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摘   要 

 

本論文介紹一個雙位元迴旋渦輪解碼理論，同時提出了一個應用於全球互通

微波存取通訊協定符合所有種類的面積優化解碼器。我們提出的解碼器可以支援

所有定義在IEEE 802.16e規格裡的編碼長度。藉由等比例縮減外在資訊，MAX-Log 

MAP 演算法可以在極小的效能降低下減低硬體複雜度。另外提出了假雙埠暫存檔

案可以大量的省下記憶體的使用量以及解碼時所產生的延誤並且允許同時讀取

及寫入資料在同一個解碼週期內。除此之外，我們所提出的簡化過後的交錯器只

用到了簡單的加法及減法器可以大量的減少硬體的使用量。根據實驗結果，此解

碼器在 90nm 製程下最高能達到 30Mb/s 的傳輸速度，晶片的面積是 1.12mm2。

此外，在 0.9V 的供應電壓、166MHz 操作頻率以及編碼長度 2400 下，功率的消

耗經量測過後為 32.87mW。 

 

本論文另外提供了一個應用隨機更新規則的柵狀解碼理論。藉由使用了隨機
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運算方式，ACS 單位的硬體複雜度可以大大的被簡化。所提出的狀態記憶體增加

了隨機切換活動力可避免鎖定在同一個固定的狀態，以及所引用的等比例降低雜

訊相依因子可以消去地板錯誤現象。這兩種技術階可讓解碼性能大突的提高。相

較於 (2, 1, 3) 的渦輪碼，實驗結果顯示隨機解碼器可以是一個做為降低硬體複

雜度的解碼選項。 
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ABSTRACT 
 

Double-binary convolutional turbo code (CTC) decoding algorithm is 

introduced in this thesis, and a fully compliant and area-efficient CTC decoder for 

WiMAX 802.16e is proposed. The proposed decoder can support all code lengths 

specified in IEEE 802.16e system. By scaling the extrinsic information, the Max-Log 

MAP algorithm is used such that hardware complexity can be reduced with the 

minimized performance loss. For saving memory requirement and reducing decoding 

latency, the pseudo two-port register file is also demonstrated to allow read and write 

operation within one decoding cycle. Moreover, a simplified interleaver architecture 

which uses simple addition and subtraction instead of division is proposed to reduce 

the hardware area and decrease the critical path. Implemented in the 90-nm process, 

the proposed decoder chip occupied in 1.12mm2
 core area can achieve 30Mb/s 

decoding throughput. The power consumption according to post-layout simulation is 

32.87mW operated at supply voltage 0.9V and clock rate 166MHz with block length 

of 2400. 

 

Another trellis-based decoding algorithm using stochastic update rule is also 

presented in this thesis. By using the stochastic computation, the hardware complexity 

 iii



can be reduced by simplifying ACS-unit operation. The proposed state memory can 

increase the random switching activity to avoid the state locked into a fixed state, and 

noise dependent scaling factor can further eliminate the error floor effect. Both 

techniques can greatly improve the performance compared to the Viterbi decoding 

algorithm. Through the simulation analysis and parameter decision for (2, 1, 3) 

convolutional code, the performance comparison shows that the stochastic decoding 

algorithm can be one of the candidates for low complexity iterative decoding. 
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Chapter 1

Introduction

1.1 Research Motivation

The fundamental block diagram of a typical digital communication system is shown in

Fig. 1.1. Signal transformation from the information source to the transmitter includes

source encoding, channel encoding and modulation. The receiver will reverse the signal

transformation by demodulation, channel decoding and source decoding. In order to

eliminate the effects of noise disturbances, the channel encoder transforms the source

codeword into the channel codeword by adding certain structural redundancy. These

redundant bits can be used for detecting and correcting the errors. Theoretically, the

encoding procedure provides the encoded signal with better distance properties than the

un-coded one, and thus channel coding can improve the performance of the overall system.

Information

source

Source

encoder

Channel

encoder
Modulator

Channel

Demodulator
Channel

decoder

Source

decoder

Information

destination

Figure 1.1: Block diagram of a typical digital communication system
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In the last decade, trellis-based decoding algorithm applied to convolutional code or

turbo code has been adopted in many standards because of its execellent error correction

ability. Although the turbo code has outstanding error-correcting performance, the de-

coding efficiency and maximum throughput still cannot meet the standard requirement

with higher throughput. Hence, double-binary convolutional turbo code is introduced

in the recent years because of its high decoding efficiency and excellent error-correcting

performance. The double-binary CTC decoder adopted in WiMAX 802.16e [1] standard

which defined detail standard providing maximum throughput about 30Mb/s will be pro-

posed in this thesis, and the hardware architecture and chip implementation result are

also presented in the following chapter.

The main problem of double-binary convolutional turbo code is the higher hard-

ware complexity on high-radix ACS-unit from single-binary to double-binary (even triple-

binary). In order to design a low complexity trellis-based decoder, the stochastic computa-

tion will be applied to trellis-based decoding algorithm. Stochastic arithmetic introduced

in 1960’s can break speed bottleneck caused by recursive computation to increase the

operating frequency. Besides, the error-correcting performance can be adjusted by decod-

ing cycles. As a result, since stochastic decoding algorithm has been successfully applied

to LDPC code, it might have potential to apply to convolutional code and would be

introduced and applied on trellis diagram in this thesis.

1.2 Thesis Organization

This thesis consists of 5 chapters. In chapter 2, different kinds of trellis-based decoding

algorithms are reviewed, such as single-binary turbo decdoing algorithm, double-binary

turbo decoding algorithm, and stochasitc decoding algorithm using update rule. The

stochastic decoder applied on trellis-based decoding algorithm is described in chapter 3.

Further improvement and simulation analysis are also stated. Chapter 4 introduces the

implementation of double-binary convolutional turbo code applied to WiMAX 802.16e

system, including the performance comparison, the hardware architecture, and the chip

implementation result. Finally, the conclusion is given in chapter 5. The parameters used

in WiMAX 802.16e are also illustrated in appendix A.
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Chapter 2

Trellis-based Decoding Algorithms

2.1 MAP Decoding Algorithm

2.1.1 The MAP Decoding Algorithm

The maximum a posteriori probability (MAP) decoding algorithm, also termed as BCJR

decoding algorithm, is developed by Bahl, Cocke, Jelinek, and Raviv in 1974 [2]. The

MAP algorithm is optimal for estimating the states or the outputs of a Markov process

observed under AWGN channel. It produces the sequence of a posteriori probabilities

(APP) from the received sequence r over a discrete memoryless channel (DMC) and

minimizes the symbol error probability. Assume for state transition from St
m′ at time t to

S
(t+1)
m at time t + 1, we can estimate the joint probability

Pr{S
(t)
m′ , S

(t+1)
m , r} = Pr{S

(t)
m′ , S

(t+1)
m , rt−1

0 , rt, r
N−1
t+1 }

= Pr{rN−1
t+1 |S

(t)
m′ , S

(t+1)
m , rt−1

0 , rt}

× Pr{S(t+1)
m , rt|S

(t)
m′ , r

t−1
0 }

× Pr{S
(t)
m′ , r

t−1
0 }

= Pr{rN−1
t+1 |S(t+1)

m }Pr{S(t+1)
m , rt|S

(t)
m′}Pr{S

(t)
m′ , r

t−1
0 }

(2.1)

Notice that (m′, m) means the state transition and rt−1
0 denotes the received sequence

from time 0 to t − 1, rN−1
t+1 denotes the received sequence from time t + 1 to N − 1, and
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rt denotes the codeword symbol at time t. We further redefine the equation in (2.1) :

α(S
(t)
m′) = Pr{S

(t)
m′ , r

t−1
0 } (2.2)

γ(S
(t)
m′ , S

(t+1)
m ) = Pr{S(t+1)

m , rt|S
(t)
m′} (2.3)

β(S(t+1)
m ) = Pr{rN−1

t+1 |S(t+1)
m }, (2.4)

and thus (2.1) can be rewritten as

Pr{S
(t)
m′ , S

(t+1)
m , r} = α(S

(t)
m′)γ(S

(t)
m′ , S

(t+1)
m )β(S(t+1)

m ) (2.5)

Now, we will derive the equations (2.2), (2.3), and (2.4) as follow:

α(S(t+1)
m ) = Pr{S(t+1)

m , rt
0}

=
∑

S
(t)

m′
∈S

Pr{S
(t)
m′ , S

(t+1)
m , rt

0}

=
∑

S
(t)

m′
∈S

Pr{S(t+1)
m , rt, |S

(t)
m′ , r

t−1
0 }Pr{S

(t)
m′ , r

t−1
0 }

=
∑

S
(t)

m′
∈S

Pr{S(t+1)
m , rt, |S

(t)
m′}Pr{S

(t)
m′ , r

t−1
0 }

=
∑

S
(t)

m′
∈S

γ(S
(t)
m′ , S

(t+1)
m )α(S

(t)
m′)

