List of Figures

Figure 1.1	Electron and hole mobilities versus temperature in ultrapure
	naphthalene04
Figure 1.2	The temperature dependence of the field effect mobility of pentacene
	and tetracene molecular crystals05
Figure 1.3	The transport and luminescence characteristics of the first organic
	electroluminescent devic06
Figure 1.4	Tang and Van Slyke's organic light emitting device08
Figure 1.5	Tang's photovoltaic cell is built on a glass substrate coated with
	transparent indium tin oxide09
Figure 1.6	The electroluminescent device structure used to demonstrate
	emission from the organic dyes shown above10
Figure 1.7	Organic active matrix displays, courtesy of Steven Van Slyke and
	Kodak
Figure 2.1	The molecule makes a transition from the ground vibrational state to
Figure 2.1	The molecule makes a transition from the ground vibrational state to the state with a vibrational wavefunction with the highest overlap
Figure 2.1	The molecule makes a transition from the ground vibrational state to the state with a vibrational wavefunction with the highest overlap with the initial vibrational wavefunction
Figure 2.1 Figure 2.2	The molecule makes a transition from the ground vibrational state to the state with a vibrational wavefunction with the highest overlap with the initial vibrational wavefunction
Figure 2.1 Figure 2.2 Figure 2.3	The molecule makes a transition from the ground vibrational state to the state with a vibrational wavefunction with the highest overlap with the initial vibrational wavefunction
Figure 2.1 Figure 2.2 Figure 2.3	The molecule makes a transition from the ground vibrational state to the state with a vibrational wavefunction with the highest overlap with the initial vibrational wavefunction
Figure 2.1 Figure 2.2 Figure 2.3 Figure 2.4	The molecule makes a transition from the ground vibrational state to the state with a vibrational wavefunction with the highest overlap with the initial vibrational wavefunction
Figure 2.1 Figure 2.2 Figure 2.3 Figure 2.4 Figure 2.5	The molecule makes a transition from the ground vibrational state to the state with a vibrational wavefunction with the highest overlap with the initial vibrational wavefunction
Figure 2.1 Figure 2.2 Figure 2.3 Figure 2.4 Figure 2.5	The molecule makes a transition from the ground vibrational state to the state with a vibrational wavefunction with the highest overlap with the initial vibrational wavefunction

iridium complexes in CH ₂ Cl ₂ 59
Figure 3.2 Comparison of solution PL spectra for six triplet Ir (III)-based
complexes in CH ₂ Cl ₂ 60
Figure 3.3 ORTEP drawing of $(CF_3-bo)_2Ir(acac)$
Figure 3.4 EL device structures with (a) CF_3 -, (b) Me- substituted, and (c) parent
complexes as a dopant65
Figure 3.5 EL performance of three $(x/y-bo)_2$ Ir(acac) doped EL devices68
Figure 4.1 Comparison of solution PL spectra for $(L^{A}X)_{2}$ Ir(acac) complexes at
room temperature in CH ₂ Cl ₂ 80
Figure 4.2 Temperature dependences of PL lifetimes for (ppl) ₂ Ir(acac)84
Figure 4.3 EL device structures with (ppl) ₂ Ir(acac), (4OMeppl) ₂ Ir(acac), and
Ir(4Fppl) ₃ complexes as dopants
Figure 4.4 Comparison of EL spectra for devices
Figure 5.1 EL device structures with Ir(4-CF ₃ bt) ₂ (acac):CBP and Ir(2-phq) ₂
acac :CBP complexes as dopants94
Figure 5.2 The absorption bands of [Ir(4-CF ₃ bt) ₂ (acac)] complex98
Figure 5.3 ORTEP drawing of (CF ₃ -bt) ₂ Ir(acac)99
Figure 5.4 PL quantum efficiency η_{PL} vs dopant concentration in thin film
samples of Ir(4-CF ₃ bt) ₂ (acac):CBP and Ir(2-phq) ₂ acac :CBP102
Figure 5.5 Dopant concentration dependence of vs yield and EQE of Ir(4-
CF ₃ bt) ₂ (acac): CBP film103
Figure 5.6 Temperature dependence of decay lifetime and PL intensity for
$Ir(4-CF_3bt)_2(acac)104$
Figure 5.7 EL spectra of devices a, b, c, d and e fabricated with different dopant
contents of Ir(4-CF ₃ bt) ₂ (acac) complex106

Figure 6.1 The device structure for Device-1117
Figure 6.2 EL spectra and performance of devices 1-11120
Figure 6.3 The PL solution for complexes $Ir(2-phq)_3$ and $Ir(4-CF_3bt)_2(acac)122$
Figure 6.4 External quantum efficiency versus current density for WOLEDs.123
Figure 6.5 External quantum efficiency versus current density for WOLEDs.124
Figure 7.1 Comparison of the UV-Vis absorption spectra of (G1-Ir-bt ₃) and
$Ir(bt)_3$ complexes in CH_2Cl_2
Figure 7.2 Comparison of solution PL spectra for (G1-Ir- bt ₃) and Ir(bt) ₃
complexes in CH ₂ Cl ₂ 144
Figure 7.3 The PLE spectra of Ir-G1-bt ₃ dendrimer in CH ₂ Cl ₂ at room
Tempature146
Figure 7.4 EL device structure with the $(G1-bt_3Ir)$ and $(bt)_3Ir$ as a dopant147
Figure 7.5 Currentdensity dependance of luminance (a), luminance efficiency
(b), and EQE (c) for $(Ir-G1-bt_3)$ and $Ir(bt)_3$ 148
Figure 7.6 Comparison of EL spectra for devices based on (G1-bt ₃ Ir) and (bt) ₃ Ir
complexes
Figure 7.7 Comparison of EL spectra for (a) $G1$ -Ir(ppy) ₃ and Ir(ppy) ₃
complexes and (b) $G1$ -Ir(Fppy) ₃ and Ir(Fppy) ₃ complexes152
Figure 7.8 Comparison of (a) Efficiency versus luminance, showing the
relatively efficiencies, (b) EQE vs current density, and (c) voltage vs
current density for Ir(ppy) ₃ and G1-Ir(ppy) ₃ 154
Figure 7.9 (a) voltage vs current density (b) EQE vs current density (c)
luminance vs current density (d) luminance vs current density about
G1-Ir(Fppy) ₃ 156

