

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩碩碩碩 士士士士 論論論論 文文文文

低功率時間共享多線程暫存器

Low Power Timing Sharing Multithreaded Register File

研 究 生：郭于玄

指導教授：黃威 教授

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 七七七七 年年年年 八八八八 月月月月

 i

低功率時間共享多線程暫存器

Low Power Timing Sharing Multithreaded Register File

研 究 生：郭于玄 Student：U-Chan Kuo

指導教授：黃 威教授 Advisor：Prof. Wei Hwang

國立交通大學

電子工程學系電子研究所

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical Engineering and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Electronics Engineering

August 2008

Hsinchu, Taiwan, Republic of China

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 七七七七 年年年年 八八八八 月月月月

 ii

低功率時間共享多線程暫存器

學生：郭于玄 指導教授：黃威教授

國立交通大學電子工程學系電子研究所

摘 要

本論文提出一個低功率多線程的暫存器設計。此暫存器被切成數個小區

塊，並且應用了時間共享的機制去增加它的效能。為了節省功率的消耗，

提出了免充電位元線和切割小位元線的方法。而且，此暫存器可以正確操

作在大範圍的工作電壓下，可依效能和功率的要求去做電壓上的調整。此

二線程的暫存器包括了四個存／取埠，每個線程有 64x64 個位元大小，並

以 TSMC 90nm CMOS 的製程技術做設計，實現在 426 x 219 µm
2 的面積上。

它的工作電壓範圍在 0.5 伏到 1.0 伏。當時脈為 50MHz，它工作所消耗的功

率在 215.51 微瓦 和 197.77 微瓦之間。

 iii

Low Power Timing Sharing Multithreaded Register File

Student : U-Chan Kuo Advisors : Prof. Wei Hwang

Department of Electronics Engineering & Institute of Electronics

National Chiao-Tung University

ABSTRACT

A low-power multithreaded register file architecture is proposed. Banking

architecture and timing sharing access scheme are adopted to reduce the register

file area and increase its performance. Floating bitline scheme and divide bitline

is also presented to reduce its active power. Furthermore, the register file

architecture can be operated at a wide voltage range, and processors would have

more strategies to adjust their power/performance. A dual-thread 4W/4R

64x64-bit register file which occupies 426 x 219 µm
2
 silicon area is

implemented in UMC 90nm CMOS technology. Its operating voltage range is

between 0.5v and 1.0v. Its active power is around 215.28µW to 197.87µW when

operating frequency is 50MHz at 0.5v.

 iv

誌 謝

如果沒有許多人的幫忙，這篇論文將無法順利完成，感謝指導教授黃威老師，提供了

研究的方向，並在研究過程中，給了許多重要且關鍵的建議及指導，並讓我們學習到做

研究該有的態度及方法。

感謝指導學長楊皓義，提供了許多的創意及想法，並且在研究遇到困難時，能不吝嗇

的給予最大的協助。此外，要感謝黃柏蒼，張銘宏、謝維致學長們適時的幫助，讓研究

得以順利進行。感謝實驗室的同學和朋友們為單調的研究生活增添了色彩。

最後，感謝家人對我的支持和鼓勵，有了家人，才有今天的我。

 v

Contents

Chapter 1 Introduction …………………………………………………… 1
Chapter 2 Overview of recent low-power- register-file technology …………… 3

2.1 The leakage of a register file cell ……………………………… 4
2.2 Low power register file design …………………………………… 8
2.3 Conventional Register file Architecture …………………………… 13
2.3.1 The Read Port Design …………………………………………… 14
2.3.2 Low Power Write Port Design …………………………………… 15
2.4 Banked Register file Architecture ………………………………… 17
2.4.1 Register bank structure ………………………………………… 18
2.4.2 Methods to decrease access conflicts……………………………… 19
2.5 Other kind of multibanked Architecture…………………………… 22
2.5.1 Customization of Register File Banking Architecture ……………… 23
2.5.2 Asymmetrically Banked Value-Aware Register Files ……………… 24
2.6 Conclusion …………………………………………………… 25

Chapter 3 Low power Multithreaded Register File Design …………………… 26
3.1 Multithreaded Banking Architecture……………………………… 26
3.1.1 Register Bank structure………………………………………… 26
3.1.2 Timing sharing access scheme…………………………………… 27
3.1.3 Thread switching……………………………………………… 29
3.2 Register file cell………………………………………………… 30
3.2.1 Read Stability and Write-Ability………………………………… 30
3.2.2 The 8T cell…………………………………………………… 34
3.2.3 Other register file cells………………………………………… 35
3.3 Low Power Floating Read Bitline Access Scheme………………… 38
3.3.1 Floating Read Scheme…………………………………………… 38
3.3.2 Divided Bitline………………………………………………… 40
3.3.3 Push-Pull Write Scheme………………………………………… 43
3.4 Conclusion…………………………………………………… 44

Chapter 4 Decoder and Control Circuit Design……………………………… 46
4.1 Decoder design………………………………………………… 47
4.2 Logical effort model…………………………………………… 52
4.2.1 Logical effort and gate sizing…………………………………… 53
4.2.2 Logical effort design steps……………………………………… 56
4.3 Timing Control Circuit………………………………………… 57
4.3.1 Write Replica Circuit…………………………………………… 58
4.3.2 Read Replica Circuit…………………………………………… 61
4.4 Comparison with conventional register file………………………… 64
4.5 The post-simulations…………………………………………… 66
4.6 Conclusion…………………………………………………… 67

 vi

Chapter 5 Multithreading and Multi-core systems…………………………… 68
5.1 Different type of Register file organizations……………………… 68
5.1.1 Clustered architecture…………………………………………… 68
5.1.2 Duplicated Register File………………………………………… 70
5.1.3 Multilevel Register File………………………………………… 71
5.1.4 One-Level Less-Port register file Architecture……………………… 73
5.2 Multithreading………………………………………………… 75
5.2.1 Fine-grained multithreading……………………………………… 77
5.2.2 Coarse-grained multithreading…………………………………… 77
5.2.3 Simultaneous multithreading…………………………………… 78
5.3 Multiprocessors………………………………………………… 81
5.3.1 Multicore architecture and communication………………………… 82
5.4 Conclusion …………………………………………………… 86

Chapter 6 Conclusion …………………………………………………… 87
Bibliography ……………………………………………………………… 89
Vita ……………………………………………………………… 98

 vii

List of Figures

Fig. 2.1 Transistor gate length versus technology nodes for high-performance and

ULP CMOS technologies. …………………………………………
5

Fig. 2.2 Thickness of transistor gate oxide versus technology nodes for high

performance and ULP CMOS technologies. …………………………

6

Fig. 2.3 Leakage model in 6T cell. ………………………………………… 7
Fig. 2.4 The possible nodes used to decrease the leakage current. …………… 9
Fig. 2.5 VGND control schemes (a) Sleep-transistor (b) Diode-connected PMOS

bias transistor. (c) Programmable bias transistors. (d) Op-Amp-based

-feedback control. …………………………………………………

10

Fig. 2.6 Multi-VCC designs. (a) Register file on a higher supply voltage. (b)

Register file on a higher supply voltage than the wordline driver (c)

Dynamic multi-VCC. ……………………………………………

12

Fig. 2.7 Using inverter to isolate memory cells and pass transistors…………… 14
Fig. 2.8 Using read buffers to sink read current……………………………… 15
Fig. 2.9 Instantaneous short current in write operation……………………… 16
Fig. 2.10 Strong inverter ………………………………………………… 17
Fig. 2.11 An 8-read, 4-write port register file implemented using four two-read,

one-write port banks. ……………………………………………

18

Fig. 2.12 Structure of the processor pipeline………………………………… 21
Fig. 2.13 Combine access to the same registers……………………………… 22
Fig. 2.14 Heterogeneous Register File Banking……………………………… 23
Fig. 2.15 A microarchitecture-level comparison among (a) a conventional banked

register file and (b) the AB-VARF register file. ………………………

24

Fig. 3.1 The proposed dual-thread 4W/4R 64 x 64 bit register file architecture. … 26
Fig. 3.2 Waveforms illustrating concept of timing sharing access scheme……… 28
Fig. 3.3 Thread switching scheme of Montecito microprocessor……………… 29
Fig. 3.4 The location of registers…………………………………………… 30
Fig. 3.5 SNM definition. The two DC noise voltage sources Vn are placed in

series with the cross-coupled inverters. ……………………………

31

Fig. 3.6 Static Noise Margin……………………………………………… 32
Fig. 3.7 The 6T cell……………………………………………………… 32
Fig. 3.8 The write margin is defined by the write-trip point…………………… 33
Fig. 3.9 8T cell structure………………………………………………… 34
Fig. 3.10 The Monte Carlo simulation result of 8T’s noise margin at 0.5v.The

sigma of Vt is 30mV (a) Write margin distribution. (b)Read noise margin

distribution. ………………………………………………………

35

Fig. 3.11 Schematic of the 10 T bitcell. ……………………………………… 36
Fig. 3.12 RF cell with conventional read circuit. An additional transistor, Pgate, is

added to aid write margin in subthreshold. …………………………

37

Fig. 3.13 The auto-gating low-leakage cell…………………………………… 38
Fig. 3.14 Floating bitline access scheme……………………………………… 39
Fig. 3.15 Divide bitline connection (a) By pass transistor (b) By read buffer 40

 viii

Fig. 3.16 Access time with different word numbers per bank (a) Write access time.

(b)Read access time. ………………………………………………

42

Fig. 3.17 write scheme (a) conventional write scheme (b)floating write scheme

(c)Push-pull write scheme…………………………………………

43

Fig. 4.1 Block diagram of proposed register file……………………………… 46
Fig. 4.2 Write row decoder and block decoder……………………………… 48
Fig. 4.3 Write block decoder……………………………………………… 49
Fig. 4.4 Waveforms illustrating concept of block decoder…………………… 50
Fig. 4.5 The row decoder design (a) Conventional design. (b) The scheme with

fewer logic gate. …………………………………………………

51

Fig. 4.6 A logical path with branching……………………………………… 54
Fig. 4.7 Calculating the electrical effort of a path. …………………………… 55
Fig. 4.8 (a)Write replica circuit. (b) Signal waveforms of this circuit………… 59
Fig. 4.9 State diagram of write replica circuit……………………………… 60
Fig. 4.10 The organization of ARC………………………………………… 61
Fig. 4.11 (a)Read replica circuit. (b) Signal waveforms of this circuit………… 62
Fig. 4.12 State diagram of Read replica circuit……………………………… 63
Fig. 4.13 A 4W/4R register file cell. ………………………………………… 65
Fig. 4.14 Layout photograph of register file cell. (a) A 1W/1R register file cell. (b)

A 4W/4R register file cell. …………………………………………

65

Fig. 4.15 The comparison between this work and conventional design (a) area (b)

power consumption. ………………………………………………

66

Fig. 4.16 Layout photograph of the dual thread 64 x 64 bits register file. ……… 67
Fig. 5.1 Monolithic versus clustered register file organization………………… 69
Fig. 5.2 4-thread, 2-read, 6-write, full-duplicate register file architecture. ……… 70
Fig. 5.3 Multilevel register file (register file cache) ………………………… 71
Fig. 5.4 Very Wide Register Organization………………………………… 74
Fig. 5.5 How four threads use the issue slots of a superscalar processor in different

approaches. ………………………………………………………

76

Fig. 5.6 The structure of a centralized shared-memory multiprocessor. ………… 83
Fig. 5.7 The structure of a distributed-memory multiprocessor. ……………… 83
Fig. 5.8 Processor block diagram of Niagara2 SPARC processor……………… 84
Fig. 5.9 The Niagara2 Crossbar…………………………………………… 85

 ix

List of Tables

Table 4.1 Register file simulation result……………………………………… 66

 - 1 -

Chapter 1

Introduction

A register file is one of the most important components of a

multithreaded processor. Not only its access time dominates the

processor speed, but also its area and power are the critical part

of a processor. Conventionally, the area of a register file is

positive to the port number of its cell. Power and access time of

a register file become worse when its area is increasing. Therefore,

many technologies have been proposed to reduce the port number of

a cell, such as banking architecture [1.1].

Otherwise, register allocation for different threads is another

issue of multithreaded register file design. In some design, such

as [1.2], multiple cells share the same access port by using a

multiplexer. It leads to the capacitance and access time of a

storages node increasing. A storage node is also affected by noise

easily. These drawbacks become more serious when the thread number

increases.

The proposed multithreaded register file adapts banking

architecture. By using this architecture, the port number of a cell

is reduced, and area of the register file is also decreasing. However,

banking architecture leads to access conflicts, and processor

performance is degraded. In order to ease this drawback, timing

sharing access scheme is proposed. Additionally, in order to prevent

drawbacks induced by several cells sharing an access port on a

bitline, every cell has its own private access port, and additional

address bit is added as a thread switching signal during access

operations.

In chapter 3, the architecture of the proposed register file and

 - 2 -

the low power circuit design techniques are discussed. The stability

of register cell is also shown in this chapter. In chapter 4, the

decoder and timing control circuit design are presented. The

simulation result is shown in the end of chapter 4. Different

register file designs are discussed in chapter5 before the

concluding in chapter 6.

 - 3 -

Chapter 2

Overview of recent low-power-

register-file technology

Because more and more portable devices are desired, to reduce power

consumption is an important topic for discussion. A major factor

in the weight and size of portable devices is the amount of batteries.

Battery is directly impacted by the power dissipated of the

electronic circuits.

Deep sub-micrometer or nanometer CMOS technologies limit dynamic

energy dissipation. Scaling down the supply voltage and the

threshold voltage offer a continuously higher level of integration

and assure high speed. However, the significantly increasing

subthreshold leakage is a drawback. Therefore, reducing the leakage

power dissipation, without decreasing performance, is one of the

major research topics in VLSI design. The design of fast and power

efficient register file structures has become especially crucial.

Register file represent a substantial portion of power and area

in modern processors, and are growing rapidly when the instruction

issue width become wider. The trend toward simultaneous

multithreading increases register count further. It is a serious

problem that the area of conventional register file go more than

quadratic with issue width. When in a conventional multi-port

register file several data are accessed at the same time, for example,

N addresses in one cycle, a processor needs N-port memory cells

with N word-lines and N bitlines.