(2.6)

Similarly,

β(S
(t)
m′) =

∑

S
(t+1)
m ∈S

Pr{S(t+1)
m , rN−1

t |S
(t)
m′}

=
∑

S
(t+1)
m ∈S

Pr{S(t+1)
m , rt, r

N−1
t+1 , S

(t)
m′}/ Pr{S

(t)
m′}

=
∑

S
(t+1)
m ∈S

Pr{rN−1
t+1 |S(t+1)

m , rt, S
(t)
m′}Pr{S(t+1)

m , rt|S
(t)
m′}

=
∑

S
(t+1)
m ∈S

Pr{rN−1
t+1 |S(t+1)

m }Pr{S(t+1)
m , rt|S

(t)
m′}

=
∑

S
(t+1)
m ∈S

β(S(t+1)
m )γ(S

(t)
m′ , S

(t+1)
m ),

(2.7)

where S is the set of all states. From the equations (2.6) and (2.7), we can find that

the forward metric α and the backward metric β will be computed recursively in opposite
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direction. Assume the trellis diagram diverges fom zero state at time 0 and converges to

zero state at time N , the initial conditions are satisfied:

α(S
(0)
0 ) = 1, α(S

(0)
x ) = 0 for S

(0)
x ∈ S\S0

β(S
(N)
0 ) = 1, β(S

(N)
x ) = 0 for S

(N)
x ∈ S\S0

(2.8)

Furthermore, the branch metric from state m′ to m can be computed as

γ(S
(t)
m′ , S

(t+1)
m ) =

Pr{S
(t+1)
m , S

(t)
m′ , rt}

Pr{S
(t)
m′}

=
Pr{S

(t+1)
m , S

(t)
m′}

Pr{S
(t)
m′}

×
Pr{S

(t+1)
m , S

(t)
m′ , rt}

Pr{S
(t+1)
m , S

(t)
m′}

= Pr{S(t+1)
m |S

(t)
m′}Pr{rt|S

(t+1)
m , S

(t)
m′}

= P (ut)P (rt|v̂t),

(2.9)

where ut is the encoder input that causes the transition S
(t)
m′ → S

(t+1)
m , and v̂t is the

corresponding codeword for 0 ≤ t ≤ N .

For the single-binary Recursive Systematic Convolutional (RSC) encoder input sig-

nal ut after BPSK mapping, the log-likelihood ratio (LLR) can be defined as

L(ut) , ln
Pr{ut = +1|r}

Pr{ut = −1|r}
(2.10)

Therefore, the equation can be further decomposed to

L(ut) = ln

∑

(m′,m)∈B
+1
t

Pr{S
(t)
m′ , S

(t+1)
m |r}

∑

(m′,m)∈B
−1
t

Pr{S
(t)
m′ , S

(t+1)
m |r}

= ln

∑

(m′,m)∈B
+1
t

Pr{S
(t)
m′ , S

(t+1)
m , r}

∑

(m′,m)∈B
−1
t

Pr{S
(t)
m′ , S

(t+1)
m , r}

= ln

∑

(m′,m)∈B
+1
t

α(S
(t)
m′)γ(S

(t)
m′ , S

(t+1)
m )β(S

(t+1)
m )

∑

(m′,m)∈B
−1
t

α(S
(t)
m′)γ(S

(t)
m′ , S

(t+1)
m )β(S

(t+1)
m )

,

(2.11)

where B+1
t is the set of all (m′, m) that indicate the state transitions are caused by

ut = +1, and B−1
t , the set of (m′, m), denotes the state transitions are due to ut = −1.

To decide the decoded output signal ût, make a hard decision to the value of LLR,

then ût can be estimated as

ût =











+1 if L(ut) ≥ 0

−1 if L(ut) < 0

(2.12)
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2.1.2 The Log-MAP Decoding Algorithm

From equations (2.6), (2.7), and (2.9), we can realize that the MAP algorithm requires

complex hardware resource. In order to simplify hardware complexity, we can transform

MAP decoding algorithm into logarithmic domain. At first, we need to transfer the branch

metric γ in (2.9) to logarithmic domain; that is

γ̄(S
(t)
m′ , S

(t+1)
m ) = ln γ(S

(t)
m′ , S

(t+1)
m ) (2.13)

Then, the forward metric α in (2.6) and the backward metric β in (2.7) can be further

expressed as

ᾱ(S
(t+1)
m′ ) = ln α(S

(t+1)
m′ ) = ln

∑

S
(t)

m′
∈S

eγ̄(S
(t)

m′
,S

(t+1)
m )+ᾱ(S

(t)

m′
), (2.14)

and

β̄(S(t)
m ) = ln β(S(t)

m ) = ln
∑

S
(t+1)
m ∈S

eβ̄(S
(t+1)
m )+γ̄(S

(t)

m′
,S

(t+1)
m ) (2.15)

As the path metrics have been changed, the initial conditions of metrics become

ᾱ(S
(0)
0 ) = 0, ᾱ(S

(0)
x ) = −∞ for S

(0)
x ∈ S\S0

β̄(S
(N)
0 ) = 0, β̄(S

(N)
x ) = −∞ for S

(N)
x ∈ S\S0

(2.16)

Referring to (2.13), (2.14), and (2.15), the LLR in (2.11) can be rewritten as

L(ut) = ln





∑

(m′,m)∈B
+1
t

eᾱ(S
(t)

m′
)+γ̄(S

(t)

m′
,S

(t+1)
m )+β̄(S

(t+1)
m )





− ln





∑

(m′,m)∈B
−1
t

eᾱ(S
(t)

m′
)+γ̄(S

(t)

m′
,S

(t+1)
m )+β̄(S

(t+1)
m )





(2.17)

To simplify the logarithmic domain, we consider the Jacobian function [3]

ln(ex1 + ex2) , max ∗(ex1, ex2) = max(x1, x2) + ln(1 + e−|x1−x2|), (2.18)

and the correction term ln(1+e−|x1−x2|) can be implemented by a lookup table to simplify

hardware design. Apply the recursive procedure to (2.18), we can extend the Jacobian

function to

ln(ex1 + ex2 + · · · + exb) , max ∗(ex1 , ex2, . . . , exb) (2.19)

= max ∗(· · ·max ∗(max ∗(x1, x2), x3) · · · , xb) (2.20)
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Apply (2.18) to (2.14) and (2.15)

ᾱ(S
(t+1)
m′ ) = max ∗

S
(t)

m′
∈S

[γ̄(S
(t)
m′ , S

(t+1)
m ) + ᾱ(S

(t)
m′)] (2.21)

β̄(S(t)
m ) = max ∗

S
(t+1)
m ∈S

[β̄(S(t+1)
m ) + γ̄(S

(t)
m′ , S

(t+1)
m )], (2.22)

and therefore,

L(ut) = max ∗
(m′,m)∈B

+1
t

[ᾱ(S
(t)
m′) + γ̄(S

(t)
m′ , S

(t+1)
m ) + β̄(S(t+1)

m )]

− max ∗
(m′,m)∈B

−1
t

[ᾱ(S
(t)
m′) + γ̄(S

(t)
m′ , S

(t+1)
m ) + β̄(S(t+1)

m )].
(2.23)

The MAP decoding algorithm based on (2.21), (2.22), and (2.23) is termed Log-MAP

algorithm [4, 5].

2.1.3 The Max-Log-MAP Decoding Algorithm

The performance of the Log-MAP algorithm is equivalent to the MAP algorithm but

the hardware complexity has been reduced considerably. However, the correction term

y = ln(1 + e−|x1−x2|) in (2.18) requires a lookup table to simplify the computation.

