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Abstract

Markov Random Field (MRF) is used to solve the problem of labeling pixelsinimage
segmentation. In this thesis, we formulate the M RF model based on the intra and inter
region criteria. However, the enormous number of segment label in color image
segmentation causes MRF-based  color: segmentation algorithm using belief
propagation (BP) to suffer from ‘complexity and storage explosion. To cope with this
problem, this thesis also proposed a local "belief aggregation (LBA) algorithm which
restricts the number of messages to be aggregated from a neighboring node, to find
the segmentation image that approximate the MAP solution of our MRF model. With
the proposed LBA, memory storage is much reduced compared with the original BP
algorithm. To evaluate the segmentation results, we compare the segmentation image
with the well-known mean shift algorithm. Here, the unsupervised evaluation scheme
using visible color difference is used as our objective evaluation metric. Experimental
results show that the proposed color image segmentation algorithm can achieve a
comparable result to mean shift algorithm both objectively and subjectively. Besides,

the computation of LBA possesses more parallelism than the mean shift algorithm.
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Chapter 1. Introduction

1.1.Background

Image segmentation is an important low-level pre-processing step for image analysis
applications such as stereo vision, medical image analysis, and video object
segmentation [1]-[4]. It classifies pixels of interest in an image into severad
non-overlapping regions with unique segment labels. Research on image segmentation
has continued for many years and many methods have been proposed. One of the most
well known methods is the watershed [5]. It is based on the concept of extracting
regions as catchment basins .topographically.-.The simple concept and low
computational complexity of the watershed -have enabled it to be adopted by many
applications. However, the watetshed is sensitive to.noise. Another well known method
isthe mean shift method [6]. It isanonparametric and iterative mode seeking algorithm
that works in the joint spatial-range space of a color image. In contrast to watershed's
sengitivity to noise, mean shift’s mode seeking approach is more robust to noise. Mean
shift algorithm has been considered to have the best performance among most

low-level segmentation methods.

Despite solving image segmentation problem solely based on the topography and
density in the multi-dimensional feature space, segmentation methods based on the
Markov Random Field (MRF) model that was originally introduced by Geman and
Geman [7] have also attracted attention. MRF-based methods model the segmentation
as a labeling problem with a MRF having a maximum a posteriori (MAP) solution
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corresponding to the ideal segmentation result. Various MRF models have been
formulated in different image segmentation methods [8] [9]. One way to efficiently
solve the MAP problem in a MRF is Pearl’s belief propagation (BP) [10]. Belief
propagation approximates the inference much faster than Gibbs sampler and
simulated annealing [7]. BP has been successfully applied to stereo vision [11] with a
MRF model whose number of discrete state (number of disparity range) is less than a
hundred. However, BP suffers from computational complexity and storage
requirement explosion when trying to apply to color image segmentation whose
number of state (number of segment label) can reach up to thousands. This is because
BP's complexity is quadratically proportional to the number of state, and the storage
sizeislinearly proportional to the number;of: state and MRF connectivity. As a result,
the complexity and storage issue:due to the large number of segment label has obscure

BP' s application in color image segmentation.

1.2.Motivation and Contribution

The issues mentioned above motivate us to propose a color image segmentation method
with anew MRF modeling of color image segmentation and a local belief aggregation
(LBA) algorithm to estimate the MAP inference. The proposed MRF models the
likelihood and prior probability based on the concept of the intra and inter region
constraint respectively. Such MRF formulation is a more direct formulation in contrast
to MRF formulations that only models edge label. Consequently, our MRF possesses
large number of labels. To cope with this, the proposed LBA method, which was
inspired by the original BP and dynamic quantization (DQ) [12], aggregates only

limited number of reliable messages from neighboring nodes iteratively.
2



The contribution of the thesisincludes
1. Weformulate the MRF model in a simple manner based on the concept of intra
and inter region criteria.
2. We proposed a local belief aggregation (LBA) agorithm to estimate the MAP

of MRF model for color image segmentation.

1.3.Thesis Organization

In Chapter 2, we briefly introduce existing important methods in image segmentation.
In Chapter 3, we briefly introduce the transformation and color distance of CIE L*a* b*
color space. In addition, the details of: the: MRF model formulation and the LBA
estimation algorithms are introduced: Chapter 4 presents the quantitative and
qualitative performance evaluation and comparison. Conclusion and future work are

given in Chapter 5.






Chapter 2. Previous Work

2.1.Mean Shift Algorithm

Mean shift [6] image segmentation is an unsupervised clustering algorithm using
information of feature space to cluster image into several segment regions. Mean shift
segmentation algorithm includes two steps. First, the mean shift filtering procedure
detects each cluster or the basin of attraction with iterative mode seeking procedure to
estimate the density gradient in the probability density function. A mode is defined as
the local maxima of the probability density function. The basin of attraction of a mode
isdefined as aregion in which all the data pointswould converge to this mode through
the iterative mean shift procedure. In-othen words, the points in the same basin of
attraction are associated with the samecluster. Later, the cluster delineation step groups
together all the clusters of a modewithin a Euclidean distance in the feature space into

asingle cluster.

The mean shift vector isoriginally deduced from the concept of finding the gradient of
probability density function. It is designed to move the point x in the feature space

toward the corresponding mode as

Mp() == 3 (- ) (2.1)

X %€ ()

where h is the radius of the hyper sphere $,(x) in the d-dimensional Euclidean space
centered on x with ny pixelsin it. In color image segmentation, a 5-dimensional feature
space is used. It contains 2-dimensional spatial information and 3-dimensional range
(or color) information. Each pixel in the image represents a vector with its
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corresponding 5-dimensional component in the feature space. This information is
applied to mean shift vector to find the corresponding cluster mode. By calculating the
mean shift vector, the location of the center of the hyper sphere is shifted iteratively
according to

X =x'+ My (x'), (2.2)
and the procedure will continued until the convergence is met at the corresponding
mode for a given pixel. The convergence condition is x*=x'. Fig. 2.1 gives the flow
chart of the mean shift filtering procedure. The output result is the smoothed image of

the origin image.

Mean shift filtering
v
Pixel of the image
v
Compute the mean shift vector
by eq. (2.1)
Shift to the new location Assign the range component of the
by eq. (2.2) convergence point to the pixel
no
— Converge ? Done all the pixels ? —
no
‘ yes i yes
end

Fig. 2.1. Flow of the mean shift filtering.



/ \
\ .f.s-rV‘ \\\\\\
<~ _7
Sh(;),\ o
( X /MY‘(}O e
\\/

Fig. 2.2. Example of mode seeking procedure and density estimation.

An example of the mean shift vector of agiven:point moving toward the corresponding
local density maximum is given in the Fig-2.2. In the figure, points inside the sphere
Si(X) with radius h around x is used to estimate the probability density function of x.
The direction of the mean shift vector My(x) is computed and the new location is shifted
iteratively until the point of convergence is reached. The convergence point always has
the highest density in the feature space and is colored in red in Fig. 2.2. C; and C; are

the center of the cluster 1 and cluster 2 in the example respectively.

For mean shift segmentation, an additional procedure that groups the clusters with
mode distance smaller than hs in the spatial domain and h; in the range domain is
performed after mean shift filtering. The parameters hs and h, are the radius of the
window in the spatial and range domain respectively. Finally, an optional procedure

7



that eliminates regions with area smaller than M pixels is aso performed to further
improve the quality of the segmentation results. The flow chart of the mean shift

segmentation isillustrated in Fig. 2.3.

Mean shift segmentation

I

Mean shift filtering

;

Grouping clusters that are close to each other in
the spatial and range domain

:

Assign the average color to the corresponding
pixels in the cluster

'

Option: eliminate clusters that area <M pixels

i

end

Fig. 2.3. Flow of the mean shift segmentation.

An example of the mean shift segmentation isillustrated in Fig. 2.4 [6]. Fig. 2.4 (a) isa
part of image data from Cameraman test image. Fig. 2.4(b) demonstrates the
intermediate results during the mean shift filtering procedure. In the figure, each pixel
isiteratively calculated using (2.1) and (2.2) to find the mean shift path represented as
the block line. The black dots are the points of convergence for the corresponding
pixels. After the mean shift filtering procedure, the smoothed image is demonstrated in
Fig. 2.4 (c). Finaly for the mean shift segmentation, clustersthat are close to each other

8



in apredefined threshold are grouped together. Fig. 2.4(d) showsthefinal segmentation

results using mean shift segmentation algorithm.

