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低功率時間共享多線程暫存器 

 

學生：郭于玄                     指導教授：黃威教授 

 

國立交通大學電子工程學系電子研究所 

 

摘 要       

 

 

本論文提出一個低功率多線程的暫存器設計。此暫存器被切成數個小區

塊，並且應用了時間共享的機制去增加它的效能。為了節省功率的消耗，

提出了免充電位元線和切割小位元線的方法。而且，此暫存器可以正確操

作在大範圍的工作電壓下，可依效能和功率的要求去做電壓上的調整。此

二線程的暫存器包括了四個存／取埠，每個線程有 64x64 個位元大小，並

以 TSMC 90nm CMOS 的製程技術做設計，實現在 426 x 219 µm
2 的面積上。

它的工作電壓範圍在 0.5 伏到 1.0 伏。當時脈為 50MHz，它工作所消耗的功

率在 215.51 微瓦 和 197.77 微瓦之間。 
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Low Power Timing Sharing Multithreaded Register File  

 

Student : U-Chan Kuo                   Advisors : Prof. Wei Hwang 

 

 

 

Department of Electronics Engineering & Institute of Electronics 

National Chiao-Tung University 

 

 

ABSTRACT 

 

 

A low-power multithreaded register file architecture is proposed. Banking 

architecture and timing sharing access scheme are adopted to reduce the register 

file area and increase its performance. Floating bitline scheme and divide bitline 

is also presented to reduce its active power. Furthermore, the register file 

architecture can be operated at a wide voltage range, and processors would have 

more strategies to adjust their power/performance. A dual-thread 4W/4R 

64x64-bit register file which occupies 426 x 219 µm
2
 silicon area is 

implemented in UMC 90nm CMOS technology. Its operating voltage range is 

between 0.5v and 1.0v. Its active power is around 215.28µW to 197.87µW when 

operating frequency is 50MHz at 0.5v. 
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Chapter 1 

Introduction 

 

A register file is one of the most important components of a 

multithreaded processor. Not only its access time dominates the 

processor speed, but also its area and power are the critical part 

of a processor.  Conventionally, the area of a register file is 

positive to the port number of its cell. Power and access time of 

a register file become worse when its area is increasing. Therefore, 

many technologies have been proposed to reduce the port number of 

a cell, such as banking architecture [1.1].  

 

Otherwise, register allocation for different threads is another 

issue of multithreaded register file design. In some design, such 

as [1.2], multiple cells share the same access port by using a 

multiplexer.  It leads to the capacitance and access time of a 

storages node increasing. A storage node is also affected by noise 

easily. These drawbacks become more serious when the thread number 

increases. 

 

The proposed multithreaded register file adapts banking 

architecture. By using this architecture, the port number of a cell 

is reduced, and area of the register file is also decreasing. However, 

banking architecture leads to access conflicts, and processor 

performance is degraded. In order to ease this drawback, timing 

sharing access scheme is proposed. Additionally, in order to prevent 

drawbacks induced by several cells sharing an access port on a 

bitline, every cell has its own private access port, and additional 

address bit is added as a thread switching signal during access 

operations. 

 

In chapter 3, the architecture of the proposed register file and 
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the low power circuit design techniques are discussed. The stability 

of register cell is also shown in this chapter. In chapter 4, the 

decoder and timing control circuit design are presented. The 

simulation result is shown in the end of chapter 4. Different 

register file designs are discussed in chapter5 before the 

concluding in chapter 6.   
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Chapter 2 

Overview of recent low-power- 

register-file technology 

 

Because more and more portable devices are desired, to reduce power 

consumption is an important topic for discussion. A major factor 

in the weight and size of portable devices is the amount of batteries. 

Battery is directly impacted by the power dissipated of the 

electronic circuits. 

 

Deep sub-micrometer or nanometer CMOS technologies limit dynamic 

energy dissipation. Scaling down the supply voltage and the 

threshold voltage offer a continuously higher level of integration 

and assure high speed. However, the significantly increasing 

subthreshold leakage is a drawback. Therefore, reducing the leakage 

power dissipation, without decreasing performance, is one of the 

major research topics in VLSI design. The design of fast and power 

efficient register file structures has become especially crucial.  

 

Register file represent a substantial portion of power and area 

in modern processors, and are growing rapidly when the instruction 

issue width become wider. The trend toward simultaneous 

multithreading increases register count further. It is a serious 

problem that the area of conventional register file go more than 

quadratic with issue width. When in a conventional multi-port 

register file several data are accessed at the same time, for example, 

N addresses in one cycle, a processor needs N-port memory cells 

with N word-lines and N bitlines.  

 

In this case, the chip size becomes huge because the quantity of 

wiring increases by the square of the number of ports. Therefore, 

design of a register file with many-ports causes problems such as 
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enlargement of chip size, deterioration of register access speed 

and high power consumption. In order to avoid the serious problem 

of area, power, and delay of conventional multiported register file 

design, many techniques have been proposed previously.  

 

One approach divides the physical register file into several 

interleaved banks with fewer ports per bank and retains a 

centralized microarchitecture at the same time. Provided that the 

number of simultaneous accesses to any bank is less than the number 

of ports on each bank, this structure can provide the aggregate 

bandwidth needs of a superscalar machine and significantly reduce 

area compared to a fully multiported register file.  

 

Even though bank conflicts cause a small performance penalty, 

which decrease IPC only by less than 5 % [2.4], the dramatic 

reductions in register file delay and power can potentially be used 

to increase the clock rate and lead to a more complexity- effective 

design. Banked register files are a natural solution to the 

increasing register file demands of simultaneous multithreading 

processors. 

 

2.1 The leakage of a register file cell 

 

When the size of the silicon technology is scaled below 100 nm, 

the transistor OFF-state leakage has started to take away a 

significant portion of the overall power budget in today’s VLSI 

system [2.1].  

 

In the modern low power chip design, one of the major challenges 

is the growing static leakage power. In order to provide improved 

performance and reduced power, transistor threshold voltage (VT), 

gate oxide thickness (Tox), and channel length have been scaled 

along with operating voltage over the last few decades.  
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Scaling of gate oxide thickness also increases the gate leakage. 

Gate leakage is no longer negligible to the overall chip power 

consumption. The power constraint due to the rising gate leakage 

has slowed down the scaling of gate oxide, which has made the control 

of 2-D short-channel effect even more challenging.  

 

 

 

Many advanced channel engineering techniques with optimized halo 

implants have been developed to achieve superior short-channel VT 

control. Traditionally, channel doping concentration is increased 

to raise VT in order to maintain low subthreshold leakage and good 

short-channel control. Unfortunately, the high doping 

concentration near the source and drain areas can lead to a very 

high junction leakage due to the direct band-to-band tunneling 

[2.5].  

 

The increasing of transistor leakage had fueled the need of 

Fig. 2.1. Transistor gate length versus technology nodes for 

high-performance and ULP CMOS technologies. 
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developing low-power process technologies for mobile and handheld 

applications. The allowable power dissipation and, hence, the 

allowable leakage current are limited by battery life. The scaling 

of transistor gate length and Tox of ultra low power technology 

has diverged from high-performance technology in recent generation. 

Figs. 2.1 and 2.2 show the scaling of transistor gate length and 

gate oxide thickness (Tox) versus technology nodes for 

high-performance and ultra low-power (ULP) CMOS technologies. 

 

 

 

In order to achieve the low-power requirement of memory cell for 

portable applications, the ULP-technology platform needs to be 

adopted for its ultra low transistor leakage. Each leakage component, 

including the gate, subthreshold, and junction leakage, is 

optimized simultaneously to achieve best overall cell leakage. Fig. 

2.3 shows schematically the various leakage paths in a 6T cell. 

When the cell is inactive, the word line WL is low level (“L”) and 

bit lines BL and BLB are high level (“H”). One storage node of the 

cell is “H” and the other is “L.”  

Fig. 2.2. Thickness of transistor gate oxide versus technology 

nodes for high performance and ULP CMOS technologies. 
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Gate-leakage reduction is done mostly through the oxide-thickness 

optimization and gate nitridation. The gate leakage current 

increases exponentially as the physical thickness of gate 

insulation film becomes thinner in keeping with scaling. The gate 

leakage current of NMOS is 4–10 times greater than that of PMOS 

of the same thickness. The leakage mechanisms of junction and 

subthreshold current are influenced by many common processing 

parameters such as source–drain spacers, Tox, well and halo implants, 

and doping profiles [2.2], [2.6].  

 

 

 

The subthreshold leakage current is one of the main contributors 

to the standby leakage. When supply voltage is scaled down, the 

subthreshold leakage current tends to increase due to decreased 

threshold voltage of the transistors. A dual-Vth technique is 

generally used to reduce the subthreshold leakage current. Using 

Fig. 2.3. Leakage model in 6T cell. 
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low-Vth transistors in the critical to improve speed. On the other 

hand, in order to save power, high-Vth transistors is implemented 

in the noncritical path. The dual-Vth technique is easier than the 

multi-gate-oxide technique, so that the subthreshold leakage 

current can be reduced by optimizing Vth. 

 

When the main source of junction leakage is contributed by 

trap-assisted leakage and direct band-to-band tunneling, the dopant 

species and doping profiles are carefully optimized to reduce the 

defects generated during the implantation process and to achieve 

a more graded source–drain junction doping profile to minimize the 

junction tunneling current. The process optimization is able to 

lower the cell leakage by two–three orders of magnitude in 

comparison to cell leakage from high-performance CMOS process. 

 

2.2 Low power register file design 

 

In order to reduce the standby leakage power of a register file, 

many techniques are proposed to act on internal nodes of the cell, 

as shown in Fig. 2.4.  

 

In [2.14] and [2.15], it is shown how reverse body biasing of a 

memory cells is dynamically varied. The off drain-to-source current 

is exponentially dependent on Vth. It is applied by raising the 

node n-well (NW) and lowering the node p-well (PW) during the sleep 

mode.  

This technique can be exploited only in double well technologies 

which allow the bulk of the nMOS and pMOS devices to be independently 

biased.  

 

The need to drive the parasitic capacitances of the substrates 

leads to access time and dynamic energy consumption higher than 

the conventional SRAM structure. The leakage current can be reduced 
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by acting on the nodes BL and BLB or on the node WL visible in Fig. 

2.4. The approach described in [2.17] reduces the leakage current 

by leaving BL and BLB floating during the idle time. In [2.18], 

it applies a negative voltage to the node WL to save leakage power. 

