traffic Generators (TGs) are more and more used during SoC design for platform

prototyping or performance evaluation. When using TGs, simulation time is decreased

because the IP is not fully simulated. Simulation is also more flexible. The idea of using TG is

illustrated in Figure 2-11.

On-Chip Bus

Core Core Core

Peripheral Memory
ESL Simulation

Environment

SW SW SW

BIU BIU BIU

On-Chip Bus

TG TG TG

Peripheral Memory
ESL Simulation

Environment

 Figure 2-11 Simulation environment with core/TG model

TG could replace simulation using bit- and cycle-true simulation models of the IP cores,

and to speedup subsequent variants of that simulation using traffic generators coupled with

 26

accurate models of the alternative interconnects only. While the internal processing of IP

cores does not need thorough replication by the generators and can often be modeled by

waiting for an amount of cycles between network transactions. In this section, we will

introduce several traffic generators using on ESL simulation environment in previous work.

 Statistical traffic generator

G. Strano et al. [30] built a multi-abstraction and accurate virtual platform allowing an

in-depth investigation of the behavior of system components, captured in isolation and when

inter-operating with each other in a complete MPSoC platform of industrial relevance. The

whole MPSoC simulation platform was modeled and simulated with clock-cycle accuracy and

a SystemC-based virtual platform [21] which was used as the backbone environment (section

2.1). In order to speed up the analysis, functional traffic generated by the most critical audio

and video IP cores was reproduced by means of configurable traffic generators (IPTGs).

IPTG is a SystemC module developed by STMicroelectronics aimed at reproducing the

communication behavior of a generic IP. In its simplest configuration, IPTG can generate bus

traffic which obeys some statistical properties, e.g. in terms of burst length, transaction types,

addressing schemes, or it can also issue a transaction according to a specified sequence.

However, IPTG is best used to emulate the behavior of complex real-life IPs: such IPs can be

often seen as having a number of internal sub-process (or agents), each one with its own

characteristics (buffering space, transaction pipeline capability) but in some way dependent

on each other (e.g. when operating in pipeline). With IPTG, each agent traffic is handled

automatically according to its characteristics, and inter agent synchronization points can be set

to emulate dependencies between them. Once instantiated in a platform, IPTGs will generate

bus transactions at different abstraction levels (transaction-level, bus cycle-accurate)

according to what is specified in a per-IP configuration file, where all the required options and

 27

parameters are set. IPTG turn out to be a powerful and handy tool to the system integrator, as

it allows to try out the SoC communication infrastructure in real-life conditions such as

heavy-loaded transients which are not likely to be reproduced using random packet injection.

The IPTG has a great property of supporting multi-abstraction bus transaction. This is

good for designers to simulate system with high flexibility. However, the IPTG’s bus interface

unit can only support STBus and rely on other bridges to connect to interconnect of other

protocols. Another problem of IPTG is the traffic generated by IPTG obeys with statistical

properties but not real case of application in IP core. The configuration inside of the core,

such as cache size configuration, can not be emulated by TG.. That will be a critical problem

of design space exploration.

 Stochastic traffic generator

T. Risset et al. [31] used stochastic models for traffic generation. They presented an

automatic detection of traffic phases by analyzing simulation traces and have proved that

these phases are necessary to emulate the traffic generated by multi-media applications

running on SoC. They used their TG to replace an IP an cycle-accurate NoC performance

evaluation.

This work focused on an automatic phase of analyzing applications’ property and

generated stochastic traffic. First, they generated a reference trace by simulating the processor

IP. This trace is obtained with an ideal network environment (no network contention), which

makes the simulation very fast. Then, they processed the trace in a traffic analysis and

synthesis tool to obtain configuration files for traffic generators. They validate the TG in a

SystemC-based cycle-accurate and bi-accurate simulation environment: SocLib [32]. The TG

does not support any interconnect protocols and does not support multi-abstraction bus

transaction. The transaction modeled only in two phase of behavior: requests and responses,

 28

shows in Figure 2-12. The TGs’ transaction behavior is all model in time parameters, e.g. A(k).

This means the transaction interface does not model the real interconnect behavior of IPs.

This is a problem of real system simulation. The TG models would need user defined

transferring bridges to connect with the interconnection network in the target simulation

environment. This would cause the behaviors different form real IP core models on

simulation.

Figure 2-12 Traffic modeling formalism

 Deterministic traffic generator

Table 2-3 TG instruction set

Deterministic traffic generators are derived from real simulation traces or written from

scratch by IP designers. Such TGs can generate accurate transactions in time, size, and idle

time that match the behavior of an IP. S. Mahadevan et al. [33] proposed a TG

implementation as a very simple instruction set processor. They emulate TG as an OCP master.

 29

This TG is able to issue conditional sequences of traces composed of communication

transactions separated by idle/wait-periods. To evaluate the TG concept, they have integrated

the TG model into MPARM platform. On the platform, the OCP interface modules were

adapted to collect traces of OCP request and response communication events into a predefined

file format. The address and data fields of the transactions are also observed. Trace entries are

single or burst read/write transactions. Table 2-3 shows the OCP-master TG instruction format

to recode the traffic format. Figure 2-13 shows the example trace file extracted from MPARM

(a) and the trace file fed to TG (b).

 Figure 2-13 Example trace file (a) MPARM trace (b) TG program

Deterministic TG could strongly perform to replay the real master traffic behavior.

However, the accurate traffic is extract from full system simulation, this means the traffic

needs to re-simulate if the core configuration is changed, e.g. cache configuration. This is an

overhead of design exploration, and will restrict design flexibility. Secondly, the TG has

 30

strong ability to perform inter active behavior between cores. However, most of the traffic is

the behavior to access memories or other slave components. Traffic file size might be a huge

loading for simulation. Overhead of reading trace file would be more critical for this

“processor-like” traffic generator.

Traffic generators do speedup simulation time because it simplifies cores’ computation

behavior, but the behavior might be different from real core model. Traffic generated from

statistic or analytical solution may not represent the real application running on the platform.

SystemC wrapper of traffic generator is also an important issue that may derive the

transaction behavior. There are three important issues that we have found to be improved.

First, the interface of TG must support multiple abstraction level, flexible interconnect

protocols choices and other configurable parameters. Second, the behavior inside of traffic

generator model should not have too much overhead, e.g. file parser. Third, the overhead of

traffic file generation should not take too much effort. There should be a fast and automatic

tool for traffic file generation that supports configurable core parameters and application

change. Next chapter we will describe a TG-based simulation framework we proposed,

including of traffic file generation, TG models and traffic file format.