Fig. 2.4. Visualization of mean shift filtering and segmentation results for gray level
data [6]. (&) Input image. (b) Mean shift mode seeking paths. (c) Mean shift filtering
result. (d) Mean shift segmentation result.

2.2.Watershed Algorithm

Watershed segmentation is a popular and well known algorithm that extracts regions as
catchment basins based on the concept of topography. The gradient image of the input
image is used as the topographic surface in which the gradient value represents the

altitude. The segmentation of an image finds the watershed line on the gradient image
9



and thus separates each region. There exist two approaches to implement watershed
segmentation, one is the immersion-based method and the other is the toboggan-based
method. The immersion-based watershed segmentation uses a bottom-up approach
while the toboggan-based method uses a top-down approach to find the watershed line

on the geography.

2.2.1. Immersion-based Method

Region 1

Region 2

>

Region 3

Gradient magnitude value

min

Pixel index

Fig. 2.5. Example of one dimensional signal using immersion-based watershed
approach.

Immersion-based method can be explained as an iterative flooding approach. It can be
thought asfirst pierce holesin each regional minimum of the topography surface. Then
we slowly immerse this surface into the water. Starting from the regional minimum of
the surface, the water will progressively flood up the catchment basins. While the

waters from different catchment basins are about to merge, we build the dam to prevent
10



them from merging. In the end, each catchment basin is separated by the dam. The
dams represent the watershed lines and catchment basins represent the segment regions.
Take Fig. 2.5 for example. Three regional minimums are found and each of them
corresponds to a catchment basin. Two dams which represent the watershed linesin the
image are built to delimit the catchment basins. As a result, three segment regions are

found.

There are two steps to implement the watershed algorithm proposed by Vincent and
Saille [5], sorting and flooding procedure. Sorting procedure first sorts the pixels of an
image in the increasing order of the gradient value for the purpose to access the pixels
directly in a certain gray level. Then afleoding procedure is performed level by level
starting from the minimum level 10 determine the watershed and catchment basins. At
each gray level, pixels belong:to the corresponding:level h is first marked in label
MASK. Then the neighboring status of those marked.pixelsis checked. If at |east one of
aneighbor of apixel islabeled from the previous iteration, then the corresponding pixel
isinserted in afirst-in-first-out (FIFO) queue. Later, a recursive label propagation of
each marked pixels in the FIFO is performed. If a pixel is adjacent to at least two
different catchment basins, then the pixel is labeled as a watershed. If a pixel is only
adjacent to one catchment basin, then it is labeled as the same label with the
corresponding catchment basin. In the end, the remaining pixels still marked as MAK
inthelevel h belongsto the regional minimum. The pixel and its connected components
are given a new label as a new catchment basin. A pseudo code with more details of

Vincent's watershed segmentation algorithm is referred to [5].
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2.2.2. Toboggan-based M ethod

<«Region | »<«— Region2 —»<«4——— Region3 ———»

Gradient magnitude value

Pixel index

Fig. 2.6. Example of one dimensional _signal using toboggan-based watershed
approach.

Toboggan-based method can be thought as a rain drop dliding down from the hill by
anaogy. It triesto find out the downstream path where each rain drop sides down to a
regional minimum of the topography surface. Each pixel represents arain drop in the
corresponding altitude of the topography surface. Pixels that slide down to the same
regional minimum belong to the same catchment basin and aunique label isgiven. Fig.
2.6 gives a one dimensional example to describe the concept of the toboggan based
method. The gradient value of pixel E’'s right hand side is lower than the value of
left-hand side, thus pixel E slides down in the right direction toward the regiona
minimum G. Pixel E, F and H slide down to the same regional minimum, thus belong to

the same catchment basin. Finally, three regions are produced. Note that the
12



toboggan-based algorithm is processed in a raster scan order. Thus in contrast with
immersion-based algorithm, there is no need to perform an expensive sorting process
which results in an irregular computing order. However, toboggan requires an

additional backtracking procedure to solve the labeling problem in the algorithm.

The toboggan algorithm proposed by Fairfield [13] includes two steps, toboggan
enhancement and contrast segmentation. In toboggan enhancement step, pixels dide
down in the steepest descent according to the gradient value. In this step, pixels
belonging to respective catchment basin are determined. This step usually produces an
over segmentation result. To achieve better segmentation result, contrast segmentation
is used as a post process to the segmentation image produced in the toboggan
enhancement step. The contrast segmentation. checks the color different between
neighbors. If the color difference of two neighbor pixels is less than a pre-defined
threshold, then two pixels is connected. Thisconcept is similar to the region merge
process. Fig. 2.7 shows the flow chart'of the Fairfield’s toboggan based watershed

segmentation.

Several toboggan-based approaches have been proposed to further improve the quality

of the segmentation image based on Fairfield’s work. Readers can referred to [14] [15]

for further detail information.
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Toboggan approach

I

Select a pixel p which has not being
labeled

|
v

Check the gradient of neighbors of
current pixel p

yes

Reach to regional minimum ? J

| w0

Record the neighbor pixel q with Backtrack all the pixels stored in the
steepest descent into the stack stack and give a unique label

l l )

p:=q End of image ? —

Toboggan enhancement

| yes

Contrast segmentation

i

end

Fig. 2.7. Flow chart of the Fairfield’s toboggan-based watershed segmentation.

2.3.Markov Random Field based Algorithm

2.3.1. Markov Random Field Theory

Thefollowing content of introduction on Markov random field theory in section 2.3.1is

14



referenced from [16] [17]. Readers can refer to it for more details.

2.3.1.1.Random Fields

Many problems can be seen as labeling problemsin terms of |abels and states (or sites).
A label is an event that may happen to a state and a set of discrete state is defined as

DS={0L..,m-1}. (2.3)
A labeling problem chooses alabel from the label set

L={o1..1-1}, (2.4)

and assignsit to each of the statesin DS. The valuef; isregarded as a particular mapping
of statei from DSto L and the set

W Lo B0 N, (2.5)
is caled a labeling or a configuration of states in DS The set of all possible

configurations is called the configuration space and.is defined as
Q=|L", (2.6)

where misthe size of set DS

Let F={F, F,..Fn} beafamily of random variables defined on the set of states DS
where each random variable F; take a value from the set of label L. This family F is

called a random field. The event that F; takes the value f; is denoted as F; = f;. The

probability that a random variable F; takes a value f; is denoted as P(F, = ;) and
abbreviated as P(f;) . The notation (F,=fq,F = fj,...Fpq=fnq) OF SIMply F=f
denotes the joint event where f is a configuration of F and the joint probability is

denoted as P(F=f), abbreviated P(f).
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2.3.1.2.Markov Random Fields

In a regular lattice case, we consider DS as an image lattice X so that

X ={x=(p,q)| vxe DS}. Let Ny denotes the set of states neighboring x. N={N, |¥xe X}

issaid to be a neighboring system if it has the following two properties:

(1) A state isnot neighboring to itself: xe N,,Vxe X .

(i) Neighboring is symmetry: xe N, & ye N,,Vx ye X -

The definition of "™ order neighborhood set and its neighborhood system is given as

Vo = (k= P)2E( - )2 < n)f¥(k.1)e X, V(p,a)e X} (2.7)

v =l o IV (pig)e X} - (2.8)

A first-order and a second-order neighborhood system are given as an example shown
in Fig. 2.8. A first-order neighborhood system, also called a four neighborhood system,
has four neighbors for each state in the regular lattice. A second-order neighborhood
system, also called an eight neighborhood system, has eight neighbors for each state.
Order that is higher than two is rarely used because it is complicated and requires alot

of computations in most applications.
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Fig. 2.8. Example of neighborhood system. (a) First-order neighborhood system. (b)
Second-order neighborhood system.,

A random field F is said to be a Markov Random Field (MRF) on X with respect to a

neighborhood system N if and only.if the following conditions are satisfied:

() Positivity : P(F = f)>0 for al possible configurations.

(i)  Markovianity : P(F, = f, |F, =fie X \{k})=P(F = f, |F =f,ie N,).