This technique does not impact on the SER, but the modified word 

line driver causes energy overhead for generating a negative voltage 

during the standby mode.  

 

 

 

In [2.19], an electric-field-relaxation (EFR) scheme is presented 

in which both the word line and the bit lines voltages are properly 

set during the idle time. In order to do this, a dc level converter 

is required. The application of this approach is not straightforward. 

In fact, designers must take into account that the bit lines are 

Fig. 2.4. The possible nodes used to decrease the leakage 

current. 
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shared by the SRAM cells of an entire column and that these cells 

belong to different rows.  

 

 

[2.7], [2.8], [2.9] act on the L node. It is connected to the ground 

usually and this assures stored data stability and full rail. If 

the voltage of L increases during the sleep mode, the signal rail 

VH – VL and the subthreshold leakage current are reduced. In order 

to do this, a power-gating transistor is inserted in the pull down 

path. During idle or standby state, this transistor is off and the 

leakage mechanisms inside the cell are responsible for charging 

L.  

 

Fig. 2.5. Power-gating schemes (a) Sleep-transistor (b) 

Diode-connected PMOS bias transistor. (c) Programmable bias 

transistors. (d) Op-Amp-based-feedback control. 
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When an array is on standby mode, the cell rail-to-rail voltage 

must be kept above the minimum retention voltage. Several techniques 

are proposed to achieve this. One approach is to use the “sleep” 

transistor to modulate the VGND [2.19], as shown in Fig. 2.5(a). 

The challenge is that the sleep transistor needs to be sized properly 

to meet the wake-up timing requirement and to maintain a low enough 

IR droop in the current path during an active mode. 

 

  A diode-connected PMOS bias transistor is proposed [2.20], as 

shown in Fig. 2.5(b). The PMOS clamp the VGND to one threshold 

voltage above the GND. It prevents the VGND from going too high 

to corrupt the data in the array. There are two shortcomings in 

this technique. First, leakage reduction will be suboptimal at high 

VCC applications when the VGND-VCC tracking is not one-to-one. 

Second, the Vt variation will impact the accuracy of the VGND 

control.   

 

Programmable bias transistors, shown in Fig. 2.5(c), can overcome 

these problems [2.21]. The scheme has two benefits. First, the VGND 

voltage can be optimized based on the actual silicon results to 

achieve maximum leakage reduction. Second, different bias settings 

can be dynamically chosen at different supply voltages. 

 

A control scheme with an active feedback based on Op Amp is 

also proposed [2.22], as shown in Fig. 2.5(d). The major drawback 

of this scheme is the dc consumed by the Op Amp that has to be 

replicated along each data bank to provide the needed granularity. 

 

The method used in [2.10]–[2.13] dynamically vary the voltage of 

the node H. The subthreshold current is reduced by reducing the 

signal rail . However, the reduced signal rail leads to lower noise 

margins and a higher SER. Extra peripheral circuitry, such as a 

dc level controller or a dc-dc converter are required and additional 

time and dynamic energy are introduced with respect to the 
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conventional register file cell to enter and exit the sleep mode. 

 

Voltage scaling is the most effective design knob in power 

management. However, with the memory-cell scaling, it has become 

difficult to maintain stability margin and write margin.  

 

The register file array can be the voltage scaling limiter for 

low-power operation. By introducing different power supplies into 

the register arrays, the voltage-scaling difficulty for the 

register file cell can be alleviated.  

 

 

 

To improve the write margin, a lower voltage level can be applied 

to the bit cell than the wordline voltage, which allows the bit-cell 

 

Fig. 2.6. Multi-VCC designs. (a) Register file on a higher supply 

voltage. (b) Register file on a higher supply voltage than the 

wordline driver (c) Dynamic multi-VCC. 
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flip more easily during the write operation. There are several 

different implementation schemes that have been published so far 

based on this concept. Here, a brief description on each scheme 

along with the tradeoffs is given. 

 

A simple static multi-VCC design was proposed [2.26], which is 

shown in Fig. 2.6(a), where both SRAM-VCC and wordline driver are 

on a separate and higher supply than the rest of the system. Both 

register file stability and writ ability can be kept. This 

implementation requires voltage-level shifters at the boundary 

between the array and the rest of the chip. 

 

  The design, shown in Fig. 2.6(b), is to put the register file bit 

cells on a higher supply voltage than the wordline driver voltage 

in order to improve read stability [2.23]. This implementation can 

eliminate the level shifter. However, the write margin is reduced 

as the wordline voltage is below the bit-cell power supply during 

the write operation.  

 

The other approach, shown in Fig. 2.6(c), uses a mux to switch 

the bit-cell power supply based on the operating condition. In the 

case of read stability improvement, the unselected columns during 

write and all the columns during read are switched to the higher 

supply voltage. The selected column during write is switched to 

the lower voltage; hence, the write margin is maintained. The 

wordline driver is always on the lower supply. The sleep transistor 

can also be used to lower the effective power supply to the bit 

cell, achieving a lower leakage. 

 

2.3 Conventional Register file Architecture 

 

One of the different between register file and SRAM is that the 

port number of register file is much more than that of SRAM. In 

order to support multi-accesses, each storage cell has the fully 
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ports in conventional scheme. However, this will cause a lot of 

area, power, and access time overhead. The size of area is positive 

to the port number of bit cell. As the port number of a register 

file is increased, the peripheral circuitry, such as write drivers 

and precharge circuits would increase at the same time and cause 

a lot of power consumption. Access time also become worse when larger 

area make longer wire delay. 

 

2.3.1 The Read Port Design 

 

It is possible that multiple read/write operation access the same 

register file cell. In the traditional SRAM, read port is composed 

of pass transistor. During the read operation, large sink current 

will pass through n-transistor in the SRAM cell and degrades the 

static noise margin. Therefore, isolation between sink current and 

the register file cell is necessary in multiple read port register 

files as shown in Fig. 2.7 and Fig. 2.8. 

 

Fig. 2.7 Using inverter to isolate memory cells and pass 

transistors 
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Another feature of conventional register file is its heavy metal 

routing around register file cell. To alleviate the routing efforts, 

single ended access port is desired throughout the register file 

design. 

 

 

 

2.3.2 Low Power Write Port Design 

 

The basic component of a register file cell is a latch which is 

connected by two inverters and can hold the data. Because of such 

feedback mechanism, writing ‘1’ to a register file cell storing 

‘0’ or writing ‘0’ to a memory cell storing ‘1’ (Fig. 2.9) causes 

an instantaneous short current from Vdd to ground. In order to 

minimize or suppress such power consumption, strong inverter is 

Fig. 2.8 Using read buffers to sink read current 
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proposed to reduce energy consumption while maintaining 

performance. 

 

 

Strong inverter technique speeds up the transition process which 

will definitely reduce the duration of short current. It is good 

to use asymmetric inverters in single ended write scheme because 

multiple read ports requires sufficient driving ability to drive 

all the gate capacitances and the weak inverter. The weak inverter 

acts as feedback path to hold data, as shown in Fig. 2.10. Due to 

single-ended access, transmission gates are used as write port to 

guarantee the value written into the register file cell. 

 

Due to the fast transition of the inverters, short current is 

suppressed significantly while maintaining the speed. Different 

port numbers that cause different loading at the output of strong 

inverter will have a different optimum size of the strong inverter. 

Fig. 2.9 Instantaneous short current in write operation 
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2.4 Banked Register file Architecture 

 

Multibanked register files realize multi-port access by using 

less port memory cells instead of multi-port memory cells to reduce 

the quantity of wiring. Therefore the multi-bank register file can 

realize higher speed, smaller size, and lower power consumption 

than conventional multi-port register files. Fig. 2.11 show a 

example of an 8-read, 4-write port register file implemented using 

four one-write, two-read port banks. 

 

However, when this scheme is used in a processor, it causes several 

Fig. 2.10 Strong inverter 
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problems. If the processor requires a read or to write operation 

to a multibanked register file, the access to this register file 

is restricted to one access per bank. So the processor is not able 

to access several data in the same bank at once.  

 

 

 

 

 

2.4.1 Register bank structure 

 

The multibanking approach adopted in [2.27], [2.28] constructs 

a register file from multiple interleaved register banks. The 

Fig. 2.11. An 8-read, 4-write port register file implemented using 

four two-read, one-write port banks. 
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challenge is managing the complexity and added latency of the 

control logic needed to handle read and write bank conflicts and 

the mapping of register ports to functional units. A banking scheme 

that uses the bypass network to reduce unnecessary read port 

contention and usage is described in [2.28], but no description 

of the bypass check or read conflict resolution logic is given.  

 

Write conflicts are handled by delaying physical register 

allocation until write back, at which point registers are mapped 

to non-conflicting banks. The primary motivation for this delayed 

allocation was to limit the size of the physical register file, 

but this can lead to a deadlock situation requiring a complex 

recovery scheme. 

 

The scheme presented in [2.27] handles read bank conflicts by only 

scheduling groups of instructions without conflicts. This reduces 

the IPC penalty, but adds significant logic into the critical 

wakeup-select loop. A design with single-ported read banks is 

evaluated; however, this requires complex issue logic and 

functional unit datapaths to allow instructions where both operands 

originate from the same bank to be issued across two successive 

bank read cycles.  

 

Multiplexing circuits dominate the area of few-ported multibanked 

designs. Moving from a single read port to split dual read ports 

per bank has minimal area impact. In [2.27], write port conflicts 

are handled by buffering conflicting writes, which increases the 

size of the bypass network. Functional unit pipelines must also 

be stalled when conflicting writes queue up.  

 

2.4.2 Methods to decrease access conflicts 

 

In [2.4], a banked multiported register file design is presented 

and analyzed together with a control scheme. This scheme is suitable 
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for a deeply pipelined dynamically scheduled processor. It does 

not place any register bank arbitration in the critical 

wakeup-select loop, but instead speculatively issues potentially 

conflicting instructions. If any conflicts are found after issue, 

a pipelined recovery scheme quickly repairs the issue window and 

reissues conflicting instructions.  

 

In contrast to previous work, all conflicts are detected and 

resolved in one pipeline stage. Therefore, no write buffering or 

pipeline stalls are required. The main drawback of the scheme is 

that both bank conflicts and the extra pipeline stage used for port 

arbitration can impact processor performance. Bank conflicts add 

penalty cycles to repair the pipeline and delay the issuing of 

dependent instructions, while the additional pipeline stage causes 

an increase in branch misprediction latency. 

