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摘要 

因具高適應性，可程式化(programmable)之以處理器架構為基礎之系統單晶片

(processor-based SoC)設計，在各式各樣的多媒體與通訊應用中愈來愈受歡迎。整合多核

心或多運算單元於單一晶片上，將使系統晶片上的匯流排(on-chip bus)設計與記憶體的

架構越趨複雜，如何設計符合運算能力的需求並且減少硬體花費與能量消耗是亟需解決

的重要議題。利用設計空間探索(design space exploration)，透過系統模擬技術，可決定

重要的晶片設計參數，使系統單晶片在設計初期，就朝對的方向進行，減少來回重複的

模擬次數，達到快速上市(Time-to-Market)需求。傳統設計空間探索經常會採用全系統模

擬(full-system simulation)方式，然而，系統模擬往往會耗費大量的時間，在本篇論文中，

我們提出一套支援多種抽象層級、多種協定的資料傳輸產生器(traffic generator)，可加速

系統單晶片上匯流排和記憶體架構的設計與探索。此外，我們建立一套完整的設計方

案，包括可針對特定的應用程式碼產生資料傳輸的流程，以及針對指定平台的全系統模

擬環境。我們的資料傳輸產生器提供兩種選擇來加速多顆處理器的系統晶片模擬，分別

稱之為 TG-1 以及 TG-2；TG-1 會事先取出處理器的記憶體存取動作當作資料傳輸的來

源，並在全模擬平台內保留快取記憶體(Cache)的模擬; TG-2 則是事先模擬處理器與快取

記憶體以取得傳輸資料，並且完全簡化在全模擬平台內傳輸產生器之動作。TG-1 能夠

比較精確模擬處理器動作，但是模擬速度較慢，反之，TG-2 模擬速度較快，但是精確

度較低，這兩種作法都可以用來探索以微處理器為架構基礎之系統晶片的廣大設計空

間。在 ARM 處理器架構的系統晶片中，利用我們的資料傳輸產生器建構模擬平台，和

傳統的指令集模擬(ISS)方式相比，可以達到超過 90%的精確度，並且增加到 4 至 6 倍模

擬速度。 
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ABSTRACT 

High adaptive and programmable processor-based SoC becomes popular for various 
embedded multimedia and communication applications. More and more computing engines 
can be integrated in a single chip. On-chip bus and memory architecture exploration on 
embedded SoC is an important issue to reduce cost and power while achieving computation 
requirements. Full-system simulation is usually used to perform the design space exploration. 
However, simulation is usually time-consuming. In this thesis, we propose a multi-abstraction, 
multi-protocol Traffic Generator (TG) to accelerate simulation-based interconnection and 
memory architecture exploration on processor-based embedded SoC. The complete design 
framework includes a traffic generation flow from specific application source code and a full 
system simulation environment for target platform. Our TG supports two choices, called TG-1 
and TG-2, to speedup simulation of multicore SoC. TG-1 solution first extracts processor’s 
memory access patterns as the traffic source and keeps cache modeling contain in full system 
simulation environment. TG-2 solution, on the other hand, off-lined simulates both processor 
and cache behavior to produce traffic and completely simplifies TG’s modeling in full system 
simulation environment. TG-1 has higher accuracy but slower simulation speed. On the 
contrary, TG-2 is faster but lower accuracy. Both solutions could be used for large design 
space SoC exploration which has already decided target processor. These TG choices operate 
with a same traffic file format and their tool chains support parameterized configuration and 
statistical analysis. Utilizing proposed traffic generators in an ARM-based SoC platform, our 
TG shows more than 90% accuracy and 4~6 times improvement in simulation speed over 
original Instruction Set Simulator (ISS) model. 
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 1  INTRODUCTION 

Silicon technology now allows us to build chips consisting of billions of transistors. This 

technology has enabled new levels of system integration onto a single chip, and at the same 

time has completely revolutionized how chip design is done. The demand for more powerful 

products and the huge capacity of today’s silicon technology have moved System-on-Chip 

(SoC) designs form leading edge to mainstream design practice. These chips have one, and 

often several, processors on chip, as well as large amount of memory, bus-based architectures, 

peripherals, coprocessors, and I/O channels. SoC design complexity, including of hardware 

and software designs, has rapidly increased as the process improve. System level design and 

verification is the main issue of today’s SoC design.  

1.1 Technology Trends 

The demand for more computing power has never stopped. Figure 1-1 shows chips’ 

transistors and functionality increase follow “Moore’s Law”. More and more components 
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could be integrated into a single chip, including large amount of memory, multiple processors 

units, high complexity interconnection network and reusable intellectual property (IP).   

  

Figure 1-1  Product function/chip and industry average “Moore’s Law” trends [1] 

As complexity increase, geometry shrinks, and time-to-market pressures continue to 

escalate, chip designers are turning to a modified flow to produce today’s larger SoC designs. 

System level design exploration is needed because design tradeoff is unpredictable. Chip 

designers are changing their design flow form waterfall model to spiral model and combining 

top-down and bottom-up methodology [2]. Engineers simultaneously develop top-level 

system specifications, system-level verification suites, and timing budgets for the final chip 

integrations. That means they are addressing all aspects of hardware and software design 

concurrently: functionality, timing, physical design, and verification. Designers must consider 

power, area and performance issue of SoC at system-level design. On-chip interconnection 

and memory architecture exploration are the key problems for SoC design. 

1.2 SoC Design Tradeoff 

Modern SoC are moving towards designs that feature multiple processing cores on a 
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single chip. These designs have the potential to provide higher peak throughput, higher design 

scalability, and greater performance/power ratios than monolithic designs. However, in spite 

of the growing trend to put multiple cores on the chip, a deep understanding is lacking in the 

literature of the design space of the interconnection framework, and particularly how it 

interacts with the rest of the multicore architecture. For a given number of cores, the “best” 

interconnection architecture depends on a myriad of factors, including performance objectives, 

power/area budget, bandwidth requirements, technology, and even the system software.  

 

Figure 1-2  Floorplans example for 4, 8 and 16 core processors 

More cores in a chip bring more problems. First, connecting multicores in a chip is a big 

issue. This is because power, area, latency, and bandwidth are all first-order design constraints 

for on-chip interconnects. Second, the design choices for the cores, caches, and 

interconnection interact to a much greater degree. For example, an aggressive interconnect 

design consumes power and area resources that then constrains the number, size, and design 

of the cores and caches. Figure 1-2 shows a floorplan example for 4, 8 and 16 core processors 

[3]. Increasing the number of cores places conflicting demands on the interconnection – 

requiring higher bandwidth while decreasing available real estate. Cache size and interconnect 

bandwidth design exploration is a critical tradeoff of multicore SoC. Except these design 

choices, memory and interconnect configuration are also big design challenges. For example, 

cache line size is related to communication packet size which may cause the performance and 

power consumption tradeoff [4]. The choices of interconnect network architecture is also an 
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important issue of design exploration [5].  

1.3 SoC Design Space Exploration 

Design Space Exploration (DSE) for SoC is important to reduce cost and power while 

achieving computation requirements. In order to understand the cost and performance tradeoff 

among alternative design choices, many works have build up exploration methodology for 

evaluating and analyzing or predicting performance value. Here, we introduce several kinds 

of approaches. 

 Static analysis approach 

This solution is often used to characterize local behavior with models to evaluate latency, 

energy or area. AMAT [6] is a popular model of approximate cycle evaluation for multi-level 

memory hierarchy system. Y. Cho et al. [7] analyzed application source code and extract 

memory access pattern. They built up an analysis bus model for evaluating latencies on 

on-chip buses. A. Muttreja et al. [8] performed micro-modeling, pre-characterizing reusable 

software components to construct high-level models to estimate performance and energy 

components to construct high-level models to estimate performance and energy consumption. 

Static analysis approach may combine with hardware and software models to predict the 

approximate cost/performance value. The property of this model is the fast analysis capability. 

However, this approach has lower accuracy. 

 Dynamic simulation approach 

This approach will produce a real case simulation for specific application. Trace based 

simulation is always used for cache or bus architecture power and performance evaluation, 

sometimes will combine with analytical models for DSE. W. T. Shiue, and C. Chakrabarti [9] 
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used a trace-driven cache simulator and combined the AMAT model for energy and 

performance evaluation. T. D. Givargis et al. [10] used a cache simulator plus cache and bus 

analytical model for cache and bus co-design. Partial or full system simulation is also used in 

many works. A. Asaduzzaman et al. [11] combined cache and full simulators to explore 

system architecture on specific application. Simulation-based approach offers a precise and 

detail analysis for exploration but may need long simulation time. 

 Hybrid approach 

Many works combined static and dynamic approach in exploration procedure. They may 

use some search heuristics to reduce design space. W. Fornaciari et al. [12] analyzed small 

benchmarks to order the design parameters by importance then simulated follow the degree of 

sensitivity. E. Ipek et al. [14] simulated several design point and used their models to predict 

the system performance and design tradeoff. T. Givargis et al. [14] analyzed dependency 

between design choices and reduced design space need to simulate. These hybrid approaches 

prune the large design choices and try to scale down simulation times. 