The notation \ denotes the exclusive operation, thus the notation ie X \{k} denoted
above means that i represents all possible states in set X but the state k. Thus
{f;,ie X\{k}} denotesthe set of labels of all states but k and {f;,ie N, } denotes the set
of labels at the states neighboring k. Hence, the Markovianity condition describes the
local characteristics of the random field that the probability of a state given alabel in X
isonly affected by its neighborhood system. The positivity condition describes that all

configurations are possible.
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2.3.1.3.Gibbs Random Fields

A clique c is defined as any state in set X with all its possible pair neighbors in a
neighborhood system. The set of al cliquesis denoted as C. Fig. 2.9 gives examples of
cliques for both the first order and second order neighborhood system on a regular
image lattice. The first order neighborhood system contains two types of cliques,
single-state clique and pair-state clique, as shown in Fig. 2.9 (a). A single-state clique
contains only one state; a pair-state clique contains a pair of neighboring states, a
triple-state clique contains atriple of neighboring states; and so on. The line connected

the lattices in Fig. 2.9 indicates the neighbering connection between the states.

o | -

RS O ZEERN ¢

(a) (b)

Fig. 2.9. Clique types for first order and second order neighborhood system. (a) First
order neighborhood system. (b) Second order neighborhood system.

A random field F is said to be a Gibbs Random Field (GRF) on X with respect to a
neighborhood system N if and only if its configurations follows a Gibbs distribution. A

Gibbs distribution has the following form

P(F = f)=%exp(—%u(f)), (2.9)

where T is a constant named as temperature, Z is anormalized constant called partition
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function defined as

Z=Zexp(—%U(f)). (2.10)

feQ
€ denotes the configuration space of all possible configurations defined in (2.6) and
U(f) isthe energy function that sums up the clique potential functions U (f) of al
possible cliquesc

U(f)=> U(f). (2.11)
c=C

Thevalue of U,(f)depends on theloca configuration on the clique c.

The joint probability P(F = f) in (2.8) measures the probability of the occurrence of a
particular configuration. From the definition above, it is clear that the lower the energy

of a configuration has, the higher the probable a configuration is.

2.3.1.4.Relation between MRF and GRF

Markov random field follows the Markowvianity property, thusit is characterized by the
local property. Gibbs random field obeys a Gibbs distribution, thus it is characterized
by the global property. The Hammerdey-Clifford theorem [18] established the
equivalence relationship of these two types of properties. The theorem states that a
random field F isa MRF on X with respect to the neighborhood system N if and only if
the random field F is a GRF on X with respect to the neighborhood system N. This
equivalent provides asimple way to specify thelocal characteristic property of MRF by
specifying the clique potential function which encodes a prior knowledge of
interactions between neighbor nodes in image lattice. Thus the problem of finding the
joint probability P(F = f) of MRF becomes equivalent to first specifying the clique
potential function U (f)and then calculating the energy function U (f) as shown in
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(2.10).

2.3.1.5.MAP-MRF Framework

The Bayesian approach can be used to solve the problem of image segmentation which
can be thought as alabeling problem that gives alabel in the segment label set L (2.4) to
astatein set X. Theresult of the labeling problem is the segmentation image which is of
interest. Let Sbe the set for a segment results based on the feature vector extracted from
original image |. According to the Bayes rule, the posteriori probability can be

presented as

P(l =i |S=9P(S=¥9)
Pl =i)

P(S=s]|l =i)= (2.12)

where P(l =i|S=s) represents the prebability distribution of varying the segmentation
result S for fixed image color information || “and thus is called the likelihood of 1.
P(S=y9)is the priori probability (prior) that defines the joint probability distribution of
neighboring segment labels. P(I'=i) is the probability of the given image color
information and it remains unchanged during the process, thus it is considered as a

constant and the posteriori probability (2.12) isequivalent to

P(S=s|l =i)< P(l =i|S=9s)P(S=5). (2.13)

To obtain the most probable estimate of interest, a maximum a posteriori (MAP)

approach is used. Taking the MAP of the posteriori probability (2.13)

MAP _ _ _y _ _ -
s =agma P(S=s|l =i)=agma P(I =i|S=95)P(S=s). (2.14)

The prior P(S=9) can be expressed as a MRF model. Thusiit is served as a sum of the

clique potential functions and can be expressed in the form similar to (2.9) as
P(S=s) e exp(-U(s)). (2.15)
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The Likelihood can also be expressed in terms of likelihood energy in the similar form
of (2.10) as

P(l =i|S=s9) e exp(-Uli]s)). (2.16)
Thus the posteriori probability can be expressed in terms of energy function as

P(S=s|l =i) e exp(-U(s]i)), (2.17)
where

U(s]i)=U(i|s)+U(s). (2.18)

Thus from (2.17) and (2.18), the MAP of the posteriori probability in (2.14) isequal to
find the minimize of the posterior energy function

§=argmiSU(s|i). (2.19)

With the use of MAP-M RF approach, a segmentation-problem which isalso referred to
the labeling problem can be-solved for the following steps. First, define the
neighborhood system and the set of cligues. Then define a clique potential function and
the likelihood energy function for the estimation of (2.15) and (2.16) respectively.
Finally, choose an optimization algorithm to find the optimized MAP solution of the

posteriori probability (2.14) or (2.17).

2.3.2. Application in Segmentation

The applications of MRF model have been widely usein avariety of image processing
tasks such as image restoration, edge detection, motion analysis and image
segmentation. In this section, we will focus on the MRF model established in the field

of image segmentation.
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2.3.2.1.Deng’'sWork

Deng’'swork [8] proposed a simple MRF model for unsupervised image segmentation.
The segmentation problem can be expressed in the Bayesian framework (2.12) where
the posteriori probability P(S=s|I =i) consists of two components, a region labeling
component and a feature modeling component. These two components can be
formulated in the MRF model. The prior P(S=9) is referred to the region labeling
component and the energy function of the prior using the pairwise multi-level logistic

(MLL) model isgiven as

u@):z[ﬂ z(s(sp,sq)], (2.20)

geX|  qeN(p)

where A is a weighting constant which can be specified a priori, s, is a labeling
condition of state p in the set of image-aitice X and a clique potential function is

defined as

§(sp,sq)={ - % =% (2.21)

=iy Sp# S,
Deng assumes that the probability distribution of all feature datafor one segment region
is a Gaussian distribution. Based on this assumption, the likelihood energy which is
referred to the feature modeling component that describes the features of an image is

defined as

2o )2

Ui |s)=zsl{; o= f +loglV2zo, )}} (2.22)

where i isthe feature information of state p extract from the original image I, «

and o, arethemean and standard deviation for the segment region labeled |. Note that

the number of segment regions is assumed to be known in prior. After defining the

components, the energy of the posterior probability P(S=s]|I =i) isthen defined as
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U(s]i)=alt)xU(i|s)+U(s) (2.23)
where oft) is the variable weighting parameter. Deng claims that with this
function-based parameter givesthe individually contribution of the two components to
the entire energy U(s|i), the proposed simple MRF model is able to automatically
estimate model parameters and produce accurate unsupervised segmentation results

using expectation-maximization (EM) algorithm and fast simulated annealing (SA).
2.3.3. InferenceAlgorithm Using L oopy Belief Propagation

There are severa methods to solve the MAP-MRF problem such as simulated
annealing (SA) [7], iterated conditional modes agorithm (ICM) [19], belief
propagation (BP) [11], and graph cut method (GC) [20]. Among all, we areinterested in
the loopy belief propagation thatappliesPearl’s:algorithm [10] to the graph with loops
or undirected graphs. A Markav network is an undirected graph in the literature of
probabilistic graph models [21],"where the nodes represent variables and arcs which
connect the neighboring nodes represent ‘compatibility relations between neighboring
nodes. Fig. 2.10 shows an example of an undirected graphical model. Yellow nodes
represent the hidden variables and green nodes represent the observed variables. Inthis
section, we will focus on the loopy belief propagation agorithm. We will refer loopy

belief propagation as belief propagation for brevity.
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Fig. 2.10. An undirected graphical model with hidden variables and observed
variables.

Pearl’s algorithm is an exact inference algorithm for graphs without loops or directed
graphs. For the graphs with loops or, undirected graphs such as the image lattice
structure, belief propagation is not jguaranteed. to find the global optimal solution.
Despite of this, several applications have been successfully used in applications such as

the one with stereo vision [11]. Beliéf propagation iteratively propagates messages in

the Markov network. Let mu1(x x,) bethe message that propagates from node X, to Xq

initeration t+1, and is defined as

mtr;trzl(xp’xq)e ’(”;'(ax‘//pq(xp’xq)mtp(xp’ip) Hmip(xk,xp) (2.24)

Xc€ N(Xp)\xg

where mt(x,.i,) IS the message from observed node i, to node X, in iteration t,
W (X, %q) 1S the compatibility matrix with size L x L between node X, and its neighbor

nodes Xg. L is the size of all possible labels. Note that both message mt:(x,,x,) and

pr7q

mt (x,.i,) arevectorswith L elements. The belief of node X, is computed as follows:

pA\"P P

bp(xp)e Kmp(xp,ip) Hpr(xk,xp), (2.25)

Xce N(xp)
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WA = argmaxty (x, ), (2.26)

Xp

X

where « is the normalized constant. Note that belief b (x,) is aso a vector with L

elements. Fig. 2.11 gives an example of local message passing in the Markov network.

