Flr B F Ak B LB N H A2 R o

T

Improving Energy Efficiency of Functional Units by
Exploiting its Data-Dependent Latency

GRS

HE S S RV

P X K4 L+ - &8 L -

Pl B E e i Bc L EE E A2 q Bonk
Improving Energy Efficiency of Functional Units by Exploiting its

Data-Dependent Latency

e B Student: Yen-Cheng Lin
hERR I FIAA EL Advisor: Dr. Chih-Wei Liu

A Thesis
Submitted to Department-of-Electronics Engineering & Institute of Electronics
College of Electrical-and-Computer Engineering
National €hiae Tung University
In partial Fulfillment of the Requirements for the Degree of
Master of Science
in
Electronics Engineering
November 2008

Hsinchu, Taiwan, Republic of China

I A = I - S

SEEAE Y dagci T Sl AR B

&

EF VSRR G AR M SR R R A ARk
A T KA R SRR TRREY VB R R - MR KT R
® 0 FEGRAE B R AR R B REREREE 'L (timing constramt)f;fsgis%}j; vk e
P TRAR AR T LA F PRI AR T AT R R F AL %?f
FIZIH 4 o A B > APk - Bl H = (functional units)ic € »c 3 a0
& omap B R A&) Fi4p ik f & (data-dependent latency) s 4k sci = "é":&i

Kl

PEEOPE R U] o et T o ME N i R4S 2 G R MER H A iF
PR o Apfen SNER AR € A - L T E F AR E B AR EITIC R ok * '% e
FHFEE A LT R €A Seend 2 TR AT (sensitize) 0+ R4 e L
%gg@@ﬁ%@ﬁwﬁﬁﬁ%m’%u?*£&+wﬁﬁ@$oﬂw’%Wf:—ﬁ
id 7] H ~ (detection logic) k # Rlige: € 33 =38 B 455> oot » T ¥ gE
BFH L pPFF KRB 4E “4’“W =2 AR AL S R E I &
SRR 2 T AT SR A S RA P T A S R
TR BB AP mﬁ%‘i“ C AR e A et E kel - B 8-bit ki
By £ g o TP 1 * RE s F R (random pattern) > # 3 ¢ %2 3 B & 3% (color space
transform)fe3 *7% @8 R (FIR) &)i A2 50 & 4 47 @425 8 2 UMC 90nm CMOS cell
library ™ » fri@ Sk 3t ZFApt ¥ g 2t 1 10%~29%e B AL 0 @ AT TS R e
R AR) hd TR Lo i(<1%) -

A
[

AN
—

2,

P
FREEE
A=zizd J;‘bfl‘f%i

Improving Energy Efficiency of Functional
Units by Exploiting its Data-Dependent Latency

Student: Yen-Cheng Lin Advisor: Dr. Chih-Wei Liu

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

ABSTRACT

For the increasing demand of portable devicessand high computing power requirement
for the multimedia and communication applications, the energy reduction now has become a
major issue in the circuit design. In.the synchronous digital circuits, synthesis timing
constraint is based on the desired clock-period for.function correctness, but the circuit energy
increases drastically when the synthesis timing constraint and clock frequency approach peak
value (peak speed). In this thesis, we propose a design method for improving energy
efficiency of functional unit. It exploits data-dependent latency to relax synthesis timing
constraint so that the energy consumption can be reduced effectively and the desired clock
period will not be degraded, but it will cause some computation errors and spend performance
penalty for correcting the errors. Critical paths of the circuits are usually sensitized by very
specific data sequences, and computation time of most data sequences is smaller than clock
period. Hence the performance penalty may be very small. Because of this property we
generate the detection logic to detect the specific data sequences that will cause computation
errors and spend one-cycle latency penalty to correct the errors. Besides, we also propose a
design flow which systematically determines the synthesis timing constraint and fine tunes the
error rates, therefore we can trade the minimum performance penalty for the maximum energy
reduction. In our simulations, we use the proposed technique in an 8-bit multiplier to improve
the energy efficiency with the UMC 90nm CMOS cell library. The benchmarks consist of
random patterns, color space transform and FIR. Compared with conventional synthesis
strategy, the proposed method can reduce 10% ~ 29% of energy consumption and the
performance penalty is negligible (<1%).

L ARERTY S E KL A2 B R R SIS R A
b BRI oo

BHE R R F AT o A G R P A (B SR 0 g

BRI P R R ¥ BRE PR AT LY O Rk v B
TSR ST T A T RS

1&,&1‘1‘1‘1 THEE e g Fﬁ# wAG T FIEE Y S A EFE T
et T ARARE S RGO AE - F bR S Hardware team = f o sl 3 HE £ -
FeilrF 2 40RE 5 TG F”ﬁié”*’ﬁkﬁ%“°

BHIRETEE BHMEIMTE GOl £ iy B E A L 32
g—v\»\:,‘ %’Ag‘gx \Fﬁfé_Lgm\?JﬁE}’g{‘i g"’“ﬁ" ""g""”;&EFﬁ%‘S ’
R IR 0T R A e G o eI

EHRHRERERE 50 BO RS H DA RS ELREE R 2R
FoAP-RBSETFIDOYAfoEM G RAANIEL R HERRE F - P B
B3 - ELFEF I EPEF KRBT BLXH5 MR AT A E S
- o g

ﬁx?’é ’)& 3]L \ﬁx%%f; RA o § WL E T R - R el 2 R
4 - - q
A

ﬁ%&%%é%%%j%iﬁﬁ~%yﬂﬁ4’Rwﬁﬁﬁi%@ﬁW°

g -4
2 L
Sk A 222
E‘-F'u 71’?‘71

2008

s

CONTENTS

L INEFOAUCTION ...ttt 1
IR AV o])= L1 [0 o PSS 1
1.2 Problem Statement and Related WOFKS..........ccccoeiiiiiiiniieiciee e 3
1.3 ThesSiS OrganizZationc.ccoeierieieieisi e 5

2 Low-Power & Energy-Efficient Design Methods...........ccccccevviieiiciiiiciiens 7
2.1 CMOS Power/Energy DiSSIPAtIONc.ccoeiirierieieiiini e e 8

2.1.1 Static POWEF DISSIPALIONciviieiiitiieeiiitiriei ettt 8
2.1.2 Dynamic POWEr DiSSIPAtION........cciriiiiiiiiiierieesie ettt e 11
2.2 SEALIC APPIOACKHES ...ttt 14
2.2.1 SUPPIY VOITAGE ...ttt ettt 15
2.2.2 Switching Activity and CapaCItaAnCeccccereeierieiineiee e 17
2.3 DYNamMiC APPIOACHES ...l iiiaibin ettt 20
2.3. 1 SUPPIY VOITAGE ...l il ke ey ettt ettt ettt et sb et 20
2.3.2 Switching Activity and-CapaCitanCe ...t rue st . cieeseeseere et 21
2.4 Adaptive APPIrOACHES festvinersrain e sbash e ettt ss et sne s 24
2.4.1 SUPPIY VOITAGE ... i e tifes Bttt bbbttt 25
2.4.2 Switching Activity and CapaCilanCe i i e e ettt 25

3 Proposed Energy-Efficient DeSIgN.........cccovveiiiie i 29
3.1 Delay 0f CMOS CIICUITSoveieiieiieiisii et 29
3.2 Variable LatenCy DeSIGNcceiueiiiiiiiiieiie et 34

3.2.1 Template of Variable LatenCy DESIGNccccoreiririeiieieeie et 34
3.2.2 DELECTION LOGIC . et ieeteiteieiiste ettt ettt ettt sb et 37
3.3 DESIGN FIOW ...t 48
3.3.1 CharaCteriZAtIONveiiveieiiiee ettt ettt b et b ettt b e et sb et sb et 50
3.3.2.0verhead EStIMAtiONcccoiriiiiiieiiie et 53
3.3.3 OVErhead REAUCTION..........ciiiiiitiiie ettt 56

4 EXPerimental RESUILS.........cciiie e 61
4.1 Simulation Results of Energy-Efficient Design...........ccocovreieiviniininencneens 61
4.2 Comparison of Energy Reduction TeChNIQUEScccceriviieiiiiiiiinece 63

5 CONCIUSIONS ...ttt 71

R B BINICttt e et e s nnnnnnnnes 73

LIST OF FIGURES

FIGURE 1-1 POWER DENSITY TREND ..ueetuttiitiesitieiteesineesseessreessesssseessseessseessseessneesseessnesssesssnes 2
FIGURE 1-2 ENERGY V.S TIMING CONSTRAINTvtttieiteeitrereresersnersseesseesssesseessessesssessseessesssnsessnes 3
FIGURE 1-3 EXPLOITING PARALLELISM....ectteutieuiestiesteesieeseeaseesneesseesssesssesseessessesssesssesssnsssnsnessnes 4
FIGURE 2-1 CMOS INVERTER MODELuvtetieutiestesteesteesieeseeaesaseesseesssesssesseessessesssesssesssesssssnessnes 9
FIGURE 2-2 MODEL DESCRIBING PARASITIC DIODES PRESENT IN A CMOS INVERTER.............. 10
FIGURE 2-3 MODEL DESCRIBING PARASITIC DIODES PRESENT IN A CMOS INVERTER.............. 12
FIGURE 2-4 SWITCHING POWER IN A CMOS INVERTER.......ceiiueitreerieeseesseesteensnesesssnsssnsseesses 13
FIGURE 2-5 PARALLEL AND PIPELINED DATAPATH....cutiieieesteesteeeeseesseesseesssenseessesssessessseessens 16
FIGURE 2-6 EXAMPLE OF OPERATOR REORDERINGvevvveiteeieeiereersseesseesseesssenseessesssessesssessses 18
FIGURE 2-7 GATE RESTRUCTURINGvvtiuviitrenteeteeseesseesseesseesseesenasssssesssessssesssessesssesssesssssesssens 19
FIGURE 2-8 ARCHITECTURE OF THE DVFS SYSTEMuviiiiieiierieerie e sieestee e este e e senesneeneees 21
FIGURE 2-9 CLOCK-GATED D FLIP-FLOP ...ecuttitteteeriietiesieesteesieeseeeeesneesneesseessseseessesssessnsssesssens 22
FIGURE 2-10 PRE-COMPUTATION LOGHC i il cn e evveervereeesieesieeseeeeeseesseesseesssenseessssssessssssesssns 23
FIGURE 2-11 COMPUTATIONALIKERNEL suus suns s 2 assanioeeseesseessnesenassessesssessssesssensesssenssesssssessens 24
FIGURE 2-12 ARCHITECTURE™OF THE AVS SYSTEM ...l e ivveiteeiireeeaeesreesteestsenseessesseessensseesenns 25
FIGURE 2-13 EXAMPLE OF BIT SWAPPING 4 1t2satteuveiveet taameesseesseesenassnsseessessssesseessesssesssessssssesssens 26
FIGURE 2-14 PATH DELAY DISTRIBUTION & 1ol f it e ittt nestaesieesereeesneesseesseesssenseessesssessessseessns 27
FIGURE 2-15 CONCEPTUAL CIRCUIT OF PROPOSED DESIGNcccvvevrirerieeeineeserenteeieeseessensseesses 28
FIGURE 3-1 PATH DELAY DISTRIBUTION (8-BIT MULTIPLIER)cueiuritrseaeeieseessessessesseeeeseeseens 31
FIGURE 3-2 ENERGY CURVE OF 8-BIT MULTIPLIER ..ccvveitieiteesieesereeeseesneesseesseenseessssssessnssseessnns 32
FIGURE 3-3 PATH DELAY DISTRIBUTION (8-BIT MULTIPLIER)cueivstrseaeeeeseessessessesseeeeseeseens 33
FIGURE 3-4 TEMPLATE OF VARIABLE LATENCY DESIGN ...cvveitveitreerieesseesseesseenseessesssessnssseesses 35
FIGURE 3-5 DETECTION LOGIC ..euttiuteiteesueestrestieieeseesssessessseesseesasasssssesssessssesssensesssesssessssssesssens 36
FIGURE 3-6 TIMING DIAGRAM OF THE VARIABLE LATENCY DESIGNcccvvvirieriieireieseeseeneens 36
FIGURE 3-7 DETECTION LOGIC GENERATIONctteutieriesieesieesieesenesensneessessseesseessesssessssssesssesssees 38
FIGURE 3-8 EXACT PATH SENSITIZATION CRITERION ...ccvveitveieeiereieseesseesseesseenseessesssessesssessses 42
FIGURE 3-9 DELAY-DEPENDENT FALSE PATH....ccttetietiesieesieesieeseeaeesseessessseesssesseessesssessssssesssees 42
FIGURE 3-10 VIABLE PATH SENSITIZATION CRITERIONeitveiveiereeeseeseeeseeesseeseeseesseessensseesenns 43
FIGURE 3-11 AN EXAMPLE OF GIVEN CRITICAL PATH....cceiiieieeiereieaeesseesseesseenseessesssessensseesses 44
FIGURE 3-12 MODIFIED VIABLE PATH SENSITIZATION CRITERION......cccouiiiertrenireieeiesrnnsseeseens 45
FIGURE 3-13 FLOWCHART OF FAULT FUNCTION ...cuuttttestieiteesieeseneeesseessessseesssenseessesssessesssessses 46
FIGURE 3-14 TWO VIOLATING PATHSccuviittertieieestesseesseesseesteesesassssesssessssesssessesssesssessssesssees 47
FIGURE 3-15 DESIGN FLOW OF ENERGY-EFFICIENT FUNCTIONAL UNIT ..oovveriierireireninsrneseeeneens 49

