3t 2 IR 3 A Mgl PR G ff R T

B i Sl B S R
An Area-Efficient Double-Binary CTC Decoder

for WIMAX Applications

CES
ST EEY L

=
of
ﬁq‘«‘

PERRA L E



J&t At IR T A A 3 B s a0 ff R T
B i S R B
An Area-Efficient Double-Binary CTC Decoder
for WIMAX Applications

k’ﬂ

B

A Student : Ming-Chih Hu

e

dh ¥ s F4EF %42 Advisor @ Chen-Yi Lee

A Thesis
Submitted to Department of Electronics Engineering & Institute Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
In Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in

Electronics Engineering

July 2008
Hsinchu, Taiwan, Republic of China

PERRA L E



A e A T

B4 Ay ERR D FET KR

Ame e - BRECAREREBEG PEED T - BRY 2RI A

L

ek 3 B T £ AT ARG B RS R A PR Rl BT A

T,
~=h

“t} % & IDEE 802. 16e Aeim B £ & o 4Fd %0 bl *h &7 31 MAX-Log

=

AP B2 7 n ftl | ok T R A RIATSE R o ¥ M O BB A
VA Ry TRt B E R ATA 4 hut X Y L F e A B
RO FOR B - BREEH N o sf a2 b AP e B 1 g B R
P HE R RE BV U BB AR £ o R TRES MR
%%&9%mﬂﬁ1&3ﬁ3ﬂ3mmmw@@@§,%%maﬁilumwo
Bh s B 0.9V ST R ~ 166MHZ 3 (HE 5 L 2 $hrb £ B 2400 T o I i)

FEEPEER 5 32.8TmMW -

A T AR - B ST L AT ol R RIS FEd & Y O A



EE SN ACS H e REAF SRR T LA A AR 1 o TR ) ok A s R 4
RIS SR A VL T - BRIV R AT chE 0l BT e
AR R F]F T 0L R BRI G o A BT T R IR LA X R d o AP
F0 (2,1, 3) IR R H TSRS BT - R AT A

S AfRAEE T -



An Area-Efficient Double-Binary CTC Decoder
for WIMAX Applications

Student : Ming-Chih Hu Advisor : Dr. Chen-Yi Lee

Department of Electronics Engineering
Institute of Electronics
National Chiao Tung University

ABSTRACT

Double-binary convolutional turbo code (CTC) decoding algorithm is
introduced in this thesis, and a fully compliant and area-efficient CTC decoder for
WIMAX 802.16e is proposed. The proposed decoder can support all code lengths
specified in IEEE 802.16e system. By scaling the extrinsic information, the Max-Log
MAP algorithm is used such that hardware-complexity can be reduced with the
minimized performance loss. For saving memory requirement and reducing decoding
latency, the pseudo two-port register file is also demonstrated to allow read and write
operation within one decoding cycle. Moreover, a simplified interleaver architecture
which uses simple addition and subtraction instead of division is proposed to reduce
the hardware area and decrease the critical path. Implemented in the 90-nm process,
the proposed decoder chip occupied in 1.12mm? core area can achieve 30Mbl/s
decoding throughput. The power consumption according to post-layout simulation is
32.87mW operated at supply voltage 0.9V and clock rate 166MHz with block length

of 2400.

Another trellis-based decoding algorithm using stochastic update rule is also

presented in this thesis. By using the stochastic computation, the hardware complexity



can be reduced by simplifying ACS-unit operation. The proposed state memory can
increase the random switching activity to avoid the state locked into a fixed state, and
noise dependent scaling factor can further eliminate the error floor effect. Both
techniques can greatly improve the performance compared to the Viterbi decoding
algorithm. Through the simulation analysis and parameter decision for (2, 1, 3)
convolutional code, the performance comparison shows that the stochastic decoding

algorithm can be one of the candidates for low complexity iterative decoding.



AR LT R TGS T B P BRI T K 2

Si2Lab E‘Uz:»ﬁ%ﬁi"ﬁ?s_,ﬁ??;sgixﬁa ¥ R Sy ate b s ALty 3l A 4

(,

TFE™ o T REFE Aot 5o ) AR E B A G ERERN
PR EERA DT ] R BRAEEE AN @I RITELS AL G hL

G0 AFEE G AFOREF LS T ARG D REAN P R ET

B BRI S BEO R IHFTRRRL RN RV o

FURHREFTETE > A - ERAFIRAA - LRF L TR IE LT
PRAE > 2o B4 X mgm;ﬁ.,@”!r‘ P B E Rk g B L P R ME ER
LR S ES 2D BT L QLN R Pyl LA §
P YR 2 R FLER £ SR R HRE T E L R BB &
4 <747 ¥ en OCEAN #7 3 WIS ALis Ve 5 nflos iR A 0§ 5 oo chfditdt
Ba KR 4E o

B {5 g 38 Si2lab 14 2 OCEAN grouper 't & £ 4 ~ 5 54k > 11 2 3 iy

S

Sih A R B R AEADRA P FEF P A AR A RE S

£
i
A_RIEA & 0 WGP



Contents

1 Introduction
1.1 Research Motivation . . . . . . . . . .

1.2 Thesis Organization . . . . . . . . . . . .. ...

2 Trellis-based Decoding Algorithms
2.1 MAP Decoding Algorithm . . . . . ... ... ... ... ...
2.1.1 The MAP Decoding Algorithm . . . . ... ... ... ... . ...
2.1.2  The Log-MAP Decoding Algorjthm ..................
2.1.3 The MaX—Log—MAP Decodmg Algorlthm ...............
2.1.4  Sliding Window Approach . B e
2.2 Turbo Code . . . ... - abp 2
2.2.1 Turbo Encoder .?H:" [ ..................
2.2.2  Turbo Interleaver . Pl L L ...................
2.2.3 Turbo Decoder . . . . . . . ...
2.3 Double-binary Convolutional Turbo Code Decoding Algorithm . . . . . . .
2.3.1 Double-binary CTC Encoder . . . . . . . .. ... ... ... ....
2.3.2  Decoding Procedure for Double-binary CTC . . . . .. .. ... ..
2.4 Stochastic Iterative Decoding Algorithm . . . . . . . ... ... ... ...
2.4.1 Stochastic Computation . . . . ... ... ... ... ... ...
2.4.2 Stochastic Stream Generation . . . . . . .. ...

2.4.3 Trellis-based Stochastic Decoding Algorithm . . . . . . .. ... ..

3 Trellis-based Stochastic Decoder
3.1 Analysis of Stochastic Update Rule . . . . . . ... ... ... ... ....
3.2 State Memory Method . . . . . . . . .. . ... ...

vi

10
10
11
13
13
15
17
18
20
21



3.3 Noise Dependent Scaling Factor . . . . . . . . ... ... ... ... ....

3.4 DiIScusSion . . . . ..o

4 Double-binary CTC Decoder for WiMAX 802.16e Application
4.1 Introduction of WiMAX 802.16e Standard . . . . . . . ... .. ... ...
4.2 Simulation Analysis and Parameter Decision . . . . . . . .. .. .. .. ..
4.3 Proposed Architecture of WIMAX CTC Decoder. . . . . .. ... ... ..
4.3.1 MAP Decoder . . . . . . ..
4.3.2 Pseudo Two-port Register File. . . . . . ... ... ... ... ...
4.3.3 Interleaver Architecture . . . . . . ... ... L.
4.4 Chip Implementation Result . . . . . .. . ... ... ... ... ......
4.4.1 Chip Specification . . . . . . . ... o
4.4.2 Comparison with Other Relative Work . . . . . ... ... ... ..

5 Conclusion

A WiMAX 802.16e Parameter .30

vil

33
33
35
38
38
40
41
43
43
44

47

49



List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

2.12
2.13

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Block diagram of a typical digital communication system . . . . . . . . .. 1
Correction Factor . . . . . . . . .. 7
The process of sliding window MAP algorithm . . . . . ... .. ... ... 9
Turbo encoder . . . . . . .. L 10
Turbo decoder . . . . . . . . .. 12
Double-binary Convolutional Turbo encoder . . . . . . . .. ... .. ... 14
Double-binary CTC decoder . . . . . . . . . . . .. ... ... ... .... 16
Multiplication of two stochgstjclls"eQuéﬁéES. .................. 18
Division of two stochastig’ S.ecgluenn(?gﬂs 3 . . 19
Stochastic (scaled) addition . . . "17', Pl : ................. 19
Converting channel probé{]:oiliti“([als;'ﬁfmt@hastié streams . . .. ... ... 20

An example of constrain node (a), showin'g‘fa detailed trellis description of
its constraint; and (b) the set S corré.snponding to this constraint . . . . . . 21
Update rule for stochastic decoding algorithm . . . . . . ... .. ... .. 22
Trellis-based stochastic decoder. (a) With matched codeword. (b) With

mis-matched codeword . . . . . ... ..o 23
Performance of stochastic decoder . . . . . . . ... .. ... .. 25
State memory with matched codeword . . . . ... ... ... ... .... 26
State memory with mis-matched codeword . . . . . ... ... ... .... 27
Double-side state memory application . . . . . . . . .. ... ... ... .. 28
Stochastic decoder with state memory usage . . . . . . .. .. ... .. .. 29
NDS factor comparison . . . . . . . . ... 30
Decoding cycle analysis of stochastic decoder . . . . . . . .. ... ... .. 31

viii



3.8 1-stage trellis-based stochastic decoder architecture . . . . . . . .. .. .. 32
4.1 CTC encoder for WIMAX standard . . . . . . .. ... ... ... ..... 34
4.2 Trellis diagram of double-binary CTC . . . . . . .. .. ... .. ... ... 35
4.3 Comparison of iteration number and window size . . . . .. ... ... .. 37
4.4 Scaling factor comparison . . . . .. ..o 38
4.5 Fixed point comparison . . . . . .. ... 39
4.6 CTC decoder block diagram . . . . . . . . .. .. ... ... .. ...... 40
4.7 MAP Decoder Block Diagram . . . . .. ... ... ... ... ... ... 41
4.8 MAP Decoding Timing Flow . . . . . . . ... ... .. ... ... ..... 41
4.9 Pseudo Two-port Register File . . . . . . .. .. ... ... ... ... 42
4.10 Interleaver Architecture . . . . . . . . . . ... 43
4.11 Chip layout photo of CTC decoder . . . . . .. .. . ... ... ... ... 45

1X



List of Tables

4.1
4.2
4.3
4.4
4.5

Al
A2
A3

Circulation state lookup table (S.) . . . .. ... ... ... ... ..... 36
Interleaver Function . . . . . . . ... ... Lo 36
Summary of fixed representation in turbo decoding . . . . .. .. ... .. 37
WIiMAX CTC decoder chip summary . . . . . . .. ... ... ....... 44
Comparison among WiMAX CTC decoders . . . . . ... ... ... ... 46
CTC channel coding per modulation . . . . . ... ... ... ... .... 49
CTC channel coding per modulation (cont.) . . . . ... ... ... .... 50
CTC channel coding per de‘ulé"ci(‘)n”\%/hen supporting H-ARQ . . . . . .. 51

| = |



Chapter 1

Introduction

1.1 Research Motivation

The fundamental block diagram of a typical digital communication system is shown in
Fig. 1.1. Signal transformation from the information source to the transmitter includes
source encoding, channel encoding and medulation. The receiver will reverse the signal
transformation by demodulation, nchrannel ‘decodin‘g‘and source decoding. In order to
eliminate the effects of noise disfufbancels,;‘ the chaﬁnel encoder transforms the source
codeword into the channel codeword Jby-adding certain structural redundancy. These
redundant bits can be used for Cietect‘iﬁg ‘andw‘correcting the errors. Theoretically, the

encoding procedure provides the encoded signal with better distance properties than the

un-coded one, and thus channel coding can improve the performance of the overall system.