The message propagates from node x; to node Xz is My, « mx?xv/lz(xl, X )My Mg My M
The belief at node Xz is b, « xmym ,mg ,m; Mg 5 .

Iy Iy
| I

m, 4 /
— X

m, "
// Moz oy

//m4,1
L/ Mas my,

— —
— X3 X1 — X2 — X

/ My, Mz
| /m5,1 | /ms,z
— A R s
/ /.

Fig. 2.11. Loca message passingtn a Markov Network [11]

The belief propagation with max-product update rule maximizes the joint posterior

probability P(X =x|I =i) with the MRF model in the following steps:

1. Initialize messages m,, (x,.x,) ad m(x,.i;) Of each node to a constant and

the observed values calculated from the likelihood function respectively.
2. Update messages of each node iteratively using equation (2.24).
3. Computes and determines the belief of the corresponding nodes using

equation (2.25) and (2.26) at the end of the BP agorithm.
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Chapter 3. Color Image Segmentation

Algorithm Using MRF Model

In this chapter, we propose a color image segmentation method with a new MRF
modeling of color image segmentation and alocal belief aggregation (LBA) algorithm
to estimate the MAP inference. The proposed MRF models the likelihood and prior
probability based on the concept of the intra and inter region constraint respectively.
The LBA agorithm, which isinspired by the original BP and DQ, is proposed to cope
with the problems of the large number of segment labels existing in color image

segmentation.

3.1.Algorithm Overview

q |:> Initial segment label
ﬁ Initial merge process ﬁ

Original image
LBA final segmentation image

Reliable message aggregation —¢

* Segment region extraction
Maximum belief segment

state selection @

Region merge process

-———

e

Intermediate segmentation image

il

Final segmentation image

e e e— e — e — —— — —

Fig. 3.1. Flow of image segmentation using local belief aggregation.
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Fig. 3.1 illustrates the flow of the image segmentation using local belief aggregation.
Before using local belief aggregation algorithm to optimize the total energy, an initial
segment label is assigned. In this step, a unique segment label isfirst assigned to each
pixel in the test image. If there are |I| pixels in the image, there would be |I| segment
labelsin the initial segmentation image. Note that there is no restriction on the quality
of the initial segment map. However, a more accurate initial guess will lead to faster
convergence of the following local belief aggregation algorithm. Besides, segment
labels can aso be used as the seeds for segment regions. Therefore, an initial merge
processis applied to theinitial segmentation image. After the initial merge process, the
proposed local belief aggregation (LBA) is performed iteratively to find the
segmentation image. We model the image:segmentation as a labeling problem using a
four-connect MRF, in which each nede corresponds to a pixel and each state
corresponds to a segment label. The LBA consists of reliable message aggregation,
maximum belief segment state ‘selection, and region merge process. First, reliable
message aggregation aggregates reliable message information from the neighboring
nodes of each node in the MRF. At each node, the belief value of each segment state is
computed using the reliable message aggregated in the previous step. The segment state
with the maximum belief value is chosen. For each node, the corresponding label of the
chosen segment state is selected as the segment label. After the maximum belief
segment state selection, aregion merge is applied to further improve the segmentation
image quality. The LBA steps are iteratively performed until convergence or a preset
iteration limit is reached. After the LBA, segment region extraction is performed to
output the final segmentation image. The segment region extraction assigns a new
unique segment label to each region using connected component. Thisis an option step

inthe LBA algorithm. Note that we perform two different kinds of initial merge process,
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alocal partial merge and a global merge, as an initial segment map for the following
LBA. A local partial merge that only considers spatial and color information in a 3x3
diding window is used for the four-window based LBA. A global merge is used for

one-window based LBA.

3.2.CIE L*a*b* Color Space

In the proposed color image segmentation algorithm, a precise estimation of color
distance isimportant. Thus a proper choice of color space isimportant in our case. We
adopt the CIE L*a*b* color space from all the existing color space for two reasons: (1)

approximately uniform color scale, (2). similar.to human visual perception.

3.2.1. Introduction

The L*a*b* color space is developed by the CIE to be approximately perceptually
uniform. Color difference between points in the color space corresponds to the visual
difference between the colors of the points. The L* axis represents the lightness
(luminance) in this color space with whiteat L* = 100 and black at L* = 0. Thea* and
b* axes represents color component while a* encodes the red-green sensation and b*
encodes the yellow-blue sensation. Positive a axis indicates amounts of red color and
negative a* axis indicates amounts of green color while positive b* axis indicates
amounts of yellow color and negative b* axisindicates amounts of blue color. Note that
thereisno specific numerical limit for these two color components. Fig. 3.2 illustratesa

brief plot of the CIE L*a*b* color space.
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Fig. 3.2. CIE L*a*b* color space.

3.2.2. Color Transform from-RGB to CIE L*a*b*

Color transformation from RGB.to CIE L*a*h* color space is done by the following

two steps. First we transform RGB to CIE XY Z space. This transformation is made by

X 0.412453 0.357580 0.180423| | R
Y |=]0212671 0.715160 0.072169||G | (3.2)
z 0.019334 0.119193 0.950227| | B

Then we transform the resulting CIE XYZ space to CIE L*a*b* space. The

transformation is defined by

L* =116x| f [Yinj] -16 , (3.2
a* =500x| f (XLJ —f [Yinﬂ (3.3
b* =200x| f :—n] —f (Zinﬂ (3.4

where
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t3 if t >0.008856,
f(t)= 16 (3.5)
7.787xt+-—  if t<0.008856.
116

(X,,,Y,, Z,): refernece white

3.2.3. Color Difference

Color difference between two pointsin the CIE L*a*b* spaceisgiven by the Euclidean
distance formula

1

AES, = [(AL* f(aa f+(an f }2 | (3.6)
where the differences in lightness(al’), red-green sensation (aa’) and yellow-blue
sensation (ab’) is defined as

N =LE T
Aa* :a;_ —a;, (37)
A =B,

3.3.MRF Modd Formulation

According to the Bayes' theorem, the posterior probability of a ssgmentation image S,
given the image information I, can be represented as (2.12) and simplified to
(2.13) since P(I =i)in (2.12) can be considered as a constant. In this section, we
formulate the MRF model of the likelihood P(I =i|S=s) and the prior P(S=s)in order

to further estimate the posterior probability to obtain the segmentation result.

3.3.1. Likelihood and Prior

We define the likelihood P(1 =i|S=s)as
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P(I =i|S=5) < [ Jexp-F(xs,.0)), (3.8)
x|

where F(x,s,,i) IS the cost function of node x with segment label s, given the

observation |. The prior P(S=9) isdefined as

PS=9)= [ [Tewtnls.s, sos,). (3.9)

xel yeN(x)

where n(s,.s,.7(s,.s,)) isthe clique potential function of segment label s, and s, in
which nodey is the neighbor of node X. y(s,,s,) is the line process which penalizes the
clique potential according to the relationship between segment label s, and s,. By
combining (2.13), (3.8) and (3.9), the basic model (2.12) of the image segmentation

becomes

P(s=sl1 =i)= [Tew-Fixs.)[ ] [Tewl-nlses sos, ). (310)

xel xel yeN(x)

3.3.2. Model Approximation

To estimate the optimal solution’of a MRF model,.the maximum a posteriori (MAP)

approach is used. Taking the MAP of (3.10) gives

max{P(S=s]|1 =i)}

= max{H exp(- F(x, SX'))H HGXD(—U(%« Sy ?’(Sx Sy)))}

xel xel ye N(x)

=max{HeX{—[F(x,sx,i)+ Zﬂ(sx,sy’y(sx'sy))}

xel ye N(x)

The question here is to determine the definition of the cost functionF(x,s,,i) and the

} (3.11)

F(x i)+ Y nls.s,.7s.s,)

yeN(x)

