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應用於彩色影像切割之區域性可靠資訊匯集 

 

研究生: 詹景竹                                  指導教授: 張添烜 博士 

 

國立交通大學電子工程學系 電子研究所碩士班 

 

摘  要 

 

在彩色影像切割裡，馬可夫隨機場理論被用來解決如何給予畫面像素適當標籤的

問題。在此論文裡，我們以區域的內部特性以及區域和區域之間的相關性來建立

起馬可夫模型。然而，龐大的切割標籤數量，對於使用信任傳遞 (Belief 

Propagation, BP) 演算法來近似以馬可夫隨機場理論為基礎的彩色影像切割法遇

到一些困難。這些困難包含了以下兩點：計算複雜度過高以及記憶體儲存空間過

大而不敷使用的問題。在此論文裡，我們另外提出了一個利用地域性可靠資訊匯

集的演算法來解決這些問題。這個方法主要是以限制鄰近點傳送進來的訊息數量

為概念來達成目的。我們將此演算法套用到我們提出來的馬可夫模型上，利用近

似的方式找出最大事後機率 (maximum a posteriori, MAP) 的結果。跟原本的信

任傳遞演算法比較起來，我們提出的演算法可以減少相當多的記憶體儲存空間。

在評量影像切割的結果方面，我們選擇與眾所皆知的平均位移 (Mean Shift) 演

算法來做比較。在此，我們使用非監督方式的評比方法。這個方法主要是利用色

彩視覺差異的特性設計而成的。實驗數據顯示，所提出的彩色影像切割演算法無

論在主觀或是客觀的評比上，皆可以得到與平均位移演算法有相似的效果。除此

之外，所提出的演算法在運算方面也比平均位移演算法還來的更具平行性。
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Local Belief Aggregation for Color Image Segmentation 

 

Student: Jing-Chu Chan                               Advisor: Tian-Sheuan Chang 

 

Department of Electronics Engineering & Institute of Electronics 

National Chiao Tung University 

 

Abstract 

 

Markov Random Field (MRF) is used to solve the problem of labeling pixels in image 

segmentation. In this thesis, we formulate the MRF model based on the intra and inter 

region criteria. However, the enormous number of segment label in color image 

segmentation causes MRF-based color segmentation algorithm using belief 

propagation (BP) to suffer from complexity and storage explosion. To cope with this 

problem, this thesis also proposed a local belief aggregation (LBA) algorithm which 

restricts the number of messages to be aggregated from a neighboring node, to find 

the segmentation image that approximate the MAP solution of our MRF model. With 

the proposed LBA, memory storage is much reduced compared with the original BP 

algorithm. To evaluate the segmentation results, we compare the segmentation image 

with the well-known mean shift algorithm. Here, the unsupervised evaluation scheme 

using visible color difference is used as our objective evaluation metric. Experimental 

results show that the proposed color image segmentation algorithm can achieve a 

comparable result to mean shift algorithm both objectively and subjectively. Besides, 

the computation of LBA possesses more parallelism than the mean shift algorithm. 
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Chapter 1. Introduction 

1.1. Background 

Image segmentation is an important low-level pre-processing step for image analysis 

applications such as stereo vision, medical image analysis, and video object 

segmentation [1]-[4]. It classifies pixels of interest in an image into several 

non-overlapping regions with unique segment labels. Research on image segmentation 

has continued for many years and many methods have been proposed. One of the most 

well known methods is the watershed [5]. It is based on the concept of extracting 

regions as catchment basins topographically. The simple concept and low 

computational complexity of the watershed have enabled it to be adopted by many 

applications. However, the watershed is sensitive to noise. Another well known method 

is the mean shift method [6]. It is a nonparametric and iterative mode seeking algorithm 

that works in the joint spatial-range space of a color image. In contrast to watershed’s 

sensitivity to noise, mean shift’s mode seeking approach is more robust to noise. Mean 

shift algorithm has been considered to have the best performance among most 

low-level segmentation methods. 

 

Despite solving image segmentation problem solely based on the topography and 

density in the multi-dimensional feature space, segmentation methods based on the 

Markov Random Field (MRF) model that was originally introduced by Geman and 

Geman [7] have also attracted attention. MRF-based methods model the segmentation 

as a labeling problem with a MRF having a maximum a posteriori (MAP) solution 
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corresponding to the ideal segmentation result. Various MRF models have been 

formulated in different image segmentation methods [8] [9]. One way to efficiently 

solve the MAP problem in a MRF is Pearl’s belief propagation (BP) [10]. Belief 

propagation approximates the inference much faster than Gibbs sampler and 

simulated annealing [7]. BP has been successfully applied to stereo vision [11] with a 

MRF model whose number of discrete state (number of disparity range) is less than a 

hundred. However, BP suffers from computational complexity and storage 

requirement explosion when trying to apply to color image segmentation whose 

number of state (number of segment label) can reach up to thousands. This is because 

BP’s complexity is quadratically proportional to the number of state, and the storage 

size is linearly proportional to the number of state and MRF connectivity. As a result, 

the complexity and storage issue due to the large number of segment label has obscure 

BP’s application in color image segmentation. 

 

1.2. Motivation and Contribution 

The issues mentioned above motivate us to propose a color image segmentation method 

with a new MRF modeling of color image segmentation and a local belief aggregation 

(LBA) algorithm to estimate the MAP inference. The proposed MRF models the 

likelihood and prior probability based on the concept of the intra and inter region 

constraint respectively. Such MRF formulation is a more direct formulation in contrast 

to MRF formulations that only models edge label. Consequently, our MRF possesses 

large number of labels. To cope with this, the proposed LBA method, which was 

inspired by the original BP and dynamic quantization (DQ) [12], aggregates only 

limited number of reliable messages from neighboring nodes iteratively. 
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The contribution of the thesis includes 

1. We formulate the MRF model in a simple manner based on the concept of intra 

and inter region criteria. 

2. We proposed a local belief aggregation (LBA) algorithm to estimate the MAP 

of MRF model for color image segmentation. 

 

1.3. Thesis Organization 

In Chapter 2, we briefly introduce existing important methods in image segmentation. 

In Chapter 3, we briefly introduce the transformation and color distance of CIE L*a*b* 

color space. In addition, the details of the MRF model formulation and the LBA 

estimation algorithms are introduced. Chapter 4 presents the quantitative and 

qualitative performance evaluation and comparison. Conclusion and future work are 

given in Chapter 5. 
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Chapter 2. Previous Work 

2.1. Mean Shift Algorithm 

Mean shift [6] image segmentation is an unsupervised clustering algorithm using 

information of feature space to cluster image into several segment regions. Mean shift 

segmentation algorithm includes two steps. First, the mean shift filtering procedure 

detects each cluster or the basin of attraction with iterative mode seeking procedure to 

estimate the density gradient in the probability density function. A mode is defined as 

the local maxima of the probability density function. The basin of attraction of a mode 

is defined as a region in which all the data points would converge to this mode through 

the iterative mean shift procedure. In other words, the points in the same basin of 

attraction are associated with the same cluster. Later, the cluster delineation step groups 

together all the clusters of a mode within a Euclidean distance in the feature space into 

a single cluster.  

 

The mean shift vector is originally deduced from the concept of finding the gradient of 

probability density function. It is designed to move the point x in the feature space 

toward the corresponding mode as 

( )∑
∈

−=
)(

1)(
xSx

i
x

h
hi

xx
n

xM ,                         (2.1) 

where h is the radius of the hyper sphere Sh(x) in the d-dimensional Euclidean space 

centered on x with nx pixels in it. In color image segmentation, a 5-dimensional feature 

space is used. It contains 2-dimensional spatial information and 3-dimensional range 

(or color) information. Each pixel in the image represents a vector with its 
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corresponding 5-dimensional component in the feature space. This information is 

applied to mean shift vector to find the corresponding cluster mode. By calculating the 

mean shift vector, the location of the center of the hyper sphere is shifted iteratively 

according to 

)(1 i
h

ii xMxx +=+ ,                             (2.2) 

and the procedure will continued until the convergence is met at the corresponding 

mode for a given pixel. The convergence condition is ii xx ≈+1 . Fig. 2.1 gives the flow 

chart of the mean shift filtering procedure. The output result is the smoothed image of 

the origin image. 

 

 

Fig. 2.1. Flow of the mean shift filtering. 
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Fig. 2.2. Example of mode seeking procedure and density estimation. 