FIGURE 3-16 CHARACTERIZATION RESULTS .. .vvieiitieeecrreeesetteeeeeteesssseessssnsessssssessssnnesssssneneens 52

FIGURE 3-17 CHARACTERIZATION RESULTS (SUB-SET CELL LIBRARY) ..vcuveverierierirseesreeeeneeseens 54

FIGURE 3-18 OVERHEAD ESTIMATION (CLOCK PERIOD IS 1.7NS) ...ueiuvieiieiesiesiesieseeeeeeenieseens 55
FIGURE 3-19 OVERHEAD ESTIMATION (CLOCK PERIOD IS 2NS)vviveitreieereeieseessessesseseeseeseeseens 56
FIGURE 3-20 RE-SYNTHESIS FLOWecuvtiutiittestreieestesseesseesseesseesenassessesssessssesssensesssesssessssssessses 58
FIGURE 3-21 BEFORE OVERHEAD REDUCTION (RE-SYNTHESIS)....eiveitrereeeeiereessessesseseeseeneeseens 59
FIGURE 3-22 AFTER OVERHEAD REDUCTION (RE-SYNTHESIS) ...c.veiueitreeereeieseessessesseseeseeseeseens 60
FIGURE 4-1 BASELINE DSP MODELciiviiiistiesieesiesiesieesieesieeseeeseeseessessseesssenseessesssessssssessses 64
FIGURE 4-2 DSP MODEL WITH PARALLEL MULTIPLIER DESIGNccvvivrieieieeenerenieeieeiessensseeseens 65
FIGURE 4-3 DSP MODEL WITH PIPELINE MULTIPLIER DESIGN ...c.vvevrireeieeeseeeseressneeeeseesseesseesses 65
FIGURE 4-4 DSP MODEL WITH PROPOSED MULTIPLIER DESIGN.......ceivriieieeesereneeeeeeeesseesseesees 66
FIGURE 4-5 AREA IS NORMALIZED BY THE RESULT OF SINGLE CYCLE DESIGNcccouvvviviennnans 67
FIGURE 4-6 ASSEMBLY CODE OF CHROMAc.uteiietiietiesieesieesieesteeeesseessessseesssensesssesssessssssessses 68
FIGURE 4-7 NORMALIZED BY THE RESULT OF SINGLE CYCLE DESIGNccivvievieeririeniieesineenineenes 69

FIGURE 4-8 ENERGY-DELAY VALUE NORMALIZED BY SINGLE CYCLE DESIGNcovvveeerieveennn. 70

LIST OF TABLES

TABLE 3-1 CHARACTERIZE MULTIPLIER FOR DIFFERENT CLOCK PERIODSccccvveiiveeiviesneennnns 53
TABLE 4-1 ESTIMATED AREAuttiiitteittteiieesittesteessteessaeestbasssaeessbeeasaeestbesanteessbesanseessbessnneesans 62
TABLE 4-2 ESTIMATED ENERGY PER MULTIPLICATION ...uvtiiivieiteesiriesreesireesnesssnessssnessnesssnessens 63
TABLE 4-3 ESTIMATED TOTAL AREA.......iiiitiiiiieiieesitiesteessttessseessseessaessssessssessssessssessssessnsesssnes 66

TABLE 4-4 SIMULATION RESULTS ..ciiiiittttiiee e e e s itbtii e et e e s sesbbtbess s e s s s esabbbasssesssssasbbaassesssssassbanaeesas 69

1 INTRODUCTION

1.1 Motivation

As number of transistor is doubled every‘technology generation, chips grow in
functionality and switching frequencies [1]. The millions of parasitical capacitances
charging and discharging at an ever-increasing rate have led to a soaring amount of
power dissipation. For desktop computers, the high power densities reduce chip
reliability and life expectancy [2], shown in Figure 1-1. To keep the system stable,

the cooling system is necessary and thus induces additional cost.

Rocket Nozzle T

N

1000 Sun’s Surface
Nuclear Reactor —
o 100
=
]
2 S
g Hot Plate O Pentium I11
\ entium II
10
Pentium Pro
) Pentium
1386 156
T P TR i NN IR NN NN R R

T T T T T T U T U

IL5p 1p 07p 05p 035p 025p 0.18p 0.13pu 0lp 007

Technology Generation

Figure 1-1 Power density trend [2]

With today’s growing popularity, of portable devices such as cell phones, PDAs,
and laptops, low energy consumption is-also one-of important issues in VLSI
designs. The duration of operation: time=is=limited by the battery capacity in
microamp-hour or watt-hour. Devices that operate with high energy consumption
can only be used for short duration of time. The duration of operating time can be
lengthened by using a battery with higher capacity. Unfortunately, projected
improvements in the capacity of batteries (5-10% CAGR [3]) are much slower than
what is needed to support the increasing complexity, functionality and performance
of the systems they power [4]. The need to improve battery life time has driven the
research and development of low power and energy-efficient design techniques for
electronic circuits and systems. The low power and energy-efficient circuit design
methods are discussed in Chapter 2.

Generally, the DSP processor is the key component of portable system, and it

always dominates the performance of the system and consumes large amount of

energy from battery. The functional units in the DSP processor are used to
implement multimedia processing, and they always dominate the clock frequency
and determine the performance of the processing. However, the demand for
high-performance portable systems incorporating multimedia capabilities has
elevated the design for low-energy to the forefront of design requirement in order to

maintain reliability and provide longer hours of operation.

1.2 Problem Statement and Related Works

High performance and low energy always represent contradictory design
requirements. In our experiments, we found the relationship between energy and

timing constraint, and it is shown in kigure 1-2;

Energy per
operation

v

Timing constraint

Figure 1-2 Energy v.s timing constraint

Tightening the timing constraint of the circuit will induce the increasing of the
circuit energy consumption. Especially when the timing constraint approaches the
peak value (the minimum value), the circuit energy increases drastically. The reason
for the soared energy is to use the cells with high driving ability and low threshold
voltage, improve the circuit structure and use high supply voltage [5]. Hence,

3

relaxing timing constraint can reduce the circuit energy effectively, but it makes
clock frequency degradation.

Exploiting parallelism is one of the effective methods to compensate for the loss
in clock frequency [6]. Figure 1-3 (a) shows the original circuit with sample rate 1/T,
and the timing constraint of the multiplier is T. Figure 1-3 (b) shows the multiplier
with the timing constraint of the multiplier is relaxed to 2T, and therefore the energy
consumption is reduced. Although the energy is reduced, the clock frequency is
degraded to 2T for functional correctness and the sample rate is 1/2T. Exploiting
parallelism can compensate the clock frequency degradation and gain the energy

reduction, shown in Figure 1-3 (c) and (d).

% (c) Compensated }-/r

H M by parallel
T - T :
4 7
ook Yo 2 ?3?
% 2

7
(a) original 2

%
(b) Energy reduction 4

functional unit }_/I_ }_/I_ }_/I_

(d) Compensated
by pipeline

Figure 1-3 Exploiting parallelism

Parallel design (Figure 1-3 (c)) uses two low energy multipliers (Figure 1-3 (b))
to interleave computation, hence both the sample rate and clock frequency are 1/T.

The average energy per operation is almost the same as Figure 1-3 (b), but it needs

mux and de-mux to control the computation. Pipeline design (Figure 1-3 (d)) inserts
registers into the low energy multiplier (Figure 1-3 (b)) to compensate the clock
frequency and sample rate. The overhead is pipeline registers. The main drawback
of these two designs is data latency. Therefore, they require high data parallelism to
hide latency. If the instruction level parallelism in a program is inefficient and
limited, the design will incur serious data hazards and many stall cycles.

In the thesis, we exploit the circuit data-dependent delay [7][8][9] to achieve
energy reduction. In many designs, the critical paths may be activated infrequently.
Hence we propose a method to relax the synthesis timing constraint for energy
reduction, and it doesn’t make clock frequency degradation. Because of this
property we generate the detection logic to detect the specific data sequences that
will cause computation errors and-spend one-cycle latency penalty to correct the
errors. Besides, we also propose a.design flow which systematically determines the
synthesis timing constraint and fine tunes-the-error rates, therefore we can trade the

minimum performance penalty for the:maximum energy reduction.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 introduces several
techniques of energy reduction the techniques are classified into categories. The
proposed design method is also described. Chapter 3 addresses the data-dependent
delay and the template of the variable latency design. The variable latency design
can tolerate the computation errors by two-cycle latency, and the detection logic that
is included in the variable latency design is responsible to detect the computation
errors. Moreover, the design flow for the proposed energy-efficient circuit is also

introduced in the Chapter 3. Chapter 4 shows simulation results consist of area,

5

energy and performance. The proposed technique is compared with parallel design
and pipeline design. Finally, Chapter 5 concludes this thesis and describes the future

works.

2 LOW-POWER &
ENERGY-EFFICIENT DESIGN

METHODS

Power dissipation and energy consumption are critical factors in the design of
any system-on-chip. For battery-powered applications, these are extremely
important because they govern battery lifetime and users always value products that
run longer on a battery change. Power dissipation of digital CMOS circuits consists
of static power dissipation and dynamic power dissipation. Static power dissipation
is defined as the power that is dissipated without any switching in the circuit.
Leakage current is the major source of static power dissipation. On the other hand,
the dynamic power dissipation is due to the signal transitions in the circuit. Dynamic

power consists of two parts: the first (switching power) is caused by charging and

discharging load capacitance of gates, and another (short circuit power) is due to the
conduction path between supply voltage and ground appears during signal transition.

Static power consumption has been traditionally ignored since it has been
negligible; however it is becoming more significant with the downward-scaling of
transistor dimensions. Therefore opportunities for significant power reduction are
available in both static and dynamic power.

This chapter focuses on methods for dynamic power (dynamic energy) reduction
mainly. The methods of dynamic power (energy) reduction are classified to three
approaches (static approaches ~ dynamic approaches - adaptive approaches), they

would be discussed in detail below.

2.1 CMOS Power/Energy-Dissipation

Power dissipation in CMOS circuits.can be divided into three main components:
short-circuit power, switching power, and leakage power. Although the terms
“power” and “energy” have different definitions, both serve to achieve the same
objective [2]. Power is defined as the average power that is supplied to a circuit from
the power supply and is measured in “watts”. Meanwhile, the term energy refers to
the total amount of power dissipation over a period of time. Energy is measured in
“joules”. In fact, energy can be expressed in terms of the power-delay product that is
shown in equation (2-1), which is the product of power consumption and execution

time.

Energy = Power x Time (2-1)

2.1.1 Static Power Dissipation

Ideally, the CMOS circuits dissipate no static power since there is no direct path
from Vpp to ground in the steady state. In Figure 2-1 shows a CMOS inverter model,
for a complementary CMOS circuit, if Vin is “0” that N-MOS will be turned off
while the P-MOS is turned on. The output voltage (Vout) will be “1”. On the
opposite, if Vin is “1” that N-MOS will be turned on while the P-MOS is turned off.
The output voltage (Mout) will be “0”. From this scenario, the CMOS circuit has no
direct path from Vpp to ground, therefore it will not induce the static power
dissipation. However, the scenario of ideal CMQOS circuit cannot be realized in
practice since the MOS transistor is not a perfect switch. There are some small static
dissipation due to reverse bias leakage current (junction reverse bias current)
between the diffusion regions and the substrate [10]. In addition, “sub-threshold
conduction current” and “gate-induced drain leakage” can contribute to the static

power dissipation.

VDD VDD
P-MOS P-MOS
Vin=0 Vout=1
Vin=1 Vout =0
N-MOS N-MOS
Ground Ground
(@) (b)

Figure 2-1 CMOS inverter model

The reverse bias leakage current is due to the parasitic diodes existing in CMOS

transistor. To give a comprehensive explanation, Figure 2-2 depicts the parasitic
9

diodes in a CMOS inverter. Consider when Vi equals ground, the NMOS is turned
off, and the PMOS is turned on. Thus Vo is driven to high, and parasitic diode made
of n+ diffusion and p-substrate is reversely biased. That is, there will be a diode

reverse saturation current drawn from supply to ground.

Vi
| n

p-substrate

Figure 2-2 Model describing’‘parasitic.diodes present in a CMOS inverter

The sub-threshold conduction current-is-between source and drain when supply
voltage is below threshold voltage. “The.gate-induced drain leakage current arises in
the high electric field under gate and drain overlap region causing a thinner
depletion region of drain to well junction.

The static power dissipation equals the product of device leakage current and
supply voltage. Equation (2-2) represents the static power dissipation, where

“lieakage” 1S @ sum of all leakage currents. The static power is independent of signal

switching.