 31

 3 PROPOSED EXPLORATION METHOD

SoC exploration always takes time for simulation. Here, we proposed an exploration

framework which keeps those benefits in previous works, MPARM, but speedup the

exploration time on our simulation platform. Our method allows real application’s

performance analysis and trade-off exploration of on-chip communication architectures. We

will introduce our proposed Traffic Generator-based exploration framework in this chapter.

3.1 Proposed Exploration Design Space

The design issues we care about are memory organization and on-chip bus architecture

which are the same as the previous work, MPARM. Here, the system architecture is like

Figure 3-1. We focus on ARM1176-JZS and ARM1136-JZS processor as the target

processors. These two cores have same behavior of instruction modeling but have different

supported bus interface. ARM1136-JZS support AHB interface and has five ports, IAHB,

RAHB, WAHB DMAAAHB and PAHB. We will not discuss PAHB and DMAAHB here,

 32

since they are not often used. The IAHB is used for instruction read access only; RAHB is

for data read access and WAHB for write access. ARM1176-JZS supports AXI interface and

has four ports, IAXI, DAXI, DMAAXI and PAXI. We will not discuss PAXI and DMAAXI

here. The IAXI is used for instruction read access only. DAXI is for both read and write data

access, since AXI protocol interface has four channels, including read/write address, write

data channel, read data channel and write response channel. Caches could also be configured

by designers, e.g. I and D cache size.

Figure 3-1 Multicore system architecture

We focus on AMBA 2.0 and 3.0 interconnection protocols. The network architecture

could be shared bus, multi-layer bus, crossbar and else. Bus arbitration, register slicing and

bus width are also changeable. Memory model is also configurable in protocols, size, access

latency and access width. Peripheral IPs including VIC, timer, memory controller and other

Primecell IPs are available in Coware’s tools. The system flexibility is high. We list those

design choices in Table 3-1. Our simulation environment must support these design choices

configuration.

 33

Table 3-1 Proposed exploration design space

Explored Target Design Parameter Design Choices

Core
Core number 1, 2, 3, 4

Target processor
ARM1176
ARM1136

Cache Configuration

Cache size 0, 4, 8, 16, 32 ,64, 128 kBs

Cache line size 4, 8, 16, 32, 64, 128 Bytes

Set associativyty 1, 2, 4, 8, 16 ways

Write data coherent mode
Write-back
Write-through

Replacement policy

Pseudo-random
Round-Robin
Last-recently-use

Interconnect
Architecture

Protocol
AMBA 2.0 AHB
AMBA 3.0 AXI

Interconnect network

Single shared bus
Multi-layer bus
Crossbar

Bandwidth 32, 64 bits

Bus arbition
Round-Robin
Fixed arbitration

Memory Configuration Memory access latency 1, 2, 4, 8, 16, 32 cycles

3.2 Proposed Traffic Generator Based Exploration Method

We have introduced several simulation frameworks in section 2-3. Now, we are going to

deal with the slow simulation speed problem and use Traffic Generators to replace the core

models. Here, in this section we will introduce how we use traffic generators for exploration.

 34

3.2.1 Proposed TG-based exploration method

Section 2.3.2 describes several works that use traffic generators to replace core models.

However, there are two problems to use traffic generators. First, we must emulate processor’s

communication behavior as the original behavior. Second, we must avoid too much overhead

of traffic generation. Traditional traffic generator may use replay technique, e.g. Deterministic

TG (section 2.3.2), to make the TG behave the real transaction behavior of real application.

However, the traffic pattern needs to be generated from full system simulation. This approach

is not suit for our design space because we focus on memory organization and on-chip bus

architecture. When these design choices are changed, traffic file need to be re-generated by

repeated full system simulation. In order to deal with this problem, we propose a traffic

generator to deal with this problem.

Figure 3-2 Proposed traffic generator

Figure 3-2 shows the idea of our TG. The original processor model consists of three parts,

ISS, cache and bus interface unit. These three behaviors let the core behave like a real

hardware. However, we are now going to use this system level simulation environment for

design exploration. During the exploration steps, designers must run the simulation repeat and

repeat for our proposed design space, interconnect network and memory organization. Core’s

 35

computation behavior is always no change, or even don’t need to care about that. The most

important is transaction behavior must be the same for interconnection design exploration. So,

the cores’ ISS behaviors are no need to real simulate on the platform. Here, our approach is to

record the memory accesses that generated from ISS and keeps the cache and BIU in TG

model. This is because ISS always behave the same memory accesses while repeated

simulation. Our TG model only need to replay the access behaviors between cache and BIU

while exploration. Besides, if the design choices of cache are few, we can record the memory

access patterns produced form cache model and extract both cache and ISS models from the

TG model. Following with this idea, we propose our exploration flow in Figure 3-8. The first

step is to off-line generate from cores’ internal behavior. Then, we load the traffic file into the

TG model in our ESL simulation environment and start the exploration. The simulation will

be repeated and repeated generating performance values of different architectures. The traffic

file needs to be re-generated only when we off-line simulate cache model behavior. We will

introduce the details in the following sections.

Figure 3-3 Proposed exploration flow

 36

3.2.2 Off-line traffic generation

In this section, we will introduce our traffic generation method and the traffic file format

we use.

 Proposed traffic generation method

Figure 3-4 Off-line traffic generation of proposed TG-1

Here, we propose two ways to off-line generate traffic file. The first one is called “TG-1”,

shows in Figure 3-4. We separate the simulation framework in two steps. First, we off-lined

simulate cores’ ISS behavior. We use RVDS 3.0 ARM ISS [34] model as the core simulator,

since we focus on ARM 11. In this step, we will run the target application source code on the

ARM11 instruction accurate simulator to extract memory access patterns. These patterns

include instruction accesses, read data accesses and write data accesses. These patterns will

not change since the cores’ behaviors are always same for specific source codes. This means

the off-line simulation only need once and needs to re-simulate in exploration. The second

step is to translate the memory access pattern to our proposed traffic file format. The traffic

file consists of information including access type, access address, write data, access packet

size and timing information. Here, the timing information represents the execution pipeline

 37

latency. Since the target ARM 11 model of Coware Model Library set all instructions execute

one cycle. So, the default instruction latency is 1. We keep our traffic file generator to be

configurable. Users could set different timing information value for different target

processors’ ISS or even the cycle accurate core models. These values will be recorded in

traffic file, which could runtime control TG‘s behavior. We will introduce traffic file format in

next section.