 

An example of the mean shift vector of a given point moving toward the corresponding 

local density maximum is given in the Fig. 2.2. In the figure, points inside the sphere 

Sh(x) with radius h around x is used to estimate the probability density function of x. 

The direction of the mean shift vector Mh(x) is computed and the new location is shifted 

iteratively until the point of convergence is reached. The convergence point always has 

the highest density in the feature space and is colored in red in Fig. 2.2. C1 and C2 are 

the center of the cluster 1 and cluster 2 in the example respectively.  

 

For mean shift segmentation, an additional procedure that groups the clusters with 

mode distance smaller than hs in the spatial domain and hr in the range domain is 

performed after mean shift filtering. The parameters hs and hr are the radius of the 

window in the spatial and range domain respectively. Finally, an optional procedure 
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that eliminates regions with area smaller than M pixels is also performed to further 

improve the quality of the segmentation results. The flow chart of the mean shift 

segmentation is illustrated in Fig. 2.3. 

 

Fig. 2.3. Flow of the mean shift segmentation. 

 

An example of the mean shift segmentation is illustrated in Fig. 2.4 [6]. Fig. 2.4 (a) is a 

part of image data from Cameraman test image. Fig. 2.4(b) demonstrates the 

intermediate results during the mean shift filtering procedure. In the figure, each pixel 

is iteratively calculated using (2.1) and (2.2) to find the mean shift path represented as 

the block line. The black dots are the points of convergence for the corresponding 

pixels. After the mean shift filtering procedure, the smoothed image is demonstrated in 

Fig. 2.4 (c). Finally for the mean shift segmentation, clusters that are close to each other 
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in a predefined threshold are grouped together. Fig. 2.4(d) shows the final segmentation 

results using mean shift segmentation algorithm.  

 
Fig. 2.4. Visualization of mean shift filtering and segmentation results for gray level 
data [6]. (a) Input image. (b) Mean shift mode seeking paths. (c) Mean shift filtering 
result. (d) Mean shift segmentation result. 

 

2.2. Watershed Algorithm 

Watershed segmentation is a popular and well known algorithm that extracts regions as 

catchment basins based on the concept of topography. The gradient image of the input 

image is used as the topographic surface in which the gradient value represents the 

altitude. The segmentation of an image finds the watershed line on the gradient image 
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and thus separates each region. There exist two approaches to implement watershed 

segmentation, one is the immersion-based method and the other is the toboggan-based 

method. The immersion-based watershed segmentation uses a bottom-up approach 

while the toboggan-based method uses a top-down approach to find the watershed line 

on the geography. 

2.2.1. Immersion-based Method 

 

Fig. 2.5. Example of one dimensional signal using immersion-based watershed 
approach. 

 

Immersion-based method can be explained as an iterative flooding approach. It can be 

thought as first pierce holes in each regional minimum of the topography surface. Then 

we slowly immerse this surface into the water. Starting from the regional minimum of 

the surface, the water will progressively flood up the catchment basins. While the 

waters from different catchment basins are about to merge, we build the dam to prevent 
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them from merging. In the end, each catchment basin is separated by the dam. The 

dams represent the watershed lines and catchment basins represent the segment regions. 

Take Fig. 2.5 for example. Three regional minimums are found and each of them 

corresponds to a catchment basin. Two dams which represent the watershed lines in the 

image are built to delimit the catchment basins. As a result, three segment regions are 

found. 

 

There are two steps to implement the watershed algorithm proposed by Vincent and 

Soille [5], sorting and flooding procedure. Sorting procedure first sorts the pixels of an 

image in the increasing order of the gradient value for the purpose to access the pixels 

directly in a certain gray level. Then a flooding procedure is performed level by level 

starting from the minimum level to determine the watershed and catchment basins. At 

each gray level, pixels belong to the corresponding level h is first marked in label 

MASK. Then the neighboring status of those marked pixels is checked. If at least one of 

a neighbor of a pixel is labeled from the previous iteration, then the corresponding pixel 

is inserted in a first-in-first-out (FIFO) queue. Later, a recursive label propagation of 

each marked pixels in the FIFO is performed. If a pixel is adjacent to at least two 

different catchment basins, then the pixel is labeled as a watershed. If a pixel is only 

adjacent to one catchment basin, then it is labeled as the same label with the 

corresponding catchment basin. In the end, the remaining pixels still marked as MASK 

in the level h belongs to the regional minimum. The pixel and its connected components 

are given a new label as a new catchment basin. A pseudo code with more details of 

Vincent’s watershed segmentation algorithm is referred to [5].  
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2.2.2. Toboggan-based Method 

 

Fig. 2.6. Example of one dimensional signal using toboggan-based watershed 
approach. 

 

Toboggan-based method can be thought as a rain drop sliding down from the hill by 

analogy. It tries to find out the downstream path where each rain drop slides down to a 

regional minimum of the topography surface. Each pixel represents a rain drop in the 

corresponding altitude of the topography surface. Pixels that slide down to the same 

regional minimum belong to the same catchment basin and a unique label is given. Fig. 

2.6 gives a one dimensional example to describe the concept of the toboggan based 

method. The gradient value of pixel E’s right hand side is lower than the value of 

left-hand side, thus pixel E slides down in the right direction toward the regional 

minimum G. Pixel E, F and H slide down to the same regional minimum, thus belong to 

the same catchment basin. Finally, three regions are produced. Note that the 
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toboggan-based algorithm is processed in a raster scan order. Thus in contrast with 

immersion-based algorithm, there is no need to perform an expensive sorting process 

which results in an irregular computing order. However, toboggan requires an 

additional backtracking procedure to solve the labeling problem in the algorithm.  

 

The toboggan algorithm proposed by Fairfield [13] includes two steps, toboggan 

enhancement and contrast segmentation. In toboggan enhancement step, pixels slide 

down in the steepest descent according to the gradient value. In this step, pixels 

belonging to respective catchment basin are determined. This step usually produces an 

over segmentation result. To achieve better segmentation result, contrast segmentation 

is used as a post process to the segmentation image produced in the toboggan 

enhancement step. The contrast segmentation checks the color different between 

neighbors. If the color difference of two neighbor pixels is less than a pre-defined 

threshold, then two pixels is connected. This concept is similar to the region merge 

process. Fig. 2.7 shows the flow chart of the Fairfield’s toboggan based watershed 

segmentation. 

 

Several toboggan-based approaches have been proposed to further improve the quality 

of the segmentation image based on Fairfield’s work. Readers can referred to [14] [15] 

for further detail information. 
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Fig. 2.7. Flow chart of the Fairfield’s toboggan-based watershed segmentation. 

 

2.3. Markov Random Field based Algorithm 

2.3.1. Markov Random Field Theory 

The following content of introduction on Markov random field theory in section 2.3.1 is 
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referenced from [16] [17]. Readers can refer to it for more details. 

 

2.3.1.1. Random Fields 

Many problems can be seen as labeling problems in terms of labels and states (or sites). 

A label is an event that may happen to a state and a set of discrete state is defined as 

{ }1,...,1,0 −= mDS .                             (2.3) 

A labeling problem chooses a label from the label set 

{ }1,...,1,0 −= lL ,                               (2.4) 

and assigns it to each of the states in DS. The value fi is regarded as a particular mapping 

of state i from DS to L and the set 

{ }110 ,...,, −= mffff ,                             (2.5) 

is called a labeling or a configuration of states in DS. The set of all possible 

configurations is called the configuration space and is defined as 

mL=Ω ,                                  (2.6) 

where m is the size of set DS.  

 

Let },...,,{ 110 −= mFFFF be a family of random variables defined on the set of states DS 

where each random variable Fi take a value from the set of label L. This family F is 

called a random field. The event that Fi takes the value fi is denoted as Fi = fi. The 

probability that a random variable Fi takes a value fi is denoted as )( ii fFP =  and 

abbreviated as )( ifP . The notation ),...,,( 111100 −− === mm fFfFfF or simply fF =  

denotes the joint event where f is a configuration of F and the joint probability is 

denoted as )( fFP = , abbreviated )( fP . 
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2.3.1.2. Markov Random Fields 

In a regular lattice case, we consider DS as an image lattice X so that 

( ){ }DSxqpxX ∈∀== |, . Let Nx denotes the set of states neighboring x. }|{ XxNN x ∈∀=  

is said to be a neighboring system if it has the following two properties: 

 

(i) A state is not neighboring to itself: XxNx x ∈∀∉ , . 

(ii) Neighboring is symmetry: XyxNyNx xy ∈∀∈⇔∈ ,, . 

