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On-Chip Bus and Memory Architecture
Exploration for Embedded SoC
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ABSTRACT

High adaptive and programmable, processor-based SoC becomes popular for various
embedded multimedia and communication applications. More and more computing engines
can be integrated in a single chip. On-chip bus and memory architecture exploration on
embedded SoC is an important issue to reduce cost and power while achieving computation
requirements. Full-system simulation is-isually-used to perform the design space exploration.
However, simulation is usually time-consuming. In this thesis, we propose a multi-abstraction,
multi-protocol Traffic Generator (TG)" to accelerate simulation-based interconnection and
memory architecture exploration on processor-based embedded SoC. The complete design
framework includes a traffic generation flow from specific application source code and a full
system simulation environment for target platform. Our TG supports two choices, called TG-1
and TG-2, to speedup simulation of multicore SoC. TG-1 solution first extracts processor’s
memory access patterns as the traffic source and keeps cache modeling contain in full system
simulation environment. TG-2 solution, on the other hand, off-lined simulates both processor
and cache behavior to produce traffic and completely simplifies TG’s modeling in full system
simulation environment. TG-1 has higher accuracy but slower simulation speed. On the
contrary, TG-2 is faster but lower accuracy. Both solutions could be used for large design
space SoC exploration which has already decided target processor. These TG choices operate
with a same traffic file format and their tool chains support parameterized configuration and
statistical analysis. Utilizing proposed traffic generators in an ARM-based SoC platform, our
TG shows more than 90% accuracy and 4~6 times improvement in simulation speed over

original Instruction Set Simulator (ISS) model.
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1 INTRODUCTION

Silicon technology now allows.us to build-chips eonsisting of billions of transistors. This
technology has enabled new levels of system-integration onto a single chip, and at the same
time has completely revolutionized how:chip.design is done. The demand for more powerful
products and the huge capacity of today’s silicon technology have moved System-on-Chip
(SoC) designs form leading edge to mainstream design practice. These chips have one, and
often several, processors on chip, as well as large amount of memory, bus-based architectures,
peripherals, coprocessors, and I/O channels. SoC design complexity, including of hardware
and software designs, has rapidly increased as the process improve. System level design and

verification is the main issue of today’s SoC design.

1.1 Technology Trends

The demand for more computing power has never stopped. Figure 1-1 shows chips’

transistors and functionality increase follow “Moore’s Law”. More and more components



could be integrated into a single chip, including large amount of memory, multiple processors

units, high complexity interconnection network and reusable intellectual property (IP).
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Figure 1-1 Product function/chip-and industry average “Moore’s Law” trends [1]

As complexity increase, geometry shrinks, and- time-to-market pressures continue to
escalate, chip designers are turning to a modified flow to produce today’s larger SoC designs.
System level design exploration is needed because design tradeoff is unpredictable. Chip
designers are changing their design flow form waterfall model to spiral model and combining
top-down and bottom-up methodology [2]. Engineers simultaneously develop top-level
system specifications, system-level verification suites, and timing budgets for the final chip
integrations. That means they are addressing all aspects of hardware and software design
concurrently: functionality, timing, physical design, and verification. Designers must consider
power, area and performance issue of SoC at system-level design. On-chip interconnection

and memory architecture exploration are the key problems for SoC design.

1.2 SoC Design Tradeoff

Modern SoC are moving towards designs that feature multiple processing cores on a



single chip. These designs have the potential to provide higher peak throughput, higher design
scalability, and greater performance/power ratios than monolithic designs. However, in spite
of the growing trend to put multiple cores on the chip, a deep understanding is lacking in the
literature of the design space of the interconnection framework, and particularly how it
interacts with the rest of the multicore architecture. For a given number of cores, the “best”
interconnection architecture depends on a myriad of factors, including performance objectives,

power/area budget, bandwidth requirements, technology, and even the system software.

Figure 1-2 Floorplans example for 4, 8 and 16 core processors

More cores in a chip bring more pfoblems. First, connecting multicores in a chip is a big
issue. This is because power, area, latency, and bandwidth are all first-order design constraints
for on-chip interconnects. Second, the design choices for the cores, caches, and
interconnection interact to a much greater degree. For example, an aggressive interconnect
design consumes power and area resources that then constrains the number, size, and design
of the cores and caches. Figure 1-2 shows a floorplan example for 4, 8 and 16 core processors
[3]. Increasing the number of cores places conflicting demands on the interconnection —
requiring higher bandwidth while decreasing available real estate. Cache size and interconnect
bandwidth design exploration is a critical tradeoff of multicore SoC. Except these design
choices, memory and interconnect configuration are also big design challenges. For example,
cache line size is related to communication packet size which may cause the performance and

power consumption tradeoff [4]. The choices of interconnect network architecture is also an



important issue of design exploration [5].

1.3 SoC Design Space Exploration

Design Space Exploration (DSE) for SoC is important to reduce cost and power while
achieving computation requirements. In order to understand the cost and performance tradeoff
among alternative design choices, many works have build up exploration methodology for
evaluating and analyzing or predicting performance value. Here, we introduce several kinds

of approaches.

B Static analysis approach

This solution is often used to characterize local behavior with models to evaluate latency,
energy or area. AMAT [6] is a popular model of approximate cycle evaluation for multi-level
memory hierarchy system. Y. Cho ef al.’[7] analyzed application source code and extract
memory access pattern. They built up an analysis bus model for evaluating latencies on
on-chip buses. A. Muttreja et al. [8] performed micro-modeling, pre-characterizing reusable
software components to construct high-level models to estimate performance and energy
components to construct high-level models to estimate performance and energy consumption.
Static analysis approach may combine with hardware and software models to predict the
approximate cost/performance value. The property of this model is the fast analysis capability.

However, this approach has lower accuracy.

B Dynamic simulation approach

This approach will produce a real case simulation for specific application. Trace based
simulation is always used for cache or bus architecture power and performance evaluation,

sometimes will combine with analytical models for DSE. W. T. Shiue, and C. Chakrabarti [9]



used a trace-driven cache simulator and combined the AMAT model for energy and
performance evaluation. T. D. Givargis ef al. [10] used a cache simulator plus cache and bus
analytical model for cache and bus co-design. Partial or full system simulation is also used in
many works. A. Asaduzzaman et al. [11] combined cache and full simulators to explore
system architecture on specific application. Simulation-based approach offers a precise and

detail analysis for exploration but may need long simulation time.

B Hybrid approach

Many works combined static and dynamic approach in exploration procedure. They may
use some search heuristics to reduce design space. W. Fornaciari et al. [12] analyzed small
benchmarks to order the design parameters by importance then simulated follow the degree of
sensitivity. E. Ipek et al. [14] simulated several design point and used their models to predict
the system performance and design. tradeoff.~T. Givargis et al. [14] analyzed dependency
between design choices and reduced design-space need to simulate. These hybrid approaches

prune the large design choices and try to-scale down simulation times.

Modern design space exploration has been proved that simulation is needed because
large amount of design choices on SoC make system behavior unpredictable. Simulation
provides precise and realistic performance analysis and trade-off exploration for all
architectures configuration, for example, on-chip bus and memory hierarchy. However,
simulation speed is the main problem that designers want to reduce. SoC designers need a fast
and accurate system level simulation environment whatever how they use search heuristics for
reducing simulation times. In this thesis, we will focus on system level simulation-based
exploration approach. We will propose a high accuracy, high speed embedded SoC simulation

methodology.



1.4 Electronic System Level Simulation Environment

Electronic System Level (ESL) design and verification is an emerging electronic design
methodology that focuses on the higher abstraction level concerns first and foremost. The
basic premise is to model the behavior of the entire system using a high-level language such
as C, C++, or SystemC [15]. Designers raise the abstraction level of system models for
different system level design stage. Figure 1-3 shows different abstraction level of modeling
[16]. Node 4 to F represent high to low abstraction level which means fast to slow
implementation and simulation speed. X-axis in the graph represents computation and y-axis
represents communication abstraction model. Engineers could implement different system

models at proper design stage.

Specification model
Untimed functioal models

Component assembly model
Communication B. A_rchltecture model
Timed functonal model

Iy
Bus-arbitration model

Cycle -
ve . Transaction model

timed

Bus-functional model
D. Communicatin model
Behavior level model

Approximate

E. Cycle-accurate computation model

timed
F Implementation model
" Register transfer model
Un- B
: A ~ B »
timed C) .
: U Computation
Un- Approximate Cycle
timed timed timed

Figure 1-3  System modeling graph [16]

Electronic System Level (ESL) is now an established approach in most of the world’s
leading System-on-a-chip (SoC) design companies, and has been used increasingly in system
design. ESL tools such as CoWare Platform Architect [17], ARM RealView MaxSim [18],
Synopsys System Studio [19], etc, support designers to build up high flexibility simulation

environment at different abstraction level. Engineers use these platforms for HW/SW



co-design, detail performance analysis, verification and design space exploration.

1.5 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 introduces a simulation-based
simulation framework and shows its problem of simulation speed. Other speedup techniques
are also described here. Chapter 3 addresses our proposed Traffic Generate (TG) based
exploration framework. An integrated traffic generation flow is presented as well. Moreover,
the verification of the proposed TGs’ accuracy shows in Chapter 3. Chapter 4 shows an
experiment of multicore platform simulation. We will present how much speedup of our

proposed solution. Finally, Chapter 5 concludes this thesis and describes the future works.






2 ARCHITECTURE EXPLORATION FOR
EMBEDDED SOC

Embedded SoC are demanding high-computing power and try to contain more and more
computing engines in a single chip.Multicore:SoC can provide a high degree of flexibility
and represent the most efficient architectural solution for supporting multimedia applications,
characterized by there quest for highly parallel computation. As a consequence, tools for the
simulation of these systems are needed for the design stage, with the distinctive requirement
of simulation speed, accuracy and capability to support designs space exploration. In this
chapter, we introduce an ESL design framework which is based on SystemC as modeling
language. We point out the problem of system-level simulation environment and introduce the

solutions of previous works.