Figure 3-5 Off-line traffic generation of proposed TG-2

The second approach of off-line simulation, as Figure 3-5, is called “TG-2”. We first run

the target application source code on the instruction accurate simulator to extract memory

access pattern. These patterns include instruction accesses, read data accesses and write data

accesses. Then we will use an off-line cache model to simulate the cache behavior for

different configuration. This cache model’s design space shows in section 3.1. The off-line

traffic generator will produce traffic file for TG which has information including access type,

access address, write data, access packet size and timing information. The traffic file format is

the same as “TG-1”. Here, the timing information represents the relative latency between two

transactions. The instruction latency is one cycle latency in ISS model, and we record this

timing information between two transaction behaviors in traffic file. Actually, the access

 38

pattern that we feed in cache model is equal to previous wok which means the ISS still need

only one time simulation. The overhead of this framework is that we need to re-simulation

cache model for different cache configuration. However, the cache model is implemented in

C/C++ language and no other interconnection behavior. The off-line cache model simulation

is fast. The cache model running on Pentiun 4 dual core 3.4 GHz PC only need for few

seconds. We can easily ignore this overhead in our simulation framework. Also, the benefit of

off-line cache model is the small traffic size. Cache could help to reduce transfer on system

interconnect and reduce system simulation loading.

 Proposed traffic format

Figure 3-6 Purposed traffic timing diagram

Figure 3-6 shows the timing diagram of our proposed traffic file format. First diagram

represent the real situation of transaction behavior. Tx represent the transaction cycles count.

Here, we define the transaction behavior starts from BIU request trigger until TG receives

response signal. τx represent the cycles count that no transaction happen. Core could be

 39

executing or idling during these cycles. If we can model the BIU to behavior correct, the Tx

and T’x should be equal. However, the cores’ computation behavior is decides by the off-line

simulator. If we do not model the latency of cores’ computation, the timing diagram would be

like the middle one in Figure 3-6, traffic with no relative time. Since we have claim that our

off-line model could record timing information in traffic file, our TGs’ timing diagram would

be like third diagram in Figure 3-6, traffic with relative time. Ideally, the traffic with relative

time should have same behavior of real situation as follow

Tx = T’’x

τx = τ’’x

The fist equation is decided by BIU’s accuracy, the second one is refer to our off-line

simulator. Ideally, these equalizations are met because we have recorded time information in

traffic file and the time value is equal to core’s ISS model.

Figure 3-7 Proposed traffic file format (a) Text format (b) Binary format

Here, we introduce how we set up the traffic format. Figure 3-7 (a) shows the text format

 40

of traffic file. A traffic access pattern includes relative cycle count, access type, burst size,

address and data. Figure 3-7 (b) shows the binary traffic file format. The off-line traffic file

generator will generate binary format traffic file.

Table 3-2 Traffic format

Access Information Binary Size (Bytes) Parameter

Relative time (τ) 2 0~65535

Type 1

I – Instruction access
R – Read data access
W– Write data access
Q– TG idle

Burst size 1 1, 2, 4, 8, 16, 32

Address 4 32-bit hexadecimal value

Data 4 32-bit hexadecimal value

Table 3-2 lists the information including parameters and encoding binary size. An

access command requires 11 bytes. Relative time requires 2 bytes, and highest cycle count is

65535. The traffic generator would automatic insert idle command if the relative time exceeds

this number. “Type” refers to different access command. “Q-type” is the idle command which

makes TG stall for τ cycles. “Burst size” is the option for indicate the burst transaction size.

The transfer unit of the burst size is 4 bytes. The data is also 4-byte length. This means that

when a command’s burst size is more than 1, the next (burst size -1) commands and itself

would be packet to one burst transaction. For example, in Figure 3-7 (a) the third command is

as flow:

 41

This command is a write data access for 4 burst data, and the address is “0x21000”, data is

“0x0”. TG will packet the next three commands to one burst transfer. The burst data would be

128-bit length. TG’s BIU will automatically change the burst transaction type follow the bus

protocol, e.g. “WRAP” or “INCR”.

3.2.3 Full system simulation

In this section, we will introduce in thee part, our ESL simulation environment, the

runtime behavior of TG model and the statistical capability of our TG model.

 ESL simulation environment

We use CoWare Platform Architect as the ESL platform development tool (section 2.2.1).

The CoWare Model Library supply IP and bus models help us to build up a flexible system.

We can build models by SystemC language in user-defined abstraction. Since Coware support

multiple protocol libraries it could help users to set up the model in OCP, AMBA 2.0 and

AMBA 3.0 interconnect protocol with APIs. All of the protocols available in these libraries

can be used at the PV (Programmer’s View which is equal to Untimed TLM), TLM, or

pin-accurate abstraction level. Besides, the analysis tool in Coware provides textual and

graphical views for both the hardware engineer and software developer to analyze items’

critical to System-on-Chip architecture and software performance. We use these

functionalities in our ESL simulation platform, so our platform kept those properties and even

have much more flexibility then the framework we discuss in last section.

We build the simulation platform as Figure 3-8. We model the TG module in SystemC

language which is able to use for different architecture. TG module is configurable for all

design space we list in section 3.1 and is a parameterized model. Users can set configuration

of cache model including cache size, cache line length, set associativyty, etc., on the Coware

 42

Platform Architect GUI design platform. The BIU’s interconnect protocols and port widths

are also settable on the platform. Also, we model the BIU to support multi-abstraction level.

This makes our platform to have more flexibility for exploration. The traffic files source,

statistical capability and cache on/off all are set on the ESL tool. This is convenient for users

change the system architectures. The TG model for TG-1 and TG-2 is the same. We need to

set the TG model to be cache off for TG-2 solution as Figure 3-9. SystemC is an event-driven

modeling language. The simulation speed will improve since we turn off the cache’s behavior

modeling.

Figure 3-8 ESL simulation platform of proposed TG-1

Figure 3-9 ESL simulation platform of proposed TG-2

 43

 Runtime behavior of TG

TG-1 behavior flow

Start

Finish

Wait

Parser

Idle

Cache
beh.