Modern design space exploration has been proved that simulation is needed because 

large amount of design choices on SoC make system behavior unpredictable. Simulation 

provides precise and realistic performance analysis and trade-off exploration for all 

architectures configuration, for example, on-chip bus and memory hierarchy. However, 

simulation speed is the main problem that designers want to reduce. SoC designers need a fast 

and accurate system level simulation environment whatever how they use search heuristics for 

reducing simulation times. In this thesis, we will focus on system level simulation-based 

exploration approach. We will propose a high accuracy, high speed embedded SoC simulation 

methodology. 
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1.4 Electronic System Level Simulation Environment 

Electronic System Level (ESL) design and verification is an emerging electronic design 

methodology that focuses on the higher abstraction level concerns first and foremost. The 

basic premise is to model the behavior of the entire system using a high-level language such 

as C, C++, or SystemC [15]. Designers raise the abstraction level of system models for 

different system level design stage. Figure 1-3 shows different abstraction level of modeling 

[16]. Node A to F represent high to low abstraction level which means fast to slow 

implementation and simulation speed. X-axis in the graph represents computation and y-axis 

represents communication abstraction model. Engineers could implement different system 

models at proper design stage. 

 

Figure 1-3  System modeling graph [16] 

Electronic System Level (ESL) is now an established approach in most of the world’s 

leading System-on-a-chip (SoC) design companies, and has been used increasingly in system 

design. ESL tools such as CoWare Platform Architect [17], ARM RealView MaxSim [18], 

Synopsys System Studio [19], etc, support designers to build up high flexibility simulation 

environment at different abstraction level. Engineers use these platforms for HW/SW 
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co-design, detail performance analysis, verification and design space exploration. 

1.5 Thesis Organization 

The rest of this thesis is organized as follows. Chapter 2 introduces a simulation-based 

simulation framework and shows its problem of simulation speed. Other speedup techniques 

are also described here. Chapter 3 addresses our proposed Traffic Generate (TG) based 

exploration framework. An integrated traffic generation flow is presented as well.  Moreover, 

the verification of the proposed TGs’ accuracy shows in Chapter 3.  Chapter 4 shows an 

experiment of multicore platform simulation. We will present how much speedup of our 

proposed solution. Finally, Chapter 5 concludes this thesis and describes the future works. 
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 2  ARCHITECTURE EXPLORATION FOR 

EMBEDDED SOC 

Embedded SoC are demanding high computing power and try to contain more and more 

computing engines in a single chip. Multicore SoC can provide a high degree of flexibility 

and represent the most efficient architectural solution for supporting multimedia applications, 

characterized by there quest for highly parallel computation. As a consequence, tools for the 

simulation of these systems are needed for the design stage, with the distinctive requirement 

of simulation speed, accuracy and capability to support designs space exploration. In this 

chapter, we introduce an ESL design framework which is based on SystemC as modeling 

language. We point out the problem of system-level simulation environment and introduce the 

solutions of previous works. 

2.1 An SoC Exploration Framework 

Supporting the design and architectural exploration of SoCs is a key for accelerating the 
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design process and converging towards the best-suited architectures for a target application 

domain. However, exploration at a very high level or at the register-transfer level is no more 

suited for today’s huge and complex system. This framework proposed an MPSoC 

architectural template and a simulation-based exploration tool, which operated at the 

macro-architectural level, and they demonstrated its usage on a classical MPSoC design 

problem, e.g. the analysis of bus-access performance with changing architectures and access 

profiles. 

2.1.1 Full-system simulation platform 

L. Benini et al. built up a multiple ARM processors simulation platform called MPARM 

[20]. They integrated multiple C/C++ implementations of Instruction Set Simulator (ISS) in a 

simulation platform and embedded those in SystemC [15] wrappers. SystemC provided a 

standard and well defined interface for the description of the interconnections between 

modules. The wrapper realized the interface and synchronization layer between ISS core 

model and the SystemC simulation environment. The cycle-accurate communication 

architecture could be connected between ISSs. 

The processing modules of the system are represented by cycle accurate models of 

cached ARM cores. The module (Figure 2-1) is internally composed of the ARMv7 ISS model, 

peripherals (UART, timer, interrupt controller) and a first-level cache simulator written in 

C++. And the bus protocol interface was followed by AMBA or STBus protocol which active 

by SystemC module. Besides the processing element, AMBA/ STBus bus model and memory 

sub-system are all model in SystemC to build up a cycle accurate and bit accurate system. The 

experiment result shows simulation speed is in the range of 60000–80000 cycles/sec. The 

whole simulator was running on a Pentium 4, 2.26 GHz workstation. The simulation 

environment was all built in SystemC which has high flexibility and could be used for 
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different kinds of design space exploration. Next section would give an example of exploring 

on chip communication in MPSoC. 

 

Figure 2-1  The SystemC-based architecture 

2.1.2 On-chip interconnection and memory architecture analysis 

L. Benini et al. [21] proposed a complete platform for analysis and trade-off exploration 

of on-chip communication architecture. They provided a case study that target on exploration 

under a number of different architectural configurations and two industry-standard 

communication infrastructures: AMBA Advanced High Performance Bus (AHB) from ARM 

and STBus interconnect from ST Microelectronics. 

They set up the MPARM platform as Figure 2-2. It is composed of (i) four configurable 

32-bit ARM processors, (ii) their private memories, (iii) a shared memory, (iv) a hardware 

interrupt module, (v) a hardware semaphore module, (vi) the 32-bit interconnection among 

them all. Interconnection can be an AMBA AHB bus or a STBus arbitrary topology, resulting 

in different versions of the platform. The memory devices’ access latency can be configured to 

explore interconnection performance under several conditions. When the simulation starts, 
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they supposed all data and instruction have been loaded in memory. The platform also 

provides Interrupt and semaphore devices for inter-processor communication.  

 

Figure 2-2  The MPARM platform architecture 

 

Figure 2-3  Simulator performance 

The simulation environment provides performance profiling and analysis, including (i) 

statistics about processor and interconnection performance, (ii) VCD waveforms of all bus 

signals, and (iii) traces of memory accesses performed by every core. However, simulation 

accuracy and flexibility have to be traded-off with simulation speed. Figure 2-3 shows that the 

signal-accurate and cycle-accurate platform running a pipelined matrix multiplications. The 

chart depicts simulation performance with the AMBA AHB interconnect, as a function of the 
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number of processors and of the requested output statistics. The simulation environment was 

running on a Pentium 4 2.26 GHz workstation about 62000 to 86000 cycle/second for a 6- 

ARM platform. 

 

Figure 2-4  Partial crossbar (a) “32” , (b) “54” 

The case study focus on two types of analysis enable by the simulator. The first is a 

performance comparison amongst five interconnections: AMBA AHB (AMBA), STBus 

configured as a shared bus (ST-BUS), STBus setup as a full crossbar (ST-FC), and two 

additional STBus partial crossbar topologies ST-32 and ST-54 (see Figure 2-4). These 

interconnections will be tested with the four benchmarks: matrix multiplications performed 

independently by each processor (IND) and in pipeline between processors (PIP), with and 

without an underlying OS (ASM-IND, ASM-PIP, OS-IND, and OS-PIP respectively). All 

these results were measured with 8 kB ARM caches and with 1 wait state memories. The 

traffic analysis shows the features of benchmark and the features of two interconnect 

protocols and different interconnect architectures performance comparison. Figure 2-5 (a) and 

(b) show the bus usage and efficiency, Figure 2-5 (c) compares the average read access 

latency of different interconnections. 
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(a)

(b)

(c)  

Figure 2-5  Bus traffic analysis (a) bus usage, (b) bus efficiency, (c) bead average latency 
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The second type of analysis is an architectural design space exploration. Based on the 

most meaningful benchmark (OS-PIP), they explored performance in presence of different 

system parameters like cache size, memory latencies and compiler optimizations. Figure 2-6 

shows total execution time of the OS-PIP benchmark, in scenarios having different cache and 

memory access latency setting. The result shows when comparing more efficient 

interconnections to less efficient ones, gains are lowest when traffic is lightest. Under the 

same configuration of cache and memory access latency, the execution time gain of choosing 

one interconnection could be up to 2.1 times.  

 

Figure 2-6  Performance of different architecture configuration 

L. Benini et al. present a multicore SoC simulation environment that could be used to 

evaluate and explore architectures at a high level of accuracy. Same work could also be found 

in [5] which added AMBA AXI in case study. The MPARM ESL simulation environment 

proved capable of analyzing in detail similarities and differences between those architectures. 

However, the multicore ESL simulation environment has a critical problem: the simulation 

speed may not be fast enough for today’s SoC design. We will show the problem in next 

section. 
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2.2 Simulation Speed of ESL Simulation 

In this section we well show an example to point out problems of multicore ESL 

simulation environment. The example platform was built on a modern ESL development tool 

and simulated at higher TLM modeling environment. We will first introduce the ESL tool 

environment and then the example platform we built and then we will show the problems. 

2.2.1 ESL development tools 

 

Figure 2-7  Coware Platform Architect-ConvergenSC [17]  

CoWare Inc. CoWare Platform Architect [17] is the SystemC-based graphical 

environment for capturing the entire product platform and the dash board for initiating the 

platform analysis functions. Platform Architect speeds the concurrent design of SoCs with 

embedded software, enabling users to rapidly create and validate SoC designs at the 
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transaction level in SystemC. Together with CoWare Model Designer and the CoWare Model 

Library, CoWare Platform Architect enables most comprehensive system-level design solution 

available for SystemC. Figure 2-7 shows the graphical environment of CoWare Platform 

Architect. 

Properties of CoWare Platform Architect are listed below. 