In Fig. 2.1, we can discover that y decreases rapidly as x = |x1 − x2| increases. In

order to further simplify the complexity of correction term, it is possible to discard y with

some performance degradation because of the information loss.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

y=
ln

(1
+

e−
x )

Figure 2.1: Correction Factor
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Consequently, we have the following approximations:

max ∗(ex1 , ex2) ≈ max(x1, x2) (2.24)

max ∗(ex1 , ex2, . . . , exn) ≈ max
i=1∼n

(xi). (2.25)

Applying (2.24) and (2.25), we can reduce the Log-MAP algorithm to the Max-Log-MAP

algorithm that contains only the additions and the max functions. Therefore, we can

rewrite (2.21), (2.22), and (2.23) as

ᾱ(S
(t+1)
m′ ) ≈ max

S
(t)

m′
∈S

[γ̄(S
(t)
m′ , S

(t+1)
m ) + ᾱ(S

(t)
m′)] (2.26)

β̄(S(t)
m ) ≈ max

S
(t+1)
m ∈S

[β̄(S(t+1)
m ) + γ̄(S

(t)
m′ , S

(t+1)
m )], (2.27)

and

L(ut) ≈ max
(m′,m)∈B

+1
t

[ᾱ(S
(t)
m′) + γ̄(S

(t)
m′ , S

(t+1)
m ) + β̄(S(t+1)

m )]

− max
(m′,m)∈B

−1
t

[ᾱ(S
(t)
m′) + γ̄(S

(t)
m′ , S

(t+1)
m ) + β̄(S(t+1)

m )].
(2.28)

2.1.4 Sliding Window Approach

From the previous discussion, we can find that in the MAP-series decoding algorithm

(including MAP algorithm, Log-MAP algorithm and MAX-Log-MAP algorithm), the

calculation of LLR requires the forward metrics and backward metrics; all of the metrics

should be kept to calculate all L(ut) with t = 1 ∼ N . Since the backward recursive com-

putation initials from the end of the decoding trellis, the LLR value cannot be calculated

until the entire block metrics received. If the block length is large, it will lead to long

output latency and require huge memory for hardware implementation.

To reduce the memory requirement, the sliding window algorithm [6–8] is applied to

avoid storing the metrics corresponding to the entire codeword sequence. This algorithm

utilizes the fact that the backward metrics can be highly reliable even without the initial

condition if the length of backward recursive computation is long enough. In Fig. 2.2,

the codeword sequence is divided into ⌈N/Tw⌉ sub-blocks with sliding window length Tw

which is also called the convergence length, and the dummy backward recursion βd is

employed to establish the initial conditions for the true backward recursion β. Although
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d
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t3

t4

Window-size

. . . . . .
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( )tL u

( )tL u

( )tL u

d

d

Figure 2.2: The process of sliding window MAP algorithm

the initial condition for the βd recursion is unknown except the last sub-block, we set the

equally likely conditions for βd within the (j + 1)-th sub-block

βd(S
((j+1)·Tw)
m ) =

1

M
, for all S(jω)

m ∈ S, (2.29)

where M is the state number in trellis diagram. After the backward recursive computation

βd process of Tw time instances, the initial metrics β(S
(j·Tw)
m ) in the j-th sub-block are

available for the β recursion. During the (j + 1)-th βd operation, the forward α recursion

proceeds concurrently in the j-th sub-block, and all the metric values are stored in the

memory. In the backward β recursion of the j-th sub-block, we can calculate the L(ut)

value with the α metrics in the memory, the β metrics in computing, and the corresponding

branches metrics in the j-th sub-block. The sliding window length Tw which is set to be

six times constraint length of component encoder in turbo code to ensure the reliable

initialization for the β recursion [8].

2.2 Turbo Code

Turbo code, also named parallel concatenated convolutional code (PCCC), convolutional

turbo code (CTC), or turbo convolutional code (TCC), was first proposed by C. Berrou,

A. Glavieux and P. Thitimajshima in 1993 [9,10]. It has been proved that the performance

of turbo code can be close to shannon limit with simple recursive systematic convolutional

(RSC) codes concatenated by an interleaver whose length is N . The interleaver permutes

the information sequence before the second encoding, introducing code diversity.
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2.2.1 Turbo Encoder

The turbo encoder is composed of two RSC encoders and an interleaver to reorder the

information sequence. Note that the RSC encoder must be recursive for better perfor-

mance [11]. In Fig. 2.3, the information symbols are encoded to the systematic part v0(D)

and the parity part v1(D); thus, v0(D) = u(D). And the second encoder encodes the

interleaved information symbols ũ(D) to the parity part v2(D).

Encoder 1

Encoder 2

Interleaver

( )Du

( )Duɶ

1( )Dv

2 ( )Dv

0 ( )Dv

Figure 2.3: Turbo encoder

2.2.2 Turbo Interleaver

The main reason causing turbo code performance so close to shannon limit is the inter-

leaver. As shown in Fig. 2.3, the interleaver permutes the information sequence u(D) to

ũ(D). Therefore, the interleaver can spread out the burst errors and further eliminate

the correlation of the input of two RSC encoders so that the iterative decoding algorithm

based on exchanging un-correlated information between two decoders can be applied.

Also, the interleaver can break low weight codewords to improve the coding gain.

The code distance spectrum dominates the error-correcting performance of the turbo

code. Referring to [12], the process of the interleaver called spectral thinning can reduce

the error probability of low weight codewords. If we assume the interleaver performs

random permutation, the error probability can be reduced by a factor of 1/N [11, 13],

where N is the interleaver size. And 1/N is also refered to the interleaver gain. The
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size and the permutation will considerably affect the turbo code performance. At low

SNRs, the interleaver size has the most important effect, whereas the permutation would

dominate the error performance at high SNRs. Consequently, the interelaver structure is

desirable to break these input patterns. In such case, the input sequence to the second

encoder, which is generated by the interleaver, will most likely produce a high weight

parity check sequence and further increase the whole turbo codeword weight.

2.2.3 Turbo Decoder

The iterative turbo decoding process based on MAP algorithm is to exchange the soft

information among soft-in/soft-out (SISO) decoders to calculate a posteriori probability

of each information bit ut [2]. For a code rate 1/n RSC encoder, each codeword frame

consists of one systematic bit and (n−1) parity bits. In the receiver, the received codeword

has the systematic symbol r0,t and the parity symbols r
(1)
t ∼ r

(n−1)
t . If the a priori

information is represented by

La(ut) , ln
P (ut = +1)

P (ut = −1)
, (2.30)

additionally, the channel reliability value Lc is defined to be 4Es

N0
for the AWGN chan-

nel [14], and the branch metric in logarithmic domain would be

γ̄(S
(t)
m′ , S

(t+1)
m ) = ln P (ut)P (rt|v̂t) =

1

2
(utLa(ut) + Lcutr0,t +

n−1
∑

i=1

Lcr
(i)
t v̂

(i)
t ), (2.31)

which is from (2.9) and (2.13).

As a result, the APP information from the SISO decoder can be derived as follows:

L(ut) = ln

∑

(m′,m)∈B
+1
t

[

eᾱ(S
(t)

m′
)+γ̄(S

(t)

m′
,S

(t+1)
m )+β̄(S

(t+1)
m )

]

∑

(m′,m)∈B
−1
t

[

eᾱ(S
(t)

m′
)+γ̄(S

(t)

m′
,S

(t+1)
m )+β̄(S

(t+1)
m )

]

= ln

∑

(m′,m)∈B
+1
t

[

e
1
2
((+1)La(ut)+(+1)Lcr,0t)

][

eᾱ(S
(t)

m′
)+ 1

2

∑n−1
i=1 Lcr

(i)
t v̂

(i)
t +β̄(S

(t+1)
m )

]

∑

(m′,m)∈B
−1
t

[

e
1
2
((−1)La(ut)+(−1)Lcr0,t)

][

eᾱ(S
(t)

m′
)+ 1

2

∑n−1
i=1 Lcr

(i)
t v̂

(i)
t +β̄(S

(t+1)
m )

]

= La(ut) + Lcr0,t + ln

∑

(m′,m)∈B
+1
t

[

eᾱ(S
(t)

m′
)+ 1

2

∑n−1
i=1 Lcr

(i)
t v̂

(i)
t +β̄(S

(t+1)
m )

]

∑

(m′,m)∈B
−1
t

[

eᾱ(S
(t)

m′
)+ 1

2

∑n−1
i=1 Lcr

(i)
t v̂

(i)
t +β̄(S

(t+1)
m )

]

= La(ut) + Lcr0,t + Le(ut).

(2.32)

11



The term Le(ut) is the extrinsic information corresponding to the information bit ut [9,10].

