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摘要 

    隨著可攜式裝置的需求持續增加，以及多媒體和通訊應用所需要的運算能力也越來

越強，因此降低能量消耗已經變成電路設計中主要的考量因素。在一般同步數位電路中， 
為了確保運算都能正確無誤，合成電路的時序限制(timing constraint)都會根據所希望的

操作時脈來設定，但是當操作時脈拉高時，電路所消耗的能量會隨著時序限制的變緊而

劇烈增加。在本篇論文中，我們提出一個改善運算單元(functional units)能量效率的方

法，而這個方法主要是利用資料相依延遲(data-dependent latency)的特性來放鬆合成電路

時的時序限制，如此可以有效降低運算單元的能量消耗而且不需要降低運算單元的操作

時脈，這樣的方式雖然會造成一些資料的運算錯誤以及修復錯誤所花費的效能代價，但

是在運算單元裡的最長路徑通常只會被少數的特定資料所感應(sensitize)，大部分的資料

所需要的運算時間都小於操作時脈，所以只需要很小的效能代價。因此，我們設計一個

偵測單元(detection logic)來偵測這些會造成運算錯誤的少數的資料，並且額外多花費一

個週期的運算時間來修復錯誤，此外，我們也提出一個系統化的方法來設定運算單元合

成時的時序限制以及調整資料運算錯誤的發生機率，讓我們可以利用最小的效能代價來

節省最大的能量消耗。在我們的模擬中，我們利用所提出的方法來改善一個 8-bit 乘法

器的能量效率，並且利用隨機資料(random pattern)，還有色彩空間轉換(color space 
transform)和有限脈衝響應(FIR)等測試程式來分析，在製程環境是 UMC 90nm CMOS cell 
library 下，和傳統設計方法相比可以有效降低 10%~29%的能量消耗，而所花費的效能

代價是非常小的甚至是可以忽略的(<1%)。 
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ABSTRACT 

    For the increasing demand of portable devices and high computing power requirement 
for the multimedia and communication applications, the energy reduction now has become a 
major issue in the circuit design. In the synchronous digital circuits, synthesis timing 
constraint is based on the desired clock period for function correctness, but the circuit energy 
increases drastically when the synthesis timing constraint and clock frequency approach peak 
value (peak speed). In this thesis, we propose a design method for improving energy 
efficiency of functional unit. It exploits data-dependent latency to relax synthesis timing 
constraint so that the energy consumption can be reduced effectively and the desired clock 
period will not be degraded, but it will cause some computation errors and spend performance 
penalty for correcting the errors. Critical paths of the circuits are usually sensitized by very 
specific data sequences, and computation time of most data sequences is smaller than clock 
period. Hence the performance penalty may be very small. Because of this property we 
generate the detection logic to detect the specific data sequences that will cause computation 
errors and spend one-cycle latency penalty to correct the errors. Besides, we also propose a 
design flow which systematically determines the synthesis timing constraint and fine tunes the 
error rates, therefore we can trade the minimum performance penalty for the maximum energy 
reduction. In our simulations, we use the proposed technique in an 8-bit multiplier to improve 
the energy efficiency with the UMC 90nm CMOS cell library. The benchmarks consist of 
random patterns, color space transform and FIR. Compared with conventional synthesis 
strategy, the proposed method can reduce 10% ~ 29% of energy consumption and the 
performance penalty is negligible (<1%). 
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1   Introduction 

1.1  Motivation  

As number of transistor is doubled every technology generation, chips grow in 

functionality and switching frequencies [1]. The millions of parasitical capacitances 

charging and discharging at an ever-increasing rate have led to a soaring amount of 

power dissipation. For desktop computers, the high power densities reduce chip 

reliability and life expectancy [2], shown in Figure 1-1. To keep the system stable, 

the cooling system is necessary and thus induces additional cost. 
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Figure 1-1 Power density trend [2]

With today’s growing popularity of portable devices such as cell phones, PDAs, 

and laptops, low energy consumption is also one of important issues in VLSI 

designs. The duration of operation time is limited by the battery capacity in 

microamp-hour or watt-hour. Devices that operate with high energy consumption 

can only be used for short duration of time. The duration of operating time can be 

lengthened by using a battery with higher capacity. Unfortunately, projected 

improvements in the capacity of batteries (5-10% CAGR [3]) are much slower than 

what is needed to support the increasing complexity, functionality and performance 

of the systems they power [4]. The need to improve battery life time has driven the 

research and development of low power and energy-efficient design techniques for 

electronic circuits and systems. The low power and energy-efficient circuit design 

methods are discussed in Chapter 2. 