List of Tables

Table 3.1. Spectroscopic, redox and photophysical properties for all Ir
complexes synthesized in this research
Table 3.2 Selected Bond lengths [Å] for (CF ₃ -bo) ₂ Ir(acac)63
Table 3.3 Crystal data and structure refinement for $(CF_3bo)_2Ir(acac)64$
Table 3.4 Comparative study of the electroluminescent performance of three EL
devices based on $(bo)_2$ Ir(acac), $(bo-Me)_2$ Ir(acac) an $(bo-CF_3)_2$ Ir(acac) as
a dopant67
Table 4.1 Crystal data and structure refinement for Ir(III)
2-(4-fluorophenyl)-1-pyrroline complex
Table 4.2 Comparison of selected bond distances (Å) and bond angles(deg) for
Ir(III) 2-(4-fluorophenyl)-1-pyrroline complex
Table 4.3 EL performance of devices D-a, D-b, and D-c fabricated with
$(4-x-ppl)_2$ Ir(acac) complexes (x = H, OMe, F)87
Table 5.1 Crystal Data and Structure Refinement for $(CF_3bt)_2Ir(acac)100$
Table 5.2 Selected Bond Distancess [Å] and Angles [°] for (CF ₃ bt) ₂ Ir(acac)101
Table 5.3 EL Performance of devices a , b , c , d and e fabricated with different
content of Ir(4-CF ₃ bt) ₂ (acac) complex105
Table 6.1 All devices structure of WOLEDs 116
Table 6.2 Comparison of EL performance for white light devices 1-11121
Table 7.1 Comparative study of the electroluminescent properties of three EL
devices based on $(G1-bt_3Ir)$ and $(bt)_3Ir$ as a dopant. Device structure:
ITO/PEDOT(35 nm)/ dopant /TPBI (30 nm)/MgAg (100 nm)150
Table 7.2 Comparative study of the electroluminescent properties of three EL
devices based on $Ir(ppy)_3$ and $G1$ - $Ir(ppy)_3$ as a dopant. Device

structure: ITO/PEDOT(35 nm)/ dopant /TPBI (30 nm)/MgAg (100 nm)......155 Table 7.3 Comparative study of the EL properties of two devices based on

> Ir(Fppy)₃ and G1-Ir(Fppy)₃ as a dopant. Device structure: ITO/PEDOT(35 nm)/ dopant /TPBI (30 nm)/MgAg (100 nm).....157

List of Acronyms

Alq₃ tris(8-hydroxyquinoline) aluminum(III)

BCP 9-dimethyl-4,7-diphenyl-1, 10-phenanthroline

CBP 4, 4'-bis(9-carbazolyl)-1,1'-biphenyl

CDBP 4,4'-bis(9-carbazolyl)-2,2'-dimethyl-biphenyl

CF color filter

CIE Commission Internationale d'Eclairage

CRTs cathode ray tubes

CuPc copper phthalocyanine

CV cyclicvoltametric

DI deionized

DMCT dopant-to-matrix charge transfer

EL electroluminescent

EML emitting material Layer

ETL electron transport layer

EQE external quantum efficiency

FIr6 bis[4',6'-difluoro- phenylpyridinato)tetrakis(1-pyrazolyl)borate]

FWHM full width at half maximum

HBL hole and exciton blocking layer

HOMO highest occupied molecular orbital

HTL hole transport layer

IQE internal quantum efficiency

Ir-complex iridium (III) complex

ISC intersystem crossing

ITO indium-tin-oxide

I-V current-voltage

LCDs liquid crystal displays

LED light emitting device

LUMO lowest unoccupied molecular orbital

mCP 1,3-Bis(carbazol-9-yl)benzene

MLCT metal to ligand charge transfer

NMP N-Methyl-2-Pyrrolidone

NPB 4,4'-bis[(1-naphthyl)(phenyl)amino]-1, 1-biphenyl

α-NPD 4,4'-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl

OLED organic light emitting devices

PDAs potential applications

PEDOT polyethylene dioxythiophene

PL Photoluminescence

PLQY photoluminescence quantum yield

PVK polyvinylcarbazole

QE quantum efficiency

QY quantum yield

RGB red, green and blue

SOC spin-orbit coupling

TBP Tri-n-butylphosphine

TCTA 4,4',4"-tris(N-carbazolyl)triphenylamine

TPD N, N'-diphenyl-N, N'-di(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine

UV ultra-violet

UV-VIS ultraviolet-visible

WOLEDs white organic light-emitting devices