SISO

decoder-1

SISO

decoder-2

Interleaver

Interleaver

De-

interleaver

1( )a t
L u

1( )tL u

1( )e t
L u 2 ( )a t

L uɶ

2
( )
t

L uɶ

2
( )

e t
L uɶ

0,tr

1,tr

2,tr

0,trɶ

Figure 2.4: Turbo decoder

In the decoder, we receive the systematic sequence r0(D) as well as the parity sequences

r1(D) and r2(D) from encoder 1 and encoder 2. In the decoding flow shown in Fig. 2.4,

there are two SISO decoders for the two constituent encoders in Fig. 2.3. Initially, we

set the a priori information La1(ut) for the first decoder to zero and apply the BCJR

algorithm to calculate the a posteriori information L1(ut). From (2.32), the extrinsic

information Le1(ut) can be obtained

Le1(ut) = L1(ut) − Lcr0,t − La1(ut), (2.33)

where La1(ut) = 0 initially. In the SISO decoder-2, the inputs are r̃0(D) permuted from

the systematic part r0(D) and the parity sequence r2(D), while the a priori information

La2(ũt) is the extrinsic output Le1(ut) from decoder-1 after permutation. Consequently,

we can evaluate the a posteriori output L2(ũt) and the extrinsic information Le2(ũt)

corresponding to the second constituent code by

Le2(ũt) = L2(ũt) − Lcr̃0,t − La2(ũt). (2.34)

As shown in Fig. 2.4, the information Le2(ũt) can be regarded as the the a priori

information La1(ut) for SISO decoder-1 after being reordered by the de-interleaver. The

BCJR algorithm proceeds again for the first constituent code based on the information

La1(ut) from SISO decoder-2. The turbo decoding proceeds iteratively with the extrinsic
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information passing between the two SISO decoders. When the stopping criteria are

reached, which may be the maximum iteration number or a correctly decoded codeword,

the APP information L2(ũt) through the de-interleaver is exported for hard decision.

Notice that both SISO decoders in Fig. 2.4 will complete once within each decoding

iteration.

The BER curve of turbo code can be divided into three regions [15], at very low SNRs,

the signal is so greatly corrupted by channel noise that the decoder cannot improve the

error rate and may even degrade it. The non-convergence region has an almost constant

and high error probability. As the SNR increases, a waterfall region is encountered where

the error rate drops sharply. As the SNR increases still further, a error floor region is

encountered where the curve becomes less steep, limiting the performance gains. This

error floor region is primarily a function of the distance properties of the code, which can

be expressed by (2.35)

Pb ∝ Q

(

√

2dfreeR
Eb

N0

)

, (2.35)

where dfree is the code minimum free distance, R is the code rate, and Eb

N0
is the SNR.

2.3 Double-binary Convolutional Turbo Code Decod-

ing Algorithm

Double-binary convolutional turco code (CTC) can provide better performance than single

binary turbo code for equivalent compexity [16]. This section will introduce double-binary

CTC with tail-biting technique which can avoid reducing the code rate and increasing

the transmission bandwidth. Using double-binary CTC, the latency of the decoder is

halved [17], and it could be easily adopted in many standards, such as DVB-RCS and

WiMAX standards [1, 18].

2.3.1 Double-binary CTC Encoder

The bouble-binary CTC encoder is shown in Fig. 2.5. Compare to the conventional turbo

code, there has two systematic bits, so the number of branches connected to each state

in trellis diagram are increased from two to four.
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Figure 2.5: Double-binary Convolutional Turbo encoder

For conventional turbo encoder, we should add tail bits to force the trellis diagram to

finish at zero state. The trellis termination makes sure that the initial state for the next

block is the all-zero state, but the tail bits will decrease the code rate and degrade the

transmission efficiency, and the degradation will be more for the shorter blocks. Using tail-

biting application, also called circulation states, the state of the encoder at the beginning

of the encoding process is not necessarily the all-zero state. The fundamental idea behind

tail-biting is that the encoder is controlled in such a way that it starts and ends the

encoding process in the same state [19].

The circular coding ensures that, at the end of the encoding operation, the encoder

retrieves the initial state, so that data encoding may be represented by a circular trellis.

Assume there exists such a circulation state Sc, if the encoder starts from state Sc, it

comes back to the same state when the encoding process is finished. The derivation of

circulation state Sc requires a pre-encoding operation. First, the encoder is initialized in

the all zero state, and the data sequence of length N is encoded once, leading to a final

state S
(N)
m . Second, we find Sc from the final state S

(N)
m by the following equation [19]:

Sc =
(

I + GN
)−1

× S(N)
m , (2.36)

where G is the generator matrix which comes from encoder, and I is the identity matrix.

Finally, data are encoded starting from the state Sc calculated by (2.36).
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2.3.2 Decoding Procedure for Double-binary CTC

According to the iterative decoding algorithm of turbo codes in section 2.2, we realize

that the goal of the MAP decoding algorithm is to achieve the extrinsic and LLR values.

Therefore, for the input signals u0,t and u1,t, the LLR for i = 1, 2, 3 can be represented as

Li (dt) , ln
Pr {dt = i|r}

Pr {dt = 0|r}
, (2.37)

where dt in GF (22) is defined as the collection of input symbols (u0,t, u1,t) with elements

{0, 1, 2, 3} from time (t−1) to time t (that is, dt = 00, 01, 10, 11. We use decimal notation

instead of binary for simplicity), and r is received symbol after QPSK mapping. The

decomposition of the above equation will be

Li(dt) = ln

∑

(m′,m)∈Bi
t
Pr{S

(t)
m′ , S

(t+1)
m |r}

∑

(m′,m)∈B0
t
Pr{S

(t)
m′ , S

(t+1)
m |r}

= ln

∑

(m′,m)∈Bi
t
Pr{S

(t)
m′ , S

(t+1)
m , r}

∑

(m′,m)∈B0
t
Pr{S

(t)
m′ , S

(t+1)
m , r}

= ln

∑

(m′,m)∈Bi
t
α(S

(t)
m′)γ(S

(t)
m′ , S

(t+1)
m )β(S

(t+1)
m )

∑

(m′,m)∈B0
t
α(S

(t)
m′)γ(S

(t)
m′ , S

(t+1)
m )β(S

(t+1)
m )

,

(2.38)

where Bi
t is the set of all (m′, m) that indicate the state transitions are caused by dt = i,

and B0
t , the set of (m′, m), denotes the state transitions are due to dt = 0.

Applying the Log-MAP algorithm to the (2.38), the LLR can be rewritten to

Li(dt) = ln

∑

(m′,m)∈Bi
t
eᾱ(S

(t)

m′
)+γ̄(S

(t)

m′
,S

(t+1)
m )+β̄(S

(t+1)
m )

∑

(m′,m)∈B0
t
eᾱ(S

(t)

m′
)+γ̄(S

(t)

m′
,S

(t+1)
m )+β̄(S

(t+1)
m )

= max ∗
(m′,m)∈Bi

t
[ᾱ(S

(t)
m′) + γ̄(S

(t)
m′ , S

(t+1)
m ) + β̄(S(t+1)

m )]

− max ∗
(m′,m)∈B0

t
[ᾱ(S

(t)
m′) + γ̄(S

(t)
m′ , S

(t+1)
m ) + β̄(S(t+1)

m )],

(2.39)

and the Max-Log-MAP approximation will become

Li(dt) ≈ max
(m′,m)∈Bi

t

[ᾱ(S
(t)
m′) + γ̄(S

(t)
m′ , S

(t+1)
m ) + β̄(S(t+1)

m )]

− max
(m′,m)∈B0

t

[ᾱ(S
(t)
m′) + γ̄(S

(t)
m′ , S

(t+1)
m ) + β̄(S(t+1)

m )].
(2.40)

Since the tail-biting is applied on circular trellis diagram, we have equally likely symbols.

Thus, the initial condition of branch metrics become

ᾱ(S
(0)
x ) = 0 for ∀ S

(0)
x ∈ S

β̄(S
(N)
x ) = 0 for ∀ S

(N)
x ∈ S.

(2.41)
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Figure 2.6: Double-binary CTC decoder

For a code rate 1/n double-binary RSC encoder, each codeword frame consists of two

systematic bits and 2(n − 1) parity bits. In the receiver, the received codeword has the

systematic symbols r
(0)
t , r

(1)
1 and the parity symbols r

(2)
t ∼ r

(2n−1)
t . Moreover, in order

to reduce the computational complexity, to increase throughput, or to reduce the power

consumption, we could further simplify the path metrics into

γ̄(S
(t)
m′ , S

(t+1)
m ) = Li

a (dt) +

2n−1
∑

j=0

bj · r
(j)
t , (2.42)

where the value of bj ∈ {+1,−1} depends on the encoding polynomial after BPSK map-

ping and can be pre-calculated for all state transitions, respectively. The a priori infor-

mation in (2.42) is represented by

Li
a(dt) , ln

P (dt = i)

P (dt = 0)
. (2.43)

From the decoding flow shown in Fig. 2.6, the extrinsic information for next stage can be

calculated as

Li
e (dt) = Li (dt) − [(b0 · r0,t + b1 · r1,t) − (r0,t + r1,t)] − Li

a (dt) . (2.44)

Compute symbol probabilities for the next decoder from previous decoder as

Li
a (dt) = Li

e

(

d̃t

)

= ln
P (dt = i)