In this case, the chip size becomes huge because the quantity of

wiring increases by the square of the number of ports. Therefore,

design of a register file with many-ports causes problems such as

 - 4 -

enlargement of chip size, deterioration of register access speed

and high power consumption. In order to avoid the serious problem

of area, power, and delay of conventional multiported register file

design, many techniques have been proposed previously.

One approach divides the physical register file into several

interleaved banks with fewer ports per bank and retains a

centralized microarchitecture at the same time. Provided that the

number of simultaneous accesses to any bank is less than the number

of ports on each bank, this structure can provide the aggregate

bandwidth needs of a superscalar machine and significantly reduce

area compared to a fully multiported register file.

Even though bank conflicts cause a small performance penalty,

which decrease IPC only by less than 5 % [2.4], the dramatic

reductions in register file delay and power can potentially be used

to increase the clock rate and lead to a more complexity- effective

design. Banked register files are a natural solution to the

increasing register file demands of simultaneous multithreading

processors.

2.1 The leakage of a register file cell

When the size of the silicon technology is scaled below 100 nm,

the transistor OFF-state leakage has started to take away a

significant portion of the overall power budget in today’s VLSI

system [2.1].

In the modern low power chip design, one of the major challenges

is the growing static leakage power. In order to provide improved

performance and reduced power, transistor threshold voltage (VT),

gate oxide thickness (Tox), and channel length have been scaled

along with operating voltage over the last few decades.

 - 5 -

Scaling of gate oxide thickness also increases the gate leakage.

Gate leakage is no longer negligible to the overall chip power

consumption. The power constraint due to the rising gate leakage

has slowed down the scaling of gate oxide, which has made the control

of 2-D short-channel effect even more challenging.

Many advanced channel engineering techniques with optimized halo

implants have been developed to achieve superior short-channel VT

control. Traditionally, channel doping concentration is increased

to raise VT in order to maintain low subthreshold leakage and good

short-channel control. Unfortunately, the high doping

concentration near the source and drain areas can lead to a very

high junction leakage due to the direct band-to-band tunneling

[2.5].

The increasing of transistor leakage had fueled the need of

Fig. 2.1. Transistor gate length versus technology nodes for

high-performance and ULP CMOS technologies.

 - 6 -

developing low-power process technologies for mobile and handheld

applications. The allowable power dissipation and, hence, the

allowable leakage current are limited by battery life. The scaling

of transistor gate length and Tox of ultra low power technology

has diverged from high-performance technology in recent generation.

Figs. 2.1 and 2.2 show the scaling of transistor gate length and

gate oxide thickness (Tox) versus technology nodes for

high-performance and ultra low-power (ULP) CMOS technologies.

In order to achieve the low-power requirement of memory cell for

portable applications, the ULP-technology platform needs to be

adopted for its ultra low transistor leakage. Each leakage component,

including the gate, subthreshold, and junction leakage, is

optimized simultaneously to achieve best overall cell leakage. Fig.

2.3 shows schematically the various leakage paths in a 6T cell.

When the cell is inactive, the word line WL is low level (“L”) and

bit lines BL and BLB are high level (“H”). One storage node of the

cell is “H” and the other is “L.”

Fig. 2.2. Thickness of transistor gate oxide versus technology

nodes for high performance and ULP CMOS technologies.

 - 7 -

Gate-leakage reduction is done mostly through the oxide-thickness

optimization and gate nitridation. The gate leakage current

increases exponentially as the physical thickness of gate

insulation film becomes thinner in keeping with scaling. The gate

leakage current of NMOS is 4–10 times greater than that of PMOS

of the same thickness. The leakage mechanisms of junction and

subthreshold current are influenced by many common processing

parameters such as source–drain spacers, Tox, well and halo implants,

and doping profiles [2.2], [2.6].

The subthreshold leakage current is one of the main contributors

to the standby leakage. When supply voltage is scaled down, the

subthreshold leakage current tends to increase due to decreased

threshold voltage of the transistors. A dual-Vth technique is

generally used to reduce the subthreshold leakage current. Using

Fig. 2.3. Leakage model in 6T cell.

 - 8 -

low-Vth transistors in the critical to improve speed. On the other

hand, in order to save power, high-Vth transistors is implemented

in the noncritical path. The dual-Vth technique is easier than the

multi-gate-oxide technique, so that the subthreshold leakage

current can be reduced by optimizing Vth.

When the main source of junction leakage is contributed by

trap-assisted leakage and direct band-to-band tunneling, the dopant

species and doping profiles are carefully optimized to reduce the

defects generated during the implantation process and to achieve

a more graded source–drain junction doping profile to minimize the

junction tunneling current. The process optimization is able to

lower the cell leakage by two–three orders of magnitude in

comparison to cell leakage from high-performance CMOS process.

2.2 Low power register file design

In order to reduce the standby leakage power of a register file,

many techniques are proposed to act on internal nodes of the cell,

as shown in Fig. 2.4.

In [2.14] and [2.15], it is shown how reverse body biasing of a

memory cells is dynamically varied. The off drain-to-source current

is exponentially dependent on Vth. It is applied by raising the

node n-well (NW) and lowering the node p-well (PW) during the sleep

mode.

This technique can be exploited only in double well technologies

which allow the bulk of the nMOS and pMOS devices to be independently

biased.

The need to drive the parasitic capacitances of the substrates

leads to access time and dynamic energy consumption higher than

the conventional SRAM structure. The leakage current can be reduced

 - 9 -

by acting on the nodes BL and BLB or on the node WL visible in Fig.

2.4. The approach described in [2.17] reduces the leakage current

by leaving BL and BLB floating during the idle time. In [2.18],

it applies a negative voltage to the node WL to save leakage power.

This technique does not impact on the SER, but the modified word

line driver causes energy overhead for generating a negative voltage

during the standby mode.

In [2.19], an electric-field-relaxation (EFR) scheme is presented

in which both the word line and the bit lines voltages are properly

set during the idle time. In order to do this, a dc level converter

is required. The application of this approach is not straightforward.

In fact, designers must take into account that the bit lines are

Fig. 2.4. The possible nodes used to decrease the leakage

current.

 - 10 -

shared by the SRAM cells of an entire column and that these cells

belong to different rows.

[2.7], [2.8], [2.9] act on the L node. It is connected to the ground

usually and this assures stored data stability and full rail. If

the voltage of L increases during the sleep mode, the signal rail

VH – VL and the subthreshold leakage current are reduced. In order

to do this, a power-gating transistor is inserted in the pull down

path. During idle or standby state, this transistor is off and the

leakage mechanisms inside the cell are responsible for charging

L.

Fig. 2.5. Power-gating schemes (a) Sleep-transistor (b)

Diode-connected PMOS bias transistor. (c) Programmable bias

transistors. (d) Op-Amp-based-feedback control.

 - 11 -

When an array is on standby mode, the cell rail-to-rail voltage

must be kept above the minimum retention voltage. Several techniques

are proposed to achieve this. One approach is to use the “sleep”

transistor to modulate the VGND [2.19], as shown in Fig. 2.5(a).

The challenge is that the sleep transistor needs to be sized properly

to meet the wake-up timing requirement and to maintain a low enough

IR droop in the current path during an active mode.

 A diode-connected PMOS bias transistor is proposed [2.20], as

shown in Fig. 2.5(b). The PMOS clamp the VGND to one threshold

voltage above the GND. It prevents the VGND from going too high

to corrupt the data in the array. There are two shortcomings in

this technique. First, leakage reduction will be suboptimal at high

VCC applications when the VGND-VCC tracking is not one-to-one.

Second, the Vt variation will impact the accuracy of the VGND

control.

Programmable bias transistors, shown in Fig. 2.5(c), can overcome

these problems [2.21]. The scheme has two benefits. First, the VGND

voltage can be optimized based on the actual silicon results to

achieve maximum leakage reduction. Second, different bias settings

can be dynamically chosen at different supply voltages.

A control scheme with an active feedback based on Op Amp is

also proposed [2.22], as shown in Fig. 2.5(d). The major drawback

of this scheme is the dc consumed by the Op Amp that has to be

replicated along each data bank to provide the needed granularity.

The method used in [2.10]–[2.13] dynamically vary the voltage of

the node H. The subthreshold current is reduced by reducing the

signal rail . However, the reduced signal rail leads to lower noise

margins and a higher SER. Extra peripheral circuitry, such as a

dc level controller or a dc-dc converter are required and additional

time and dynamic energy are introduced with respect to the

 - 12 -

conventional register file cell to enter and exit the sleep mode.

Voltage scaling is the most effective design knob in power

management. However, with the memory-cell scaling, it has become

difficult to maintain stability margin and write margin.

The register file array can be the voltage scaling limiter for

low-power operation. By introducing different power supplies into

the register arrays, the voltage-scaling difficulty for the

register file cell can be alleviated.

To improve the write margin, a lower voltage level can be applied

to the bit cell than the wordline voltage, which allows the bit-cell

Fig. 2.6. Multi-VCC designs. (a) Register file on a higher supply

voltage. (b) Register file on a higher supply voltage than the

wordline driver (c) Dynamic multi-VCC.

 - 13 -

flip more easily during the write operation. There are several

different implementation schemes that have been published so far

based on this concept. Here, a brief description on each scheme

along with the tradeoffs is given.

A simple static multi-VCC design was proposed [2.26], which is

shown in Fig. 2.6(a), where both SRAM-VCC and wordline driver are

on a separate and higher supply than the rest of the system. Both

register file stability and writ ability can be kept. This

implementation requires voltage-level shifters at the boundary

between the array and the rest of the chip.

 The design, shown in Fig. 2.6(b), is to put the register file bit

cells on a higher supply voltage than the wordline driver voltage

in order to improve read stability [2.23]. This implementation can

eliminate the level shifter. However, the write margin is reduced

as the wordline voltage is below the bit-cell power supply during

the write operation.

The other approach, shown in Fig. 2.6(c), uses a mux to switch

the bit-cell power supply based on the operating condition. In the

case of read stability improvement, the unselected columns during

write and all the columns during read are switched to the higher

supply voltage. The selected column during write is switched to

the lower voltage; hence, the write margin is maintained. The

wordline driver is always on the lower supply. The sleep transistor

can also be used to lower the effective power supply to the bit

cell, achieving a lower leakage.

2.3 Conventional Register file Architecture

One of the different between register file and SRAM is that the

port number of register file is much more than that of SRAM. In

order to support multi-accesses, each storage cell has the fully

 - 14 -

ports in conventional scheme. However, this will cause a lot of

area, power, and access time overhead. The size of area is positive

to the port number of bit cell. As the port number of a register

file is increased, the peripheral circuitry, such as write drivers

and precharge circuits would increase at the same time and cause

a lot of power consumption. Access time also become worse when larger

area make longer wire delay.

2.3.1 The Read Port Design

It is possible that multiple read/write operation access the same

register file cell. In the traditional SRAM, read port is composed

of pass transistor. During the read operation, large sink current

will pass through n-transistor in the SRAM cell and degrades the

static noise margin. Therefore, isolation between sink current and

the register file cell is necessary in multiple read port register

files as shown in Fig. 2.7 and Fig. 2.8.

Fig. 2.7 Using inverter to isolate memory cells and pass

transistors

 - 15 -

Another feature of conventional register file is its heavy metal

routing around register file cell. To alleviate the routing efforts,

single ended access port is desired throughout the register file

design.

2.3.2 Low Power Write Port Design

The basic component of a register file cell is a latch which is

connected by two inverters and can hold the data. Because of such

feedback mechanism, writing ‘1’ to a register file cell storing

‘0’ or writing ‘0’ to a memory cell storing ‘1’ (Fig. 2.9) causes

an instantaneous short current from Vdd to ground. In order to

minimize or suppress such power consumption, strong inverter is

Fig. 2.8 Using read buffers to sink read current

RWL1

RWL2

RWL4

R
B
L
1

R
B
L
4

R
B
L
2

R
B
L
3

RWL3

 - 16 -

proposed to reduce energy consumption while maintaining

performance.

Strong inverter technique speeds up the transition process which

will definitely reduce the duration of short current. It is good

to use asymmetric inverters in single ended write scheme because

multiple read ports requires sufficient driving ability to drive

all the gate capacitances and the weak inverter. The weak inverter

acts as feedback path to hold data, as shown in Fig. 2.10. Due to

single-ended access, transmission gates are used as write port to

guarantee the value written into the register file cell.

Due to the fast transition of the inverters, short current is

suppressed significantly while maintaining the speed. Different

port numbers that cause different loading at the output of strong

inverter will have a different optimum size of the strong inverter.

Fig. 2.9 Instantaneous short current in write operation

 - 17 -

2.4 Banked Register file Architecture

Multibanked register files realize multi-port access by using

less port memory cells instead of multi-port memory cells to reduce

the quantity of wiring. Therefore the multi-bank register file can

realize higher speed, smaller size, and lower power consumption

than conventional multi-port register files. Fig. 2.11 show a

example of an 8-read, 4-write port register file implemented using

four one-write, two-read port banks.

However, when this scheme is used in a processor, it causes several

Fig. 2.10 Strong inverter

 - 18 -

problems. If the processor requires a read or to write operation

to a multibanked register file, the access to this register file

is restricted to one access per bank. So the processor is not able

to access several data in the same bank at once.

2.4.1 Register bank structure

The multibanking approach adopted in [2.27], [2.28] constructs

a register file from multiple interleaved register banks. The

Fig. 2.11. An 8-read, 4-write port register file implemented using

four two-read, one-write port banks.

bank0

bank1

bank2

bank3

8 read ports

4 write ports

Write 0

Read 0 Read 1

Register file

 - 19 -

challenge is managing the complexity and added latency of the

control logic needed to handle read and write bank conflicts and

the mapping of register ports to functional units. A banking scheme

that uses the bypass network to reduce unnecessary read port

contention and usage is described in [2.28], but no description

of the bypass check or read conflict resolution logic is given.

Write conflicts are handled by delaying physical register

allocation until write back, at which point registers are mapped

to non-conflicting banks. The primary motivation for this delayed

allocation was to limit the size of the physical register file,

but this can lead to a deadlock situation requiring a complex

recovery scheme.