2.1 An SoC Exploration Framework

Supporting the design and architectural exploration of SoCs is a key for accelerating the



design process and converging towards the best-suited architectures for a target application
domain. However, exploration at a very high level or at the register-transfer level is no more
suited for today’s huge and complex system. This framework proposed an MPSoC
architectural template and a simulation-based exploration tool, which operated at the
macro-architectural level, and they demonstrated its usage on a classical MPSoC design
problem, e.g. the analysis of bus-access performance with changing architectures and access

profiles.

2.1.1 Full-system simulation platform

L. Benini et al. built up a multiple ARM processors simulation platform called MPARM
[20]. They integrated multiple C/C++ implementations of Instruction Set Simulator (ISS) in a
simulation platform and embeddéd those in SystemC [15] wrappers. SystemC provided a
standard and well defined interface for the description of the interconnections between
modules. The wrapper realized ‘the interface-and synchronization layer between ISS core
model and the SystemC simulation® ‘environment. The cycle-accurate communication

architecture could be connected between ISSs.

The processing modules of the system are represented by cycle accurate models of
cached ARM cores. The module (Figure 2-1) is internally composed of the ARMv7 ISS model,
peripherals (UART, timer, interrupt controller) and a first-level cache simulator written in
C++. And the bus protocol interface was followed by AMBA or STBus protocol which active
by SystemC module. Besides the processing element, AMBA/ STBus bus model and memory
sub-system are all model in SystemC to build up a cycle accurate and bit accurate system. The
experiment result shows simulation speed is in the range of 60000—-80000 cycles/sec. The
whole simulator was running on a Pentium 4, 2.26 GHz workstation. The simulation

environment was all built in SystemC which has high flexibility and could be used for

10



different kinds of design space exploration. Next section would give an example of exploring

on chip communication in MPSoC.

SystemC Wrapper
ARMv7 ISS
(C/IC++)

Cache Model
(C/C+t)

H%

Protocol Interface
(Sys}e\mC)
aC

Interconnection

(AMBA AHB, STBus)

Figure 2-1 _<The SystemC-based architecture

2.1.2 On-chip interconnection and memory architecture analysis

L. Benini et al. [21] proposed‘a complete platform for analysis and trade-off exploration
of on-chip communication architecture. They provided a case study that target on exploration
under a number of different architectural configurations and two industry-standard
communication infrastructures: AMBA Advanced High Performance Bus (AHB) from ARM

and STBus interconnect from ST Microelectronics.

They set up the MPARM platform as Figure 2-2. It is composed of (i) four configurable
32-bit ARM processors, (ii) their private memories, (iii) a shared memory, (iv) a hardware
interrupt module, (v) a hardware semaphore module, (vi) the 32-bit interconnection among
them all. Interconnection can be an AMBA AHB bus or a STBus arbitrary topology, resulting
in different versions of the platform. The memory devices’ access latency can be configured to

explore interconnection performance under several conditions. When the simulation starts,

11



they supposed all data and instruction have been loaded in memory. The platform also

provides Interrupt and semaphore devices for inter-processor communication.

Interrupt
device

Interconnection (AMBA or STBus)

Private Private Private Private
Memory § Memory § Memory § Memory

Figure 2-2 The MPARM platform architecture
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Figure 2-3  Simulator performance

The simulation environment provides performance profiling and analysis, including (i)
statistics about processor and interconnection performance, (ii) VCD waveforms of all bus
signals, and (iii) traces of memory accesses performed by every core. However, simulation
accuracy and flexibility have to be traded-off with simulation speed. Figure 2-3 shows that the
signal-accurate and cycle-accurate platform running a pipelined matrix multiplications. The

chart depicts simulation performance with the AMBA AHB interconnect, as a function of the
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number of processors and of the requested output statistics. The simulation environment was
running on a Pentium 4 2.26 GHz workstation about 62000 to 86000 cycle/second for a 6-

ARM platform.

Figure 2-4 " Partial crossbar (a)“32”, (b) “54”

The case study focus on two typés of aﬁalysis enable by the simulator. The first is a
performance comparison amongst five interéonnections: AMBA AHB (AMBA), STBus
configured as a shared bus (ST-BUS), STBus setup as a full crossbar (ST-FC), and two
additional STBus partial crossbar topologies ST-32 and ST-54 (see Figure 2-4). These
interconnections will be tested with the four benchmarks: matrix multiplications performed
independently by each processor (IND) and in pipeline between processors (PIP), with and
without an underlying OS (ASM-IND, ASM-PIP, OS-IND, and OS-PIP respectively). All
these results were measured with 8 kB ARM caches and with 1 wait state memories. The
traffic analysis shows the features of benchmark and the features of two interconnect
protocols and different interconnect architectures performance comparison. Figure 2-5 (a) and
(b) show the bus usage and efficiency, Figure 2-5 (c) compares the average read access

latency of different interconnections.
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Figure 2-5 Bus traffic analysis (a) bus usage, (b) bus efficiency, (c) bead average latency



The second type of analysis is an architectural design space exploration. Based on the
most meaningful benchmark (OS-PIP), they explored performance in presence of different
system parameters like cache size, memory latencies and compiler optimizations. Figure 2-6
shows total execution time of the OS-PIP benchmark, in scenarios having different cache and
memory access latency setting. The result shows when comparing more efficient
interconnections to less efficient ones, gains are lowest when traffic is lightest. Under the
same configuration of cache and memory access latency, the execution time gain of choosing

one interconnection could be up to 2.1 times.
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Figure 2-6 Performance of different architecture configuration

L. Benini et al. present a multicore SoC simulation environment that could be used to
evaluate and explore architectures at a high level of accuracy. Same work could also be found
in [5] which added AMBA AXI in case study. The MPARM ESL simulation environment
proved capable of analyzing in detail similarities and differences between those architectures.
However, the multicore ESL simulation environment has a critical problem: the simulation
speed may not be fast enough for today’s SoC design. We will show the problem in next

section.
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2.2 Simulation Speed of ESL Simulation

In this section we well show an example to point out problems of multicore ESL
simulation environment. The example platform was built on a modern ESL development tool
and simulated at higher TLM modeling environment. We will first introduce the ESL tool

environment and then the example platform we built and then we will show the problems.

2.2.1 ESL development tools
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Figure 2-7 Coware Platform Architect-ConvergenSC [17]

CoWare Inc. CoWare Platform Architect [17] is the SystemC-based graphical
environment for capturing the entire product platform and the dash board for initiating the
platform analysis functions. Platform Architect speeds the concurrent design of SoCs with

embedded software, enabling users to rapidly create and validate SoC designs at the
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transaction level in SystemC. Together with CoWare Model Designer and the CoWare Model
Library, CoWare Platform Architect enables most comprehensive system-level design solution
available for SystemC. Figure 2-7 shows the graphical environment of CoWare Platform

Architect.

Properties of CoWare Platform Architect are listed below.

(A) Rapid capture and configuration of hierarchical SoC platforms

(B) Superior architecture and performance analysis for SystemC

(C) Rapid exploration of complex interconnect and memory architectures

(D) Advanced simulation, debug, and analysis for software development

(E) Automated integration of RTL blocks into the TLM system

(F) Automated creation of _highly “reusable, user-defined SystemC peripheral
components and unit tests

(G) Standards-based SystemC TLM modeling guidelines and examples using SCML

(H) Comprehensive SystemC.IP. model availability with the CoWare Model Library

With the property (H), Coware support model library includes a range of processor
models from leading vendors such as ARM and MIPS, transaction-level bus models and RTL
bus generators for common bus specifications such as AMBA, AXI, and OCP-IP, Denali
MMAV memory models, and peripheral models such as the ARM PrimeCells. With the
property (G), Platform Architect's native SystemC simulation environment is compatible with
IEEE 1666 SystemC Language Reference Manual (LRM), Open SystemC Initiative (OSCI)
transaction-level modeling (TLM) [22], and Open Core Protocol International Partnership
(OCP-IP) TLM standards [23], providing support for all SystemC constructs for use by all
members of a design team. Platform Architect also supports the OCSI SystemC Verification

(SCV) 1.0 library extensions for transaction recording.
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With the property (B) and (D), Coware Platform Architect support hardware and
software profiling and analysis (see Figure 2-8). The analysis includes VCD trace dump, bus
statistic analysis such as bus utilization and access latency, etc. Besides, the processors
models support debuggers, for example, GDB. Designers can build up a complete SoC
simulation environment composed with reused IP or user defined components in SystemC
model. With the benefit of SystemC language, the environment could be simulated at different
abstraction level for different design stage. In conclusion, CoWare Platform Architect supplies
an ESL development environment for design exploration, verification and performance
analysis. The ESL tool could bring better and faster SoC-based convergent products to

market.

i i e bssoe—
| & Vp——— —_— 1P| T i

Figure 2-8 Coware Platform Architect analysis GUI [17]

2.2.2 ARM-based SoC platform on ESL

We build up a 4 ARMI11 SoC platform on Coware environment. The platform
architecture is follow by the framework in last section we introduced, MPARM. We use the

Coware Model Library’s processor model: ARM1176-JZS AXI-Model. The ARM model‘s
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computational abstraction support Cycle Accurate(CA) or Instruction Accurate(IA) level
modeling, and ARM’s interconnection support Untimed, TLM cycle accurate and pin-accurate
model. The system platform shows in Figure 1-1, we configure the ARM model as IA model
and turn on the cache simulation model (which is embedded in the ARM model). The
behavior of ARM ITA model is in single access topology and one cycle latency for all
instruction execution. The cache model has no buffers are modeled due to the
instruction-accurate nature, no critical-word-first cache line loading scheme is used, and all
memory accesses, line fills, and line evictions execute in a blocking fashion. The Bus
Interface Unit (BIU) of ARM cores are configured at TLM Bus Cycle Accurate (TLM-BCA)
level. An ARM core has 4 64-bit AXI ports, [-AXI, D-AXI, P-AXI and D-MAAXI,

respectively for instruction, data, peripheral and DMA accesses.