P (dt = 0)
, (2.45)
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to save the hardware resource, we can define ln P (dt = 0) to 0. Hence, the a priori

information can be rewritten as follows:


















ln P (dt = 1) = L1
e

(

d̃t

)

ln P (dt = 2) = L2
e

(

d̃t

)

ln P (dt = 3) = L3
e

(

d̃t

)

(2.46)

Assume the information symbols are equal probability, so we initialize the a priori infor-

mation for the first iteration:






























lnP (dt = 0) = 0

lnP (dt = 1) = 0

lnP (dt = 2) = 0

lnP (dt = 3) = 0

(2.47)

The double-binary turbo decoding proceeds iteratively with the extrinsic information pass-

ing between the two SISO decoders. When the stopping criteria are reached, which may

be the maximum iteration number or a correctly decoded codeword, the final decisions

are made according to:

d̃t =































01, if L
(

d̃t

)

= L1

(

d̃t

)

> 0

10, if L
(

d̃t

)

= L2

(

d̃t

)

> 0

11, if L
(

d̃t

)

= L3

(

d̃t

)

> 0

00, else

(2.48)

where

L
(

d̃t

)

= max
(

L1

(

d̃t

)

, L2

(

d̃t

)

, L3

(

d̃t

))

(2.49)

2.4 Stochastic Iterative Decoding Algorithm

Stochastic arithmetic was first introduced in 1960’s as a method to design low-precision

digital circuits [20]. Due to the hardware implementations of iterative decoding for error

control code become more complex, much research effort has been invested to reduce

hardware complexity. The major motivation for considering stochastic computation was

the possibility of performing complex computations using only simple logic circuit. In

stochastic computation, probabilities are represented as streams of random digital bits

using Bernoulli sequences. With this representation, complex operations on probabilities

17



such as multiplication and division can be converted to operations on bits which can

easily be implemented using simple stochastic gates, but to trade off between computation

accuracy and computation time.

2.4.1 Stochastic Computation

In a stochastic computation, values are encoded as a Bernoulli sequence of bits. For an

unsigned number N , the probability that any bit di in the Bernoulli sequence is a binary

1 is

P (di = 1) =
N

Nmax
, (2.50)

for a probability value Pin, the probability of i-th bit di being a binary 1 is

P (di = 1) = Pin. (2.51)

From the above equation, we can realize that the information is contained in the statistics

of the bit stream, and there is no fixed mapping between probability value and encoded

sequence. And the precision can be decided by the length of stochastic sequence, so we

can increase the precision of stochastic streams by increasing the sequence length.

Consider the stochastic multiplier in Fig. 2.7. Let Pa = Pr (ai = 1) and Pb = Pr (bi = 1)

be the input probability, and Pc is the output probability. The multiplication of two

stochastic sequences can be performed with a single two-input AND gate [21].

Pa = 0.5

...0110001011...

Pb = 0.4

...1000101001...

Pc = 0.2

...0000001001...

Figure 2.7: Multiplication of two stochastic sequences

The JK flip-flop shown in Fig. 2.8 can be used to perform stochastic division. The

probability of random output transition from 0 to 1 and from 1 to 0 is ((1 − Pc)Pa) and

(PcPb), respectively. Since the expected occurrence of random sequence in both direction

must be equal, then we have

PcPb = (1 − Pc)Pa → Pc = Pa/(Pa + Pb) (2.52)
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Figure 2.8: Division of two stochastic sequences

For the stochastic addition and subtraction, in order to ensure the operations to be

closed on the probability interval of [0, 1], therefore, these operations should be combined

with a scaling operation for the outcome [21]. Addition with scaling is performed as

Pc =
N
∑

i=1

SiPAi where
N
∑

i=1

Si = 1, (2.53)

The outcome is the scaled sum of the input probabilities. For Si = 1/N , this operation

can be implemented in hardware using a multiplexer as shown in Fig. 2.9, where RS refers

to the random selection supplied by (pseudo) random number generators. Generating RS

is straightforward when the N is a power of two.

RS

c
P

1
A
P

2
A
P

N
A
P

Figure 2.9: Stochastic (scaled) addition
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2.4.2 Stochastic Stream Generation

For the implementation of the trellis-based stochastic decoder, the channel value yi re-

ceived from AWGN channel should be converted to LLR first

Li = ln
P (yi = 1)

P (yi = 0)

= ln(e−
1

2σ2 ((yi+1)2−(yi−1)2))

=
−1

2σ2
(4yi)

=
−1

N0

(4yi)

(2.54)

The further conversion form LLR value in (2.54) to probability is shown below

Pi =
P (yi = 1)

P (yi = 1) + P (yi = 0)

=
1

1 + P (yi=0)
P (yi=1)

=
1

1 + e−Li

(2.55)

Assume we use N -bit representation for the received probabilities, these probabilities

are converted to stochastic streams by using the structure shown in Fig. 2.10. This

structure consists of a comparator which compares the channel probability, P , with a

(pseudo) random number, R. The channel probability P is fixed during the decoding

process, but R is a random number (with a uniform distribution) which is updated in

every decoding cycle. The output bit of the comparator is equal to 1 if P > R, else it is

equal to 0. Since R has a uniform distribution and can take a value from 0 to 2N − 1,

each bit in the output stochastic stream is equal to 1 with a probability of P
2N [22].

Input Probability

N

N

Random Stream

1

Stochastic Stream

P

R

P>R

Comparator

Figure 2.10: Converting channel probabilities to stochastic streams
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2.4.3 Trellis-based Stochastic Decoding Algorithm

The stochastic decoding algorithm is a message-passing algorithm, which is based on the

code constraint graph. To implement the stochastic message-passing algorithm, we use

the following deterministic message update rule at each function node [23]. Consider the

propagation of message from (Ai (T ) , Bi (T )) to Ci+1 (T + 1) with i = 1 ∼ N , where

Ai(T ) and Bi(T ) are received messages, Ci+1 (T + 1) is transmitted message, and N is

the block length. Assume at time instance T , Ai(T ) = a and Bi(T ) = b. Then

Ci+1 (T + 1) =







fC (a, b) if (a, b) ∈ S

Ci+1 (T ) otherwise
(2.56)

It is sometimes convenient to refer to the set S as the satisfaction of the constraint function

fC . For each row (a, b, c) in the satisfaction table in Fig. 2.11, there is a branch in the

trellis which connects a with c, and which is labeled b. This relationship of a (2, 1, 3)

convolutional code is illustrated by Fig. 2.11.

B

A C

0 43

1 03

6 72

6 31

5 63

5 20

4 60

4 23

3 52

3 11

2 51

2 12

1 40

7 32

7 71

0 00

a cb

(a) (b)

Figure 2.11: An example of constrain node (a), showing a detailed trellis description of

its constraint; and (b) the set S corresponding to this constraint

Apply the message update rule to stochastic decoding algorithm, we can define the
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state transition parameter in (2.56) as follows:

• a : Source state

• b : Branch codeword

• fC(a, b) : Destination state

000

00

11

000

100

( )i
A T ( )i

B T ( )1 1
i
C T+ +

Figure 2.12: Update rule for stochastic decoding algorithm

A simple trellis diagram for a (2, 1, 3) convolutional code is shown in Fig. 2.12, and the

corresponding value sets of state transition are defined as follows:

A = {000, 001, 010, . . . , 111}

B = {(00), (01), (10), (11)}

C = {000, 001, 010, . . . , 111}

(2.57)

Furthermore, assume at time instance T , the branch metrics become

Bi (T ) = {Bi,0 (T ) , Bi,1 (T ) , . . . , Bi,N−1 (T )} , (2.58)

where

i = 0 ∼ (Block Length − 1)

T = 0 ∼ (Decoding Cycle − 1)
(2.59)

Referring to (2.56), there are three possible value for the destination state in Fig. 2.12

Ci+1 (T + 1) =



















fC (000, (00)) = 000

fC (000, (11)) = 100

Ci+1 (T ),

(2.60)
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we can find that if the received codeword (Bi,0, Bi,1) (ignore the time instance T in notation

for simplicity) is 00, the destination state Ci+1 is 0; if the codeword is 11, the destination

is 4, else the destination state would be remain the same state as last decoding cycle.

By using the update rule, the trellis-based stochastic decoder with matched codeword

can be implemented in Fig. 2.13(a). We can find that branch metric (Bi,0, Bi,1) is stochas-

tic stream which is generated by a comparator with input probability and random stream.

With the matched codeword 11, the initial state is updated from initial state to state 3.

At the same time, we increase the counter because of the transmitted bit of matched

branch is ”1”, if the transmitted bit is ”0”, we decrease the counter. The main function

of this counter is to make the final decision to convert stochastic stream to digital bit.