Transac
tion

Hit

Miss

Figure 3-10 Proposed TG-1 behavior flow

Figure 3-10 shows the behavior of TG-1. Our proposed TG including three parts of

model, file reader, cache model and bus interface unit (BIU). File reader will first read the

access information of traffic file including timing information, access type, burst size, address

and data. Simulation starts when an input start signal trigger. The parser will then identify the

access type to control instruction or data cache’s behavior. Here, the cache model will not

have pipeline latency property since the ARM ISS of Coware Model Library does not behave

pipeline cycles. Cache model decides if the access is hit or miss in cache memory. If the

access is hit, TG will return to parser state to get next access and record the timing

information. The time value will be recorded and accumulated until the cache access is

missing. When cache miss happens, TG will turn to an idle state. The TG will stall for several

clock cycles which have been recorded. This behavior flow will help simulation because TG

 44

will not stall for every access. After stall for recorded cycles, this time value will be reset to

zero then jump to transaction state. TG will trigger the BIU to start access. There is a FIFO in

BIU, TG will feed the instruction or data access into the command FIFO. The access would be

cache lines fill in, or cache lines write back or data write through. The information in FIFO

includes access type (I/R/W), burst size, address and data. BIU itself will start transaction

behavior in FIFO. The BIU here we proposed does not support interleaving transaction (also

called outstanding transfer) only one transfer for one time traffic access behavior since the

ISS model does not support outstanding transfer. TG’s BIU has same ports as the ARM11

model. BIU will identify which to port to send transfer request. After transaction finish, the

TG will return to parser sate to get next traffic access if the transaction finish. The TG’s

behavior will stop until the last traffic access.

Figure 3-11 Proposed TG-2 behavior flow

When we use “TG-2” solution to generate traffic file, the TG model in the simulation

environment includes two parts of model, file reader and bus interface unit (BIU). File

reader will first read the access information of traffic file including timing information, access

 45

type, burst size, address and data. Figure 3-11 shows the TG runtime behavior. Simulation

starts when an input start signal trigger. The parser will then jump to idle step and stall for

multiple cycles recorded in our traffic file. The BIU behavior is the same as TG-1. TG will

return to parser state to keep access next transaction. The TG-2 simulation speed will be fast

than TG-1 because there is no cache model simulation and smaller size traffic file.

 Proposed TG’s statistical capability

Coware’s analysis tools support interconnection analysis and profiling. However, the

core’s analysis capability is based on the models’ support. ARM’s ISS model does support

users to trace with debugger tool, cache model does too. Our proposed traffic generator

obviously not support trace behavior because no real computation in the system. So, our TG

focuses on cache behavior and transaction modeling. Many trace-based cache simulators are

available today, e.g. Dinero [35], MSCSim [36]. These cache models have high flexibility and

support statistics. However, these models may not suit for embedding in SystemC wrapper

because the complicated source code. Here we build up our simple cache model which

support all design space we target on. Our cache model support cache analysis which is based

on those popular cache models. The cache analysis includes access times, hit times, miss

times and miss rate. Also, the detail analysis including compulsory/capacity/conflict miss

times are support. Our on-line or off-line cache model both support these analysis capabilities

and can be turned on/off by users.

Transaction analysis capability is embedded in TG’s BIU. The statistic includes average

read/write access latency, total access times and total idle time. This information could help

users to get some referenced performance value, e.g. CPI and efficiency. TG itself also has a

timer inside. Timer would record timing when the TG starts its behavior until the end of

simulation. The timer is configurable for users and also able to turn off. These statistical

 46

capabilities can be control by users. These behaviors would slow down simulation, however,

not a critical part. Co-operating with the analysis tool on interconnect network, our proposed

simulation environment does help user to explore architectures as the exploration framework

in chapter 2. The only one capability not supported in our environment is the software

verification, however it is not important when architectures’ exploration. Our proposed

exploration framework offers a complete analysis tools for designers.

3.2.4 Analysis of two proposed TG

We propose two traffic generators TG-1 and TG-2. These TGs both have high simulation

speed than ARM model. But these TGs have there own properties. Here, we will introduce

their properties and show what situation the TG suit for.

TG-1’s benefits list as follow:

(A) Higher accuracy

(B) Runtime configurable cache model

(C) Only one time off-line simulation

The TG-1 has a property of higher accuracy because the cache is embedded in on-line

TG model. The interactive behavior between cache and BIU is much more closed to real case.

Also the latency on the TG has more accuracy than off-line simulation. The second benefit is

the cache model could change configuration with other interconnect architecture at the same

time. It is convenient for designers to change platform at ESL simulation environment. The

third benefit is the main idea of our proposed TG. Core’s computation behavior does not need

to re-simulate every time we change the architecture. Off-line traffic generation procedure

only needs to operate one time, since all configurations are settable at runtime. Though, the

off-line simulation may need couple minutes, which is refer to application’s behavior, the

 47

same traffic file could be used for hundreds or even thousands times simulation. Off-line

simulation overhead could easily ignore. However, there are some drawbacks of TG-1. We list

as follow:

(A) Huge traffic file

(B) Slower simulation speed

The first and main problem of TG-1 is the traffic file size. Memory access pattern

generate form application could be hundred MBs or even GB. Traffic file size is huge because

no cache support. Cache memory could help memory access times scale down form 10 TO

90%. Of course, this is depending on the application’s behavior. Especially for instruction

access, most of application’s source code always contains large amount of loops or function

calls. These would cause vast amount of instruction access for one fragment of codes because

repeat and repeat calls for same instructions. Large traffic size may cause simulation overhead.

We will show the problem in next chapter.

TG-2 has some benefits different from TG-1. We list as below:

(A) Smaller traffic file

(B) Faster simulation speed

The off-line traffic generator of TG-2 simulates cache behavior so the traffic file would

be smaller. Accesses of TG-2’s traffic file are always burst transaction due to the cache line

fill or wire back. Both traffic file have same format as we discuss in last section, so traffic file

is much smaller. This benefit cause the simulation on ESL environment has faster simulation

due to lower read file overhead. Also, no cache model on TG makes its behavior simpler. This

property let TG-2 has faster simulation speed than TG-2. However, there are some tradeoffs

between these two TGs. Here we list drawbacks of TG-2:

(A) Lower accuracy

 48

(B) Repeated off-line generated traffic for cache model changed

The TG-2 simulator has lower accuracy than TG-1. This is because TG-1 simulates both

cache model and transaction behavior at the same time. Behaviors between cache and BIU are

close to real ARM model. TG-2 neglect this interactive problem so has lower accuracy. The

other problem is repeat off-line traffic generation. We need to re-generate traffic pattern for

different cache configuration. This is an overhead for full exploration framework. However,

traffic file of one cache configuration is reusable when searching interconnect network, same

as TG-1. Also, the off-line cache model has small simulation time. Cache simulation may only

cost couple seconds. Most of important, ISS still only need one time simulation because there

is no change of core’s behavior. Off-line traffic generator only needs to repeat cache

simulation for different cache architecture.