(A) Rapid capture and configuration of hierarchical SoC platforms  

(B) Superior architecture and performance analysis for SystemC  

(C) Rapid exploration of complex interconnect and memory architectures  

(D) Advanced simulation, debug, and analysis for software development  

(E) Automated integration of RTL blocks into the TLM system  

(F) Automated creation of highly reusable, user-defined SystemC peripheral 

components and unit tests 

(G) Standards-based SystemC TLM modeling guidelines and examples using SCML  

(H) Comprehensive SystemC IP model availability with the CoWare Model Library  

With the property (H), Coware support model library includes a range of processor 

models from leading vendors such as ARM and MIPS, transaction-level bus models and RTL 

bus generators for common bus specifications such as AMBA, AXI, and OCP-IP, Denali 

MMAV memory models, and peripheral models such as the ARM PrimeCells. With the 

property (G), Platform Architect's native SystemC simulation environment is compatible with 

IEEE 1666 SystemC Language Reference Manual (LRM), Open SystemC Initiative (OSCI) 

transaction-level modeling (TLM) [22], and Open Core Protocol International Partnership 

(OCP-IP) TLM standards [23], providing support for all SystemC constructs for use by all 

members of a design team. Platform Architect also supports the OCSI SystemC Verification 

(SCV) 1.0 library extensions for transaction recording. 
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With the property (B) and (D), Coware Platform Architect support hardware and 

software profiling and analysis (see Figure 2-8). The analysis includes VCD trace dump, bus 

statistic analysis such as bus utilization and access latency, etc. Besides, the processors 

models support debuggers, for example, GDB. Designers can build up a complete SoC 

simulation environment composed with reused IP or user defined components in SystemC 

model. With the benefit of SystemC language, the environment could be simulated at different 

abstraction level for different design stage. In conclusion, CoWare Platform Architect supplies 

an ESL development environment for design exploration, verification and performance 

analysis. The ESL tool could bring better and faster SoC-based convergent products to 

market. 

 

Figure 2-8  Coware Platform Architect analysis GUI [17] 

2.2.2 ARM-based SoC platform on ESL 

We build up a 4 ARM11 SoC platform on Coware environment. The platform 

architecture is follow by the framework in last section we introduced, MPARM. We use the 

Coware Model Library’s processor model: ARM1176-JZS AXI-Model. The ARM model‘s 
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computational abstraction support Cycle Accurate(CA) or Instruction Accurate(IA) level 

modeling, and ARM’s interconnection support Untimed, TLM cycle accurate and pin-accurate 

model. The system platform shows in Figure 1-1, we configure the ARM model as IA model 

and turn on the cache simulation model (which is embedded in the ARM model). The 

behavior of ARM IA model is in single access topology and one cycle latency for all 

instruction execution. The cache model has no buffers are modeled due to the 

instruction-accurate nature, no critical-word-first cache line loading scheme is used, and all 

memory accesses, line fills, and line evictions execute in a blocking fashion. The Bus 

Interface Unit (BIU) of ARM cores are configured at TLM Bus Cycle Accurate (TLM-BCA) 

level. An ARM core has 4 64-bit AXI ports, I-AXI, D-AXI, P-AXI and D-MAAXI, 

respectively for instruction, data, peripheral and DMA accesses. 
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Figure 2-9  4-ARM platform architecture 

The interconnection is configured as a full crossbar with AMBA AXI protocol. One cycle 

latency for memory access and has one AXI port for every memory component. We use four 

512х512 integer JPEG encoding as benchmarks and run on every ARM core independently. 

Input file streams and output file streams are all allocated in shared memory. Instruction (I) 

and Data (D) cache are set at 4KB size, write-back coherent mode and random replacement 
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policy.  

Table 2-1 shows the simulation result. We setup one to four ARM cores platform to run 

benchmarks independently. The execution cycle count shows no big change due to the 

crossbar hierarchy. However, the simulation time is much different when core number 

increase. The simulation speed is up to 380 k cycle/sec in 1 core platform, however, drops to 

96 k cycle/sec in 4 core platform, about four times slow down. This result is same as MPARM 

we introduced in section 2.1. More components in a ESL simulation environment, the 

simulation speed drops down more quickly. As more and more processor cores would contain 

in SoC, the simulation speed would be a problem. 

Table 2-1  Simulation result 

Platform 
Execution Cycle count 

(k cycles) 
Simulation Time 

(sec) 
Simulation Speed 

 (k cycles/sec) 

1 core 60,029 157.521 381.085 

2 core 60,029 319.646 187.800 

3 core 60,030 476.443 125.996 

4 core 60,030 622.727  96.399 

The simulation takes 11 minutes to run JPEG benchmark. It is “OK” for one time 

simulation. However, designers will use ESL simulation environment for architecture 

exploration. During the design space exploration, simulation will be repeat and repeat. There 

are two run-time behaviors very difficult to model at a high level: cache behavior and network 

contention. Precise simulation of these two behaviors can only be done with a low-level 

description of the components. This means days (sometimes months) of simulation for fully 

search on design space.  

We take an example of cache configuration. Table 2-2 shows the design space example 

of I and D cache. The total design choices would be (30)2=900 configurations of level 1 
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instruction and data cache of a processor. If we consider all processors choose the same 

configuration in a 4-ARM platform. It would take about 155 hours for fully search on cache. 

If all cores have different design choices, this means (900)4 ≈ 656,100,000,000 choices for 

exhausted search. The design space here does not include the interconnect network yet. In a 

conclusion, design exploration would take thousands (or even more) of hours for simulation. 

The main problem of multicore SoC ESL simulation environment is the slow simulation 

speed. 

Table 2-2  Design space of cache 

Design Target Design Choices 

Cache size 4, 8, 16, 32 ,64 kBs 

Cache write mode Write-back, Write-through 

Cache replacemet policy 

Pseudo-random 
Round-Robin 
Last-recently-use  

Total Design Space 30 

2.3 Related Work 

Many works focus on exploration time. Here, we introduce two ways to speedup 

simulation. One way focuses on modeling abstraction, we will introduce in section 2.3.1. The 

other way focuses on completely simplifying core’s internal behavior, we will introduce in 

section 2.3.2. 

2.3.1 TLM-based system evaluation 

Transaction Level Modeling is frequently used to accelerate exploration. L. Benini et al. 
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[20][21][5] has proposed a cycle and bit accurate SystemC exploration framework. Accuracy 

of this simulation environment is almost closed to RTL level. The simulation speed is slow 

because of high accuracy. Here, we will introduce several frameworks target on speed up 

simulation.  

 Co-simulation SystemC platform  

S. Boukhechem et al. [24] focused on rising up core’s abstraction level to speed up 

simulation. They built up their own ISSs run as a distinct UNIX processes on the host system. 

They connect several ISSs with SystemC communication platform models, by using Inter 

Process Communication (IPC). Their simulation platform has capability of co-simulating with 

RTL hardware model. The interconnection model is based on standard Wishbone bus [25]. 

This framework is much like MPARM but their ISS model does not directly embedded in 

SystemC wrapper. They simulation platform is faster than other cycle accurate models and 

RTL level simulation environment.      

 Programmer’s view Transaction Level Modeling  

R. B. Atitallah et al. [26] proposed a framework that makes fast simulation and 

performance evaluation of MPSoC possible early in the design flow, thus reducing the 

time-to-market. In this framework, they used Transaction Level Modeling (TLM) [16] 

approach to raised modeling abstraction. They presented a new definition of the timed 

Programmer’s View (PVT) [27] level which included two complementary modeling sublevels. 

The first one, PVT Transaction Accurate (PVT-TA), offers a high simulation speedup factor 

over the Cycle Accurate Bit Accurate (CABA) [20] level modeling. The second one, PVT 

Event Accurate (PVT-EA), provides a better accuracy with a still acceptable speedup factor. 

In the conventional definition of the PVT level, the hardware architecture is specified for 
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both communication and computation parts, as well as some abstraction of the 

communication infrastructure are applied. Standard PVT level does not include timing 

specification. Using the “top-down” design approach, they proposed PVT has timing 

information with two sublevels: PVT-TA and PVT-EA. Figure 2-10 summarizes their PVT 

framework proposal. PVT-TA operates at a relatively high abstraction level and does not take 

a specific communication protocol into account. This permits a rapid exploration of a large 

solution space by eliminating non-interesting regions from the DSE process. Solutions 

selected at the PVT-TA sublevel are then forwarded for a new exploration at the PVT-EA 

sublevel. This second sublevel specifies a precise communication protocol and takes 

architectural delays into account. Because estimation methodology that we developed for the 

PVT-EA is more accurate, it is possible at the price of less simulation speed, to locate the 

most efficient architecture configurations. PVT-TA and PVT-EA permit the use of PVT 

models in a coherent methodology, and to have accurate estimations.  

 

Figure 2-10  Different modeling abstraction for design space exploration 

This framework chose ISS model to be core’s model which is same as MPARM 
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framework. The cache model is not integrated in core model. Cache model is standalone and 

connecting to processor model with easy interface. The interconnection network of system is 

model in two type, read and write, and able to implement several protocols, e.g. OCP. 

Simulation results show PVT-TA could have 6 to 9 speedup than CABA level; PVT-EA could 

have 4 to 7 speedup than CABA level. Modeling effort of PVT-TA and PVT-EA is about 

34.6% and 26.4% of CABA. 

 Exploration at CCATB abstraction 

S. Pasricha et al. [28] proposed a new TLM modeling abstraction called (Cycle Count 

Accurate at Transaction Boundaries) (CCATB) for on-chip communication space exploration. 

The abstraction level allows faster system prototyping and, more importantly, better 

simulation performance, while maintaining cycle count accuracy. CCATB models yield an 

average performance speedup of 120% over PA-BCA (Pin-Accurate Bus Cycle Accurate) and 

67% over T-BCA (Transaction-based Bus Cycle Accurate) models.  