ARM 11 ARM 11 ARM 11 ARM 11
1 D I D 1 D I D
Cache | Cache Cache | Cache Cache | Cache Cache | Cache
BIU BIU BIU BIU
Full Crossbar (AXI)

Private Private Private Private Shared

Memory || Memory || Memory || Memory Memory

Figure 2-9 4-ARM platform architecture

The interconnection is configured as a full crossbar with AMBA AXI protocol. One cycle
latency for memory access and has one AXI port for every memory component. We use four
512x512 integer JPEG encoding as benchmarks and run on every ARM core independently.
Input file streams and output file streams are all allocated in shared memory. Instruction (I)

and Data (D) cache are set at 4KB size, write-back coherent mode and random replacement
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policy.

Table 2-1 shows the simulation result. We setup one to four ARM cores platform to run
benchmarks independently. The execution cycle count shows no big change due to the
crossbar hierarchy. However, the simulation time is much different when core number
increase. The simulation speed is up to 380 k cycle/sec in 1 core platform, however, drops to
96 k cycle/sec in 4 core platform, about four times slow down. This result is same as MPARM
we introduced in section 2.1. More components in a ESL simulation environment, the
simulation speed drops down more quickly. As more and more processor cores would contain

in SoC, the simulation speed would be a problem.

Table 2-1 Simulation result

Execution Cycle count| Simulation Time Simulation Speed
Platform
(k cycles) (sec) (k cycles/sec)
1 core 60,029 157.521 381.085
2 core 60,029 319.646 187.800
3 core 60,030 476.443 125.996
4 core 60,030 622.727 96.399

The simulation takes 11 minutes to run JPEG benchmark. It is “OK” for one time
simulation. However, designers will use ESL simulation environment for architecture
exploration. During the design space exploration, simulation will be repeat and repeat. There
are two run-time behaviors very difficult to model at a high level: cache behavior and network
contention. Precise simulation of these two behaviors can only be done with a low-level
description of the components. This means days (sometimes months) of simulation for fully

search on design space.

We take an example of cache configuration. Table 2-2 shows the design space example

of I and D cache. The total design choices would be (30)>=900 configurations of level 1

20



instruction and data cache of a processor. If we consider all processors choose the same
configuration in a 4-ARM platform. It would take about 155 hours for fully search on cache.
If all cores have different design choices, this means (900)* =~ 656,100,000,000 choices for
exhausted search. The design space here does not include the interconnect network yet. In a
conclusion, design exploration would take thousands (or even more) of hours for simulation.
The main problem of multicore SoC ESL simulation environment is the slow simulation

speed.

Table 2-2  Design space of cache

Design Target Design Choices
Cache size 4,8, 16,32 ,64 kBs
Cache write mode Write-back, Write-through

Pseudo-random
Cache replacemet policy Round-Robin

Last-recently-use

Total Design Space 30

2.3 Related Work

Many works focus on exploration time. Here, we introduce two ways to speedup
simulation. One way focuses on modeling abstraction, we will introduce in section 2.3.1. The
other way focuses on completely simplifying core’s internal behavior, we will introduce in

section 2.3.2.

2.3.1 TLM-based system evaluation

Transaction Level Modeling is frequently used to accelerate exploration. L. Benini ef al.
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[20][21][5] has proposed a cycle and bit accurate SystemC exploration framework. Accuracy
of this simulation environment is almost closed to RTL level. The simulation speed is slow
because of high accuracy. Here, we will introduce several frameworks target on speed up

simulation.

B Co-simulation SystemC platform

S. Boukhechem et al. [24] focused on rising up core’s abstraction level to speed up
simulation. They built up their own ISSs run as a distinct UNIX processes on the host system.
They connect several ISSs with SystemC communication platform models, by using Inter
Process Communication (IPC). Their simulation platform has capability of co-simulating with
RTL hardware model. The interconnection model is based on standard Wishbone bus [25].
This framework is much like MPARM but their ISS model does not directly embedded in
SystemC wrapper. They simulation.platform is faster than other cycle accurate models and

RTL level simulation environment:.

B Programmer’s view Transaction Level Modeling

R. B. Atitallah ef al. [26] proposed a framework that makes fast simulation and
performance evaluation of MPSoC possible early in the design flow, thus reducing the
time-to-market. In this framework, they used Transaction Level Modeling (TLM) [16]
approach to raised modeling abstraction. They presented a new definition of the timed
Programmer’s View (PVT) [27] level which included two complementary modeling sublevels.
The first one, PVT Transaction Accurate (PVT-TA), offers a high simulation speedup factor
over the Cycle Accurate Bit Accurate (CABA) [20] level modeling. The second one, PVT

Event Accurate (PVT-EA), provides a better accuracy with a still acceptable speedup factor.

In the conventional definition of the PVT level, the hardware architecture is specified for
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both communication and computation parts, as well as some abstraction of the
communication infrastructure are applied. Standard PVT level does not include timing
specification. Using the “top-down” design approach, they proposed PVT has timing
information with two sublevels: PVT-TA and PVT-EA. Figure 2-10 summarizes their PVT
framework proposal. PVT-TA operates at a relatively high abstraction level and does not take
a specific communication protocol into account. This permits a rapid exploration of a large
solution space by eliminating non-interesting regions from the DSE process. Solutions
selected at the PVT-TA sublevel are then forwarded for a new exploration at the PVT-EA
sublevel. This second sublevel specifies a precise communication protocol and takes
architectural delays into account. Because estimation methodology that we developed for the
PVT-EA is more accurate, it is possible at the price of less simulation speed, to locate the
most efficient architecture configurations. PVI-TA and PVT-EA permit the use of PVT

models in a coherent methodology, and to have-accurate estimations.

CommRMCaﬁon
Cycle
accurate
Cycle ® CABA
approx. © PVT-EA
O PVT-TA
Timed- |
event
Untimed »
Untimed Timed- Cycle Cycle  Computation
event approx. accurate

Figure 2-10 Different modeling abstraction for design space exploration

This framework chose ISS model to be core’s model which is same as MPARM
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framework. The cache model is not integrated in core model. Cache model is standalone and
connecting to processor model with easy interface. The interconnection network of system is
model in two type, read and write, and able to implement several protocols, e.g. OCP.
Simulation results show PVT-TA could have 6 to 9 speedup than CABA level; PVT-EA could
have 4 to 7 speedup than CABA level. Modeling effort of PVT-TA and PVT-EA is about

34.6% and 26.4% of CABA.

B Exploration at CCATB abstraction

S. Pasricha et al. [28] proposed a new TLM modeling abstraction called (Cycle Count
Accurate at Transaction Boundaries) (CCATB) for on-chip communication space exploration.
The abstraction level allows faster system prototyping and, more importantly, better
simulation performance, while maintaining cycle count accuracy. CCATB models yield an
average performance speedup of-120% over PA-BCA (Pin-Accurate Bus Cycle Accurate) and

67% over T-BCA (Transaction-based Bus.Cyecle-Accurate) models.

CCATB includes read and write operation for a transaction. Transactions at the CCATB
level are similar to transaction at the TLM level [29] except that the transaction modeling, in
addition, passes bus protocol-specific control and timing information. Unlike PA-BCA and
T-BCA models, they do not maintain accuracy at every cycle boundary. Instead, they raise the
modeling abstraction and maintain cycle count accuracy at transaction boundaries. They also
use ISS as core model and implement in CCATB wrapper. The experiment result shows the
CCATB could have same cycle count value as T-BCA and PA-BCA. Most of important,
CCATB has better simulation performance than PA-BCA and T-BCA. In a summary, CCATB
offers a new cycle accurate abstraction level by sacrificing visibility of signals at every cycle
boundary and give user a faster interconnection modeling. This framework is like PVT

framework; both of them focus on communication modeling.

24



In a summary, TLM- based simulation is operated at higher abstraction to raise the
simulation speed by sacrifice some fidelity. TLM models focus on communication behavior
abstraction and less care about computation abstraction. During the design flow, design space
can be narrowed down by applying higher abstracted TLM-based exploration first then using
lower abstraction modeling for exact performance estimation. Cycle-accurate exploration is
still required to determine the best design choice. Many works have discussed about TLM
modeling, they have proved that TLM simulation technology do help to speedup design space

exploration.

2.3.2 Traffic generator

Traffic Generators (TGs) are more .and more used during SoC design for platform
prototyping or performance evaluation.”When using TGs, simulation time is decreased
because the IP is not fully simulated. Simulation is also more flexible. The idea of using TG is

illustrated in Figure 2-11.
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TG TG TG

BIU BIU BIU
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Peripheral Memory Peripheral Memory

ESL Simulation ESL Simulation
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Figure 2-11 Simulation environment with core/TG model

TG could replace simulation using bit- and cycle-true simulation models of the IP cores,

and to speedup subsequent variants of that simulation using traffic generators coupled with
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accurate models of the alternative interconnects only. While the internal processing of IP
cores does not need thorough replication by the generators and can often be modeled by
waiting for an amount of cycles between network transactions. In this section, we will

introduce several traffic generators using on ESL simulation environment in previous work.