Information Source Channel
> > » Modulator

source encoder encoder

y

Channel

A\ 4

Information Source Channel
matl o < < Demodulator

destination decoder decoder

Figure 1.1: Block diagram of a typical digital communication system



In the last decade, trellis-based decoding algorithm applied to convolutional code or
turbo code has been adopted in many standards because of its execellent error correction
ability. Although the turbo code has outstanding error-correcting performance, the de-
coding efficiency and maximum throughput still cannot meet the standard requirement
with higher throughput. Hence, double-binary convolutional turbo code is introduced
in the recent years because of its high decoding efficiency and excellent error-correcting
performance. The double-binary CTC decoder adopted in WiMAX 802.16e [1] standard
which defined detail standard providing maximum throughput about 30Mb /s will be pro-
posed in this thesis, and the hardware architecture and chip implementation result are
also presented in the following chapter.

The main problem of double-binary convolutional turbo code is the higher hard-
ware complexity on high-radix ACS-unit from single-binary to double-binary (even triple-
binary). In order to design a low complexity trellis-based decoder, the stochastic computa-
tion will be applied to trellis-based decoding algorithm. Stochastic arithmetic introduced
in 1960’s can break speed bottleneck caused by recursive computation to increase the
operating frequency. Besides, the erzor- correctlng performance can be adjusted by decod-
ing cycles. As a result, since stochastlc de&ddlng algorlthm has been successfully applied

to LDPC code, it might have potentlal to apply to iconvolutlonal code and would be

introduced and applied on trellis dlagram in thls the51s

1.2 Thesis Organization

This thesis consists of 5 chapters. In chapter 2, different kinds of trellis-based decoding
algorithms are reviewed, such as single-binary turbo decdoing algorithm, double-binary
turbo decoding algorithm, and stochasitc decoding algorithm using update rule. The
stochastic decoder applied on trellis-based decoding algorithm is described in chapter 3.
Further improvement and simulation analysis are also stated. Chapter 4 introduces the
implementation of double-binary convolutional turbo code applied to WiMAX 802.16e
system, including the performance comparison, the hardware architecture, and the chip
implementation result. Finally, the conclusion is given in chapter 5. The parameters used

in WiMAX 802.16e are also illustrated in appendix A.



Chapter 2

Trellis-based Decoding Algorithms

2.1 MAP Decoding Algorithm

2.1.1 The MAP Decoding Algorithm

The maximum a posteriori probability (MAP) decoding algorithm, also termed as BC'JR
decoding algorithm, is developed by Bahl, Coeke‘ , Jelinek and Raviv in 1974 [2]. The
MAP algorithm is optimal for estlmatlng Hle Ste,tes or the outputs of a Markov process

observed under AWGN channel. It produces the sequence of a posteriori probabilities

(APP) from the received sequenceyr over.a dlserete memoryless channel (DMC) and
minimizes the symbol error probablhty Assume for state transition from S, at time ¢ to

ST at time ¢ + 1, we can estimate the joint probability

Pr{S ), SUHD p1 = Pr{S(t S pht o v

—Pr{rt+11|5 7S t+1 t_ T}
x Pr{S{+D, rt\S e} (2.1)

x Pr{Sy.r6'}
— Pr{r7!|SUHD} Pr{SUH) 7,|SUY Pr{s") ri-1}

Notice that (m/,m) means the state transition and rj ' denotes the received sequence

from time 0 to t — 1, rﬁ‘ll denotes the received sequence from time ¢t + 1 to N — 1, and



r: denotes the codeword symbol at time t. We further redefine the equation in (2.1) :

a(S5) = Pr{S%), ri '}
S S = Pr{STY ml S0

m m

BISTHY) = Pr{r 'S5V},
and thus (2.1) can be rewritten as

Pr{S\), SEV r} = a(SW)y(S%), SIHD)B(SLHD)

Now, we will derive the equations (2.2), (2.3), and (2.4) as follow:

a(S) = Pr{SEH )

= > Pr{S%), S xh}

s"es

= 3 Pr{SU, e |SY, 2h 1y Pr{SY, x

sWes

= )" pugst -k [S(t,}Pr{S )ity
S(QES |.‘n B ;

- Y té,s@“)) 3

o W

Similarly,

ne

By = 3 Pr{siV xSy

sittheg
— P S(t‘l’l —1 S(t P S(t
r{ Sy, rt+17 3/ Pr{S,}
S{tHes

= Z Pr{rN7" S ry, SO Pr{SEY 7|50

satles

= 3 Pr{eN M SEIY Pr{SHY 7, S0}
st g

= > BB,

st eg

N
3=
+
=
~

'}

(2.6)

(2.7)

where S is the set of all states. From the equations (2.6) and (2.7), we can find that

the forward metric a and the backward metric 3 will be computed recursively in opposite



direction. Assume the trellis diagram diverges fom zero state at time 0 and converges to

zero state at time IV, the initial conditions are satisfied:

a(S(()O)) =1 a(Sg(co)) —0 for SV ¢ S\:So 28)
By =1, BNy =0 for S € 8\S, ’
Furthermore, the branch metric from state m’ to m can be computed as
1
(50, gy = P S
" Pr{sy}
Pr{S(tH) S(t)} Pr{S(t+1) S(t) )
— mooEm o mo 5 My Tt
Pr{s"}y Pr{S%, 51N (2.9)
= Pr{SU+D| SN pr{p,|SE+D gln
= P(u) P(r:|0r),
where wu; is the encoder input that causes the transition 57(2 — Sy(ﬁﬂ), and 0; is the

corresponding codeword for 0 <t < N.
For the single-binary Recursive Systematic Convolutional (RSC) encoder input sig-

nal u, after BPSK mapping, the log—l-ikéiihdod.}étio (LLR) can be defined as

s ﬂPr{ut +1\r}
L) = In 2.10
F W= Pr{ut ; —1|r} (2.10)
Therefore, the equation can be further deeompesed to
Z( ) B+1 PI{S t27 S(£+1 | }
L(ug) = In ) o(t+D)
Z(m m)EB- 1 Pr{S, 7, Sm" " |r}
L Pr{s%, 54ty y
_ gy v meny PriSn J (2.11)

Z(m m)eB; ! Pr{S(t,’ S(t—irl rl
S amyery (SN (S, Sﬁi*”)ﬁ(sﬁ,iﬂn
S wrampeny? LSS SD)A(SED)

where B;' is the set of all (m/,m) that indicate the state transitions are caused by

=In

u; = +1, and B; !, the set of (m/,m), denotes the state transitions are due to u, = —1.
To decide the decoded output signal u;, make a hard decision to the value of LLR,

then 4; can be estimated as

+1if L(ug) > 0
iy = (2.12)



2.1.2 The Log-MAP Decoding Algorithm

From equations (2.6), (2.7), and (2.9), we can realize that the MAP algorithm requires
complex hardware resource. In order to simplify hardware complexity, we can transform
MAP decoding algorithm into logarithmic domain. At first, we need to transfer the branch

metric v in (2.9) to logarithmic domain; that is

(S5, SEH) =Tny(SL), SE) (2.13)

m

Then, the forward metric o in (2.6) and the backward metric § in (2.7) can be further

expressed as

G(S4Y) = na(S4Y) =n 3 s A, (2.14)
s"es
and
BSY) =mpsY) =l Y BT+, S5) (2.15)
siithes

As the path metrics have been changed, the initial conditions of metrics become

a(s") =0, als”) = 8 for 51 € S\

(S,,SN’)T;E-—OO for SN e 8\ S,
)

(2.16)

Referring to (2.13), (2.14), and (2 15 th TLR in (2 11) can be rewritten as

Z-' i (), '(t'B (t+1)y , A/ o(t+1)

+1
(m/,m)eB]

(2.17)
—In Z 656(57(7:2)-%'7(,5’7(72757(1fb+1))+6—(s7(£+1))

—1
(m/,m)eB,

To simplify the logarithmic domain, we consider the Jacobian function [3]
In(e™ + €*2) £ max*(e™, e*2) = max(xy, ) + In(1 + e o722l (2.18)

and the correction term In(1+e~*1=22) can be implemented by a lookup table to simplify
hardware design. Apply the recursive procedure to (2.18), we can extend the Jacobian

function to

In(e™ 4 e + - - 4 ) & max*(e™, "2, ..., ") (2.19)

= max *(- - - max "(max *(z1, x2), T3) - -+ , Tp) (2.20)



Apply (2.18) to (2.14) and (2.15)

(S ) = max* o g[7(Sh), SE) + a(S)] (2.21)

m

B(SY) = max* gon g [BISEY) + 7(S5, SED)), (2.22)
and therefore,

L(ur) = masx” g e [0(S,0) +7(5,0, Sf,gH)) + A8
(

,7
(2.23)
_ max*(m,m)eB;l[o_z(S;g) + f‘y(Sﬂ?, ) + ﬂ( G+ )]

The MAP decoding algorithm based on (2.21), (2.22), and (2.23) is termed Log-MAP
algorithm [4, 5].

2.1.3 The Max-Log-MAP Decoding Algorithm

The performance of the Log-MAP algorithm is equivalent to the MAP algorithm but
the hardware complexity has been reduced considerably. However, the correction term
y = In(1 + e~ lm1722l) in (2.18) requiresfa lookuptable to simplify the computation.

In Fig. 2.1, we can discover that y depl;eases rapldly as r = |r; — xg| increases. In
order to further simplify the complex1ty of correctlon term it is possible to discard y with

some performance degradation begause of*c:he:pformatlon loss.