Furthermore, if there doesn’t have any matched codeword as shown in Fig. 2.13(b),

the destination state will remain the same state as the previous decoding cycle. Under

this condition, the counter will remain the same value. When the maximum decoding

cycle is reached, the counter is exported for the hard decision.

(b)(a)

Bi,0Bi,1

00

11

Initial state

CMP

Input 

Probability

Random 

Stream

(Stochastic Stream)

Update 

state

Mis-matched

codeword

Matched

codeword

CMP

Input 

Probability

Random 

Stream

Assume Bi,0Bi,1 = 11

Bi,0Bi,1

00

11

CMP

Input 

Probability

Random 

Stream

CMP

Input 

Probability

Random 

Stream

Remain the 

same state

Initial state

Mis-matched

codeword

(Stochastic Stream)

Assume Bi,0Bi,1 ≠ 00 or 11

Figure 2.13: Trellis-based stochastic decoder. (a) With matched codeword. (b) With

mis-matched codeword
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Chapter 3

Trellis-based Stochastic Decoder

3.1 Analysis of Stochastic Update Rule

As we described in section 2.4, the error-correcting performance of trellis-based stochastic

decoder can be adjusted by decoding cycles. Fig. 3.1 shows the performance comparison

of the uncoded sequence, hard-decision Viterbi decoding algorithm, soft-decision Viterbi

decoding algorithm and the trellis-based stochastic decoding algorithm with decoding cy-

cle 2500. All of the simulation environment is under AWGN channel and BPSK mapping

using (2, 1, 3) convolutional code, and the random stream in Fig. 2.13 is generated by ran-

dom number function in C++ programming. Besides the performance curve of stochastic

decoder is fixed point simulation with quantization width 10, the other performance curves

are floating point simulation.

From the simulation result, we can find that the performance of the stochastic decoder

is even worse than the uncoded sequence. The reason might be the received Log-Likelihood

Ratios (LLRs) become so large so that the corresponding probabilities approach ”0” (or

”1”). In this case, bits in stochastic sequences are mostly ”0” (or ”1”), hence random

switching events become too rare for proper decoding [24]. In the following section, we

will discuss some methods to improve the performance of trellis-based stochastic decoder.
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Stochastic Decoder with Decoding Cycle = 2500

Figure 3.1: Performance of stochastic decoder

3.2 State Memory Method

One major difficulty observed in trellis-based stochastic decoding algorithm is the latching

problem. The latching problem refers to the case where a cycle in the trellis diagram

causes the state transition to lock into a fixed state. The mis-matched codeword caused

the trellis diagram to remain the same state is the main reason of the latching problem.

To avoid the state transition to lock into a fixed state during decoding cycle and in-

crease the random switching activity of stochastic sequences in the trellis diagram during

latching, we propose the state memory to store the state with matched codeword tran-

sition. As shown in Fig. 3.2, the state memory store the unpdate state with matched

codeword and increase the vlaid counter to record the memory index when the decoding

cycle is bigger than Tinit which is a parameter to reduce the chance of locking into a fixed

state.

Fig. 3.3 shows the operation condition of state memory when the mis-matched code-

word occurs in trellis diagram. To increase the sensitivity to the bit transition for proper

decoding operation, in case of the updating rule is failed (codeword mis-matched), we
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Figure 3.2: State memory with matched codeword

randomly select state from the state memory to update trellis diagram. This updating

scheme reduces the chance of locking into a fixed state since every time the mis-matched

codeword happens, the state is randomly chosen from those previous update sates which

are not produced into latching problem.

To increase the state transition activity, the usage of state memory would be applied to

both forward and backward transition in trellis diagram (just like the forward metric and

backward metric in BCJR decoding algorithm). Double-side state memory application

is shown in Fig. 3.4, the forward transition and backward transition update state every

decoding cycle simultaneously. The decisions of the forward and backward transition are

also calculated in each decoding cycle. When the maximum decoding cycle is reached,

the counter is exported for the hard decision.
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Figure 3.3: State memory with mis-matched codeword

The simulation result and performance comparison is show in Fig. 3.5, the simulation

environment is the same as Fig. 3.1. As shown, the stochastic decoder with state memory

improves the performance comparing to that without state meory and provides better

performance at low SNRs with respect to hard-decision Viterbi decoding algorithm. But

at high SNRs, the BER curve of stochastic decoder with state memory has error floor

and the performance is worse than the hard-decision Viterbi decoding algorithm. In the

next section, we will discuss this condition and introduce further improvement to solve

this problem.
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Figure 3.4: Double-side state memory application

3.3 Noise Dependent Scaling Factor

The Noise Dependant Scaling (NDS) factor proposed in [24] introduced that the received

channel LLRs are down-scaled by a scaling factor which is proportional to the SNR. The

down-scaled LLRs result in probabilities which introduce more switching activity in the

stochastic decoder. Because the scaling factor is proportional to the noise level, it ensures

a similar level of switching activity for different SNRs. Assuming a BPSK transmission

over AWGN channel, the original LLR (Li) is

Li =
−1

N0
(4yi), (3.1)
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Figure 3.5: Stochastic decoder with state memory usage

where yi is received symbol and N0 is the single-sided noise power spectral density. The

scaled LLR is calculated as

L
′

i =

(

αN0

Y

)

Li

=

(

αN0

Y

)

−1

N0
(4yi)

=
(α

Y

)

(−4yi),

(3.2)

Y is the fixed maximum value of the received symbols, and α is a constant factor. As a

result, α
Y

is the noise dependent scaling factor. Fig. 3.6 shows the peroformance of different

NDS factors with state memory usage, the NDS factor 0.6 is the best case compared to

others and without error floor effect when BER is 10−5.

29



1 2 3 4 5 6 7
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0
BPSK; AWGN; (2, 1, 3) Convolutional Code with NDS and State Memory

Eb/No(dB)

B
E

R

 

 

Soft−decision Viterbi Algorithm
Hard−decision Viterbi Algorithm
without NDS
NDS = 0.6
NDS = 0.7
NDS = 0.8
NDS = 0.9

Figure 3.6: NDS factor comparison

3.4 Discussion

Further improvement with state memory and noise dependent scaling factor 0.6 applied to

trellis-based stochastic decoder really enhance the possibilty to implement the stochastic

decoding algorithm. Besides, the number of decoding cycles also affect the error-correcting

performance and throughput of stochastic decoder, the analysis is shown in Fig. 3.7.

Based on different SNRs (from 0 to 7), the decoding cycle 2500 seems to be enough to

have outstanding error-correcting performance.

Fig. 3.8 shows the 1-stage stochastic decoder architecture, and the corresponding code-

word and the destination state can be referred to LUTB and LUTC , respectively. Shorter

critical path compared to conventional ACS-unit is also labeled in Fig. 3.8. The synthesis

result shows that the 1-stage trellis-based stochastic decoder can be operated at 1.8GHz

by using UMC 90nm CMOS process. Although the throughput can be enhanced by us-

ing stochastic decoding algorithm, there still has some dis-advantage for implementation.

First, performance loss about 1dB at BER= 10−5 as compared with soft-decision Viterbi
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Figure 3.7: Decoding cycle analysis of stochastic decoder

algorithm. Second, the required functional units will be propotional to block length which

may result in larger hardware cost about 187K gate counts. As a result of area-efficient

design for WiMAX standard, the original decoding algorithm can achieve design require-

ment and would be adopted for hardware implementation. Furthermore, the stochastic

decoding algorithm can be applied to the requirement of high throughput standard, such

as IEEE 802.16m.
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Chapter 4

Double-binary CTC Decoder for

WiMAX 802.16e Application

4.1 Introduction of WiMAX 802.16e Standard

In WiMAX 802.16e, channel coding considers convolutional turbo codes (CTC) as an

optional code. It uses double-binary turbo codes to improve error correcting performance

and decoding throughput. Besides double binary turbo code, 802.16e provides 17 modes

to support different block sizes. In order to support various block sizes, the interleaver is

designed as a function with five parameters.

Because the different parameters for different modes are challenges of hardware imple-

mentation, how to minimize a configurable parameter controller architecture is the main

concern in this chapter. Moreover, since the block length ranges from 24 to 2400, the

memory requirement is also a great issue.

Fig. 4.1 illustrates the turbo encoder block diagram [1]. It consists of two circular

recursive encoders, and the code rate of CTC encoder is 1/3. Each encoder generates two

additional parity bits using two information bits. The polynomials defining the connec-

tions and symbol notations are described as follows:

• For the feedback branch: 1 + D + D3

• For the Y parity bit: 1 + D2 + D3

• For the W parity bit: 1 + D3
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Figure 4.1: CTC encoder for WiMAX standard

The trellis diagram generated by the circular encoder is shown in Fig. 4.2. Each state

receives four branch metrics (information symbol dt= 00,01,10,11) and also sends four

messages to other states. As a result, radix-4 ACS unit is required to decode the trellis

diagram.