3

xel

clique potential functions(s,,s,.y(s,.s,)) in the likelihood and the prior respectively.
Haralick and Shapiro [22] pointed out two criteria on the characteristics of segments

in a good segmentation image. One measures the intra region uniformity and the other
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measures the inter region disparity. These two criteria show consistency with the
likelihood and prior function. Thus we model the likelihood and prior function based
on the intra and inter region criteria respectively. Specifically, the definition of intra
and inter region energy defined in [23] is adopted and modified. We define the cost

function and the clique potential function as

=8y~ (3.12)

F(x,sx,i)zu(

n (Sx 1 Sy 7(Sx 1Sy )) = U(thv -

5e= 5]y J¥7(508y): (3.13)

wheres, and § represents the average color of segment label s, and s, respectively,

thy denotes the threshold for visible color difference, || L dEnotes the color

difference in the CIE L*a*b* space.and (s, s;)denotes the relation between a pair of

segment labels and is defined as

1 #'S
y(sx,sy)={o, i (314)

Thus, with the above definition of cost funetion and clique potential function, (3.11)
can be rewritten as

max{P(S=s|l =i)}

=exp{—minz F(x5,,0)+ Z(:?)y(sx,sy,y(sx,sy))}}
:exp{— minlz F(xS0i)+ Y. ZU(S,(,sy,y(sx,sy))H (3.15)

el yeN(x)

- exp{— min[Eintra X|1] + Ejper XCX|I |]}
= exp{_ min[Ecw]}

where Egy, is the weighted sum of intra-region visual error (Einra) and inter-region

visua error (Ejner) Whose definition from [23] are

Zu( 5 -t

_ , (3.16)

Eintra || |
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y

z Z sxs xu(thv

L*a*b* J

E _ xel yeN(x) .
inter CX||| ’ (3 17)
1 S, %S
a(sx,sy)= {0 . _ sy : (3.18)
’ X Yy
t>0
uft)= {2 =0 (319)

[I] represents the total number of pixelsin an image, C is a weighting constant. From
the inference of (3.15), it is obvious that estimating a MAP of P(S=s|I =i) with the
definition of cost function and clique potentia function in (3.12) and (3.13) is
equivalent to obtaining the minimum energy of E,. This equivalence is what we

desired since [23] claimed that lower Eg, implies better image segmentation results.

In addition to the definition of intra-region visuar.error and inter-region visual error
defined in (3.16) - (3.19), Chen aso claims‘that-the modified version of these two
terms that further include theZcolor distance values can also give a quantitative
evaluation of the segmentation images[24]. The definition of the modified
intra-region visual error (MEina) and modified inter-region visual error (MEine) IS

given asfollows

T 0T )

ME;yrq =25 ] : (3.20)
> > felsos xa(tfs -5 ) (- fs -5, )]
ME, == YN ST . (321
als,.s, )= {2 z jssyy , (3.22)
u(t)={3’ e (3.23)

Again, if we define the cost function and the clique potential function as
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Ix = Sx

F(x,sx,i)zu(

—th, |x
a1 )

I, — S
X ||+

) (3.24)

(s sy, 75,8, )= u(thv ~lsx —s, L*a*b*jx(thv ~ sy s, L*a*b*)x y(s5y)s (3.25)
1 S # Sy
¥(s0s,)= {0’ oo (3.26)

and take the MAP of (3.10), the same conclusion will make asin (3.15).

Although maximizing the posterior defined by (3.12), (3.13) and (3.24), (3.25) can
minimize Ey as shown in (3.15), an energy distribution that is proportional to color
difference is considered to be a more suitable measure. Thus, based on the property of

intra region and inter region, we re-formulate the cost function and clique potential

function as
F (%5 )=l —5, W (3.27)
g_g * ok |k SX:S)/
nls.sy Asasy)= | 56 , (3.28)
L D - Sc# Sy

where ths denotes the threshold for maximum difference of average segment |abel
color between two segment labels. From the empirical experiment results, we select
threshold ths to be 150 to simplify the problem of finding different threshold for
different test images. Thus, in the case of different segment labels detected in

(3.28), we truncate the value of clique potential function to zero if “Q—g is

Laxb*

larger than the 150, which is the predefined threshold thsas shownin Fig. 3.3.
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Fig. 3.3. Relation between the value of clique potential function and the value of
difference of average segment label color for two different segment labels.

Our formulation adopts Gaussian-like color distribution model; however, [25] has
pointed out that such model may not always be true. To accommodate the distribution
deviations, two discontinuity preserving robust-functions derived from the Total

Variance (TV) model [26] are appliedtothecost and clique potential function.

P(s=s|1 =i)« [ Jexpl=nis )] TTexpl- 2o (5.5, ), (3.29)

xel yeN(x)

where the robust functions are defined as

Pl (sx)=—ln{(1—a )exp[—@}q} (3.30)

pp(sx,sy):—ln[(l— ep)exp[— |77(Sx.5y,7(8x,sy)lj+ep} : (3.32)

Op

Note that parameter o and e control the sharpness and upper-bound of the function
respectively. In our experiment, the parameteroand e is set to be 2.0 and 0.01

respectively for both cost function and clique potential function.

Finally, the posterior P(S=s|I =i) can be factorized into the following form
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P(s=sl1 =) [Tralsci [T TT¥n(ses,). (3.32)

xel xel yeN(x)

where y,(s.i,)<exp(-p/(s,) is the loca evidence for node x, and
W (8.8, )= expl-p,(s,.s,))is the compatibility matrix between node x and its neighbor

nodesy.

3.4.Local Belief Aggregation

To efficiently estimate the MAP of the posterior probability (3.32), a local belief
aggregation (LBA) is proposed. Although belief propagation (BP), which is a linear
time algorithm proportional to the number of hidden nodes [11], can also be used to
solve the MAP problem, there are some difficulties to directly apply BP agorithm in
the proposed MRF-based segmentation madel. The enormous size of segment labels
not only results in heavy computational-burden but also leads to a huge memory
storage requirement. Both of these eonstraints restrict the use of BP in color image
segmentation. Thus, alocal belief aggregation which is modified from the original BP

algorithm is proposed to find the MAP segmentation image.

3.4.1. Reliable M essage Aggregation

Reliable message aggregation is the first step in the LBA. The reliable message
aggregation restricts the number of segment state’ s message to be aggregated from the
neighbor nodes. That is, only a limited number of the most probable segment states,
which we considered to be reliable, can send out messages. To decide the most

probable segment states, a local search window approach is used. Here we introduce
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two methods of using local search window to send out the reliable messages. In
section 3.4.1.1, we will introduce the four-window based local search window method.
In section 3.4.1.2, one window-based local search window method is proposed to

further reduce the computational complexity than the previous method.

3.4.1.1.Four-window Based L ocal Search Window

mel Local search window at X (3x3)

Local search window at x; (3x3)

e

Local search window at x; (3x3) v

Local search window at xg (3x3)

Fig. 3.4. Reliable message aggregation using four local search windows.

Fig. 3.4 shows the concept of four-window based local search window. In this method,
each neighboring node has its corresponding local search window in a preset size. For
example, nodes x;, Xs, X7 and xg have their corresponding 3x3 local search window
shown in Fig. 3.4. During the procedure, the message of node x; will be calculated
and decided using the local search window center at node x;. Once the reliable
message is ready, message of node x; will propagate to the current node x,. The same
action is performed for node xe, X7 and Xg at the same time to propagate the reliable

messages to node x,.
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Let m be the number of al the segment states appeared in the local search window.
All messages from these m segment states will be calculated. Let my(s,.s,) be the
message from node x to node y, and is defined as

My (S0 Sy) € KM (S0 8, )0(Se SIM (i) [ Jriec(Soiic) (3.33)
S seN(s)\s,

where v,(s,,s,) IS the spatial function considering the spatial relationship of the m
segment states in node x and the segment state of node z in the corresponding local
search window. Here our spatial function is simply defined as the reciprocal of the

gpatial distance

1
Eud (Sx ' Sz)

, (3.34)

Vi(808,)=
where Euq(s,,s,) is the Euclidean distance between the segment state of node x and
the segment state of node z. m(syis) = (S,i%) ISthe message from observed node ix
to node x and r(sq.ix) =¥ (saik) IS the-message from node k to node x. If the
number of possible segment state min the local 'search window is larger than a preset
number of reliable segment states n, then only the message of the most probable n
segment states out of the m segment states can be transferred according to the
message value calculated by (3.33). Higher message vaue represents higher
probability. The other (m-n) number of less probable segment states will be discarded
for current node calculation. From (3.33), it is obvious that the message can be
calculated on-the-fly, hence no memory storage for previous iteration’s messages is

required any more.
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3.4.1.2.0ne-window Based L ocal Search Window

! /
m m
mll — X4 2 X6 - 71
ig / Mg »
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— X3 X1 ‘ — X7 T
/ mgl ms /
l /ms,z
. Xg —

Local search window at x, (3x3)

Fig. 3.5. Reliable messageraggregation.using one local search window.