Powerstatic = VDD X IIeakage (2'2)

The leakage current is related to the threshold voltage. Threshold voltage will

affect the leakage current exponentially. Higher threshold voltage will result smaller

10

leakage current and smaller static power dissipation. But the high-threshold
transistor takes longer time to complete a transition. Therefore, Dual threshold
voltage [11][12] is a scheme of reducing leakage current by assigning some
high-threshold voltage transistors in the non-critical paths, and using low-threshold

transistors in the critical paths.

2.1.2 Dynamic Power Dissipation

The dynamic power dissipation consists of two parts: one is due to short-circuit
current when both pull-up and pull-down transistors are momentarily on at the same
time, another is due to switching current from charging and discharging parasitic

capacitance of the CMOS circuits.
® Short Circuit Power Dissipation

The short circuit power dissipation is-dependent on signal switching. During the
output transfers from logic 1 to“logic 0 or from logic O to logic 1, there exists a
discharging path from supply voltage to ground for a short period. This is because of
the rising time and falling time of PMOS or NMOS are not ideal zero. Taking
CMOS inverter as an example, if the rising and falling time of input waveforms are
not zero, when Vi, < Vin < Vpp - [Vy| holds for the input voltage, there will be a
conductive path open between Vpp and ground because both the NMOS and PMOS
devices are turned-on (where Vi, and Vi, are threshold voltages of NMOS and
PMOS). The short circuit current is from Vpp to ground, as described in Figure 2-3.

On a low-to-high transition at the input, the NMOS will start to conduct when
Vin is equal to Vi, and the PMOS will stop conducting when Vi, is equal to {Vpp -

[Vipl}. In this inverter example [6], the short circuit power is given by equation (2-3).

11

P

short-circuit VDD x Imean = %(VDD_ZVt)3 (2'3)

t
T, clk

The “t” is the rising time or the falling time of the input signal, and V; = Vi, =

[Vipl|. Also, the effective transistor strengths are equal for the NMOS and PMOS; let

B =BW, =B,W,.

Teik

< >
«—>
t

VDD

<«
t
VDD' |le|
Va |5

(a) waveform of input voltage

w)
A [

Imean

(b) waveform of short circuit current

Figure 2-3 Model describing parasitic diodes present in a CMOS inverter

By the equation (2-3), short circuit current is significant when the rising or
falling time at the input of a gate is much longer period of time, which means more
significant short circuit dissipation. Thus to minimize the short circuit dissipation, it
is desirable that the short-circuit dissipation is minimized by making the output
rising or falling time larger than the input rising or falling times [6][13]. Careful
design is required to keep this component of power dissipation small enough to be

ignored [14].
12

® Switching Power Dissipation

The other part of dynamic power dissipation is due to signal switching of the
nodes in the circuit. The power is dissipated when the circuit capacitance is charged
to Vpp throughout the pull-up network (PMOS) and discharged to ground
throughout the pull-down network (NMOS). Figure 2-4 describes the switching
power in a CMOS inverter. The equation (2-4) is calculating the energy that needed
to charge the circuit capacitance and the equation (2-5) is calculating the energy that

will be discharged while pull-down network is turned on [6].

VDD

A

Vin O— f Vout
1 C W e _/—

Figure 2-4 Switching power in a CMOS inverter

VD D

Eueo = [ivoo Voot = Voo [C, T2t = C, Vo JaVou=CVGo (24
0 0

Voo C V2
i\op (DV,, dt = j C. °“tv dt = jv dv,, =—L-00

out out out

ECL

(2-5)

O'—;S

It means that the capacitance only sustained half-the-energy that charged.
Obviously, for each switching cycle (consisting of an L > H and an H &> L
transition) takes a fixed amount of energy, C, V7,

In order to compute the power consumption, we have to take into account how
13

often the device is switched. If the gate is switched on and off *“f” times per second,
the power consumption is given by equation (2-6), where “« ™ is the switching

activity factor which represents the probability of the switching from 0 to 1.

P ety = 2C Vo (2-6)

switching

So far we know that power dissipation is composed of static power dissipation
and dynamic power dissipation. The total power consumption of the CMOS is the
sum of its three components. The dynamic power dissipation (switching power
dissipation) is the major source of total power dissipation, when the signal is
switching [6]. From equation (2-1), we can derive the dynamic energy consumption

(per transition) that is shown in equation, (2-7).

Energy = Power x Fime ~ aC, V55 x Time = oC, V7, (2-7)

The dynamic energy consumption is related to the supply voltage, switching
activity and switching capacitance. Reducing energy consumption is independent of
clock frequency:. It is related to the supply voltage and circuit capacitance (switching
activity and switching capacitance). If it is possible, using lowest voltage and
smallest amount of capacitance will result the design with minimum energy
dissipation, but it will slow down the path delay. On the other hand, increasing the
supply voltage or gate size (capacitance) will improve the circuit delay, but it will
increase the circuit energy.

Here | classify the methods of power and energy reduction into three categories:

static approaches, dynamic approaches and adaptive approaches.

2.2 Static Approaches

14

This category is said that the circuit is optimized at design time and it is
inflexible at run time. I’ll introduce the techniques of energy reduction by reducing

supply voltage and switch activity/capacitance respectively.

2.2.1 Supply Voltage

® Algorithmic transformation

The choice of algorithm is the most highly leveraged decision in meeting the
power constraints. Transformations are changes of the computational structure in a
manner that the input/output behavior is preserved. The use of transformations
makes it possible to explore a number of alternative architectures and to choose
which result in the lowest power. The key approach is reducing the supply voltage
by minimizing the number of operations and exploitation of concurrency.

At algorithm level, minimizing the.number of operations and exploitation of
concurrency can increase the throughput such that the supply voltage can be reduced
to meet the requirement. The example is a first order 1IR filter shown in [15] that it
is applying loop unrolling and algebraic transformations to exploit data concurrency.
We also can design a FIR filter with polyphase decomposition to minimize the

number of operations [16].
® Parallelism & pipelining

At the architecture level parallelism and pipelining are also the effective way to
increase the circuit throughput and frequency such that the supply voltage can be
reduced. Although it would increase the circuit capacitance (area), supply voltage is
square proportioned to energy consumption such that energy can be reduced.

Show parallelism and pipelining examples in Figure 2-5 (b) and (c)

respectively [5]. Figure 2-5 (a) is the original structure. Equation (2-8), equation
15

(2-9) and equation (2-10) represent the power dissipation of original datapath,

parallel datapath and pipelining datapath respectively.

2
ref Vref fref

Pref = C

f
I:)par = (2'15Cref)(0'58Vref)2 (

2

Pope = (115C .)(0.58V,,,)*f ¢ ~ 0.39P,,

iy A

(b) Parallel datapath

(c) Pipelined datapath

Figure 2-5 Parallel and pipelined datapath

® Dual supply voltage

) ~ 0.36P,,

- (a) Original datapath

- - - : }/

(2-8)

(2-9)

(2-10)

b

The alternative approach for optimizing supply voltage is to selectively decrease

the supply voltage on some of the gates based on the path delay. The critical paths are

supplied by higher supply voltage, and the non-critical paths can be supplied by lower

supply voltage. Using dual supply voltage in different parts of a circuit may reduce

the energy consumption of a design at a rather small cost in terms of algorithmic

16

and/or architectural modifications [17][18][19][20].

Using dual supply voltage on the same circuit requires the use of level
converters at the boundaries of the various modules (a level converter is needed
between the output of a gate supplied by a low Vpp and the input of a gate supplied

by a high Vpp).

2.2.2 Switching Activity and Capacitance

® Operation substitution & operator reordering

The switching activity and switching capacitance can be reduced by optimizing
the ordering of operations and using operation substitution in a design. To illustrate
this, consider the problem of multiplyingasignal with a constant coefficient, which
is a very common operation in signal processing applications.

Multiplications with constant coefficients are often optimized by decomposing
the multiplication into shift-add- operations and-'using the canonical sign digit
representation. Thus the circuit area (capacitance) can be reduced. Consider the
example in which a multiplication with a constant is decomposed into IN + IN >>7
+ IN>>8, shown in Figure 2-6.

In the Figure 2-6 (b) (obtained by applying associativity and commutativity), the
two small number IN>>7 and IN>>8 are summed in the first adder and the output is
added to IN in the second adder. In this case, the output of the first adder has a small
amplitude (since we are adding 2 scaled number of the same sign) and therefore
lower switching activity. The second implementation switched 30% less capacitance

than the first implementation [15].

17

SUMI SUM2 SUMI SUM2

i R
>>8) N
j

IN IN IN
(a) Original (b) Operator reordering

Figure 2-6 Example of operator reordering

® Data representation & bus encoding

In most signal processing applications, two’s complement is typically chosen to
represent numbers since arithmetic operations (addition and subtraction) are easy to
perform. One of the problems with two’s complement representation is
sign-extension, which causes the msb sign-bits to. switch when a signal transitions
from positive to negative or vice-versa (for example, going from -1 to O will result in
all of the bits toggling). Therefore iusing-a-two’s complement representation can
result in significant switching activity. when:the signals being processed switch
frequently around zero and when they do not utilize the entire bit-width (i.e., the
dynamic range is much smaller than the maximum possible value determined from
the bit-width) since a lot of the msb bits will perform sign-extension.

Minimizing the switching in the msbs can use a sign-magnitude representation,
in which only one bit is allocated for the sign and the rest for the magnitude [6][15].
In this case, if the dynamic range of a signal does not span the entire bit width, only
one bit will toggle when the signal switches sign, as opposed to the two’s
complement representation where due to sign extension several of the bits will
switch.

For the bus encoding, we also can use the gray code to substitute for binary code

such that the signal transitions of the program and the data memory address busses
18

can be reduced. For sequentially access, the average toggling of binary and gray

code are 2 and 1 respectively [6][15].
® | ogic reordering (circuit optimization)

There are many ways to build a circuit out of logic gates. One decision that
affects power consumption (glitch activity) is how to arrange the gates [6][15]. For
example, consider two implementations of a four-input AND gate shown in Figure

2-7, a chain implementation (a), and a tree implementation (b).

A Y
A W X B
B C F C F
D D 7
(a) Chain structure (b) Tree structure

Figure 2-7.Gate restructuring

There is a issue of glitches-or spurious-transitions that occur when a gate does
not receive all of its inputs at the same time.~These glitches are more common in
chain implementations where signals ‘can travel along different paths having widely
varying delays. One solution to reduce glitches is to change the topology so that the
different paths in the circuit have similar delays. This solution, known as path

balancing often transforms chain implementations into tree implementations.
® Gate sizing

Gate sizing is an effective method for circuit power-reduction, because the major
power dissipation is consumed inside the block rather than in driving the external
load capacitance. Reduce gate size can reduce circuit capacitance such that the
circuit power consumption can be reduced. Applying this technique in [5][21]
usually associate with each gate a tolerable delay which varies depending on how

close that gate is to critical path. Then, we can try to scale each gate to be as small as

19

possible without violating its tolerable delay. The main objective of transistor sizing

is to downsize the gate off the critical path to save power.

2.3 Dynamic Approaches

This category is said that the supply voltage and switch activity/capacitance can
be adjusted dynamically for different applications and throughput requirement. It is
more flexible than the static approaches. I’ll introduce the techniques of energy

reduction by reducing supply voltage and switch activity/capacitance respectively.

2.3.1 Supply Voltage

® Dynamic voltage and frequency.scaling (DVFS)

The gap between high performance and low power can be bridged through the
use of dynamic voltage scaling, where periods of low processor utilization are
exploited by lowering the clock frequency: to the minimum required level, allowing
corresponding reduction in the supply voltage [22][23].

Figure 2-8 shows the overall architecture of a DVFS system. The performance
manager uses a software interface to predict performance requirements. Once
performance requirement for the next task is determined, the performance manager
sets the voltage and frequency just necessary to accomplish the task. The target
frequency is sent to the phase-locked loop (PLL) to accomplish frequency scaling.
Based on the target voltage, the voltage regulator scales supply voltage to meet

performance target.

20

VDD VBAT

; T

- Performace | Voltage
Manager vV Regulator
- T F farget
CORE y larget
- PLL

Figure 2-8 Architecture of the DVFS system

A robust system should be able to meet the deadlines at any voltage, process and
temperature condition. The conventional approach performs voltage scaling that it
uses a target operating voltage for each required operating frequency. To guarantee a
robust operation, the frequency-voltage. relationship is determined via chip
characterization at worst case conditions: This technique is utilized in open-loop
dynamic voltage and frequency" scaling system “where the frequency-voltage
relationship is stored in a look-up- table:=Since -such LUT (look up table) is
pre-loaded with voltage-frequency points, DVFS systems are not able to adapt to

process variations or environmental conditions.

2.3.2 Switching Activity and Capacitance

® Clock gating & operand isolation

Clock gating is a common method for reducing the unnecessary signal
transitions. In [24], it proposes a technique to automatically synthesize gated clocks
for finite-state machines to reduce power dissipation. The following graph (Figure

2-9) is a gated-clock D flip-flop.