CCATB includes read and write operation for a transaction. Transactions at the CCATB 

level are similar to transaction at the TLM level [29] except that the transaction modeling, in 

addition, passes bus protocol-specific control and timing information. Unlike PA-BCA and 

T-BCA models, they do not maintain accuracy at every cycle boundary. Instead, they raise the 

modeling abstraction and maintain cycle count accuracy at transaction boundaries. They also 

use ISS as core model and implement in CCATB wrapper. The experiment result shows the 

CCATB could have same cycle count value as T-BCA and PA-BCA. Most of important, 

CCATB has better simulation performance than PA-BCA and T-BCA. In a summary, CCATB 

offers a new cycle accurate abstraction level by sacrificing visibility of signals at every cycle 

boundary and give user a faster interconnection modeling. This framework is like PVT 

framework; both of them focus on communication modeling.  
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In a summary, TLM- based simulation is operated at higher abstraction to raise the 

simulation speed by sacrifice some fidelity. TLM models focus on communication behavior 

abstraction and less care about computation abstraction. During the design flow, design space 

can be narrowed down by applying higher abstracted TLM-based exploration first then using 

lower abstraction modeling for exact performance estimation. Cycle-accurate exploration is 

still required to determine the best design choice. Many works have discussed about TLM 

modeling, they have proved that TLM simulation technology do help to speedup design space 

exploration. 

2.3.2 Traffic generator  

Traffic Generators (TGs) are more and more used during SoC design for platform 

prototyping or performance evaluation. When using TGs, simulation time is decreased 

because the IP is not fully simulated. Simulation is also more flexible. The idea of using TG is 

illustrated in Figure 2-11.  

On-Chip Bus

Core Core Core 

Peripheral Memory
ESL Simulation 

Environment

SW SW SW

BIU BIU BIU

On-Chip Bus

TG TG TG

Peripheral Memory
ESL Simulation 

Environment  

 Figure 2-11  Simulation environment with core/TG model 

TG could replace simulation using bit- and cycle-true simulation models of the IP cores, 

and to speedup subsequent variants of that simulation using traffic generators coupled with 
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accurate models of the alternative interconnects only. While the internal processing of IP 

cores does not need thorough replication by the generators and can often be modeled by 

waiting for an amount of cycles between network transactions. In this section, we will 

introduce several traffic generators using on ESL simulation environment in previous work. 

 Statistical traffic generator  

G. Strano et al. [30] built a multi-abstraction and accurate virtual platform allowing an 

in-depth investigation of the behavior of system components, captured in isolation and when 

inter-operating with each other in a complete MPSoC platform of industrial relevance. The 

whole MPSoC simulation platform was modeled and simulated with clock-cycle accuracy and 

a SystemC-based virtual platform [21] which was used as the backbone environment (section 

2.1).  In order to speed up the analysis, functional traffic generated by the most critical audio 

and video IP cores was reproduced by means of configurable traffic generators (IPTGs).  

IPTG is a SystemC module developed by STMicroelectronics aimed at reproducing the 

communication behavior of a generic IP. In its simplest configuration, IPTG can generate bus 

traffic which obeys some statistical properties, e.g. in terms of burst length, transaction types, 

addressing schemes, or it can also issue a transaction according to a specified sequence. 

However, IPTG is best used to emulate the behavior of complex real-life IPs: such IPs can be 

often seen as having a number of internal sub-process (or agents), each one with its own 

characteristics (buffering space, transaction pipeline capability) but in some way dependent 

on each other (e.g. when operating in pipeline). With IPTG, each agent traffic is handled 

automatically according to its characteristics, and inter agent synchronization points can be set 

to emulate dependencies between them. Once instantiated in a platform, IPTGs will generate 

bus transactions at different abstraction levels (transaction-level, bus cycle-accurate) 

according to what is specified in a per-IP configuration file, where all the required options and 
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parameters are set. IPTG turn out to be a powerful and handy tool to the system integrator, as 

it allows to try out the SoC communication infrastructure in real-life conditions such as 

heavy-loaded transients which are not likely to be reproduced using random packet injection. 

The IPTG has a great property of supporting multi-abstraction bus transaction. This is 

good for designers to simulate system with high flexibility. However, the IPTG’s bus interface 

unit can only support STBus and rely on other bridges to connect to interconnect of other 

protocols. Another problem of IPTG is the traffic generated by IPTG obeys with statistical 

properties but not real case of application in IP core. The configuration inside of the core, 

such as cache size configuration, can not be emulated by TG.. That will be a critical problem 

of design space exploration. 

 Stochastic traffic generator 

T. Risset et al. [31] used stochastic models for traffic generation. They presented an 

automatic detection of traffic phases by analyzing simulation traces and have proved that 

these phases are necessary to emulate the traffic generated by multi-media applications 

running on SoC. They used their TG to replace an IP an cycle-accurate NoC performance 

evaluation. 

This work focused on an automatic phase of analyzing applications’ property and 

generated stochastic traffic. First, they generated a reference trace by simulating the processor 

IP. This trace is obtained with an ideal network environment (no network contention), which 

makes the simulation very fast. Then, they processed the trace in a traffic analysis and 

synthesis tool to obtain configuration files for traffic generators. They validate the TG in a 

SystemC-based cycle-accurate and bi-accurate simulation environment: SocLib [32]. The TG 

does not support any interconnect protocols and does not support multi-abstraction bus 

transaction. The transaction modeled only in two phase of behavior: requests and responses, 
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shows in Figure 2-12. The TGs’ transaction behavior is all model in time parameters, e.g. A(k). 

This means the transaction interface does not model the real interconnect behavior of IPs. 

This is a problem of real system simulation. The TG models would need user defined 

transferring bridges to connect with the interconnection network in the target simulation 

environment. This would cause the behaviors different form real IP core models on 

simulation. 

 

Figure 2-12  Traffic modeling formalism 

 Deterministic traffic generator 

Table 2-3  TG instruction set 

 

Deterministic traffic generators are derived from real simulation traces or written from 

scratch by IP designers. Such TGs can generate accurate transactions in time, size, and idle 

time that match the behavior of an IP. S. Mahadevan et al. [33] proposed a TG 

implementation as a very simple instruction set processor. They emulate TG as an OCP master. 
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This TG is able to issue conditional sequences of traces composed of communication 

transactions separated by idle/wait-periods. To evaluate the TG concept, they have integrated 

the TG model into MPARM platform. On the platform, the OCP interface modules were 

adapted to collect traces of OCP request and response communication events into a predefined 

file format. The address and data fields of the transactions are also observed. Trace entries are 

single or burst read/write transactions. Table 2-3 shows the OCP-master TG instruction format 

to recode the traffic format. Figure 2-13 shows the example trace file extracted from MPARM 

(a) and the trace file fed to TG (b). 

 

 Figure 2-13  Example trace file (a) MPARM trace (b) TG program 

Deterministic TG could strongly perform to replay the real master traffic behavior. 

However, the accurate traffic is extract from full system simulation, this means the traffic 

needs to re-simulate if the core configuration is changed, e.g. cache configuration. This is an 

overhead of design exploration, and will restrict design flexibility. Secondly, the TG has 
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strong ability to perform inter active behavior between cores. However, most of the traffic is 

the behavior to access memories or other slave components. Traffic file size might be a huge 

loading for simulation. Overhead of reading trace file would be more critical for this 

“processor-like” traffic generator.  

Traffic generators do speedup simulation time because it simplifies cores’ computation 

behavior, but the behavior might be different from real core model. Traffic generated from 

statistic or analytical solution may not represent the real application running on the platform. 

SystemC wrapper of traffic generator is also an important issue that may derive the 

transaction behavior. There are three important issues that we have found to be improved. 

First, the interface of TG must support multiple abstraction level, flexible interconnect 

protocols choices and other configurable parameters. Second, the behavior inside of traffic 

generator model should not have too much overhead, e.g. file parser. Third, the overhead of 

traffic file generation should not take too much effort. There should be a fast and automatic 

tool for traffic file generation that supports configurable core parameters and application 

change. Next chapter we will describe a TG-based simulation framework we proposed, 

including of traffic file generation, TG models and traffic file format. 
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 3  PROPOSED EXPLORATION METHOD 

SoC exploration always takes time for simulation. Here, we proposed an exploration 

framework which keeps those benefits in previous works, MPARM, but speedup the 

exploration time on our simulation platform. Our method allows real application’s 

performance analysis and trade-off exploration of on-chip communication architectures. We 

will introduce our proposed Traffic Generator-based exploration framework in this chapter. 

3.1 Proposed Exploration Design Space 

The design issues we care about are memory organization and on-chip bus architecture 

which are the same as the previous work, MPARM. Here, the system architecture is like 

Figure 3-1. We focus on ARM1176-JZS and ARM1136-JZS processor as the target 

processors. These two cores have same behavior of instruction modeling but have different 

supported bus interface. ARM1136-JZS support AHB interface and has five ports, IAHB, 

RAHB, WAHB DMAAAHB and PAHB. We will not discuss PAHB and DMAAHB here, 
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since they are not often used. The IAHB is used for instruction read access only; RAHB is 

for data read access and WAHB for write access. ARM1176-JZS supports AXI interface and 

has four ports, IAXI, DAXI, DMAAXI and PAXI. We will not discuss PAXI and DMAAXI 

here. The IAXI is used for instruction read access only. DAXI is for both read and write data 

access, since AXI protocol interface has four channels, including read/write address, write 

data channel, read data channel and write response channel. Caches could also be configured 

by designers, e.g. I and D cache size.  