 

The definition of nth order neighborhood set and its neighborhood system is given as 

 }),( ,),(|))(){( 22
),( XqpXlknqlpkn

qp ∈∀∈∀≤−+−=υ ,        (2.7) 

}),(|{ ),( Xqpn
qp

n ∈∀= υυ .                       (2.8) 

A first-order and a second-order neighborhood system are given as an example shown 

in Fig. 2.8. A first-order neighborhood system, also called a four neighborhood system, 

has four neighbors for each state in the regular lattice. A second-order neighborhood 

system, also called an eight neighborhood system, has eight neighbors for each state. 

Order that is higher than two is rarely used because it is complicated and requires a lot 

of computations in most applications. 
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Fig. 2.8. Example of neighborhood system. (a) First-order neighborhood system. (b) 
Second-order neighborhood system. 

 

A random field F is said to be a Markov Random Field (MRF) on X with respect to a 

neighborhood system N if and only if the following conditions are satisfied: 

 

(i) Positivity : 0)( >= fFP  for all possible configurations. 

(ii) Markovianity : ),|(}){\,|( kiikkiikk NifFfFPkXifFfFP ∈===∈== . 

 

The notation \ denotes the exclusive operation, thus the notation }{\ kXi∈ denoted 

above means that i represents all possible states in set X but the state k. Thus 

}}{\,{ kXifi ∈  denotes the set of labels of all states but k and },{ ki Nif ∈ denotes the set 

of labels at the states neighboring k. Hence, the Markovianity condition describes the 

local characteristics of the random field that the probability of a state given a label in X 

is only affected by its neighborhood system. The positivity condition describes that all 

configurations are possible. 
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2.3.1.3. Gibbs Random Fields 

A clique c is defined as any state in set X with all its possible pair neighbors in a 

neighborhood system. The set of all cliques is denoted as C. Fig. 2.9 gives examples of 

cliques for both the first order and second order neighborhood system on a regular 

image lattice. The first order neighborhood system contains two types of cliques, 

single-state clique and pair-state clique, as shown in Fig. 2.9 (a). A single-state clique 

contains only one state; a pair-state clique contains a pair of neighboring states; a 

triple-state clique contains a triple of neighboring states; and so on. The line connected 

the lattices in Fig. 2.9 indicates the neighboring connection between the states. 

 

 
Fig. 2.9. Clique types for first order and second order neighborhood system. (a) First 
order neighborhood system. (b) Second order neighborhood system. 

 

A random field F is said to be a Gibbs Random Field (GRF) on X with respect to a 

neighborhood system N if and only if its configurations follows a Gibbs distribution. A 

Gibbs distribution has the following form 

))(1exp(1)( fU
TZ

fFP −== ,                        (2.9) 

where T is a constant named as temperature, Z is a normalized constant called partition 
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function defined as 

∑
Ω∈

−=
f

fU
T

Z ))(1exp( .                          (2.10) 

Ω  denotes the configuration space of all possible configurations defined in (2.6) and 

)( fU  is the energy function that sums up the clique potential functions )( fU c  of all 

possible cliques c 

∑
∈

=
Cc

c fUfU )()( .                           (2.11) 

The value of )( fU c depends on the local configuration on the clique c.  

 

The joint probability )( fFP = in (2.8) measures the probability of the occurrence of a 

particular configuration. From the definition above, it is clear that the lower the energy 

of a configuration has, the higher the probable a configuration is. 

2.3.1.4. Relation between MRF and GRF 

Markov random field follows the Markovianity property, thus it is characterized by the 

local property. Gibbs random field obeys a Gibbs distribution, thus it is characterized 

by the global property. The Hammersley-Clifford theorem [18] established the 

equivalence relationship of these two types of properties. The theorem states that a 

random field F is a MRF on X with respect to the neighborhood system N if and only if 

the random field F is a GRF on X with respect to the neighborhood system N. This 

equivalent provides a simple way to specify the local characteristic property of MRF by 

specifying the clique potential function which encodes a prior knowledge of 

interactions between neighbor nodes in image lattice. Thus the problem of finding the 

joint probability )( fFP = of MRF becomes equivalent to first specifying the clique 

potential function )( fU c and then calculating the energy function )( fU as shown in 
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(2.10). 

2.3.1.5. MAP-MRF Framework 

The Bayesian approach can be used to solve the problem of image segmentation which 

can be thought as a labeling problem that gives a label in the segment label set L (2.4) to 

a state in set X. The result of the labeling problem is the segmentation image which is of 

interest. Let S be the set for a segment results based on the feature vector extracted from 

original image I. According to the Bayes’ rule, the posteriori probability can be 

presented as 

,
)(

)()|()|(
iIP

sSPsSiIPiIsSP
=

======                     (2.12) 

where )|( sSiIP == represents the probability distribution of varying the segmentation 

result S for fixed image color information I and thus is called the likelihood of I. 

)( sSP = is the priori probability (prior) that defines the joint probability distribution of 

neighboring segment labels. )( iIP = is the probability of the given image color 

information and it remains unchanged during the process, thus it is considered as a 

constant and the posteriori probability (2.12) is equivalent to 

)()|()|( sSPsSiIPiIsSP ===∝== .              (2.13) 

 

To obtain the most probable estimate of interest, a maximum a posteriori (MAP) 

approach is used. Taking the MAP of the posteriori probability (2.13) 

)()|(maxarg)|(maxarg sSPsSiIP
s

iIsSP
s

MAPs ===
Ω∈

===
Ω∈

= .         (2.14) 

The prior )( sSP = can be expressed as a MRF model. Thus it is served as a sum of the 

clique potential functions and can be expressed in the form similar to (2.9) as  

( )( )sUsSP −∝= exp)( .                          (2.15) 
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The Likelihood can also be expressed in terms of likelihood energy in the similar form 

of (2.10) as 

( )( )siUsSiIP |exp)|( −∝== .                       (2.16) 

Thus the posteriori probability can be expressed in terms of energy function as 

( )( )isUiIsSP |exp)|( −∝== ,                       (2.17) 

where 

( ) ( ) ( )sUsiUisU += || .                          (2.18) 

Thus from (2.17) and (2.18), the MAP of the posteriori probability in (2.14) is equal to 

find the minimize of the posterior energy function 

( )isUs
s

|minargˆ
Ω∈

= .                             (2.19) 

 

With the use of MAP-MRF approach, a segmentation problem which is also referred to 

the labeling problem can be solved for the following steps. First, define the 

neighborhood system and the set of cliques. Then define a clique potential function and 

the likelihood energy function for the estimation of (2.15) and (2.16) respectively. 

Finally, choose an optimization algorithm to find the optimized MAP solution of the 

posteriori probability (2.14) or (2.17). 

2.3.2. Application in Segmentation 

The applications of MRF model have been widely use in a variety of image processing 

tasks such as image restoration, edge detection, motion analysis and image 

segmentation. In this section, we will focus on the MRF model established in the field 

of image segmentation. 
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2.3.2.1. Deng’s Work 

Deng’s work [8] proposed a simple MRF model for unsupervised image segmentation. 

The segmentation problem can be expressed in the Bayesian framework (2.12) where 

the posteriori probability )|( iIsSP ==  consists of two components, a region labeling 

component and a feature modeling component. These two components can be 

formulated in the MRF model. The prior )( sSP =  is referred to the region labeling 

component and the energy function of the prior using the pairwise multi-level logistic 

(MLL) model is given as 

( ) ( )∑ ∑
∈ ∈ ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

Xq pNq
qp sssU

)(

,δβ ,                       (2.20) 

where β is a weighting constant which can be specified a priori, sp is a labeling 

condition of state p in the set of image lattice X and a clique potential function is 

defined as 

( )
⎪⎩

⎪
⎨
⎧

≠−

=
=

qp

qp
qp ss

ss
ss

              ,1

              ,1   
,δ .                     (2.21) 

Deng assumes that the probability distribution of all feature data for one segment region 

is a Gaussian distribution. Based on this assumption, the likelihood energy which is 

referred to the feature modeling component that describes the features of an image is 

defined as  

( ) ( )
( )

( )∑ ∑
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

−
=

∈S Xp
l

l

lpi
siU σπ

σ
μ

2log
2

| 2

2

.                (2.22) 

where pi  is the feature information of state p extract from the original image I, lμ  

and lσ  are the mean and standard deviation for the segment region labeled l. Note that 

the number of segment regions is assumed to be known in prior. After defining the 

components, the energy of the posterior probability )|( iIsSP ==  is then defined as 



 

 

23 

 

( ) ( ) ( ) ( )sUsiUtisU +×= || α                         (2.23) 

where ( )tα  is the variable weighting parameter. Deng claims that with this 

function-based parameter gives the individually contribution of the two components to 

the entire energy )|( isU , the proposed simple MRF model is able to automatically 

estimate model parameters and produce accurate unsupervised segmentation results 

using expectation-maximization (EM) algorithm and fast simulated annealing (SA). 