In(1+e™)

y:

Figure 2.1: Correction Factor



Consequently, we have the following approximations:

max *(e”, ") ~ max(xy, T2) (2.24)
max *(e™, e, ... ") & max (i) (2.25)

Applying (2.24) and (2.25), we can reduce the Log-MAP algorithm to the Max-Log-MAP
algorithm that contains only the additions and the max functions. Therefore, we can

rewrite (2.21), (2.22), and (2.23) as

a(S4; ™) ~ max [3(4), SE) + a(sL) (2.26)
Sfﬁes
B(S}é)) ~ max [5(57(2“)) + ’7(5,(2, Sr(fbﬂ))], (2.27)
st Ves
and
Llw)~ max [a(S})) +3(5;0, S + 5(S()
(m’,m)eB:rl
_ (2.28)
—  max [07(51(;2) +7(5S2’57(£+1)) +/@(57(£+1))].
(m’,m)EB;1 T

2.1.4 Sliding Window Approd¢hds, =
=4 £l ..|. s Y .
From the previous discussion, we ',_can ﬁndthat in the MAP-series decoding algorithm

(including MAP algorithm, Log—IMAP“ .érl?gbﬁ’bhm and MAX-Log-MAP algorithm), the

calculation of LLR requires the forwéj‘rd‘ metrics and backward metrics; all of the metrics
should be kept to calculate all L(u;) with t =1 ~ N. Since the backward recursive com-
putation initials from the end of the decoding trellis, the LLR value cannot be calculated
until the entire block metrics received. If the block length is large, it will lead to long
output latency and require huge memory for hardware implementation.

To reduce the memory requirement, the sliding window algorithm [6-8] is applied to
avoid storing the metrics corresponding to the entire codeword sequence. This algorithm
utilizes the fact that the backward metrics can be highly reliable even without the initial
condition if the length of backward recursive computation is long enough. In Fig. 2.2
the codeword sequence is divided into [ N/T, ] sub-blocks with sliding window length T,
which is also called the convergence length, and the dummy backward recursion [, is

employed to establish the initial conditions for the true backward recursion (3. Although



Window-size ie T, —>

Jj-1 J jt1 jt+2 jt3 jt4

Jipv iy v

I I ﬂ | | ﬂd | | |
tZ—: L(ut) :4—:—a>:<_ _____ : : :

[ | & I I I I I
t3— : : L(ut) :<ﬂ— : —a> : q__g(i__: :

[ [ I &L I I I I
O i | L) iqL — iq__ﬂ_d__ |
v

Figure 2.2: The process of sliding window MAP algorithm

the initial condition for the (3; recursion is unknown except the last sub-block, we set the

equally likely conditions for (3; within the (j + 1)-th sub-block

m

By(SWUHDTw)y — % for all SU«) € S, (2.29)

where M is the state number in trellis diagram. After the backward recursive computation
Ba process of T, time instances, the initial metrics ﬂ(S,(,{'T”)) in the j-th sub-block are
available for the 3 recursion. During the (j+ 1)—th"ﬁd operation, the forward « recursion

i HI%% &
proceeds concurrently in the j-thigub-block, aud all the metric values are stored in the

memory. In the backward 3 recuréion ijiihe‘ J=th subl—block, we can calculate the L(u;)
value with the o metrics in the mer;ioyy,"tﬁe [5’ metrlcs in computing, and the corresponding
branches metrics in the j-th sub-block." Tia sli‘dirl-g window length T, which is set to be
six times constraint length of component encoder in turbo code to ensure the reliable

initialization for the § recursion [8].

2.2 Turbo Code

Turbo code, also named parallel concatenated convolutional code (PCCC), convolutional
turbo code (CTC), or turbo convolutional code (TCC), was first proposed by C. Berrou,
A. Glavieux and P. Thitimajshima in 1993 [9,10]. It has been proved that the performance
of turbo code can be close to shannon limit with simple recursive systematic convolutional
(RSC) codes concatenated by an interleaver whose length is N. The interleaver permutes

the information sequence before the second encoding, introducing code diversity.



2.2.1 Turbo Encoder

The turbo encoder is composed of two RSC encoders and an interleaver to reorder the
information sequence. Note that the RSC encoder must be recursive for better perfor-
mance [11]. In Fig. 2.3, the information symbols are encoded to the systematic part vo(D)
and the parity part vq(D); thus, vo(D) = u(D). And the second encoder encodes the

interleaved information symbols G(D) to the parity part vo(D).

u(D) » v, (D)

+— Encoder 1 —>» v, (D)

Interleaver

ﬁ(D)L Encoder2 ——>v,(D)

Fig'uré ts “‘Turb"‘o ‘en"c'oder
1= A e 3

1
1

2.2.2 Turbo Interleaver |

The main reason causing turbo code performance so close to shannon limit is the inter-
leaver. As shown in Fig. 2.3, the interleaver permutes the information sequence u(D) to
u(D). Therefore, the interleaver can spread out the burst errors and further eliminate
the correlation of the input of two RSC encoders so that the iterative decoding algorithm
based on exchanging un-correlated information between two decoders can be applied.
Also, the interleaver can break low weight codewords to improve the coding gain.

The code distance spectrum dominates the error-correcting performance of the turbo
code. Referring to [12], the process of the interleaver called spectral thinning can reduce
the error probability of low weight codewords. If we assume the interleaver performs
random permutation, the error probability can be reduced by a factor of 1/N [11,13],

where N is the interleaver size. And 1/N is also refered to the interleaver gain. The

10



size and the permutation will considerably affect the turbo code performance. At low
SNRs, the interleaver size has the most important effect, whereas the permutation would
dominate the error performance at high SNRs. Consequently, the interelaver structure is
desirable to break these input patterns. In such case, the input sequence to the second
encoder, which is generated by the interleaver, will most likely produce a high weight

parity check sequence and further increase the whole turbo codeword weight.

2.2.3 Turbo Decoder

The iterative turbo decoding process based on MAP algorithm is to exchange the soft
information among soft-in/soft-out (SISO) decoders to calculate a posteriori probability
of each information bit u, [2]. For a code rate 1/n RSC encoder, each codeword frame
consists of one systematic bit and (n—1) parity bits. In the receiver, the received codeword
has the systematic symbol 7y, and the parity symbols rt(l) ~ rt(n_l). If the a priori

information is represented by

Lo (up@hensy — )
(ugh e —1)

additionally, the channel reliabilit:y"valué. !T}c:'.is--deﬁﬁ(?d to be % for the AWGN chan-

(2.30)

nel [14], and the branch metric i logarjthr_ﬁié.domain.iwould be
o | . =]

- T ! n—1
7(5,(2, SUHY = 1n P(uy) P(r| ) :‘E(utLa(ut)_“frF Lougros + E L.ry )U,f )), (2.31)
i i i=1

which is from (2.9) and (2.13).

As a result, the APP information from the SISO decoder can be derived as follows:

Z(m’,m)Ele
L(u;) = In =

Z(m’,m)GB;l

651(5,(:})+~7(Sff},S7(£+1))+ﬁ(55y’i“))]

ea(s,(,?)JrV(Sf,?7S$+1))+5(355+1))}

Z( ' m)eB eé((+1)La(ut)+(+1)Lcr,0t)] [6a(sf§})+%z7_11 Lcr,ﬁi)@fuﬁ(sﬁ“))}
m'm)eBy

=In =

2 myeB;! e%<(—1)La<ut)+<—1>Lcm,t>] {6a(5,§j2>+;2?_f Lcrii)ﬁii)-i-ﬁ(sfy’i“))] (2.32)
m’',m ¢

Z( ’.m) BH |iea(sy(3)+§2?_11 Lcrwgi)ﬁgi)+ﬁ(sr(r€+l)):|
m’,m)eB/

— La(ut) + Loy + In -
ey {e‘i(sff)n% R LC"E”@E”JrB(Sffﬁl))]
m’,m ;

= La(ut) + Lc’r’07t ‘l— Le (ut)

11



The term L. (u;) is the eztrinsic information corresponding to the information bit u; [9,10].

De- P
interleaver [
Lal(u ) Lel (ut) La2 (ﬁt) 2(14 )
> » Interleaver >
- SISO SISO
0 "| decoder-1 | ; () _ decoder2 |, ;)
},it - 1 t rOt > 2\t )
»! Interleaver

Y

Figure 2.4: Turbo decoder

In the decoder, we receive the systematic sequence rq(D) as well as the parity sequences
r1(D) and ry(D) from encoder 1 and encoder 2. In the decoding flow shown in Fig. 2.4,
there are two SISO decoders for the two‘con-stituent encoders in Fig. 2.3. Initially, we
set the a priori information L (ut) for the fipst decoder to zero and apply the BCJR
algorithm to calculate the a posteriori mfbrmatlon Ll(ut) From (2.32), the extrinsic

information L.;(u;) can be obtained  F= 1 )
Ler (u) = Li{phesedidfo, — Lar (ue), (2.33)

where L, (u:) = 0 initially. In the SISO decoder-2, the inputs are ¥o(D) permuted from
the systematic part ro(D) and the parity sequence ro(D), while the a priori information
Lo (1) is the extrinsic output Lej(u;) from decoder-1 after permutation. Consequently,
we can evaluate the a posteriori output Ls(;) and the extrinsic information Les ()

corresponding to the second constituent code by
Leo(tiy) = Lo(tiy) — LeToy — Lag (). (2.34)

As shown in Fig. 2.4, the information L.o(u;) can be regarded as the the a priori
information L, (u;) for SISO decoder-1 after being reordered by the de-interleaver. The
BCJR algorithm proceeds again for the first constituent code based on the information

L1 (uy) from SISO decoder-2. The turbo decoding proceeds iteratively with the extrinsic

12



information passing between the two SISO decoders. When the stopping criteria are
reached, which may be the maximum iteration number or a correctly decoded codeword,
the APP information Lo(@;) through the de-interleaver is exported for hard decision.
Notice that both SISO decoders in Fig. 2.4 will complete once within each decoding
iteration.

The BER curve of turbo code can be divided into three regions [15], at very low SNRs,
the signal is so greatly corrupted by channel noise that the decoder cannot improve the
error rate and may even degrade it. The non-convergence region has an almost constant
and high error probability. As the SNR increases, a waterfall region is encountered where
the error rate drops sharply. As the SNR increases still further, a error floor region is
encountered where the curve becomes less steep, limiting the performance gains. This
error floor region is primarily a function of the distance properties of the code, which can

be expressed by (2.35)

E
P, xQ ( 2dfreeRﬁz> , (2.35)

where d e is the code minimum free-diélt‘ar‘lcé‘,'“ R,is the code rate, and ff—g is the SNR.

e

: ] J e

2.3 Double-binary Con‘,’mﬁ%ionél Turbo Code Decod-

Double-binary convolutional turco code (CTC) can provide better performance than single
binary turbo code for equivalent compexity [16]. This section will introduce double-binary
CTC with tail-biting technique which can avoid reducing the code rate and increasing
the transmission bandwidth. Using double-binary CTC, the latency of the decoder is
halved [17], and it could be easily adopted in many standards, such as DVB-RCS and
WiMAX standards [1,18].