 

Figure 3-1  Multicore system architecture 

We focus on AMBA 2.0 and 3.0 interconnection protocols. The network architecture 

could be shared bus, multi-layer bus, crossbar and else. Bus arbitration, register slicing and 

bus width are also changeable. Memory model is also configurable in protocols, size, access 

latency and access width. Peripheral IPs including VIC, timer, memory controller and other 

Primecell IPs are available in Coware’s tools. The system flexibility is high. We list those 

design choices in Table 3-1. Our simulation environment must support these design choices 

configuration.  
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Table 3-1  Proposed exploration design space 

Explored Target Design Parameter Design Choices 

Core 
Core number 1, 2, 3, 4 

Target processor 
ARM1176 
ARM1136 

Cache Configuration 

Cache size 0, 4, 8, 16, 32 ,64, 128 kBs

Cache line size 4, 8, 16, 32, 64, 128 Bytes

Set associativyty 1, 2, 4, 8, 16 ways 

Write data coherent mode 
Write-back 
Write-through 

Replacement policy 

Pseudo-random 
Round-Robin 
Last-recently-use 

Interconnect 
Architecture 

Protocol 
AMBA 2.0 AHB 
AMBA 3.0 AXI 

Interconnect network 

Single shared bus 
Multi-layer bus 
Crossbar 

Bandwidth 32, 64 bits 

Bus arbition 
Round-Robin 
Fixed arbitration 

Memory Configuration Memory access latency 1, 2, 4, 8, 16, 32 cycles 

3.2 Proposed Traffic Generator Based Exploration Method 

We have introduced several simulation frameworks in section 2-3. Now, we are going to 

deal with the slow simulation speed problem and use Traffic Generators to replace the core 

models. Here, in this section we will introduce how we use traffic generators for exploration. 
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3.2.1 Proposed TG-based exploration method  

Section 2.3.2 describes several works that use traffic generators to replace core models. 

However, there are two problems to use traffic generators. First, we must emulate processor’s 

communication behavior as the original behavior. Second, we must avoid too much overhead 

of traffic generation. Traditional traffic generator may use replay technique, e.g. Deterministic 

TG (section 2.3.2), to make the TG behave the real transaction behavior of real application. 

However, the traffic pattern needs to be generated from full system simulation. This approach 

is not suit for our design space because we focus on memory organization and on-chip bus 

architecture. When these design choices are changed, traffic file need to be re-generated by 

repeated full system simulation. In order to deal with this problem, we propose a traffic 

generator to deal with this problem. 

 

Figure 3-2  Proposed traffic generator 

Figure 3-2 shows the idea of our TG. The original processor model consists of three parts, 

ISS, cache and bus interface unit. These three behaviors let the core behave like a real 

hardware. However, we are now going to use this system level simulation environment for 

design exploration. During the exploration steps, designers must run the simulation repeat and 

repeat for our proposed design space, interconnect network and memory organization. Core’s 
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computation behavior is always no change, or even don’t need to care about that. The most 

important is transaction behavior must be the same for interconnection design exploration. So, 

the cores’ ISS behaviors are no need to real simulate on the platform. Here, our approach is to 

record the memory accesses that generated from ISS and keeps the cache and BIU in TG 

model. This is because ISS always behave the same memory accesses while repeated 

simulation. Our TG model only need to replay the access behaviors between cache and BIU 

while exploration. Besides, if the design choices of cache are few, we can record the memory 

access patterns produced form cache model and extract both cache and ISS models from the 

TG model. Following with this idea, we propose our exploration flow in Figure 3-8. The first 

step is to off-line generate from cores’ internal behavior. Then, we load the traffic file into the 

TG model in our ESL simulation environment and start the exploration. The simulation will 

be repeated and repeated generating performance values of different architectures. The traffic 

file needs to be re-generated only when we off-line simulate cache model behavior. We will 

introduce the details in the following sections. 

 

Figure 3-3  Proposed exploration flow 
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3.2.2 Off-line traffic generation 

In this section, we will introduce our traffic generation method and the traffic file format 

we use. 

 Proposed traffic generation method 

 

Figure 3-4  Off-line traffic generation of proposed TG-1 

Here, we propose two ways to off-line generate traffic file. The first one is called “TG-1”, 

shows in Figure 3-4. We separate the simulation framework in two steps. First, we off-lined 

simulate cores’ ISS behavior. We use RVDS 3.0 ARM ISS [34] model as the core simulator, 

since we focus on ARM 11. In this step, we will run the target application source code on the 

ARM11 instruction accurate simulator to extract memory access patterns. These patterns 

include instruction accesses, read data accesses and write data accesses. These patterns will 

not change since the cores’ behaviors are always same for specific source codes. This means 

the off-line simulation only need once and needs to re-simulate in exploration. The second 

step is to translate the memory access pattern to our proposed traffic file format. The traffic 

file consists of information including access type, access address, write data, access packet 

size and timing information. Here, the timing information represents the execution pipeline 
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latency. Since the target ARM 11 model of Coware Model Library set all instructions execute 

one cycle. So, the default instruction latency is 1. We keep our traffic file generator to be 

configurable. Users could set different timing information value for different target 

processors’ ISS or even the cycle accurate core models. These values will be recorded in 

traffic file, which could runtime control TG‘s behavior. We will introduce traffic file format in 

next section. 

 

Figure 3-5  Off-line traffic generation of proposed TG-2 

The second approach of off-line simulation, as Figure 3-5, is called “TG-2”. We first run 

the target application source code on the instruction accurate simulator to extract memory 

access pattern. These patterns include instruction accesses, read data accesses and write data 

accesses. Then we will use an off-line cache model to simulate the cache behavior for 

different configuration. This cache model’s design space shows in section 3.1. The off-line 

traffic generator will produce traffic file for TG which has information including access type, 

access address, write data, access packet size and timing information. The traffic file format is 

the same as “TG-1”. Here, the timing information represents the relative latency between two 

transactions. The instruction latency is one cycle latency in ISS model, and we record this 

timing information between two transaction behaviors in traffic file. Actually, the access 
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pattern that we feed in cache model is equal to previous wok which means the ISS still need 

only one time simulation. The overhead of this framework is that we need to re-simulation 

cache model for different cache configuration. However, the cache model is implemented in 

C/C++ language and no other interconnection behavior. The off-line cache model simulation 

is fast. The cache model running on Pentiun 4 dual core 3.4 GHz PC only need for few 

seconds. We can easily ignore this overhead in our simulation framework. Also, the benefit of 

off-line cache model is the small traffic size. Cache could help to reduce transfer on system 

interconnect and reduce system simulation loading. 

 Proposed traffic format 

 

Figure 3-6  Purposed traffic timing diagram 

Figure 3-6 shows the timing diagram of our proposed traffic file format. First diagram 

represent the real situation of transaction behavior. Tx represent the transaction cycles count. 

Here, we define the transaction behavior starts from BIU request trigger until TG receives 

response signal. τx represent the cycles count that no transaction happen. Core could be 
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executing or idling during these cycles. If we can model the BIU to behavior correct, the Tx 

and T’x should be equal. However, the cores’ computation behavior is decides by the off-line 

simulator. If we do not model the latency of cores’ computation, the timing diagram would be 

like the middle one in Figure 3-6, traffic with no relative time. Since we have claim that our 

off-line model could record timing information in traffic file, our TGs’ timing diagram would 

be like third diagram in Figure 3-6, traffic with relative time. Ideally, the traffic with relative 

time should have same behavior of real situation as follow 

Tx = T’’x 

τx = τ’’x 

The fist equation is decided by BIU’s accuracy, the second one is refer to our off-line 

simulator. Ideally, these equalizations are met because we have recorded time information in 

traffic file and the time value is equal to core’s ISS model. 

 

Figure 3-7  Proposed traffic file format (a) Text format (b) Binary format 

Here, we introduce how we set up the traffic format. Figure 3-7 (a) shows the text format 
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of traffic file. A traffic access pattern includes relative cycle count, access type, burst size, 

address and data. Figure 3-7 (b) shows the binary traffic file format. The off-line traffic file 

generator will generate binary format traffic file.  

Table 3-2  Traffic format 

Access Information Binary Size (Bytes) Parameter 

Relative time (τ) 2 0~65535 

Type 1 

I – Instruction access 
R – Read data access 
W– Write data access 
Q– TG idle 

Burst size 1 1, 2, 4, 8, 16, 32  

Address 4 32-bit hexadecimal value 

Data 4 32-bit hexadecimal value 

Table 3-2  lists the information including parameters and encoding binary size. An 

access command requires 11 bytes. Relative time requires 2 bytes, and highest cycle count is 

65535. The traffic generator would automatic insert idle command if the relative time exceeds 

this number. “Type” refers to different access command. “Q-type” is the idle command which 

makes TG stall for τ cycles. “Burst size” is the option for indicate the burst transaction size. 

The transfer unit of the burst size is 4 bytes. The data is also 4-byte length. This means that 

when a command’s burst size is more than 1, the next (burst size -1) commands and itself 

would be packet to one burst transaction. For example, in Figure 3-7 (a) the third command is 

as flow: 
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This command is a write data access for 4 burst data, and the address is “0x21000”, data is 

“0x0”. TG will packet the next three commands to one burst transfer. The burst data would be 

128-bit length. TG’s BIU will automatically change the burst transaction type follow the bus 

protocol, e.g. “WRAP” or “INCR”.  

3.2.3 Full system simulation 

In this section, we will introduce in thee part, our ESL simulation environment, the 

runtime behavior of TG model and the statistical capability of our TG model. 

 ESL simulation environment 

We use CoWare Platform Architect as the ESL platform development tool (section 2.2.1). 

The CoWare Model Library supply IP and bus models help us to build up a flexible system. 

We can build models by SystemC language in user-defined abstraction. Since Coware support 

multiple protocol libraries it could help users to set up the model in OCP, AMBA 2.0 and 

AMBA 3.0 interconnect protocol with APIs. All of the protocols available in these libraries 

can be used at the PV (Programmer’s View which is equal to Untimed TLM), TLM, or 

pin-accurate abstraction level. Besides, the analysis tool in Coware provides textual and 

graphical views for both the hardware engineer and software developer to analyze items’ 

critical to System-on-Chip architecture and software performance. We use these 

functionalities in our ESL simulation platform, so our platform kept those properties and even 

have much more flexibility then the framework we discuss in last section. 