 

The conventional structure of the pipeline is the case of Fig. 

2.12(a). After instructions are decoded, renamed and the register 

accesses are carried out, the instructions are registered in a 

buffer called reservation station. Register accesses are thus done 

per instruction. In this case, if register accesses are blocked 

by conflicts, the processor has to stall decode and rename for the 

following instructions until the conflict is resolved. So queue 

access per instruction does not work effectively.  

 

To remove this problem, [2.30] propose a method for register access 

per operand. It changes the structure as shown in Fig. 2.12(b). 

This new structure allocates the scheduling stage of register access 

to the same stage as the reservation station. Instructions are 

decoded and decomposed into accesses per operand, e.g. as two 

register accesses and one operation for a two-operand instruction.  

 

Operations and tags of the source registers are registered in the 

reservation station, which receives the value for each source 
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register after several clock cycles. Since execution of the pipeline 

and register accesses are operated independently, register accesses 

per operand and decoding and renaming of instructions occur without 

stalling of the processor. 

 

 

Reduction of the number of register accesses is also a good method 

to avoid access conflict [2.31]. When a register has true dependency 

with an instruction, the processor uses the result of an instruction 

as the value of an operand register of the following instruction. 

Therefore, this value doesn't need to be buffered in the register 

access queue, so that forwarding is able to reduce the number of 

register accesses. 

 

When multiple reading of the same register at the same time causes 

an access conflict, treating these accesses as one access to reduce 

the number of register accesses can avoid this conflict, as shown 

in Fig. 2.13. 

Fig. 2.12. Structure of the processor pipeline 
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 In conventional register renaming schemes, both register 

allocation and releasing are conservatively done, the former at 

the rename stage, before registers are loaded with values, and the 

latter at the commit stage of the instruction redefining the same 

register, once registers are not used anymore. [2.32] introduces 

a renaming scheme that allocates registers later and releases them 

earlier than conventional schemes.  

 

Specifically, physical registers are allocated at the end of the 

execution stage and released as soon as the processor realizes that 

there will be no further use of them. This approach enhances register 

utilization. 

 

 

2.5 Other kind of multibanked Architecture  

 

  There are several different banked scheme adopted in order to save 

more power and decrease access time. [2.34] propose the scheme that 

the register bit-widths of different banks in the register files 

are different. In [2.33], different banks have different register 

Fig. 2.13. Combine access to the same registers 
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numbers and port numbers. 

 

2.5.1 Customization of Register File Banking 

Architecture 

 

  

 

 [2.33] reduces register file power consumption by allocating 

variables in frequently accessed basic blocks to separate 

appropriately sized register file bank of active registers. 

 

Fig.2.14 shows the heterogeneous banking of register file with 

n registers in a single issue RISC processor. Only the read path 

for one port is shown in the figure for clarity. It consists of 

two banks, one bank with a small number of registers (0 to k-1) 

and a second bank with a larger number of registers (k to n -1), 

with k < n/2.  

 

Fig. 2.14. Heterogeneous Register File Banking 
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If the placement of registers is such that most of the accesses 

occur to the smaller bank, there will be a significant reduction 

in the overall power dissipation as the smaller bank has a relatively 

smaller bit-line switching capacitance. The asymmetric banking 

structure makes the address decoder and output selection logic more 

complex, which introduces overheads in area, delay, and power.  

 

2.5.2 Asymmetrically Banked Value-Aware Register 

Files 

 

  

Fig. 2.15. A microarchitecture-level comparison among (a) 

a conventional banked register file and (b) the AB-VARF 

register file. 

(a) 

(b) 
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 [2.34] propose a new microarchitecture, the 

asymmetrically-banked value-aware register file (AB-VARF), as 

shown in Fig. 2.15(b), to exploit the prevailing narrow width 

register values for low-latency and power-efficient register file 

designs. The register bit-widths of different banks in the AB-VARF 

register files are specifically customized to capture different 

narrow-width values. Augmented with a value width predictor, the 

register renaming logic is slightly tuned to rename predicted 

narrow-width registers to the corresponding narrow-width banks. 

 

 

2.6 Conclusion 

 

The design of register file is known to scale poorly with 

increasing numbers of ports and registers. In order to implement 

a large and fast multiported register file, banked architectures 

have explored alternative designs. 

 

Even through that banked register file exhibits a small 

performance penalty, the reductions in register file delay and power 

are respectable. Consequently, banked register files are a natural 

solution to the increasing register file demands of SMT processors. 
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Chapter 3 

Low power Multithreaded Register 

File Design 

 

3.1 Multithreaded Banking Architecture  

   

In this chapter, the multibanked register structure is described 

first. The timing access scheme is then charactered in detail before 

the discussion of thread switching. 

 

3.1.1 Register Bank structure 

 
The proposed dual-thread register file has 4 Write ports and 4 

Reads ports, and there are 64x64 bits for a thread. The proposed 

Fig. 3.1 The proposed dual-thread 4W/4R 64 x 64 bit 

register file architecture. 
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design is also divided into four interleaved banks, and each bank 

has one Read port and one Write port, as shown in Fig. 3.1.  

 

Compared to a conventional register file scheme, each storage 

cell has fewer ports and the storage cell size become smaller 

appreciably. A single local port must connect to all global ports, 

so local-global crossbar complexity is required. Bank conflicts 

would happen when too many global ports attempt to read or write 

the same bank. The register file can operate under voltage range 

from 1.0v to 0.5v.  

 

3.1.2 Timing sharing access scheme 

 

The area overhead of a register file can be reduced when a bank 

has only one local Read port and one Write port; however, access 

conflicts would happen if more than one word of a bank are selected 

in a clock. It leads to performance degradation of a conventional 

banking scheme. Thus, timing sharing access scheme is proposed to 

ease access conflict overhead in our design.  

 

In the proposed timing sharing access scheme, local Read and Write 

ports can be accessed twice in a clock. In other words, a clock 

is divided into two time slots, and an access operation can be 

finished in one slot. Fig. 3.2 makes an example to explain this 

concept.  

 

In cycle 1, the processor writes two data, D1 and D2, into the 

same bank. Thus, local Write bitline, WBL, are accessed twice. D1 

is written into the bank in the fist slot, and D2 is written into 

the bank in the second slot. The proposed multithreaded register 

file can do at most 4 Read operations and 4 Write operations in 

one cycle. Nevertheless, access conflicts still happen when more 

than two word of a bank are accessed during Read or Write operations.  

 



 

 - 28 - 

 

The register file should arbitrate which two operations should 

be executed first when access conflicts happen, and all ports of 

this register file are defined as different priority levels. The 

priority of Read (Write) port1 is higher than Read (Write) port3 

respectively, and Read (Write) port2 is higher than Read (Write) 

port4 as well. Port1 and port 3 work in the first time slot, and 

port2 and port4 work in the second time slot, as shown in Fig. 3.2. 

For example, when four Read ports want to access the same bank, 

port1 and port2 can operate successfully while both port3 and port4 

would receive Read fail signals. 

 

3.1.3 Thread switching 
 

Fig. 3.2 Waveforms illustrating concept of timing sharing access 

scheme 
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Different thread needs its own storage cells, and there are many 

methods to switch between different threads. The two threads of 

Montecito microprocessor is switching through a multiplexer which 

is connected to the storage node of memory cell [3.1], as shown 

in Fig. 3.3. This method would enlarge the capacitance of the storage 

node then make the noise margin and speed worse. If the thread number 

increases, Montecito microprocessor needs more levels of 

multiplexer and makes the problem worse.   

 

 

 

Additional address bits as thread ID are used here to switch 

threads. If the amount of thread is n, we need additional log2n 

address bit for each decoder. This method would increase some area 

penalty, but impact performance slightly. 

 

 Each decoder of this proposed register file has 7 bit. Bit[6:1] 

chose the register number when bit[0] is as thread number. LSB is 

0

1
E
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Bitcell of 

thread1 

Bitcell of 

thread0

Fig. 3.3 Thread switching scheme of Montecito microprocessor 
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used as thread number instead of MSB, so the thread0’s registers 

and thread1’s registers are interleaved with each other, as shown 

in Fig. 3.4. The way scatter the location of registers from the 

same thread and can decrease the bank conflict.  

 

 

 

 

3.2 Register file cell  

3.2.1 Read Stability and Write-Ability 

 

The read stability and write ability of register file cells 

determines its process tolerances. Many new SRAM cell circuit 

designs have been developed to maximize the cell stability for 

future technology nodes. 
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As dimensions scale down to nanometer regime, the variations in 

CMOS transistor parameters, e.g., the threshold voltage , increase 

steadily due to random dopant density fluctuations in channel, 

source and drain. Therefore, two closely placed, supposedly 

identical transistors, have important differences in their 

electrical parameters as and make the design of the SRAM less 

predictable and controllable. Moreover, the stability of the SRAM 

cell is seriously affected by the increase in variability and by 

the decrease in supply voltage. 

 

Data retention of the register file cell is an important functional 

constraint in advanced technology nodes. The cell becomes less 

stable when supply voltage decrease, leakage currents become larger 

or variability increase. The stability is always defined by the 

SNM as the maximum value of DC noise voltage that can be tolerated 

by the SRAM cell without changing the stored bit.  

 

 

 

The circuit definition for the SNM of conventional 6T cell is shown 

in Fig. 3.5. The two DC noise voltage sources are placed in series 

with the cross-coupled inverters and with worst-case polarity at 

the internal nodes of the cell. Locating the smallest square between 

the two largest ones delimited by the eyes of the butterfly curve 

determines graphically the SNM (Fig. 3.6). When the DC noise voltage 

is equal to the SNM, the VTCs move horizontally and/or vertically 

until the stable point A and the meta-stable point B coincide. 

Fig. 3.5. SNM definition. The two DC noise voltage sources Vn 

are placed in series with the cross-coupled inverters. 
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The cell is most vulnerable to noise during a read access since 

the “0” internal storage node rises to a voltage higher than ground. 

Due to this voltage division on, the SNM is primarily determined 

by the ratio of the pull down (PDN) to pass gate (PG) transistor, 

known as the cell beta ratio. In an ideal case, each of the two 

cross-coupled inverters in the SRAM cell has an infinite gain. As 

a result, the butterfly curves delimit a maximal square side of 

maximum, being an asymptotical limit for the SNM. Therefore, scaling 

limits the stability of the cell. 