2.3.1 Double-binary CTC Encoder

The bouble-binary CTC encoder is shown in Fig. 2.5. Compare to the conventional turbo
code, there has two systematic bits, so the number of branches connected to each state

in trellis diagram are increased from two to four.

13



u,(D) »
u, (D) }Vm (D)

——»v,, (D)
Encoder 1 o1
- ——>v,(D)
Interleaver
u,(D)| |ua, (D)
Encoder 2 >V, (D)

—] —> V(D)

Figure 2.5: Double-binary Convolutional Turbo encoder

For conventional turbo encoder, we should add tail bits to force the trellis diagram to
finish at zero state. The trellis termination makes sure that the initial state for the next
block is the all-zero state, but the thil bits will aécrease the code rate and degrade the
transmission efficiency, and the degradatioﬂ {mll Be mo?e for the shorter blocks. Using tail-
biting application, also called cirouiation sfcafés, the stéxte of the encoder at the beginning
of the encoding process is not necéssarily""che'anﬂ"—zéri?‘state. The fundamental idea behind
tail-biting is that the encoder is controlléd in sﬁch a way that it starts and ends the
encoding process in the same state [19].

The circular coding ensures that, at the end of the encoding operation, the encoder
retrieves the initial state, so that data encoding may be represented by a circular trellis.
Assume there exists such a circulation state S,, if the encoder starts from state S., it
comes back to the same state when the encoding process is finished. The derivation of
circulation state S, requires a pre-encoding operation. First, the encoder is initialized in
the all zero state, and the data sequence of length N is encoded once, leading to a final

state S4'). Second, we find S, from the final state S5 by the following equation [19]:

x5

Se=(I+G")" (N) (2.36)

where G is the generator matrix which comes from encoder, and [ is the identity matrix.

Finally, data are encoded starting from the state S, calculated by (2.36).

14



2.3.2 Decoding Procedure for Double-binary CTC

According to the iterative decoding algorithm of turbo codes in section 2.2, we realize
that the goal of the MAP decoding algorithm is to achieve the extrinsic and LLR values.

Therefore, for the input signals uy, and u, 4, the LLR for ¢ = 1,2, 3 can be represented as

Pr {dt = Z|I‘}
Pr{d, = Or}’

where d; in GF(2?) is defined as the collection of input symbols (ug, u; ) with elements

Li(d,) £ In (2.37)

{0,1,2,3} from time (t—1) to time ¢ (that is, d, = 00,01, 10, 11. We use decimal notation
instead of binary for simplicity), and r is received symbol after QPSK mapping. The
decomposition of the above equation will be

> oy Pr{S,. S r}

> myemo Pr{S, S5V}

> e Pr{S%, S5, r}

E(mf,m)eBg Pr{Sﬁfm 7(72“)7 r}

i micr )7 (St S )BSR™)
S e o S 168 S )5S

where B! is the set of all (m’, m) that mdlbaté the sta.te transitions are caused by d; = 1,

Li(d) =In

=1In

(2.38)

=1In

and BY, the set of (m’,m), denotes the state tran81t10ﬁs are due to d; = 0.

Applying the Log-MAP algorlthm torthe (2 38) the LLR can be rewritten to

Z( eBi € HEEPPRLOL) 50+ B(54H)
m/ m

d) = -
Lidr) = Z( - a(SN+3(5) 5T +A(sEY)
m/,m)e

_ (2.39)
= max” e [A(S50) + (S, Sﬁi*”) + (S
= X e [0(S0) + (S, SEY) + BSY))
and the Max-Log-MAP approximation will become
Li(d) ~ max_ [a(S,) +7(Sy, %) + A5
m/,m)eB!
e (2.40)

- max [07(5,(,?) + 7(5772, SHDY 4 35U+,

(m/,m)eB? m
Since the tail-biting is applied on circular trellis diagram, we have equally likely symbols.

Thus, the initial condition of branch metrics become

a(s™y =0 forv sV

i (2.41)
BS™MY =0 forv S™Y es.

15



De- P
interleaver
< L,(d,) L,(d,) ;
L)L, > Interleaver i > L;z d,)
To > SISO SISO
Uw » decoder-1 | L.(d,) decoder-2 | L.(d,)
"4 RN }70 . > >
s, —> 1
> Interleaver
7
1,t
Vs
rs,

Figure 2.6: Double-binary CTC decoder

For a code rate 1/n double-binary RSC encoder, each codeword frame consists of two

systematic bits and 2(n — 1) parity bits. In the receiver, the received codeword has the

)7 7,§1) - rt(Zn—l).

systematic symbols rt(o and the parity symbols rt(Q) Moreover, in order
to reduce the computational complexits 4o iﬁCrease throughput, or to reduce the power
consumption, we could further sindplify the %path‘met‘rics into

2n=1

(S, Sait N+ OF b v, (2.42)

7=0
where the value of b; € {+1, —1} dependson the éncoding polynomial after BPSK map-
ping and can be pre-calculated for all state transitions, respectively. The a prior: infor-

mation in (2.42) is represented by

Li(d,) 2 In (2.43)

From the decoding flow shown in Fig. 2.6, the extrinsic information for next stage can be

calculated as

L (dy) = L; (dy) — [(bo - Tou+b1-1r1e) — (rog +710)] — L (dy). (2.44)

Compute symbol probabilities for the next decoder from previous decoder as

P(d, =)

Li(dy) =L} (Jt) = 5oy (2.45)

16



to save the hardware resource, we can define In P (d; = 0) to 0. Hence, the a priori

information can be rewritten as follows:
(dt) (2.46)

Assume the information symbols are equal probability, so we initialize the a priori infor-

mation for the first iteration:

P (d; = 0) =0
P (d=1)=0
nP(di=1) (2.47)
P (d =2) =0
P (d =3) =0

\

The double-binary turbo decoding proceeds iteratively with the extrinsic information pass-
ing between the two SISO decoders. When the stopping criteria are reached, which may
be the maximum iteration number or a correctly decoded codeword, the final decisions

are made according to: n‘
| WL (citi)"; L (t> >0
"7 A kg w{d) o )

00, 4 else

L (Jt) — max (Ll (dt> Lo (dt> L (@) (2.49)

2.4 Stochastic Iterative Decoding Algorithm

where

Stochastic arithmetic was first introduced in 1960’s as a method to design low-precision
digital circuits [20]. Due to the hardware implementations of iterative decoding for error
control code become more complex, much research effort has been invested to reduce
hardware complexity. The major motivation for considering stochastic computation was
the possibility of performing complex computations using only simple logic circuit. In
stochastic computation, probabilities are represented as streams of random digital bits

using Bernoulli sequences. With this representation, complex operations on probabilities

17



such as multiplication and division can be converted to operations on bits which can
easily be implemented using simple stochastic gates, but to trade off between computation

accuracy and computation time.

2.4.1 Stochastic Computation

In a stochastic computation, values are encoded as a Bernoulli sequence of bits. For an
unsigned number N, the probability that any bit d; in the Bernoulli sequence is a binary

1is
N
Pld =1) = 2.
(dz ) Nmax? ( 50)

for a probability value Pj,, the probability of i-th bit d; being a binary 1 is

From the above equation, we can realize that the information is contained in the statistics
of the bit stream, and there is no fixed mapping between probability value and encoded
sequence. And the precision can be dééi&ed by “‘the length of stochastic sequence, so we
can increase the precision of stochastié streams by 1ncreasmg the sequence length.
Consider the stochastic multlpher in Flg 27 Let P, =Pr(a;=1)and P, = Pr(b; = 1)
be the input probability, and P.- s the output probablhty The multiplication of two

stochastic sequences can be performed«wmh a smgle two-input AND gate [21].

P,=0.5
..0110001011... —— P.=02

P,=0.4 ...0000001001...
...1000101001...

Figure 2.7: Multiplication of two stochastic sequences

The JK flip-flop shown in Fig. 2.8 can be used to perform stochastic division. The
probability of random output transition from 0 to 1 and from 1 to 0 is ((1 — P.)F,) and
(P.Py), respectively. Since the expected occurrence of random sequence in both direction

must be equal, then we have

P.P,=(1-P)P,— P.=PF,/(P,+ F) (2.52)

18



F,
{al.}— J QI Ci} J K Q
P 1 0 1
F= p+p, 0|1 0
0 0 Hold
{bi} — K 1 1 Reverse
n Ly
clk

Figure 2.8: Division of two stochastic sequences

For the stochastic addition and subtraction, in order to ensure the operations to be
closed on the probability interval of [0, 1], therefore, these operations should be combined

with a scaling operation for the outcome [21]. Addition with scaling is performed as
N N
P.=) SiPx where » Si=1, (2.53)
i=1 shlldey, =1

The outcome is the scaled sum of nthé inpl‘l’ﬂ‘ prbba‘b’ilities. For S; = 1/N, this operation
can be implemented in hardware {ising a m“uitn‘ip‘lexer‘a‘s“ shown in Fig. 2.9, where RS refers
to the random selection supplied by (pseudo) random humber generators. Generating RS

is straightforward when the N is a"‘pow‘ér of two. 4

RS

Figure 2.9: Stochastic (scaled) addition

19



2.4.2 Stochastic Stream Generation

For the implementation of the trellis-based stochastic decoder, the channel value y; re-

ceived from AWGN channel should be converted to LLR first

Ply;=1)
Py =0)

_ m(e—jg((yﬁl)z—(yi—l)z))

—1
T 252 592 1)
—1

= Np ~(4vi)

Li:hl

(2.54)

The further conversion form LLR value in (2.54) to probability is shown below

Py, =1)
Py, =1)+ P(y; = 0)
1

- (2.55)
I+ 5u=n

1
1+6‘L'

P =

Assume we use N-bit representatlon for the recelved probabilities, these probabilities
are converted to stochastic streams by using ‘the structure shown in Fig. 2.10. This

structure consists of a comparaton whichs compares tihe channel probability, P, with a

(pseudo) random number, R. The F:haﬁhél"f;iibbabihty P is fixed during the decoding
process, but R is a random number ‘”(”\‘Nith Aintiform distribution) which is updated in
every decoding cycle. The output bit of the comparator is equal to 1 if P > R, else it is
equal to 0. Since R has a uniform distribution and can take a value from 0 to 2V — 1,

each bit in the output stochastic stream is equal to 1 with a probability of 2% [22].