We build the simulation platform as Figure 3-8. We model the TG module in SystemC 

language which is able to use for different architecture. TG module is configurable for all 

design space we list in section 3.1 and is a parameterized model. Users can set configuration 

of cache model including cache size, cache line length, set associativyty, etc., on the Coware 
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Platform Architect GUI design platform. The BIU’s interconnect protocols and port widths 

are also settable on the platform. Also, we model the BIU to support multi-abstraction level. 

This makes our platform to have more flexibility for exploration. The traffic files source, 

statistical capability and cache on/off all are set on the ESL tool. This is convenient for users 

change the system architectures. The TG model for TG-1 and TG-2 is the same. We need to 

set the TG model to be cache off for TG-2 solution as Figure 3-9. SystemC is an event-driven 

modeling language. The simulation speed will improve since we turn off the cache’s behavior 

modeling.  

 

Figure 3-8  ESL simulation platform of proposed TG-1 

  

Figure 3-9  ESL simulation platform of proposed TG-2 
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 Runtime behavior of TG 

TG-1  behavior flow

Start
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Figure 3-10  Proposed TG-1 behavior flow 

Figure 3-10 shows the behavior of TG-1. Our proposed TG including three parts of 

model, file reader, cache model and bus interface unit (BIU).  File reader will first read the 

access information of traffic file including timing information, access type, burst size, address 

and data. Simulation starts when an input start signal trigger. The parser will then identify the 

access type to control instruction or data cache’s behavior. Here, the cache model will not 

have pipeline latency property since the ARM ISS of Coware Model Library does not behave 

pipeline cycles. Cache model decides if the access is hit or miss in cache memory. If the 

access is hit, TG will return to parser state to get next access and record the timing 

information. The time value will be recorded and accumulated until the cache access is 

missing. When cache miss happens, TG will turn to an idle state. The TG will stall for several 

clock cycles which have been recorded. This behavior flow will help simulation because TG 
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will not stall for every access. After stall for recorded cycles, this time value will be reset to 

zero then jump to transaction state. TG will trigger the BIU to start access. There is a FIFO in 

BIU, TG will feed the instruction or data access into the command FIFO. The access would be 

cache lines fill in, or cache lines write back or data write through. The information in FIFO 

includes access type (I/R/W), burst size, address and data.  BIU itself will start transaction 

behavior in FIFO. The BIU here we proposed does not support interleaving transaction (also 

called outstanding transfer) only one transfer for one time traffic access behavior since the 

ISS model does not support outstanding transfer. TG’s BIU has same ports as the ARM11 

model. BIU will identify which to port to send transfer request. After transaction finish, the 

TG will return to parser sate to get next traffic access if the transaction finish. The TG’s 

behavior will stop until the last traffic access.   

 

Figure 3-11  Proposed TG-2 behavior flow 

When we use “TG-2” solution to generate traffic file, the TG model in the simulation 

environment includes two parts of model, file reader and bus interface unit (BIU).  File 

reader will first read the access information of traffic file including timing information, access 
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type, burst size, address and data. Figure 3-11 shows the TG runtime behavior. Simulation 

starts when an input start signal trigger. The parser will then jump to idle step and stall for 

multiple cycles recorded in our traffic file. The BIU behavior is the same as TG-1. TG will 

return to parser state to keep access next transaction. The TG-2 simulation speed will be fast 

than TG-1 because there is no cache model simulation and smaller size traffic file.  

 Proposed TG’s statistical capability 

Coware’s analysis tools support interconnection analysis and profiling. However, the 

core’s analysis capability is based on the models’ support. ARM’s ISS model does support 

users to trace with debugger tool, cache model does too. Our proposed traffic generator 

obviously not support trace behavior because no real computation in the system. So, our TG 

focuses on cache behavior and transaction modeling. Many trace-based cache simulators are 

available today, e.g. Dinero [35], MSCSim [36]. These cache models have high flexibility and 

support statistics. However, these models may not suit for embedding in SystemC wrapper 

because the complicated source code. Here we build up our simple cache model which 

support all design space we target on. Our cache model support cache analysis which is based 

on those popular cache models. The cache analysis includes access times, hit times, miss 

times and miss rate. Also, the detail analysis including compulsory/capacity/conflict miss 

times are support. Our on-line or off-line cache model both support these analysis capabilities 

and can be turned on/off by users.   

Transaction analysis capability is embedded in TG’s BIU. The statistic includes average 

read/write access latency, total access times and total idle time. This information could help 

users to get some referenced performance value, e.g. CPI and efficiency. TG itself also has a 

timer inside. Timer would record timing when the TG starts its behavior until the end of 

simulation. The timer is configurable for users and also able to turn off. These statistical 
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capabilities can be control by users. These behaviors would slow down simulation, however, 

not a critical part. Co-operating with the analysis tool on interconnect network, our proposed 

simulation environment does help user to explore architectures as the exploration framework 

in chapter 2. The only one capability not supported in our environment is the software 

verification, however it is not important when architectures’ exploration. Our proposed 

exploration framework offers a complete analysis tools for designers. 

3.2.4 Analysis of two proposed TG 

We propose two traffic generators TG-1 and TG-2. These TGs both have high simulation 

speed than ARM model. But these TGs have there own properties. Here, we will introduce 

their properties and show what situation the TG suit for.  

TG-1’s benefits list as follow: 

(A) Higher accuracy 

(B) Runtime configurable cache model 

(C) Only one time off-line simulation 

The TG-1 has a property of higher accuracy because the cache is embedded in on-line 

TG model. The interactive behavior between cache and BIU is much more closed to real case. 

Also the latency on the TG has more accuracy than off-line simulation. The second benefit is 

the cache model could change configuration with other interconnect architecture at the same 

time. It is convenient for designers to change platform at ESL simulation environment. The 

third benefit is the main idea of our proposed TG. Core’s computation behavior does not need 

to re-simulate every time we change the architecture. Off-line traffic generation procedure 

only needs to operate one time, since all configurations are settable at runtime. Though, the 

off-line simulation may need couple minutes, which is refer to application’s behavior, the 
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same traffic file could be used for hundreds or even thousands times simulation. Off-line 

simulation overhead could easily ignore. However, there are some drawbacks of TG-1. We list 

as follow: 

(A) Huge traffic file 

(B) Slower simulation speed 

The first and main problem of TG-1 is the traffic file size. Memory access pattern 

generate form application could be hundred MBs or even GB. Traffic file size is huge because 

no cache support. Cache memory could help memory access times scale down form 10 TO 

90%. Of course, this is depending on the application’s behavior. Especially for instruction 

access, most of application’s source code always contains large amount of loops or function 

calls. These would cause vast amount of instruction access for one fragment of codes because 

repeat and repeat calls for same instructions. Large traffic size may cause simulation overhead. 

We will show the problem in next chapter. 

TG-2 has some benefits different from TG-1. We list as below: 

(A) Smaller traffic file 

(B) Faster simulation speed 

The off-line traffic generator of TG-2 simulates cache behavior so the traffic file would 

be smaller. Accesses of TG-2’s traffic file are always burst transaction due to the cache line 

fill or wire back. Both traffic file have same format as we discuss in last section, so traffic file 

is much smaller. This benefit cause the simulation on ESL environment has faster simulation 

due to lower read file overhead. Also, no cache model on TG makes its behavior simpler. This 

property let TG-2 has faster simulation speed than TG-2. However, there are some tradeoffs 

between these two TGs. Here we list drawbacks of TG-2: 

(A) Lower accuracy 
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(B) Repeated off-line generated traffic for cache model changed 

The TG-2 simulator has lower accuracy than TG-1. This is because TG-1 simulates both 

cache model and transaction behavior at the same time. Behaviors between cache and BIU are 

close to real ARM model. TG-2 neglect this interactive problem so has lower accuracy. The 

other problem is repeat off-line traffic generation. We need to re-generate traffic pattern for 

different cache configuration. This is an overhead for full exploration framework. However, 

traffic file of one cache configuration is reusable when searching interconnect network, same 

as TG-1. Also, the off-line cache model has small simulation time. Cache simulation may only 

cost couple seconds. Most of important, ISS still only need one time simulation because there 

is no change of core’s behavior. Off-line traffic generator only needs to repeat cache 

simulation for different cache architecture.   

We have introduced properties of TG-1 and TG-2. Both simulation frameworks are faster 

than traditional frameworks. But, there are some situation suits for these two ways. TG-1 is 

suit for large design space exploration because the runtime configuration benefit. Especially 

for co-evaluate cache and interconnection relation. TG-2 is suit for design target on 

interconnection architectures and smaller cache design space, because it needs to re-generate 

traffic file for different cache. TG-1 has longer simulation time, but TG-2 need off-line 

regeneration process. Designers choose one way for different purpose. The simulation speed 

of two frameworks will show in next chapter.  

3.3 Verification of Proposed Traffic Generator 

We have introduced our exploration framework in previous work. Our exploration 

simulation environment offers designer a complete tool chain and simulation flow. Here, we 

are going to prove that our platform is reliable for design space exploration. We will compare 
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our TGs with ARM ISS models and show the accuracy between those models.  

We build a case study for verification. The target platform is a single ARM11 core 

platform. We set up interconnection modeling abstraction at TLM Bus Cycle Accurate 

(TLM-BCA) level. We build the platform on Coware Platform Architect ESL simulation 

environment. We choose two benchmarks as target application. 