2.3.3. Inference Algorithm Using Loopy Belief Propagation 

There are several methods to solve the MAP-MRF problem such as simulated 

annealing (SA) [7], iterated conditional modes algorithm (ICM) [19], belief 

propagation (BP) [11], and graph cut method (GC) [20]. Among all, we are interested in 

the loopy belief propagation that applies Pearl’s algorithm [10] to the graph with loops 

or undirected graphs. A Markov network is an undirected graph in the literature of 

probabilistic graph models [21], where the nodes represent variables and arcs which 

connect the neighboring nodes represent compatibility relations between neighboring 

nodes. Fig. 2.10 shows an example of an undirected graphical model. Yellow nodes 

represent the hidden variables and green nodes represent the observed variables. In this 

section, we will focus on the loopy belief propagation algorithm. We will refer loopy 

belief propagation as belief propagation for brevity. 
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Fig. 2.10. An undirected graphical model with hidden variables and observed 
variables. 

 

Pearl’s algorithm is an exact inference algorithm for graphs without loops or directed 

graphs. For the graphs with loops or undirected graphs such as the image lattice 

structure, belief propagation is not guaranteed to find the global optimal solution. 

Despite of this, several applications have been successfully used in applications such as 

the one with stereo vision [11]. Belief propagation iteratively propagates messages in 

the Markov network. Let ( )qp
t
pq xxm ,1+  be the message that propagates from node xp to xq 

in iteration t+1, and is defined as 

( ) ( ) ( ) ( )∏
∈

+ ←
qpk

p xxNx
pk

t
kppp

t
pqppq

x
qp

t
pq xxmixmxxxxm

\)(

1 ,, ,max, ψκ           (2.24) 

where ( )pp
t
p ixm ,  is the message from observed node ip to node xp in iteration t, 

( )qppq xx ,ψ  is the compatibility matrix with size L × L between node xp and its neighbor 

nodes xq. L is the size of all possible labels. Note that both message ( )qp
t
pq xxm ,1+  and 

( )pp
t
p ixm ,  are vectors with L elements. The belief of node xp is computed as follows: 

( ) ( ) ( )∏
∈

←
)(

,,
pk xNx

pkkpppppp xxmixmxb κ ,                   (2.25) 
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( )pp
x

MAP
p xbx

p

maxarg= ,                           (2.26) 

where κ  is the normalized constant. Note that belief ( )pp xb  is also a vector with L 

elements. Fig. 2.11 gives an example of local message passing in the Markov network. 

The message propagates from node x1 to node x2 is ( ) 1,51,41,3121122,1 ,max
1

mmmmxxm
x

ψκ← . 

The belief at node x2 is 2,82,72,62,122 mmmmmb κ← . 

 

Fig. 2.11. Local message passing in a Markov Network [11] 

 

The belief propagation with max-product update rule maximizes the joint posterior 

probability )|( iIxXP ==  with the MRF model in the following steps: 

1. Initialize messages ( )qppq xxm ,  and ( )qpp ixm ,  of each node to a constant and 

the observed values calculated from the likelihood function respectively. 

2. Update messages of each node iteratively using equation (2.24). 

3. Computes and determines the belief of the corresponding nodes using 

equation (2.25) and (2.26) at the end of the BP algorithm. 

x3 x7x2x1

x5 x8

i1

x6x4

x1

m1

m3,1

m4,1

m5,1

x6

x7

x8

i2

m2

m1,2

m8,2

m6,2

m7,2m2,1



 

 

26 

 

  



 

 

27 

 

Chapter 3. Color Image Segmentation 

Algorithm Using MRF Model 

In this chapter, we propose a color image segmentation method with a new MRF 

modeling of color image segmentation and a local belief aggregation (LBA) algorithm 

to estimate the MAP inference. The proposed MRF models the likelihood and prior 

probability based on the concept of the intra and inter region constraint respectively. 

The LBA algorithm, which is inspired by the original BP and DQ, is proposed to cope 

with the problems of the large number of segment labels existing in color image 

segmentation. 

3.1. Algorithm Overview 

 

Fig. 3.1. Flow of image segmentation using local belief aggregation. 
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Fig. 3.1 illustrates the flow of the image segmentation using local belief aggregation. 

Before using local belief aggregation algorithm to optimize the total energy, an initial 

segment label is assigned. In this step, a unique segment label is first assigned to each 

pixel in the test image. If there are |I| pixels in the image, there would be |I| segment 

labels in the initial segmentation image. Note that there is no restriction on the quality 

of the initial segment map. However, a more accurate initial guess will lead to faster 

convergence of the following local belief aggregation algorithm. Besides, segment 

labels can also be used as the seeds for segment regions. Therefore, an initial merge 

process is applied to the initial segmentation image. After the initial merge process, the 

proposed local belief aggregation (LBA) is performed iteratively to find the 

segmentation image. We model the image segmentation as a labeling problem using a 

four-connect MRF, in which each node corresponds to a pixel and each state 

corresponds to a segment label. The LBA consists of reliable message aggregation, 

maximum belief segment state selection, and region merge process. First, reliable 

message aggregation aggregates reliable message information from the neighboring 

nodes of each node in the MRF. At each node, the belief value of each segment state is 

computed using the reliable message aggregated in the previous step. The segment state 

with the maximum belief value is chosen. For each node, the corresponding label of the 

chosen segment state is selected as the segment label. After the maximum belief 

segment state selection, a region merge is applied to further improve the segmentation 

image quality. The LBA steps are iteratively performed until convergence or a preset 

iteration limit is reached. After the LBA, segment region extraction is performed to 

output the final segmentation image. The segment region extraction assigns a new 

unique segment label to each region using connected component. This is an option step 

in the LBA algorithm. Note that we perform two different kinds of initial merge process, 



 

 

29 

 

a local partial merge and a global merge, as an initial segment map for the following 

LBA. A local partial merge that only considers spatial and color information in a 3×3 

sliding window is used for the four-window based LBA. A global merge is used for 

one-window based LBA. 

 

3.2. CIE L*a*b* Color Space 

In the proposed color image segmentation algorithm, a precise estimation of color 

distance is important. Thus a proper choice of color space is important in our case. We 

adopt the CIE L*a*b* color space from all the existing color space for two reasons: (1) 

approximately uniform color scale, (2) similar to human visual perception. 

 

3.2.1. Introduction 

The L*a*b* color space is developed by the CIE to be approximately perceptually 

uniform. Color difference between points in the color space corresponds to the visual 

difference between the colors of the points. The L* axis represents the lightness 

(luminance) in this color space with white at L* = 100 and black at L* = 0. The a* and 

b* axes represents color component while a* encodes the red-green sensation and b* 

encodes the yellow-blue sensation. Positive a* axis indicates amounts of red color and 

negative a* axis indicates amounts of green color while positive b* axis indicates 

amounts of yellow color and negative b* axis indicates amounts of blue color. Note that 

there is no specific numerical limit for these two color components. Fig. 3.2 illustrates a 

brief plot of the CIE L*a*b* color space. 
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Fig. 3.2. CIE L*a*b* color space. 

 

3.2.2. Color Transform from RGB to CIE L*a*b* 

Color transformation from RGB to CIE L*a*b* color space is done by the following 

two steps. First we transform RGB to CIE XYZ space. This transformation is made by 

.  
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Then we transform the resulting CIE XYZ space to CIE L*a*b* space. The 

transformation is defined by 
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⎥
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where 
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3.2.3. Color Difference 

Color difference between two points in the CIE L*a*b* space is given by the Euclidean 

distance formula 
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⎡ Δ+Δ+Δ=Δ baLEab ,                    (3.6) 

where the differences in lightness ( )*LΔ , red-green sensation ( )*aΔ  and yellow-blue 

sensation ( )*bΔ  is defined as 
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3.3. MRF Model Formulation 

According to the Bayes’ theorem, the posterior probability of a segmentation image S, 

given the image information I, can be represented as (2.12) and simplified to               

(2.13) since )( iIP = in (2.12) can be considered as a constant. In this section, we 

formulate the MRF model of the likelihood )|( sSiIP ==  and the prior )( sSP = in order 

to further estimate the posterior probability to obtain the segmentation result. 