Comparator

N
Input Probability ——<—»{ P
N P>R ——4— Stochastic Stream

Random Stream ——4— R

Figure 2.10: Converting channel probabilities to stochastic streams

20



2.4.3 Trellis-based Stochastic Decoding Algorithm

The stochastic decoding algorithm is a message-passing algorithm, which is based on the
code constraint graph. To implement the stochastic message-passing algorithm, we use
the following deterministic message update rule at each function node [23]. Consider the
propagation of message from (A; (T'),B; (T)) to Ciyq (T'+ 1) with ¢ = 1 ~ N, where
A;(T) and B;(T) are received messages, C;1 (T + 1) is transmitted message, and N is
the block length. Assume at time instance T', A;(T) = a and B;(T) = b. Then

fo (a,b if (a,b) €8S

Civ1 (T+1) = (a,) (a,5) (2.56)
Cit1 (T) otherwise

It is sometimes convenient to refer to the set S as the satisfaction of the constraint function

fc. For each row (a,b,c) in the satisfaction table in Fig. 2.11, there is a branch in the

trellis which connects a with ¢, and which is labeled b. This relationship of a (2,1, 3)
convolutional code is illustrated by Fig. 2.11.

\ Lalb|c|
‘ ool o
‘ 0| 3] 4
; 11370
Y 1 1o 4
‘ 2 [ 211
2 115
31 |1
3215
<) @ 4 3] 2
4 106
5101 2
51316
6 | 1|3
6 | 2 | 7
71213
711 ] 7
(a) (b)

Figure 2.11: An example of constrain node (a), showing a detailed trellis description of

its constraint; and (b) the set S corresponding to this constraint

Apply the message update rule to stochastic decoding algorithm, we can define the

21



state transition parameter in (2.56) as follows:
e a : Source state
e b : Branch codeword

e fo(a,b) : Destination state

Figure 2.12: Update rule for stochastic decoding algorithm

A simple trellis diagram for a (2, 1, 3) convolutlonal code is shown in Fig. 2.12, and the

corresponding value sets of state transmlor; are‘“deﬁned as follows:

'J'

A= {OOO 001 010 111}

B =4(00), (1), (10) 1)} (2.57)
— {000/0017010, ..., 111}

Furthermore, assume at time instance 7', the branch metrics become
Bi (T) - {Bi,O (T) 5 Bi,l (T) goeeey Bi,N—l (T)} 5 (258)

where

i =0 ~ (Block Length — 1)
(2.59)
T =0 ~ (Decoding Cycle — 1)
Referring to (2.56), there are three possible value for the destination state in Fig. 2.12

fe (000, (00)) = 000
Cima (T+1) =4 fe (000, (11)) = 100 (2.60)
Cis (1),

22



we can find that if the received codeword (B ¢, B; 1) (ignore the time instance 7" in notation
for simplicity) is 00, the destination state C;,; is 0; if the codeword is 11, the destination
is 4, else the destination state would be remain the same state as last decoding cycle.
By using the update rule, the trellis-based stochastic decoder with matched codeword
can be implemented in Fig. 2.13(a). We can find that branch metric (B o, B; 1) is stochas-
tic stream which is generated by a comparator with input probability and random stream.
With the matched codeword 11, the initial state is updated from initial state to state 3.
At the same time, we increase the counter because of the transmitted bit of matched
branch is 717, if the transmitted bit is 70”7, we decrease the counter. The main function
of this counter is to make the final decision to convert stochastic stream to digital bit.
Furthermore, if there doesn’t have any matched codeword as shown in Fig. 2.13(b),
the destination state will remain the same state as the previous decoding cycle. Under
this condition, the counter will remain the same value. When the maximum decoding

cycle is reached, the counter is exported for the hard decision.

Input  Random Input  Random  wwanput  Random  Input  Random
Probability Stream Probability Stream Probabili.ty Stream Probability Stream
= | 4
iF| :‘.
CMP CMP 5 .‘I CMP CMP
Bi 0Bi 1 (StOChaS“C Stream) { i OB, 1 (Stochastic Stream)

00 O\
\

codewor Initial state

00
/Q\ Remain the
~ / same state

7y Inltlal state

/ Update Mis-matche O
Matched I state codeword
codeword

Assume B;oBi1= 11 Assume B;(B; 1 # 00 or 11

(a) (b)

Figure 2.13: Trellis-based stochastic decoder. (a) With matched codeword. (b) With

mis-matched codeword

23



Chapter 3

Trellis-based Stochastic Decoder

3.1 Analysis of Stochastic Update Rule

As we described in section 2.4, the error-correcting performance of trellis-based stochastic
decoder can be adjusted by decoding cycles. Fig. 3.1 shows the performance comparison
of the uncoded sequence, hard—decisior‘l‘“ Viterhi Qecoding algorithm, soft-decision Viterbi
decoding algorithm and the trellis—\b“a)éed stgphastié decoding algorithm with decoding cy-
cle 2500. All of the simulation en\/:ir;)nmeniﬁ Jls'under A:WGN channel and BPSK mapping

using (2,1, 3) convolutional code, and the fandom stream in Fig. 2.13 is generated by ran-

dom number function in C++ pro;g;ramiﬁ‘i.ng.'. ﬁésidés the performance curve of stochastic
decoder is fixed point simulation with ‘Q{Jantizatio‘n-width 10, the other performance curves
are floating point simulation.

From the simulation result, we can find that the performance of the stochastic decoder
is even worse than the uncoded sequence. The reason might be the received Log-Likelihood
Ratios (LLRs) become so large so that the corresponding probabilities approach ”0” (or
717). In this case, bits in stochastic sequences are mostly "0” (or ”17), hence random
switching events become too rare for proper decoding [24]. In the following section, we

will discuss some methods to improve the performance of trellis-based stochastic decoder.

24



,BPSK; AWGN; (2, 1, 3) Convolutional Code with Stochastic Update Rule
10 ¢ \ : : ‘ _

; ~&¢-Uncoded
Ap -©- Soft-decision Viterbi Algorithm
A A - Hard—decision Viterbi Algorithm |
1072 e . —A__, | % Stochastic Decoder with Decoding Cycle = 2500},
R S W A ‘ z
S R < T A
S A
10—2; D S < A . i
i S S < T A
S N 2
-3 < A
1o O : 3 = A E
S S A
< ]
10 S <$
{
10°F .
9
-6
10 | | | | | | | |
0 1 2 3 4 5 6 7 8 9
Eb/No(dB)

Figure 3.1: Performance of stochastic decoder

3.2 State Memory Method ' =
One major difficulty observed in tféilis~5gééd§t?chastié decoding algorithm is the latching
problem. The latching problem refér§ito.the case gzvhere a cycle in the trellis diagram
causes the state transition to lock into z; ﬁxedl étate. The mis-matched codeword caused
the trellis diagram to remain the same state is the main reason of the latching problem.

To avoid the state transition to lock into a fixed state during decoding cycle and in-
crease the random switching activity of stochastic sequences in the trellis diagram during
latching, we propose the state memory to store the state with matched codeword tran-
sition. As shown in Fig. 3.2, the state memory store the unpdate state with matched
codeword and increase the vlaid counter to record the memory index when the decoding
cycle is bigger than T},;; which is a parameter to reduce the chance of locking into a fixed
state.

Fig. 3.3 shows the operation condition of state memory when the mis-matched code-
word occurs in trellis diagram. To increase the sensitivity to the bit transition for proper

decoding operation, in case of the updating rule is failed (codeword mis-matched), we

25



Bi-1,0 Bi1,1

_ _Previous
=" cycle
o -

~ 77~ Update
state

|

/

/
Block Length —
S]]

=l
PLITR T
[2 [3[34[5[2]6]4]
VALID COUNT

¥
‘
<

le— CYCLE —

1

|
|

Figure 3.2: State méﬁiory with'matched codeword

randomly select state from the state memory to update trellis diagram. This updating
scheme reduces the chance of locking into a fixed state since every time the mis-matched
codeword happens, the state is randomly chosen from those previous update sates which
are not produced into latching problem.

To increase the state transition activity, the usage of state memory would be applied to
both forward and backward transition in trellis diagram (just like the forward metric and
backward metric in BC'JR decoding algorithm). Double-side state memory application
is shown in Fig. 3.4, the forward transition and backward transition update state every
decoding cycle simultaneously. The decisions of the forward and backward transition are
also calculated in each decoding cycle. When the maximum decoding cycle is reached,

the counter is exported for the hard decision.

26



/
)/ State
/1" Memory
/

Ok

/ /

/‘ #
AN

L
TP T T

(3162 [3[4[65[2]6]4]
VALID COUNT

~N

le— CYCLE —

Figure 3.3: State memory with miis-matched codeword

The simulation result and performance comparison is show in Fig. 3.5, the simulation
environment is the same as Fig. 3.1. As shown, the stochastic decoder with state memory
improves the performance comparing to that without state meory and provides better
performance at low SNRs with respect to hard-decision Viterbi decoding algorithm. But
at high SNRs, the BER curve of stochastic decoder with state memory has error floor
and the performance is worse than the hard-decision Viterbi decoding algorithm. In the

next section, we will discuss this condition and introduce further improvement to solve

this problem.

27



-——— — —— —— —— —

[
BioBi,1 :
00
~a ,//C> \\ Update:
O Initial stateO : state :
| ««—— Random Stream
7 CMP

««—— Input Probability

——forward transtion—

O

[ «—— Random Stream

O o/

CMP

«—— Input Probability

F————————— === ———
v oy forward backward
Bi,OBi,1 decision decision
IO\ N - Of\) / 1710
\ \\ / Decoded
Update " v Data

M
O O o{:u D | [ Hard
X

A Decision

2 —>»

|
|
|
|
|
|
|
state Initial state” | 2 —]
|
|
|
|
|
|

Assume Bi,OBi,1 = 11 ‘ j ‘

1

Figure 3.4: Double-side state membry application

3.3 Noise Dependent Scaling‘ Factor

The Noise Dependant Scaling (NDS) factor proposed in [24] introduced that the received
channel LLRs are down-scaled by a scaling factor which is proportional to the SNR. The
down-scaled LLRs result in probabilities which introduce more switching activity in the
stochastic decoder. Because the scaling factor is proportional to the noise level, it ensures

a similar level of switching activity for different SNRs. Assuming a BPSK transmission

over AWGN channel, the original LLR (L;) is

Li— jv—j<4yi>, (3.1)

28



BPSK; AWGN; (2, 1, 3) Convolutional Code with State Memory

100 T T T T T
: -B-Uncoded
-©- Soft-decision Viterbi Algorithm
—»Hard-decision Viterbi Algorithm i
10_§ -A-Original Trellis Decoding with CYCLE=2500,
; -O- State Memory Usage with CYCLE=5000
107 i
L 10_35* 3
i A
10_4? E
i N
107 <
-6
10 | | | | | | | |
0 1 2 3 6 7 8 9

4 5
Eb/No(dB)

Figure 3.5: Stochastié aecpder y%}lith state memory usage

where y; is received symbol and Ny is t;he_éihgle—sidedf noise power spectral density. The

scaled LLR is calculated as

L;; (O‘TNU)L
= (O‘TNO) ]:[_2(4%) (3.2)

= (%) (—4yi),

Y is the fixed maximum value of the received symbols, and « is a constant factor. As a
result, {* is the noise dependent scaling factor. Fig. 3.6 shows the peroformance of different
NDS factors with state memory usage, the NDS factor 0.6 is the best case compared to

others and without error floor effect when BER is 107°.