21

Active-low
latch

D in 4 — D out

Enable

Clock L}

Register

Figure 2-9 Clock-gated D flip-flop

There will be an additional signal named “Enable”. For a D flip-flop without
gated-clock, the input will be passed to output at the rising edge of clock. The input
of gated D flip-flop will only be passed to output at the rising edge of clock if the
enable signal is “1”.

We can control the enable signaldynamically according to the different
requirements. It reduces the signal transitions of register and combinational circuit.
If the inputs of a circuit are gated, the-inputs are the same with the ones in the
previous cycle. And all the nodes.in circuit remain unchanged. If the circuit is
without gated-clock input registers, there might be some glitches in this cycle which
consumes power also.

Hence, we also can insert latches (flip-flops) at the inputs of the functional units.
If the output of the functional units is not necessary, the input data can be isolated

using latches (flip-flops).
® Pre-computation logic

It relies on the idea of duplicating part of the logic with the purpose of
pre-computing the circuit output values one clock cycle before they are required,
and it uses these values to reduce the total amount of switching in the circuit during
the next clock cycle.

In [25][26], they present an algorithm to synthesize pre-computation logic for
22

the complete input-disabling architecture. The pre-computation logic is a function of
all of the input variables. It is shown in Figure 2-10, the complete input-disabling

architecture can reduce power dissipation for a larger class of sequential circuits.

X, | =1 R1 - A

X,— RI | A 1 R2 [—F N, ey

=
=
MUX

(RZ—F—
H
3 u
H
=
»

Out

. Sele .
g is subset of Aj
(a) Baseline circuit (b) complete input-disabling architecture

Figure 2-10 Pre-computation logic

® Computation kernel

It also duplicates a part of the.original circuit. The sub-set logic is smaller and
faster such that it dissipates less power.-At-the most time, the sub-set logic can
accomplish the circuit operation, and.the.original circuit is turned off.

Figure 2-11 (a) shows an example with the standard topology. The paradigm for
improving its quality with respect to a given cost function is based on the
architecture shown in Figure 2-11 (b). The architecture consists of the combinational
portion of the original circuit (block CL), the computational kernel (block K), the
selector function (block S), the double state flip-flops (DSFF), and the output

multiplexers (MUX).

23

(a) Baseline architecture (b) Kernel-based optimized architecture

Figure 2-11 Computational kernel [27]

In [27] that presents a power optimization technique by exploiting the concept of
computational kernel of a sequential circuit, which is a highly simplified logic block
that imitates the steady-state behavior of the oeriginal specification. This block is
smaller, faster, and less power consuming:than the circuit from which it is extracted
and can replace the original network for a‘large fraction of the operation time.

In [28] that presents a low power adder for. SIMD data path. By exploiting the
difference length in the critical path for the types of operations (e.g., 4x8/2x16/1x32),
energy-efficient SIMD adders can be developed. Indeed, 8-bit adders have smaller
gates and energy consumption. Hence, 4x8-bit operations on an 8-bit ripple adder
consume 1.8 times less compared 1x32-bit operation on a 32-bit adder. To alleviate
the power dissipation, it combines four 8-bit energy optimized adders and one 32-bit

adder to support SIMD.

2.4 Adaptive Approaches

This category is said that the supply voltage and switch activity/capacitance can

be adjusted adaptively. It is also more flexible than the static approaches. Compared

24

with dynamic approaches, it can adapt to environmental conditions or data
correlations. I’ll introduce the techniques of energy reduction by reducing supply

voltage and switch activity/capacitance respectively.

2.4.1 Supply Voltage

® Adaptive voltage scaling (AVS)

It is a one method of dynamic voltage scaling. It can adaptively scale the supply
voltage by monitoring the actual silicon speed [23][29]. Therefore, worst case
characterization is no longer required.

The actual performance is monitored using on-chip structures. The frequency of
the ring oscillator is sampled using a ecounter as shown in Figure 2-12. The
frequency count is then compared to the:frequency required by the system and the
difference is filtered using the system’s filter. It has to be built in the ring oscillator
to accommodate for all types of gates and all conditions. A better approach is to use

a critical path replica as shown in Figure 2-12.

vdd

Critical Path
Replica
' ™ L
_ Up/Down |Emror | o | PWM WV I
Counter Counter titer Generator
A

l Core
* targat 1 —

COffChip

Figure 2-12 Architecture of the AVS system

2.4.2 Switching Activity and Capacitance

25

® Bit swapping

The most effective method to reduce the number of transitions in functional units
is increasing the correlation of input data. The bit-swapping method is to change the
input bit of functional unit according to the previous input bit status such that the
number of signal transitions can be minimized [6].

Shown an example in Figure 2-13, the exclusive-OR gate is a selection logic that
it manages the bit swapping. Previous data of inl is 4’b0011 and in2 is 4’1100, and
the next data of inl is 4’00100 and in2 is 4’b1011. After bit swapping, the next data

of inl is swapped as 4’b0011 and in2 is swapped as 4’b1100.

inl .
L ALU
3
in2 —e 0
é A

Figure 2-13 Example of bit swapping

o
b3

® Guarded evaluation

Guarded evaluation is based on placing some guarded logic, consisting of
transparent latches with an enable signal, at the inputs of each block of the circuit
that needs to be power managed. When the block must execute some useful
computation in a clock cycle, the enable signal makes the latches transparent.
Otherwise, the latches retain their previous states and block any transition within the
logic block.

In [30], it proposes a technique which is called partially guarded computation.
The technique disables a part of a circuit based on the dynamic range of input

26

operands. They divide a circuit into two parts — MSP and LSP — and allow only the
LSP computation when the range of input operands is covered by the range of the

LSP. Therefore, it can reduce unnecessary signal transitions.

® Proposed energy-efficient design

Circuit delay is strongly data dependent, and only exhibits its critical path delay
for very specific data sequences [7][8][9]. Proposed design is exploiting
data-dependent delay to reduce circuit energy. Shown in Figure 2-14 (a) is an
example that it depicts a path delay distribution of original circuit. The x-axis
represents the path delay, and the y-axis represents the number of patterns.

In this example, we assume that it is a normal distribution. Noted the distribution,
delay time of most patterns is smaller than,the critical path delay (clock period), and
only few patterns can activate the critical path. \We can attempt to optimize the
common case for energy reduction‘based onthe clock period, rather than to optimize
the worst-case (critical paths) based ‘on the-clock period, shown in Figure 2-14 (b).
Therefore path delay of some paths ‘(critical “paths) may be longer than the clock
period, but the circuit energy can be reduced effectively. As long as we can tolerate

these critical paths, we can gain the energy reduction.

S S
= A g .\
é‘ Clock period g Original Clqck Critical
= Critical path qt; R period path
[av
=¥ l o
c | L
; bo,os !
Path delay Path delay
(a) Original circuit (b) Energy-efficient circuit

Figure 2-14 Path delay distribution

Shown in Figure 2-14 (b), there are a% of total input patterns that can not
27

accomplish a computation within a clock period and may cause to computing errors.
In order to tolerate the errors, all patterns that will incur computing errors are
operated two clock cycles (one-cycle latency penalty). Hence we generate a
“detection logic” that is responsible for the error detection, and the circuit is
augmented with the “detection logic™.

Shown in Figure 2-15, the input pattern of the detection logic is the same as the
functional unit, and the output of detection logic is a 1-bit “wait” signal. If the
“wait” signal is asserted, the input patterns would be latched one more cycle and

output data is not available.

Figure 2-15 Conceptual circuit of proposed design

From this scenario, although the circuit energy can be reduced, the performance
may be degraded also. In order to reduce the performance penalty, the detection
logic needs to exactly detect the computation errors. We can also reduce the number
of violating paths to reduce performance penalty, but that also influences the effect
upon the energy reduction. It has to trade-off between energy and performance. This

part is the main problem | want to solve.

28

3 PROPOSED ENERGY-EFFICIENT

DESIGN

Energy consumption has become“a critical issue in modern VLSI designs. For
the circuit energy reduction, we propose a method that trades small performance
penalty for large energy reduction. In this chapter, I will introduce our proposed
energy-efficient design that it consists of the CMOS circuit delay, the template of

variable latency design and proposed design flow.

3.1 Delay of CMOS Circuits

In the synchronous circuit design, traditional strategies for circuit optimization
are based on worst case (critical path). For the given clock period, the critical paths
of the circuit must be optimized to meet it, but that usually spends much energy

effort to accomplish. The energy effort consists of gate size, structure and voltage.

29

In [7][8][9], we observe that the circuit delay is strongly data dependent, and
only exhibits its critical path delay for very specific data sequences. Because, CMOS
circuit delay is equal to the elapsed time of charging and discharging the circuit
capacitances [31]. The computation time of each input pattern is based on the
original status of the circuit capacitance. The same input patterns with different
status of circuit capacitances will activate different paths such that the computation
times are different.

Hence, estimating the circuit delay or path delay requires a two-pattern
sequence — the first pattern initializes the circuit while the second pattern causes
and propagates the desired transition [32][33].

To observe the delay of CMOS circuits, we synthesized a 8-bit unsigned
carry-save-array multiplier using the UMC 90nm:CMOS cell library. After the gate
level synthesis, we used the=10,000 randem pattern sequences for gate-level
simulation. Figure 3-1 shows the path.delay-distribution of the 8-bit carry-save-array
multiplier. The x-axis represents the delay. time of the data computation (path delay),
and the y-axis represents the number of patterns.

The green line represents the path delay distribution of the multiplier. The clock
period is 1.6ns, so the critical path of the multiplier can not be larger than the clock
period. The path delay distribution is similar to the normal distribution, and the

probability of sensitizing the critical paths is very low.

30

)

o

oy

o
1

Clock period
1.6 ns

0.60
050
0.40
0.30 -
> 0.20
0.10 -
0.00

of patterns (%

No

0.7 0.9 1.1 1.3 1.5 1.7 1.9
Delay (ns)

Figure 3-1 Path delay distribution (8-bit multiplier)

For the 1.6ns clock period, the conventional design method is directly
synthesizing the circuit with 1.6ns timing constraint. From the path delay
distribution we found that the delay time of most patterns are smaller than 1.4ns
even. From this scenario, the circuit energy can.be optimized for common case,
rather than the few critical cases. In other words,.we can relax the synthesis timing
constraint for energy reduction and tolerate-the-few critical cases.

Then we observe the relationship. between*the circuit energy and synthesis
timing constraint. We use the UMC 90nm CMOS cell library and 10,000 random
patterns to estimate the energy consumption (average energy consumption per
operation). Figure 3-2 shows the energy curve of 8-bit carry-save-array multiplier
with different synthesis timing constraints. The x-axis represents the synthesis
timing constraint (circuit delay), and the y-axis represents the energy per

multiplication.

31

240 1
Clock period

1.6ns

N

RN

o
T

N

(0]

o
T

N

(@]

o
T

Target
1.9ns

-

N

o
T

Energy per
multiplication (pJ)

o

©

o
T

0.60
15 16 17 18 19 20 21 22

Timing constraint (ns)

Figure 3-2 Energy curve of 8-bit multiplier

Tightening the timing constraint-of the multiplier will induce the increasing of
the energy per multiplication. Especially/ when the timing constraint approaches the
peak value (1.6ns), the energy consumption increases drastically. Even if we
synthesize the circuit with power optimization' constraint, the circuit energy
decreases also as the synthesis timing constraint relaxes.

Optimizing the circuit delay needs to spend large energy effort. From the path
delay distribution, we found that the energy effort is spent on the few circuit critical
paths. The energy effort consists of optimizing the circuit structure and upping the
gate sizes, and it makes the circuit delay (critical path delay) to be reduced.
Optimizing the circuit structure or upping the gate sizes usually causes the circuit
capacitance to be increased, and therefore the circuit energy is increased.

Multimedia systems are desired not only for low-energy consumption but also
for high speed (high performance). Although relaxing timing constraint is an
effective method for energy reduction. In Figure 3-2, the timing constraint is relaxed
from 1.6ns to 1.9ns will lead the energy consumption to be reduced about 45%, but

32

it indicates that the clock frequency (performance) is degraded directly.

Hence, exploiting the data-dependent delay of circuit can not only avoid clock
frequency degradation but also gain the energy reduction. For instance, from the
above multiplier, if the operating clock period is 1.6ns, the synthesis timing
constraint can be relaxed to 1.9ns, and therefore the energy can be reduced about
45%. Then we observe the path delay distribution of the multiplier with 1.9ns

critical path, it is shown in Figure 3-3.

)

o

3

o
1

Clock Critical

0.60 period path

0.50
040 r 98.88% 1.12%
0.30 |
> 0.20 |
0.10
0.00

of patterns (%

v

No

0.7 0.9 = 1.3 1.5 1.7 1.9
Delay (ns)

Figure 3-3 Path.delay‘distribution (8-bit multiplier)

The delay time of most patterns (98.88% of pattern) is less than 1.6ns (clock
period), and only 1.12% of pattern that delay time is greater than 1.6ns. The delay
time (computation time) of few input patterns will exceed 1.6ns, and these patterns
may incur computing errors. The possible computing errors can be detected and it
can be corrected by two-cycle operation. This implies that a one-cycle latency
penalty. The detection and correction will be discussed in detail later.