(A) 2048-point floating point FIR 

(B) 512х512 integer JPEG encoder benchmark 

These two source codes are compiled in ARM O1 optimization. Both benchmarks will 

read input bit-stream from shared memory and then write the output stream back. The 

platform architecture is based on the 4-ARM platform we have introduced in section 2.2.2. 

Single ARM with a private memory and a shared memory, programs are load in private 

memory and execute as a local memory. Memory access latency is set in 1 cycle. The 

platform architecture shows in Figure 3-12. 

 

Figure 3-12  Single ARM platform architecture 

In this verification case study, we will focus on several design choices comparing our 
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TGs with ARM ISS. We would like to make sure that our proposed TGs models, cache and 

BIU, are correct. System design choices list in Table 3-3. We choose different cache size to 

observe the cache behavior accuracy. Cache write coherent mode is set as write-back mode. 

Cache line is 32-byte length and 4 way set associativity. Cache line replacement is 

Pseudo-Random policy. These cache information are parameterize and configurable on our 

model. ARM’s cache model can only configure cache size when platform setting. Other 

configuration must be controlled by software source when processor booting. These 

differences may cause some behavior betweens ARM ISS and our TGs. However, the booting 

step is much shorter than the application’s commutation behaviors and almost could be 

ignored. Cache model of TGs is implementing in C/C++ language. Although, we have 

implemented the cache model based on the Coware Model Library documentation, there are 

still some behaviors different between cache model in ARM ISS and our cache model. (The 

core model is implementing as a black box. User can not trace the cache behavior easily.) 

Also, the interaction between cache model and BIU is unknown. We will show the execution 

time error cause by two different implementation models.  

Table 3-3  Design space of experiment single ARM platform 

Design Target Design Choices 

I/D cache size 0, 4, 8, 16 kB 

Cache write mode Write-Back (WB) 

Cache replace policy Pseudo-Random 

Interconnect hierarchy
AHB Full Crossbar (AHB-FC) 
AXI Full Crossbar (AXI-FC) 

Memory access latency 1 cycle 

Total Design Space 8 
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Interconnection protocol of BIU could be AMBA AHB or AXI. Port interfaces of TG and 

ARM ISS are the same. There are two ports for AXI protocol, IAXI and DAXI. Three ports 

for AHB protocol, IAHB, WAHB and RAHB. Both protocols have 64-bit data width and 

32-bit address width. Interconnection architecture is set in fully crossbar which connects two 

memories and processor. The abstraction is set in TLM Bus Cycle Accurate (TLM-BCA). 

TLM modeling flexibility is high for programmers to design the interface. To ensure the 

behavior is equal, we have traced the ARM’s BIU at runtime simulation. We implement our 

BIU on TGs the same as we observe on ARM model. We have made sure that the transaction 

behavior including single read/write access and burst access are equal between two models. 

Now, we are going to prove that our TGs’ accuracy is acceptable by running real application. 

The first application we test is a 2048-point floating point FIR benchmark. The FIR 

benchmark is a 35 tap low pass filter. When the program begins, processor will first allocate a 

space in private memory for temporary input and output data then fetch input bit stream from 

shared memory to here. Next, processor starts computation. At the end of program, processor 

will store the output results back to shared memory. We show simulation results in Table 3-4. 

Table 3-4  Execution time of FIR benchmark 

ARM ISS
Interconnec

t
Cache

size
Execution time

(cycles)
Execution time

(cycles)
Error
(%)

Execution time
(cycles)

Error
(%)

0kB 1.914E+07 1.931E+07 -0.87 1.931E+07 -0.87
4kB 4.715E+06 4.609E+06 2.25 4.614E+06 2.14
8kB 4.479E+06 4.509E+06 -0.67 4.210E+06 6.01

16kB 4.477E+06 4.407E+06 1.57 4.108E+06 8.25
0kB 2.840E+07 2.853E+07 -0.46 2.853E+07 -0.46
4kB 4.770E+06 4.739E+06 0.65 4.611E+06 3.33
8kB 4.482E+06 4.539E+06 -1.27 4.509E+06 -0.60

16kB 4.480E+06 4.400E+06 1.78 4.207E+06 6.10

AXI-FC

AHB-FC

TG-1 TG-2System
Architecture

 

Table 3-4 shows cycle count of different architecture. The error value of other two TGs is 

compare to the ARM ISS’s ratio. First, we can see that TGs’ execution cycle counts are almost 
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equal to ARM ISS when cache is disabling. Cycle count on AXI protocol is about 19M cycles, 

AHB is about 28M cycles. The error between ARM ISS and TGs is under 1%. This proves 

that we have implemented the AXI and AHB BIU almost equal to ARM’s BIU. Cache 

memory does improve the performance to be about 4.7M cycles. However, the FIR 

benchmark is a small application. The 4 kB instruction and data cache size is big enough for 

this program. We can find that almost no more improvement for 8 and 16 kB cache. Our TGs 

do show this property. TG-1 has better accuracy as we discussed in section 3.2.5. The average 

error of TG-1 is under 3%. TG-2 has lower accuracy than TG-1 due to the cache and BIU 

interaction behaviors. Though, TG-2’s still has more than 91% accuracy (error under 9%). 

Choice of protocol is no big different for the accuracy. As we have discussed before, the cache 

model different is the reason of error. However, the accuracy number is acceptable for design 

space exploration. 

The second application we use is a 512х512 integer JPEG encoding benchmark. This 

benchmark is much bigger than FIR. When program begins, processor fist allocates two 1kB 

spaces in private memory for functions’ input and output buffer. The program will encode one 

micro-block per iteration. When the iteration starts, processor will load one micro-block size 

RGB data from shared memory into input buffer. Then start encoding procedure. The 

execution flows of JPEG encoder are RGB format to YCbCr, DCT transform, quantization 

and variable length coding. At the end of iteration, processor writes the micro-block’s bit 

stream in output buffer back to shared memory. The application runs on ARM model under 

different system configuration (Table 3-3). We show simulation results in Table 3-5. 
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Table 3-5  Execution time of JPEG benchmark 

ARM ISS
Interconnec

t
Cache

size
Execution time

(cycles)
Execution time

(cycles)
Error
(%)

Execution time
(cycles)

Error
(%)

0kB 2.256E+08 2.263E+08 -0.32 2.263E+08 -0.32
4kB 5.990E+07 5.619E+07 6.18 5.519E+07 7.85
8kB 5.349E+07 5.019E+07 6.17 4.881E+07 8.75
16kB 4.558E+07 4.481E+07 1.68 4.396E+07 3.55
0kB 3.275E+08 3.285E+08 0.31 3.285E+08 0.05
4kB 6.311E+07 5.991E+07 5.08 5.669E+07 10.17
8kB 5.544E+07 5.240E+07 5.48 4.938E+07 10.94
16kB 4.580E+07 4.401E+07 3.90 4.225E+07 7.74

AHB-FC

System Architecture TG-1 TG-2

AXI-FC

 

Table 3-5 shows cycle count value and ration of different architecture. The execution 

cycle counts with cache disable are almost equal to ARM ISS. Cycle count on AXI protocol is 

about 225M cycles, AHB is about 226M cycles. The error between ARM ISS and TGs is still 

under 1%. Again, this proves our TGs’ BIU is reliable. Cache memory could help 

performance improve. AXI protocol with 4 kB size cache will need about 60M cycles, 53M 

for 8kB and 45M for 16kB. AHB protocol with 4 kB size cache will need about 63M cycles, 

55M for 8kB and 45M for 16kB. Because JPEG benchmark has larger instruction and data 

size, the performance will be raised when cache memory is lager. Our TGs also show this 

property. TG-1 has better accuracy as we discussed in section 3.2.5. The average error of 

TG-1 is under 7%. TG-2 has lower accuracy than TG-1 due to the cache and BIU interaction 

behaviors. Though, TG-2’s still has more than 89% accuracy (error under 11%). Choice of 

protocol is no big different for the accuracy. As we have discussed before, the cache model 

different is the reason of error. However, the accuracy number is acceptable for design space 

exploration. 

In a summary, our proposed TGs have exceeded 99% accuracy when the cache 

simulation is disabling. The transaction interface we used is reliable. When cache simulation 

is enabling, TG-1 solution has 93~97 % accuracy and TG-2 has 89~91% accuracy. However, 
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if we can use a same cache model in TG or ARM core, we believe that the accuracy will be 

much closer to ARM ISS model. In conclusion, our TG simulation framework could provide a 

reliable exploration tool for SoC design.  
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 4  EXPERIMENT RESULTS 

Our proposed TGs have been proved to support reliable simulation environment. In this 

chapter, we will show simulation speed improvement comparing to original simulation 

framework. Also, we will show the simulation profiling of runtime TGs’ behavior and offline 

traffic generator’s overhead. 

4.1 Experiment Setup 

We setup the experiment environment on CoWare Platform Architect. The target 

platform is a 1 to 4 ARM11 core platform as Figure 4-1. Core number and its private memory 

are configurable. Cache size of all cores is set in fix size. Memory access latency is set in 1 

cycle. The interconnection architecture is full crossbar with AXI protocol. All design choices 

are listed in Table 4-1.We set up interconnection modeling abstraction at TLM Bus Cycle 

Accurate (TLM-BCA) level. We choose 512х512 JPEG encoder benchmark as target 

application (which has been introduced in section 3.3). Every core runs its application 
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independently. Every core’s input and out put bit stream are all allocated in shared memory 

and computation would execute in their own private memory. There is one core behave like a 

host processor. The host processor would control the system behavior. When simulation 

begins, host processor would set up control register in shared memory then other cores would 

start computing. At the end of encoding, all cores would jump to a loop and wait for the 

master core stop the simulation. 