We have introduced properties of TG-1 and TG-2. Both simulation frameworks are faster

than traditional frameworks. But, there are some situation suits for these two ways. TG-1 is

suit for large design space exploration because the runtime configuration benefit. Especially

for co-evaluate cache and interconnection relation. TG-2 is suit for design target on

interconnection architectures and smaller cache design space, because it needs to re-generate

traffic file for different cache. TG-1 has longer simulation time, but TG-2 need off-line

regeneration process. Designers choose one way for different purpose. The simulation speed

of two frameworks will show in next chapter.

3.3 Verification of Proposed Traffic Generator

We have introduced our exploration framework in previous work. Our exploration

simulation environment offers designer a complete tool chain and simulation flow. Here, we

are going to prove that our platform is reliable for design space exploration. We will compare

 49

our TGs with ARM ISS models and show the accuracy between those models.

We build a case study for verification. The target platform is a single ARM11 core

platform. We set up interconnection modeling abstraction at TLM Bus Cycle Accurate

(TLM-BCA) level. We build the platform on Coware Platform Architect ESL simulation

environment. We choose two benchmarks as target application.

(A) 2048-point floating point FIR

(B) 512х512 integer JPEG encoder benchmark

These two source codes are compiled in ARM O1 optimization. Both benchmarks will

read input bit-stream from shared memory and then write the output stream back. The

platform architecture is based on the 4-ARM platform we have introduced in section 2.2.2.

Single ARM with a private memory and a shared memory, programs are load in private

memory and execute as a local memory. Memory access latency is set in 1 cycle. The

platform architecture shows in Figure 3-12.

Figure 3-12 Single ARM platform architecture

In this verification case study, we will focus on several design choices comparing our

 50

TGs with ARM ISS. We would like to make sure that our proposed TGs models, cache and

BIU, are correct. System design choices list in Table 3-3. We choose different cache size to

observe the cache behavior accuracy. Cache write coherent mode is set as write-back mode.

Cache line is 32-byte length and 4 way set associativity. Cache line replacement is

Pseudo-Random policy. These cache information are parameterize and configurable on our

model. ARM’s cache model can only configure cache size when platform setting. Other

configuration must be controlled by software source when processor booting. These

differences may cause some behavior betweens ARM ISS and our TGs. However, the booting

step is much shorter than the application’s commutation behaviors and almost could be

ignored. Cache model of TGs is implementing in C/C++ language. Although, we have

implemented the cache model based on the Coware Model Library documentation, there are

still some behaviors different between cache model in ARM ISS and our cache model. (The

core model is implementing as a black box. User can not trace the cache behavior easily.)

Also, the interaction between cache model and BIU is unknown. We will show the execution

time error cause by two different implementation models.

Table 3-3 Design space of experiment single ARM platform

Design Target Design Choices

I/D cache size 0, 4, 8, 16 kB

Cache write mode Write-Back (WB)

Cache replace policy Pseudo-Random

Interconnect hierarchy
AHB Full Crossbar (AHB-FC)
AXI Full Crossbar (AXI-FC)

Memory access latency 1 cycle

Total Design Space 8

 51

Interconnection protocol of BIU could be AMBA AHB or AXI. Port interfaces of TG and

ARM ISS are the same. There are two ports for AXI protocol, IAXI and DAXI. Three ports

for AHB protocol, IAHB, WAHB and RAHB. Both protocols have 64-bit data width and

32-bit address width. Interconnection architecture is set in fully crossbar which connects two

memories and processor. The abstraction is set in TLM Bus Cycle Accurate (TLM-BCA).

TLM modeling flexibility is high for programmers to design the interface. To ensure the

behavior is equal, we have traced the ARM’s BIU at runtime simulation. We implement our

BIU on TGs the same as we observe on ARM model. We have made sure that the transaction

behavior including single read/write access and burst access are equal between two models.

Now, we are going to prove that our TGs’ accuracy is acceptable by running real application.

The first application we test is a 2048-point floating point FIR benchmark. The FIR

benchmark is a 35 tap low pass filter. When the program begins, processor will first allocate a

space in private memory for temporary input and output data then fetch input bit stream from

shared memory to here. Next, processor starts computation. At the end of program, processor

will store the output results back to shared memory. We show simulation results in Table 3-4.

Table 3-4 Execution time of FIR benchmark

ARM ISS
Interconnec

t
Cache

size
Execution time

(cycles)
Execution time

(cycles)
Error
(%)

Execution time
(cycles)

Error
(%)

0kB 1.914E+07 1.931E+07 -0.87 1.931E+07 -0.87
4kB 4.715E+06 4.609E+06 2.25 4.614E+06 2.14
8kB 4.479E+06 4.509E+06 -0.67 4.210E+06 6.01

16kB 4.477E+06 4.407E+06 1.57 4.108E+06 8.25
0kB 2.840E+07 2.853E+07 -0.46 2.853E+07 -0.46
4kB 4.770E+06 4.739E+06 0.65 4.611E+06 3.33
8kB 4.482E+06 4.539E+06 -1.27 4.509E+06 -0.60

16kB 4.480E+06 4.400E+06 1.78 4.207E+06 6.10

AXI-FC

AHB-FC

TG-1 TG-2System
Architecture

Table 3-4 shows cycle count of different architecture. The error value of other two TGs is

compare to the ARM ISS’s ratio. First, we can see that TGs’ execution cycle counts are almost

 52

equal to ARM ISS when cache is disabling. Cycle count on AXI protocol is about 19M cycles,

AHB is about 28M cycles. The error between ARM ISS and TGs is under 1%. This proves

that we have implemented the AXI and AHB BIU almost equal to ARM’s BIU. Cache

memory does improve the performance to be about 4.7M cycles. However, the FIR

benchmark is a small application. The 4 kB instruction and data cache size is big enough for

this program. We can find that almost no more improvement for 8 and 16 kB cache. Our TGs

do show this property. TG-1 has better accuracy as we discussed in section 3.2.5. The average

error of TG-1 is under 3%. TG-2 has lower accuracy than TG-1 due to the cache and BIU

interaction behaviors. Though, TG-2’s still has more than 91% accuracy (error under 9%).

Choice of protocol is no big different for the accuracy. As we have discussed before, the cache

model different is the reason of error. However, the accuracy number is acceptable for design

space exploration.

The second application we use is a 512х512 integer JPEG encoding benchmark. This

benchmark is much bigger than FIR. When program begins, processor fist allocates two 1kB

spaces in private memory for functions’ input and output buffer. The program will encode one

micro-block per iteration. When the iteration starts, processor will load one micro-block size

RGB data from shared memory into input buffer. Then start encoding procedure. The

execution flows of JPEG encoder are RGB format to YCbCr, DCT transform, quantization

and variable length coding. At the end of iteration, processor writes the micro-block’s bit

stream in output buffer back to shared memory. The application runs on ARM model under

different system configuration (Table 3-3). We show simulation results in Table 3-5.