From Figure 3-2 and Figure 3-3, only 1.12% of pattern that the delay time is
greater than 1.6ns, the probability of spending one-cycle latency penalty is 1.12%,
so the performance penalty is very light and negligible. If few errors (one-cycle

latency penalty) can be tolerated by the multiplier design, the energy per

33

multiplication can be reduced about 45%.
In order to detect the computing errors and accommodate the one-cycle latency
penalty, we proposed a variable latency design that it can be simply integrated into

other systems.

3.2 Variable Latency Design

3.2.1 Template of Variable Latency Design

The proposed variable latency design can accommodate the additional one-cycle
latency penalty. In other words, the latency of the functional unit can adapt to the
input patterns, most patterns only .need one-cycle latency and few patterns need
two-cycle latency.

The template of variable latency design is shown' in Figure 3-4. We assume the
functional unit has the input and out registers, and.it is augmented with the detection
logic. In normal situation, the functional unit has only one-cycle latency, and the
detection logic does not influence the functional unit. When the computation time of
input patterns exceeds a clock period, the input patterns need to be operated two
clock cycles to avoid the computing error. The detection logic is responsible to
detect the input pattern that the computation time exceeds a clock period and control

the latency of the functional unit.

34

~, Detection . tonext
logic \wait & pipeline stage

In| . Functional 7 Out
Unit K

Clock Gated_clk

Figure 3-4 Template of variable latency design

Detection logic shown in Figure 3-4 is responsible to detect the input patterns
that will result in computing errors. The input pattern of the detection logic is the
same as the input pattern of the functional unit. If the detection logic detects a
computing error will occur, the output signal,“wait” will be asserted. The wait signal
will propagate to the next stage“and make the output data of the functional unit
invalid. At the same time, the wait signal will control the flip-flops of the previous
stage to latch all patterns one more eycle.-Fhe behavior is like the stall cycle in the
processor. In other words, if the wait signal‘is asserted, the functional unit needs a
stall cycle.

The detection logic consists of a fault function and additional flip flops, and it is
shown in Figure 3-5. The additional flip flops are used to latch the previous input
pattern, because the circuit delay is data-dependent [32][33]. The propagation time
of input patterns is based on the original signal status of the each gate in the

functional unit [31].

35

Detection }
logic f(x[t-l], x[t]) :
|
|

(
|
|
In 0. X[t] |
|
|
\

Wait
function
x[t-1]

Figure 3-5 Detection logic

The previous input pattern is latched by the additional flip flops, and hence the
original signal status of each gate in the functional unit can be estimated. Hence, the
signal propagation time of the functional unit can be estimated accurately. If the
maximum delay at the certain input bit is guaranteed to meet the clock period, the
additional flip flop of the certain bit.does not need.

The fault function is a function of all of the input variables, f(x[t-1], x[¢]). If the
input pattern satisfies the function, the-input pattern spends a one-cycle latency
penalty (two-cycle operation). | will.introduce about how to derive the fault function

in detail later.

Cycle Cycle Cycle Cycle Cycle

Clock | | | |
In a b c
Out A B JC
Wait

Gated_clk ‘j \ L

Figure 3-6 timing diagram of the variable latency design

Timing diagram in Figure 3-6 shows an example for the variable latency design.

Each signal in Figure 3-6 corresponds to it in Figure 3-4. We show an example that
36

the input pattern “b” of functional unit in cycle 1 is a violating data (the computation
time of input data exceeds a clock period). In this case, the detection logic detects
that a computing error will occur, hence the wait signal is asserted at cycle 1. That
represents the output data is invalid, input data will be latched one more cycle and
the clock will be gated.

At cycle 2, the input pattern “b” needs to be latched one more cycle. In other
words, it incurs one-cycle latency penalty. The output data “B” that corresponds to
the input data “b” can not be available at cycle 2. The clock is gated at cycle 2,
therefore the input data is still “b”, and output data at cycle 2 is invalid.

At cycle 3, the correct output data “B” is available, and the circuit is restored to
normal in the subsequent cycle.

Next section, the detection logic generation will be introduced.

3.2.2 Detection Logic

The detection logic generation is shown in Figure 3-7. The input file contains a
netlist file of functional unit and the given clock period. After receiving the input
files, three steps need to be executed in sequence. Then the detection logic can be

generated.

37

Functional unit .
WJ Clock period
S

M Violating paths

a0

o

Path sensitizatio@

M Fault function

Synthesis
s

’ Detection logic }

a0

Figure 3-7 Detection logic generation

First step is to use the static timing analysis (STA) analyzing the path delay of
functional unit. Static timing analysis (STA)-is a method of validating the timing
performance of a design by checking all_possible paths for timing violations [34]. It
checks for violations of timing constraints inside the design and at the input/output
interface.

In our experiments, we use the Synopsys Prime-Time tool to perform static
timing analysis (STA), and the timing constraints is the given clock period. It can
report all paths that path delay exceeds one clock period, and these paths are called
“violating paths”. Then, we can perform path sensitization to find all patterns that
would sensitize the violating paths.

Second step is to analyze the violating paths based on the path sensitization
criterion. After the path sensitization algorithm is accomplished, all input patterns
that the propagation time from input to output is larger than one clock period can be

found. Such input patterns we called “violating patterns”. After all violating patterns
38

are found, the “fault function” can be derived. The fault function is a function of all
of the input variables, f(x[~-7] x[¢]), and it contains all violating patterns. All
violating patterns must be included in the ON-set of the fault function. If the fault
function is satisfied by the input patterns, the input patterns need to be operated two
cycles. We will discuss the path sensitization and fault function in detail later.

The final step is to synthesize the fault function, and therefore the detection logic
can be obtained. If the complexity of fault function is very great, some don’t care
patterns can be added to the fault function such that the complexity of fault function
can be simplified. In our experiment, we directly synthesize the fault function (PLA
format) by Synopsys Design Compiler. The synthesis timing constraint is one clock
period, and we need to guarantee the critical path of detection logic is smaller than
one clock period.

Before introducing the path-sensitization and fault function, some definition and
notations have to be defined. -This,will_help-the -explanation of the method of

deriving the fault function.
® Definition and notations

A combinational circuit is bounded by primary inputs and primary outputs and it
is composed of simple gates (i.e., AND, NAND, OR, NOR, and NOT gates). The

delay of gate G is denoted by d(G).
Definition 1 (path)

A path P = (I, Gy, Gy, ..., Gy, O) in a combinational circuit is an sequence of
primary input (1), gates (Gj), and primary output (O). The primary input (I) connects
to gate Gj, output of gate G; connects to input of gate Gi.;, where gate G;,
1<i<m-1, and output of gate G connects to primary output (O). The delay of
path P is the sum of the delays of all the gates, and is denoted by d(P).

39

Definition 2 (on-input and side-input)

LetP=(l, Gy, Gy, ..., Gy, O) be a path. Primary input | is an on-input of gate G;,
and output of gate G; that connects to gate Gi:; is an on-input of gate Gj.1, where
gate G;, 1<i<m-1. Other inputs of gate G; are defined as side-inputs, where gate

Gi, 1<i<m.
Definition 3 (controlling value)

A logic value is the controlling value to a gate if and only if the logic value at an
input to the gate independently determines the value at the output of the gate. The
controlling value to gate G is denoted by c(G). For examples, ¢(G) is logic O if G is

an AND gate or a NAND gate, and ¢(G) is logic 1 if G is an OR gate or a NOR gate.
Definition 4 (non-controlling value)

The non-controlling value to gate G, denoted by -nc(G), it is the complementary
value of ¢(G). For examples, nc(G) is.logic-1-if.G is-an AND gate or a NAND gate,
and nc(G) is logic 0 if G is an OR gate or.a NOR gate.

For a NOT gate which has single input, both logic 0 and logic 1 are considered

to be its controlling values.
Definition 5 (input vector)
An input vector v is a vector of logic values at all the primary inputs. Each logic
value is either logic 0 or logic 1.
Definition 6 (stable value and stable time)

Let v be an input vector applied to the circuit under analysis. The logic values
stabilized at the end of the output of gate G are called the stable values at G under v.
When the end of the output of G becomes stable, the time is called the stable time at
G under v.

40

Definition 7 (sensitizable)

A path is sensitizable if there is at least one input vector to activate it. A path is
false if there is no input vector to activate it. The critical paths are the longest

sensitizable paths.
® Path sensitization

Delay of the circuit is equal to the delay of the longest sensitizable path. A path
is sensitizable if it can be activated by at least one input vector. Therefore,
determining the sensitizability of a path is equivalent to determine the existence of
input vectors which activate the path [35]. Thus it will be very helpful to develop a
criterion which is capable of computing the set of input vectors that activate the path.
Now, we will focus on how to find all:input vectors that activate a given path.

The exact criterion can find:all input vectors that can activate a given path. If
that finds no input vectors, the given path‘is a false path. I briefly introduce the exact

criterion.
Exact Path Sensitization Criterion

The path P is a exact sensitizable path if there is at least one primary input such
that for each on-input of path P and for each side-input of path P hold either one of

the following conditions (shown in Figure 3-8):

1) The on-input is the earliest controlling input, otherwise all side-inputs
are non-controlling inputs
2) The on-input is the latest non-controlling input, given all its side-inputs

is also non-controlling inputs

41

Side - input: (nc,-) or (c,> t) Side -input : (nc, < t)

On -input: (c, t) On -input: (nc, 1)

Side-input: (nc,-) or (c,> t) Side -input : (nc, < t)

Figure 3-8 Exact path sensitization criterion

Figure 3-9 shows an example of a delay-dependent false path in carry-look-ahead
logic. Let the delay of each gate be 1 time unit. The highlighted path P=(x, C, D, E,
F, G, O) is false for a rising transition at input X. From the exact path sensitization
criterion, we found that the side-input of gate “F” is the earliest controlling input
such that the shorter direct path Ps=(x, F, G, O) determines the longest true path.

Therefore the path P can not be sensitized.

C D F
/ X__DO_DO_E_I{/
y

Figure 3-9 Delay-dependent false path

rG)—O

The exact path sensitization criterion is the general path sensitization criterion,
regardless of the longer path or the shorter path. The violating paths are the most
critical paths, so we can use some criteria that they are proposed only for dealing
with the critical paths. These criteria are only applied to the critical paths, and they
are less restricted than the exact criterion.

Our purpose is to analyze the violating paths based on the viable path
sensitization criterion, and violating paths are the most critical paths in the circuit.
The viable criterion and the loose criterion achieve the same estimation of the

critical paths [35]. The loose criterion and the exact criterion achieve the same

42

estimation of the critical paths [35]. So, the viable criterion and the exact criterion
can also achieve the same estimation of the critical paths. The viable criterion is
easier to implement. Hence we use this criterion to analyze the critical path, and |

briefly introduce the viable criterion.
Viable Path Sensitization Criterion

According to McGeer and Brayton, a path P is viable [36] if there is at least one
primary input such that for each on-input of path P and for each side-input of path P

hold either one of the following conditions (shown in Figure 3-10) :

1) All side-inputs are non-controlling inputs
2) If any side-input is controlling input, the stable time of side-input must
be later than on-input

Side-input: (nc,-)or (c,> t)

On - input: (X, t)

Side - input:(nc,-)or (c,> t)

Figure 3-10 Viable path sensitization criterion

All the input patterns that activate the given critical paths can be found based on
the viable path sensitization criterion, and the stable time of side-input is given by
the static timing analysis. We show an example in Figure 3-11, the critical path
P=(A, G1, G2, G3, O) is given by the static timing analysis, and it has a rising
transition. Use the viable path sensitization criterion to find all patterns that can
sensitize the given critical path.

Based on the viable path sensitization criterion, we set non-controlling values on

the side-input of all gates on the critical path. Because the path is critical path, the
43

stable time of all side-inputs is earlier than on-input. In others words, we needn’t
consider the controlling values on the side-inputs of all gates. Therefore, the
non-controlling value of AND gate and NAND gate is logic 1, the non-controlling
value of OR gate is logic 0. The values are backtracked to the primary inputs, and
the input patterns (A, B, C, D) = (x, 1, 0, 1) are obtained, where “x” represents don’t

care.

' Gl F

| G3

Figure 3-11 An example of given critical path

The above path sensitization criteria use pattern-independent timing, and they
only consider a single pattern-to.sensitize the path. The results are usually very
pessimistic [34]. Indeed circuit-delay-iS-pattern. dependent, and it is caused by the
signal transition and propagation<[32][33].-Therefore, if we want to find the
violating patterns exactly, we need to use pattern-dependent timing to analyze the
path [37].

In other words, we need to consider the previous patterns. Thus we need to
consider two-pattern sequence, where the first pattern initializes the circuit and the
second pattern causes transition. Therefore the viable path sensitization criterion can
be modified to consider the on-input transition (i.e., 0 > 1 or 1 - 0) [38][39]. We

have a brief explanation below.
Modified Viable Path Sensitization Criterion
A path P is sensitizable if there is at least one input sequence (two-pattern

sequence) such that for each on-input of path P and for each side-input of path P

44

hold either one of the following conditions (also shown in Figure 3-12) :

1) All side-inputs are non-controlling inputs, and on-input (primary input)
has an event (i.e., 0 21 or 1 2 0).