The scheme presented in [2.27] handles read bank conflicts by only

scheduling groups of instructions without conflicts. This reduces

the IPC penalty, but adds significant logic into the critical

wakeup-select loop. A design with single-ported read banks is

evaluated; however, this requires complex issue logic and

functional unit datapaths to allow instructions where both operands

originate from the same bank to be issued across two successive

bank read cycles.

Multiplexing circuits dominate the area of few-ported multibanked

designs. Moving from a single read port to split dual read ports

per bank has minimal area impact. In [2.27], write port conflicts

are handled by buffering conflicting writes, which increases the

size of the bypass network. Functional unit pipelines must also

be stalled when conflicting writes queue up.

2.4.2 Methods to decrease access conflicts

In [2.4], a banked multiported register file design is presented

and analyzed together with a control scheme. This scheme is suitable

 - 20 -

for a deeply pipelined dynamically scheduled processor. It does

not place any register bank arbitration in the critical

wakeup-select loop, but instead speculatively issues potentially

conflicting instructions. If any conflicts are found after issue,

a pipelined recovery scheme quickly repairs the issue window and

reissues conflicting instructions.

In contrast to previous work, all conflicts are detected and

resolved in one pipeline stage. Therefore, no write buffering or

pipeline stalls are required. The main drawback of the scheme is

that both bank conflicts and the extra pipeline stage used for port

arbitration can impact processor performance. Bank conflicts add

penalty cycles to repair the pipeline and delay the issuing of

dependent instructions, while the additional pipeline stage causes

an increase in branch misprediction latency.

The conventional structure of the pipeline is the case of Fig.

2.12(a). After instructions are decoded, renamed and the register

accesses are carried out, the instructions are registered in a

buffer called reservation station. Register accesses are thus done

per instruction. In this case, if register accesses are blocked

by conflicts, the processor has to stall decode and rename for the

following instructions until the conflict is resolved. So queue

access per instruction does not work effectively.

To remove this problem, [2.30] propose a method for register access

per operand. It changes the structure as shown in Fig. 2.12(b).

This new structure allocates the scheduling stage of register access

to the same stage as the reservation station. Instructions are

decoded and decomposed into accesses per operand, e.g. as two

register accesses and one operation for a two-operand instruction.

Operations and tags of the source registers are registered in the

reservation station, which receives the value for each source

 - 21 -

register after several clock cycles. Since execution of the pipeline

and register accesses are operated independently, register accesses

per operand and decoding and renaming of instructions occur without

stalling of the processor.

Reduction of the number of register accesses is also a good method

to avoid access conflict [2.31]. When a register has true dependency

with an instruction, the processor uses the result of an instruction

as the value of an operand register of the following instruction.

Therefore, this value doesn't need to be buffered in the register

access queue, so that forwarding is able to reduce the number of

register accesses.

When multiple reading of the same register at the same time causes

an access conflict, treating these accesses as one access to reduce

the number of register accesses can avoid this conflict, as shown

in Fig. 2.13.

Fig. 2.12. Structure of the processor pipeline

 - 22 -

 In conventional register renaming schemes, both register

allocation and releasing are conservatively done, the former at

the rename stage, before registers are loaded with values, and the

latter at the commit stage of the instruction redefining the same

register, once registers are not used anymore. [2.32] introduces

a renaming scheme that allocates registers later and releases them

earlier than conventional schemes.

Specifically, physical registers are allocated at the end of the

execution stage and released as soon as the processor realizes that

there will be no further use of them. This approach enhances register

utilization.

2.5 Other kind of multibanked Architecture

 There are several different banked scheme adopted in order to save

more power and decrease access time. [2.34] propose the scheme that

the register bit-widths of different banks in the register files

are different. In [2.33], different banks have different register

Fig. 2.13. Combine access to the same registers

 - 23 -

numbers and port numbers.

2.5.1 Customization of Register File Banking

Architecture

 [2.33] reduces register file power consumption by allocating

variables in frequently accessed basic blocks to separate

appropriately sized register file bank of active registers.

Fig.2.14 shows the heterogeneous banking of register file with

n registers in a single issue RISC processor. Only the read path

for one port is shown in the figure for clarity. It consists of

two banks, one bank with a small number of registers (0 to k-1)

and a second bank with a larger number of registers (k to n -1),

with k < n/2.

Fig. 2.14. Heterogeneous Register File Banking

 - 24 -

If the placement of registers is such that most of the accesses

occur to the smaller bank, there will be a significant reduction

in the overall power dissipation as the smaller bank has a relatively

smaller bit-line switching capacitance. The asymmetric banking

structure makes the address decoder and output selection logic more

complex, which introduces overheads in area, delay, and power.

2.5.2 Asymmetrically Banked Value-Aware Register

Files

Fig. 2.15. A microarchitecture-level comparison among (a)

a conventional banked register file and (b) the AB-VARF

register file.

(a)

(b)

 - 25 -

 [2.34] propose a new microarchitecture, the

asymmetrically-banked value-aware register file (AB-VARF), as

shown in Fig. 2.15(b), to exploit the prevailing narrow width

register values for low-latency and power-efficient register file

designs. The register bit-widths of different banks in the AB-VARF

register files are specifically customized to capture different

narrow-width values. Augmented with a value width predictor, the

register renaming logic is slightly tuned to rename predicted

narrow-width registers to the corresponding narrow-width banks.

2.6 Conclusion

The design of register file is known to scale poorly with

increasing numbers of ports and registers. In order to implement

a large and fast multiported register file, banked architectures

have explored alternative designs.

Even through that banked register file exhibits a small

performance penalty, the reductions in register file delay and power

are respectable. Consequently, banked register files are a natural

solution to the increasing register file demands of SMT processors.

 - 26 -

Chapter 3

Low power Multithreaded Register

File Design

3.1 Multithreaded Banking Architecture

In this chapter, the multibanked register structure is described

first. The timing access scheme is then charactered in detail before

the discussion of thread switching.

3.1.1 Register Bank structure

The proposed dual-thread register file has 4 Write ports and 4

Reads ports, and there are 64x64 bits for a thread. The proposed

Fig. 3.1 The proposed dual-thread 4W/4R 64 x 64 bit

register file architecture.

4 Write ports

thread1

Write po 4
[8:0]Write po 3

[6:0]
Write po 2

[6:0]Read port 1
[5:0]

Thread 0

Thread 1

Write p 4
[8:0]Write p 3

[6:0]
Write p 2

[6:0]Write port 1
[5:0]

4 Read ports

Bank0 <0:15>

Bank1 <16:31>

Bank2 <32:47>

Bank3 <48:63>

Write

Read

RF Cell (2x64x64bit)

 - 27 -

design is also divided into four interleaved banks, and each bank

has one Read port and one Write port, as shown in Fig. 3.1.

Compared to a conventional register file scheme, each storage

cell has fewer ports and the storage cell size become smaller

appreciably. A single local port must connect to all global ports,

so local-global crossbar complexity is required. Bank conflicts

would happen when too many global ports attempt to read or write

the same bank. The register file can operate under voltage range

from 1.0v to 0.5v.

3.1.2 Timing sharing access scheme

The area overhead of a register file can be reduced when a bank

has only one local Read port and one Write port; however, access

conflicts would happen if more than one word of a bank are selected

in a clock. It leads to performance degradation of a conventional

banking scheme. Thus, timing sharing access scheme is proposed to

ease access conflict overhead in our design.

In the proposed timing sharing access scheme, local Read and Write

ports can be accessed twice in a clock. In other words, a clock

is divided into two time slots, and an access operation can be

finished in one slot. Fig. 3.2 makes an example to explain this

concept.

In cycle 1, the processor writes two data, D1 and D2, into the

same bank. Thus, local Write bitline, WBL, are accessed twice. D1

is written into the bank in the fist slot, and D2 is written into

the bank in the second slot. The proposed multithreaded register

file can do at most 4 Read operations and 4 Write operations in

one cycle. Nevertheless, access conflicts still happen when more

than two word of a bank are accessed during Read or Write operations.

 - 28 -

The register file should arbitrate which two operations should

be executed first when access conflicts happen, and all ports of

this register file are defined as different priority levels. The

priority of Read (Write) port1 is higher than Read (Write) port3

respectively, and Read (Write) port2 is higher than Read (Write)

port4 as well. Port1 and port 3 work in the first time slot, and

port2 and port4 work in the second time slot, as shown in Fig. 3.2.

For example, when four Read ports want to access the same bank,

port1 and port2 can operate successfully while both port3 and port4

would receive Read fail signals.

3.1.3 Thread switching

Fig. 3.2 Waveforms illustrating concept of timing sharing access

scheme

 - 29 -

Different thread needs its own storage cells, and there are many

methods to switch between different threads. The two threads of

Montecito microprocessor is switching through a multiplexer which

is connected to the storage node of memory cell [3.1], as shown

in Fig. 3.3. This method would enlarge the capacitance of the storage

node then make the noise margin and speed worse. If the thread number

increases, Montecito microprocessor needs more levels of

multiplexer and makes the problem worse.

Additional address bits as thread ID are used here to switch

threads. If the amount of thread is n, we need additional log2n

address bit for each decoder. This method would increase some area

penalty, but impact performance slightly.

 Each decoder of this proposed register file has 7 bit. Bit[6:1]

chose the register number when bit[0] is as thread number. LSB is

0

1
E

Thread

Read/write

circuit

Bitcell of

thread1

Bitcell of

thread0

Fig. 3.3 Thread switching scheme of Montecito microprocessor

 - 30 -

used as thread number instead of MSB, so the thread0’s registers

and thread1’s registers are interleaved with each other, as shown

in Fig. 3.4. The way scatter the location of registers from the

same thread and can decrease the bank conflict.

3.2 Register file cell

3.2.1 Read Stability and Write-Ability

The read stability and write ability of register file cells

determines its process tolerances. Many new SRAM cell circuit

designs have been developed to maximize the cell stability for

future technology nodes.

Bank 0
<0:15>

Bank1
<16:31>

Bank2
<32:47>

Bank3
<48:63>

Register 0 of thread0

Register 0 of thread1

RF Cell

Register 1 of thread0

Register 1 of thread1

Register 15 of thread0

Register 15 of thread1

Fig.3.4 The location of registers

 - 31 -

As dimensions scale down to nanometer regime, the variations in

CMOS transistor parameters, e.g., the threshold voltage , increase

steadily due to random dopant density fluctuations in channel,

source and drain. Therefore, two closely placed, supposedly

identical transistors, have important differences in their

electrical parameters as and make the design of the SRAM less

predictable and controllable. Moreover, the stability of the SRAM

cell is seriously affected by the increase in variability and by

the decrease in supply voltage.

Data retention of the register file cell is an important functional

constraint in advanced technology nodes. The cell becomes less

stable when supply voltage decrease, leakage currents become larger

or variability increase. The stability is always defined by the

SNM as the maximum value of DC noise voltage that can be tolerated

by the SRAM cell without changing the stored bit.

The circuit definition for the SNM of conventional 6T cell is shown

in Fig. 3.5. The two DC noise voltage sources are placed in series

with the cross-coupled inverters and with worst-case polarity at

the internal nodes of the cell. Locating the smallest square between

the two largest ones delimited by the eyes of the butterfly curve

determines graphically the SNM (Fig. 3.6). When the DC noise voltage

is equal to the SNM, the VTCs move horizontally and/or vertically

until the stable point A and the meta-stable point B coincide.

Fig. 3.5. SNM definition. The two DC noise voltage sources Vn

are placed in series with the cross-coupled inverters.

 - 32 -

The cell is most vulnerable to noise during a read access since

the “0” internal storage node rises to a voltage higher than ground.

Due to this voltage division on, the SNM is primarily determined

by the ratio of the pull down (PDN) to pass gate (PG) transistor,

known as the cell beta ratio. In an ideal case, each of the two

cross-coupled inverters in the SRAM cell has an infinite gain. As

a result, the butterfly curves delimit a maximal square side of

maximum, being an asymptotical limit for the SNM. Therefore, scaling

limits the stability of the cell.

In the SRAM cell shown in Fig. 3.7, when the BL signal is set to

VR

VL A

B

C

Fig. 3.6 Static Noise Margin

Fig. 3.7 The 6T cell

 - 33 -

0, the NMOS transistor (PG1) is turned ON, which results in a voltage

drop in the storage node holding data 1. This is the trigger for

write operations to begin. Stable write operations require that

the current of PG1 be higher than that of PMOS transistor

PUP1.Because of the importance of PG1 in write operations, there

should be a correlation between the WM value and the PG1 drivability

under all conditions.

Besides the read stability for the register file cell, a reasonable

write-trip point is also important to guarantee the write ability

of the cell without spending too much energy in pulling down the

bit-line voltage to 0 V. The write-trip point defines the maximum

voltage on the bit-line, needed to flip the cell content (Fig. 3.8).

The write-trip point is mainly determined by the pull-up ratio of

the cell while the read stability is determined by the cell ratio

of cell.

Fig. 3.8 The write margin is defined by the write-trip point.

 - 34 -

3.2.2 The 8T cell

In the proposed architecture, an 8T cell, shown in Fig. 3.9, is

adopted instead of conventional 6T cell. The conventional 6T cell

shown in Fig. 3.7 has switch type read access transistors. The

storage data is affected at the read operation. On the other hand,

the read port and write port of 8T cell is separated. The read port

of 8T cell is connected to storage node through a read buffer. The

gate electrode of the read-port-drive-transistor receives the

storage-node-voltage directly. Therefore, the read margin of 8T

cell is better than that of 6T cell.

Because storage data is not affected at the read operation, the

nMOS gate width of latch-inverters is reduced a lot compared with

a conventional 6T cell.

Fig. 3.10 shows the Monte Carlo simulation results of 8T’s Write

margin and Read noise margin at 0.5v. According to the results of

Fig. 3.10, 8T cell can work correctly at 0.5v.

Fig.3.9 8T cell structure

 - 35 -

3.2.3 Other register file cells

Fig. 3.11 shows the schematic of the 10 T sub-threshold

bitcell[3.2]. M3 and M6 tie to a virtual supply voltage rail. The

technique of weakening the cross-coupled inverters by gating their

supply voltage or ground node, applied by previous works primarily

to improve speed, can dramatically improve write margin.