B Statistical traffic generator

G. Strano et al. [30] built a multi-abstraction and accurate virtual platform allowing an
in-depth investigation of the behavior of system components, captured in isolation and when
inter-operating with each other in a complete MPSoC platform of industrial relevance. The
whole MPSoC simulation platform was modeled and simulated with clock-cycle accuracy and
a SystemC-based virtual platform [21] which was used as the backbone environment (section
2.1). In order to speed up the analysis, functional‘traffic generated by the most critical audio

and video IP cores was reproduced by means of configurable traffic generators (IPTGs).

IPTG is a SystemC module‘developed-by-STMicroelectronics aimed at reproducing the
communication behavior of a generic IP. In its simplest configuration, IPTG can generate bus
traffic which obeys some statistical properties, e.g. in terms of burst length, transaction types,
addressing schemes, or it can also issue a transaction according to a specified sequence.
However, IPTG is best used to emulate the behavior of complex real-life IPs: such IPs can be
often seen as having a number of internal sub-process (or agents), each one with its own
characteristics (buffering space, transaction pipeline capability) but in some way dependent
on each other (e.g. when operating in pipeline). With IPTG, each agent traffic is handled
automatically according to its characteristics, and inter agent synchronization points can be set
to emulate dependencies between them. Once instantiated in a platform, IPTGs will generate
bus transactions at different abstraction levels (transaction-level, bus cycle-accurate)

according to what is specified in a per-IP configuration file, where all the required options and
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parameters are set. [IPTG turn out to be a powerful and handy tool to the system integrator, as
it allows to try out the SoC communication infrastructure in real-life conditions such as

heavy-loaded transients which are not likely to be reproduced using random packet injection.

The IPTG has a great property of supporting multi-abstraction bus transaction. This is
good for designers to simulate system with high flexibility. However, the IPTG’s bus interface
unit can only support STBus and rely on other bridges to connect to interconnect of other
protocols. Another problem of IPTG is the traffic generated by IPTG obeys with statistical
properties but not real case of application in IP core. The configuration inside of the core,
such as cache size configuration, can not be emulated by TG.. That will be a critical problem

of design space exploration.

B Stochastic traffic generator

T. Risset et al. [31] used stochastic models- for: traffic generation. They presented an
automatic detection of traffic phases-by analyzing simulation traces and have proved that
these phases are necessary to emulate'the ‘traffic generated by multi-media applications
running on SoC. They used their TG to replace an IP an cycle-accurate NoC performance

evaluation.

This work focused on an automatic phase of analyzing applications’ property and
generated stochastic traffic. First, they generated a reference trace by simulating the processor
IP. This trace is obtained with an ideal network environment (no network contention), which
makes the simulation very fast. Then, they processed the trace in a traffic analysis and
synthesis tool to obtain configuration files for traffic generators. They validate the TG in a
SystemC-based cycle-accurate and bi-accurate simulation environment: SocLib [32]. The TG
does not support any interconnect protocols and does not support multi-abstraction bus

transaction. The transaction modeled only in two phase of behavior: requests and responses,
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shows in Figure 2-12. The TGs’ transaction behavior is all model in time parameters, e.g. A(k).
This means the transaction interface does not model the real interconnect behavior of IPs.
This is a problem of real system simulation. The TG models would need user defined
transferring bridges to connect with the interconnection network in the target simulation
environment. This would cause the behaviors different form real IP core models on

simulation.

&
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Requests Req( A(K).C(k) ) > -
Responses Resp(k) .
i Tima Ecy'das}

L(k)

Figure,2-12 _Trafficimodeling formalism

B Deterministic traffic generator

Table 2-3._ TG instruction set

| Instructions Description
OCP Instructions:
Read(addr) Read from an address
Writel addr, data) Write to an address
BurstRead( addr, count) Burst read a range of addr.

BurstWnte{addr, data, count)  Burst write an address set
Other Instructions:

Ifiarg 1, arg? , operand) Branch on condition
Jump(location ) Branch direct
SetRegister(reg, value) Set register (load immediate)
Ldle{ counter) Wait for given no of cycles

Deterministic traffic generators are derived from real simulation traces or written from
scratch by IP designers. Such TGs can generate accurate transactions in time, size, and idle
time that match the behavior of an IP. S. Mahadevan et al. [33] proposed a TG

implementation as a very simple instruction set processor. They emulate TG as an OCP master.
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This TG is able to issue conditional sequences of traces composed of communication
transactions separated by idle/wait-periods. To evaluate the TG concept, they have integrated
the TG model into MPARM platform. On the platform, the OCP interface modules were
adapted to collect traces of OCP request and response communication events into a predefined
file format. The address and data fields of the transactions are also observed. Trace entries are
single or burst read/write transactions. Table 2-3 shows the OCP-master TG instruction format
to recode the traffic format. Figure 2-13 shows the example trace file extracted from MPARM

(a) and the trace file fed to TG (b).

; Master Core
MASTER [<cone | D= <thrd D]
+ Initializations
REGISTER rdreg O ; holds value of BD
REGISTER tempreg @
REGISTER addr 0x00000104
REGISTER data 0
Maxt IP eomm BEGIN
transaction interval Start
Idla{11}) s walt for first inst
MNetwork Read(addr, rd)
latency SatReglster{addr, 0x00000020)
SatRagistar(data, 0x00000111)
: Simple RDAYR'WRNP Idie(1)
Ls RO 0600000104 @ 55ns Wiite(addr, data, wr)
| » Rasp Data Ox0BA000T0 @ 78ns SatReglstar(addr, 0x00000031)
L% WR (00000020 (00000111 @ 90ns Iefle ()

RD Ox00000031 @ 140ns Read(addr, rd)
Resp Data Ox00002236 @ 165ns -

: palling a semaphora location!!

E-pding a semaphaorel! SetRegister(addr, 0x000000f)
RD Ox000000( @ 210ns SatReglster( termpreg, (x00000001)
Resp Data 0x00000000 @ 270ns Samchk
Rl Qx000000ff & 285ns read(addr, rd)
Resp Data 0x00000000 @ 310ns I rdreg |= lemprag than Samehk
RD Ox000000f & 305ns .
Resp Data 0x00000001 @ 320ns Jurnp(start)  rewind
N, EMD
(a) (b)

Figure 2-13  Example trace file (a) MPARM trace (b) TG program

Deterministic TG could strongly perform to replay the real master traffic behavior.
However, the accurate traffic is extract from full system simulation, this means the traffic
needs to re-simulate if the core configuration is changed, e.g. cache configuration. This is an

overhead of design exploration, and will restrict design flexibility. Secondly, the TG has
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strong ability to perform inter active behavior between cores. However, most of the traffic is
the behavior to access memories or other slave components. Traffic file size might be a huge
loading for simulation. Overhead of reading trace file would be more critical for this

“processor-like” traffic generator.

Traffic generators do speedup simulation time because it simplifies cores’ computation
behavior, but the behavior might be different from real core model. Traffic generated from
statistic or analytical solution may not represent the real application running on the platform.
SystemC wrapper of traffic generator is also an important issue that may derive the
transaction behavior. There are three important issues that we have found to be improved.
First, the interface of TG must support multiple abstraction level, flexible interconnect
protocols choices and other configurable patameters. Second, the behavior inside of traffic
generator model should not have.too. muchjovérhead, e.g. file parser. Third, the overhead of
traffic file generation should not take too much effort: There should be a fast and automatic
tool for traffic file generation that supports-configurable core parameters and application
change. Next chapter we will describe 'a TG-based simulation framework we proposed,

including of traffic file generation, TG models and traffic file format.
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3 PROPOSED EXPLORATION METHOD

SoC exploration always takes time for simulation. Here, we proposed an exploration
framework which keeps those: benefits-in previous works, MPARM, but speedup the
exploration time on our simulation platform: ‘Our method allows real application’s
performance analysis and trade-off exploration of on-chip communication architectures. We

will introduce our proposed Traffic Generator-based exploration framework in this chapter.

3.1 Proposed Exploration Design Space

The design issues we care about are memory organization and on-chip bus architecture
which are the same as the previous work, MPARM. Here, the system architecture is like
Figure 3-1. We focus on ARMI1176-JZS and ARMI1136-JZS processor as the target
processors. These two cores have same behavior of instruction modeling but have different
supported bus interface. ARM1136-JZS support AHB interface and has five ports, IAHB,

RAHB, WAHB DMAAAHB and PAHB. We will not discuss PAHB and DMAAHB here,
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since they are not often used. The IAHB is used for instruction read access only; RAHB is
for data read access and WAHB for write access. ARM1176-JZS supports AXI interface and
has four ports, IAXI, DAXI, DMAAXI and PAXI. We will not discuss PAXI and DMAAXI
here. The IAXI is used for instruction read access only. DAXI is for both read and write data
access, since AXI protocol interface has four channels, including read/write address, write
data channel, read data channel and write response channel. Caches could also be configured

by designers, e.g. [ and D cache size.

Core Core Core

1 D 1 D 1 D
Cache | Cache Cache | Cache Cache | Cache

BIU BIU BIU

¥ g g

On-Chip Interconnect

i s

Peripheral Memory

Figure 3-1 Multicore system architecture

We focus on AMBA 2.0 and 3.0 interconnection protocols. The network architecture
could be shared bus, multi-layer bus, crossbar and else. Bus arbitration, register slicing and
bus width are also changeable. Memory model is also configurable in protocols, size, access
latency and access width. Peripheral IPs including VIC, timer, memory controller and other
Primecell IPs are available in Coware’s tools. The system flexibility is high. We list those
design choices in Table 3-1. Our simulation environment must support these design choices

configuration.
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Table 3-1

Proposed exploration design space

Explored Target

Design Parameter

Design Choices

Cache Configuration

Core number 1,2,3,4
Core ARM1176
Target processor
ARM1136
Cache size 0,4,8,16, 32,64, 128 kBs

Cache line size

4, 8,16, 32, 64, 128 Bytes

Set associativyty

1,2,4,8, 16 ways

Write data coherent mode

Write-back
Write-through

Pseudo-random

Replacement policy Round-Robin
Last-recently-use
Protocol AMBA 2.0 AHB
AMBA 3.0 AX1
Single shared bus
Interconnect Interconnect network Multi-layer bus
Architecture Crossbar
Bandwidth 32, 64 bits

Bus arbition

Round-Robin

Fixed arbitration

Memory Configuration

Memory access latency

1,2,4,8, 16, 32 cycles

3.2 Proposed Traffic Generator Based Exploration Method

We have introduced several simulation frameworks in section 2-3. Now, we are going to
deal with the slow simulation speed problem and use Traffic Generators to replace the core

models. Here, in this section we will introduce how we use traffic generators for exploration.