2) If any side-input is controlling input, the stable time of side-input must
be later than on-input, and on-input (primary input) has an event (i.e.,

0=21orl 20).

Side-input:(nc,-)or (c,>t)

On input Gi
(0>1,t)or (120, t)

Side-input:(nc,-)or (c,>t)

Figure 3-12 Modified viable path:sensitization criterion

We analyze the example shown-in Figure 3-11 again based on the modified
viable path sensitization criterion and ‘the critical path that is reported by static
timing analysis (Prime Time). Because the transition on the primary input of the
critical path is considered, the given critical path is sensitized by the two-pattern
sequence. The non-controlling values are backtracked to the primary inputs and the
transition on the primary inputs is considered, therefore all the pattern sequences
(ABCD[t-1], ABCDIt]) = (0xxx, 1101) that can sensitize the given critical path are
obtained, where “x” represents don’t care.

The result is more precise than it that is analyzed by the viable criterion, but the

complexity of the result is greater than it that is analyzed by the viable criterion.
® Fault function

Fault function f(x[n-1] x[n]) contains all and only those input patterns

45

(violating patterns) that the propagation time from the inputs to the outputs is longer
than one clock period. All violating patterns can be found by analyzing the violating
paths based on the modified viable path sensitization criterion.

We use a flowchart shown in Figure 3-13 to explain how we derive the fault
function. The input file “violating paths” is reported by performing the static timing
analysis. The timing information about stable time of each signal is also based on the
result of performing the static timing analysis.

Therefore, we only analyze the logic value of all gates, instead of stable time of
all signals of all gates. The stable time of all signals of all gates on the most critical
path is the latest. When all of the violating paths are obtained, three recursive steps

have to be taken iteratively.

Violating paths

v

[Path sensitization]

v

[f(x[t-l], x[t]) =f_nc +f_c)
v

[F(x[t-1], x[t]) = F + f)

v

All path check ??

yYes

Fx[t-1], x[1])

Figure 3-13 Flowchart of fault function

First step is to analyze the violating paths based on the modified viable path

46

sensitization criterion. The violating paths are in path-delay order, the longest path is
analyzed first and only one path is analyzed at a time. After one path is analyzed,
two sub-functions are obtained. One sub-function “ f nc(x[t-1], x[t])” is derived
based on all side-inputs of the path are non-controlling values, and another
sub-function “ f c(x[r-1], x[t])” is based on any side-input of the path has a
controlling value.

Second step is to combine two sub-functions to form a complete function
“ f(x[r-1] x[t]) ” of the path. The pattern sequence satisfies the function is
represented that the pattern sequence sensitizes the path. Finally, we accumulate the
function of each path until all violating paths have been analyzed, and the fault

function is obtained “ F(x[r-1], x[¢])”.
® Example

In Figure 3-14, we show an example with two violating paths. The longest path
P1= (A, G1, G2, O) has a rising transition‘atinput’/A. Another path P2 = (C, G3, G2,

O) has a falling transition at input C.

Figure 3-14 Two violating paths

For the fist path P1 = (A, G1, G2, O)

Step 1:

f ne(4BClt-1] ABC[t))= AT -B-F =41 -B-C = (0xx,101)

47

f c(4BClr-1) 4BC[t]) =9

Step 2:

f(4BC[t-1], ABCt])= f nc+ f c=(0xx,101)

Step 3:

F(ABC[t-1), ABC[t))=F + f = (0xx,101)

For the second path P2 = (C, G3, G2, O)

Step 1:

f ne(4BClt-1] 4BC[t])=C 1 -E=C \d- B=(5x1, 000)

f c(4BC[r-1] 4BC[t]))= Cd-E=cid=at -B=(0x1, 100)

Step 2.

f(A4BCt-1] ABC[t])= f nc+ f ¢ =(xx1, 000)+ (0x1, 100)

Step 3:

F(ABCt-1), ABC[t]))=F + f = (0xx,101)+ (xx1, 000)+ (0x1, 100)

We obtain the final result after the two paths are analyzed.

3.3 Design Flow

48

The functional units are the main blocks for the multimedia applications and
portable devices. High speed and low energy consumption are both the requirements
for the embedded systems. In this section, | will introduce a design flow that can
help us to systematically design the most energy-efficient functional units. The
energy-efficient functional unit represents that it is the one that consumed the least
energy among all configurations that deliver the same performance [40], and the
energy-delay product is usually used to be a metric. Smaller energy-delay values
imply a lower energy solution at the same level of performance — a more
energy-efficient design. The proposed energy-efficient functional units can be
operated at the desired clock period, and it trades the minimum performance penalty

for the maximum energy reduction.

Functional unit
(RTL) Clock period

Characterization

R]
ol
E

Overhead reduction

Energy-efficient
functional unit

Figure 3-15 Design flow of energy-efficient functional unit

Figure 3-15 illustrates the design flow for energy-efficient design, and it consists of
three steps that need to be executed in sequence. The flow is based on the cell-based
design flow, and it can easily obtain the most energy-efficient result.

49

First step is to characterize the functional unit to know the relationship between
circuit energy per operation, error rate, and timing constraints. The error rates of the
functional unit with different timing constraints are estimated at the given clock
period. The energy or error rate can be estimated by using the random patterns or a
real application. In our experiments, we use 10,000 random patterns to characterize
the functional units.

Second step is overhead estimation. The overhead is the energy consumption of
detection logic. The most energy-efficient design is consuming the minimum energy
that includes both functional unit energy and detection logic energy, and the
performance is negligible.

Final step is overhead reduction. The area and energy of detection logic or the
performance penalty may be very.great, hence the.objective of this step is to reduce
these overhead. It reduces the complexity.-of detection logic and performance

penalty.

3.3.1 Characterization

Characterization is the first step of our proposed design flow. When the clock
period is given, the functional unit is characterized to know the relationship between
circuit energy, error rate and timing constraints. The objective of the characterization
is to know how many space that the circuit energy can be reduced, and the
corresponding performance penalty.

The minimum value of the timing constraint is the value of clock period, and the
maximum value of the timing constraint is the value of the double clock period. The
timing constraint must be smaller than the double clock period, because the

operation with computation error only has a one-cycle latency penalty (two-cycle

50

operation). If the timing constraint is larger than the double clock period, the
operation with computation error may need a two-cycle latency penalty (three-cycle
operation) to correct it. In our variable latency design, we only can accommodate a
one-cycle latency penalty.

Multiplier is one of the most energy-hungry functional units in datapath of DSP.
Here we will use a multiplier as an example to show the characterization results. The
structure of the multiplier is 8-bit unsigned carry-save-array multiplier. The
characterization in this example is cell based using UMC 90nm CMOS cell library
with Synopsys Design Compiler (Version VV2007-03) as synthesizer. The CAD tools
used to measure power and error rate are Synopsys PrimePower (Version VV2006.06)
and Cadence Verilog-XL respectively.

The peak operating frequency: of the multiplier is 1.6ns, hence the 1.6ns is
assumed as the given clock= period. Figure 3-16 shows the results of the
characterization. The x-axis represents--the--timing constraint, the left y-axis
represents the energy per multiplication, and-right y-axis represents the error rate.
The blue line represents the circuit energy that the circuits are synthesized with
different timing constraints, and the green line represents the error rate that the

circuits are operated at the 1.6ns clock period with different timing constraints.

51

—a— Energy (multiplier)
—— Error rate

c 2.40 Clock period 1 25.00%
XS] 1.6ns
§ 210p 1 20.00%
=) S
S_ 180 1 15.00% &
EQ g
S~ 150 - : 110.00% B
> (1]
o I
5 120 1 5.00%
5 |

0.90 — 0.00%

15 1.7 1.9 2.1 2.3 25

Timing constraint (ns)

Figure 3-16 Characterization results

The energy represents average energy consumption per multiplication, and it is
estimated at gate-level. The energy of the, multiplier is decreased rapidly as the
timing constraint is relaxed from 1.6ns.

The error rate represents the-probability of ‘the multiplier can’t complete the
operation within the given clock period. It is estimated using gate-level simulation
with 10,000 random pattern sequences operated at the 1.6ns clock period. For
instance, the circuit with 2.1ns timing constraint would complete 93.28% of all
operations without errors, and it would save about 55% energy consumption.

The range of timing constraints is from 1.6ns to 2.4ns, because the energy per
multiplication is almost the same when the timing constraint is larger than 2.1ns but
the error rate keeps increasing.

The concept of out proposed energy-efficient design is trading light performance
penalty for large energy reduction. Hence, from the energy curve shown in Figure
3-16, we are only interested to the multipliers that with timing constraint from 1.6ns

to 2.1ns, because the energy per multiplication is almost the same when the timing

52

constraint is larger than 2.1ns.

From the error rate curve shown in Figure 3-16, we are only interested to the
multipliers that with timing constraint from 1.6ns to 1.9ns, because the error rate in
this region is very small. So, we can only estimate the energy overhead (detection
logic) in this region.

Before we perform the step 2 — overhead estimation, we show the complete
characterization results in Table 3-1.The column 1 shows the timing constraints
(critical path delay) of the multiplier. The area and energy of the multiplier are
shown in column 2 and column 3 respectively. The column 4-9 in Table 3-1
represent the error rates of multiplier operating at different clock periods. The clock
period is only shown from 1.6ns to 2.1ns, because the energy can’t be saved when
the clock period is larger than 2.1ns. Hence, this-energy reduction technique is only

suitable for the high clock frequency.

clock period (ns) & error rate (%)
timing constraint (ns) | area (umz) energy-(pJ)

1.6 1.7 1.8 1.9 2.0 2.1
1.6 3,809 2.0464 0.00%
1.7 3,447 1.7935 0.14% | 0.00%
1.8 2,982 1.4582 1.81% | 0.06% | 0.00%
1.9 2,484 1.1191 1.12% | 0.07% | 0.00% | 0.00%
2.0 2,319 0.9984 6.03% | 0.96% | 0.04% | 0.00% | 0.00%
21 2,193 0.9192 6.72% | 1.08% | 0.10% | 0.02% | 0.00% | 0.00%
2.2 2,183 0.9392 10.38% | 2.39% | 0.30% | 0.04% | 0.00% | 0.00%
2.3 2,161 0.9644 | 20.02% | 7.99% | 1.78% | 0.12% | 0.01% | 0.00%
24 2,161 0.9696 22.10% | 9.04% | 2.37% | 0.31% | 0.06% | 0.01%

Table 3-1 Characterize multiplier for different clock periods

3.3.2 Overhead Estimation

53

Overhead estimation is the second step of our proposed design flow. The
overhead is the energy consumption of the detection logic. After the circuit
characterization, we generate the detection logic and estimate its energy
consumption (energy per operation). The energy consumption of detection logics is
estimated at gate level and operated at the given clock period.

For simplicity, we reduce the cell library space. The space of UMC 90nm CMOS
cell library is restricted to 2-input gates except XOR gate. If all gates are 2-input
gates in the netlist file, we can easily to program the detection logic generation and
analyze the violating paths of functional units.

Hence, we re-characterize the multiplier using the sub set of cell library. The

characterization results are shown in Figure 3-17.

—a— Energy (multiplier)

~—=&— FError rate

Clock period

_ — o)

6.00 [17ns 25.00%

3 520 - 20.00%
29 440 - 15.00% &
8 =
£'5 360 10.00% 5
: S
€ 280 5.00% -

2.00 0.00%

16 17 18 19 20 21 22 23 24
Timing constraint (ns)

Figure 3-17 Characterization results (sub-set cell library)

If we assume the clock period is 1.7ns, and the timing constraint of the multiplier
is from 1.7ns to 2.4ns. Compared with using full cell library (Figure 3-16), the
energy by using the reduced cell library is larger (Figure 3-17). Although restricting

54

the cell library would influence the circuit energy, the increase trend of energy is
also very drastic. It still exist a space for energy reduction also. For instance, the
circuit energy can be reduced about 60%, when the timing constraint is relaxed from
1.7ns to 2.3ns. The error rate is estimated with 1.7ns clock period and it is very great
when the timing constraint is larger than 1.8ns.

Next, we generate the detection logic and estimate the energy consumption. The
result is shown in Figure 3-18. The pink line represents the total energy consumption
that consists of multiplier and detection logic. The difference between the pink line

and blue line represents the energy consumption of detection logic.

—a— Energy (multiplier)

—— FError rate

Clock period ——#— Total energy

6.00 [1.7ns 1 25.00%

3 520 - 20.00%
()] c ;\3
=2 440 15.00% %
> 8 g
25 360 10.00% 5
E &

= 280 5.00%

2.00 0.00%

16 17 18 19 20 21 22 23 24
Timing constraint (ns)

Figure 3-18 Overhead estimation (clock period is 1.7ns)

When the timing constraint is larger than 1.8ns the error rate is very great such
that the performance penalty and complexity of detection logic are both very great
also. Because we only focus on light performance penalty, the error rate in Figure
3-18 needs to be reduced. The final step of our proposed design flow is overhead
reduction. | will introduce it in detail later.