Transistors M7 through M10 implement a buffer used for reading.

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5

(b) SNM (V)

F
re

qu
en

cy

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5

(a) WM (v)

F
re

qu
en

cy

Fig. 3.10 The Monte Carlo simulation result of 8T’s noise

margin at 0.5v.The sigma of Vt is 30mV (a) Write margin

distribution. (b)Read noise margin distribution.

Mean : 184mV

sigma : 31.9mV.

Mean : 235.6mV

sigma : 20.3mV.

 - 36 -

One key advantage to separating the read and write wordlines and

bitlines is that a memory using this bitcell can have distinct read

and write ports. M7–M10 to remove the problem of Read SNM by

buffering the stored data during a read access.

M10 is valuable to the bitcell because it reduces leakage current

and allows more bitcells to share a bitline. The reduction in

subthreshold leakage through M8 reduces the impact of leakage from

unaccessed cells and gives the additional advantage of allowing

more cells on a bitline during read.

In [3.3], N3 and N4 are added to keep the read current from affecting

the cell value, as shown in Fig 3.12. The latch feedback loop is

open during the write operation, and closed when the write is

complete. This is accomplished by gating one of the feedback path

transistors, Pgate, as shown in Fig. 3.12, which improves the write

margin in subthreshold. The input node transitions slowly due to

the open FB loop. When the loop is closed by the WWL, the cell value

is quickly updated.

Fig. 3.11 Schematic of the 10 T bitcell.

 - 37 -

[3.4] proposed structure establishes when to enter and to exit

the sleep mode, on the basis of the data stored in it, without

introducing time and energy penalties with respect to the

conventional 6T cell. The low Vth MOS transistors M7 and M8(Fig

3.13), gated by the signals Q and Q_b , respectively, are introduced

to minimize the leakage power dissipation during the idle mode.

When a 1 is written, BL and BL_b are forced to 1 and 0. The signal

WL becoming high discharges the node Q_b and turns on the transistor

M3. This makes the source terminal of the transistor M7 electrically

connected to Q. Thus, M7 is turned off.

During the standby mode, let us suppose that it stores a 0 data.

In this situation, the transistors M7 and M8 are turned off and

the cell is disconnected from Vdd .The leakage paths through M6

and M8 are charging Q_b, whereas the leakage path through M2 forces

Q_b to discharge towards ground. The data retention capability of

the cell is assured by making the subthreshold current flowing

Fig.3.12 RF cell with conventional read circuit. An additional

transistor, Pgate, is added to aid write margin in subthreshold.

 - 38 -

through the transistor M8 greater than that flowing through M2.

This is obtained by using a low threshold voltage device that leads

to a resultant charging effect on the node Q_b.

3.3 Low Power Floating Read Bitline Access Scheme

Precharging bitline would consume a lot of power every cycle. Thus,

floating bitline access scheme is proposed. Following starts to

explain the operations of floating bitline access scheme.

3.3.1 Floating Read Scheme

Floating read bitline architecture is also shown in Fig. 3.14.

The read bitline need not be precharged .If the voltage of bitline

is a strong ‘0’ for a read operation, the node ‘inx’ of SA will

be pulled down to ‘0’. If the voltage of bitline is a floating ’0’,

the SA will charge the bitline slowly instead of causing a read

fault.

Fig 3.13 The auto-gating low-leakage cell

 - 39 -

Therefore, the enable signal of SA must rise slowly in order to

prevent the situation that node ‘inx’ of SA would be discharged

by floating bitline. The signal ‘reset’ and ‘enable’ of sense

amplifier are come from timing control circuit, which is described

in chapter 4.

Fig . 3.14 Floating bitline access scheme

 - 40 -

3.3.2 Divided Bitline

In low power memory cell designs, the cell read current must create

enough voltage different on the bitlines in a read operation. But

this step spends a lot of memory delay time when the bitline

capacitance is very large. To rescue this problem, one way is to

make the read current as large as possible. However, this way results

in high leakage currents because a large read current need large

transistor widths, high supply voltage, or low threshold voltages

for the cells.

cell0

cell1

cell31

SA

BL

GBL

Pass

transistor

BL

cell0

cell1

cell31

SA

BL

GBL

Read

buffer

BL

(a) (b)

Fig . 3.15 Divide bitline connection (a) By pass transistor (b)

By read buffer

 - 41 -

The other way is to reduce the bitline capacitance. Access delay

time would decrease when the amount of charge that the cell must

draw from the bitline is reduced. An original bitline is divided

into several shorter local bitlines, and a global bitline is

designed to connect these local bitlines.

Often, local bitline connect to global bitline through a simple

transistor, as shown in Fig. 3.15(a). This way adds little area

overhead. However, the cell still needs to sink all the charge from

global bitline. When a read buffer is inserted between local bitline

and global bitline, the cell just need to sink the current from

local bitline, as shown in Fig. 3.15(b). When the local bitline

uses a large voltage swing, a simple inverter is allowed to be used

as a sensing element for the buffer.

A inverter is not used as a sensing amplifier in the proposed

register file, because the floating bitline read scheme is

implemented. There are not a complete logic 1 in the scheme. The

voltage of floating bitline is a strong 0 or a floating voltage

which can not sensed correctly by a simple inverter.

 A single end sensing amplifier is inserted between the local

bitline and global bitline in our scheme, as shown in Fig. 3.14.

The output of local sensing amplifier is connected to four global

bitline through read buffers.

A shorter bitline has smaller bitline capacitance; however, it

leads to a global bitline capacitance increasing. Some simulations

should be done to find the optimized bitline length. Fig. 3.16 shows

the simulation results about access time with different bank sizes

when operating voltage is between 0.5V and 1.0V. It clearly shows

that the best performance happens when bank size is 32 words.

In other words, the access delay is shortest when the capacitance

 - 42 -

of a local bitline is approximate equal to that of a global bitline.

Fig. 3.16 Access time with different word numbers per bank

(a) Write access time. (b)Read access time.

0000

0.20.20.20.2

0.40.40.40.4

0.60.60.60.6

0.80.80.80.8

1111

1.21.21.21.2

1.41.41.41.4

1.61.61.61.6

0 1 2 3 4 5 68 16 32 64 128

bit cells/bitline

W
ri
te

 t
im

e
(n

s) Vdd=1.0v

Vdd=0.9v

Vdd=0.8v

Vdd=0.7v

Vdd=0.6v

Vdd=0.5v

0000

0.20.20.20.2

0.40.40.40.4

0.60.60.60.6

0.80.80.80.8

1111

1.21.21.21.2

1.41.41.41.4

1.61.61.61.6

0 1 2 3 4 5 68 16 32 64 128

bit cells/bitline

R
ea

d
ti
m

e
(n

s)

Vdd=1.0v

Vdd=0.9v

Vdd=0.8v

Vdd=0.7v

Vdd=0.6v

Vdd=0.5v

(b)

(a)

 - 43 -

3.3.3 Push-Pull Write Scheme

In conventional write scheme, the bitline pairs need to precharge

before the write driver is turned on, as shown in Fig. 3.17(a).

Fig . 3.17 write scheme (a) conventional write scheme

(b)floating write scheme (c)Push-pull write scheme

 (b) (c)

 (a)

Q Q_bar

floating

bitline

Bit Cell_0

EQ
WBL

WWL
Bit Cell_15

0 strong 1

Q

Q_bar

MA1 MA2

 - 44 -

Fig. 3.17(b) shows the floating write bitline architecture.

During Write cycles, only one side of a bitline pair is connected

to ground while the other side is floating. After one storage node

is discharged approximately to zero, wordline is deactivated. Then,

the cell acts like a latch, and the small difference between Q and

Q-bar would be quickly amplified. Finally, Q and Q-bar would become

complete logic signals. When Write bitline pairs are no longer

precharged, access time would become slightly longer but power can

be reduced a lot.

However, the write ability of this scheme is weaker then

conventional write architecture. Node Q may be discharged by

floating bitline, when the threshold voltage of MA1 is lower than

that of MA2 under technology fluctuation.

 To prevent the write fault discussed above, the push-pull write

scheme is implemented here, as shown in Fig. 3.17 (c). When one

of the bitline pair is discharged to ground, another one would be

pulled up to Vdd-Vtn by clamping NMOS in a write operation. Push-pull

write scheme consumes larger power than floating write scheme, but

has better write ability at the same time.

3.4 Conclusion

This register file is divided into four interleaved banks. Each

bank has one Read port and one Write port. Therefore, it can save

a lot of power and area overhead. However, bank conflicts would

happen if there are too many accesses to the same bank. To ease

access conflict in this design, timing sharing access scheme is

proposed.

 - 45 -

To operate the circuit correctly under process variation and wide

range of supply voltage, the design of timing control circuit is

a critical issue. It is discussed in the next chapter.

Several low power techniques are proposed in this chapter, such

as floating read bitline, push-pull write scheme, and the divide

bitline scheme.

 - 46 -

Chapter 4

Decoder and Control Circuit Design

In this chapter, the design of control circuit for timing shared,

multithreaded 4W/4R register file will be presented. Fig 4.1 is

the block diagram of proposed register file. Multiple access ports

with multiple decoders are connected to less port cell through a

multiplexer. Multiported register files realize multi-port access

by using less port memory cells instead of fully-port memory cells

to relax the heavy routing wires.

The cell array content the storage elements holding the data.

Symbolic addresses are converted to physical addresses through the

Fig.4.1 Block diagram of proposed register file

 - 47 -

decoders. Block decoders and Write/Read replica circuits control

the write/read operation to work correctly. Replica column,

connected to Write/read replica circuits, traces the bitline delay

under all PVT variations.

4.1 Decoder design

The Design of a register file is generally divided into two parts,

the decoder and the sense and column circuits. Decoder is the

circuitry from the address input to the wordline. The sense and

column circuits include the bitline to the data input/output

circuits. For a read operation, the decoder contributes up to half

of the access time and a significant fraction of the total power

consumption.

While the logical function of the decoder is simple, it is

equivalent to 2^n n-input AND gates, there are a large number of

options for how to implement this function. Modern RAMs typically

implement the large fan-in AND operation in an hierarchical

structure. The decoder designer has two major tasks: choosing the

circuit style and sizing the resulting gates, including adding

buffers if needed.

As shown in Fig. 4.2, the symbolic addresses are separated into

two groups and decoded separately. Upper addresses are decoded by

block decoder when lower addresses are decodered by row decoder.

Because of such partitioning, register banks can be disabled when

other banks are accessed. The block decoder divided into three parts,

including block select, priority decision and pulse width control,

as shown in Fig 4.3.

A nand gate is inside the Block select. Upper addresses are decoded

through this nand gate. The Priority decision arbitrate which two

operations should be executed when access conflicts happen. Each

 - 48 -

port of this register file has different priority levels. The

priority of Read (Write) port1 is higher than Read (Write) port3

respectively, and Read (Write) port2 is higher than Read (Write)

port4 as well. Signal ‘W_TS1’ and ‘W_TS12’ come from the write-

timing-control circuit, which would be discussed later.

Fig. 4.2 Write row decoder and block decoder

 - 49 -

The Pulse width control circuit control the width to be just enough

for a write operation and divide the pulse into two working timing

slot. An example is shown in Fig 4.4 to explain this concept.

In cycle 1, all the four ports want to access this bank, so the

voltage of signal BL1, BL2, BL3 and BL4 are pulled up to logic ‘1’.

However, one bank only can be accessed twice in one clock cycle.

After the operation of the Priority decision circuit, port1 and

port2 can operate successfully while both port3 and port4 would

receive Read fail signals. Therefore, signal PD1 and PD2 would be

pulled high when PD3 and PD4 are still logic ‘0’.

bud

bud

W_TS1

W_TS2

BS3

BS4

0

1
E

bud

bud

W_TS1

W_TS2______

BS1

BS2

WEN
A6
A5

Pulse width

control

priority

decision

Block

select

buffer

BL1 PD1

0

1

E

0

1
E

0

1

E

BL2

BL3

BL4

PD2

PD3

PD4

Write block decoder X4

Fig. 4.3 write block decoder

 - 50 -

Port1 and port 3 work in the first time slot, and port2 and port4

work in the second time slot. The Pulse width control circuit control

signal BS1 and BS2 to be just enough for a write operation. BS1

is pulled high at first working timing slot, when BS2 pulled high

at second working timing slot.

 In conventional, to decode one word need a group of logic gate,

as shown in Fig 4.5(a). However, some logic gate of near by wordlines

are the same. In order to save more power and area, some logic gate

are shared by the two neighboring words, as shown in Fig. 4.5(b).

Fig. 4.4 Waveforms illustrating concept of block decoder

CLK

Cycle 1 Cycle 2 Cycle 3

BL1
BL2

BL3

BL4

bud

W_TS1

W_TS2

PD1

PD2

PD3
PD4

BS1

BS2

BS3
BS4

 - 51 -

Fig. 4.5 The row decoder design (a) Conventional design. (b)

The scheme with fewer logic gate.

 - 52 -

4.2 Logical effort model

The convention of a register-transfer level description of a

design into an implementation in silicon starts with logic synthesis,

which consists of technology independent optimization, followed

by technology mapping. In the latter step, the design is mapped

to cells belonging to the target library while optimizing one or

more performance metrics, such as delay, area, or power.

High-performance designs use rich libraries, with multiple

instances of each cell, which have various delay, area, and drive

capabilities. Technology mapping has to identify not only the best

logic functionalities of cells to be used to implement some logic

but also the best instance of each selected cell.

Since the library cells may be repeated thousands of times during

the digital design process, their quality determine the final

product performance. The number of driving strengths available for

each cell also, have a crucial impact on the design performance.

For instance, when a design is implemented by a single driving

strength library, its performance degrades by up to 27%. This is

compared to its performance when it is implemented using a library

that uses three levels of driving strengths.

Hence, there is a need for multiple libraries for each technology

process, which is impractical. The situation is exacerbated when

there is a need for a diversity of libraries from different suppliers

where each one has its own tools and documentations. As a result,

virtual library concept has emerged as a solution for this problem.