33



3.2.1 Proposed TG-based exploration method

Section 2.3.2 describes several works that use traffic generators to replace core models.
However, there are two problems to use traffic generators. First, we must emulate processor’s
communication behavior as the original behavior. Second, we must avoid too much overhead
of traffic generation. Traditional traffic generator may use replay technique, e.g. Deterministic
TG (section 2.3.2), to make the TG behave the real transaction behavior of real application.
However, the traffic pattern needs to be generated from full system simulation. This approach
is not suit for our design space because we focus on memory organization and on-chip bus
architecture. When these design choices are changed, traffic file need to be re-generated by
repeated full system simulation. In order to deal with this problem, we propose a traffic

generator to deal with this problem.

CsW D sw D> sw

Core Core Core

ElNEERES TG TG TG

I Cache l I Cache l I Cache l ‘ Cache l ‘ Cache l ‘ Cache l

| BIU | | BIU | | BIU | BIU BIU BIU

i3 T T | i3 i3 i3
On-Chip Bus On-Chip Bus
i i i i
Peripheral Memory ESL Simulakion Peripheral Memory]: SL Simulation
Enviroment Enviroment

Figure 3-2 Proposed traffic generator

Figure 3-2 shows the idea of our TG. The original processor model consists of three parts,
ISS, cache and bus interface unit. These three behaviors let the core behave like a real
hardware. However, we are now going to use this system level simulation environment for
design exploration. During the exploration steps, designers must run the simulation repeat and

repeat for our proposed design space, interconnect network and memory organization. Core’s
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computation behavior is always no change, or even don’t need to care about that. The most
important is transaction behavior must be the same for interconnection design exploration. So,
the cores’ ISS behaviors are no need to real simulate on the platform. Here, our approach is to
record the memory accesses that generated from ISS and keeps the cache and BIU in TG
model. This is because ISS always behave the same memory accesses while repeated
simulation. Our TG model only need to replay the access behaviors between cache and BIU
while exploration. Besides, if the design choices of cache are few, we can record the memory
access patterns produced form cache model and extract both cache and ISS models from the
TG model. Following with this idea, we propose our exploration flow in Figure 3-8. The first
step is to off-line generate from cores’ internal behavior. Then, we load the traffic file into the
TG model in our ESL simulation environment and start the exploration. The simulation will
be repeated and repeated generating performance values of different architectures. The traffic
file needs to be re-generated only when we off-line simulate cache model behavior. We will

introduce the details in the following sections.

AP Source Code

— — —w» | Off-Line Traffic Generation

JL

—|  Full System Simulation
Platform

. Performance Value
Reconfiguration
A {}

Analysis

Figure 3-3 Proposed exploration flow
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3.2.2 Off-line traffic generation
In this section, we will introduce our traffic generation method and the traffic file format

W€ use.

B Proposed traffic generation method

Faffic Generator= —
Core Simulator (ISS)

O
em. Access Pattern

=

Figure 3-4  Off-line traffic-generation of proposed TG-1

Here, we propose two ways to off-line generate traffic file. The first one is called “TG-17,
shows in Figure 3-4. We separate the simulation framework in two steps. First, we off-lined
simulate cores’ ISS behavior. We use RVDS 3.0 ARM ISS [34] model as the core simulator,
since we focus on ARM 11. In this step, we will run the target application source code on the
ARMI1 instruction accurate simulator to extract memory access patterns. These patterns
include instruction accesses, read data accesses and write data accesses. These patterns will
not change since the cores’ behaviors are always same for specific source codes. This means
the off-line simulation only need once and needs to re-simulate in exploration. The second
step is to translate the memory access pattern to our proposed traffic file format. The traffic
file consists of information including access type, access address, write data, access packet

size and timing information. Here, the timing information represents the execution pipeline
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latency. Since the target ARM 11 model of Coware Model Library set all instructions execute
one cycle. So, the default instruction latency is 1. We keep our traffic file generator to be
configurable. Users could set different timing information value for different target
processors’ ISS or even the cycle accurate core models. These values will be recorded in
traffic file, which could runtime control TG*s behavior. We will introduce traffic file format in

next section.

faffic Generator= =
Core Simulator (ISS)

_Mem. Access Pattern

Cache Simulator

—

Cache

Configuration

Traffic Translator

Figure 3-5 Off-line traffic generation of proposed TG-2

The second approach of oftf-line simulation, as Figure 3-5, is called “TG-2". We first run
the target application source code on the instruction accurate simulator to extract memory
access pattern. These patterns include instruction accesses, read data accesses and write data
accesses. Then we will use an off-line cache model to simulate the cache behavior for
different configuration. This cache model’s design space shows in section 3.1. The oft-line
traffic generator will produce traffic file for TG which has information including access type,
access address, write data, access packet size and timing information. The traffic file format is
the same as “TG-1”. Here, the timing information represents the relative latency between two
transactions. The instruction latency is one cycle latency in ISS model, and we record this

timing information between two transaction behaviors in traffic file. Actually, the access
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pattern that we feed in cache model is equal to previous wok which means the ISS still need
only one time simulation. The overhead of this framework is that we need to re-simulation
cache model for different cache configuration. However, the cache model is implemented in
C/C++ language and no other interconnection behavior. The off-line cache model simulation
is fast. The cache model running on Pentiun 4 dual core 3.4 GHz PC only need for few
seconds. We can easily ignore this overhead in our simulation framework. Also, the benefit of
off-line cache model is the small traffic size. Cache could help to reduce transfer on system

interconnect and reduce system simulation loading.

B Proposed traffic format

Real Situation
Time
Core x ‘ Transaction A ‘ ’ Transactid ‘ Transaction C
-
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- - >
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Traffic with Relative Time
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Figure 3-6 Purposed traffic timing diagram

Figure 3-6 shows the timing diagram of our proposed traffic file format. First diagram
represent the real situation of transaction behavior. 7, represent the transaction cycles count.
Here, we define the transaction behavior starts from BIU request trigger until TG receives

response signal. 7, represent the cycles count that no transaction happen. Core could be
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executing or idling during these cycles. If we can model the BIU to behavior correct, the 7
and T’, should be equal. However, the cores’ computation behavior is decides by the oft-line
simulator. If we do not model the latency of cores’ computation, the timing diagram would be
like the middle one in Figure 3-6, traffic with no relative time. Since we have claim that our
off-line model could record timing information in traffic file, our TGs’ timing diagram would
be like third diagram in Figure 3-6, traffic with relative time. Ideally, the traffic with relative
time should have same behavior of real situation as follow

I.=T"

T.=T"
The fist equation is decided by BIU’s accuracy, the second one is refer to our off-line
simulator. Ideally, these equalizations are met because we have recorded time information in

traffic file and the time value is equal to core’s ISS‘model.

FILE Format :

Relative time TYPE  Burst Size
(1) (I/R/W) (4/8/16/32) Address  Data

0 I 1 0x20

2 R 1 0x20004

1 w 4 0x21000 0x0

0 w 4 0x21004 0x1

0 W 4 0x21008 0x2

0 w 4 0x2100c 0x3

1 I 1 0x24
(a)

«— 2 —re—]|>—]>«——— 4 —F——— 4 ———>
Relative time | Type | Burst Address Data

(b)

Figure 3-7 Proposed traffic file format (a) Text format (b) Binary format

Here, we introduce how we set up the traffic format. Figure 3-7 (a) shows the text format
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of traffic file. A traffic access pattern includes relative cycle count, access type, burst size,
address and data. Figure 3-7 (b) shows the binary traffic file format. The off-line traffic file

generator will generate binary format traffic file.

Table 3-2 Traffic format

Access Information Binary Size (Bytes) |Parameter

Relative time (1) 2 0~65535

I — Instruction access

R — Read data access

Type 1 W- Write data access
Q- TG idle

Burst size 1 1,2,4,8,16, 32

Address 4 32-bit hexadecimal value

Data 4 32-bit hexadecimal value

Table 3-2 lists the information “including parameters and encoding binary size. An
access command requires 11 bytes. Relative ‘time requires 2 bytes, and highest cycle count is
65535. The traffic generator would automatic insert idle command if the relative time exceeds
this number. “Type” refers to different access command. “Q-type” is the idle command which
makes TG stall for T cycles. “Burst size” is the option for indicate the burst transaction size.
The transfer unit of the burst size is 4 bytes. The data is also 4-byte length. This means that
when a command’s burst size is more than 1, the next (burst size -1) commands and itself
would be packet to one burst transaction. For example, in Figure 3-7 (a) the third command is

as flow:

Relative time TYPE  Burst Size  Address Data
1 W 4 0x21000 0x0
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This command is a write data access for 4 burst data, and the address is “0x21000”, data is
“0x0”. TG will packet the next three commands to one burst transfer. The burst data would be
128-bit length. TG’s BIU will automatically change the burst transaction type follow the bus

protocol, e.g. “WRAP” or “INCR”.

3.2.3 Full system simulation

In this section, we will introduce in thee part, our ESL simulation environment, the

runtime behavior of TG model and the statistical capability of our TG model.