 53

Table 3-5 Execution time of JPEG benchmark

ARM ISS
Interconnec

t
Cache

size
Execution time

(cycles)
Execution time

(cycles)
Error
(%)

Execution time
(cycles)

Error
(%)

0kB 2.256E+08 2.263E+08 -0.32 2.263E+08 -0.32
4kB 5.990E+07 5.619E+07 6.18 5.519E+07 7.85
8kB 5.349E+07 5.019E+07 6.17 4.881E+07 8.75
16kB 4.558E+07 4.481E+07 1.68 4.396E+07 3.55
0kB 3.275E+08 3.285E+08 0.31 3.285E+08 0.05
4kB 6.311E+07 5.991E+07 5.08 5.669E+07 10.17
8kB 5.544E+07 5.240E+07 5.48 4.938E+07 10.94
16kB 4.580E+07 4.401E+07 3.90 4.225E+07 7.74

AHB-FC

System Architecture TG-1 TG-2

AXI-FC

Table 3-5 shows cycle count value and ration of different architecture. The execution

cycle counts with cache disable are almost equal to ARM ISS. Cycle count on AXI protocol is

about 225M cycles, AHB is about 226M cycles. The error between ARM ISS and TGs is still

under 1%. Again, this proves our TGs’ BIU is reliable. Cache memory could help

performance improve. AXI protocol with 4 kB size cache will need about 60M cycles, 53M

for 8kB and 45M for 16kB. AHB protocol with 4 kB size cache will need about 63M cycles,

55M for 8kB and 45M for 16kB. Because JPEG benchmark has larger instruction and data

size, the performance will be raised when cache memory is lager. Our TGs also show this

property. TG-1 has better accuracy as we discussed in section 3.2.5. The average error of

TG-1 is under 7%. TG-2 has lower accuracy than TG-1 due to the cache and BIU interaction

behaviors. Though, TG-2’s still has more than 89% accuracy (error under 11%). Choice of

protocol is no big different for the accuracy. As we have discussed before, the cache model

different is the reason of error. However, the accuracy number is acceptable for design space

exploration.

In a summary, our proposed TGs have exceeded 99% accuracy when the cache

simulation is disabling. The transaction interface we used is reliable. When cache simulation

is enabling, TG-1 solution has 93~97 % accuracy and TG-2 has 89~91% accuracy. However,

 54

if we can use a same cache model in TG or ARM core, we believe that the accuracy will be

much closer to ARM ISS model. In conclusion, our TG simulation framework could provide a

reliable exploration tool for SoC design.

 55

 4 EXPERIMENT RESULTS

Our proposed TGs have been proved to support reliable simulation environment. In this

chapter, we will show simulation speed improvement comparing to original simulation

framework. Also, we will show the simulation profiling of runtime TGs’ behavior and offline

traffic generator’s overhead.

4.1 Experiment Setup

We setup the experiment environment on CoWare Platform Architect. The target

platform is a 1 to 4 ARM11 core platform as Figure 4-1. Core number and its private memory

are configurable. Cache size of all cores is set in fix size. Memory access latency is set in 1

cycle. The interconnection architecture is full crossbar with AXI protocol. All design choices

are listed in Table 4-1.We set up interconnection modeling abstraction at TLM Bus Cycle

Accurate (TLM-BCA) level. We choose 512х512 JPEG encoder benchmark as target

application (which has been introduced in section 3.3). Every core runs its application

 56

independently. Every core’s input and out put bit stream are all allocated in shared memory

and computation would execute in their own private memory. There is one core behave like a

host processor. The host processor would control the system behavior. When simulation

begins, host processor would set up control register in shared memory then other cores would

start computing. At the end of encoding, all cores would jump to a loop and wait for the

master core stop the simulation.

Full Crossbar (AXI)

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Shared
Memory

ARM 11
I

Cache
D

Cache

BIU

ARM 11
I

Cache
D

Cache

BIU

ARM 11
I

Cache
D

Cache

BIU

ARM 11
I

Cache
D

Cache

BIU

Figure 4-1 Multiple ARM platform architecture

Table 4-1 Design choice of multiple ARM platform

Design Target Design Choices

I/D cache size 4 kB

Cache write mode Write-Back (WB)

Cache replace policy Pseudo-Random

Interconnect hierarchy AXI Full Crossbar (AXI-FC)

Memory access latency 1 cycle

 57

4.2 Experiment Results

We will now show the simulation result in this section.

4.2.1 Simulation speed

Table 4-2 Comparison of simulation speed

#Cores
Simulation
Model

Simulation
Speed
(k cycles/sec) Speedup

1

ARM ISS 381.09 1.00

TG-1 1554.28 4.08

TG-2 2190.46 5.75

2

ARM ISS 187.80 1.00

TG-1 795.18 4.23

TGOFF 1184.56 6.31

3

ARM ISS 126.00 1.00

TG-1 571.02 4.53

TG-2 730.32 5.80

4

ARM ISS 96.40 1.00

TG-1 390.95 4.06

TG-2 563.74 5.85

The simulation result of running 1 to 4 cores is show in Table 4-2. The simulation speed

of all platforms is the average number of five times speedup. Simulation speed of ARM ISS

platform is under 400 k cycles. As the execution time we show in section 3.3, JPEG would

take 60M cycles on a single core platform. The simulation time of single ARM ISS is about

2.5 minutes; TG-1 is about 35 seconds; TG-2 is about 26 seconds. While running on a four

ARM ISS platform, the total simulation time is more than 10 minutes; our TGs would take 2.5

 58

minutes and 1.7 minutes. We show the simulation speed number in Table 4-2 and Figure 4-2.

Simulation Speed (k cycles/sec)

0

500

1000

1500

2000

2500

1 2 3 4
Cores

ARM ISS

TG-ON

TG-OFF

Figure 4-2 Simulation speed of different core number

The simulation result shows TG-1 is about 4 times speedup of ARM ISS model. TG-2 is

about 6 times speedup of ARM ISS model. Simulation speed would drop quickly when core

number increase. This is because more cores’ behavior and transaction counts need to

simulate. However, simulation speedup ratio between TGs and ARM ISS has no big change.

4.2.2 Simulation profiling

Our proposed TGs have two phase of simulation: off-line traffic generation and full

system simulation. Now, we are interesting in TGs’ runtime simulation behavior and the

execution time of off-line traffic generation. First, the runtime simulation profiling of TGs

shows in Table 4-3.The profiling is extract from single ARM experiment. The application is

JPEG encoder as we discuss in this chapter.