The state of the encoder is denoted S (0 ≤ S ≤ 7) with S the value read binary (left

to right) out of the constituent encoder memory (referring to Fig. 4.1). The circulation

states Sc in (2.36) is determined by the following operations:

Step 1: Initialize the encoder with state 0. Encode the sequence in the natural order for

the determination of Sc. Assume the final state of the encoder is S0N−1
.

Step 2: According to the length N of the sequence, use Table 4.1 to find Sc.

In 802.16e, five parameters, including the block length N , P0, P1, P2 and P3 are

specified in Table A.1 and Table A.2, and the parameters when supporting H-ARQ are

specified in Table A.3. The interleaver address in CTC is shown as Table 4.2, where j

is the index of memory address for MAP decoder 2 (for decoding interleaved data) and

P (j) is the index of memory address from MAP decoder 1 (for decoding deinterleaved

data). The most important operation in this table is the modulo operation. It requires a
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Figure 4.2: Trellis diagram of double-binary CTC

divider which occupies large area and increases the delay of critical path.

4.2 Simulation Analysis and Parameter Decision

Based on the double binary CTC decoding algorithm in section 2.3, the simulation result

can be discussed in this section. In order to determine appropriate design parameters such

as the bit widths of the path metric, branch metric, and the input symbol, the performance

evaluation through simulations are necessary. In turbo decoding process, the iteration

number and the sliding window size will directly influence not only the performance of

turbo decoding but also the memory requirement of the design. The bit error rate (BER)

curves of the floating point decoders under QPSK modulation and AWGN channel with

block length of 2400 are presented in Fig. 4.3. In Fig. 4.3, we can realize that at the same

iteration number 5, there is a 0.6dB loss between the sliding window size of 5 and 12 when

the BER is 10−5. However, the performance curves between the sliding window size 12
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Table 4.1: Circulation state lookup table (Sc)

Nmod7

S0N−1

0 1 2 3 4 5 6 7

1 0 6 4 2 7 1 3 5

2 0 3 7 4 5 6 2 1

3 0 5 3 6 2 7 1 4

4 0 4 1 5 6 2 7 3

5 0 2 5 7 1 3 4 6

6 0 7 6 1 3 4 5 2

Table 4.2: Interleaver Function

for j = 1 to N − 1

Case(j mod 4)

Case0 : P (j) = (P0 × j + 1) mod N

Case1 : P (j) = (P0 × j + 1 + N/2 + P1) mod N

Case2 : P (j) = (P0 × j + 1 + P2) mod N

Case3 : P (j) = (P0 × j + 1 + N/2 + P3) mod N

and 20 are almost the same. Also, we compare the different iteration number at the same

sliding window size 12, there is a 0.6dB loss between the iteration number 5 and 3 when

the BER is 10−5.

Although Max-Log MAP decoding algorithm introduced in section 2.1.3 can reduce

the decoding complexity, it invokes the performance loss due to the approximation of

max function. The approximation usually overestimates the value of messages. In order to

compensate the performance loss, we introduce a scaling factor to scale down the extrinsic

message. Therefore, the intrinsic information Li
a (dt) can be formulated as follow:

Li
a (dt) = β × Li

e

(

d̃t

)

, (4.1)

where β is the scaling factor. From Fig. 4.4 we can figure out that if the normalization

factor is 0.75 in Max-Log MAP algorithm with block length of 2400, the performance has

only less than 0.1dB loss and has more than 0.3dB performance gain from Max-Log MAP

algorithm which will be very close to Log-MAP algorithm and this step would not cost a
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Figure 4.3: Comparison of iteration number and window size

lot of hardware area.

The fixed point representation of the internal variable in the MAP decoder is deter-

mined from the received symbol quantization. Fig. 4.5 shows the simulation result with

the different input symbol quantization under QPSK modulation and AWGN channel,

the block length of turbo decoder is 2400, the sliding window size is 12, and the iteration

number is 5. Note that (a.b) shown in the figure denotes the quantization scheme where a

is the number of bits used in for the integer part a, and b is the number of bits used for the

fractional part. Simulation result shows that performance of input symbol [4.2], intrinsic

information [5.2], bit width of metrics 10 is the recommended for the double-binary CTC

decoder which is close to the floating point Max-log MAP algorithm and we summarize

the fixed representation in Table 4.3.

Table 4.3: Summary of fixed representation in turbo decoding

Quantities Input symbols Intrinsic information Branch metrics Path metrics

Width 6 7 10 10
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Figure 4.4: Scaling factor comparison

4.3 Proposed Architecture of WiMAX CTC Decoder

The block diagram of proposed architecture is illustrated in Fig. 4.6. There are four

memory blocks for message storage, where store input information and extrinsic infor-

mation generated by the SISO MAP decoder. The Finite-State-Machine (FSM) controls

the iterative decoding procedure and decides which state is proceeding. Furthermore,

two interleaver units are used to generate the read address (from MEM EXT to MAP

decoder) and the write address (from MAP decoder to MEM EXT). By means of MEM

ADDR control unit, the memory addresses are generated to store or access data.

4.3.1 MAP Decoder

Fig. 4.7 shows the architecture of MAP decoder, which consists of branch metric unit

(BMU), add-compare-select (ACS) unit, log-likelihood-ratio (LLR) unit, and buffers. The

BMUs compute branch metrics for ACS-α, ACS-β, and ACS-βd and each ACS unit per-
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Figure 4.5: Fixed point comparison

forms Add-Compare-Select operation. ACS-α carries out the forward recursion and saves

the results in the α-memory. ACS-β starts backward recursion from the initial conditions

determined by the ACS-βd previously. At the same time, the LLR calculator determines

Li(dt) and Li
e(dt). Buffer units reorder the input sequence within one sliding window size,

and the α buffer is a Last-In/First-Out (LIFO) buffer used to reorder each state of α

value for LLR caculation.

To consider the sliding window approach in Fig. 2.2, the backward metrics β evaluation

can be started when the required window of data have been stored. However, if we reverse

the order of input sequence within a window size, the input buffer of the βd calculation

can be saved [25]. Fig. 4.8 is the timing flow of MAP decoder. In order to eliminate the

IBUF for βd-ACS, the input order of MAP decoding is from the end of the sliding window

to the beginning of the window. After getting the branch metric, α and β, the LLR

calculation can be finished without write-after-read (WAR) data hazard. As a result, the

latency of MAP decoder is three times sliding window size.
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Figure 4.6: CTC decoder block diagram

4.3.2 Pseudo Two-port Register File

In order to increase the decoding speed and reduce the size of memory, pseudo two-port

register file is used to read and write memory in one cycle. In Fig. 4.9(a), extrinsic memory

operates at double clock rate. Write-address (from interleaver 2) and read-address (from

interleaver 1) are generated at the original clock rate. A multiplexer selects correct address

according to wheather the operation is read or write. Fig. 4.9(b) illustrates the timing

diagram of read & write operation. As a result, we can eliminate one 2400 × 21 = 50400

bits (2400 is block length and 21 is total bits of extrinsic data) extrinsic memory such

that 26.9% memory usage (original: 50400+50400+86400 = 187200 bits) is saved. In the

same way, the buffers in MAP decoder in Fig. 4.7 are also pseudo two-port register files

to read & write in one cycle as shown in Fig. 4.9(c). The different between Fig. 4.9(b)

and Fig. 4.9(c) is that Fig. 4.9(c) read & write at the same address in one cycle. By using

this method, the buffers in MAP decoder can be replaced from two-port register file to

single-port register file to reduce the hardware area and power consumption.
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4.3.3 Interleaver Architecture

For the WiMAX interleaver in Table 4.2, the modulo operation is a critical problem for

clock speed. Since we know all parameters used in Table 4.2 before decoding, some ad-

ditions and divisions (simplified to shifter because the divisor is 2) can be derived as

constant value before decoding. To minimize the critical path of interleaver operation,

two adders and two subtractors are used instead of the divider. One adder is used to

accumulate P0, which adds one P0 each cycle because in our design the interleavers only

need to generate one read (write) address every cycle. Because the value of the accumu-

lator ranges from 0 to 2N −1 , the modulo operation can be simplified to one subtraction

and one multiplexer.
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4.4 Chip Implementation Result

4.4.1 Chip Specification

Based on the architectures described above, we proposed an area-efficient double-binary

turbo decoder with almost regular permutation (ARP) applied on WiMAX 802.16e. The

proposed CTC decoder supports 17 different block lengths (24 to 2400) including hybrid

automatic repeat-request (HARQ) modes. By means of scaling factor 0.75, we use smaller

sliding window size (reducing the storage size of buffer and α buffer and the number of

ACS unit) and smaller iterations (increasing the decoding throughput).