 

3.3.1. Likelihood and Prior 

We define the likelihood )|( sSiIP == as 
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 ∏
∈

−∝==
Ix

x isxFsSiIP )),,(exp()|( ,                  (3.8) 

where ),,( isxF x  is the cost function of node x with segment label sx given the 

observation I. The prior )( sSP =  is defined as 

( ) ( )( )( )∏ ∏
∈ ∈

−∝=
Ix xNy

yxyx sssssSP
)(

,,,exp γη ,                (3.9) 

where )),(,,( yxyx ssss γη  is the clique potential function of segment label sx and sy in 

which node y is the neighbor of node x. ),( yx ssγ is the line process which penalizes the 

clique potential according to the relationship between segment label sx and sy. By 

combining (2.13), (3.8) and (3.9), the basic model (2.12) of the image segmentation 

becomes 
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3.3.2. Model Approximation 

To estimate the optimal solution of a MRF model, the maximum a posteriori (MAP) 

approach is used. Taking the MAP of (3.10) gives 
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The question here is to determine the definition of the cost function ),,( isxF x and the 

clique potential function )),(,,( yxyx ssss γη in the likelihood and the prior respectively. 

Haralick and Shapiro [22] pointed out two criteria on the characteristics of segments 

in a good segmentation image. One measures the intra region uniformity and the other 
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measures the inter region disparity. These two criteria show consistency with the 

likelihood and prior function. Thus we model the likelihood and prior function based 

on the intra and inter region criteria respectively. Specifically, the definition of intra 

and inter region energy defined in [23] is adopted and modified. We define the cost 

function and the clique potential function as 

( ) ( )vbaLxxx thsiuisxF −−=
***

 ,, ,                   (3.12) 
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where xs and ys represents the average color of segment label sx and sy respectively, 

thv denotes the threshold for visible color difference, *** baL denotes the color 

difference in the CIE L*a*b* space and ( )yx ss ,γ denotes the relation between a pair of 

segment labels and is defined as 

( )
⎪⎩

⎪
⎨
⎧

=

≠
=

yx

yx
yx ss

ss
ss

             ,0

              ,1
,γ .                      (3.14) 

Thus, with the above definition of cost function and clique potential function, (3.11) 

can be rewritten as 
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where Ecw is the weighted sum of intra-region visual error (Eintra) and inter-region 

visual error (Einter) whose definition from [23] are 
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|I| represents the total number of pixels in an image, C is a weighting constant. From 

the inference of (3.15), it is obvious that estimating a MAP of )|( iIsSP ==  with the 

definition of cost function and clique potential function in (3.12) and (3.13) is 

equivalent to obtaining the minimum energy of Ecw. This equivalence is what we 

desired since [23] claimed that lower Ecw implies better image segmentation results.  

 

In addition to the definition of intra-region visual error and inter-region visual error 

defined in (3.16) - (3.19), Chen also claims that the modified version of these two 

terms that further include the color distance values can also give a quantitative 

evaluation of the segmentation images [24]. The definition of the modified 

intra-region visual error (MEintra) and modified inter-region visual error (MEinter) is 

given as follows 
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Again, if we define the cost function and the clique potential function as 
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and take the MAP of (3.10), the same conclusion will make as in (3.15). 

 

Although maximizing the posterior defined by (3.12), (3.13) and (3.24), (3.25) can 

minimize Ecw as shown in (3.15), an energy distribution that is proportional to color 

difference is considered to be a more suitable measure. Thus, based on the property of 

intra region and inter region, we re-formulate the cost function and clique potential 

function as 
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where ths denotes the threshold for maximum difference of average segment label 

color between two segment labels. From the empirical experiment results, we select 

threshold ths to be 150 to simplify the problem of finding different threshold for 

different test images. Thus, in the case of different segment labels detected in        

(3.28), we truncate the value of clique potential function to zero if 
∗∗∗

−
baLyx ss  is 

larger than the 150, which is the predefined threshold ths as shown in Fig. 3.3. 
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Fig. 3.3. Relation between the value of clique potential function and the value of 
difference of average segment label color for two different segment labels. 

 

Our formulation adopts Gaussian-like color distribution model; however, [25] has 

pointed out that such model may not always be true. To accommodate the distribution 

deviations, two discontinuity preserving robust functions derived from the Total 

Variance (TV) model [26] are applied to the cost and clique potential function. 
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where the robust functions are defined as 
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Note that parameterσ and e control the sharpness and upper-bound of the function 

respectively. In our experiment, the parameterσ and e is set to be 2.0 and 0.01 

respectively for both cost function and clique potential function. 

 

Finally, the posterior ( )iIsSP == |  can be factorized into the following form 
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where ( ) ( )( )xlxxx sis ρψ −∝ exp, is the local evidence for node x, and 

( ) ( )( )yxpyxxy ssss ,exp, ρψ −= is the compatibility matrix between node x and its neighbor 

nodes y. 

 

3.4. Local Belief Aggregation 

To efficiently estimate the MAP of the posterior probability (3.32), a local belief 

aggregation (LBA) is proposed. Although belief propagation (BP), which is a linear 

time algorithm proportional to the number of hidden nodes [11], can also be used to 

solve the MAP problem, there are some difficulties to directly apply BP algorithm in 

the proposed MRF-based segmentation model. The enormous size of segment labels 

not only results in heavy computational burden but also leads to a huge memory 

storage requirement. Both of these constraints restrict the use of BP in color image 

segmentation. Thus, a local belief aggregation which is modified from the original BP 

algorithm is proposed to find the MAP segmentation image. 

 

3.4.1. Reliable Message Aggregation 

Reliable message aggregation is the first step in the LBA. The reliable message 

aggregation restricts the number of segment state’s message to be aggregated from the 

neighbor nodes. That is, only a limited number of the most probable segment states, 

which we considered to be reliable, can send out messages. To decide the most 

probable segment states, a local search window approach is used. Here we introduce 
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two methods of using local search window to send out the reliable messages. In 

section 3.4.1.1, we will introduce the four-window based local search window method. 

In section 3.4.1.2, one window-based local search window method is proposed to 

further reduce the computational complexity than the previous method. 

 

3.4.1.1. Four-window Based Local Search Window 

 

Fig. 3.4. Reliable message aggregation using four local search windows. 

 

Fig. 3.4 shows the concept of four-window based local search window. In this method, 

each neighboring node has its corresponding local search window in a preset size. For 

example, nodes x1, x6, x7 and x8 have their corresponding 3×3 local search window 

shown in Fig. 3.4. During the procedure, the message of node x1 will be calculated 

and decided using the local search window center at node x1. Once the reliable 

message is ready, message of node x1 will propagate to the current node x2. The same 

action is performed for node x6, x7 and x8 at the same time to propagate the reliable 

messages to node x2. 
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Let m be the number of all the segment states appeared in the local search window. 

All messages from these m segment states will be calculated. Let mxy(sx,sy) be the 

message from node x to node y, and is defined as  

 ∏
∈

←
kxk

x ssNs
kkkxxxxzxxyxxy

s
yxxy isrismssssssm

\)(

),(),(),(),(max),( υψκ ,      (3.33) 

where ),( zxx ssυ is the spatial function considering the spatial relationship of the m 

segment states in node x and the segment state of node z in the corresponding local 

search window. Here our spatial function is simply defined as the reciprocal of the 

spatial distance 

( ) ( )zxd
zxx ssEu

ss
,

1, =υ  ,                      (3.34) 

where ( )zxd ssEu ,  is the Euclidean distance between the segment state of node x and 

the segment state of node z. ),(),( xxxxxx isism ψ= is the message from observed node ix 

to node x and ),(),( kkkkkks isisr ψ=  is the message from node k to node x. If the 

number of possible segment state m in the local search window is larger than a preset 

number of reliable segment states n, then only the message of the most probable n 

segment states out of the m segment states can be transferred according to the 

message value calculated by (3.33). Higher message value represents higher 

probability. The other (m-n) number of less probable segment states will be discarded 

for current node calculation. From (3.33), it is obvious that the message can be 

calculated on-the-fly, hence no memory storage for previous iteration’s messages is 

required any more. 
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3.4.1.2. One-window Based Local Search Window 

 

Fig. 3.5. Reliable message aggregation using one local search window. 