 59

Table 4-3 Runtime simulation profiling of two TGs

Trace file access

(%)
Transaction (%) Initialization (%)

Cache behavior

(%)

TG-1 12.57 42.77 1.44 43.22

TG-2 0.61 90.46 1.96 N/A

TG

Functionality

Table 4-3 shows TG-1 and TG-2’s profiling result. “Traffic file access” includes read

traffic file into TG and the parsers’ behavior. “Cache behavior” includes the cache memory

access and the behavior of fill access commands in BIU buffer. “Initialization” is the

simulation background behavior such as allocate runtime memory and cache initialization.

“Transaction” means the simulation time of BIU including start access to interconnect,

waiting for data/address transmits and other behavior between system component and TG.

TG-1 has 43 % time busy on cache behavior and 13% on traffic file access. This result shows

TG-1 spend more than half of simulation effort on the cores’ inter behavior. TG-2 shows

almost all simulation behavior is on transaction behavior. The behavior inside of TG-2 is

almost zero.

Table 4-4 Off-line traffic generation effort

TG ISS Simulation Cache Simulation Binary Translation

TG-1 5 min. n/a 20 sec.

TG-2 5 min. 30 sec. 5 sec.

The other simulation effort we need to care about is the off-line traffic generation. The

traffic size of TG-1 is 691 MB. Traffic size of TG-2 is 23 MB. We show the off-line

simulation time in Table 4-4. The off-line simulation works on a Pentium 4 3 GHz dual core

PC. ISS action would take about 5 minutes for JPEG benchmark. TG-1 has no off-line cache

simulation. Binary translation is to generate the traffic file in binary format. TG-1 would need

20 sec for translation. TG-2 needs 30 seconds for cache simulation and 5 seconds for binary

 60

translation. TG-2 has shorter translation time since the traffic size is much smaller than TG-1.

4.3 Discussion

In this section, we are going to discuss about the experiment result. Section 4.3.1 shows

how much improvement of our TGs. We can find out that both TGs keep the speedup ratio

while the core number increases. However, the simulation speed drops so quickly with core

count. This is because the nature behavior of SystemC modeling. SystemC is an event-driven

language. Since the behavior times increase, the simulation time also increase fast. The

simulation speed of TG-1 and TG-2 getting closer when more cores need to simulate. This is

because the transaction behavior on the system becomes more complicated. Memory and bus

conflicts would be more when more master on a platform. Transaction behavior will need

more percentage of simulation time than single core, especially for TG-2. However, we

choose the AXI crossbar interconnect hierarchy in this experiment so the interconnect

behavior simulation will not dominate full simulation time. The profiling result shows core’s

“inside” behavior, cache and file access, is more than half simulation time spends on TG-1

simulation. However, this result will change for different benchmark. In conclusion, TG-1

would take about half simulation effort for modeling cache behavior, TG-2 always pays

almost 100 % effort on BIU. Obviously, TG-2 has simplified all cores’ internal behaviors.

Besides, the profiling results we show is under the default simulation which has only cycle

count analysis. If we have turned on the analysis capability inside the TG model, the

simulation speed and profiling result will changed and spend much effort on this functionality.

The off-line traffic generation shows ISS simulation would spend a long time.

Fortunately, we only need one time simulation for one source code. Since exploration would

need repeat and repeat simulation, this simulation effort becomes not that important. TG-2

needs to re-simulate for different cache configuration. However, the simulation time is still

 61

short. If design choices are few, the simulation time of cache model is acceptable. The

functions below show total simulation time for our TGs and traditional ISS.

Total simulation time (ISS) = M х Full simulation time

Total simulation time (TG-1) = (ISS time + File translation time) +M х Full simulation time

Total simulation time (TG-2) = (ISS time + N х (File translation time + Cache time))+ M х

Full simulation time

N is the number of total cache design choices need to explore, M is the times of full

system simulation. Average overhead of off-line simulation will be smaller if there are more

times of simulation on the full system. On the other hand, the traffic file size is also a serious

problem. Traffic file of TG-1 might be amazing huge for large application. While more cores

on a platform, TG-1’s traffic file will be a critical overhead for runtime simulation. In a

conclusion, TG-1 is suit for large design space because no need to re-simulate. TG-2 is suit

for smaller cache design space because it needs to re-simulate. Also, TG-2 is suit for big

application benchmark because the smaller traffic size overhead.

 62

 63

 5 CONCLUSIONS

This thesis first address on the SoC design exploration issues and focus on

simulation-based exploration methodology. We then target on a successful simulation

framework, MPARM [20][21], and introduce how’s the environment set up by SystemC [15]

language. This case shows the full simulation environment is useful for designers to analyze

performance of different hierarchy. However, the simulation speed is slow for modern

multicore SoC design space exploration. This problem also exists while we rebuild a

simulation environment in modern ESL tool [17]. The experiment shows it is still not enough

fast. Many previous works focus on speedup simulation. Transaction Level Modeling [16][29]

does help exploration by arising modeling abstraction level but sacrificing simulation

precision. TLM-based simulation helps to speedup interconnection behavior modeling but not

improve processors’ inside computation behaviors. Traffic Generator could completely

simplify processor’s computation modeling. Nevertheless, TG-based simulation usually is not

the real case, or TG directly replays last time’s simulation. These two methods both have their

own properties and their own problems.

 64

We proposed a TG-based exploration acceleration approach to deal with those problems.

Our TGs combine both TLM’s and traditional TGs’ properties in our framework. Our TGs

support multiple on-chip bus protocols, multi abstraction level and cache behavior simulation.

Most of important, our TGs’ transaction behavior is based on real application not the

statistical traffic result. Also, our TGs no need to simulate full system for recording traffic.

The propose simulation flow is separated into two phases: off-line traffic generation and ESL

simulation. TG-1 solution off-line simulates cores’ ISS behavior and keep cache modeling

contain in ESL simulation environment. TG-2 solution off-line simulates cores’ ISS and

caches’ behavior and completely simplifies TGs’ modeling in ESL simulation environment.

We supply a tool chain for full simulation framework and set up a traffic format to be used for

both TG solutions.

We further verify our TGs’ accuracy compared to the ARM ISS model. Our TGs have at

least 90% accuracy compared to ARM ISS model. Then we build up an experiment for

measuring simulation speed. Experiment shows our proposed TGs do speedup simulation,

TG-1 is about 4 times improvement over ARM ISS, and TG-2 is about 6 times. This proves

that our exploration framework could be used for SoC design which has already decided

target processor. The simulation profiling shows TG-1 is suit for large design space especially

focuses on cache organization and interconnection network co-exploration. TG-2 is suit for

design space focuses on interconnection network exploration with fewer cache deign choices.