Fig. 3.5 shows the concept of reliable message-aggregation using one-window based
local search window. In this method, only-ene local search window with preset sizeis
required to determine the reliable messages. Let m be the number of al the segment
states appeared in the local search window. All messages from these m segment states
will be calculated using the same equation (3.33). All the m number of messages in
four directions will be considered as reliable messages and will aggregate into the
node without being discarded to provide reliable information for further belief value

caculation.
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3.4.2. Maximum Belief Segment State Selection

The maximum belief segment state selection is performed after the reliable message
aggregation. During this procedure, the belief of the node x will be estimated and the

segment state with the maximum belief will be selected. The belief is computed as

follows:
by(s)  km(Seix) [ IS5, (3.35)
seN(s)
SMAP — arg max by (s, ) - (3.36)

Note that in the four-window based local search window method, there is a chance
that some of the segment state’s message is missing while computing the belief value.
Thisis due to the restriction on the number_of the reliable message to be sent from the
neighboring nodes with their corresponding local search window. To remedy this, the
missing message belonging to a gpecific-segment state of the corresponding
neighboring node is re-computed: For-ene-window based local search window
method, there is no need to re-compute since no restriction on the number of the

reliable message is performed.
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Local search window at x; (343)

Fig. 3.6. Four-window based local reliable message aggregation in a Markov network.

g M F '. -'7:\-.

Local se_/a rch window at x, (3x§)

Fig. 3.7. One-window based local reliable message aggregation in a Markov network.

Fig. 3.6 and Fig. 3.7 demonstrate the example of the message aggregation in
four-window based local search window and one-window based local search window

with belief calculation in a Markov network respectively. In both figures, green nodes
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represent the observed variables. Yellow and orange nodes represent the hidden
variables. Gray region represents a preset size of local search window which is 3 x 3
in the example centered at nodes x; and x, in the four-window based method and
one-window based method respectively. Reliable message aggregate from node x; to

Xp IS mLzeKmaxy/lz(sxl,sXZ)ul(sxl,sxz)mlmgm4m5. The belief a node x; is
Sy

1

by, < KMy, My 5, Mg, My Mg 5 -

3.4.3. Region Merge Process

The initia guess of the segmentation image may consist of a large number of
unnecessary segment labels. As a consequence, we would be using more than one
segment labels to represent a region. This would, prevent the overall energy from
converging. For the above reason, redundant.segment.|abel s should be pruned. Hence,
a region merging process is inserted in-the-end of ‘each iteration. At the end of each
iteration, the average color difference of two neighboring segment regions is checked.
If the color differenceis smaller than a pre-defined threshold, the two segment regions
should be the same. In other words, the two different segment labels represent the

same region. In this case, one of the two segment labelsis replaced by the other.

Additional region merging based on the area of regions is also performed to further
improve the quality of the segmentation image. In the four-window based local search
window, the additional region merging is performed at the first and last iteration of
the LBA as shown in Fig. 3.8. In the one-window based local search window, the
additional region merging is performed twice, after the region merge process at the
first and last iteration of the LBA as shown in Fig. 3.9. In this additional region merge,
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segment regions with an area smaller than a predefined area are merged into their
neighboring segment regions that have the smallest color distance with an area larger

than a predefined number. The predefined areas are both 20 pixelsin our case.

Region merge process l

First iteration ? — no

l yes

Region merge based on area

v

Region merge based on color difference

!

last iteration ?

l yes,

Region merge based on area

no

Fig. 3.8. Region merge process in four-window based method.



Region merge process l

Region merge based on color difference

l

First iteration or last iteration ? —

lyﬁ

Region merge based on area

no

A

Fig. 3.9. Region merge processin,one-window based method.

3.4.4. Convergence of-L ocal Belief Aggregation

Similar to BP, there is no theoretical” proof to guarantee the convergence of the
proposed local belief aggregation method. However, we suspect that LBA is likely to
achieve convergence in practice. We use empirical result to demonstrate LBA’s
convergence trend. For the purpose of minimizing the energy term Eg,, it is
reasonable that the convergence of the energy term Eg,, could imply the convergence
of the proposed local belief aggregation algorithm. Fig. 3.10 shows the E, curve for
the test image 253055 from Berkeley Segmentation Database [27]. As we can see,
after severa iterations of estimating posterior probability by LBA, the energy term
Eowv oscillates around the value 0.136. Hence, we believe that the LBA tends to

converge as the E,, energy term is converging.
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Fig. 3.10. Ecy convergence of four-window based LBA

In addition to the Eq, curve,sanother_empirica method to demonstrate the
convergence trend is to check the results of the segmentation image subjectively. If
the result of the segmentation images is-convergence, than we believe that the LBA
also tends to converge. For test imageswe use, this convergence tend is guaranteed so

far.

3.5. MRF Model Comparison

We suspect that the MRF model using (3.12), (3.13) and (3.24), (3.25) is not suitable
for the proposed algorithm for two reasons. First, two-value model provides less
information for a labeling problem such as the image segmentation problem. An
energy distribution proportional to color difference can give a Gaussian-like measure
and thus is considered to be a more suitable measure. Second, in the proposed LBA
algorithm, the region merge process will merge two neighbor segment regions with
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average color distance smaller than a predefined threshold. If the region merge
threshold is selected larger than or equal to the visible color difference threshold th,,
then the input of the unit step function in (3.13) and (3.25) will always be smaller or
equal to zero. From (3.19), thiswill cause the results of unit step function that appears
in (3.13) and (3.25) to aways be equal to zero. Thus the concept of unit step function
is considered not suitable for the region merge process of the proposed LBA. Fig.
3.11 shows the LBA results using (3.12), (3.13) and (3.24), (3.25) respectively. The
region merge threshold is chosen to be 2 in order to be less than the threshold for

visible color th, and we run the LBA for 5 iterations. All two images perform bad
segmentation results, both methods cannot successfully segment out giraffes of the

test image 253055; however, Fig. 3 11 (erslggtter than Fig. 3.11 (a) anong the two.
& } _, 2 \.-‘.-'

We suspect that this is because NLR ﬁ (ﬁ;&mthe Fig. 3.11 (b) has include the

hl "h.'u
color distance values which |s{_better thﬁf’mMWéﬂdue MRF model used in Fig.
"J' ".-*—' '3
3.11(a). From the above reasong;,an mMp /cér experiment, (3.27) and (3.28) is
1- .-"" ‘h
adopted as the energy of the Ilkellhood and the prior respectively. The segmentation

results of the selected MRF model will be demonstrate in the next section and

throughout the thesis.

(a) (b)
Fig. 3.11. Segmentation results with different MRF model using LBA agorithm. (a)
MRF model using (3.12) and (3.13). (b) MRF model using (3.24) and (3.25).
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3.6. Complexity Analysisand Comparison

We suspect that one-window based reliable message aggregation is likely to achieve
less computational complexity than the four-window based method when executes
one LBA iteration. To examine the assumption, the empirical results are used to
demonstrate the computational complexity of above two methods. With the same
parameter settings, we run LBA on both methods for 50 iterations and then calculate
average counts of each computational element. Parameter settings used in this
experiment is shown in Table 3.1. Since there is no restriction on the number of the
reliable message for one-window based method, the corresponding blank is vacant.
Table 3.2 demonstrates the average execution.counts of both two methods. As we can
see from the table, each computational:element of -one-window based LBA reduces
from 27% ~ 86% than four-window based LBA does. Hence, we believe that
computational complexity of one-window based LBA is much less than four-window
based LBA. Fig. 3.12 demonstrates the reduced rate of each computational element in
graph. Note that it should be noticed that our codes have not been optimized yet. Thus
the execution counts in Table 3.2 are just for reference. However, we believe that the
execution counts for both methods will be much improved if the codes have been
optimized and the conclusion will still be the same as we concluded above.

Table 3.1. Parameter settings of image 253055 for LBA.