 

In the SRAM cell shown in Fig. 3.7, when the BL signal is set to 

VR

VL A

B

C

Fig. 3.6 Static Noise Margin 

Fig. 3.7 The 6T cell 
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0, the NMOS transistor (PG1) is turned ON, which results in a voltage 

drop in the storage node holding data 1. This is the trigger for 

write operations to begin. Stable write operations require that 

the current of PG1 be higher than that of PMOS transistor 

PUP1.Because of the importance of PG1 in write operations, there 

should be a correlation between the WM value and the PG1 drivability 

under all conditions.  

 

Besides the read stability for the register file cell, a reasonable 

write-trip point is also important to guarantee the write ability 

of the cell without spending too much energy in pulling down the 

bit-line voltage to 0 V. The write-trip point defines the maximum 

voltage on the bit-line, needed to flip the cell content (Fig. 3.8). 

The write-trip point is mainly determined by the pull-up ratio of 

the cell while the read stability is determined by the cell ratio 

of cell. 

 

 

 

 

 

Fig. 3.8 The write margin is defined by the write-trip point.  
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3.2.2 The 8T cell 

 

In the proposed architecture, an 8T cell, shown in Fig. 3.9, is 

adopted instead of conventional 6T cell. The conventional 6T cell 

shown in Fig. 3.7 has switch type read access transistors. The 

storage data is affected at the read operation. On the other hand, 

the read port and write port of 8T cell is separated. The read port 

of 8T cell is connected to storage node through a read buffer. The 

gate electrode of the read-port-drive-transistor receives the 

storage-node-voltage directly. Therefore, the read margin of 8T 

cell is better than that of 6T cell. 

 

Because storage data is not affected at the read operation, the 

nMOS gate width of latch-inverters is reduced a lot compared with 

a conventional 6T cell.  

 

Fig. 3.10 shows the Monte Carlo simulation results of 8T’s Write 

margin and Read noise margin at 0.5v. According to the results of 

Fig. 3.10, 8T cell can work correctly at 0.5v. 

 

 
Fig.3.9 8T cell structure 
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3.2.3 Other register file cells 

 

Fig. 3.11 shows the schematic of the 10 T sub-threshold 

bitcell[3.2]. M3 and M6 tie to a virtual supply voltage rail. The 

technique of weakening the cross-coupled inverters by gating their 

supply voltage or ground node, applied by previous works primarily 

to improve speed, can dramatically improve write margin. 

Transistors M7 through M10 implement a buffer used for reading. 
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Fig. 3.10 The Monte Carlo simulation result of 8T’s noise 

margin at 0.5v.The sigma of Vt is 30mV (a) Write margin 
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One key advantage to separating the read and write wordlines and 

bitlines is that a memory using this bitcell can have distinct read 

and write ports. M7–M10 to remove the problem of Read SNM by 

buffering the stored data during a read access. 

 

M10 is valuable to the bitcell because it reduces leakage current 

and allows more bitcells to share a bitline. The reduction in 

subthreshold leakage through M8 reduces the impact of leakage from 

unaccessed cells and gives the additional advantage of allowing 

more cells on a bitline during read.  

 

  

In [3.3], N3 and N4 are added to keep the read current from affecting 

the cell value, as shown in Fig 3.12. The latch feedback loop is 

open during the write operation, and closed when the write is 

complete. This is accomplished by gating one of the feedback path 

transistors, Pgate, as shown in Fig. 3.12, which improves the write 

margin in subthreshold. The input node transitions slowly due to 

the open FB loop. When the loop is closed by the WWL, the cell value 

is quickly updated. 

Fig. 3.11 Schematic of the 10 T bitcell. 



 

 - 37 - 

 

 

[3.4] proposed structure establishes when to enter and to exit 

the sleep mode, on the basis of the data stored in it, without 

introducing time and energy penalties with respect to the 

conventional 6T cell. The low Vth MOS transistors M7 and M8(Fig 

3.13), gated by the signals Q and Q_b , respectively, are introduced 

to minimize the leakage power dissipation during the idle mode. 

When a 1 is written, BL and BL_b are forced to 1 and 0. The signal 

WL becoming high discharges the node Q_b and turns on the transistor 

M3. This makes the source terminal of the transistor M7 electrically 

connected to Q. Thus, M7 is turned off.  

 

During the standby mode, let us suppose that it stores a 0 data. 

In this situation, the transistors M7 and M8 are turned off and 

the cell is disconnected from Vdd .The leakage paths through M6 

and M8 are charging Q_b, whereas the leakage path through M2 forces 

Q_b to discharge towards ground. The data retention capability of 

the cell is assured by making the subthreshold current flowing 

Fig.3.12 RF cell with conventional read circuit. An additional 

transistor, Pgate, is added to aid write margin in subthreshold. 
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through the transistor M8 greater than that flowing through M2. 

This is obtained by using a low threshold voltage device that leads 

to a resultant charging effect on the node Q_b. 

 

 

 

3.3 Low Power Floating Read Bitline Access Scheme 
 

Precharging bitline would consume a lot of power every cycle. Thus, 

floating bitline access scheme is proposed. Following starts to 

explain the operations of floating bitline access scheme.  

 

3.3.1 Floating Read Scheme 

 

Floating read bitline architecture is also shown in Fig. 3.14. 

The read bitline need not be precharged .If the voltage of bitline 

is a strong ‘0’ for a read operation, the node ‘inx’ of SA will 

be pulled down to ‘0’. If the voltage of bitline is a floating ’0’, 

the SA will charge the bitline slowly instead of causing a read 

fault.  

 

Fig 3.13 The auto-gating low-leakage cell 
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Therefore, the enable signal of SA must rise slowly in order to 

prevent the situation that node ‘inx’ of SA would be discharged 

by floating bitline. The signal ‘reset’ and ‘enable’ of sense 

amplifier are come from timing control circuit, which is described 

in chapter 4. 

 

 

Fig . 3.14 Floating bitline access scheme 
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3.3.2 Divided Bitline  

 

 

In low power memory cell designs, the cell read current must create 

enough voltage different on the bitlines in a read operation. But 

this step spends a lot of memory delay time when the bitline 

capacitance is very large. To rescue this problem, one way is to 

make the read current as large as possible. However, this way results 

in high leakage currents because a large read current need large 

transistor widths, high supply voltage, or low threshold voltages 

for the cells.  
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The other way is to reduce the bitline capacitance. Access delay 

time would decrease when the amount of charge that the cell must 

draw from the bitline is reduced. An original bitline is divided 

into several shorter local bitlines, and a global bitline is 

designed to connect these local bitlines. 

 

Often, local bitline connect to global bitline through a simple 

transistor, as shown in Fig. 3.15(a). This way adds little area 

overhead. However, the cell still needs to sink all the charge from 

global bitline. When a read buffer is inserted between local bitline 

and global bitline, the cell just need to sink the current from 

local bitline, as shown in Fig. 3.15(b). When the local bitline 

uses a large voltage swing, a simple inverter is allowed to be used 

as a sensing element for the buffer.  

 

A inverter is not used as a sensing amplifier in the proposed 

register file, because the floating bitline read scheme is 

implemented. There are not a complete logic 1 in the scheme. The 

voltage of floating bitline is a strong 0 or a floating voltage 

which can not sensed correctly by a simple inverter. 

 

  A single end sensing amplifier is inserted between the local 

bitline and global bitline in our scheme, as shown in Fig. 3.14. 

The output of local sensing amplifier is connected to four global 

bitline through read buffers.    

 

A shorter bitline has smaller bitline capacitance; however, it 

leads to a global bitline capacitance increasing. Some simulations 

should be done to find the optimized bitline length. Fig. 3.16 shows 

the simulation results about access time with different bank sizes 

when operating voltage is between 0.5V and 1.0V. It clearly shows 

that the best performance happens when bank size is 32 words.  

 

In other words, the access delay is shortest when the capacitance 
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of a local bitline is approximate equal to that of a global bitline.  

 

 

 

Fig. 3.16 Access time with different word numbers per bank 

(a) Write access time. (b)Read access time.  
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3.3.3 Push-Pull Write Scheme 

 

In conventional write scheme, the bitline pairs need to precharge 

before the write driver is turned on, as shown in Fig. 3.17(a).   

Fig . 3.17 write scheme (a) conventional write scheme 

(b)floating write scheme (c)Push-pull write scheme 
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Fig. 3.17(b) shows the floating write bitline architecture. 

During Write cycles, only one side of a bitline pair is connected 

to ground while the other side is floating. After one storage node 

is discharged approximately to zero, wordline is deactivated. Then, 

the cell acts like a latch, and the small difference between Q and 

Q-bar would be quickly amplified. Finally, Q and Q-bar would become 

complete logic signals. When Write bitline pairs are no longer 

precharged, access time would become slightly longer but power can 

be reduced a lot.  

 

However, the write ability of this scheme is weaker then 

conventional write architecture. Node Q may be discharged by 

floating bitline, when the threshold voltage of MA1 is lower than 

that of MA2 under technology fluctuation. 

 

  To prevent the write fault discussed above, the push-pull write 

scheme is implemented here, as shown in Fig. 3.17 (c). When one 

of the bitline pair is discharged to ground, another one would be 

pulled up to Vdd-Vtn by clamping NMOS in a write operation. Push-pull 

write scheme consumes larger power than floating write scheme, but 

has better write ability at the same time.  

 

3.4 Conclusion 

 

This register file is divided into four interleaved banks. Each 

bank has one Read port and one Write port. Therefore, it can save 

a lot of power and area overhead. However, bank conflicts would 

happen if there are too many accesses to the same bank. To ease 

access conflict in this design, timing sharing access scheme is 

proposed. 
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To operate the circuit correctly under process variation and wide 

range of supply voltage, the design of timing control circuit is 

a critical issue. It is discussed in the next chapter. 

 

Several low power techniques are proposed in this chapter, such 

as floating read bitline, push-pull write scheme, and the divide 

bitline scheme.  
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Chapter 4 

Decoder and Control Circuit Design 

 

In this chapter, the design of control circuit for timing shared, 

multithreaded 4W/4R register file will be presented. Fig 4.1 is 

the block diagram of proposed register file. Multiple access ports 

with multiple decoders are connected to less port cell through a 

multiplexer. Multiported register files realize multi-port access 

by using less port memory cells instead of fully-port memory cells 

to relax the heavy routing wires. 