Virtual library or library-free mapping terminology means,

mapping the design’s Boolean functions to the transistor level

directly instead of using pre-characterized cells. Usually, the

Boolean functions in this mapping technique are realized using

 - 53 -

Static CMOS Complex Gates (SCCGs). The number of SCCGs (Boolean

functions) in a virtual library is determined by the allowed number

of serially connected transistors.

The logical effort method is widely recognized as a pedagogical

way allowing designers to quickly estimate and optimize single paths

by modeling equivalently propagation delay and transition time.

4.2.1 Logical effort and gate sizing

In themethod of logical effort, the delay of a gate is estimated

by modeling it as a linear function of the load being driven as

 (4.1)

where g is the logical effort, h = CL/Ci is the electrical effort,

CL is the path load capacitance, f = gh is the effort delay and

p is the parasitic delay of the gate. This formulation separates

the different components that contribute to the delay of a gate.

More importantly, it leads to a natural extension for estimating

the minimum delay, ^D, of a path of logic as

 ̂ D = NF1/N + P (4.2)

where F = GBH is referred to as the path effort, P as the path

parasitic delay, and N as the number of gates on the path under

consideration1. The path logical effort, G, is the product of the

logical efforts of the gates on the path, and the path electrical

effort, H, is the product of the gate electrical efforts. The minimum

delay of (2) is obtained by distributing the path effort F equally

to each gate on the path.

For the networks with loads off logical path, as shown in Fig.

4.6, branching effort b should be introduced. The branching effort

b at the output of a logical cell.

 - 54 -

 (4.3)

where Con-path is the load capacitance of a logical gate along the

considered path, and Coff-path is the load capacitance of a logical

gate(s) off the path. The branching effort along an entire path

B is the product of the branching effort at each of the stages along

the path.

 (4.4)

The path electrical effort can also be calculated as the ratio

of output and input capacitances of the path. Consider Fig. 4.7,

which shows a simple path of four gates—A, B, C, and D. Each of

these gates have input capacitances CinA, CinB, CinC, and CinD and

drive output capacitances CoutA, CoutB, CoutC, and CoutD,

respectively. The input capacitance of the path Cin is the input

capacitance of gate A, and the output capacitance of the path CL

is the output capacitance of gate D. The path electrical effort,

H, the product of the gate electrical efforts, telescopes, since

Fig. 4.6: A logical path with branching

 - 55 -

the input capacitance of each gate is the load capacitance of its

input (e.g., cinC = coutB). Thus

 (4.3)

The logical effort approach is well suited for estimating the

minimum delay that can be achieved by sizing a path of logic if

the electrical effort, H, of the path is known. The individual gate

sizes that are required to achieve this minimum delay can be

calculated as follows: Each gate is assigned a gate effort of f

= F^1/N . Starting with the gate at the output that drives a known

load of CL, the size of each gate is successively determined. Since

the logical effort g of a gate is fixed, if an effort delay f is

assigned to a gate, the input capacitance cin that meets this effort

delay can be calculated as

 (4.4)

where cl is the load begin driven by the gate under consideration.

Fig. 4.7. Calculating the electrical effort of a path.

 - 56 -

4.2.2 Logical effort design steps

There are a three-step process to size a logical path to a achieve

a required time with minimized area.

First, determine the input capacitance of the logical path and

calculate H and, F, and the optimal number of gates N. If N is greater

than the actual number of gates, add buffers to the path to match

N.

Second, Calculate pi and gi for each gate. Third, calculate and

roughly estimate fanout for each gate. The calculation should start

from the last gate towards the first gate (at the input). This allows

a rough estimation of the transistor sizes for each gate where Ci

is the input capacitance of the current gate and Ci+1 is the input

capacitance of the next gate that is closer to the path output.

qi can also be calculated at this stage.

Cell- or library-based technology mapping is the process of binding

a technology-independent logic level description of a circuit to

a library of gates in the target technology. A dynamic programming

algorithm based on tree covering has served as the basis of later

technology mapping algorithms. This is a two-step algorithm.

In the matching step, matches for all gates are generated in an

input-to-output traversal of the circuit, and the optimum match

(based on its cost and the cost at its inputs) and the corresponding

matches at the inputs are stored as the solution for that gate.

In the covering step, the solution for the entire circuit is

generated by an output-to-input traversal of the circuit. At the

primary outputs, the best match is selected, and the covering

recurses on the inputs of this match.

 - 57 -

4.3 Timing Control Circuit

Various operating voltage, frequency, and configurations are

required for mobile applications. For mobile devices, reduction

in operating voltage is strongly required in order to reduce power

consumption. And they need at least 27MHz operation to synchronize

with the frequency of base band. Thus the register file need to

operate under low and wide Vdd.

In order to prevent too large subthreshold leakage, the threshold

voltage doesn’t be scaled down as fast as supply voltage. Therefore,

the gate overdrive for the transistors is reduced. At the same time,

the fluctuations of threshold voltages are not able to decrease

in future technology. The delay variability of all low power

circuits across process corners and various operating voltage will

become larger and larger in the furture.

To operate the register file correctly at all process corners and

the wide range of Vdd from 0.5v to 1.0v, the design of delay control

circuit for the access timing is the most critical issue. Therefore,

the Write replica Circuit and Read replica Circuit are designed

to operate the register file correctly and save power at the same

time.

 The large delay spreads across process corners will necessitate

bigger margins in the design of the bitline path in a register file,

and will result in larger bitline power dissipation and loss of

speed. This problem can be mitigated by using a self-timed approach

to designing the bitline path, based on delay generators which track

the bitline delays across operating conditions.

Controlling the wordline pulse width to be just wide enough to

guarantee the minimum bitline swing development can further

minimize bitline power. This type of bitline swing control circuit

 - 58 -

can be achieved by a precise pulse generator that can match the

bitline delay. The sense clock starts the amplification, and hence

the sense clock needs to track the bitline delay to ensure correct

and fast operation. To save the sense power, the

sense-amplifier-activating period can also be designed to just wide

enough for sensing successfully. Therefore, a replica SA is needed

to track the sensing speed of SA.

Fundamentally, the clock path needs to match the data path to

ensure fast and low-power operation. The data path starts from the

local block select and/or global wordline, and goes through the

wordline driver, memory cell, and bitline to the input of the sense

amps. The clock path often starts from the local block select or

some clock phase, and goes through a buffer chain to generate the

sense clock. The delay variations in the former are dominated by

the bitline delay since the memory cells are made out of minimum

sized devices and are more vulnerable to process variations.

Therefore, the delays of the two paths do not track each other

very well over all process and environment conditions. Enough delay

margin has to be provided to the sense clock path for worst case

conditions, which reduces the average case performance.

4.3.1 Write Replica Circuit

It is important to control the wordline-activating period to reduce

the power consumption in write-access operation. Fig. 4.8 shows

the Write replica circuit and its signal waveforms. Because there

are two working timing slot in one clock cycle, it need two

flip-flops, W_TS1 and W_TS2, to control the replica circuit

operating twice in one clock cycle. In order to improve replica

circuit’s performance, all flip-flops inside Read/Write replica

circuit are TSPC D flip flop which has very small clock-to-Q delay.

 - 59 -

The storage node ‘q’ of replica cell would be precharged to vdd.

When one of the four global Write ports want to access this one

subbank, the signal ‘W_rep_EN’ would be pull up to start the the

write replica circuit. The replica write bitline(RWBL) is then

discharged to ground. As the storage node of replica cell is

discharged to 0v, replica circuit would turn off the wordline of

(a)

(b)

WBLWBL

W_rep_EN
W_TS1

CLK
reset

D
FF W_TS2

CLK

CLK
reset

D
FF

Q

Q

Replica

wordline

bud

q

C_pulse

AMC

Fig.4.8 (a)Write replica circuit. (b) Signal waveforms of

this circuit

 - 60 -

cell array and ‘Replica wordline’ in order to precharge node ‘q’

of replica cell for the second operation. The second operation

starts when ‘q’ is reseted to Vdd.

Fig. 4.9 show the state diagram of this Write replica circuit.

There are four states within one clock cycle. S0 is the standby

state. When signal ‘W_rep_EN’ is high, the state transit from S0

to S1. State S1 is the first working time slot. The wordline and

write driver of cell array are turned on at state S1. When a write

operation completes, the state transit to s2 and turn off wordline

and write driver. At state S2, node ‘q’ of replica cell would be

precharge to Vdd for the second operation. When q is pull up to

vdd, the state transit to S3. State S3 is the second working time

slot. The state transit to S0 and turn off wordline and write driver

as the second write operation complete.

 To write a data into register file correcltly even with serious

S0 : standby , charge node ‘q’ to Vdd

S1 : WL1 on , WL2 off

S2 : WL1 off , WL2 off , charge node ‘q’ to Vdd

S3 : WL1 off , WL2 on

Within one clock cycle

Fig. 4.9. State diagram of write replica circuit

 - 61 -

timing fluctuation, the write access delay to asymmetrical replica

cell (ARC) must be adjucted to replicate the slowest register file

cell. Fig. 4.10 show ARC scheme. Its organization is the same as

a 6T cell. The transistors of ARC are arranged that the storage

node ‘q’ is hard to hold the logic low. The width of the

drive-transistor WMD1 is smaller than the typical width WMD. And

the width of load-transistor WML1 is larger than the typical width

WML. The size of D2 and L2 are also adjusted in the opposite way.

The Id of the drive-transistor MD2 and the load-transistor ML1 are

increased. The sizes of the access-transistor MA1 and MA2 are the

same as the typical transistor of register file cell.

4.3.2 Read Replica Circuit

Fig. 4.11 shows the Read replica circuit and all signal waveforms.

In order to save power, the turn-on time of the sensing amplifier

and wordline should be minimized. The Read replica circuit detects

which timing the SA and wordline should be turned on and turned

Fig. 4.10. The organization of ARC

RWBLRWBL

Replica

wordline

q qbMA1 MA2

MD1 MD2

ML1 ML2

WMD2 > WMD = WMD1
WML1 > WML = WML2

WMA1 = WMA = WMA2

WMD, WML, WMA :Typical transisotr width in cell array

 - 62 -

off.

CLK

imp

S

D_I

RC_pulse

R_TS1
R_TS2
R_TS3

R_TS4

SA ON
first time

SA ON
second time

Wordline on
first time

Wordline on
second time

R_rep_EN

Fig. 4.11 (a)Read replica circuit. (b) Signal waveforms of this

circuit

(a)

(b)

 - 63 -

The storage node RS1 of replica cell is connected to ground in

order to discharge the Replica BL. In order to detect the worst

case delay time, the replica read bitline(RRBL) need to be

prechraged to Vdd-Vtn before replica SA turned on. When one of four

Read port starts to work, the Read replica circuit would be turned

on by pulling up the signal ‘R_rep_EN’. After node ‘inx’ of replica

SA is reseted to 1, signal ‘enable’ will be turned on, then node

‘inx’ starts to be discharge. One Read operation completes when

‘inx’ is pulled down to ‘0’.

The circuit would work twice in one clock period. Therefore, there

are several signals, ‘R_TS1’, ‘R_TS2’, ‘R_TS3’, and ‘R_TS4’, to

control memory cell operating twice in one clock cycle. The ‘reset’

and ‘enable’ signal of local sense amplifier are come from signal

‘RC_pulse’ and ‘imp’, shown in Fig. 4.11, through a buffer. At the

same time, signal ‘reset’ and ‘enable’ of global sense amplifier

are produced by signal ‘TS5’, ‘TS6’, ‘TS7’, and ‘TS8’ through some

S0 : standby

S1 : WL1 on , WL2 off , SA off

S2 : WL1 on , WL2 off , SA on

S3 : WL1 off , WL2 on , SA off

S4 : WL1 off , WL2 on , SA on

Within one clock cycle

Fig. 4.12. State diagram of Read replica circuit

 - 64 -

logic operation.

The state diagram of the Read replica circuit is shown in Fig.

4.12. In one clock cycle, there are four states. S0 is the standby

state. When signal ‘R_rep_EN’ is high, the state transit from S0

to S1. State S1 and S2 are the first working time slot when

state S3 and S4 are the second working time slot. In first working

time slot, wordline(WL1) would be turned on at state S1 and S2 when

sensing amplifier(SA) only is turned on at state S2. State S2 and

S4 trace the sensing speed of SA.

4.4 Comparison with conventional register

file

 A conventional dual-thread 4W/4R 64 x 64 bit register file is

implemented to compare with this work. Each register file cell of

the conventional register file is a fully ported cell, as shown

in Fig 4.13. The bit cell uses single ended write scheme, whose

area overhead is much smaller than double ended write scheme.

However, the single-ended-write cell has worse write ability. The

lowest operation voltage of this cell is 0.77v. Writing ‘1’ to a

cell storing ‘0’ with supply voltage smaller than o.77v will cause

a write fault.

 Fig 4.14(b) is the layout photograph of a conventional register

file cell, whose area is much bigger than ours, shown in Fig 4.14(a).

The total area of a conventional register file including cell array,

decoders, and control circuit is about 623 x 508 µm
2
. The total area

of this work is 426 x 219 µm
2
. It can save 70.4% area comparing with

conventional register file, as shown in Fig. 4.15(a).

 In pre-simulation, the average active power of this work is 6.7mW

at 500MHz with 1.0v when conventional register file consumes 14.9

 - 65 -

uW. Comparing with conventional register file, this work can save

55.1% power consumption, as shown in Fig. 4.15(b).

Fig. 4.13 A 4W/4R register file cell.

Fig 4.14. Layout photograph of register file cell. (a) A 1W/1R

register file cell. (b) A 4W/4R register file cell.

 - 66 -

4.5 The post-simulations

A dual thread 64 x 64 bits register file with the proposed low

power techniques is implemented in UMC 90um CMOS technology. Its

simulation result is shown in Table 4.1. Operating voltage range

is between 1.0v and 0.5v. It can operate up to 204MHz at 0.5v and

consumes 197.51µW read power and 175.77µW write power at 50MHz with

0.5v. It consumes 3.62mW read power and 3.04mW write power at 250MHz

with 1.0v. Fig. 4.16 shows the layout photograph of the proposed

register file.