Local search Region merge LBA iteration Number of Areamerge
window threshold reliable message threshold
1-window based 5%x5 5 50 X 20/20
4-window based 5%x5 5 50 6 20/20
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Table 3.2. Average execution counts of image 253055 for LBA.

Load/store | Add/sub Div Mul Comp Sort Exp
1-window-based | 3.15E+08 | 7.37E+07 | 2.62E+07 | 3.64E+07 | 4.74E+07 | 7.51E+06 | 7.49E+06
4-window-based | 6.50E+08 | 1.30E+08 | 3.58E+07 | 7.07E+07 | 3.43E+08 | 2.18E+07 | 1.35E+07
Reduced rate 52% 43% 27% 49% 86% 66% 44%

7.00E+08

6.00E+08

5.00E+08

4.00E+08

3.00E+08

2.00E+08

1.00E+08

0.00E+00

load/store

add/sub

div mul

comp

M 4-window-based

B 1-window-based

sqrt

exp

Fig. 3.12. Comparison of each cdmputati onal-unit between different methods used in
the proposed LBA.

The segmentation results of both methods in the same parameter settings mentioned

above are aso presented in Fig. 3.13. As we can see, four-window based method

segments out more details as shown in the lag of the first and second giraffe.

Although four-window based method restricts the number of reliable messages to be

aggregated from the neighbor nodes, it can obtain more neighbor segment labels than

one-window based method when using the same size of the local search window.

Thus it is possible for four-window based method to aggregate more reliable message

than the other based on the same parameters does and hence can segment out a more

detail one than one-window based method.

49




It should also be noticed that the parameter settings used in here may not be the best
one of al. Therefore, a quantitative and qualitative evaluation of these two methods

will be compared in Chapter 4.

(a) (b)
Fig. 3.13. Segmentation result of ffe € A agorithms. (@) One-window based
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Chapter 4. Experimental Resultsand Analysis

4.1.Introduction

In this chapter, we present the experimental results of the proposed LBA agorithm on
test images. The test images are used from the Berkeley Segmentation Database. Eqy
graph [23] is adopted for objective quantitative performance evaluation. Egy, is the
weighted sum of Ejyra and Einer Which measures the intra-region visua error and
inter-region visual error respectively. According to the definition of these two terms
(3.16) - (3.19), higher Einra and Eine value implies that the segment result is
under-segmentation and over-segmentation respectively. Thus, to achieve better
segmentation result, Eq, should be minimized.For this reason, the curve that is closer to
the origin is considered as a better ‘'segmentation,agorithm [23]. However, current
existing unsupervised evaluation “methods are far from perfect in evaluating
segmentation algorithms[25], thus the result segmentation images are also provided for
subjective evaluation. In addition to the performance of the proposed four-window
based L BA method, we included the performance of mean-shift and watershed methods
for comparison. The source codes of mean shift and watershed are provided from [6]

and [15] respectively.

51



4.2. Segmentation Results

4.2.1. Chen’sQuantitative Evaluation Metrics

Chen and Wang [ 23] proposed an unsupervised eval uation method based on the concept
of visible color difference to mimic the way human perceives the color difference for
color image segmentation. This method, which is abbreviated as E.,, defines two
measurements called intra-region visual error and inter-region visual error to evaluate

the quality of color segmentation.

Intra-region visual error which is abbreviated as Eina IS used to evaluate the degree of
under-segmentation. In each segment region, color-information of each pixel should
be as close as the average color of the segment region. Thus, intra-region visua error
defined as (3.16) is used to measure the total number of pixelsin each segment region
with visual color difference larger than a pre-defined visual threshold away from the
average color. Intuitively, the value of intra-region visual error should be as small as
possible in a properly segmented region. Higher intra-region visual error implies the
higher probability of missing boundaries in a segment region, thus the higher
probability that under-segmentation results it has. In this evaluation method, a CIE
L*a*b* color space is adopted and the color difference (3.6) which is larger than the
value 6 is considered as visible as shown in Table 4.1 [28]. Hence the visua threshold

is chosen to be 6 throughout this evaluation method.
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Table 4.1. Effect of color differencein CIE L*a*b* color space for human’s visual

perception [28].
AE 4 Effect
<3 Hardly perceptible
3<6 Perceptible, but acceptable
>6 Not acceptable

Inter-region visual error which is abbreviated as Ejner 1S Used to evaluate the degree of
over-segmentation. Intuitively, color difference between two neighbor segment regions
should be as far as possible. Thus inter-region visua error defined as (3.17) is used to
measure the total number of pixels with joint length between two neighbor segment
regions in which average color of these two neighbor regions is smaller than a visual
threshold. Higher inter-region=visual ‘error Jimplies higher probability that false
boundaries is made between the neighbor regions, thus the higher probability that

over-segmentation resultsit has.

Fig. 4.1 [23] shows the E¢, graph which combines the intra-region visual error and the
inter-region visual error to give a quantitative segmentation evaluation. As described
above, higher Eira Value and higher Einer Value represents the under-segmentation and
over-segmentation respectively. Thus, for a better segmentation result, the E.,, graph
should be as close to origin as possible. In addition to the Eq, graph, Eoy which is
defined as a weighted sum of Ejna and Ejner is aso served as a suitable criterion for
guality evauation. Again, the smaller the value of Eg, the better quality of

segmentation image it has.
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Fig. 4.1. The plot of intra-region visual error v.s. inter-region visual error [23].

4.2.2. Comparison between One-window Based LBA and

Four-window Based L BA

In this section, we compare the gquality of the segmentation image of the proposed
one-window based and four-window based"LBA using quantitative and qualitative
evaluation. Fig. 4.2 — Fig. 4.4 shows the E,, curves of the two proposed agorithm. For
each test image, parameters are set to be the same except for the region merge threshold.
The region merge threshold is adjusted from the range of 2 to 9 ininteger to plot the Eqy
curve. From the figures, the curves of two methods is almost closed to each other,
however the curves of four-window based method is closer to the origin than
one-window based method is. Thus from the definition of the E.,, curves, four-window
based LBA performs segmentation results better than the one-window based method
does. We suspect that thisis because in the same constraint, four-window based method
can reach more nodes than one-window based method does and thus it is possible to

obtain more segment labels and aggregate more reliable messages than one-window
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based method does.
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Fig. 4.4. Eqy curve on test image 3096.

In addition to the quantitative evaluation demonstrated above, the segmentation images
are also provided for qualitative:evaluation. Fig. 4:5 shows the segmentation results of
the proposed algorithm with one-window:-based and-four-window based method after
150 iterations. The parameter settings are-al the same throughout the experiments
except for the size of local search window ranged from 5x5 to 7x7, threshold of region
merge process ranged from 6 to 7 and the number of reliable messages aggregate from
neighbors. The segmentation results of these parameter settings are selected based on
subjective preference. Note that the number of reliable messages aggregate from
neighbors are different based on the intrinsic difference between two methods. In
four-window based method, this number is determined by a predefined threshold which
is selected to be 6 in the experiments. In one-window based method, this number is

determined by the size of the local search window.

In the test image 253055 as shown in Fig. 4.5 (@), there are four segment regions that
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should be partitioned. They are five giraffes, grassland, blue sky and clouds.
Subjectively speaking, both methods achieve comparable segmentation results. It is
hard to tell the big difference between two methods. However, the lag of thefirst giraffe
is segmented out in four-window based method as shown in Fig. 4.5 (c) whereas the
one-window based method isn't. To segment out the lag of the first giraffe in
one-window based LBA, one can try to adjust the threshold of the region merge process
to the lower one, but this will result in a more over segmentation result than the one

with higher threshold.

In the test image 241004 as shown in Fig. 4.5 (d), there are five major parts that should
be partitioned. They are sky, the rocks; grassland, light mountains in the far side and
dark mountainsin the near side. Note that It dependson human evaluator to decide how
many segment regions of the rocks and mountains should be partitioned. Subjectively
speaking, both methods achieve comparable segmentation results. However, the rocks
on the left side and right side of the image are over-segmented in one-window based
method as shown in Fig. 4.5 (e) compared with the results using four-window based

method as shown in Fig. 4.5 (f).

In the test image 3096 as shown in Fig. 4.5 (d), there are two major parts that should be

partitioned, the clouds and the airplane. Both methods produce similar segmentation

results. It is hard to tell the difference between them.
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(®
Fig. 4.5. Segmentation results wi _
(d) Test image 241004. (g) Test image
one-window based LBA. (c)(f)() S
LBA.