 

 

 

The cell array content the storage elements holding the data. 

Symbolic addresses are converted to physical addresses through the 

Fig.4.1 Block diagram of proposed register file 
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decoders. Block decoders and Write/Read replica circuits control 

the write/read operation to work correctly. Replica column, 

connected to Write/read replica circuits, traces the bitline delay 

under all PVT variations.  

 

4.1 Decoder design  

 

The Design of a register file is generally divided into two parts, 

the decoder and the sense and column circuits. Decoder is the 

circuitry from the address input to the wordline. The sense and 

column circuits include the bitline to the data input/output 

circuits. For a read operation, the decoder contributes up to half 

of the access time and a significant fraction of the total power 

consumption.  

 

While the logical function of the decoder is simple, it is 

equivalent to 2^n n-input AND gates, there are a large number of 

options for how to implement this function. Modern RAMs typically 

implement the large fan-in AND operation in an hierarchical 

structure. The decoder designer has two major tasks: choosing the 

circuit style and sizing the resulting gates, including adding 

buffers if needed.  

 

As shown in Fig. 4.2, the symbolic addresses are separated into 

two groups and decoded separately. Upper addresses are decoded by 

block decoder when lower addresses are decodered by row decoder. 

Because of such partitioning, register banks can be disabled when 

other banks are accessed. The block decoder divided into three parts, 

including block select, priority decision and pulse width control, 

as shown in Fig 4.3. 

 

A nand gate is inside the Block select. Upper addresses are decoded 

through this nand gate. The Priority decision arbitrate which two 

operations should be executed when access conflicts happen. Each   
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port of this register file has different priority levels. The 

priority of Read (Write) port1 is higher than Read (Write) port3 

respectively, and Read (Write) port2 is higher than Read (Write) 

port4 as well. Signal ‘W_TS1’ and ‘W_TS12’ come from the write- 

timing-control circuit, which would be discussed later. 

 

 

 

 

 

Fig. 4.2 Write row decoder and block decoder 
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The Pulse width control circuit control the width to be just enough 

for a write operation and divide the pulse into two working timing 

slot. An example is shown in Fig 4.4 to explain this concept. 

 

 

 

In cycle 1, all the four ports want to access this bank, so the 

voltage of signal BL1, BL2, BL3 and BL4 are pulled up to logic ‘1’. 

However, one bank only can be accessed twice in one clock cycle. 

After the operation of the Priority decision circuit, port1 and 

port2 can operate successfully while both port3 and port4 would 

receive Read fail signals. Therefore, signal PD1 and PD2 would be 

pulled high when PD3 and PD4 are still logic ‘0’. 
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Port1 and port 3 work in the first time slot, and port2 and port4 

work in the second time slot. The Pulse width control circuit control 

signal BS1 and BS2 to be just enough for a write operation. BS1 

is pulled high at first working timing slot, when BS2 pulled high 

at second working timing slot. 

 

 

 

 

 In conventional, to decode one word need a group of logic gate, 

as shown in Fig 4.5(a). However, some logic gate of near by wordlines 

are the same. In order to save more power and area, some logic gate 

are shared by the two neighboring words, as shown in Fig. 4.5(b). 

Fig. 4.4 Waveforms illustrating concept of block decoder 
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Fig. 4.5 The row decoder design (a) Conventional design. (b) 

The  scheme with fewer logic gate. 
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4.2 Logical effort model 

 

The convention of a register-transfer level description of a 

design into an implementation in silicon starts with logic synthesis, 

which consists of technology independent optimization, followed 

by technology mapping. In the latter step, the design is mapped 

to cells belonging to the target library while optimizing one or 

more performance metrics, such as delay, area, or power.  

 

High-performance designs use rich libraries, with multiple 

instances of each cell, which have various delay, area, and drive 

capabilities. Technology mapping has to identify not only the best 

logic functionalities of cells to be used to implement some logic 

but also the best instance of each selected cell. 

 

Since the library cells may be repeated thousands of times during 

the digital design process, their quality determine the final 

product performance. The number of driving strengths available for 

each cell also, have a crucial impact on the design performance. 

For instance, when a design is implemented by a single driving 

strength library, its performance degrades by up to 27%. This is 

compared to its performance when it is implemented using a library 

that uses three levels of driving strengths.  

 

Hence, there is a need for multiple libraries for each technology 

process, which is impractical. The situation is exacerbated when 

there is a need for a diversity of libraries from different suppliers 

where each one has its own tools and documentations. As a result, 

virtual library concept has emerged as a solution for this problem.  

 

Virtual library or library-free mapping terminology means, 

mapping the design’s Boolean functions to the transistor level 

directly instead of using pre-characterized cells. Usually, the 

Boolean functions in this mapping technique are realized using 
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Static CMOS Complex Gates (SCCGs). The number of SCCGs (Boolean 

functions) in a virtual library is determined by the allowed number 

of serially connected transistors. 

 

The logical effort method is widely recognized as a pedagogical 

way allowing designers to quickly estimate and optimize single paths 

by modeling equivalently propagation delay and transition time. 

 

4.2.1 Logical effort and gate sizing 

 

In themethod of logical effort, the delay of a gate is estimated 

by modeling it as a linear function of the load being driven as 

             (4.1) 

where g is the logical effort, h = CL/Ci is the electrical effort, 

CL is the path load capacitance, f = gh is the effort delay and 

p is the parasitic delay of the gate. This formulation separates 

the different components that contribute to the delay of a gate. 

More importantly, it leads to a natural extension for estimating 

the minimum delay, ^D, of a path of logic as 

       ̂ D = NF1/N + P                                 (4.2) 

where F = GBH is referred to as the path effort, P as the path 

parasitic delay, and N as the number of gates on the path under 

consideration1. The path logical effort, G, is the product of the 

logical efforts of the gates on the path, and the path electrical 

effort, H, is the product of the gate electrical efforts. The minimum 

delay of (2) is obtained by distributing the path effort F equally 

to each gate on the path. 

 

For the networks with loads off logical path, as shown in Fig. 

4.6, branching effort b should be introduced. The branching effort 

b at the output of a logical cell. 
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                                (4.3)  

where Con-path is the load capacitance of a logical gate along the 

considered path, and Coff-path is the load capacitance of a logical 

gate(s) off the path. The branching effort along an entire path 

B is the product of the branching effort at each of the stages along 

the path. 

                                            (4.4) 

 

 

 

The path electrical effort can also be calculated as the ratio 

of output and input capacitances of the path. Consider Fig. 4.7, 

which shows a simple path of four gates—A, B, C, and D. Each of 

these gates have input capacitances CinA, CinB, CinC, and CinD and 

drive output capacitances CoutA, CoutB, CoutC, and CoutD, 

respectively. The input capacitance of the path Cin is the input 

capacitance of gate A, and the output capacitance of the path CL 

is the output capacitance of gate D. The path electrical effort, 

H, the product of the gate electrical efforts, telescopes, since 

Fig. 4.6: A logical path with branching 
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the input capacitance of each gate is the load capacitance of its 

input (e.g., cinC = coutB). Thus 

                (4.3) 

 

 

 

The logical effort approach is well suited for estimating the 

minimum delay that can be achieved by sizing a path of logic if 

the electrical effort, H, of the path is known. The individual gate 

sizes that are required to achieve this minimum delay can be 

calculated as follows: Each gate is assigned a gate effort of f 

= F^1/N . Starting with the gate at the output that drives a known 

load of CL, the size of each gate is successively determined. Since 

the logical effort g of a gate is fixed, if an effort delay f is 

assigned to a gate, the input capacitance cin that meets this effort 

delay can be calculated as 

                                (4.4) 

where cl is the load begin driven by the gate under consideration. 

 

 

 

 

Fig. 4.7. Calculating the electrical effort of a path. 
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4.2.2 Logical effort design steps 

 

There are a three-step process to size a logical path to a achieve 

a required time with minimized area. 

 

First, determine the input capacitance of the logical path and 

calculate H and, F, and the optimal number of gates N. If N is greater 

than the actual number of gates, add buffers to the path to match 

N. 

 

Second, Calculate pi and gi for each gate. Third, calculate and 

roughly estimate fanout for each gate. The calculation should start 

from the last gate towards the first gate (at the input). This allows 

a rough estimation of the transistor sizes for each gate where Ci 

is the input capacitance of the current gate and Ci+1 is the input 

capacitance of the next gate that is closer to the path output. 

qi can also be calculated at this stage. 

 

Cell- or library-based technology mapping is the process of binding 

a technology-independent logic level description of a circuit to 

a library of gates in the target technology. A dynamic programming 

algorithm based on tree covering has served as the basis of later 

technology mapping algorithms. This is a two-step algorithm. 

 

In the matching step, matches for all gates are generated in an 

input-to-output traversal of the circuit, and the optimum match 

(based on its cost and the cost at its inputs) and the corresponding 

matches at the inputs are stored as the solution for that gate. 

 

In the covering step, the solution for the entire circuit is 

generated by an output-to-input traversal of the circuit. At the 

primary outputs, the best match is selected, and the covering 

recurses on the inputs of this match. 
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4.3 Timing Control Circuit 

 

Various operating voltage, frequency, and configurations are 

required for mobile applications. For mobile devices, reduction 

in operating voltage is strongly required in order to reduce power 

consumption. And they need at least 27MHz operation to synchronize 

with the frequency of base band. Thus the register file need to 

operate under low and wide Vdd. 

 

In order to prevent too large subthreshold leakage, the threshold 

voltage doesn’t be scaled down as fast as supply voltage. Therefore, 

the gate overdrive for the transistors is reduced. At the same time, 

the fluctuations of threshold voltages are not able to decrease 

in future technology. The delay variability of all low power 

circuits across process corners and various operating voltage will 

become larger and larger in the furture. 

 

To operate the register file correctly at all process corners and 

the wide range of Vdd from 0.5v to 1.0v, the design of delay control 

circuit for the access timing is the most critical issue. Therefore, 

the Write replica Circuit and Read replica Circuit are designed 

to operate the register file correctly and save power at the same 

time. 

 

   The large delay spreads across process corners will necessitate 

bigger margins in the design of the bitline path in a register file, 

and will result in larger bitline power dissipation and loss of 

speed. This problem can be mitigated by using a self-timed approach 

to designing the bitline path, based on delay generators which track 

the bitline delays across operating conditions.  