 

Fig. 3.5 shows the concept of reliable message aggregation using one-window based 

local search window. In this method, only one local search window with preset size is 

required to determine the reliable messages. Let m be the number of all the segment 

states appeared in the local search window. All messages from these m segment states 

will be calculated using the same equation (3.33). All the m number of messages in 

four directions will be considered as reliable messages and will aggregate into the 

node without being discarded to provide reliable information for further belief value 

calculation. 
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3.4.2. Maximum Belief Segment State Selection 

The maximum belief segment state selection is performed after the reliable message 

aggregation. During this procedure, the belief of the node x will be estimated and the 

segment state with the maximum belief will be selected. The belief is computed as 

follows: 

( ) ( ) ( )∏
∈

←
)(

,,
xk sNs

xkkxxxxxx ssmismsb κ ,                 (3.35) 

( )xx
s

MAP
x sbs

x

maxarg= .                      (3.36) 

Note that in the four-window based local search window method, there is a chance 

that some of the segment state’s message is missing while computing the belief value. 

This is due to the restriction on the number of the reliable message to be sent from the 

neighboring nodes with their corresponding local search window. To remedy this, the 

missing message belonging to a specific segment state of the corresponding 

neighboring node is re-computed. For one-window based local search window 

method, there is no need to re-compute since no restriction on the number of the 

reliable message is performed. 
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Fig. 3.6. Four-window based local reliable message aggregation in a Markov network. 

 

 

Fig. 3.7. One-window based local reliable message aggregation in a Markov network. 

 

Fig. 3.6 and Fig. 3.7 demonstrate the example of the message aggregation in 

four-window based local search window and one-window based local search window 

with belief calculation in a Markov network respectively. In both figures, green nodes 
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represent the observed variables. Yellow and orange nodes represent the hidden 

variables. Gray region represents a preset size of local search window which is 3 × 3 

in the example centered at nodes x1 and x2 in the four-window based method and 

one-window based method respectively. Reliable message aggregate from node x1 to 

x2 is ( ) ( ) 54311122,1 ,,max
121

1

mmmmssssm
z

x
xxxx

s
υψκ← . The belief at node x2 is 

2,82,72,62,12 ,,,
2

mmmmmb x κ← . 

3.4.3. Region Merge Process 

The initial guess of the segmentation image may consist of a large number of 

unnecessary segment labels. As a consequence, we would be using more than one 

segment labels to represent a region. This would prevent the overall energy from 

converging. For the above reason, redundant segment labels should be pruned. Hence, 

a region merging process is inserted in the end of each iteration. At the end of each 

iteration, the average color difference of two neighboring segment regions is checked. 

If the color difference is smaller than a pre-defined threshold, the two segment regions 

should be the same. In other words, the two different segment labels represent the 

same region. In this case, one of the two segment labels is replaced by the other.  

 

Additional region merging based on the area of regions is also performed to further 

improve the quality of the segmentation image. In the four-window based local search 

window, the additional region merging is performed at the first and last iteration of 

the LBA as shown in Fig. 3.8. In the one-window based local search window, the 

additional region merging is performed twice, after the region merge process at the 

first and last iteration of the LBA as shown in Fig. 3.9. In this additional region merge, 
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segment regions with an area smaller than a predefined area are merged into their 

neighboring segment regions that have the smallest color distance with an area larger 

than a predefined number. The predefined areas are both 20 pixels in our case.  

 

 

Fig. 3.8. Region merge process in four-window based method. 
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First iteration or last iteration ?

Region merge based on area

Region merge based on color difference

Region merge process

yes
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Fig. 3.9. Region merge process in one-window based method. 

 

3.4.4. Convergence of Local Belief Aggregation 

Similar to BP, there is no theoretical proof to guarantee the convergence of the 

proposed local belief aggregation method. However, we suspect that LBA is likely to 

achieve convergence in practice. We use empirical result to demonstrate LBA’s 

convergence trend. For the purpose of minimizing the energy term Ecw, it is 

reasonable that the convergence of the energy term Ecw could imply the convergence 

of the proposed local belief aggregation algorithm. Fig. 3.10 shows the Ecw curve for 

the test image 253055 from Berkeley Segmentation Database [27]. As we can see, 

after several iterations of estimating posterior probability by LBA, the energy term 

Ecw oscillates around the value 0.136. Hence, we believe that the LBA tends to 

converge as the Ecw energy term is converging. 
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Fig. 3.10. Ecw convergence of four-window based LBA 

 

In addition to the Ecw curve, another empirical method to demonstrate the 

convergence trend is to check the results of the segmentation image subjectively. If 

the result of the segmentation images is convergence, than we believe that the LBA 

also tends to converge. For test images we use, this convergence tend is guaranteed so 

far. 

 

3.5.  MRF Model Comparison 

We suspect that the MRF model using (3.12), (3.13) and (3.24), (3.25) is not suitable 

for the proposed algorithm for two reasons. First, two-value model provides less 

information for a labeling problem such as the image segmentation problem. An 

energy distribution proportional to color difference can give a Gaussian-like measure 

and thus is considered to be a more suitable measure. Second, in the proposed LBA 

algorithm, the region merge process will merge two neighbor segment regions with 
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average color distance smaller than a predefined threshold. If the region merge 

threshold is selected larger than or equal to the visible color difference threshold vth , 

then the input of the unit step function in (3.13) and (3.25) will always be smaller or 

equal to zero. From (3.19), this will cause the results of unit step function that appears 

in (3.13) and (3.25) to always be equal to zero. Thus the concept of unit step function 

is considered not suitable for the region merge process of the proposed LBA. Fig. 

3.11 shows the LBA results using (3.12), (3.13) and (3.24), (3.25) respectively. The 

region merge threshold is chosen to be 2 in order to be less than the threshold for 

visible color vth  and we run the LBA for 5 iterations. All two images perform bad 

segmentation results, both methods cannot successfully segment out giraffes of the 

test image 253055; however, Fig. 3.11 (b) is better than Fig. 3.11 (a) among the two. 

We suspect that this is because MRF model used in the Fig. 3.11 (b) has include the 

color distance values which is better than the two-value MRF model used in Fig. 

3.11(a). From the above reasons and the empirical experiment, (3.27) and (3.28) is 

adopted as the energy of the likelihood and the prior respectively. The segmentation 

results of the selected MRF model will be demonstrate in the next section and 

throughout the thesis. 

 

Fig. 3.11. Segmentation results with different MRF model using LBA algorithm. (a) 
MRF model using (3.12) and (3.13). (b) MRF model using (3.24) and (3.25). 
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3.6.  Complexity Analysis and Comparison 

We suspect that one-window based reliable message aggregation is likely to achieve 

less computational complexity than the four-window based method when executes 

one LBA iteration. To examine the assumption, the empirical results are used to 

demonstrate the computational complexity of above two methods. With the same 

parameter settings, we run LBA on both methods for 50 iterations and then calculate 

average counts of each computational element. Parameter settings used in this 

experiment is shown in Table 3.1. Since there is no restriction on the number of the 

reliable message for one-window based method, the corresponding blank is vacant. 

Table 3.2 demonstrates the average execution counts of both two methods. As we can 

see from the table, each computational element of one-window based LBA reduces 

from 27% ~ 86% than four-window based LBA does. Hence, we believe that 

computational complexity of one-window based LBA is much less than four-window 

based LBA. Fig. 3.12 demonstrates the reduced rate of each computational element in 

graph. Note that it should be noticed that our codes have not been optimized yet. Thus 

the execution counts in Table 3.2 are just for reference. However, we believe that the 

execution counts for both methods will be much improved if the codes have been 

optimized and the conclusion will still be the same as we concluded above. 

Table 3.1. Parameter settings of image 253055 for LBA. 

 Local search 

window 

Region merge 

threshold 

LBA iteration Number of 

reliable message 

Area merge 

threshold 

1-window based 5×5 5 50 X 20/20 

4-window based 5×5 5 50 6 20/20 

 



 

 

49 

 

Table 3.2. Average execution counts of image 253055 for LBA. 

 Load/store Add/sub Div Mul Comp Sqrt Exp 

1-window-based 3.15E+08 7.37E+07 2.62E+07 3.64E+07 4.74E+07 7.51E+06 7.49E+06

4-window-based 6.50E+08 1.30E+08 3.58E+07 7.07E+07 3.43E+08 2.18E+07 1.35E+07

Reduced rate 52% 43% 27% 49% 86% 66% 44% 

 

 

Fig. 3.12. Comparison of each computational unit between different methods used in 
the proposed LBA. 