55

If the clock period is 2ns, we re-characterize the error rate and re-estimate the
overhead. The result is shown in Figure 3-19. From it we can find the error rate is
very small and the total energy (multiplier + detection logic) is similar to a convex
function. Hence, the structure with minimum energy in this convex curve is the most
energy-efficient. The multiplier with 2.3ns timing constraint consumes 2.83pJ
(multiplier + detection logic), and it is operated at 2ns clock period only with 0.83%
performance penalty. The energy-delay value is the minimum value with the 2.3ns

timing constraint, and it can be called the most energy-efficient design.

—a— Energy (multiplier)
—&— Error rate
—&— Total energy

Most

40 [Clock period eargy-efficient | 4.00%
L2 35 2ns 2000 S
O o >
o o) 3 o)
> = E
>8 30 » 2.00% =
o = 5
c o =
W= 25 ¢ 1.00% W

&
2.0 ‘ ‘ 0.00%
1.9 2.0 2.1 2.2 23 54

Timing constraint (ns)

Figure 3-19 Overhead estimation (clock period is 2ns)

3.3.3 Overhead Reduction

Overhead reduction is the final step of our proposed design flow. The objective
of this step is to reduce performance penalty and energy overhead of the detection
logic.

Because the increase of error rate will cause the increase of performance penalty
56

and the complexity of detection logic, reducing the error rate is an effective method
to achieve overhead reduction. In order to reduce the error rate, we can reduce the
number of violating paths such that the probability of sensitizing the violating paths
can be reduced.

The number of violating paths can be reduced by upping the gate size of the
violating paths such that the path delay of some violating paths can meet clock
period [21][41], but it may increase the area and energy of the original functional
unit. Here, we re-synthesize the functional unit to adjust the number of violating
paths, and estimate the energy consumption of the functional unit and detection logic.
Hence we can find the most energy-efficient functional units.

Figure 3-20 shows the re-synthesis flow. The input files are the netlist file of the
functional unit and the violating paths report, and.the functional unit is operated at
the given clock period. The delay time of all.violating paths is larger than the given
clock period. In order to reduce the inumber-of.violating paths we need to perform

one pre-step and three recursive steps.

57

Functional unit L
(Netlist) Violating paths
T~ e
[Set all violating paths as

2-cycle path
v
v

—»[Choose the shortest path

g

Re - synthesis

o &€

v

Estimation)

Energy report

Min. energy ?

functional unit

Figure 3-20'Re-synthesis flow

The pre-step is to set all violating paths as 2-cycle path. The violating paths
represent that they can not complete computation in one clock cycle. In other words,
they need two clock cycles. Because the number of the violating path may be very
great, we only consider the input ports and output ports of the functional unit.

Next we select the “shortest path” of all violating paths as one-cycle path. Then
we re-synthesize the functional unit such that path delay of the “shortest path” will
be optimized. In other words, the path delay of the “shortest path” will meet one
clock period such that the number of violating path will be decreased. Hence, the
performance penalty and complexity of detection logic are also reduced, but the area

and energy of function unit may be increased. After re-synthesis, we need to

58

estimate the energy consumption of the functional unit and the detection logic. The
above steps need to be executed iteratively until the minimum energy design with
negligible performance penalty is found.

The re-synthesis flow is a heuristic solution, because we only consider the input
port and output port of the violating path instead of all gates on the path. Although
the re-synthesis can’t adjust the violating paths precisely, it can find a not bad
solution and very fast.

Here we choose a case that shown in Figure 3-18 to perform the re-synthesis
flow. The scale of the error rate (y-axis) is rearranged and the result (before

re-synthesis) is shown in Figure 3-21.

—&— Energy (multiplier)
—— Error rate

~—&—— Total energy

_ = o)
6-00 I Clock period 10.00%
=540 + 1.7ms 8.00%
- 2 9
8 S 480 - 6.00% ©
=)
55 -
o 2 420 | 400% &
W= m
2 360 | 2.00%
3.00 0.00%

1.6 1.7 1.8 1.9 2.0 2.1
Timing constraint (ns)

Figure 3-21 Before overhead reduction (re-synthesis)

Then perform the re-synthesis flow, the results is shown in Figure 3-22. The
error rate can be reduced effectively by the re-synthesis method, but the multiplier
energy is also increased. We also can find a convex curve of total energy that it has a

minimum energy value with negligible error rate.

59

The multiplier with 1.8ns timing constraint consumes 4.56pJ (multiplier +
detection logic), and it is operated at 1.7ns clock period only with 0.13%
performance penalty.

—sa— Energy (multiplier)

—— Errorrate
—&— Total energy

/ /
6.00 Clock period ;S 1 10.00%
/
_ 3 540 1.7ns // 1 800% 3
O ~ / D
9 480 ¢ / / 1 6.00%
> T ,/ -
O = 420 r J/ 1 4.00% £
w = // L
g 360 | / 1 2.00%
/
3.00 T 0.00%

1.6 1.7 1.8 1.9 2.0 2.1
Timing constraint. (ns)

Figure 3-22 After overhead reduction (re-synthesis)

60

4 EXPERIMENTAL RESULTS

In chapter 4 we show two experimental results. The first is to evaluate the energy
and area of the functional unit with the proposed energy-efficient design. The second
is to compare the different energy reduction.techniques for functional unit of DSP
core. These techniques that consist of parallel design, pipeline design and proposed

design are evaluated from area, energy, and performance penalty.

4.1 Simulation Results of Energy-Efficient Design

Most digital signal processor systems incorporate a multiplier to implement
algorithms such as convolution and filtering. In many DSP algorithms, the multiplier
lies in the critical path delay and ultimately determines the performance of the
algorithm. However, the demand for high-performance portable systems
incorporating multimedia capabilities has elevated the design for low-energy to the

forefront of design requirement in order to maintain reliability and provide longer

61

hours of operation.

Hence, the objective of this experiment is to find the most energy-efficient
multiplier that is operated at the peak clock frequency by our proposed design flow.
The multiplier is 8 bit and the structure of the multiplier is Booth-encoded
Wallace-tree. It is one of the fastest multipliers from Synopsys DesignWare IP. The
most energy-efficient multiplier represents that it is the one that consumed the least
energy among all configurations that deliver almost the same performance [40].

In this experiment, the proposed design flow is performed, and the multiplier is
synthesized using the Synopsys Design Compiler (Version V2007-03) with the
sub-set UMC 90nm CMOS cell library. The timing constraint is 1.2ns, because it is
the peak value of the multiplier can achieve. The Table 4-1 summarizes the area of
the conventional single-cycle multiplier and the proposed energy-efficient multiplier.
The overhead in column 3 (Table.4-1) is represented the area of detection logic.
Compared with the conventional multiplier,-the. proposed multiplier can save about

30% of total area.

Area (Um2)
Multiplier Overhead Total
Conventional 6816 0 6816
Proposed 3982 782 4764
Improvement 30%

Table 4-1 Estimated area

After the gate level synthesis, we used the Synopsys PrimePower (\ersion
V2006.06) to estimate the energy consumption (energy per multiplication) with
back-annotated timing and parasitic information. The multiplier works at 833 MHz

and computes 10,000 random patterns. Table 4-2 shows the energy per

62

multiplication of the conventional multiplier and the proposed multiplier. The
overhead in column 3 (Table 4-2) is represented the energy consumption of
detection logic. Compared with the conventional multiplier, the proposed multiplier

can save about 21% of total energy.

Energy (pJ)
Multiplier Overhead Total
Conventional 3.236 0.000 3.236
Proposed 2.387 0.178 2.565
Improvement 21%

Table 4-2 Estimated energy per multiplication

The proposed multiplier has 0.17% error rate that is estimated by 10,000 random
patterns. In other words, the conventional-multiplier.needs 10,000 cycles to compute
the 10,000 random patterns, but ‘the proposed multiplier needs 10,017 cycles to
compute the 10,000 random patterns. Compared with the energy reduction (21%),
the performance penalty (0.17%) is very light.

If we synthesize the multiplier with power optimization constraint, the multiplier
energy with conventional synthesis strategy can be reduced to 2.8pJ. Our proposed
method can also apply the power optimization constraint, and the energy of the
proposed multiplier can also be reduced. The ratio of the energy reduction by
proposed method is almost the same as the ratio of the energy reduction by

conventional method.

4.2 Comparison of Energy Reduction Techniques

Although relaxing the timing constraint is an effective method for energy

reduction, it directly causes the performance (clock frequency) degradation. The
63

proposed energy-efficient design can compensate the clock frequency degradation,
and it has only light performance penalty.

Exploiting parallelism or pipelining is also an effective method to compensate
for the loss in performance. They can achieve the same clock frequency and data
throughput, but the data latency is increased such that high data parallelism is
required.

In this experiment, we compare the three different energy reduction techniques
for multiplier of DSP core. The multiplier is the major component of DSP core, and
it consumes the most energy among the datapath (adder, shifter and multiplier) in
DSP core. The different techniques that consist of parallel design, pipeline design
and proposed design, they are evaluated from area, energy, and performance penalty.
The structure of the 8-bit multiplier:is Booth-encoded Wallace-tree.

The baseline DSP model is similar as MIPS architecture [42]. It is a single-issue
and in-order pipeline with 5 pipelineistages.-T-he conceptual architecture is shown in
Figure 4-1. It has forwarding path-.and_oenly the arithmetic instructions are

considered such that the ideal CPI of this DSP model is 1.

> IF > > ID > — EXE —» > MEM > —> WB

I P Zas) i~ A

Figure 4-1 Baseline DSP model

The DSP model with parallel multiplier design and pipeline multiplier design are
shown in Figure 4-2 and Figure 4-3 respectively. Although the two designs can
reduce the multiplier energy and achieve the same throughput, they may suffer data

hazards from limited instruction level parallelism. When the result of multiplier is

64

needed to the next instruction immediately, it can not be forwarded immediately
such that these systems require a stall cycle. If the application has very poor
instruction level parallelism, the performance of the systems will be degraded

seriously.

»ALU»B—»MEM»
> IF > > ID —» WB

R

m

i 7 I~ A,

Figure 4-2 DSP model with parallel multiplier design

> ALU [(> MEM —»

Figure 4-3 DSP model with pipeline multiplier design

The DSP model with proposed multiplier design is shown in Figure 4-4. The
multiplier is augmented with the detection logic. When the detection logic detects a
computation error in multiplier, all of the previous stages are stalled one cycle and
the next stage is inserted a bubble (no-op) signal. Since the multiplier has one
additional cycle to re-compute the multiplication such that the computation error can

be corrected, but it spend a one-cycle latency penalty.

65

— ALU

\4

L |-

Figure 4-4 DSP model with proposed multiplier design

We use the sub-set of UMC 90nm CMOS cell library to evaluate area of
multiplier and overhead. The operating period is 1.2ns that is the peak performance
of the multiplier. The area of the multiplier is shown in Table 4-4. The single cycle
design has the maximum. Compared with single cycle design, all of the three
designs can reduce area effectively. Although the parallel design has two multipliers,
the total area of the parallel design is smaller than the total area of the single cycle
design. The timing constraint of the parallel design can be relaxed to double of the

clock period such that the average area per multiplier is the minimum of four

Detection

—> MEM

»
»

bubble

designs.
Design Area (um2)
Single cycle 6816
Parallel 5967
Pipeline 4175
Proposed 4764

Table 4-3 Estimated total area

66

wWB

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

O Single cycle
M Parallel
I Pipeline

O Proposed

NONNANNNNN

—
= A= [J" q ll “ "-.\
Figure 4-5 Area is noriﬂa,trzed byf@rresun bf single cycle design

"_.I" L— - L .5.,

- V- 5

—r"
'FH'i- ""-':_] 185 r".:-‘\;j"

We use the MIPS compller (ﬁ;:e _4..212';;0 compile the benchmarks. One
benchmark is color space transform of JPEG [43], and the input file is 64 x 64 Lena
image. Another benchmark is a 16 taps finite impulse response (BDTI benchmark
[44]), and the input file has 200 samples.

After the benchmark is compiled, we count the cycle count and generate the
input patterns for multiplier based on the different DSP models. We take the
assembly code of Chroma part to explain how we count the cycle count, and the

code is shown in Figure 4-6.

67

$L15:

w $3,0(52)

w $2,8(5fp) w $3, 0($2)

#nop Iw $2, 0($fp)
mult $3, $2 #nop

mflo $2 mult $3, $2

sw o $2, 52($fp) mflo $3

w $2, 48(Stp)
Iw $3, 0($2) #nop

W $2, 4(5fp) addu 82, $3, $2
#nop sw $2, 44($fp)
mult $3, $2

mflo $3 $L14:

w82, 52($fp) W $2,60(Sfp)

#nop #nop

addu $2, $3, $2 slt~— $2, $2, 8

sw $2, 48($fp) bne $2, $0, $L15

Figure 4-6 Assembly code.of Chroma

We only consider the arithmetic instructions of the code — 3 multiplication and
2 addition. For baseline DSP model;.it spends 5.cycles to execute the 5 instructions.
For DSP model with parallel or pipeline multiplier design, it spends 7 cycles to
execute the 5 instructions, because “addition after multiplication” incurs data hazard.
The output of multiplier can not forward to adder immediately. For the DSP model
with proposed multiplier design, it spends 5~8 cycles to execute the 5 instructions
according to the computation errors in multiplier.