4.2.3. Comparison between Different Segmentation

Algorithms

In this section, we compare the segmentation results of the proposed four-window
based LBA with mean shift and watershed agorithm. Fig. 4.6 — Fig. 4.8 shows the
Eaw curves of the proposed algorithm, mean shift, and watershed. From the E,, curves,
the proposed algorithm performs better than the rest. This is because our formulation
tends to minimize E,. However, [25] has pointed out that E., may not always match
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human perception. Another issue with Eg, is that athough we have tried to find
parameter settings that pushed the curves as close to the origin as possible, better
parameter settings may still exist. Thus E., curve here is only areference quantitative
evaluation metric. Qualitative evaluation is still necessary to compare the

segmentation results of different algorithms.
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Fig. 4.6. Eqy curve of different segmentation algorithms on test image 253055.
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Fig. 4.7. Eqy curve of different segmentation algorithms on test image 241004.
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Fig. 4.8. Eqy curve of different segmentation algorithms on test image 3096.

Fig. 4.9 shows the segmentation:images of ‘the proposed four-window based LBA
algorithm after 150 iterations and other algorithms. The parameter settings are selected
based on subjective preference. In other-werds, the segmentation images are selected
from the ones we felt of having the best quality. Hence, the parameter settings between
algorithms are different. Subjectively speaking, the proposed four-window based LBA
algorithm achieved comparable segmentation image quality to mean shift. One can
hardly tell if the segmentation images were the result of applying the proposed
algorithm or mean shift. The watershed algorithm, on the other hand, achieved the
worst segmentation image quality of the three. Although it seems to perform well in
test image 3096 as shown in Fig. 4.9 (i), but the mountain in the left side of test image
241004 as shown in Fig. 4.9 (f) cannot be perfectly segmented out. Besides,
watershed performs poor segmentation results in which giraffes are miss-segmented
on test image 253055 as shown in Fig. 4.9 (¢). Thisis due to watershed algorithm’s
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being sensitive to noise and needs a pre-processing step to de-noise. The watershed

segmentation results will much depend on the de-noise effect.

@ (h) ()
Fig. 4.9. Segmentation results with different algorithms. (a)(d)(g) Segmentation
results using proposed four-window based LBA. (b)(e)(h) Segmentation results using
mean shift algorithm. (c)(f)(i) Segmentation results using watershed algorithm.
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Chapter 5. Conclusion and Future Works

5.1.Conclusion

In this thesis, we formulated a MRF model based on the concept of intra and inter
region constraint for color image segmentation. Furthermore, we proposed a local
belief aggregation (LBA) algorithm to find the best segmentation image based on our
MRF formulation. Compared with the original BP algorithm, the usage of memory
storage is much reduced while using the proposed LBA agorithm to find the MAP

solution of the proposed MRF model.

Experimental results demonstrated that- the proposed color image segmentation
algorithm using four-window-based LEBA achieved segmentation image quality
comparable to the mean shift agorithm. To further reduce the computational
complexity of the four-window based LBA, a one-window based LBA is presented.
Experimental results demonstrated that one-window based LBA can reduce 27% ~
86% computational complexity than four-window based LBA with comparable

segmentation results to the one-window based LBA.

5.2.Futurework

There are two issues remained in the LBA estimation. First, the LBA may sometimes
incorrectly discard the segment states that should not be discarded. This may resultsin
incorrect final segmentation image. Besides, this can also results in more LBA

iterations to reach to the convergence. The other issue is computationa speed of LBA
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estimation algorithm which still remains slow. Therefore, we will be working on
remedying the incorrect segment state discarding issue and optimizing the speed of the

LBA estimation algorithm in the future.
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Appendix

In this section, we discuss the relationship between the number of reliable message
number and the iteration of convergence using four-window based LBA. In the
experiments, the parameter settings are all the same except the number of the reliable
message number. We evaluate the segmentation results to subjectively determine the
convergence iteration of the test image 253055. The segmentation image that remains
unchanged in the contiguous iterations or oscillates between iterations is determined as
the convergence of the respective image. Furthermore, the E,, energy curveisalso used
to objectively determine the convergence iteration. Same as in the subjective method,
the iteration in the curve that has:trend to converge or oscillate is determined as the

convergence iteration.

Fig. A.1 shows the relationship between-the convergence iteration counts and the
reliable message numbers where the convergence iteration counts is determined
subjectively. From the figure, we could see that the 4 reliable messages and 8 reliable
messages need about 104 iterations to converge. The others only need 33 to 59
iterations to converge. Fig. A.2 shows the relationship objectively using the E,, energy
plot of reliable message number with value 4 and 9. From the figure, we could see that
the convergence iteration of reliable message number with value 4 and 9 is about 105

and 44 respectively which meets the subjectively evaluation results.

69



120 —&—test image 253055
100 -
c
S
® 80 -
P
g 60 -
(]
o
g 40
[
[=]
(&)
20
0

reliable message number

Fig. A.1. Subjectively determine the relation between reliable message number and
convergence iteration in four-window based LBA with test image 253055.
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Fig. A.2. Objectively determine the relation between reliable message number and
convergence iteration in four-window based LBA with test image 253055.

We suspect that the difference iterations of these two parts come from the different
initial seeds produced after the first iteration of the proposed LBA a gorithm. Here, we

take the 4 reliable messages which needs 105 iterations to converge and 9 reliable
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messages which needs 44 iterations to converge for example to discuss the probable
reason. The constraints are the same during the initial guess, thus the initia

segmentation images are the same. After thefirst iteration of the LBA, the intermediate
segmentation result becomes an image with initial seeds due to the region merge
process. The quality of the initial seeds will affect the final segmentation results and
hence affect the iterations to converge. Fig. A.3 and Fig. A.4 show the intermediate
results of 4 reliable messages and 9 reliable messages at different iterations respectively.
In Fig. A.3 (a), there are two segment regions being segmented out on the right down
side of the sky. Then after the first iteration, the LBA agorithm iteratively segment out
the probable segment regions using proposed MRF models. The sky is segmented out
in three parts as shown in Fig. A.3 (f).. Theblue sky is colored in green, the dark cloud
in yellow and the white cloud=in dark blue.. Most of the iterations are spent to
progressive segment out the dark cloud in.yellow coler as shown in Fig. A.3 (d) - Fig.
A.3 (f). Five giraffes and grassland have been'segmented out already. The reason of the
much iteration used to segment out the yellow color which represents the dark cloud in
the example is due to the local search window metric we used in the LBA agorithm.
The local search window metric only considers the candidate segment states appeared

in the window.
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(d)
Fig. A.3. Intermediate results on 253055 at different iterations using 4 reliable
messages. (a) Iteration 1. (b) Iteration 5. (c) Iteration 10. (d) Iteration 25. (€) Iteration
40. (f) Iteration 80.

In contrast with the one using 4:reliable messages,-there is only one segment region
being segmented out on the right down side of the sky in thefirst iteration of LBA using
9 reliable messages as shown in Fig. A4 (a). Without the need of spending iterationsto
segment out the dark cloud in yellow colorasshownin Fig. A.3 (d) —Fig. A.3 (f), LBA

using 9 reliable messages converge faster than the one using 4 reliable messages.
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(d)
Fig. A.4. Intermediate results on 253055 at different iterations using 9 reliable
message number. (a) Iteration 1. (b) Iteration 5. (C) Iteration 10. (d) Iteration 25. (€)
Iteration 40. (f) Iteration 44.

Fig. A.5 demonstrates the fina %gmenl@pgn restﬂts with different reliable message

number using LBA. Both Fig. A 5 (d) and Flg A 5 (h) segment out the sky part in three

segment regions and thus requi re_morenteranon-_tp__ponverge asillustrated in Fig. A.L.
From the segmentation results, it seemS‘thatekceptfor the one using 1 reliable message
in Fig. A.5 (@), the others using reliable message number larger than 2 can segment out
the sky, grassland and five giraffes successfully for test image 253055. We suspect this
with two reasons. First, in the four-window based method, the restriction of the number
of reliable message is performed on each side individually when aggregate the reliable
message from neighbors. Thus, if we assign the restriction number to 2 for example,
there are 8 probabl e candidate segment states to be calculated for the belief in the worst
case. Second, after the first iteration of LBA, most of the redundant segment states are
merged and only a few segment states that are important exist. Thus, for the small
amount of reliable message such as 2, the LBA algorithm may also work well for the

above two reasons.
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