 

The segmentation results of both methods in the same parameter settings mentioned 

above are also presented in Fig. 3.13. As we can see, four-window based method 

segments out more details as shown in the lag of the first and second giraffe. 

Although four-window based method restricts the number of reliable messages to be 

aggregated from the neighbor nodes, it can obtain more neighbor segment labels than 

one-window based method when using the same size of the local search window. 

Thus it is possible for four-window based method to aggregate more reliable message 

than the other based on the same parameters does and hence can segment out a more 

detail one than one-window based method.  
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It should also be noticed that the parameter settings used in here may not be the best 

one of all. Therefore, a quantitative and qualitative evaluation of these two methods 

will be compared in Chapter 4. 

 

 

Fig. 3.13. Segmentation result of different LBA algorithms. (a) One-window based 
LBA. (b) Four-window based LBA.
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Chapter 4. Experimental Results and Analysis 

4.1. Introduction 

In this chapter, we present the experimental results of the proposed LBA algorithm on 

test images. The test images are used from the Berkeley Segmentation Database. Ecw 

graph [23] is adopted for objective quantitative performance evaluation. Ecw is the 

weighted sum of Eintra and Einter which measures the intra-region visual error and 

inter-region visual error respectively. According to the definition of these two terms 

(3.16) - (3.19), higher Eintra and Einter value implies that the segment result is 

under-segmentation and over-segmentation respectively. Thus, to achieve better 

segmentation result, Ecw should be minimized. For this reason, the curve that is closer to 

the origin is considered as a better segmentation algorithm [23]. However, current 

existing unsupervised evaluation methods are far from perfect in evaluating 

segmentation algorithms [25], thus the result segmentation images are also provided for 

subjective evaluation. In addition to the performance of the proposed four-window 

based LBA method, we included the performance of mean-shift and watershed methods 

for comparison. The source codes of mean shift and watershed are provided from [6] 

and [15] respectively. 
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4.2.  Segmentation Results 

4.2.1. Chen’s Quantitative Evaluation Metrics 

Chen and Wang [23] proposed an unsupervised evaluation method based on the concept 

of visible color difference to mimic the way human perceives the color difference for 

color image segmentation. This method, which is abbreviated as Ecw, defines two 

measurements called intra-region visual error and inter-region visual error to evaluate 

the quality of color segmentation.  

 

Intra-region visual error which is abbreviated as Eintra is used to evaluate the degree of 

under-segmentation. In each segment region, color information of each pixel should 

be as close as the average color of the segment region. Thus, intra-region visual error 

defined as (3.16) is used to measure the total number of pixels in each segment region 

with visual color difference larger than a pre-defined visual threshold away from the 

average color. Intuitively, the value of intra-region visual error should be as small as 

possible in a properly segmented region. Higher intra-region visual error implies the 

higher probability of missing boundaries in a segment region, thus the higher 

probability that under-segmentation results it has. In this evaluation method, a CIE 

L*a*b* color space is adopted and the color difference (3.6) which is larger than the 

value 6 is considered as visible as shown in Table 4.1 [28]. Hence the visual threshold 

is chosen to be 6 throughout this evaluation method.  
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Table 4.1. Effect of color difference in CIE L*a*b* color space for human’s visual 
perception [28]. 

ΔE*
ab Effect 

< 3 Hardly perceptible 

3 < 6 Perceptible, but acceptable 

> 6 Not acceptable 

 

Inter-region visual error which is abbreviated as Einter is used to evaluate the degree of 

over-segmentation. Intuitively, color difference between two neighbor segment regions 

should be as far as possible. Thus inter-region visual error defined as (3.17) is used to 

measure the total number of pixels with joint length between two neighbor segment 

regions in which average color of these two neighbor regions is smaller than a visual 

threshold. Higher inter-region visual error implies higher probability that false 

boundaries is made between the neighbor regions, thus the higher probability that 

over-segmentation results it has. 

 

Fig. 4.1 [23] shows the Ecw graph which combines the intra-region visual error and the 

inter-region visual error to give a quantitative segmentation evaluation. As described 

above, higher Eintra value and higher Einter value represents the under-segmentation and 

over-segmentation respectively. Thus, for a better segmentation result, the Ecw graph 

should be as close to origin as possible. In addition to the Ecw graph, Ecw which is 

defined as a weighted sum of Eintra and Einter is also served as a suitable criterion for 

quality evaluation. Again, the smaller the value of Ecw, the better quality of 

segmentation image it has. 
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Fig. 4.1. The plot of intra-region visual error v.s. inter-region visual error [23]. 

4.2.2. Comparison between One-window Based LBA and 

Four-window Based LBA 

In this section, we compare the quality of the segmentation image of the proposed 

one-window based and four-window based LBA using quantitative and qualitative 

evaluation. Fig. 4.2 – Fig. 4.4 shows the Ecw curves of the two proposed algorithm. For 

each test image, parameters are set to be the same except for the region merge threshold. 

The region merge threshold is adjusted from the range of 2 to 9 in integer to plot the Ecw 

curve. From the figures, the curves of two methods is almost closed to each other, 

however the curves of four-window based method is closer to the origin than 

one-window based method is. Thus from the definition of the Ecw curves, four-window 

based LBA performs segmentation results better than the one-window based method 

does. We suspect that this is because in the same constraint, four-window based method 

can reach more nodes than one-window based method does and thus it is possible to 

obtain more segment labels and aggregate more reliable messages than one-window 
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based method does. 

 

Fig. 4.2. Ecw curve on test image 253055. 

 

 

Fig. 4.3. Ecw curve on test image 241004. 
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Fig. 4.4. Ecw curve on test image 3096. 

 

In addition to the quantitative evaluation demonstrated above, the segmentation images 

are also provided for qualitative evaluation. Fig. 4.5 shows the segmentation results of 

the proposed algorithm with one-window based and four-window based method after 

150 iterations. The parameter settings are all the same throughout the experiments 

except for the size of local search window ranged from 5×5 to 7×7, threshold of region 

merge process ranged from 6 to 7 and the number of reliable messages aggregate from 

neighbors. The segmentation results of these parameter settings are selected based on 

subjective preference. Note that the number of reliable messages aggregate from 

neighbors are different based on the intrinsic difference between two methods. In 

four-window based method, this number is determined by a predefined threshold which 

is selected to be 6 in the experiments. In one-window based method, this number is 

determined by the size of the local search window. 

 

In the test image 253055 as shown in Fig. 4.5 (a), there are four segment regions that 
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should be partitioned. They are five giraffes, grassland, blue sky and clouds. 

Subjectively speaking, both methods achieve comparable segmentation results. It is 

hard to tell the big difference between two methods. However, the lag of the first giraffe 

is segmented out in four-window based method as shown in Fig. 4.5 (c) whereas the 

one-window based method isn’t. To segment out the lag of the first giraffe in 

one-window based LBA, one can try to adjust the threshold of the region merge process 

to the lower one, but this will result in a more over segmentation result than the one 

with higher threshold. 

 

In the test image 241004 as shown in Fig. 4.5 (d), there are five major parts that should 

be partitioned. They are sky, the rocks, grassland, light mountains in the far side and 

dark mountains in the near side. Note that it depends on human evaluator to decide how 

many segment regions of the rocks and mountains should be partitioned. Subjectively 

speaking, both methods achieve comparable segmentation results. However, the rocks 

on the left side and right side of the image are over-segmented in one-window based 

method as shown in Fig. 4.5 (e) compared with the results using four-window based 

method as shown in Fig. 4.5 (f). 

 

In the test image 3096 as shown in Fig. 4.5 (d), there are two major parts that should be 

partitioned, the clouds and the airplane. Both methods produce similar segmentation 

results. It is hard to tell the difference between them. 
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Fig. 4.5. Segmentation results with the proposed two methods. (a) Test image 253055. 
(d) Test image 241004. (g) Test image 3096. (b)(e)(h) Segmentation results using 
one-window based LBA. (c)(f)(i) Segmentation results using four-window based 
LBA. 

 

4.2.3. Comparison between Different Segmentation 

Algorithms 

In this section, we compare the segmentation results of the proposed four-window 

based LBA with mean shift and watershed algorithm. Fig. 4.6 – Fig. 4.8 shows the 

Ecw curves of the proposed algorithm, mean shift, and watershed. From the Ecw curves, 

the proposed algorithm performs better than the rest. This is because our formulation 

tends to minimize Ecw. However, [25] has pointed out that Ecw may not always match 
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human perception. Another issue with Ecw is that although we have tried to find 

parameter settings that pushed the curves as close to the origin as possible, better 

parameter settings may still exist. Thus Ecw curve here is only a reference quantitative 

evaluation metric. Qualitative evaluation is still necessary to compare the 

segmentation results of different algorithms. 