 

Controlling the wordline pulse width to be just wide enough to 

guarantee the minimum bitline swing development can further 

minimize bitline power. This type of bitline swing control circuit 
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can be achieved by a precise pulse generator that can match the 

bitline delay. The sense clock starts the amplification, and hence 

the sense clock needs to track the bitline delay to ensure correct 

and fast operation. To save the sense power, the 

sense-amplifier-activating period can also be designed to just wide 

enough for sensing successfully. Therefore, a replica SA is needed 

to track the sensing speed of SA. 

 

Fundamentally, the clock path needs to match the data path to 

ensure fast and low-power operation. The data path starts from the 

local block select and/or global wordline, and goes through the 

wordline driver, memory cell, and bitline to the input of the sense 

amps. The clock path often starts from the local block select or 

some clock phase, and goes through a buffer chain to generate the 

sense clock. The delay variations in the former are dominated by 

the bitline delay since the memory cells are made out of minimum 

sized devices and are more vulnerable to process variations.  

 

Therefore, the delays of the two paths do not track each other 

very well over all process and environment conditions. Enough delay 

margin has to be provided to the sense clock path for worst case 

conditions, which reduces the average case performance. 

 

4.3.1 Write Replica Circuit 

 

It is important to control the wordline-activating period to reduce 

the power consumption in write-access operation. Fig. 4.8 shows 

the Write replica circuit and its signal waveforms. Because there 

are two working timing slot in one clock cycle, it need two 

flip-flops, W_TS1 and W_TS2, to control the replica circuit 

operating twice in one clock cycle. In order to improve replica 

circuit’s performance, all flip-flops inside Read/Write replica 

circuit are TSPC D flip flop which has very small clock-to-Q delay.  
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The storage node ‘q’ of replica cell would be precharged to vdd. 

When one of the four global Write ports want to access this one 

subbank, the signal ‘W_rep_EN’ would be pull up to start the  the 

write replica circuit. The replica write bitline(RWBL) is then 

discharged to ground. As the storage node of replica cell is 

discharged to 0v, replica circuit would turn off the wordline of 

(a) 

(b) 
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Fig.4.8 (a)Write replica circuit.  (b) Signal waveforms of 

this circuit 
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cell array and ‘Replica wordline’ in order to precharge node ‘q’ 

of replica cell for the second operation. The second operation 

starts when ‘q’ is reseted to Vdd. 

 

 

 

 

Fig. 4.9 show the state diagram of this Write replica circuit. 

There are four states within one clock cycle. S0 is the standby 

state. When signal ‘W_rep_EN’ is high, the state transit from S0 

to S1. State S1 is the first working time slot. The wordline and 

write driver of cell array are turned on at state S1. When a write 

operation completes, the state transit to s2 and turn off wordline 

and write driver. At state S2, node ‘q’ of replica cell would be 

precharge to Vdd for the second operation. When q is pull up to 

vdd, the state transit to S3. State S3 is the second working time 

slot. The state transit to S0 and turn off wordline and write driver 

as the second write operation complete. 

 

  To write a data into register file correcltly even with serious 

S0 : standby , charge node ‘q’ to Vdd 

S1 : WL1 on , WL2 off  

S2 : WL1 off , WL2 off , charge node ‘q’ to Vdd 

S3 : WL1 off , WL2 on  

Within one clock cycle 

Fig. 4.9. State diagram of write replica circuit 
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timing fluctuation, the write access delay to asymmetrical replica 

cell (ARC) must be adjucted to replicate the slowest register file 

cell. Fig. 4.10 show ARC scheme. Its organization is the same as 

a 6T cell. The transistors of ARC are arranged that the storage 

node ‘q’ is hard to hold the logic low. The width of the 

drive-transistor WMD1 is smaller than the typical width WMD. And 

the width of load-transistor WML1 is larger than the typical width 

WML. The size of D2 and L2 are also adjusted in the opposite way. 

The Id of the drive-transistor MD2 and the load-transistor ML1 are 

increased. The sizes of the access-transistor MA1 and MA2 are the 

same as the typical transistor of register file cell.  

 

 

 

4.3.2 Read Replica Circuit 

 

Fig. 4.11 shows the Read replica circuit and all signal waveforms. 

In order to save power, the turn-on time of the sensing amplifier 

and wordline should be minimized. The Read replica circuit detects 

which timing the SA and wordline should be turned on and turned 

Fig. 4.10. The organization of ARC 
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off.  
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The storage node RS1 of replica cell is connected to ground in 

order to discharge the Replica BL. In order to detect the worst 

case delay time, the replica read bitline(RRBL) need to be 

prechraged to Vdd-Vtn before replica SA turned on. When one of four 

Read port starts to work, the Read replica circuit would be turned 

on by pulling up the signal ‘R_rep_EN’. After node ‘inx’ of replica 

SA is reseted to 1, signal ‘enable’ will be turned on, then node 

‘inx’ starts to be discharge. One Read operation completes when 

‘inx’ is pulled down to ‘0’.  

 

 

The circuit would work twice in one clock period. Therefore, there 

are several signals, ‘R_TS1’, ‘R_TS2’, ‘R_TS3’, and ‘R_TS4’, to 

control memory cell operating twice in one clock cycle. The ‘reset’ 

and ‘enable’ signal of local sense amplifier are come from signal 

‘RC_pulse’ and ‘imp’, shown in Fig. 4.11, through a buffer. At the 

same time, signal ‘reset’ and ‘enable’ of global sense amplifier 

are produced by signal ‘TS5’, ‘TS6’, ‘TS7’, and ‘TS8’ through some 

S0 : standby 

S1 : WL1 on , WL2 off , SA off 

S2 : WL1 on , WL2 off , SA on 

S3 : WL1 off , WL2 on , SA off 

S4 : WL1 off , WL2 on , SA on 

Within one clock cycle 

Fig. 4.12. State diagram of Read replica circuit 
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logic operation.  

 

The state diagram of the Read replica circuit is shown in Fig. 

4.12. In one clock cycle, there are four states. S0 is the standby 

state. When signal ‘R_rep_EN’ is high, the state transit from S0 

to S1. State S1 and S2 are the first working time slot when  

state S3 and S4 are the second working time slot. In first working 

time slot, wordline(WL1) would be turned on at state S1 and S2 when 

sensing amplifier(SA) only is turned on at state S2. State S2 and 

S4 trace the sensing speed of SA. 

 

4.4 Comparison with conventional register 

file 

 

  A conventional dual-thread 4W/4R 64 x 64 bit register file is 

implemented to compare with this work. Each register file cell of 

the conventional register file is a fully ported cell, as shown 

in Fig 4.13. The bit cell uses single ended write scheme, whose 

area overhead is much smaller than double ended write scheme. 

However, the single-ended-write cell has worse write ability. The 

lowest operation voltage of this cell is 0.77v. Writing ‘1’ to a 

cell storing ‘0’ with supply voltage smaller than o.77v will cause 

a write fault. 

 

  Fig 4.14(b) is the layout photograph of a conventional register 

file cell, whose area is much bigger than ours, shown in Fig 4.14(a). 

The total area of a conventional register file including cell array, 

decoders, and control circuit is about 623 x 508 µm
2
. The total area 

of this work is 426 x 219 µm
2
. It can save 70.4% area comparing with 

conventional register file, as shown in Fig. 4.15(a).  

  

  In pre-simulation, the average active power of this work is 6.7mW 

at 500MHz with 1.0v when conventional register file consumes 14.9 
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uW. Comparing with conventional register file, this work can save 

55.1% power consumption, as shown in Fig. 4.15(b).  

 

Fig. 4.13 A 4W/4R register file cell. 

Fig 4.14. Layout photograph of register file cell. (a) A 1W/1R 

register file cell. (b) A 4W/4R register file cell. 



 

 - 66 - 

 

 

4.5 The post-simulations 

 

A dual thread 64 x 64 bits register file with the proposed low 

power techniques is implemented in UMC 90um CMOS technology. Its 

simulation result is shown in Table 4.1. Operating voltage range 

is between 1.0v and 0.5v. It can operate up to 204MHz at 0.5v and 

consumes 197.51µW read power and 175.77µW write power at 50MHz with 

0.5v. It consumes 3.62mW read power and 3.04mW write power at 250MHz 

with 1.0v. Fig. 4.16 shows the layout photograph of the proposed 

register file. 

 

Technology 90nm UMC CMOS 

Configuration Dual thread 4W/4R 64 x 64 bits 

area 426 x 219 µm
2
 

Power supply 0.5v 1.0v 

Frequency 50MHz 250MHz 

Read power 197.51µW 3.62mW 

Write power 175.77µW 3.04 mW 

Access time 10.42ns 2.70ns 

Table 4.1 Register file simulation result 
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Fig 4.15 The comparison between this work and conventional design 
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4.6 Conclusion 

 

The decoder is separated into a row decoder and a block decoder. 

When a block is unused, it can be disabled by turning off the switch 

of block decoder to save power. Logical Effort technique helps 

determine transistor sizes for speed being an objective function. 

 

The timing control circuit design which control the register file 

to operate rightly at all process corners and the wide range of 

Vdd from 0.5v to 1.0v is discussed in this chapter. 

 

The dual thread 64 x 64 bits register file implemented in UMC 90um 

CMOS technology consumes around 197.51µW to 175.77µW at 50MHz with 

0.5v and consumes around 3.62mW to 3.04mW at 250MHz with 1.0v. 
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Chapter 5 

Multithreading and Multi-core systems 

 

5.1 Different type of Register file 

organizations  

 

Register files are not only the storage elements but also the 

communicational component. For multi-port register files above a 

threshold size, the area of the communication switch dominates the 

area of the register file. This section recognizes the ways to 

rearrange and decouple the storage and communication of register 

files. 

 

5.1.1 Clustered architecture 

  

The scheme, used in the Alpha 21264 [5.1] and 21464 [5.2] designs, 

consists of dividing the functional units among two clusters and 

providing a copy of all registers in each cluster. This approach 

halves the number of read ports required on each copy of the register 

file, but requires the same number of write ports on both register 

files to allow values produced in one cluster to be made available 

in the second cluster.  

 

An extension of this approach is to develop a clustered 

architecture that divides the registers among a number of clusters 

[5.3], [5.4], [5.5], [5.6], [5.7]. Clustered architectures also 

allow the instruction window to be divided among clusters and have 

the potential to scale to larger issue widths at high clock 

frequencies. The number of write and read ports on each individual 

physical register and the overall complexities of the physical 
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register file, the bypass network and the wake-logic are decreased.  