Technology 90nm UMC CMOS

Configuration Dual thread 4W/4R 64 x 64 bits

area 426 x 219 µm
2

Power supply 0.5v 1.0v

Frequency 50MHz 250MHz

Read power 197.51µW 3.62mW

Write power 175.77µW 3.04 mW

Access time 10.42ns 2.70ns

Table 4.1 Register file simulation result

0

0.2

0.4

0.6

0.8

1

1.2

1 2

ar
ea

 (
no

rm
al

iz
ed

)

1

2

0

2

4

6

8

10

12

14

16

1 2

po
w

er
 (
m

W
)

1

2

Fig 4.15 The comparison between this work and conventional design

(a) area (b) power consumption.

 - 67 -

4.6 Conclusion

The decoder is separated into a row decoder and a block decoder.

When a block is unused, it can be disabled by turning off the switch

of block decoder to save power. Logical Effort technique helps

determine transistor sizes for speed being an objective function.

The timing control circuit design which control the register file

to operate rightly at all process corners and the wide range of

Vdd from 0.5v to 1.0v is discussed in this chapter.

The dual thread 64 x 64 bits register file implemented in UMC 90um

CMOS technology consumes around 197.51µW to 175.77µW at 50MHz with

0.5v and consumes around 3.62mW to 3.04mW at 250MHz with 1.0v.

426.25 µm
2
1
9
.6

6
 µ

m Write decoder
&

Write replica
circuit

Read decoder
&

Read replica
circuit

Cell arrays

bank1

bank2

bank3

bank4

Output circuit

Input circuit

Fig. 4.16 Layout photograph of the dual thread 64 x 64 bits register

file.

 - 68 -

Chapter 5

Multithreading and Multi-core systems

5.1 Different type of Register file

organizations

Register files are not only the storage elements but also the

communicational component. For multi-port register files above a

threshold size, the area of the communication switch dominates the

area of the register file. This section recognizes the ways to

rearrange and decouple the storage and communication of register

files.

5.1.1 Clustered architecture

The scheme, used in the Alpha 21264 [5.1] and 21464 [5.2] designs,

consists of dividing the functional units among two clusters and

providing a copy of all registers in each cluster. This approach

halves the number of read ports required on each copy of the register

file, but requires the same number of write ports on both register

files to allow values produced in one cluster to be made available

in the second cluster.

An extension of this approach is to develop a clustered

architecture that divides the registers among a number of clusters

[5.3], [5.4], [5.5], [5.6], [5.7]. Clustered architectures also

allow the instruction window to be divided among clusters and have

the potential to scale to larger issue widths at high clock

frequencies. The number of write and read ports on each individual

physical register and the overall complexities of the physical

 - 69 -

register file, the bypass network and the wake-logic are decreased.

For example, a 4 -cluster architecture is shown in Fig. 5.1.

Compared with a conventional superscalar architecture (Fig. 5.1(b)),

the 4-cluster architecture presents a major difference: any

physical register is connected with only half of the functional

unit entries and can be written by only one fourth of the functional

units.

However, Clustered architecture requires inter-cluster

communication when a value is needed from a different cluster. The

primary disadvantages of a clustered architecture are the

complexity of the inter-cluster control logic and the additional

area required to achieve performance similar to a centralized

architecture.

Fig. 5.1 Monolithic versus clustered register file organization

Register File

Functional Units

FU0 FU1 FU2 FU3

Register

File0

Register

File1

Register

File2

Register

File3

(a) Monolithic register file (b) Clustered register file

 - 70 -

5.1.2 Duplicated Register File

 In SMT microprocessor, access time of register file is crucial

part in instruction latency. It will increase as the size and ports

of register file increase.

 In [5.8], a new kind of Duplicated register file architecture

is proposed for embedded SMT microprocessor. The Duplicated

register file architecture distributes read ports to each local

function unit, which reduce access time by reducing read ports of

each Duplicated register file. Each copy of Duplicated register

file has the same size, the same number of ports and the same contents.

Each function unit writes its results to all Duplicated register

files simultaneously and does not need to synchronize the different

Duplicated register files.

As a result, it does not need communication between different

clusters if some function unit tries to use value generated by other

Fig. 5.2 4-thread, 2-read, 6-write, full-duplicate register

file architecture.

 - 71 -

function units. So, this kind of Duplicated register file

architecture has dual functions: storage and communication.

Fig. 5.2 shows 6-duplicate (full-duplicate) register file

architecture. Total area of all is larger than a central register

file, but the access time become lesser.

The access time of Duplicated register files become lesser.

However, total area and power consumption of all Duplicated register

files is larger than a central register file.

5.1.3 Multilevel Register File

Fig. 5.3 Multilevel register file (register file cache)

 - 72 -

Registers are cached to reduce average access latency in [5.9],

[5.10]. A processor needs many physical registers. However, a very

small number are actually required from a register file at a given

moment.

 A multilevel register file architecture consists of several

levels of physical registers with a heterogeneous organization.

Each level may have a different number of registers, a different

number of ports and a different access time.

In a multi-level organization, the functional units can only

obtain the source operands from the uppermost level directly. A

subset of registers in the lower levels are cached in the upper

levels depending on the expectations of being required in the near

future. Results are always written to the lowest level, which

contains all the values, and optionally to upper levels if they

are expected to be useful in the near future.

A bank at the upper level of a register file cache can has many

ports but few registers, which may result in a single-cycle access

time. Banks at the lower levels have many more registers, a somewhat

lower number of ports, and may have an increased latency. A more

aggressive fetching mechanism could prefetch the values before they

are required. Like in cache memories, prefetching must be carefully

implemented to prevent premature or unnecessary fetching from

polluting the upper levels. In general, prefetching can be

implemented by software or hardware schemes.

It is a critical issue for the approach to deciding which values

are cached in the upper level of the hierarchy. Like in cache

memories, upper levels should contain those values that are more

likely to be accessed in the near future. However, the locality

properties of registers and memory are very different. First of

all, registers have a much lower temporal re-use. In fact, most

 - 73 -

physical registers are read only once, and there is even a

significant percentage that are never read. Spatial locality is

also rare, since physical register allocation and register

references are not correlated at all.

 Register caches have much worse locality than conventional data

caches. Therefore, register caching can add considerable control

complexity to an architecture and determining the appropriate

values to cache is nontrivial.

5.1.4 One-Level Less-Port register file

Architecture

Using a less-ported structure and only allowing necessary

register file read accesses reduce the register file’s area, energy,

and access time. The designs in [5.11], [5.12], [5.13] do not use

banked reads to avoid increasing the complexity of the select logic.

[5.12] propose two techniques to reduce the number of register

ports without impacting performance. First, a small memory

structure is added, the delayed write-back queue. To access the

write-back queue instead of accessing the register file can reduce

the access frequency of register file. In addition, the results

is written back both in the register file and the write-back queue

concurrently to avoid consistency problems during renaming.

Second, it proposed the technique to reduce the number of read

ports by pre-fetching ready operands employs an operand pre-fetch

buffer to store the pre-fetched operands, and a status bit, the

pre-fetch flag, in the instruction queue entry to specify whether

the operand is in the pre-fetch buffer or the register file.

There are two options for reducing demand for read ports in [5.11].

The first option is straightforward and identifies bypass operands

 - 74 -

in an extra pipeline stage inserted between out-of-order issue and

register read. Second, a novel technique, bypass hint, is proposed.

However, the select logic still has to select no more instructions

than the number of available read ports after considering the bypass

hint bits [5.11] or the prefetch flags [5.12]. [5.13] presents a

novel register file architecture, which has single ported cells

and asymmetric interfaces to the memory and to the datapath.

 A high number of ports has a negative impact on the energy

efficiency of register files. Traditionally, this problem is

addressed through various clustering techniques that partition (or

bank) the RF. However, as partitions get smaller the cost of

inter-cluster copies quickly grows and the resulting register files

are still multi-ported. For high energy efficiency, it is preferable

that the registers be single ported.

Fig. 5.4. Very Wide Register Organization

 - 75 -

 By making wide memories, related blocks of data can be loaded

in parallel, thereby reducing the decoder overhead. This requires

the bus between the memories and the register file to be wide as

well.

 Three aspects are important in the proposed organization: the

interface to the memory, single ported cells and the interface to

the datapath. The interface of this foreground memory organization

is asymmetric: wide towards the memory and narrower towards the

datapath.

A set of Very Wide Registers (VWR), with a single port each is

used to replace a traditional register file. Every single VWR is

made of single ported cells and it has no pre-decode circuit. A

post-decode circuit consisting of a multiplexer is provided to

select the appropriate word(s).

 The asymmetric interface of the VWR, having a wide connection

to the memory (width is complete row of the scratchpad) and a narrow

connection of one word wide to the datapath, results in the following

mode of operation: a complete row of the scratchpad is copied to

the VWR at once, using a LOAD row., this scheme can save a lot of

power in compared to a clustered VLIW register file.

5.2 Multithreading

 Servers equipped with more powerful and power-hungry processors

to meet higher computational demands are pushing the power and

cooling capabilities of these datacenters to their limits,

resulting in increased operating costs and decreased system

reliability. Therefore, achieving high performance while

maintaining existing power and thermal envelopes requires that

microprocessor designs focus not only on performance but rather

on the aggregate performance per watt.

 - 76 -

Multithreading allows multiple threads to share the functional

units of a single processor in an overlapping fashion. To permit

this sharing, the processor must duplicate the independent state

of each thread. For example, a separate copy of the register file,

a separate PC, and a separate page table are required for each thread.

The memory itself can be shared through the virtual memory

mechanisms, which already support multiprogramming. In addition,

the hardware must support the ability to change to a different thread

relatively quickly; in particular, a thread switch should be much

more efficient than a process switch, which typically requires

hundreds to thousands of processor cycles.

Fig. 5.5 How four threads use the issue slots of a superscalar

processor in different approaches.

 - 77 -

The top portion of Fig. 5.5 shows how four threads would execute

independently on a superscalar with no multithreading support. In

the superscalar without multithreading support, the use of issue

slots is limited by a lack of instruction-level parallelism. In

addition, a major stall, such as an instruction cache miss, can

leave the entire processor idle. The bottom of Fig. 5.5 shows the

three multithreaded categories including of Fine-grained,

Coarse-grained, and Simultaneous multithreading.

5.2.1 Fine-grained multithreading

Fine-grained multithreading switches between threads on each

instruction, resulting in interleaved execution of multiple threads.

This interleaving is often done in a round-robin fashion, skipping

any threads that are stalled at that time. To make fine-grained

multithreading practical, the processor must be able to switch

threads on every clock cycle.

One key advantage of fine-grained multithreading is that it can

hide the throughput losses that arise from both short and long stalls,

since instructions from other threads can be executed when one

thread stalls. The primary disadvantage of fine grained

multithreading is that it slows down the execution of the individual

threads, since a thread that is ready to execute without stalls

will be delayed by instructions from other threads.

In the fine-grained case, the interleaving of threads eliminates

fully empty slots. Because only one thread issues instructions in

a given clock cycle, however, instruction-level parallelism

limitations still lead to a significant number of idle slots within

individual clock cycles.

5.2.2 Coarse-grained multithreading

 - 78 -

Coarse-grained multithreading was invented as an alternative to

fine-grained multithreading. Coarse-grained multithreading

switches threads only on costly stalls, such as level 2 cache misses.

This change relieves the need to have thread switching be

essentially free and is much less likely to slow down the execution

of an individual thread, since instructions from other threads will

only be issued when a thread encounters a costly stall.

Coarse-grained multithreading suffers, however, from a major

drawback: It is limited in its ability to overcome throughput losses,

especially from shorter stalls. This limitation arises from the

pipeline start-up costs of coarse-grained multithreading. Because

a CPU with coarse grained multithreading issues instructions from

a single thread, when a stall occurs, the pipeline must be emptied

or frozen. The new thread that begins executing after the stall

must fill the pipeline before instructions will be able to complete.

Because of this start-up overhead, coarse-grained multithreading

is much more useful for reducing the penalty of high-cost stalls,

where pipeline refill is negligible compared to the stall time.

In the coarse-grained multithreaded superscalar, the long stalls

are partially hidden by switching to another thread that uses the

resources of the processor. Although this reduces the number of

completely idle clock cycles, within each clock cycle, the

instruction-level parallelism limitations still lead to idle cycles.

Furthermore, in a coarse-grained multithreaded processor, since

thread switching only occurs when there is a stall and the new thread

has a start-up period, there are likely to be some fully idle cycles

remaining.

5.2.3 Simultaneous multithreading

 - 79 -

Simultaneous multithreading (SMT) is a variation on

multithreading that uses the resources of a multiple-issue,

dynamically scheduled processor to exploit thread-level

parallelism at the same time it exploits instruction-level

parallelism.

The key insight that motivates SMT is that modern multiple-issue

processors often have more functional unit parallelism available

than a single thread can effectively use. Furthermore, with register

renaming and dynamic scheduling, multiple instructions from

independent threads can be issued without regard to the dependences

among them; the resolution of the dependences can be handled by

the dynamic scheduling capability.

In the SMT case, thread-level parallelism (TLP) and

instruction-level parallelism (ILP) are exploited simultaneously,

with multiple threads using the issue slots in a single clock cycle.

Ideally, the issue slot usage is limited by imbalances in the

resource needs and resource availability over multiple threads.

In practice, other factors—including how many active threads are

considered, finite limitations on buffers, the ability to fetch

enough instructions from multiple threads, and practical

limitations of what instruction combinations can issue from one

thread and from multiple threads—can also restrict how many slots

are used. Although Fig. 5.5 greatly simplifies the real operation

of these processors, it does illustrate the potential performance

advantages of multithreading in general and SMT in particular.

As mentioned earlier, simultaneous multithreading uses the

insight that a dynamically scheduled processor already has many

of the hardware mechanisms needed to support the integrated

exploitation of TLP through multithreading. In particular,

dynamically scheduled superscalar processors have a large set of

registers that can be used to hold the register sets of independent

 - 80 -

threads (assuming separate renaming tables are kept for each

thread).

Because register renaming provides unique register identifiers,

instructions from multiple threads can be mixed in the data path

without confusing sources and destinations across the threads.