B ESL simulation environment

We use CoWare Platform Architect as the ESL platform development tool (section 2.2.1).
The CoWare Model Library supply IP andibus'models help us to build up a flexible system.
We can build models by SystemC language in user-defined abstraction. Since Coware support
multiple protocol libraries it could help users-to set up the model in OCP, AMBA 2.0 and
AMBA 3.0 interconnect protocol with"APIs.'All of the protocols available in these libraries
can be used at the PV (Programmer’s View which is equal to Untimed TLM), TLM, or
pin-accurate abstraction level. Besides, the analysis tool in Coware provides textual and
graphical views for both the hardware engineer and software developer to analyze items’
critical to System-on-Chip architecture and software performance. We use these
functionalities in our ESL simulation platform, so our platform kept those properties and even

have much more flexibility then the framework we discuss in last section.

We build the simulation platform as Figure 3-8. We model the TG module in SystemC
language which is able to use for different architecture. TG module is configurable for all
design space we list in section 3.1 and is a parameterized model. Users can set configuration

of cache model including cache size, cache line length, set associativyty, etc., on the Coware
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Platform Architect GUI design platform. The BIU’s interconnect protocols and port widths
are also settable on the platform. Also, we model the BIU to support multi-abstraction level.
This makes our platform to have more flexibility for exploration. The traffic files source,
statistical capability and cache on/off all are set on the ESL tool. This is convenient for users
change the system architectures. The TG model for TG-1 and TG-2 is the same. We need to
set the TG model to be cache off for TG-2 solution as Figure 3-9. SystemC is an event-driven
modeling language. The simulation speed will improve since we turn off the cache’s behavior

modeling.

TG TG TG
Cache Cache Cache
BIU BIU BIU

On-Chip Bus
Peripheral Memory

Figure 3-8 ESL simulation platform of proposed TG-1

I T
5w | [ Bu | | BU
i} i3 i3
On-Chip Bus
]} ]}

Peripheral Memory

Figure 3-9 ESL simulation platform of proposed TG-2
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B Runtime behavior of TG

TG-1 behavior flow

Figure:3-10 Proposed-TG-1-behavior flow

Figure 3-10 shows the behavior of "TG-1. Our proposed TG including three parts of
model, file reader, cache model and bus interface unit (BIU). File reader will first read the
access information of traffic file including timing information, access type, burst size, address
and data. Simulation starts when an input start signal trigger. The parser will then identify the
access type to control instruction or data cache’s behavior. Here, the cache model will not
have pipeline latency property since the ARM ISS of Coware Model Library does not behave
pipeline cycles. Cache model decides if the access is hit or miss in cache memory. If the
access is hit, TG will return to parser state to get next access and record the timing
information. The time value will be recorded and accumulated until the cache access is
missing. When cache miss happens, TG will turn to an idle state. The TG will stall for several

clock cycles which have been recorded. This behavior flow will help simulation because TG
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will not stall for every access. After stall for recorded cycles, this time value will be reset to
zero then jump to transaction state. TG will trigger the BIU to start access. There is a FIFO in
BIU, TG will feed the instruction or data access into the command FIFO. The access would be
cache lines fill in, or cache lines write back or data write through. The information in FIFO
includes access type (I/R/W), burst size, address and data. BIU itself will start transaction
behavior in FIFO. The BIU here we proposed does not support interleaving transaction (also
called outstanding transfer) only one transfer for one time traffic access behavior since the
ISS model does not support outstanding transfer. TG’s BIU has same ports as the ARM11
model. BIU will identify which to port to send transfer request. After transaction finish, the
TG will return to parser sate to get next traffic access if the transaction finish. The TG’s

behavior will stop until the last traffic access.

Finish

Wait

TG-2 behavior flow

Figure 3-11 Proposed TG-2 behavior flow

When we use “TG-2” solution to generate traffic file, the TG model in the simulation
environment includes two parts of model, file reader and bus interface unit (BIU). File

reader will first read the access information of traffic file including timing information, access

44



type, burst size, address and data. Figure 3-11 shows the TG runtime behavior. Simulation
starts when an input start signal trigger. The parser will then jump to idle step and stall for
multiple cycles recorded in our traffic file. The BIU behavior is the same as TG-1. TG will
return to parser state to keep access next transaction. The TG-2 simulation speed will be fast

than TG-1 because there is no cache model simulation and smaller size traffic file.

B Proposed TG’s statistical capability

Coware’s analysis tools support interconnection analysis and profiling. However, the
core’s analysis capability is based on the models’ support. ARM’s ISS model does support
users to trace with debugger tool, cache model does too. Our proposed traffic generator
obviously not support trace behavior because no real computation in the system. So, our TG
focuses on cache behavior and transaction modeling. Many trace-based cache simulators are
available today, e.g. Dinero [35];MSCSim [36]. These cache models have high flexibility and
support statistics. However, these models-may-not suit for embedding in SystemC wrapper
because the complicated source code: Here we build up our simple cache model which
support all design space we target on. Our cache model support cache analysis which is based
on those popular cache models. The cache analysis includes access times, hit times, miss
times and miss rate. Also, the detail analysis including compulsory/capacity/conflict miss
times are support. Our on-line or off-line cache model both support these analysis capabilities

and can be turned on/off by users.

Transaction analysis capability is embedded in TG’s BIU. The statistic includes average
read/write access latency, total access times and total idle time. This information could help
users to get some referenced performance value, e.g. CPI and efficiency. TG itself also has a
timer inside. Timer would record timing when the TG starts its behavior until the end of

simulation. The timer is configurable for users and also able to turn off. These statistical
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capabilities can be control by users. These behaviors would slow down simulation, however,
not a critical part. Co-operating with the analysis tool on interconnect network, our proposed
simulation environment does help user to explore architectures as the exploration framework
in chapter 2. The only one capability not supported in our environment is the software
verification, however it is not important when architectures’ exploration. Our proposed

exploration framework offers a complete analysis tools for designers.

3.2.4 Analysis of two proposed TG

We propose two traffic generators TG-1 and TG-2. These TGs both have high simulation
speed than ARM model. But these TGs have there own properties. Here, we will introduce

their properties and show what situation the, TG suit for.
TG-1"s benefits list as follow:

(A) Higher accuracy
(B) Runtime configurable cache model

(C) Only one time off-line simulation

The TG-1 has a property of higher accuracy because the cache is embedded in on-line
TG model. The interactive behavior between cache and BIU is much more closed to real case.
Also the latency on the TG has more accuracy than off-line simulation. The second benefit is
the cache model could change configuration with other interconnect architecture at the same
time. It is convenient for designers to change platform at ESL simulation environment. The
third benefit is the main idea of our proposed TG. Core’s computation behavior does not need
to re-simulate every time we change the architecture. Off-line traffic generation procedure
only needs to operate one time, since all configurations are settable at runtime. Though, the

off-line simulation may need couple minutes, which is refer to application’s behavior, the
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same traffic file could be used for hundreds or even thousands times simulation. Off-line
simulation overhead could easily ignore. However, there are some drawbacks of TG-1. We list

as follow:

(A) Huge traffic file

(B) Slower simulation speed

The first and main problem of TG-1 is the traffic file size. Memory access pattern
generate form application could be hundred MBs or even GB. Traffic file size is huge because
no cache support. Cache memory could help memory access times scale down form 10 TO
90%. Of course, this is depending on the application’s behavior. Especially for instruction
access, most of application’s source code always contains large amount of loops or function
calls. These would cause vast amount-0f instruction access for one fragment of codes because
repeat and repeat calls for same instructions. Large traffic size may cause simulation overhead.

We will show the problem in next chapter.

TG-2 has some benefits different from TG=1. We list as below:

(A) Smaller traffic file

(B) Faster simulation speed

The off-line traffic generator of TG-2 simulates cache behavior so the traffic file would
be smaller. Accesses of TG-2’s traffic file are always burst transaction due to the cache line
fill or wire back. Both traffic file have same format as we discuss in last section, so traffic file
is much smaller. This benefit cause the simulation on ESL environment has faster simulation
due to lower read file overhead. Also, no cache model on TG makes its behavior simpler. This
property let TG-2 has faster simulation speed than TG-2. However, there are some tradeoffs

between these two TGs. Here we list drawbacks of TG-2:

(A) Lower accuracy
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(B) Repeated off-line generated traffic for cache model changed

The TG-2 simulator has lower accuracy than TG-1. This is because TG-1 simulates both
cache model and transaction behavior at the same time. Behaviors between cache and BIU are
close to real ARM model. TG-2 neglect this interactive problem so has lower accuracy. The
other problem is repeat off-line traffic generation. We need to re-generate traffic pattern for
different cache configuration. This is an overhead for full exploration framework. However,
traffic file of one cache configuration is reusable when searching interconnect network, same
as TG-1. Also, the off-line cache model has small simulation time. Cache simulation may only
cost couple seconds. Most of important, ISS still only need one time simulation because there
is no change of core’s behavior. Off-line traffic generator only needs to repeat cache

simulation for different cache architecture.

We have introduced properties of TG=l and TG-2. Both simulation frameworks are faster
than traditional frameworks. But, there are Some situation suits for these two ways. TG-1 is
suit for large design space exploration because theruntime configuration benefit. Especially
for co-evaluate cache and interconnection relation. TG-2 is suit for design target on
interconnection architectures and smaller cache design space, because it needs to re-generate
traffic file for different cache. TG-1 has longer simulation time, but TG-2 need oft-line
regeneration process. Designers choose one way for different purpose. The simulation speed

of two frameworks will show in next chapter.

3.3 Verification of Proposed Traffic Generator

We have introduced our exploration framework in previous work. Our exploration
simulation environment offers designer a complete tool chain and simulation flow. Here, we

are going to prove that our platform is reliable for design space exploration. We will compare
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our TGs with ARM ISS models and show the accuracy between those models.