The primary chip specification of the double-binary turbo decoder is given in Table

4.4, which is implemented by the cell-based design flow, and fabricated in 90-nm 1P9M

standard CMOS process. In CTC decoding process, two clock domains are used in memory

and datapath respectively as we described in section 4.3.2. The higher clock rate is

generated by a delay lock loop (DLL) circuit, which is applied to generate internal clock

whose clock frequency is four times the external frequency. The other is generated clock

which is the division of the higher clock rate. The total gate count is 303K (including

the additional chip input buffer for testing) and the combinational logic part is only 30K

while the memory occpies more than 80% area in our design. Fig. 4.11 is the chip layout

of CTC decoder. By the proposed Max-Log MAP decoder and the simplified interleaver,

the core size is 1.12mm2 (1.4mm by 0.8mm) in 90-nm process. The operating frequency

can achieve up to 166MHz and the maximum throughput is 30Mb/s which meets the
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requirement of WiMAX standard. Furthermore, the average chip power consumption

operated at 166MHz is 32.87mW with 0.9V supply voltage, which is estimated by post-

layout simulation with the block length of 2400.

Table 4.4: WiMAX CTC decoder chip summary

Technology UMC 90-nm 1P9M CMOS

Block length 24 to 2400

Support HARQ Yes

Iteration 4.5

Sliding window 12

Input bit width 6bits

MAP radix-4 MAP

Core area 1.12 mm2

Gate count 303K

Max. throughput 30Mb/s

Supply voltage 1.0V

Clock rate 166MHz (@ 0.9V)

Power consumption 32.87mW (@ 0.9V and 166MHz) 1

Utilization 65%

1 Post-layout simulation with block length of 2400

4.4.2 Comparison with Other Relative Work

The comparison of the WiMAX 802.16e CTC decoders is shown in Table 4.5, where we

list both synthesis and APR simulation result to compare the area with [26] and [27].

The synthesis result does not include the testing buffer unit in Fig. 4.11, so the core area

is 0.619mm2 operating at clock rate 166MHz with the maximum throughput 30Mb/s.

Compared with other approaches, the proposed CTC decoder supports full-mode (include

HARQ) block length and interleaver size for WiMAX 802.16e standard and is an area-

efficient design. Besides, the power cnosumption estimated by post-layout simulation is

32.87mW and can be converted to energy efficiency. The energy efficiency is defined as

the average energy consumed per bit within each decoding iteration (pJ/b/iter). For this
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Figure 4.11: Chip layout photo of CTC decoder

decoder with 4.5 iterations, the energy efficiency will be calculated as

32.87mW

4.5 × 30Mb/s
= 243.4pJ/b/iter

Consequently, due to the area-efficient design with pseudo two-port register file usage and

suitable parameter decision, the power consumption and the energy efficiency become

smallest. The proposed design provides a fully compliant and area-efficient CTC decoder

for WiMAX 802.16e application.
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Table 4.5: Comparison among WiMAX CTC decoders

Proposed Design VLSI-DAT’08 [26] ASPDAC’08 [27]

Technology 90nm 0.13µm 0.13µm

Block length 24 to 2400 24 to 240 2400

Support HARQ Yes No N/A

Iteration 4.5 4 8

Sliding window 12 24 32

Input bit width 6bits 7bits 6bits

MAP radix-4 MAP radix-4 MAP radix-4 MAP

Operating frequency 166MHz 100MHz 200MHz

Core area (mm2) 0.619 1 1.12 5.12 2.24

Gate count 219K 1 303K N/A N/A

(Combinational part) 2 (39.7K) (30K) N/A (65.7K)

Power consumption (mW) 32.87 183.7 3 274.138

Energy efficiency 243.4 397.9 1412.5 4

(pJ/bit/iter) @ 0.9V

Max. throughput 30Mb/s 115.4Mb/s 24.26Mb/s

Status APR Synthesis APR

1 Synthesis result without testing buffer

2 Exclude memory unit

3 Estimated by Prime Power with block length of 240

4 Estimated by Power Compiler with block length of 2400
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Chapter 5

Conclusion

This thesis proposed a fully compliant and area-efficient CTC decoder for the WiMAX

802.16e system. The modified Max-Log MAP algorithm is used to reduce hardware com-

plexity and keeps almost the same performance as Log-MAP algorithm. In the proposed

architecture, pseudo two-port register file is adopted to reduce storage memory and de-

coding latency. In MAP decoder, data reordering (reversing the input data order within

a sliding window) is also used to decrease the latency and eliminate the βd buffer require-

ment. The modified interleaver uses simplified addition and subtraction instead of divider

to reduce the critical path and the hardware complexity. Implemented in 90-nm technol-

ogy, the CTC decoder chip with 303K gate counts can achieve throughput 30Mb/s to

meet the requirement of WiMAX standard. Besides, the power consumption is 32.87mW

(@ 0.9V and 166MHz ) estimated by post-layout simulation and block length of 2400.

An innovative trellis-based decoding algorithm using iterative stochastic computation

is also proposed in this thesis. The state memory and noise dependent scaling factor are

also applied on stochastic update rule. By using the further improvement, the performance

of stochastic decoder with fixed point bit-width 10 can be better than hard-decision Viterbi

algorithm and approach soft-decision Viterbi algorithm with floating point. Although

the proposed improvement validates the stochastic decoding algorithm can be applied to

trellis-based decoder, there still has some questions to be resolved. For the hardware issue,

many possible simplifications and update rules can be applied to the algorithm. Besides,

the number of decoding cycles and the proformance of the stochastic decoder can still be

improved by increasing state number in trellis diagram and applying to high-radix trellis
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decoding algorithm. These issues raise interesting research areas, with significant research

potential to improve the hardware complexity of trellis-based stochastic decoders.
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Appendix A

WiMAX 802.16e Parameter

Table A.1: CTC channel coding per modulation

Modulation Block size 1 Encoded block size 1 Code rate N P0 P1 P2 P3

QPSK 6 12 1/2 24 5 0 0 0

QPSK 12 24 1/2 48 13 24 0 24

QPSK 18 36 1/2 72 11 6 0 6

QPSK 24 48 1/2 96 7 48 24 72

QPSK 30 60 1/2 120 13 60 0 60

QPSK 36 72 1/2 144 17 74 72 2

QPSK 48 96 1/2 192 11 96 48 144

QPSK 54 108 1/2 216 13 108 0 108

QPSK 60 120 1/2 240 13 120 60 180

QPSK 9 12 3/4 36 11 18 0 18

QPSK 18 24 3/4 72 11 6 0 6

QPSK 27 36 3/4 108 11 54 56 2

QPSK 36 48 3/4 144 17 74 72 2

QPSK 45 60 3/4 180 11 90 0 90

QPSK 54 72 3/4 216 13 108 0 108

1 bytes
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Table A.2: CTC channel coding per modulation (cont.)

Modulation Block size 1 Encoded block size 1 Code rate N P0 P1 P2 P3

16-QAM 12 24 1/2 48 13 24 0 24

16-QAM 24 48 1/2 96 7 48 24 72

16-QAM 36 72 1/2 144 17 74 72 2

16-QAM 48 96 1/2 192 11 96 48 144

16-QAM 60 120 1/2 240 13 120 60 180

16-QAM 18 24 3/4 72 11 6 0 6

16-QAM 36 48 3/4 144 17 74 72 2

16-QAM 54 72 3/4 216 13 108 0 108

64-QAM 18 36 1/2 72 11 6 0 6

64-QAM 36 72 1/2 144 17 74 72 2

64-QAM 54 108 1/2 216 13 108 0 108

64-QAM 24 36 2/3 96 7 48 24 72

64-QAM 48 72 2/3 192 11 96 48 144

64-QAM 27 36 3/4 108 11 54 56 2

64-QAM 54 72 3/4 216 13 108 0 108

64-QAM 30 36 5/6 120 13 60 0 60

64-QAM 60 72 5/6 240 13 108 60 180

1 bytes
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Table A.3: CTC channel coding per modulation when supporting H-ARQ

Block size 1 N P0 P1 P2 P3

6 24 5 0 0 0

12 48 13 24 0 24

18 72 11 6 0 6

24 96 7 48 24 72

36 144 17 74 72 2

48 192 11 96 48 144

60 240 13 120 60 180

120 480 53 62 12 2

240 960 43 64 300 824

360 1440 43 720 360 540

480 1920 31 8 24 16

600 2400 53 66 24 2

1 bytes
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