29



0BPSK; AWGN; (2, 1, 3) Convolutional Code with NDS and State Memory

10 : 1 ‘ ‘ ‘ .
: -©- Soft-decision Viterbi Algorithm
- Hard—decision Viterbi Algorithm|]
-A-without NDS I
10°% -5-NDS = 0.6
~#=NDS = 0.7
P -<-NDS =0.8
107
w 10_3E
10
107
-6
10 | | | | |
1 2 4 6 7
Eb/No(dB)

Figure 3.6: NDS ‘fact"gr" comparison
=

1
=1
"1

3.4 Discussion &3 -

Further improvement with state me.:.rﬁii‘ér&"apd noise 'd'épendent scaling factor 0.6 applied to
trellis-based stochastic decoder really en-hance;’.che possibilty to implement the stochastic
decoding algorithm. Besides, the number of decoding cycles also affect the error-correcting
performance and throughput of stochastic decoder, the analysis is shown in Fig. 3.7.
Based on different SNRs (from 0 to 7), the decoding cycle 2500 seems to be enough to
have outstanding error-correcting performance.

Fig. 3.8 shows the 1-stage stochastic decoder architecture, and the corresponding code-
word and the destination state can be referred to LUT g and LUT¢, respectively. Shorter
critical path compared to conventional ACS-unit is also labeled in Fig. 3.8. The synthesis
result shows that the 1-stage trellis-based stochastic decoder can be operated at 1.8GHz
by using UMC 90nm CMOS process. Although the throughput can be enhanced by us-

ing stochastic decoding algorithm, there still has some dis-advantage for implementation.

First, performance loss about 1dB at BER= 10~ as compared with soft-decision Viterbi

30



BPSK; AWGN; Decoding Cycle Analysis

-6
10 | | | | | |
1500 2000 2500 3000 3500 4000 4500 5000
Decoding cycle

Figure 3.7: Decoding'{t':"gf(':le éﬁalj;éis,:,of stochastic decoder

algorithm. Second, the required functlorpal unlts Wlll b¢ propotional to block length which
may result in larger hardware cost about 187K gate. counts. As a result of area-efficient
design for WiMAX standard, the orlgma«l- decodlng algorithm can achieve design require-
ment and would be adopted for hardware implementation. Furthermore, the stochastic
decoding algorithm can be applied to the requirement of high throughput standard, such

as IEEE 802.16m.

31



Stochastic Stream

D [ ] Counter
y ’_' >
|
BT L SMP Hard |  Decoded
Critical Path ) LuT; | Decision Data

Metric 7
Ai(T) Cis1 (T+1 ) : v
> M

—  LUT: 3

U3 D
X
Ci+1(T) ’_> 3
Teritical = 0.55ns @ 90nm

Figure 3.8: 1-stage trellis-based stochastic decoder architecture

Y VY

32



Chapter 4

Double-binary CTC Decoder for
WiMAX 802.16e Application

4.1 Introduction of WiMAX 802.16e Standard

In WiMAX 802.16e, channel coding considers convolutional turbo codes (CTC) as an
optional code. It uses double—blnary turborcodes to lmprove error correcting performance
and decoding throughput. Besides deuble b‘mary turbp code, 802.16e provides 17 modes
to support different block sizes. In order.to support various block sizes, the interleaver is
designed as a function with five pzﬁmram“etme“rs‘. =

Because the different parameters for different modes are challenges of hardware imple-
mentation, how to minimize a configurable parameter controller architecture is the main
concern in this chapter. Moreover, since the block length ranges from 24 to 2400, the
memory requirement is also a great issue.

Fig. 4.1 illustrates the turbo encoder block diagram [1]. It consists of two circular
recursive encoders, and the code rate of CTC encoder is 1/3. Each encoder generates two

additional parity bits using two information bits. The polynomials defining the connec-

tions and symbol notations are described as follows:
e For the feedback branch: 1+ D + D3
e For the Y parity bit: 1+ D? + D3
e For the W parity bit: 1+ D?

33



o]
o]
Yy

) G YW,
CTC 3 Constituent ; >
Interleaver v ' encoder - >
! : C, Y,W,
! 1 -
+ : -
Lo, —===! Systematic part
L |
i :
|
A D W N W N '
o1 S o S o S
Y /'Y /'Y :
B : |
]
! |
[}
! Y |
] » (D :
] N |
: >N '
| N2 Y
] . W
' Constituent encoder Parity part —

Figure 4.1: CTC encoder for WiMAX standard

The trellis diagram generated By the éircular encoéder is shown in Fig. 4.2. Each state
receives four branch metrics (information syinbel dj= 00,01,10,11) and also sends four
messages to other states. As a result, radigd=ACS nnit is required to decode the trellis
diagram.

The state of the encoder is denoted S (0 < S < 7) with S the value read binary (left
to right) out of the constituent encoder memory (referring to Fig. 4.1). The circulation
states S, in (2.36) is determined by the following operations:

Step 1: Initialize the encoder with state 0. Encode the sequence in the natural order for
the determination of S.. Assume the final state of the encoder is Sy, _,.
Step 2: According to the length N of the sequence, use Table 4.1 to find S..

In 802.16e, five parameters, including the block length N, F,, P;, P, and P; are
specified in Table A.1 and Table A.2, and the parameters when supporting H-ARQ are
specified in Table A.3. The interleaver address in CTC is shown as Table 4.2, where j
is the index of memory address for MAP decoder 2 (for decoding interleaved data) and
P(j) is the index of memory address from MAP decoder 1 (for decoding deinterleaved

data). The most important operation in this table is the modulo operation. It requires a

34



forward metric & (S,(’:.) ) backward metric 3 ( S’(n’“) )

Figure 4.2: Trellis  diagram of dbuble—binary CcTC
r J ‘ 1 “ k. ; 1

1

divider which occupies large area "a“nd incréases-the delay of critical path.

4.2 Simulation Analysié and Parameter Decision

Based on the double binary CTC decoding algorithm in section 2.3, the simulation result
can be discussed in this section. In order to determine appropriate design parameters such
as the bit widths of the path metric, branch metric, and the input symbol, the performance
evaluation through simulations are necessary. In turbo decoding process, the iteration
number and the sliding window size will directly influence not only the performance of
turbo decoding but also the memory requirement of the design. The bit error rate (BER)
curves of the floating point decoders under QPSK modulation and AWGN channel with
block length of 2400 are presented in Fig. 4.3. In Fig. 4.3, we can realize that at the same
iteration number 5, there is a 0.6dB loss between the sliding window size of 5 and 12 when

the BER is 107°. However, the performance curves between the sliding window size 12

35



Table 4.1: Circulation state lookup table (S,)

Ninod- s

01112134567
1 0164 2|7|1]3]|5
2 013]714]|5|6]2]|1
3 01513162 |7[1|4
4 0141 |5]6|2|7|3
) 012|5|7]1|3]4]|6
6 01716113452

Table 4.2: Interleaver Function
forj=1to N —1
Case(j mod 4)

Case0 : P(j) = (Py x j+ 1) mod N

Casel : P(j) = (Py x j+ 1+ N/2+ P1) mod N
Case2 : P(j) &Py x j +4ey o) mod N
Case3 : P() =/ X5 S 1LD/2 + Py) mod N

1
J

and 20 are almost the same. Alsofv?e co._rriBMhé different iteration number at the same
sliding window size 12, there is a O.GHB loss bgtweéfl the iteration number 5 and 3 when
the BER is 1072,

Although Max-Log MAP decoding algorithm introduced in section 2.1.3 can reduce
the decoding complexity, it invokes the performance loss due to the approximation of
max function. The approximation usually overestimates the value of messages. In order to
compensate the performance loss, we introduce a scaling factor to scale down the extrinsic

message. Therefore, the intrinsic information L (d;) can be formulated as follow:
Ly () = B i (d). (4.1)

where (3 is the scaling factor. From Fig. 4.4 we can figure out that if the normalization
factor is 0.75 in Max-Log MAP algorithm with block length of 2400, the performance has
only less than 0.1dB loss and has more than 0.3dB performance gain from Max-Log MAP
algorithm which will be very close to Log-MAP algorithm and this step would not cost a

36



BPSK; AWGN; Window Size and Iteration Analysis
10 T T T T

-8-Window size = 12, Iteration = 5]
-©-Window size = 12, Iteration = 3|
10 B ; —»-Window size = 20, Iteration = 5|
: -A-Window size = 5, Iteration =5 ||

0 02 04 06 08 1 12 14 16 18 2
Eb/No(dB)

Figure 4.3: Comparison of iteration number and window size

=
HAEO

lot of hardware area.

The fixed point representatiofi “of the,ri_ﬁfélrnal Variéible in the MAP decoder is deter-
mined from the received symbol (i’ilannf‘iz"éti‘oh:.wFigﬂ.lﬁl‘4.5 shows the simulation result with
the different input symbol quantizationh‘-under QPSK modulation and AWGN channel,
the block length of turbo decoder is 2400, the sliding window size is 12, and the iteration
number is 5. Note that (a.b) shown in the figure denotes the quantization scheme where a
is the number of bits used in for the integer part a, and b is the number of bits used for the
fractional part. Simulation result shows that performance of input symbol [4.2], intrinsic
information [5.2], bit width of metrics 10 is the recommended for the double-binary CTC
decoder which is close to the floating point Max-log MAP algorithm and we summarize

the fixed representation in Table 4.3.

Table 4.3: Summary of fixed representation in turbo decoding

Quantities || Input symbols | Intrinsic information | Branch metrics | Path metrics

Width 6 7 10 10

37



BPSK; AWGN; Scaling Factor Analysis

10 T T T T T T T
©-SF=05 |
<} SF=0.625]]
*SF=0.75 |

10 % 4A-SF=0.875|,

: HSF=1.0 |
i - Log-MAP |l
107
L 10_35*

10_4? f

10 D

10_6 i i i i i

0 02 04 06 08 1 1
Eb/No(dB)

Figure 4.4 'Séaling facf:o'“r-,ncomparison

HALNN

Efa

4.3 Proposed AI‘Chfl-{}eCt"lfl;I"‘"é. ;)f ‘WiMAX CTC Decoder

The block diagram of proposed aft:h"ite-cture is illﬁétrated in Fig. 4.6. There are four
memory blocks for message storage, Whére s‘é.onre input information and extrinsic infor-
mation generated by the SISO MAP decoder. The Finite-State-Machine (FSM) controls
the iterative decoding procedure and decides which state is proceeding. Furthermore,
two interleaver units are used to generate the read address (from MEM_EXT to MAP
decoder) and the write address (from MAP decoder to MEM_EXT). By means of MEM

ADDR control unit, the memory addresses are generated to store or access data.