 

 

 

For example, a 4 -cluster architecture is shown in Fig. 5.1. 

Compared with a conventional superscalar architecture (Fig. 5.1(b)), 

the 4-cluster architecture presents a major difference: any 

physical register is connected with only half of the functional 

unit entries and can be written by only one fourth of the functional 

units. 

 

However, Clustered architecture requires inter-cluster 

communication when a value is needed from a different cluster. The 

primary disadvantages of a clustered architecture are the 

complexity of the inter-cluster control logic and the additional 

area required to achieve performance similar to a centralized 

architecture.  

 

 

Fig. 5.1 Monolithic versus clustered register file organization 
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5.1.2 Duplicated Register File 

  

 In SMT microprocessor, access time of register file is crucial 

part in instruction latency. It will increase as the size and ports 

of register file increase. 

 

   In [5.8], a new kind of Duplicated register file architecture 

is proposed for embedded SMT microprocessor. The Duplicated 

register file architecture distributes read ports to each local 

function unit, which reduce access time by reducing read ports of 

each Duplicated register file. Each copy of Duplicated register 

file has the same size, the same number of ports and the same contents. 

Each function unit writes its results to all Duplicated register 

files simultaneously and does not need to synchronize the different 

Duplicated register files. 

 

 

 

As a result, it does not need communication between different 

clusters if some function unit tries to use value generated by other 

Fig. 5.2 4-thread, 2-read, 6-write, full-duplicate register 

file architecture. 
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function units. So, this kind of Duplicated register file 

architecture has dual functions: storage and communication. 

 

Fig. 5.2 shows 6-duplicate (full-duplicate) register file 

architecture. Total area of all is larger than a central register 

file, but the access time become lesser.  

 

The access time of Duplicated register files become lesser. 

However, total area and power consumption of all Duplicated register 

files is larger than a central register file. 

 

5.1.3 Multilevel Register File 

 

 

 

Fig. 5.3 Multilevel register file (register file cache) 
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Registers are cached to reduce average access latency in [5.9], 

[5.10]. A processor needs many physical registers. However, a very 

small number are actually required from a register file at a given 

moment. 

 

 A multilevel register file architecture consists of several 

levels of physical registers with a heterogeneous organization. 

Each level may have a different number of registers, a different 

number of ports and a different access time.  

 

In a multi-level organization, the functional units can only 

obtain the source operands from the uppermost level directly. A 

subset of registers in the lower levels are cached in the upper 

levels depending on the expectations of being required in the near 

future. Results are always written to the lowest level, which 

contains all the values, and optionally to upper levels if they 

are expected to be useful in the near future. 

 

A bank at the upper level of a register file cache can has many 

ports but few registers, which may result in a single-cycle access 

time. Banks at the lower levels have many more registers, a somewhat 

lower number of ports, and may have an increased latency. A more 

aggressive fetching mechanism could prefetch the values before they 

are required. Like in cache memories, prefetching must be carefully 

implemented to prevent premature or unnecessary fetching from 

polluting the upper levels. In general, prefetching can be 

implemented by software or hardware schemes. 

 

It is a critical issue for the approach to deciding which values 

are cached in the upper level of the hierarchy. Like in cache 

memories, upper levels should contain those values that are more 

likely to be accessed in the near future. However, the locality 

properties of registers and memory are very different. First of 

all, registers have a much lower temporal re-use. In fact, most 
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physical registers are read only once, and there is even a 

significant percentage that are never read. Spatial locality is 

also rare, since physical register allocation and register 

references are not correlated at all. 

 

 Register caches have much worse locality than conventional data 

caches. Therefore, register caching can add considerable control 

complexity to an architecture and determining the appropriate 

values to cache is nontrivial. 

 

5.1.4 One-Level Less-Port register file 

Architecture 

 

Using a less-ported structure and only allowing necessary 

register file read accesses reduce the register file’s area, energy, 

and access time. The designs in [5.11], [5.12], [5.13] do not use 

banked reads to avoid increasing the complexity of the select logic. 

 

[5.12] propose two techniques to reduce the number of register 

ports without impacting performance. First, a small memory 

structure is added, the delayed write-back queue. To access the 

write-back queue instead of accessing the register file can reduce 

the access frequency of register file. In addition, the results 

is written back both in the register file and the write-back queue 

concurrently to avoid consistency problems during renaming.  

 

Second, it proposed the technique to reduce the number of read 

ports by pre-fetching ready operands employs an operand pre-fetch 

buffer to store the pre-fetched operands, and a status bit, the 

pre-fetch flag, in the instruction queue entry to specify whether 

the operand is in the pre-fetch buffer or the register file. 

 

There are two options for reducing demand for read ports in [5.11]. 

The first option is straightforward and identifies bypass operands 
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in an extra pipeline stage inserted between out-of-order issue and 

register read. Second, a novel technique, bypass hint, is proposed. 

 

However, the select logic still has to select no more instructions 

than the number of available read ports after considering the bypass 

hint bits [5.11] or the prefetch flags [5.12]. [5.13] presents a 

novel register file architecture, which has single ported cells 

and asymmetric interfaces to the memory and to the datapath. 

 

  A high number of ports has a negative impact on the energy 

efficiency of register files. Traditionally, this problem is 

addressed through various clustering techniques that partition (or 

bank) the RF. However, as partitions get smaller the cost of 

inter-cluster copies quickly grows and the resulting register files 

are still multi-ported. For high energy efficiency, it is preferable 

that the registers be single ported. 

 

 

 

Fig. 5.4. Very Wide Register Organization 
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  By making wide memories, related blocks of data can be loaded 

in parallel, thereby reducing the decoder overhead. This requires 

the bus between the memories and the register file to be wide as 

well. 

 

  Three aspects are important in the proposed organization: the 

interface to the memory, single ported cells and the interface to 

the datapath. The interface of this foreground memory organization 

is asymmetric: wide towards the memory and narrower towards the 

datapath. 

 

A set of Very Wide Registers (VWR), with a single port each is 

used to replace a traditional register file. Every single VWR is 

made of single ported cells and it has no pre-decode circuit. A 

post-decode circuit consisting of a multiplexer is provided to 

select the appropriate word(s). 

 

 The asymmetric interface of the VWR, having a wide connection 

to the memory (width is complete row of the scratchpad) and a narrow 

connection of one word wide to the datapath, results in the following 

mode of operation: a complete row of the scratchpad is copied to 

the VWR at once, using a LOAD row., this scheme can save a lot of 

power in compared to a clustered VLIW register file. 

  

5.2 Multithreading 

 

  Servers equipped with more powerful and power-hungry processors 

to meet higher computational demands are pushing the power and 

cooling capabilities of these datacenters to their limits, 

resulting in increased operating costs and decreased system 

reliability. Therefore, achieving high performance while 

maintaining existing power and thermal envelopes requires that 

microprocessor designs focus not only on performance but rather 

on the aggregate performance per watt. 
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Multithreading allows multiple threads to share the functional 

units of a single processor in an overlapping fashion. To permit 

this sharing, the processor must duplicate the independent state 

of each thread. For example, a separate copy of the register file, 

a separate PC, and a separate page table are required for each thread. 

The memory itself can be shared through the virtual memory 

mechanisms, which already support multiprogramming. In addition, 

the hardware must support the ability to change to a different thread 

relatively quickly; in particular, a thread switch should be much 

more efficient than a process switch, which typically requires 

hundreds to thousands of processor cycles. 

 

 

Fig. 5.5 How four threads use the issue slots of a superscalar 

processor in different approaches. 
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The top portion of Fig. 5.5 shows how four threads would execute 

independently on a superscalar with no multithreading support. In 

the superscalar without multithreading support, the use of issue 

slots is limited by a lack of instruction-level parallelism. In 

addition, a major stall, such as an instruction cache miss, can 

leave the entire processor idle. The bottom of Fig. 5.5 shows the 

three multithreaded categories including of Fine-grained, 

Coarse-grained, and Simultaneous multithreading. 

 

5.2.1 Fine-grained multithreading 

 

Fine-grained multithreading switches between threads on each 

instruction, resulting in interleaved execution of multiple threads. 

This interleaving is often done in a round-robin fashion, skipping 

any threads that are stalled at that time. To make fine-grained 

multithreading practical, the processor must be able to switch 

threads on every clock cycle.  

 

One key advantage of fine-grained multithreading is that it can 

hide the throughput losses that arise from both short and long stalls, 

since instructions from other threads can be executed when one 

thread stalls. The primary disadvantage of fine grained 

multithreading is that it slows down the execution of the individual 

threads, since a thread that is ready to execute without stalls 

will be delayed by instructions from other threads. 

 

In the fine-grained case, the interleaving of threads eliminates 

fully empty slots. Because only one thread issues instructions in 

a given clock cycle, however, instruction-level parallelism 

limitations still lead to a significant number of idle slots within 

individual clock cycles. 

 

5.2.2 Coarse-grained multithreading 
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Coarse-grained multithreading was invented as an alternative to 

fine-grained multithreading. Coarse-grained multithreading 

switches threads only on costly stalls, such as level 2 cache misses. 

This change relieves the need to have thread switching be 

essentially free and is much less likely to slow down the execution 

of an individual thread, since instructions from other threads will 

only be issued when a thread encounters a costly stall. 

 

Coarse-grained multithreading suffers, however, from a major 

drawback: It is limited in its ability to overcome throughput losses, 

especially from shorter stalls. This limitation arises from the 

pipeline start-up costs of coarse-grained multithreading. Because 

a CPU with coarse grained multithreading issues instructions from 

a single thread, when a stall occurs, the pipeline must be emptied 

or frozen. The new thread that begins executing after the stall 

must fill the pipeline before instructions will be able to complete. 

Because of this start-up overhead, coarse-grained multithreading 

is much more useful for reducing the penalty of high-cost stalls, 

where pipeline refill is negligible compared to the stall time. 

 

In the coarse-grained multithreaded superscalar, the long stalls 

are partially hidden by switching to another thread that uses the 

resources of the processor. Although this reduces the number of 

completely idle clock cycles, within each clock cycle, the 

instruction-level parallelism limitations still lead to idle cycles. 

Furthermore, in a coarse-grained multithreaded processor, since 

thread switching only occurs when there is a stall and the new thread 

has a start-up period, there are likely to be some fully idle cycles 

remaining. 