 

 

Fig. 4.6. Ecw curve of different segmentation algorithms on test image 253055. 

 

Fig. 4.7. Ecw curve of different segmentation algorithms on test image 241004. 
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Fig. 4.8. Ecw curve of different segmentation algorithms on test image 3096. 

 

Fig. 4.9 shows the segmentation images of the proposed four-window based LBA 

algorithm after 150 iterations and other algorithms. The parameter settings are selected 

based on subjective preference. In other words, the segmentation images are selected 

from the ones we felt of having the best quality. Hence, the parameter settings between 

algorithms are different. Subjectively speaking, the proposed four-window based LBA 

algorithm achieved comparable segmentation image quality to mean shift. One can 

hardly tell if the segmentation images were the result of applying the proposed 

algorithm or mean shift. The watershed algorithm, on the other hand, achieved the 

worst segmentation image quality of the three. Although it seems to perform well in 

test image 3096 as shown in Fig. 4.9 (i), but the mountain in the left side of test image 

241004 as shown in Fig. 4.9 (f) cannot be perfectly segmented out. Besides, 

watershed performs poor segmentation results in which giraffes are miss-segmented 

on test image 253055 as shown in Fig. 4.9 (c). This is due to watershed algorithm’s 
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being sensitive to noise and needs a pre-processing step to de-noise. The watershed 

segmentation results will much depend on the de-noise effect. 

 

 

 

 
Fig. 4.9. Segmentation results with different algorithms. (a)(d)(g) Segmentation 
results using proposed four-window based LBA. (b)(e)(h) Segmentation results using 
mean shift algorithm. (c)(f)(i) Segmentation results using watershed algorithm. 

 

(a) (b) (c)
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Chapter 5. Conclusion and Future Works 

5.1. Conclusion 

In this thesis, we formulated a MRF model based on the concept of intra and inter 

region constraint for color image segmentation. Furthermore, we proposed a local 

belief aggregation (LBA) algorithm to find the best segmentation image based on our 

MRF formulation. Compared with the original BP algorithm, the usage of memory 

storage is much reduced while using the proposed LBA algorithm to find the MAP 

solution of the proposed MRF model. 

 

Experimental results demonstrated that the proposed color image segmentation 

algorithm using four-window based LBA achieved segmentation image quality 

comparable to the mean shift algorithm. To further reduce the computational 

complexity of the four-window based LBA, a one-window based LBA is presented. 

Experimental results demonstrated that one-window based LBA can reduce 27% ~ 

86% computational complexity than four-window based LBA with comparable 

segmentation results to the one-window based LBA. 

5.2. Future work 

There are two issues remained in the LBA estimation. First, the LBA may sometimes 

incorrectly discard the segment states that should not be discarded. This may results in 

incorrect final segmentation image. Besides, this can also results in more LBA 

iterations to reach to the convergence. The other issue is computational speed of LBA 
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estimation algorithm which still remains slow. Therefore, we will be working on 

remedying the incorrect segment state discarding issue and optimizing the speed of the 

LBA estimation algorithm in the future. 
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Appendix 

In this section, we discuss the relationship between the number of reliable message 

number and the iteration of convergence using four-window based LBA. In the 

experiments, the parameter settings are all the same except the number of the reliable 

message number. We evaluate the segmentation results to subjectively determine the 

convergence iteration of the test image 253055. The segmentation image that remains 

unchanged in the contiguous iterations or oscillates between iterations is determined as 

the convergence of the respective image. Furthermore, the Ecw energy curve is also used 

to objectively determine the convergence iteration. Same as in the subjective method, 

the iteration in the curve that has trend to converge or oscillate is determined as the 

convergence iteration. 

 

Fig. A.1 shows the relationship between the convergence iteration counts and the 

reliable message numbers where the convergence iteration counts is determined 

subjectively. From the figure, we could see that the 4 reliable messages and 8 reliable 

messages need about 104 iterations to converge. The others only need 33 to 59 

iterations to converge. Fig. A.2 shows the relationship objectively using the Ecw energy 

plot of reliable message number with value 4 and 9. From the figure, we could see that 

the convergence iteration of reliable message number with value 4 and 9 is about 105 

and 44 respectively which meets the subjectively evaluation results. 
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Fig. A.1. Subjectively determine the relation between reliable message number and 
convergence iteration in four-window based LBA with test image 253055. 

 

 
Fig. A.2. Objectively determine the relation between reliable message number and 
convergence iteration in four-window based LBA with test image 253055. 

 

We suspect that the difference iterations of these two parts come from the different 

initial seeds produced after the first iteration of the proposed LBA algorithm. Here, we 
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messages which needs 44 iterations to converge for example to discuss the probable 

reason. The constraints are the same during the initial guess, thus the initial 

segmentation images are the same. After the first iteration of the LBA, the intermediate 

segmentation result becomes an image with initial seeds due to the region merge 

process. The quality of the initial seeds will affect the final segmentation results and 

hence affect the iterations to converge. Fig. A.3 and Fig. A.4 show the intermediate 

results of 4 reliable messages and 9 reliable messages at different iterations respectively. 

In Fig. A.3 (a), there are two segment regions being segmented out on the right down 

side of the sky. Then after the first iteration, the LBA algorithm iteratively segment out 

the probable segment regions using proposed MRF models. The sky is segmented out 

in three parts as shown in Fig. A.3 (f). The blue sky is colored in green, the dark cloud 

in yellow and the white cloud in dark blue. Most of the iterations are spent to 

progressive segment out the dark cloud in yellow color as shown in Fig. A.3 (d) - Fig. 

A.3 (f). Five giraffes and grassland have been segmented out already. The reason of the 

much iteration used to segment out the yellow color which represents the dark cloud in 

the example is due to the local search window metric we used in the LBA algorithm. 

The local search window metric only considers the candidate segment states appeared 

in the window. 
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Fig. A.3. Intermediate results on 253055 at different iterations using 4 reliable 
messages. (a) Iteration 1. (b) Iteration 5. (c) Iteration 10. (d) Iteration 25. (e) Iteration 
40. (f) Iteration 80. 

 

In contrast with the one using 4 reliable messages, there is only one segment region 

being segmented out on the right down side of the sky in the first iteration of LBA using 

9 reliable messages as shown in Fig. A.4 (a). Without the need of spending iterations to 

segment out the dark cloud in yellow color as shown in Fig. A.3 (d) – Fig. A.3 (f), LBA 

using 9 reliable messages converge faster than the one using 4 reliable messages. 

 

 

(a) (b) (c)

(d) (e) (f)
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Fig. A.4. Intermediate results on 253055 at different iterations using 9 reliable 
message number. (a) Iteration 1. (b) Iteration 5. (c) Iteration 10. (d) Iteration 25. (e) 
Iteration 40. (f) Iteration 44. 

 

Fig. A.5 demonstrates the final segmentation results with different reliable message 

number using LBA. Both Fig. A.5 (d) and Fig. A.5 (h) segment out the sky part in three 

segment regions and thus require more iteration to converge as illustrated in Fig. A.1. 

From the segmentation results, it seems that except for the one using 1 reliable message 

in Fig. A.5 (a), the others using reliable message number larger than 2 can segment out 

the sky, grassland and five giraffes successfully for test image 253055. We suspect this 

with two reasons. First, in the four-window based method, the restriction of the number 

of reliable message is performed on each side individually when aggregate the reliable 

message from neighbors. Thus, if we assign the restriction number to 2 for example, 

there are 8 probable candidate segment states to be calculated for the belief in the worst 

case. Second, after the first iteration of LBA, most of the redundant segment states are 

merged and only a few segment states that are important exist. Thus, for the small 

amount of reliable message such as 2, the LBA algorithm may also work well for the 

above two reasons. 

(a) (b) (c)

(d) (e) (f)
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Fig. A.5. Segmentation results with different reliable message number using proposed 
4 window based LBA. (a) 1 reliable message. (b) 2 reliable messages. (c) 3 reliable 
messages. (d) 4 reliable messages. (e) 5 reliable messages. (f) 6 reliable messages. (g) 
7 reliable messages. (h) 8 reliable messages. (i) 9 reliable messages. 
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