4.3.1 MAP Decoder

Fig. 4.7 shows the architecture of MAP decoder, which consists of branch metric unit
(BMU), add-compare-select (ACS) unit, log-likelihood-ratio (LLR) unit, and buffers. The
BMUs compute branch metrics for ACS-a, ACS-3, and ACS-f3,; and each ACS unit per-

38



BPSK; AWGN; Fixed Point Analysis

10 : 1 : ‘ : : : .
: -©-Input=3.3 , Extrinsic=4.3 , Metrics=10 |
A B~ Input=3.3 , Extrinsic=4.3 , Metrics=11]
= Input=4.2 , Extrinsic=5.2 , Metrics=10
107 - Input=4.3 , Extrinsic=5.3 , Metrics=11 |
F -B-Input=4.1, Extrinsic=5.1 , Metrics=10 |
i A= Max-Log MAP Floating Point 1
107
L 10_35*
10_4? f
i D
107
10_6 i i

0 0.2 0.4

1
Eb/No(dB)

Figure 4.5:':‘Fix¢d poiﬂf‘ comparison
- HAISRS 6
1= A .

forms Add-Compare-Select operation. AC_S@ carries dut the forward recursion and saves

the results in the a-memory. ACS-3 ns‘t‘ar't's backward recursion from the initial conditions
determined by the ACS-3; previously. At theu.sam'é time, the LLR calculator determines
L;(dy) and L!(d;). Buffer units reorder the input sequence within one sliding window size,
and the « buffer is a Last-In/First-Out (LIFO) buffer used to reorder each state of «
value for LLR caculation.

To consider the sliding window approach in Fig. 2.2, the backward metrics § evaluation
can be started when the required window of data have been stored. However, if we reverse
the order of input sequence within a window size, the input buffer of the (; calculation
can be saved [25]. Fig. 4.8 is the timing flow of MAP decoder. In order to eliminate the
IBUF for 34-ACS, the input order of MAP decoding is from the end of the sliding window
to the beginning of the window. After getting the branch metric, o and (3, the LLR
calculation can be finished without write-after-read (WAR) data hazard. As a result, the

latency of MAP decoder is three times sliding window size.

39



IN_VALID

— FSM
A
IN_FULL C_STATE MAP_IN MAP_OUT
EN_AB
INTERLEAVER__1
ADDR_AB MEM_AB |
TEN_INTER1
ADDR_INTER1
> EN_YW1
ADDR_YW1 MEM YW1 [
INTERLEAVER 2 MEM
MAP
ADDR EN_YW2
TEN_INTER2 DECODER

ADDR_YW?2 MEM_YW2  —

ADDR_INTER2 Control

EN_EXT

> —»|

ADDR_EXT | MEM_EXT

Figure 4.6: CTC decoder block diagram

4.3.2 Pseudo Two-port Register File

In order to increase the decoding speéd and reducethe size of memory, pseudo two-port
register file is used to read and write memofy inone cyele. In Fig. 4.9(a), extrinsic memory
operates at double clock rate. Write-address (from interleaver 2) and read-address (from
interleaver 1) are generated at the original clock“rate.‘ A multiplexer selects correct address
according to wheather the operation is Tead or write. Fig. 4.9(b) illustrates the timing
diagram of read & write operation. As a result, we can eliminate one 2400 x 21 = 50400
bits (2400 is block length and 21 is total bits of extrinsic data) extrinsic memory such
that 26.9% memory usage (original: 50400+ 50400+ 86400 = 187200 bits) is saved. In the
same way, the buffers in MAP decoder in Fig. 4.7 are also pseudo two-port register files
to read & write in one cycle as shown in Fig. 4.9(c). The different between Fig. 4.9(b)
and Fig. 4.9(c) is that Fig. 4.9(c) read & write at the same address in one cycle. By using
this method, the buffers in MAP decoder can be replaced from two-port register file to

single-port register file to reduce the hardware area and power consumption.

40



 outer [1] LLR
=<
3N L,
_: buffer :L BMU ¢ a buffer
3
Figure 4.7: MAP Decoder Block Diagram
— i" - iteration —
N TN\
\ B D
W, Bl | [a]| Bl T
X et
-
W2 ,Bd a :8 g
. e 0 | »
\\ £/ a-ACS
Wi By |1al| Bl e
. 4 B-ACS
WO \ﬁ a . . \ﬁ ------- -
a | [ LLR

Figure 4.8: MAP‘Decadi‘hé Timing Flow
4.3.3 Interleaver Architecture

For the WiMAX interleaver in Table 4.2, the modulo operation is a critical problem for
clock speed. Since we know all parameters used in Table 4.2 before decoding, some ad-
ditions and divisions (simplified to shifter because the divisor is 2) can be derived as
constant value before decoding. To minimize the critical path of interleaver operation,
two adders and two subtractors are used instead of the divider. One adder is used to
accumulate Py, which adds one Py each cycle because in our design the interleavers only
need to generate one read (write) address every cycle. Because the value of the accumu-
lator ranges from 0 to 2N — 1 , the modulo operation can be simplified to one subtraction

and one multiplexer.

41



I N 2X clockrate_['LILIT1LIL I

}D—» —>m Read-Data
™

Write-Address

Read-Address Single-port

Register File

Write-Data

—s +—+% 6 +——

(a) Memory read & write architecture

e L L L
axoucrme [ L LU L LT LT
Address  { AT XAZ>§<A3>§<A4XA5XA6XA7XA8XA9>
wen [T WLERNET L L

| ]
Read Wirite

(b) Read & write tiniing diagram for ‘extrinsic memory

o L L LI
2xcwkrate | [ L[ LML LT
Address X A§1 >< 2 X om X A >
wen L L L

] ]
Read Write

(c) Read & write timing diagram for MAP decoder

Figure 4.9: Pseudo Two-port Register File

42



Jmod 4

1 - g Address
(IENIZHP Joan ] i N 1O _ MUx
(I+P)moan " 5
(NN | 4T

P, N

Figure 4.10: Interleaver Architecture

4.4 Chip Implementation Result

4.4.1 Chip Specification

Based on the architectures described above, we proposed an area-efficient double-binary
turbo decoder with almost regular permutation (ARP) applied on WiMAX 802.16e. The
proposed CTC decoder supports 17 dlfferent block lengths (24 to 2400) including hybrid
automatic repeat-request (HARQ) modes. By rheans of scaling factor 0.75, we use smaller
sliding window size (reducing the storage &ze_of buffer and « buffer and the number of
ACS unit) and smaller iterations (mcreasmg the decodlng throughput).

The primary chip specification of the double-binary turbo decoder is given in Table
4.4, which is implemented by the cell-based design flow, and fabricated in 90-nm 1P9M
standard CMOS process. In CTC decoding process, two clock domains are used in memory
and datapath respectively as we described in section 4.3.2. The higher clock rate is
generated by a delay lock loop (DLL) circuit, which is applied to generate internal clock
whose clock frequency is four times the external frequency. The other is generated clock
which is the division of the higher clock rate. The total gate count is 303K (including
the additional chip input buffer for testing) and the combinational logic part is only 30K
while the memory occpies more than 80% area in our design. Fig. 4.11 is the chip layout
of CTC decoder. By the proposed Max-Log MAP decoder and the simplified interleaver,
the core size is 1.12mm? (1.4mm by 0.8mm) in 90-nm process. The operating frequency

can achieve up to 166MHz and the maximum throughput is 30Mb/s which meets the

43



requirement of WiMAX standard. Furthermore, the average chip power consumption
operated at 166MHz is 32.87mW with 0.9V supply voltage, which is estimated by post-
layout simulation with the block length of 2400.

Table 4.4: WiMAX CTC decoder chip summary

Technology UMC 90-nm 1P9M CMOS
Block length 24 to 2400
Support HARQ Yes
Iteration 4.5
Sliding window 12
Input bit width 6bits
MAP radix-4 MAP
Core area 1.12 mm?
Gate count 303K
Max. throughput 30Mb/s
Supply voltage Ly, 10V
Clock rate | ‘; 166MHZ (@0.9V)
Power consumption 32.87“m:W (@ O::QV and 166MHz) !
Utilization 2| & e I 0L

! Post-layout simulatiof with Block length of 2400

4.4.2 Comparison with Other Relative Work

The comparison of the WiMAX 802.16e CTC decoders is shown in Table 4.5, where we
list both synthesis and APR simulation result to compare the area with [26] and [27].
The synthesis result does not include the testing buffer unit in Fig. 4.11, so the core area
is 0.619mm? operating at clock rate 166MHz with the maximum throughput 30Mb/s.
Compared with other approaches, the proposed CTC decoder supports full-mode (include
HARQ) block length and interleaver size for WiMAX 802.16e standard and is an area-
efficient design. Besides, the power cnosumption estimated by post-layout simulation is
32.8TmW and can be converted to energy efficiency. The energy efficiency is defined as

the average energy consumed per bit within each decoding iteration (pJ/b/iter). For this

44



‘ i }Testing Buffer

Figure 4.11: Chip layout photo of CTC decoder

decoder with 4.5 iterations, the energyefficiency, will be calculated as

seamvclPfA e
_— : |
15 oMb P Ib/iter

Consequently, due to the area—eﬂic’aiént dgs’fgn with pseudo two-port register file usage and
suitable parameter decision, the pIOWer consumptidn and the energy efficiency become
smallest. The proposed design provides a fully compliant and area-efficient CTC decoder

for WiMAX 802.16e application.