 

5.2.3 Simultaneous multithreading 
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Simultaneous multithreading (SMT) is a variation on 

multithreading that uses the resources of a multiple-issue, 

dynamically scheduled processor to exploit thread-level 

parallelism at the same time it exploits instruction-level 

parallelism.  

 

The key insight that motivates SMT is that modern multiple-issue 

processors often have more functional unit parallelism available 

than a single thread can effectively use. Furthermore, with register 

renaming and dynamic scheduling, multiple instructions from 

independent threads can be issued without regard to the dependences 

among them; the resolution of the dependences can be handled by 

the dynamic scheduling capability. 

 

In the SMT case, thread-level parallelism (TLP) and 

instruction-level parallelism (ILP) are exploited simultaneously, 

with multiple threads using the issue slots in a single clock cycle. 

Ideally, the issue slot usage is limited by imbalances in the 

resource needs and resource availability over multiple threads. 

In practice, other factors—including how many active threads are 

considered, finite limitations on buffers, the ability to fetch 

enough instructions from multiple threads, and practical 

limitations of what instruction combinations can issue from one 

thread and from multiple threads—can also restrict how many slots 

are used. Although Fig. 5.5 greatly simplifies the real operation 

of these processors, it does illustrate the potential performance 

advantages of multithreading in general and SMT in particular. 

 

As mentioned earlier, simultaneous multithreading uses the 

insight that a dynamically scheduled processor already has many 

of the hardware mechanisms needed to support the integrated 

exploitation of TLP through multithreading. In particular, 

dynamically scheduled superscalar processors have a large set of 

registers that can be used to hold the register sets of independent 
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threads (assuming separate renaming tables are kept for each 

thread).  

 

Because register renaming provides unique register identifiers, 

instructions from multiple threads can be mixed in the data path 

without confusing sources and destinations across the threads. 

This observation leads to the insight that multithreading can be 

built on top of an out-of-order processor by adding a per-thread 

renaming table, keeping separate PCs, and providing the capability 

for instructions from multiple threads to commit. There are 

complications in handling instruction commit, since we would like 

instructions from independent threads to be able to commit 

independently. The independent commitment of instructions from 

separate threads can be supported by logically keeping a separate 

reorder buffer for each thread. 

 

There is a variety of other design challenges for an SMT processor. 

First, dealing with a larger register file needed to hold multiple 

contexts. Second, maintaining low overhead on the clock cycle, 

particularly in critical steps such as instruction issue, where 

more candidate instructions need to be considered, and in 

instruction completion, where choosing what instructions to commit 

may be challenging. Third, ensuring that the cache conflicts 

generated by the simultaneous execution of multiple threads do not 

cause significant performance degradation. 

 

In viewing these problems, two observations are important. First, 

in many cases, the potential performance overhead due to 

multithreading is small, and simple choices work well enough. Second, 

the efficiency of current super scalars is low enough that there 

is room for significant improvement, even at the cost of some 

overhead. SMT appears to be the most promising way to achieve that 

improvement in throughput.  
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5.3 Multiprocessors 

 

Computer performance has been driven largely by decreasing the 

size of chips while increasing the number of transistors they 

contain. In accordance with Moore’s law, this has caused chip speeds 

to rise and prices to drop. This ongoing trend has driven much of 

the computing industry for years. 

 

However, transistors can’t shrink forever. Even now, as 

transistor components grow thinner, chip manufacturers have 

struggled to cap power usage and heat generation, two critical 

problems. Even performance-enhancing approaches like running 

multiple instructions per thread have bottomed out. 

 

For these reasons, processor performance increases have begun 

slowing. Chip performance increased 60 percent per year in the 1990s 

but slowed to 40 percent per year from 2000 to 2004, when performance 

increased by only 20 percent. 

 

Manufacturers are building chips with multiple cooler-running, 

more energy-efficient processing cores instead of one increasingly 

powerful core. The multicore chips don’t necessarily run as fast 

as the highest performing single-core models, but they improve 

overall performance by handling more work in parallel. 

 

Current transistor technology limits the ability to continue 

making single processor cores more powerful. For example, as a 

transistor gets smaller, the gate, which switches the electricity 

on and off, gets thinner and less able to block the flow of electrons. 

 

Thus, small transistors tend to use electricity all the time, even 

when they aren’t switching. This wastes power. Also, increasing 

clock speeds causes transistors to switch faster and thus generate 

more heat and consume more power. However, this approach can’t keep 
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pace with processors’ increasing power and heat build up. 

 

These and other challenges have hurt manufacturers’ plans for new, 

faster single-core processors. For example, Intel cancelled two 

next-generation Pentium 4 processors last year, noted Jeff Austin, 

the company’s desktop product manager. Intel also postponed and 

then cancelled a 4-GHz, current generation Pentium. And IBM could 

build so few of its G5 chips that Apple Computer had to delay last 

year’s introduction of its new iMac G5 desktop, which uses the 

processor. 

 

Commercial multiprocessors and clusters usually define high 

performance as high throughput for independent tasks. This 

definition is in contrast to running a single task on multiple 

processors. The term parallel processing program is used to refer 

to a single program that runs on multiple processors simultaneously. 

 

5.3.1 Multicore architecture and communication 

 

To parallel processors share data, processors with a shared- 

memory offer the programmer a single memory address space that all 

processors share, as shown in Fig. 5.6. Processors communicate 

through shared variables in memory, with all processors capable 

of accessing any memory location via loads and stores. 

 

As processors operating in parallel will normally share data, they 

also need to coordinate when operating on shared data; otherwise, 

one processor could start working on data before another is finished 

with it. This coordination is called synchronization. When sharing 

is supported with a single address space, there must be a separate 

mechanism for synchronization. One approach uses a lock. Only one 

processor at a time can acquire the lock, and other processors 

interested in shared data must wait until the original processor 

unlocks the variable. 
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Single address space multiprocessors come in two styles. The first 

takes the same time to access main memory no matter which processor 

requests it and no matter which word is requested. Such machines 

are called uniform memory access (UMA) multiprocessors or symmetric 

multiprocessors (SMP). In the second style, some memory accesses 

are faster than others depending on which processor asks for which 

Fig. 5.7 The structure of a distributed-memory multiprocessor. 
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Fig. 5.6 The structure of a centralized shared-memory 

multiprocessor. 
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word. Such machines are called nonuniform memory access (NUMA) 

multiprocessors. As you might expect, the programming challenges 

are different for a NUMA multiprocessor versus a UMA multiprocessor, 

but NUMA machines can scale to larger sizes and hence are potentially 

higher performance. 

 

The alternative model for communicating uses message passing for 

communicating among processors. Message passing is required for 

machines with private memories, in contrast to shared memory. One 

example is a distributed-memory scheme, as shown in Fig. 5.7. The 

processors in different desktop computers communicate by passing 

messages over a local area network. Provided the system has routines 

to send and receive messages, coordination is built in with message 

passing since one processor knows when a message is sent, and the 

receiving processor knows when a message arrives. The receiving 

processor can then send a message back to the sender saying the 

message has arrived if the sender needs that confirmation. 
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The Niagara2 from Sun Microsystems is the processor based on the 

multi-threading architecture [5.14]. The chip has eight SPARC Cores, 

a 4 MB shared Level2 cache, and supports concurrent execution of 

64 threads. The Level2 cache is divided into eight banks. The SPARC 

Cores communicate with the Level2 cache through a crossbar. The 

block diagram of Niagara2 SPARC processor is shown in Fig. 5.8. 
 

  Fig. 5.9 shows the Niagara2 Crossbar (CCX) which serves as a high 

bandwidth interface between the eight SPARC Cores and the eight 

L2 cache banks, and the non-cacheable unit (NCU). CCX consists of 

two blocks: PCX and CPX. PCX (Processor-to-Cache -Transfer) is a 

multiplexer which transfers data from the eight SPARC cores to the 

eight L2 cache banks and the NCU. CPX (Cache-to-Processor Transfer) 

transfers data in the reverse direction. The PCX and CPX combined 

provide a Read/Write bandwidth of 270 GB/s. All crossbar data 

transfer requests are processed using a four-stage pipeline. The 

pipeline stages are: Request, Arbitration, Selection, and 

Transmission. 
 

Fig. 5.8 Processor block diagram of Niagara2 SPARC processor 
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5.4 Conclusion 

 

   There are several register file organizations according to 

different system architecture. Different architectures of register 

file are discussed in this chapter. Clustered architecture can 

decrease port number but need complex control logic. Register file 

cache reduces access latency. However, Register caches have much 

worse locality than conventional data caches. Therefore, register 

caching can add considerable control complexity to architecture. 

 

 To increase the utility rate of function units and to achieve high 

performance while maintaining existing power, the concept of 

multithreading and multiprocessors is introduced. 

 

 

 

Fig. 5.9 The Niagara2 Crossbar 
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Chapter 6 

Conclusion 
 

 

To reduce power consumption is an important topic for discussion 

when more and more portable devices are desired. Register file 

represent a substantial portion of power and area in modern 

processors. However, the conventional design of a register file 

with fully-ports causes problems such as enlargement of chip size, 

high power consumption and deterioration of register access speed. 

To avoid the serious problem, a low power banking multithread 

register file implemented by four interleaved banks with lesser 

ports is presented. Timing sharing access scheme is used to ease 

the performance degraded by bank conflict. 

 

We use additional address bit as thread number to switch between 

two threads. This method would increase some area penalty of 

decoders, but impact performance slightly. 

 

In order to design this low power multiple port register file, 

several low power techniques are proposed, such as floating bitline 

architecture, and divide bitline architecture. The register file 

can operate correctly in wide range of voltage supply from 0.5v 

to 1.0v. To operate correctly under all process corners and the 

wide range of Vdd, the design of timing control circuit is very 

important.  

 

The dual thread 64 x 64 bits register file implemented in UMC 90um 

CMOS technology consumes around 215.51µW to 197.77µW at 50MHz with 

0.5v and consumes around 3.62mW to 3.04mW at 250MHz with 1.0v. 

 

In the future, this work can use dual-Vdd technology, using Higher 

Vdd in critical path to better performance and using lower Vdd in 
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non-critical path to save power. The lowest supply voltage of this 

work is 0.5v, a subthreshold register file can be implemented 

hereafter for ultra low power application. A power management 

circuit can also be added to this work. 
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