We build a case study for verification. The target platform is a single ARMI1 core
platform. We set up interconnection modeling abstraction at TLM Bus Cycle Accurate
(TLM-BCA) level. We build the platform on Coware Platform Architect ESL simulation

environment. We choose two benchmarks as target application.

(A) 2048-point floating point FIR

(B) 512x512 integer JPEG encoder benchmark

These two source codes are compiled in ARM O1 optimization. Both benchmarks will
read input bit-stream from shared memory and then write the output stream back. The
platform architecture is based on the 4-ARM platform we have introduced in section 2.2.2.
Single ARM with a private memeory and a shared memory, programs are load in private
memory and execute as a local memory. Memory -access latency is set in 1 cycle. The

platform architecture shows in Figure 3-12.

ARM 11

Cache | Cache
BIU

g

On-Chip Interconnect

r g

Private Shared
Memory Memory

Figure 3-12  Single ARM platform architecture

In this verification case study, we will focus on several design choices comparing our
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TGs with ARM ISS. We would like to make sure that our proposed TGs models, cache and
BIU, are correct. System design choices list in Table 3-3. We choose different cache size to
observe the cache behavior accuracy. Cache write coherent mode is set as write-back mode.
Cache line is 32-byte length and 4 way set associativity. Cache line replacement is
Pseudo-Random policy. These cache information are parameterize and configurable on our
model. ARM’s cache model can only configure cache size when platform setting. Other
configuration must be controlled by software source when processor booting. These
differences may cause some behavior betweens ARM ISS and our TGs. However, the booting
step is much shorter than the application’s commutation behaviors and almost could be
ignored. Cache model of TGs is implementing in C/C++ language. Although, we have
implemented the cache model based on the Coware Model Library documentation, there are
still some behaviors different between cache model in ARM ISS and our cache model. (The
core model is implementing as -a black box. Uset.can not trace the cache behavior easily.)
Also, the interaction between cache model-and-BIU is unknown. We will show the execution

time error cause by two different implementation models.

Table 3-3 Design space of experiment single ARM platform

Design Target Design Choices
I/D cache size 0,4,8,16 kB
Cache write mode Write-Back (WB)
Cache replace policy Pseudo-Random

AHB Full Crossbar (AHB-FC)

Interconnect hierarchy
AXI Full Crossbar (AXI-FC)

Memory access latency 1 cycle

Total Design Space 8
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Interconnection protocol of BIU could be AMBA AHB or AXI. Port interfaces of TG and
ARM ISS are the same. There are two ports for AXI protocol, IAXI and DAXI. Three ports
for AHB protocol, IAHB, WAHB and RAHB. Both protocols have 64-bit data width and
32-bit address width. Interconnection architecture is set in fully crossbar which connects two
memories and processor. The abstraction is set in TLM Bus Cycle Accurate (TLM-BCA).
TLM modeling flexibility is high for programmers to design the interface. To ensure the
behavior is equal, we have traced the ARM’s BIU at runtime simulation. We implement our
BIU on TGs the same as we observe on ARM model. We have made sure that the transaction
behavior including single read/write access and burst access are equal between two models.

Now, we are going to prove that our TGs’ accuracy is acceptable by running real application.

The first application we test is a 2048-point floating point FIR benchmark. The FIR
benchmark is a 35 tap low pass filter. When the program begins, processor will first allocate a
space in private memory for tenmporary input and output data then fetch input bit stream from
shared memory to here. Next, processor.starts-computation. At the end of program, processor

will store the output results back to shared'memory. We show simulation results in Table 3-4.

Table 3-4 Execution time of FIR benchmark

System

. ARM ISS TG-1 TG-2
Architecture

Interconnecl Cache [ Execution time | Execution time ]| Error | Execution time]| Error
{ size (cycles) (cycles) (%) (cycles) (%)
0kB 1.914E+07 1.931E+07 -0.87 1.931E+07 -0.87

AXI-EC 4kB 4.715E+06 4.609E+06 2.25 4.614E+06 2.14

8kB 4.479E+06 4.509E+06 -0.67 4.210E+06 6.01

16kB 4.477E+06 4.407E+06 1.57 4.108E+06 8.25

0kB 2.840E+07 2.853E+07 -0.46 2.853E+07 -0.46

AHB-EC 4kB 4.770E+06 4.739E+06 0.65 4.611E+06 3.33
8kB 4.482E+06 4.539E+06 -1.27 4.509E+06 -0.60

16kB 4.480E+06 4.400E+06 1.78 4.207E+06 6.10

Table 3-4 shows cycle count of different architecture. The error value of other two TGs is

compare to the ARM ISS’s ratio. First, we can see that TGs’ execution cycle counts are almost
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equal to ARM ISS when cache is disabling. Cycle count on AXI protocol is about 19M cycles,
AHB is about 28M cycles. The error between ARM ISS and TGs is under 1%. This proves
that we have implemented the AXI and AHB BIU almost equal to ARM’s BIU. Cache
memory does improve the performance to be about 4.7M cycles. However, the FIR
benchmark is a small application. The 4 kB instruction and data cache size is big enough for
this program. We can find that almost no more improvement for 8 and 16 kB cache. Our TGs
do show this property. TG-1 has better accuracy as we discussed in section 3.2.5. The average
error of TG-1 is under 3%. TG-2 has lower accuracy than TG-1 due to the cache and BIU
interaction behaviors. Though, TG-2’s still has more than 91% accuracy (error under 9%).
Choice of protocol is no big different for the accuracy. As we have discussed before, the cache
model different is the reason of error. However, the accuracy number is acceptable for design

space exploration.

The second application we-use is a 512X512 integer JPEG encoding benchmark. This
benchmark is much bigger than FIR. When program-begins, processor fist allocates two 1kB
spaces in private memory for functions”input and output buffer. The program will encode one
micro-block per iteration. When the iteration starts, processor will load one micro-block size
RGB data from shared memory into input buffer. Then start encoding procedure. The
execution flows of JPEG encoder are RGB format to YCbCr, DCT transform, quantization
and variable length coding. At the end of iteration, processor writes the micro-block’s bit
stream in output buffer back to shared memory. The application runs on ARM model under

different system configuration (Table 3-3). We show simulation results in Table 3-5.
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Table 3-5 Execution time of JPEG benchmark

System Architecture ] ARM ISS TG-1 TG-2

Interconnec] Cache ] Execution time | Execution time | Error | Execution time | Error
t size (cycles) (cycles) (%) (cycles) (%)

0kB 2.256E+08 2.263E+08 -0.32 2.263E+08 -0.32

AX|-EC 4kB 5.990E+07 5.619E+07 6.18 5.519E+07 7.85

8kB 5.349E+07 5.019E+07 6.17 4.881E+07 8.75

16kB 4.558E+07 4 481E+07 1.68 4.396E+07 3.55

0kB 3.275E+08 3.285E+08 0.31 3.285E+08 0.05

AHB-EC 4kB 6.311E+07 5.991E+07 5.08 5.669E+07 10.17
8kB 5.544E+07 5.240E+07 5.48 4.938E+07 10.94

16kB 4.580E+07 4.401E+07 3.90 4.225E+07 7.74

Table 3-5 shows cycle count value and ration of different architecture. The execution
cycle counts with cache disable are almost equal to ARM ISS. Cycle count on AXI protocol is
about 225M cycles, AHB is about 226M cycles. The error between ARM ISS and TGs is still
under 1%. Again, this proves Jour TGS’ BIU is reliable. Cache memory could help
performance improve. AXI protocol with 4 kB size cache will need about 60M cycles, 53M
for 8kB and 45M for 16kB. AHB:protocol-with'4 kB size cache will need about 63M cycles,
55M for 8kB and 45M for 16kB. Because JPEG benchmark has larger instruction and data
size, the performance will be raised when cache memory is lager. Our TGs also show this
property. TG-1 has better accuracy as we discussed in section 3.2.5. The average error of
TG-1 is under 7%. TG-2 has lower accuracy than TG-1 due to the cache and BIU interaction
behaviors. Though, TG-2’s still has more than 89% accuracy (error under 11%). Choice of
protocol is no big different for the accuracy. As we have discussed before, the cache model
different is the reason of error. However, the accuracy number is acceptable for design space

exploration.

In a summary, our proposed TGs have exceeded 99% accuracy when the cache
simulation is disabling. The transaction interface we used is reliable. When cache simulation

is enabling, TG-1 solution has 93~97 % accuracy and TG-2 has 89~91% accuracy. However,
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if we can use a same cache model in TG or ARM core, we believe that the accuracy will be
much closer to ARM ISS model. In conclusion, our TG simulation framework could provide a

reliable exploration tool for SoC design.
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4 EXPERIMENT RESULTS

Our proposed TGs have been proved:to: supportreliable simulation environment. In this
chapter, we will show simulation speed improvement comparing to original simulation
framework. Also, we will show the simulation profiling of runtime TGs’ behavior and offline

traffic generator’s overhead.

4.1 Experiment Setup

We setup the experiment environment on CoWare Platform Architect. The target
platform is a 1 to 4 ARMI11 core platform as Figure 4-1. Core number and its private memory
are configurable. Cache size of all cores is set in fix size. Memory access latency is set in 1
cycle. The interconnection architecture is full crossbar with AXI protocol. All design choices
are listed in Table 4-1.We set up interconnection modeling abstraction at TLM Bus Cycle
Accurate (TLM-BCA) level. We choose 512x512 JPEG encoder benchmark as target

application (which has been introduced in section 3.3). Every core runs its application
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independently. Every core’s input and out put bit stream are all allocated in shared memory
and computation would execute in their own private memory. There is one core behave like a
host processor. The host processor would control the system behavior. When simulation
begins, host processor would set up control register in shared memory then other cores would
start computing. At the end of encoding, all cores would jump to a loop and wait for the

master core stop the simulation.