45



Table 4.5: Comparison among WiMAX CTC decoders

Proposed Design

VLSI-DAT08 [26]

ASPDAC’08 [27]

Technology 90nm 0.13pm 0.13pm
Block length 24 to 2400 24 to 240 2400
Support HARQ Yes No N/A
Iteration 4.5 4 8
Sliding window 12 24 32
Input bit width 6bits Thits 6bits
MAP radix-4 MAP radix-4 MAP radix-4 MAP
Operating frequency 166MHz 100MHz 200MHz
Core area (mm?) 06197 194 5.12 2.24
Gate count 219K ! 303K N/A N/A
(Combinational part) 2 | (307KY| (B0K) | = = N/A (65.7K)
Power consumption (mW) 3N 183.7 3 274.138
Energy efficiency 2434 397.9 1412514
(pJ/bit/iter) Q@ 0.9V
Max. throughput 30Mb/s 115.4Mb/s 24.26Mb /s
Status APR Synthesis APR

! Synthesis result without testing buffer

2 Exclude memory unit

3 Estimated by Prime Power with block length of 240

1 Estimated by Power Compiler with block length of 2400

46



Chapter 5

Conclusion

This thesis proposed a fully compliant and area-efficient CTC decoder for the WiMAX
802.16e system. The modified Max-Log MAP algorithm is used to reduce hardware com-
plexity and keeps almost the same performance as Log-MAP algorithm. In the proposed
architecture, pseudo two-port register file is adopted to reduce storage memory and de-
coding latency. In MAP decoder, data "r,eorde.riwr}.g (reversing the input data order within
a sliding window) is also used to dgc‘r‘éz;se‘ th:e lafuérniéy. and eliminate the [, buffer require-
ment. The modified interleaver usés "simpl‘ihiz(i'ﬂ z_iﬂ"diti"‘o.q and subtraction instead of divider
to reduce the critical path and the “-hardwra}“éﬂnprlexiéy. Implemented in 90-nm technol-
ogy, the CTC decoder chip with 23"03K'”éafé. ;c-fio'unté‘can achieve throughput 30Mb/s to
meet the requirement of WiMAX staﬁdard. B‘esidés, the power consumption is 32.87mW
(@ 0.9V and 166MHz ) estimated by post-layout simulation and block length of 2400.
An innovative trellis-based decoding algorithm using iterative stochastic computation
is also proposed in this thesis. The state memory and noise dependent scaling factor are
also applied on stochastic update rule. By using the further improvement, the performance
of stochastic decoder with fixed point bit-width 10 can be better than hard-decision Viterbi
algorithm and approach soft-decision Viterbi algorithm with floating point. Although
the proposed improvement validates the stochastic decoding algorithm can be applied to
trellis-based decoder, there still has some questions to be resolved. For the hardware issue,
many possible simplifications and update rules can be applied to the algorithm. Besides,
the number of decoding cycles and the proformance of the stochastic decoder can still be

improved by increasing state number in trellis diagram and applying to high-radix trellis

47



decoding algorithm. These issues raise interesting research areas, with significant research

potential to improve the hardware complexity of trellis-based stochastic decoders.

48



Appendix A

WiMAX 802.16e Parameter

Table A.1: CTC channel coding per modulation

Modulation | Block size !| Encoded block size '| Coderate | N | Py | P, | P, | Ps
QPSK 6 12 1/2 24 | 5 0 0 0
QPSK 12 24 1/2 48 |13 | 24 | 0 | 24
QPSK 18 360 1/2 72 (11| 6 | 0] 6
QPSK 24 48 21/2 96 | 7 | 48 | 24| T2
QPSK 30 %0 /2 |120]13] 60 | 0 | 60
QPSK 36 L 78 12 |44 17| T4 | 72| 2
QPSK 48 96 | | 1/2 192 | 11 | 96 | 48 | 144
QPSK 54 108 1/2 216 | 13 | 108 | 0 | 108
QPSK 60 120 1/2 240 | 13 | 120 | 60 | 180
QPSK 9 12 3/4 36 | 11| 18 | 0 | 18
QPSK 18 24 3/4 72 |11 ] 6 0 6
QPSK 27 36 3/4 108 | 11 | 54 | 56 | 2
QPSK 36 48 3/4 144 1 17| 74 | 72| 2
QPSK 45 60 3/4 180 | 111 90 | 0 | 90
QPSK 54 72 3/4 216 | 13| 108 | O | 108

! bytes

49



Table A.2: CTC channel coding per modulation (cont.)

Modulation | Block size !| Encoded block size '| Coderate | N | Py | P, | Py | Py

16-QAM 12 24 1/2 48 |13 24| 0| 24
16-QAM 24 48 1/2 96 | 7 | 48 | 24| 72
16-QAM 36 72 1/2 144 (17| 74 | 72| 2
16-QAM 48 96 1/2 192 [ 11 | 96 | 48 | 144
16-QAM 60 120 1/2 | 240 | 13| 120 | 60 | 180
16-QAM 18 24 3/4 72 11| 6 | 0] 6
16-QAM 36 48 3/4 | 144 | 17| T4 | T2 | 2
16-QAM 54 72 f. 3/4 | 216|13|108| 0 | 108
64-QAM 18 36 P B2 |21 6 |0 6
64-QAM 36 7 S B 1| a2 2
64-QAM 54 e LS 189¢ 1/2 | 216|13|108| 0 | 108
64-QAM 24 o 2/3 |96 | 7|48 |24 72
64-QAM 48 72 2/3 192 [ 11 | 96 | 48 | 144
64-QAM 27 36 3/4 | 108 | 11| 54 | 56| 2
64-QAM 54 72 3/4 | 216| 13108 | 0 | 108
64-QAM 30 36 5/6 120 | 13| 60 | 0 | 60
64-QAM 60 72 5/6 | 240 | 13| 108 | 60 | 180
! bytes

50



Table A.3: CTC channel coding per modulation when supporting H-ARQ

Block size!| N |Py| P | P» | P
6 24 |51 01010
12 48 | 13| 24 | 0 | 24
18 72 |11 6 | 0| 6
24 06 | 7|48 | 24 | 72
36 Tddg il 74 | T2 | 2
48 192 g, 962,| 48 | 144
60 240 | 154120 60 | 180
120 480453 1 62k 12 | 2
240 960 | 43 | 68 | 300 | 824
360 1440 17437 720 | 360 | 540
480 1920 | 31| 8 | 24 | 16
600 2400 | 53 | 66 | 24 | 2

! bytes

51



Bibliography

1]

2]

IEEE Standard for Local and Metropolitan Area Networks - Part 16: Air Interface
for Fized Broadband Wireless Access Systems, Std. 802.16e, 2005.

L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes
for minimizing symbol,” IEEE Trans. Inform. Theory, no. IT-20, pp. 284-287, Mar.
1974.

J. A. Erfanian, S. Pasupathy, and G. Gulak, “Reduced complexity symbol detectors
with parallel structures for isi channels K [EEE Trans. Commun., vol. 42, no. 2, pp.

1261-1271, Feb./Mar./Apr. 1994

Skl X
P. Robertson, E. Villebrun, :and P. Honher “A ¢omparlson of optimal and subop-
timal map decoding algorlthms operat—rﬁgfrn the log domain,” in IFEFE Int. Conf.

Commaunications, June 1995, pp., 1009 1013

B. Vucetic and J. Yuan, Turbo codes, principles and applications. Boston: Kluwer

Academic, 2000.

S. A. Barbulescu, “Sliding window and interleaver design,” FElectron. Lett., vol. 37,

no. 21, pp. 1299-1300, Oct. 2001.

——, “Iterative decoding of turbo codes and other concatenated codes,” Ph.D. dis-

sertation, Univ. South Australia, 1996.

A. J. Viterbi, “A intuitive justification and a simplified implementation of the map
decoder for convolutional codes,” IEEFE J. Select. Areas Commun., vol. 16, no. 2, pp.

260264, Feb. 1998.

52



[9]

[10]

[11]

[12]

[13]

[14]

[18]

[19]

[20]

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting
coding and decoding: turbo-codes,” in IEEE Int. Conf. Communications (ICC), May
1993, pp. 1064-1070.

C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:

turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10, pp. 1261-1271, Oct. 1996.

S. Benedetto and G. Montorsi, “Design of paralle concatenated convolutional cod-

des,” IEEE Trans. Commun., vol. 44, no. 5, pp. 591-600, May 1996.

L. C. Perez, J. Seghers, and D. J. Costello, “A distance spectrum interpretation of
turbo codes,” IEEFE Trans. Inform. Theory, vol. 42, no. 6, pp. 1698-1709, Nov. 1996.

S. Benedetto and G. Montorsi, “Unveiling turbo-codes: some results on parallel
concatenated coding schemes,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 409—
428, Mar. 1996.

J. Hagenauer, E. Offer, and L. Papke “Iteratlve decoding of binary block and con-

volutional codes,” IFEE Tmns fnform Theory, vol. 42, no. 2, pp. 429445, Mar.
' BTN

1996. = '.'. b R

S. Benedetto, G. Montorsi, andD DIW Concatenated convloutional codes with

interleavers,” IFEE Commun. Mag vol. 41 no 8, pp. 102-109, Aug. 2003.

C. Berrou and M. Jezequel, “Non binary convolutional codes for turbo coding,” IEEFE

Electronic Letters, vol. 35, no. 1, pp. 39-40, Jan. 1999.

M. R. Soleymani, Y. Gao, and U. Vilaipornsawai, Turbo coding for satellite and

wireless communications. Boston: Kluwer Academic, 2002.

Digital Video Broadcasting (DVB); Interaction channel for satellite distribution sys-
tems, ETSI Std. EN 301 790, Rev. 1.3.1, 2003.

C. Weib, C. Bettstetter, S. Riedel, and D. Costello, “Turbo decoding with tail-biting
trellises,” in Proc. URSI Int. Symposium on Signals, Systems, and FElectronics, pp.
343-348, Oct. 1998.

B. Gaines, Advances in Information Systems Science. New York: Plenum, 1969.

53



[21]

22] —,

23]

[24]

S. S. Tehrani, S. Mannor, and W. J. Gross, “Survey of stochastic computation on
factor graphs,” Proceedings of the 37th IEEE International Symposium on Multiple-
Valued Logic (ISMVL 2007), p. 54, May. 2007.

“An area-efficient fpga-based architecture for fully-parallel stochastic Idpc de-
coding,” IEEE Workshop on Signal Processing Systems (SiPS 2007), pp. 255-260,
Oct. 2007.

C. Winstead, V. Gaudet, A. Rapley, and C. Schlegel, “Stochastic iterative decoders,”
IEEFE Trans. Inform. Theory, pp. 11161120, Sept. 2005.

S. S. Tehrani, S. Mannor, and W. J. Gross, “Stochastic decoding of 1dpc dodes,”
IEEE FElectronic Letters, vol. 10, no. 10, pp. 716-718.

G. Masera, M. Mazza, G. Piccinini, F. Viglione, and M. Zamboni, “Architectural
strategies for low-power vlsi turbo decoders,” IEEFE Trans. VLSI Syst., vol. 10, no. 3,
pp- 279-285, June. 2002.

C. H. Lin, C. Y. Chen, and A Y Wun “ngh—throughput 12-mode ctc decoder for
wimax standard,” Apr. 2008 pp 216 ?19 i

=1
"1
.
; 1
} ]

J. Kim and I. Park, “Duo- blnary clrcular turbo decoder based on border metric
encoding for wimax,” in Proc. of Asza and South Pacific Design Automation Conf.

(ASPDAC’08), pp. 109-110, 2008.

o4



	01_封面
	02_書名頁
	Thesis_Cover
	tt