Our future work is to enhance the modeling capabilities including semaphore interface

between TGs to support multicore issues. Cache models for multi-processor data coherent

problems and multi-level cache hierarchy supporting. Moreover, the simulation speed could

be improved by traffic file compression techniques to lower system overhead.

 65

REFERENCES

[1] ITRS Roadmap 2007. [Online]. Available:
http://www.itrs.net/Links/2007ITRS/Home2007.htm

[2] M. Keating and P. Bricaud, Reuse Methodology Manual for System-On-A-Chip
Designs, 3rd Edition, Kluwer Academic Publishers, 1996

[3] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnections in multi-core
architectures: understanding mechanisms, overheads and scaling,” in Proc. ISCA,
2005

[4] T. T. Ye, L. Benini, and G. D. Micheli, “Packetized on-chip interconnect
communication analysis for MPSoC,” in Proc. DATE, 2003

[5] M. Ruggiero, R. Angiolini, F. Poletti, D. Bertozzi, L. Benini, and R.
Zafalon, ”Scalability analysis of evolving SoC interconnect protocols,” Int.
Symposium on System-on-Chip, 2004.

[6] J. L. Hennessy and D. A. Patterson, Computer Architecture A Quantitative Approach,
2nd Edition, Morgan Kaufman Publishers, 1996

[7] Y. S. Cho, E. J. Choi, and K. R. Cho, “Modeling and analysis of the system bus
latency on the SoC platform,” in Proc. SLIP, 2006

[8] A. Muttreja, A. Raghunathan, S. Ravi, and N. K. Jha, “Automated
energy/performance modeling of embedded software” in Proc. DAC, 2004

[9] W. T. Shiue and C. Chakrabarti, “Memory design and exploration for low power,
embedded systems,” Journal of VLSI Signal Processing, vol. 29, 2001

[10] T. D. Givargis, F. Vahid, and J. Henkel, “Fast cache and bus power estimation for
parameterized system-on-a-chip design,” in Proc. DATE, 2000

[11] A. Asaduzzaman, I. Mahgoub, H. Kalva, R. Shankar, and B. Furht, “Cache
optimization for mobile devices running multimedia applications,” in Proc. ISMSE,
2004

[12] W. Fornaciari, D. Sciuto, C. Silvano, and V. Zaccaria, ”Fast system-level exploration
of memory architectures driven by energy-delay metrics,” in Proc. ISCAS, 2001

 66

[13] E. Ipek, S. A. McKee, K. Singh, R. Caruana, B. R. Supinski, and M. Schulz,
“Efficient architectural design space exploration via predictive modeling,” ACM
Transactions on Architecture Code Optimization, vol. 4, 2008

[14] T. Givargis, F. Vahid, and J. Henkel, ”System-level exploration for Pareto-optimal
configurations in parameterized System-on-a-Chip,” IEEE Transactions on VLSI
Systems, vol. 10, 2002

[15] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with SystemC, Kluwer
Academic Publishers, 2002.

[16] L. Cai and D. Gajski, “Transaction level modeling: an overview,” in Proc.
CODES+ISSS, 2003

[17] CoWare Inc. Platform Architect. [Online]. Available:
http://www.coware.com/products/

[18] ARMLtd. RealView MaxSim. [Online]. Available:
http://www.arm.com/products/DevTools/MaxSim.html

[19] SynopsysInc. SystemStudio. [Online]. Available: http://www.synopsys.org

[20] L. Benini, D. Bertozzi, A. Bogliolo, F Menichelli, and M. Olivieri, “MPARM:
exploring the multi-processor SoC design space with SystemC,” Journal of VLSI
Signal Processing Systems, vol. 41, 2005

[21] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon, “Analyzing on-chip
communication in a MPSoC environment,” in Proc. DATE, 2004

[22] IEEE 1666 SystemC Language Reference Manual. [Online]. Avaliable:
http://www.systemc.org/

[23] Open Core Protocol International Partnership (OCP-IP). [Online]. Avaliable:
http://www.ocpip.org/home

[24] S. Boukhechem, E. Bourennane, and H. Samahi, “Co-simulation platform based on
SystemC for multiprocessor system on chip architecture exploration,” in Proc.
ICM, 2007

[25] Wishbone bus. [Online]. Avaliable: http://www.opencores.org/

[26] R. B. Atitallah, S. Niar, S. Meftali, and J. L. Dekeyser.,” An MPSoC performance
estimation framework using transaction level modeling,” in Proc. RTCSA, 2007

[27] A. Donlin, “Transaction level: flows and use models,” in Proc. CODES+ISSS, 2003

 67

[28] S. Pasricha, N. Dutt, and M. B. Romdhane, “Fast exploration of bus-based
communication architectures at the CCATB abstraction,” ACM Transactions on
Embedded Computing Systems, vol. 7, 2008

[29] S. Pasricha, ”Transaction level modeling of SoC with SystemC 2.0,” In Synopsys
User Group Conference, 2002

[30] G. Strano, C. Pistritto, L. Benini, G. Strano, and C. Pistritto, “Capturing the interaction
of the communication, memory and I/O subsystems in memory-centric industrial
MPSoC platforms,” in Proc. DATE, 2007

[31] T. Risset, A. Fraboulet, and A. Scherrer, “Automatic phase detection for stochastic
on-chip traffic generation,” in Proc. CODES+ISSS, 2006

[32] Soclib simulation enviroment. [Online]. Avaliable: https://www.soclib.fr/trac/dev

[33] S. Mahadevan, F. Angiolini, M. Storgaard , R. G. Olsen, J. Sparso, and J. Madsen, “A
network traffic generator model for fast Network-on-Chip simulation,” in Proc. DATE,
2005

[34] ARMLtd. RVDS. [Online]. Available:
http://www.arm.com/products/DevTools/RealViewDevSuite.html

[35] Dinero IV [Online]. Available: http://pages.cs.wisc.edu/~markhill/DineroIV/

[36] MSCSim [Online]. Available: http://www.mscsim.com/

 69

作者簡歷

顏于凱，1984 年 6 月 30 日出生於高雄縣。2006 年取得國立交通大學電子工程學系

學士學位，並繼續在國立交通大學電子工程研究所攻讀碩士。2008 年在劉志尉教授指導

下，取得碩士學位。本篇論文「嵌入式系統晶片之匯流排與記憶體設計探索」為其碩士

論文。