Hence, the total cycle count of finishing color space transform of the Lena image
and 200 samples of 16-tap FIR is shown in column 2 and column 4 of Table 4-4.
Both the parallel and pipeline design spend longer execution time, because they has
many stall cycles according to the data hazards. “Addition follows multiplication” is
very common in many applications, such as image, audio, and video.

Column 3 and column 5 of Table 4-4 show the energy consumption of these

68

multipliers to compute the multiplications of color space transform and the 16-tap

FIR.
) Color space transform FIR
Design
Cycle count Energy (nJ) Cycle count Energy (nJ)

Single cycle 34,816 61.37 6,400 10.45
Parallel 47,104 42.44 9,600 6.96
Pipeline 47,104 46.09 9,600 8.62
Proposed 34,876 46.74 6,412 7.43

Table 4-4 Simulation results

Figure 4-7 shows the simulation results that are normalized by the results of single

cycle design. All of the three techniques can reduce the energy consumption

effectively, but both the parallel and pipeline design spend longer execution time

according to the data hazards.

1.6

1.4
1.2

1
0.8
0.6
0.4
0.2

Exe. time
Color space transform Finite Impulse response

Energy Exe. time

Energy

B Single cycle
B Parallel

O Pipeline

O Proposed

Figure 4-7 Normalized by the result of single cycle design

69

The energy-delay value is shown in Figure 4-8, the results are normalized by the
result of single cycle design. We can find that the proposed design is the most

energy-efficient.

1.4

O Single cycle
M Parallel
O Pipeline
O Proposed
Color space transform FIR
‘;_-.l" L-’##j‘;'-. ' ‘-';l
= 1896 |
Figure 4-8 Energy- dela'iak/@”rué'rfbrrﬁﬁhzeg*by single cycle design
v.- p "'\..
¥ -u“ };:].‘n i‘&

70

5 CONCLUSIONS

For the increasing demand- of high computing power and high mobility, the
energy reduction now becomes antimportant_issue in the VLSI designs. In the
synchronous digital circuits, traditional synthesis timing constraint is based on the
given clock period for function correctness, but that always makes the energy soar
when the clock frequency and timing constraint approach the peak value. In this
thesis, we propose a design method for improving energy efficiency of functional
units. It exploits data-dependent delay to reduce synthesis timing constraint such that
the energy consumption can be reduced effectively and the desired clock period will
not be degraded, but it will cause computation errors and spend performance penalty
for correcting the errors.

For the computation errors, we generate the detection logic to detect and spend
one-cycle latency penalty to correct. The detection logic is generated by analyzing
the violating paths under transition delay such that it can detect errors more

precisely. If the error is detected by detection logic, all the previous pipeline stages
71

are latched one more cycle to re-compute the data, and the next stage is inserted a
bubble (no-op) signal. We also propose a design flow which systematically
determines the timing constraint and fine tune the number of violating paths for
maximizing energy reduction and minimizing performance penalty.

In our simulation, we use the proposed technique in 8-bit multiplier to reduce
energy consumption with the UMC 90nm CMOS cell library. The energy
consumption can be reduced about 10% ~ 29% and the performance penalty is
negligible (<1%). We further compare our proposed technique with the techniques
of exploiting parallelism (parallel design and pipeline design) in a multiplier of DSP
core. All the techniques can reduce the circuit energy effectively, but the techniques
of exploiting parallelism have worse performance. Because exploiting parallelism
design need high instruction level parallelism otherwise it incurs serious data
hazards and stall cycles.

Our future work is to improveithe-energy and area of detection logic. The
complexity of detection logic increases. drastically when the error rate lightly
increases. That limits the degree of relaxing the timing constraint. Because the
detection logic is a Boolean function, we can insert some don’t care patterns such
that the complexity of the function can be simplified effectively. We now investigate
the systematic method that can insert some don’t care patterns efficiently.

At the same time, because energy is proportional to the square of the supply
voltage, voltage scaling is one of the most effective methods for energy reduction.

We will apply the same concept to reduce the supply voltage for energy reduction.

72

REFERENCE

[1]

[2]

[3]

[4]

[5]

[6]

[7]

P. P. Gelsinger, “Gigascale “integration for teraops performance-challenges,
opportunities, and new frontiers;” in Proc. DAC, 2004

V.Venkatachalam, M. Franz, “Power reduction techniques for microprocessor
systems,” ACM Computing Surveys, Sep. 2005

I. Buchmann. Batteries in a Portable World. [Online]. Available:

http://www.cadex.com

K. Lahiri, A. Raghunathan, S. Dey, D. Panigrahi, “Battery-driven system
design : a new frontier in low power design,” in Proc. VLSI, 2002

A. P. Chandrakasan, S. S. Bradersen, and R. W. Brodersen, “Low-power
CMOS digital design,” IEEE J. Solid-State Circuits, pp. 473-483, Apr. 1992

J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic, Digital Integrated Circuits:
A Design Perspective, 2" Edition, Prentice Hall, 2003

D. Emst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T.

73

http://www.cadex.com/

Austin, K. Flautner, and T. Mudge, “Razor : a low-power pipeline based on
circuit-level timing speculation,” in Proc. Micro, 2003

[8] G. Wolrich, E. McLellan, L. Harada, J. Montanaro, and R. Yodlowski, A high
performance floating point coprocessor,” IEEE J. of Solid-State Circuits, Oct.
1984

[9] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Opportunities and
challenges for Better than Worst-Case Design,” in Proc. ASP-DAC, Jan. 2005

[10] A. Keshavarzi, K. Roy, and C. Hawkins, “Intrinsic leakage in low power deep
submicron CMOS ICs,” in Proc. ITC, 1997

[11] L. WEei, Z. Chen, K. Roy, M. C. Johnson, Y. Ye, and V. K. De, “Design and
optimization for dual-threshold circuits for low-voltage low-power
applications,” IEEE Trans. VLSI Systems, Mar. 1999

[12] Z. Chen, C. Diaz, J. D. Plummer, M. Cao and W. Creene, “0.18um dual Vt
MOSFET process and energy-delay-measurement,” in Proc. IEDM, 1996

[13] H. J. M. Veendrick, “Short-circuit.dissipation of static CMOS circuitry and its
impact on the design of buffer circuits,” IEEE J. Solid-State Circuits, Vol.
SC-19, Aug. 1984

[14] A. Chatterjee, “An investigation of the impact of technology scaling on power
wasted as short-circuit current in low voltage static CMOS circuits,” in Proc.
ISLPED, 1996

[15] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power consumption in
digital CMOS circuits,” in Proc. IEEE, Apr. 1995

[16] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation, John Wiley & Sons, 1999

[17] K. Usami and M. lgarashi, “Low-power design methodology and applications

utilizing dual supply voltages,” in Proc. ASP-DAC, Jan. 2000
74

[18] S. H. Kulkarni and D. Sylvester, “Power distribution techniques for dual VDD
circuits,” in Proc. ASP-DAC, 2006

[19] K. Usami, M. Igarashi, F. Minami, T. Ishikawa, M. Kanazawa, M. Ichida, and
K. Nogami, “Automated low-power technique exploiting multiple supply
voltages applied to a media processor,” IEEE J. of Solid State Circuits, Mar.
1998

[20] J.-M. Chang and M. Pedram, “Energy minimization using multiple supply
voltages,” IEEE Trans. VLSI Systems, Dec. 1997

[21] O. Coudert, “Gate sizing for constrained delay/power/area optimization,” IEEE
Trans. VLSI Systems, Dec. 1997

[22] C. Im, H. Kim, and S. Ha, “Dynamic voltage scheduling techniques for
low-power multimedia applications using buffers,” in Proc. ISLPED, Aug.
2001

[23] H. Saputra, M. Kandemir, N. Vijaykrishnan, M.-lrwin, J. Hu, C.-H. Hsu, and U.
Kremer, “Energy-conscious compilation-based on voltage scaling,” LCTES,
2002

[24] L. Benini, P. Siegel, and G. De Micheli, “Automatic synthesis of gated clocks
for power reduction in sequential circuits,” IEEE Design Test Computer
Magazine, pp. 32-40, 1994

[25] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou,
“Precomputation-based sequential logic optimization for low power,” IEEE
Trans. VLSI Systems, 1994

[26] J. Monteiro, S. Devadas, A. Ghosh, “Sequential logic optimization for low
power using input-disabling,” IEEE Trans. Computer-Aided Design, 1998

[27] L. Benini, G. D. Micheli, A. Lioy, E. Macii, G. Odasso, and M. Poncino,

“Synthesis of power-managed sequential components based on computational
75

kernel extraction,” IEEE Trans. Computer-Aided Design, Sep. 2001

[28] G. Paci, P. Marchal, and L. Benini, "Exploration of low power adders for a
SIMD data path,” in Proc. ASP-DAC, Jan. 2007

[29] S. Dhar, D. Maksimovic, and B. Kranzen, “Closed-loop adaptive voltage
scaling controller for standard-cell ASICs,* in Proc. ISLPED, Aug. 2002

[30] J. Choi, J. Jeon, and K. Choi, “Power minimization of functional units by
partially guarded computation,” in Proc. ISLPED, Jul. 2000

[31] B. Razavi, Design of Analog CMOS Integrated Circuits, New York:
McGraw-Hill, 2001

[32] S. Padmanaban, M. K. Michanel, and S. Tragoudas, “Exact path delay fault
coverage with fundamental ZBDD operations,” IEEE Trans. Computer-Aided
Design of Integrated Circuits:and Systems, 2003

[33] H.-C. Tsai, K.-T. Cheng,-and.\V.. D. Agrawal,-“A testability metric for path
delay faults and its application,in-Pro¢c.ASP-DAC, Jan. 2000

[34] Synopsys Prime Time User: Guide. (Fundamentals). [Online]. Available:

http://www.synopsys.com

[35] H.-C. Chen and D. H.-C. Du, “Path sensitization in critical path problem,”
IEEE Trans. Comput. -Aided Design Integrated Circuits, Feb. 1993

[36] P. McGeer and R. Brayton, “Efficient algorithms for computing the longest
viable path in a combinational network,” in Proc. DAC, 1989

[37] B. Konemann, J. Barlow, P. Chang, R. Gabrielson, C. Goertz, B. Keller, K.
McCauley, J. Tischer, V. lyengar, B. Rosen, and T. Williams, “Delay test: the
next frontier for LSSD test systems,” in Proc. Int. Test Conf., Oct. 1992

[38] A. Kristic and K.-T. Cheng, Delay Fault Testing for VLSI Circuits, Kluwer
Academic Publishers, Boston, 1998.

[39] H. Choi and S. H. Hwang, “Practical use of transition mode delay to solve the
76

http://www.synopsys.com/

problem of floating mode delay under highly correlated input streams,” in Proc.
ICCD, Oct. 1998

[40] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power digital design,” in
Proc. ISLPED, Oct. 1994

[41] S. Raj, S. B. K. Vrudhula, and J. Wang, “A methodology to improve timing
yield in the presence of process variations,” in Proc. DAC, 2004

[42] J. L. Hennessy, and D. A. Patterson, Computer Architecture: A Quantitative
Approach, Morgan Kaufman Publishers, 4" Edition, 2007

[43] Independent JPEG Group. [Online]. Available: http://www.ijg.org

[44] Berkeley Design Technology Inc. [Online]. Available: http://www.bdti.com

77

http://www.ijg.org/
http://www.bdti.com/

78

o W

P E 8 21984 & 67 21 p A LP BRod 2006 FB~FR P B E T
1AREF AELIER IR AR RUELAFTF A oL o § ~ 2008 &
EBEIR AR ET O PERLE AR T AR R g B LR H A

c B | AERALHmT o

= »

7
~

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement and Related Works
	1.3 Thesis Organization

	2 Low-Power & Energy-Efficient Design Methods
	2.1 CMOS Power/Energy Dissipation
	2.1.1 Static Power Dissipation
	2.1.2 Dynamic Power Dissipation

	2.2 Static Approaches
	2.2.1 Supply Voltage
	2.2.2 Switching Activity and Capacitance

	2.3 Dynamic Approaches
	2.3.1 Supply Voltage
	2.3.2 Switching Activity and Capacitance

	2.4 Adaptive Approaches
	2.4.1 Supply Voltage
	2.4.2 Switching Activity and Capacitance

	3 Proposed Energy-Efficient Design
	3.1 Delay of CMOS Circuits
	3.2 Variable Latency Design
	3.2.1 Template of Variable Latency Design
	3.2.2 Detection Logic

	3.3 Design Flow
	3.3.1 Characterization
	3.3.2 Overhead Estimation
	3.3.3 Overhead Reduction

	4 Experimental Results
	4.1 Simulation Results of Energy-Efficient Design
	4.2 Comparison of Energy Reduction Techniques

	5 Conclusions
	 Reference