This observation leads to the insight that multithreading can be

built on top of an out-of-order processor by adding a per-thread

renaming table, keeping separate PCs, and providing the capability

for instructions from multiple threads to commit. There are

complications in handling instruction commit, since we would like

instructions from independent threads to be able to commit

independently. The independent commitment of instructions from

separate threads can be supported by logically keeping a separate

reorder buffer for each thread.

There is a variety of other design challenges for an SMT processor.

First, dealing with a larger register file needed to hold multiple

contexts. Second, maintaining low overhead on the clock cycle,

particularly in critical steps such as instruction issue, where

more candidate instructions need to be considered, and in

instruction completion, where choosing what instructions to commit

may be challenging. Third, ensuring that the cache conflicts

generated by the simultaneous execution of multiple threads do not

cause significant performance degradation.

In viewing these problems, two observations are important. First,

in many cases, the potential performance overhead due to

multithreading is small, and simple choices work well enough. Second,

the efficiency of current super scalars is low enough that there

is room for significant improvement, even at the cost of some

overhead. SMT appears to be the most promising way to achieve that

improvement in throughput.

 - 81 -

5.3 Multiprocessors

Computer performance has been driven largely by decreasing the

size of chips while increasing the number of transistors they

contain. In accordance with Moore’s law, this has caused chip speeds

to rise and prices to drop. This ongoing trend has driven much of

the computing industry for years.

However, transistors can’t shrink forever. Even now, as

transistor components grow thinner, chip manufacturers have

struggled to cap power usage and heat generation, two critical

problems. Even performance-enhancing approaches like running

multiple instructions per thread have bottomed out.

For these reasons, processor performance increases have begun

slowing. Chip performance increased 60 percent per year in the 1990s

but slowed to 40 percent per year from 2000 to 2004, when performance

increased by only 20 percent.

Manufacturers are building chips with multiple cooler-running,

more energy-efficient processing cores instead of one increasingly

powerful core. The multicore chips don’t necessarily run as fast

as the highest performing single-core models, but they improve

overall performance by handling more work in parallel.

Current transistor technology limits the ability to continue

making single processor cores more powerful. For example, as a

transistor gets smaller, the gate, which switches the electricity

on and off, gets thinner and less able to block the flow of electrons.

Thus, small transistors tend to use electricity all the time, even

when they aren’t switching. This wastes power. Also, increasing

clock speeds causes transistors to switch faster and thus generate

more heat and consume more power. However, this approach can’t keep

 - 82 -

pace with processors’ increasing power and heat build up.

These and other challenges have hurt manufacturers’ plans for new,

faster single-core processors. For example, Intel cancelled two

next-generation Pentium 4 processors last year, noted Jeff Austin,

the company’s desktop product manager. Intel also postponed and

then cancelled a 4-GHz, current generation Pentium. And IBM could

build so few of its G5 chips that Apple Computer had to delay last

year’s introduction of its new iMac G5 desktop, which uses the

processor.

Commercial multiprocessors and clusters usually define high

performance as high throughput for independent tasks. This

definition is in contrast to running a single task on multiple

processors. The term parallel processing program is used to refer

to a single program that runs on multiple processors simultaneously.

5.3.1 Multicore architecture and communication

To parallel processors share data, processors with a shared-

memory offer the programmer a single memory address space that all

processors share, as shown in Fig. 5.6. Processors communicate

through shared variables in memory, with all processors capable

of accessing any memory location via loads and stores.

As processors operating in parallel will normally share data, they

also need to coordinate when operating on shared data; otherwise,

one processor could start working on data before another is finished

with it. This coordination is called synchronization. When sharing

is supported with a single address space, there must be a separate

mechanism for synchronization. One approach uses a lock. Only one

processor at a time can acquire the lock, and other processors

interested in shared data must wait until the original processor

unlocks the variable.

 - 83 -

Single address space multiprocessors come in two styles. The first

takes the same time to access main memory no matter which processor

requests it and no matter which word is requested. Such machines

are called uniform memory access (UMA) multiprocessors or symmetric

multiprocessors (SMP). In the second style, some memory accesses

are faster than others depending on which processor asks for which

Fig. 5.7 The structure of a distributed-memory multiprocessor.

I/O

Processor 0
+ cache

Memory

Interconnection network

Processor 1
+ cache

Memory

Processor 2
+ cache

Memory

Processor n
+ cache

Memory
I/O I/O I/O

Processor 0

One or more

levels of cache

Processor 1

One or more

levels of cache

Processor 2

One or more

levels of cache

Processor n

One or more

levels of cache

Main memory I/O system

Fig. 5.6 The structure of a centralized shared-memory

multiprocessor.

 - 84 -

word. Such machines are called nonuniform memory access (NUMA)

multiprocessors. As you might expect, the programming challenges

are different for a NUMA multiprocessor versus a UMA multiprocessor,

but NUMA machines can scale to larger sizes and hence are potentially

higher performance.

The alternative model for communicating uses message passing for

communicating among processors. Message passing is required for

machines with private memories, in contrast to shared memory. One

example is a distributed-memory scheme, as shown in Fig. 5.7. The

processors in different desktop computers communicate by passing

messages over a local area network. Provided the system has routines

to send and receive messages, coordination is built in with message

passing since one processor knows when a message is sent, and the

receiving processor knows when a message arrives. The receiving

processor can then send a message back to the sender saying the

message has arrived if the sender needs that confirmation.

 - 85 -

The Niagara2 from Sun Microsystems is the processor based on the

multi-threading architecture [5.14]. The chip has eight SPARC Cores,

a 4 MB shared Level2 cache, and supports concurrent execution of

64 threads. The Level2 cache is divided into eight banks. The SPARC

Cores communicate with the Level2 cache through a crossbar. The

block diagram of Niagara2 SPARC processor is shown in Fig. 5.8.

 Fig. 5.9 shows the Niagara2 Crossbar (CCX) which serves as a high

bandwidth interface between the eight SPARC Cores and the eight

L2 cache banks, and the non-cacheable unit (NCU). CCX consists of

two blocks: PCX and CPX. PCX (Processor-to-Cache -Transfer) is a

multiplexer which transfers data from the eight SPARC cores to the

eight L2 cache banks and the NCU. CPX (Cache-to-Processor Transfer)

transfers data in the reverse direction. The PCX and CPX combined

provide a Read/Write bandwidth of 270 GB/s. All crossbar data

transfer requests are processed using a four-stage pipeline. The

pipeline stages are: Request, Arbitration, Selection, and

Transmission.

Fig. 5.8 Processor block diagram of Niagara2 SPARC processor

Core 0

Crossbar

switch

L2 Bank 0

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

L2 Bank 1

L2 Bank 2

L2 Bank 3

L2 Bank 4

L2 Bank 5

L2 Bank 6

L2 Bank 7

To

memory

To

memory

To

memory

To

memory

To

memory

To

memory

To

memory

To

memory

 - 86 -

5.4 Conclusion

 There are several register file organizations according to

different system architecture. Different architectures of register

file are discussed in this chapter. Clustered architecture can

decrease port number but need complex control logic. Register file

cache reduces access latency. However, Register caches have much

worse locality than conventional data caches. Therefore, register

caching can add considerable control complexity to architecture.

 To increase the utility rate of function units and to achieve high

performance while maintaining existing power, the concept of

multithreading and multiprocessors is introduced.

Fig. 5.9 The Niagara2 Crossbar

 - 87 -

Chapter 6

Conclusion

To reduce power consumption is an important topic for discussion

when more and more portable devices are desired. Register file

represent a substantial portion of power and area in modern

processors. However, the conventional design of a register file

with fully-ports causes problems such as enlargement of chip size,

high power consumption and deterioration of register access speed.

To avoid the serious problem, a low power banking multithread

register file implemented by four interleaved banks with lesser

ports is presented. Timing sharing access scheme is used to ease

the performance degraded by bank conflict.

We use additional address bit as thread number to switch between

two threads. This method would increase some area penalty of

decoders, but impact performance slightly.

In order to design this low power multiple port register file,

several low power techniques are proposed, such as floating bitline

architecture, and divide bitline architecture. The register file

can operate correctly in wide range of voltage supply from 0.5v

to 1.0v. To operate correctly under all process corners and the

wide range of Vdd, the design of timing control circuit is very

important.

The dual thread 64 x 64 bits register file implemented in UMC 90um

CMOS technology consumes around 215.51µW to 197.77µW at 50MHz with

0.5v and consumes around 3.62mW to 3.04mW at 250MHz with 1.0v.

In the future, this work can use dual-Vdd technology, using Higher

Vdd in critical path to better performance and using lower Vdd in

 - 88 -

non-critical path to save power. The lowest supply voltage of this

work is 0.5v, a subthreshold register file can be implemented

hereafter for ultra low power application. A power management

circuit can also be added to this work.

 - 89 -

Bibliography

Reference of Chapter 1

[1.1] Jessica H. Tseng, and Krste Asanovic, “A Speculative Control Scheme for an

Energy-Efficient Banked Register File ”，IEEE Transactions on Computers, Vol. 54,

No. 6, pp. 741 - 751,June 2005.

[1.2] Eric S. Fetzer, David Dahle, Casey Little, and Kevin Safford,” The Parity Protected,

Multithreaded Register Files on the 90-nm Itanium Microprocessor,” J. Solid-State

Circuits, vol. 41, no. 1, Jan. 2006.

 - 90 -

Reference of Chapter 2

[2.1] M. Horowitz et al., “Scaling, power, and the future of CMOS,” in IEDM Tech. Dig.,

Dec. 2005, pp. 9–15.

[2.2] C.-H. Jan et al., “A 65 nm ultra low power logic platform technology using uni-axial

strained silicon transistors,” in IEDM Tech. Dig., Dec. 2005, pp. 60–63.

[2.3] S. Narendra, S. Borkar, V. De, D. Antoniadis, and A. Chandrakasan, “Scaling of stack

effect and its application for leakage reduction,” in Proc. IEEE Int. Symp. Low Power

Electron. Des., 2001, pp. 192–200.

[2.4] Jessica H. Tseng, and Krste Asanovic, “A Speculative Control Scheme for an

Energy-Efficient Banked Register File ”，IEEE Transactions on Computers, Vol. 54,

No. 6, pp. 741 - 751,June 2005.

[2.5] T. Ghani et al., “Scaling challenges and device design requirements for high

performance sub-50 nm gate length planar CMOS transistors,” in VLSI Symp. Tech.

Dig., Jun. 2000, pp. 174–175.

[2.6] Y. Taur and E. Nowak, “CMOS devices below 0.1 µm: How high will performance

go?” in IEDM Tech. Dig., Dec. 1997, pp. 215–218.

[2.7] A. Agarwal, L. Hai, and K. Roy, “A single-V low-leakage gated-ground cache for

deep submicron,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 319–328, Feb. 2003.

[2.8] K. Kanda, K. Sadaaki, and T. Sakurai, “90% write power-saving SRAM using

sense-amplifying memory cell,” IEEE J. Solid State Circuits, vol. 39, no. 6, pp.

927–933, Jun. 2004.

[2.9] K. Zhang, U. Bhattacharya, Z. Chen, F. Hamzaoglu, D. Murray, N. Vallepalli,

Y.Wang, B. Zheng, and M. Bohr, “SRAM design on 65-nm CMOS technology with

dynamic sleep transistor for leakage reduction,” IEEE J. Solid State Circuits, vol. 40,

no. 4, pp. 895–901, Apr. 2005.

[2.10] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy caches:

Simple techniques for reducing leakage power,” in Proc. 29th IEEE Ann. Int. Symp.

Comput. Arch., 2002, pp. 148–157.

[2.11] H. Qin, Y. Cao,D. Markovic, A. Vladimirescu, and J. Rabaey, “SRAM leakage

suppression by minimizing standby supply voltage,” in Proc. 5th IEEE Int. Symp.

Quality Electron. Des., 2004, pp. 55–60.

[2.12] K. Nii, Y. Tsukamoto, T. Yoshizawa, S. Imaoka, Y. Yamagami, T.Suzuki, A.

Shibayama, H. Makino, and S. Iwade, “A 90-nm low-power 32-kB embedded SRAM

 - 91 -

with gate leakage suppression circuit for mobile applications,” IEEE J. Solid-State

Circuits, vol. 39, no. 4, pp.684–693, Apr. 2004.

[2.13] K. Kanda, T. Miyazaki, M. K. Sik, H. Kawaguchi, and T. Sakurai, “Two orders of

magnitude leakage power reduction of low voltage SRAM’s by row-by-row dynamic

V control (RRVD) scheme scheme,” in Proc. 15th IEEE Ann. Int. ASIC/SOC Conf.,

2002, pp. 381–385.

[2.14] H. Kawaguchi, Y. Itaka, and T. Sakurai, “Dynamic leakage cut-off scheme for

low-voltage SRAM’s,” in Dig. Tech. Papers IEEE Symp. VLSI Circuits, 1998, pp.

140–141.

[2.15] C. H. Kim and K. Roy, “Dynamic SRAM leakage tolerant cache memory for low

voltage microprocessors,” in Proc. IEEE Int. Symp.Low Power Electron. Des., 2002,

pp. 251–254.

[2.16] K. Nii, H. Makino, Y. Tujihashi, C. Morishima, Y. Hayakawa, H.Nunogami, T.

Arakawa, and H. Hamano, “A low power SRAM using auto-backgate-controlled

MT-CMOS,” in Proc. IEEE Int. Symp. Low Power Electron. Des., 1998, pp. 293–297.

[2.17] S. Heo, K. Barr, M. Hampton, and K. Asanovic, “Dynamic fine-grain leakage

reduction using leakage-biased bitlines,” in Proc. 29th IEEE Ann. Int. Symp. Comput.

Arch., 2002, pp. 137–147.

[2.18] K. Itoh, A. R. Fridi, A. Bellaouar, and M. I. Elmasry, “A deep sub-V, single

power-supply SRAM cell with multi-VT, boosted storage node and dynamic load,” in

Dig. Tech. Papers IEEE Symp. VLSI Circuits, 1996, pp. 132–133.