Full Crossbar (AXI)

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Shared
Memory

ARM 11 
I

Cache
D

Cache

BIU

ARM 11 
I

Cache
D
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D
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I

Cache
D
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Figure 4-1  Multiple ARM platform architecture 

Table 4-1  Design choice of multiple ARM platform 

Design Target Design Choices 

I/D cache size 4 kB 

Cache write mode Write-Back (WB) 

Cache replace policy Pseudo-Random 

Interconnect hierarchy AXI Full Crossbar (AXI-FC) 

Memory access latency 1 cycle 
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4.2 Experiment Results 

We will now show the simulation result in this section. 

4.2.1 Simulation speed 

Table 4-2  Comparison of simulation speed 

#Cores 
Simulation 
Model 

Simulation 
Speed          
(k cycles/sec) Speedup  

1 

ARM ISS  381.09 1.00 

TG-1 1554.28 4.08 

TG-2 2190.46 5.75 

2 

ARM ISS  187.80 1.00 

TG-1 795.18 4.23 

TGOFF 1184.56 6.31 

3 

ARM ISS  126.00 1.00 

TG-1 571.02 4.53 

TG-2 730.32 5.80 

4 

ARM ISS  96.40 1.00 

TG-1 390.95 4.06 

TG-2 563.74 5.85 

The simulation result of running 1 to 4 cores is show in Table 4-2. The simulation speed 

of all platforms is the average number of five times speedup. Simulation speed of ARM ISS 

platform is under 400 k cycles. As the execution time we show in section 3.3, JPEG would 

take 60M cycles on a single core platform. The simulation time of single ARM ISS is about 

2.5 minutes; TG-1 is about 35 seconds; TG-2 is about 26 seconds. While running on a four 

ARM ISS platform, the total simulation time is more than 10 minutes; our TGs would take 2.5 
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minutes and 1.7 minutes. We show the simulation speed number in Table 4-2 and Figure 4-2. 
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Figure 4-2  Simulation speed of different core number 

The simulation result shows TG-1 is about 4 times speedup of ARM ISS model. TG-2 is 

about 6 times speedup of ARM ISS model. Simulation speed would drop quickly when core 

number increase. This is because more cores’ behavior and transaction counts need to 

simulate. However, simulation speedup ratio between TGs and ARM ISS has no big change.  

4.2.2 Simulation profiling 

Our proposed TGs have two phase of simulation: off-line traffic generation and full 

system simulation. Now, we are interesting in TGs’ runtime simulation behavior and the 

execution time of off-line traffic generation. First, the runtime simulation profiling of TGs 

shows in Table 4-3.The profiling is extract from single ARM experiment. The application is 

JPEG encoder as we discuss in this chapter. 
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Table 4-3  Runtime simulation profiling of two TGs 

Trace file access

(%)
Transaction (%) Initialization (%)

Cache behavior

(%)

TG-1 12.57 42.77 1.44 43.22

TG-2 0.61 90.46 1.96 N/A

TG

Functionality

 

Table 4-3 shows TG-1 and TG-2’s profiling result. “Traffic file access” includes read 

traffic file into TG and the parsers’ behavior. “Cache behavior” includes the cache memory 

access and the behavior of fill access commands in BIU buffer. “Initialization” is the 

simulation background behavior such as allocate runtime memory and cache initialization. 

“Transaction” means the simulation time of BIU including start access to interconnect, 

waiting for data/address transmits and other behavior between system component and TG. 

TG-1 has 43 % time busy on cache behavior and 13% on traffic file access. This result shows 

TG-1 spend more than half of simulation effort on the cores’ inter behavior. TG-2 shows 

almost all simulation behavior is on transaction behavior. The behavior inside of TG-2 is 

almost zero. 

Table 4-4  Off-line traffic generation effort 

TG ISS Simulation Cache Simulation Binary Translation 

TG-1 5 min. n/a 20 sec. 

TG-2 5 min. 30 sec. 5 sec. 

The other simulation effort we need to care about is the off-line traffic generation. The 

traffic size of TG-1 is 691 MB. Traffic size of TG-2 is 23 MB. We show the off-line 

simulation time in Table 4-4. The off-line simulation works on a Pentium 4 3 GHz dual core 

PC. ISS action would take about 5 minutes for JPEG benchmark. TG-1 has no off-line cache 

simulation. Binary translation is to generate the traffic file in binary format. TG-1 would need 

20 sec for translation. TG-2 needs 30 seconds for cache simulation and 5 seconds for binary 
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translation. TG-2 has shorter translation time since the traffic size is much smaller than TG-1.  

4.3 Discussion 

In this section, we are going to discuss about the experiment result. Section 4.3.1 shows 

how much improvement of our TGs. We can find out that both TGs keep the speedup ratio 

while the core number increases. However, the simulation speed drops so quickly with core 

count. This is because the nature behavior of SystemC modeling. SystemC is an event-driven 

language. Since the behavior times increase, the simulation time also increase fast. The 

simulation speed of TG-1 and TG-2 getting closer when more cores need to simulate. This is 

because the transaction behavior on the system becomes more complicated. Memory and bus 

conflicts would be more when more master on a platform. Transaction behavior will need 

more percentage of simulation time than single core, especially for TG-2. However, we 

choose the AXI crossbar interconnect hierarchy in this experiment so the interconnect 

behavior simulation will not dominate full simulation time. The profiling result shows core’s 

“inside” behavior, cache and file access, is more than half simulation time spends on TG-1 

simulation. However, this result will change for different benchmark. In conclusion, TG-1 

would take about half simulation effort for modeling cache behavior, TG-2 always pays 

almost 100 % effort on BIU. Obviously, TG-2 has simplified all cores’ internal behaviors. 

Besides, the profiling results we show is under the default simulation which has only cycle 

count analysis. If we have turned on the analysis capability inside the TG model, the 

simulation speed and profiling result will changed and spend much effort on this functionality.   

The off-line traffic generation shows ISS simulation would spend a long time. 

Fortunately, we only need one time simulation for one source code. Since exploration would 

need repeat and repeat simulation, this simulation effort becomes not that important. TG-2 

needs to re-simulate for different cache configuration. However, the simulation time is still 
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short. If design choices are few, the simulation time of cache model is acceptable. The 

functions below show total simulation time for our TGs and traditional ISS. 

Total simulation time (ISS)  = M х Full simulation time 

Total simulation time (TG-1) = (ISS time + File translation time) +M х Full simulation time 

Total simulation time (TG-2) = (ISS time + N х (File translation time + Cache time))+ M х  

Full simulation time 

N is the number of total cache design choices need to explore, M is the times of full 

system simulation. Average overhead of off-line simulation will be smaller if there are more 

times of simulation on the full system. On the other hand, the traffic file size is also a serious 

problem. Traffic file of TG-1 might be amazing huge for large application. While more cores 

on a platform, TG-1’s traffic file will be a critical overhead for runtime simulation. In a 

conclusion, TG-1 is suit for large design space because no need to re-simulate. TG-2 is suit 

for smaller cache design space because it needs to re-simulate. Also, TG-2 is suit for big 

application benchmark because the smaller traffic size overhead. 
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 5  CONCLUSIONS 

This thesis first address on the SoC design exploration issues and focus on 

simulation-based exploration methodology. We then target on a successful simulation 

framework, MPARM [20][21], and introduce how’s the environment set up by SystemC [15] 

language.  This case shows the full simulation environment is useful for designers to analyze 

performance of different hierarchy. However, the simulation speed is slow for modern 

multicore SoC design space exploration. This problem also exists while we rebuild a 

simulation environment in modern ESL tool [17]. The experiment shows it is still not enough 

fast. Many previous works focus on speedup simulation. Transaction Level Modeling [16][29] 

does help exploration by arising modeling abstraction level but sacrificing simulation 

precision. TLM-based simulation helps to speedup interconnection behavior modeling but not 

improve processors’ inside computation behaviors. Traffic Generator could completely 

simplify processor’s computation modeling. Nevertheless, TG-based simulation usually is not 

the real case, or TG directly replays last time’s simulation. These two methods both have their 

own properties and their own problems.    
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We proposed a TG-based exploration acceleration approach to deal with those problems. 

Our TGs combine both TLM’s and traditional TGs’ properties in our framework. Our TGs 

support multiple on-chip bus protocols, multi abstraction level and cache behavior simulation. 

Most of important, our TGs’ transaction behavior is based on real application not the 

statistical traffic result. Also, our TGs no need to simulate full system for recording traffic. 

The propose simulation flow is separated into two phases: off-line traffic generation and ESL 

simulation. TG-1 solution off-line simulates cores’ ISS behavior and keep cache modeling 

contain in ESL simulation environment. TG-2 solution off-line simulates cores’ ISS and 

caches’ behavior and completely simplifies TGs’ modeling in ESL simulation environment. 

We supply a tool chain for full simulation framework and set up a traffic format to be used for 

both TG solutions. 

We further verify our TGs’ accuracy compared to the ARM ISS model. Our TGs have at 

least 90% accuracy compared to ARM ISS model. Then we build up an experiment for 

measuring simulation speed. Experiment shows our proposed TGs do speedup simulation, 

TG-1 is about 4 times improvement over ARM ISS, and TG-2 is about 6 times. This proves 

that our exploration framework could be used for SoC design which has already decided 

target processor. The simulation profiling shows TG-1 is suit for large design space especially 

focuses on cache organization and interconnection network co-exploration. TG-2 is suit for 

design space focuses on interconnection network exploration with fewer cache deign choices. 

Our future work is to enhance the modeling capabilities including semaphore interface 

between TGs to support multicore issues. Cache models for multi-processor data coherent 

problems and multi-level cache hierarchy supporting. Moreover, the simulation speed could 

be improved by traffic file compression techniques to lower system overhead.
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