ARM 11 ARM 11 ARM 11 ARM 11
Il D I D Il D 1 D
Cache | Cache Cache | Cache Cache | Cache Cache | Cache
BIU BIU BIU BIU
Full Crossbar (AXI)

Private Private Private Private Shared

Memory || Memory [| Memory || Memory Memory

Figure 4-1 Multiple ARM platform architecture

Table 4-1 Design choice of multiple ARM platform

Design Target Design Choices
I/D cache size 4 kB
Cache write mode Write-Back (WB)
Cache replace policy Pseudo-Random

Interconnect hierarchy | AXI Full Crossbar (AXI-FC)

Memory access latency 1 cycle
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4.2 Experiment Results

We will now show the simulation result in this section.

4.2.1 Simulation speed

Table 4-2 Comparison of simulation speed

Simulation
Simulation Speed
#Cores  Injodel (k cycles/sec)  [Speedup
ARM ISS 381.09 1.00
1 TG-1 1554.28 4.08
TG-2 2190.46 5.75
ARM ISS 187.80 1.00
2 TG-1 795.18 4.23
TGOFF 1184.56 6.31
ARM ISS 126.00 1.00
3 TG-1 571.02 4.53
TG-2 730.32 5.80
ARM ISS 96.40 1.00
4 TG-1 390.95 4.06
TG-2 563.74 5.85

The simulation result of running 1 to 4 cores is show in Table 4-2. The simulation speed
of all platforms is the average number of five times speedup. Simulation speed of ARM ISS
platform is under 400 k cycles. As the execution time we show in section 3.3, JPEG would
take 60M cycles on a single core platform. The simulation time of single ARM ISS is about
2.5 minutes; TG-1 is about 35 seconds; TG-2 is about 26 seconds. While running on a four

ARM ISS platform, the total simulation time is more than 10 minutes; our TGs would take 2.5
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minutes and 1.7 minutes. We show the simulation speed number in Table 4-2 and Figure 4-2.

Simulation Speed (k cycles/sec)

2500

2000 B ARM ISS
B TG-ON

1500 [ TG-OFF

1000
500

Cores 3 4

Figure 4-2 ,Simulation speed of different core number

The simulation result shows TG+l 15-about4 times speedup of ARM ISS model. TG-2 is
about 6 times speedup of ARM ISS medel. Simulation speed would drop quickly when core
number increase. This is because more cores’ behavior and transaction counts need to

simulate. However, simulation speedup ratio between TGs and ARM ISS has no big change.

4.2.2 Simulation profiling

Our proposed TGs have two phase of simulation: off-line traffic generation and full
system simulation. Now, we are interesting in TGs’ runtime simulation behavior and the
execution time of off-line traffic generation. First, the runtime simulation profiling of TGs
shows in Table 4-3.The profiling is extract from single ARM experiment. The application is

JPEG encoder as we discuss in this chapter.
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Table 4-3 Runtime simulation profiling of two TGs

Functionality
Trace file access ) e Cache behavior
TG @) Transaction (%) | Initialization (%) %)
TG-1 12.57 42.77 1.44 43.22
TG-2 0.61 90.46 1.96 N/A

Table 4-3 shows TG-1 and TG-2’s profiling result. “Traffic file access” includes read
traffic file into TG and the parsers’ behavior. “Cache behavior” includes the cache memory
access and the behavior of fill access commands in BIU buffer. “Initialization” is the
simulation background behavior such as allocate runtime memory and cache initialization.
“Transaction” means the simulation time of BIU including start access to interconnect,
waiting for data/address transmits and other behavior between system component and TG.
TG-1 has 43 % time busy on cache.behavior and 13% on traffic file access. This result shows
TG-1 spend more than half of simulation effort on the cores’ inter behavior. TG-2 shows
almost all simulation behavior is onitransaction behavior. The behavior inside of TG-2 is

almost zero.

Table 4-4  Off-line traffic generation effort

TG ISS Simulation | Cache Simulation | Binary Translation
TG-1 5 min. n/a 20 sec.
TG-2 5 min. 30 sec. 5 sec.

The other simulation effort we need to care about is the off-line traffic generation. The
traffic size of TG-1 is 691 MB. Traffic size of TG-2 is 23 MB. We show the off-line
simulation time in Table 4-4. The off-line simulation works on a Pentium 4 3 GHz dual core
PC. ISS action would take about 5 minutes for JPEG benchmark. TG-1 has no off-line cache
simulation. Binary translation is to generate the traffic file in binary format. TG-1 would need

20 sec for translation. TG-2 needs 30 seconds for cache simulation and 5 seconds for binary
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translation. TG-2 has shorter translation time since the traffic size is much smaller than TG-1.

4.3 Discussion

In this section, we are going to discuss about the experiment result. Section 4.3.1 shows
how much improvement of our TGs. We can find out that both TGs keep the speedup ratio
while the core number increases. However, the simulation speed drops so quickly with core
count. This is because the nature behavior of SystemC modeling. SystemC is an event-driven
language. Since the behavior times increase, the simulation time also increase fast. The
simulation speed of TG-1 and TG-2 getting closer when more cores need to simulate. This is
because the transaction behavior on the system becomes more complicated. Memory and bus
conflicts would be more when more-«master on-a platform. Transaction behavior will need
more percentage of simulation time than single core, especially for TG-2. However, we
choose the AXI crossbar interconnect hierarchy im' this experiment so the interconnect
behavior simulation will not domihate full simulatien time. The profiling result shows core’s
“inside” behavior, cache and file access, is more than half simulation time spends on TG-1
simulation. However, this result will change for different benchmark. In conclusion, TG-1
would take about half simulation effort for modeling cache behavior, TG-2 always pays
almost 100 % effort on BIU. Obviously, TG-2 has simplified all cores’ internal behaviors.
Besides, the profiling results we show is under the default simulation which has only cycle
count analysis. If we have turned on the analysis capability inside the TG model, the

simulation speed and profiling result will changed and spend much effort on this functionality.

The off-line traffic generation shows ISS simulation would spend a long time.
Fortunately, we only need one time simulation for one source code. Since exploration would
need repeat and repeat simulation, this simulation effort becomes not that important. TG-2

needs to re-simulate for different cache configuration. However, the simulation time is still
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short. If design choices are few, the simulation time of cache model is acceptable. The

functions below show total simulation time for our TGs and traditional ISS.

Total simulation time (ISS) = M x Full simulation time

Total simulation time (TG-1) = (ISS time + File translation time) +M x Full simulation time

Total simulation time (TG-2) = (ISS time + N X (File translation time + Cache time))+ M X

Full simulation time

N is the number of total cache design choices need to explore, M is the times of full
system simulation. Average overhead of off-line simulation will be smaller if there are more
times of simulation on the full system. On the other hand, the traffic file size is also a serious
problem. Traffic file of TG-1 might be amazing huge for large application. While more cores
on a platform, TG-1’s traffic file: will beia etitical. overhead for runtime simulation. In a
conclusion, TG-1 is suit for large design space because no need to re-simulate. TG-2 is suit
for smaller cache design space because it needs to-re-simulate. Also, TG-2 is suit for big

application benchmark because the smaler traffic size overhead.
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5 CONCLUSIONS

This thesis first address fon the :SoC. design exploration issues and focus on
simulation-based exploration methodology. We' then target on a successful simulation
framework, MPARM [20][21], and- introduce how’s the environment set up by SystemC [15]
language. This case shows the full simulation environment is useful for designers to analyze
performance of different hierarchy. However, the simulation speed is slow for modern
multicore SoC design space exploration. This problem also exists while we rebuild a
simulation environment in modern ESL tool [17]. The experiment shows it is still not enough
fast. Many previous works focus on speedup simulation. Transaction Level Modeling [16][29]
does help exploration by arising modeling abstraction level but sacrificing simulation
precision. TLM-based simulation helps to speedup interconnection behavior modeling but not
improve processors’ inside computation behaviors. Traffic Generator could completely
simplify processor’s computation modeling. Nevertheless, TG-based simulation usually is not
the real case, or TG directly replays last time’s simulation. These two methods both have their

own properties and their own problems.

63



We proposed a TG-based exploration acceleration approach to deal with those problems.
Our TGs combine both TLM’s and traditional TGs’ properties in our framework. Our TGs
support multiple on-chip bus protocols, multi abstraction level and cache behavior simulation.
Most of important, our TGs’ transaction behavior is based on real application not the
statistical traffic result. Also, our TGs no need to simulate full system for recording traffic.
The propose simulation flow is separated into two phases: off-line traffic generation and ESL
simulation. TG-1 solution off-line simulates cores’ ISS behavior and keep cache modeling
contain in ESL simulation environment. TG-2 solution off-line simulates cores’ ISS and
caches’ behavior and completely simplifies TGs’ modeling in ESL simulation environment.
We supply a tool chain for full simulation framework and set up a traffic format to be used for

both TG solutions.

We further verify our TGs’ aceuracyicompared to the ARM ISS model. Our TGs have at
least 90% accuracy compared to ARM ISS meodel. “Then we build up an experiment for
measuring simulation speed. Experiment shows our proposed TGs do speedup simulation,
TG-1 is about 4 times improvement over ARM'ISS, and TG-2 is about 6 times. This proves
that our exploration framework could be used for SoC design which has already decided
target processor. The simulation profiling shows TG-1 is suit for large design space especially
focuses on cache organization and interconnection network co-exploration. TG-2 is suit for

design space focuses on interconnection network exploration with fewer cache deign choices.

Our future work is to enhance the modeling capabilities including semaphore interface
between TGs to support multicore issues. Cache models for multi-processor data coherent
problems and multi-level cache hierarchy supporting. Moreover, the simulation speed could

be improved by traffic file compression techniques to lower system overhead.
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