[2.19] A. Agarwal, H. Li, and K. Roy, “A single-Vt low-leakage gated-ground cache for

deep submicron,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 319–328, Feb. 2003.

[2.20] A. Bhavnagarwala, S. V. Kosonocky, M. Immediato, D. Knebel, and A.-M. Haen, “A

pico-joule class, 1 GHz, 32 kB × 64 b DSP SRAM with self reverse bias,” in Proc.

Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2003, pp. 251–252.

[2.21] K. Zhang et al., “SRAM design on 65-nm CMOS technology with dynamic sleep

transistor for leakage reduction,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp.

895–901, Apr. 2005.

[2.22] M. Khellah et al., “A 256-Kb dual-VCC SRAM building block in 65-nm CMOS

process with actively clamped sleep transistor,” IEEE J. Solid- State Circuits, vol. 42,

no. 1, pp. 233–242, Jan. 2007.

[2.23] M. Yamaoka, K. Osada, and K. Ishibashi, “0.4-V logic-library- friendly SRAM array

using rectangular-diffusion cell and delta-boosted-array voltage scheme,” IEEE J.

 - 92 -

Solid-State Circuits, vol. 39, no. 6, pp. 934–940,Jun. 2004.

[2.24] K. Zhang et al., “A 3-GHz 70-Mb SRAM in 65-nm CMOS technology with

integrated column-based dynamic power supply,” IEEE J. Solid-State Circuits, vol. 41,

no. 1, pp. 146–151, Jan. 2006.

[2.25] M. Yamaoka, K. Osada, K. Itoh, R. Tsuchiya, and T. Kawahara, “Dynamic-Vt,

dual-power-supply SRAM cell using D2G-SOI for low-power SoC application,” in

Proc. IEEE Int. SOI Conf., Oct. 2004, pp. 109–111.

[2.26] M. Khellah et al., “A 256-Kb dual-VCC SRAM building block in 65-nm CMOS

process with actively clamped sleep transistor,” IEEE J. Solid-State Circuits, vol. 42,

no. 1, pp. 233–242, Jan. 2007.

[2.27] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi, “Reducing the Complexity

of the Register File in Dynamic Superscalar Processors,” Proc. 34th Ann. IEEE/ACM

Int’l Symp. Microarchitecture (MICRO-34), Dec. 2001.

[2.28] S. Wallace and N. Bagherzadeh, “A Scalable Register File Architecture for

Dynamically Scheduled Processors,” Proc. Int’l Conf. Parallel Architectures and

Compilation (PACT), Oct. 1996.

[2.29] E. Borch, E. Tune, S. Manne, and J.S. Emer, “Loose Loops Sink Chips,” Proc. High

Performance Computer Architecture (HPCA), pp. 299-310, Feb. 2002.

[2.30] Tadashi Saito, et al, “Design of superscalar processor with multi-bank register file,”

ISCAS, Vol.4, 2005.

[2.31] T. Saito, M. Maeda, T. Hironaka, K. Tanigawa, T. Sueyoshi, K. Aoyama, T.

Koide, H.J. Mattausch, “Design of superscalar processor with multi-bank register file”

ISCAS, vol. 4 pp.3507 – 3510, 2005.

[2.32] T. Monreal, V. Vinals, J. Gonzalez, A. Gonzalez, M. Valero, “Late allocation and

early release of physical registers,” IEEE Transactions on Computers, Vol. 53, no. 10,

pp.1244-1259, Oct. 2004.

[2.33] Rakesh Nalluri, Rohan Garg, Preeti Ranjan Panda, “Customization of Register File

Banking Architecture for Low Power,” 20th VLSID, pp. 239-244, 2007.

[2.34] Shuai Wang, Hongyan Yang, Jie Hu, Sotirios G. Ziavras, “Asymmetrically banked

value-aware register files for low-energy and high-performance,” Microprocessors &

Microsystems, Vol. 32 , no. 3, pp. 171-182, 2008.

[2.35] Kevin Zhang, Fatih Hamzaoglu, “Low-Power SRAMs in Nanoscale CMOS

Technologies,” IEEE Transactions on Electron Devices, vol. 55, no. 1, Jan 2008.

[2.36] Fabio Frustaci, Pasquale Corsonello, Stefania Perri, and Giuseppe Cocorullo,

 - 93 -

“Techniques for Leakage Energy Reduction in Deep Submicrometer Cache

Memories,” IEEE Transactions on Very Large Scale Integration (VLSI) SYSTEMS,

Vol. 14, No. 11, Nov. 2006.

 - 94 -

Reference of Chapter 3

[3.1] Eric S. Fetzer, David Dahle, Casey Little, and Kevin Safford,” The Parity Protected,

Multithreaded Register Files on the 90-nm Itanium Microprocessor,” J. Solid-State

Circuits, vol. 41, no. 1, Jan. 2006.

[3.2] Benton Highsmith Calhoun,, and Anantha P. Chandrakasan,” A 256-kb 65-nm

Sub-threshold SRAM Design for Ultra-Low-Voltage Operation,” J. Solid-State

Circuits, Vol. 42, no. 3, March 2007.

[3.3] Jinhui Chen, Lawrence T. Clark, and Tai-Hua Chen,” An Ultra-Low-Power Memory

With a Subthreshold Power Supply Voltage,” J. Solid-Sate Circuits, Vol. 41, no. 10,

Oct 2006.

[3.4] Fabio Frustaci, Pasquale Corsonello, Stefania Perri, and Giuseppe Cocorullo,

“Techniques for Leakage Energy Reduction in Deep Submicrometer Cache

Memories,” IEEE Transactions on Very Large Scale Integration (VLSI) SYSTEMS,

Vol. 14, No. 11, Nov. 2006.

[3.5] Terence B. Hook, Matt Breitwisch, Jeff Brown, P. Cottrell,Dennis Hoyniak, Chung

Lam, and Randy Mann, “Noise Margin and Leakage in Ultra-Low Leakage SRAM

Cell Design,” IEEE Transactions on Electron Devices, Vol. 49, no. 8, August 2002.

[3.6] EVERT SEEVINCK, FRANS J. LIST, AND JAN LOHSTROH,” Static-Noise Margin

Analysis of MOS SRAM Cells,” J. Solid-Sate Circuits, vol. SC-22, no. 5, Oct 1987.

[3.7] Evelyn Grossar, Michele Stucchi, Karen Maex, Member, and Wim Dehaene,” Read

Stability and Write-Ability Analysis of SRAM Cells for Nanometer Technologies,” J.

Solid-Sate Circuits, Vol. 41, no. 11, Nov. 2006.

[3.8] Satoshi Ishikura, et al, “A 45 nm 2-port 8T-SRAM Using Hierarchical Replica Bitline

Technique With Immunity From Simultaneous R/W Access Issues,” J. Solid-Sate

Circuits, Vol. 43, no. 4, Apr. 2008.

[3.9] Kanak Agarwal, and Sani Nassif,” The Impact of Random Device Variation on SRAM

Cell Stability in Sub-90-nm CMOS Technologies,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, Vol. 16, No. 1, Jan. 2008.

[3.10] Stefan Cosemans, Wim Dehaene, and Francky Catthoor,” A Low-Power Embedded

SRAM for Wireless Applications,” J. Solid-Sate Circuits, Vol. 42, No. 7, July 2007.

 - 95 -

Reference of Chapter 4

[4.1] Shrirang K. Karandikar and Sachin S. Sapatnekar, “Technology Mapping Using

Logical Effort for Solving the Load-Distribution Problem” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 1, pp.45-58,

January 2008.

[4.2] A. Kabbani, D. Al-Khalili, and A. J. Al-Khalili, “Logical Path Delay Distribution And

Transistor Sizing,” IEEE-NEWCAS Conference, pp. 391 - 394, June 2005.

[4.3] Benoit Lasbouygues, Sylvain Engels, Robin Wilson,” Logical Effort Model Extension

to Propagation Delay Representation,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 25, no. 9, SEPTEMBER 2006.

[4.4] Toshikazu SUZUKI, Yoshinobu YAMAGAMI, Ichiro HATANAKA, Akinori

SHIBAYAMA, Hironori AKAMATSU, and Hiroyuki YAMAUCHI, “0.3–1.5V

Embedded SRAM Core withWrite-Replica Circuit Using Asymmetrical Memory Cell

and Source-Level-Adjusted Direct- Sense-Amplifier”, IEICE TRANS. ELECTRON.,

vol.E88–C, no.4, pp. 630-638 ,Aprial 2005.

[4.5] Bharadwaj S. Amrutur and Mark A. Horowitz, “A Replica Technique for Wordline

and Sense Control in Low-Power SRAM’s,” IEEE J. Solid-State Circuits, vol. 33, no.

8, Augest 1998.

 - 96 -

Reference of Chapter 5

[5.1] R.E. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, vol. 19, no. 2, pp.

24-36, Mar./Apr. 1999.

[5.2] R.P. Preston et al., “Design of an 8-Wide Superscalar RISC Microprocessor with

Simultaneous Multithreading,” ISSCC Digest and Visuals Supplement, Feb. 2002.

[5.3] G. Sohi, S. Breach, and T.N. Vijaykumar, “Multiscalar Processors,” Proc. 22nd Int’l

Symp. Computer Architecture (ISCA-22), 1995.

[5.4] S. Palacharla, N. Jouppi, and J.E. Smith, “Complexity- Effective Superscalar

Processors,” ISCA-24, pp. 206-218, June 1997.

[5.5] K.I. Farkas, P. Chow, N.P. Jouppi, and Z.G. Vranesic, “The Multicluster Architecture:

Reducing Cycle Time through Partitioning,” Proc. 30th Ann. IEEE/ACM Int’l Symp.

Microarchitecture (MICRO-30), pp. 149-159, 1997.

[5.6] V.V. Zyuban and P.M. Kogge, “Inherently Lower-Power High- Performance

Superscalar Architectures,” IEEE Trans. Computers, vol. 50, no. 3, pp. 268-285, Mar.

2001.

[5.7] A. Seznec, E. Toullec, and O. Rochecouste, “Register Write Specialization Register

Read Specialization: A Path to Complexity- Effective Wide-Issue Superscalar

Processors,” Proc. 35th Ann. IEEE/ACM Int’l Symp. Microarchitecture (MICRO-35),

Nov. 2002.

[5.8] Chengjie Zang, S. Imai, S. Kimura, “Duplicated register file design for embedded

simultaneous multithreading microprocessor,” ASIC, 2005. pp. 90-93, Oct. 2005.

[5.9] J.L. Cruz, A. Gonzalez, M. Valero, and N.P. Topham, “Multiple- Banked Register File

Architectures,” Proc. Int’l Symp. Computer Architecture (ISCA-27), pp. 316-325,

2000.

[5.10] E. Borch, E. Tune, S. Manne, and J.S. Emer, “Loose Loops Sink Chips,” Proc. High

Performance Computer Architecture (HPCA), pp. 299-310, Feb. 2002.

[5.11] I. Park, M.D. Powell, and T.N. Vijaykumar, “Reducing Register Ports for Higher

Speed and Lower Energy,” Proc. 35th Ann. IEEE/ ACM Int’l Symp.

Microarchitecture (MICRO-35), Nov. 2002.

[5.12] N.S. Kim and T. Mudge, “Reducing Register Ports Using Delayed Write-Back

Queues and Operand Pre-Fetch,” Proc. 17th Ann. ACM Int’l Conf. Supercomputing

(ICS), pp. 172-182, 2003.

[5.13] p. Raghavan, A. Lambrechts, M. Jayapala, F. Catthoor, D. Verkest, H. Corporaal,

“Very Wide Register: An Asymmetric Register File Organization for Low Power

Embedded Processors,” DATE '07, pp. 1-6, April 2007.

[5.14] Umesh Gajanan Nawathe, Mahmudul Hassan, King C. Yen, Ashok Kumar, Aparna

Ramachandran, and David Greenhill, “Implementation of an 8-Core, 64-Thread,

 - 97 -

Power-Efficient SPARC Server on a Chip,” J. Solid-State Circuits, vol. 43, no. 1,

January 2008.

[5.15] John L. Hennessy, David A. Patterson, Andrea C. Arpaci-Dusseau, Computer

Architecture: A Quantitative Approach, 4th ed., Andrea C. Arpaci-Dusseau, Morgan

Kaufmann, 2007.

[5.16] David A. Patterson, John L. Hennessy, Computer Organization and Design: The

Hardware/software Interface, 3rd ed., John L. Hennessy, Peter J. Ashenden,

Elsevier/Morgan Kaufmann, 2004.

[5.17] Chunqing Wu, Xiangquan Shi, Xuejun Yang, Jinshu Su, “The Impact of Parallel and

Multithread Mechanism on Network Processor Performance,” Grid and Cooperative

Computing (GCC), pp. 236-240, Oct. 2006.

[5.18] Xiaoqi Yang, Qilong Zheng, Guoliang Chen, Shujuan Liu, Jun Luan, “Transactional

Memory Execution for Parallel Multithread Programming without Lock,” PDCAT, pp.

209-216 , 2007.

[5.19] Chang-Hyo Yu, Kyusik Chung, Donghyun Kim, and Lee-Sup Kim, ” An

Energy-Efficient Mobile Vertex Processor With Multithread Expanded VLIW

Architecture and Vertex Caches,” J. Solid-State Circuits, vol. 42, no. 10, Oct. 2007.

[5.20] D. Geer, “Chip makers turn to multicore processors,” Computer, pp. 11-13, May

2005.

[5.21] Naraig Manjikian, “Implementation of Hardware Multithreading in a Pipelined

Processor,” Circuits and Systems, pp. 145-148, June 2006.

 - 98 -

Vita

PERSONAL INFORMATION

Name: U-Chan Kuo

Birth Date: April. 23, 1984

Birth Place: Taipei, Taiwan, R.O.C.

Address: Department of Electronics Engineering

National Chiao Tung University

 1001 Ta-Hsueh Road

 Hsin-chu, Taiwan 30010, R.O.C.

E-Mail Address: kuo001.ee95g@nctu.edu.tw

EDUCATION

B.S. [2006] Department of Electronics Engineering, National Chung-Hsing University.

M.A.[2008] Institute of Electronics, National Chiao-Tung University.