Generally, the DSP processor is the key component of portable system, and it 

always dominates the performance of the system and consumes large amount of 
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energy from battery. The functional units in the DSP processor are used to 

implement multimedia processing, and they always dominate the clock frequency 

and determine the performance of the processing. However, the demand for 

high-performance portable systems incorporating multimedia capabilities has 

elevated the design for low-energy to the forefront of design requirement in order to 

maintain reliability and provide longer hours of operation. 

1.2  Problem Statement and Related Works 

High performance and low energy always represent contradictory design 

requirements. In our experiments, we found the relationship between energy and 

timing constraint, and it is shown in Figure 1-2. 

 

Figure 1-2 Energy v.s timing constraint 

Tightening the timing constraint of the circuit will induce the increasing of the 

circuit energy consumption. Especially when the timing constraint approaches the 

peak value (the minimum value), the circuit energy increases drastically. The reason 

for the soared energy is to use the cells with high driving ability and low threshold 

voltage, improve the circuit structure and use high supply voltage [5]. Hence, 
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relaxing timing constraint can reduce the circuit energy effectively, but it makes 

clock frequency degradation. 

Exploiting parallelism is one of the effective methods to compensate for the loss 

in clock frequency [6]. Figure 1-3 (a) shows the original circuit with sample rate 1/T, 

and the timing constraint of the multiplier is T. Figure 1-3 (b) shows the multiplier 

with the timing constraint of the multiplier is relaxed to 2T, and therefore the energy 

consumption is reduced. Although the energy is reduced, the clock frequency is 

degraded to 2T for functional correctness and the sample rate is 1/2T. Exploiting 

parallelism can compensate the clock frequency degradation and gain the energy 

reduction, shown in Figure 1-3 (c) and (d). 

2T
1

T
1

T
1

T
1

T
1

2T
1

T
1

T
1

T
1

 

Figure 1-3 Exploiting parallelism 

Parallel design (Figure 1-3 (c)) uses two low energy multipliers (Figure 1-3 (b)) 

to interleave computation, hence both the sample rate and clock frequency are 1/T. 

The average energy per operation is almost the same as Figure 1-3 (b), but it needs 
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mux and de-mux to control the computation. Pipeline design (Figure 1-3 (d)) inserts 

registers into the low energy multiplier (Figure 1-3 (b)) to compensate the clock 

frequency and sample rate. The overhead is pipeline registers. The main drawback 

of these two designs is data latency. Therefore, they require high data parallelism to 

hide latency. If the instruction level parallelism in a program is inefficient and 

limited, the design will incur serious data hazards and many stall cycles. 

In the thesis, we exploit the circuit data-dependent delay [7][8][9] to achieve 

energy reduction. In many designs, the critical paths may be activated infrequently. 

Hence we propose a method to relax the synthesis timing constraint for energy 

reduction, and it doesn’t make clock frequency degradation. Because of this 

property we generate the detection logic to detect the specific data sequences that 

will cause computation errors and spend one-cycle latency penalty to correct the 

errors. Besides, we also propose a design flow which systematically determines the 

synthesis timing constraint and fine tunes the error rates, therefore we can trade the 

minimum performance penalty for the maximum energy reduction. 

1.3  Thesis Organization 

The rest of this thesis is organized as follows. Chapter 2 introduces several 

techniques of energy reduction the techniques are classified into categories. The 

proposed design method is also described. Chapter 3 addresses the data-dependent 

delay and the template of the variable latency design. The variable latency design 

can tolerate the computation errors by two-cycle latency, and the detection logic that 

is included in the variable latency design is responsible to detect the computation 

errors. Moreover, the design flow for the proposed energy-efficient circuit is also 

introduced in the Chapter 3. Chapter 4 shows simulation results consist of area, 
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energy and performance. The proposed technique is compared with parallel design 

and pipeline design. Finally, Chapter 5 concludes this thesis and describes the future 

works. 
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2   Low-Power & 

Energy-Efficient Design 

Methods 

Power dissipation and energy consumption are critical factors in the design of 

any system-on-chip. For battery-powered applications, these are extremely 

important because they govern battery lifetime and users always value products that 

run longer on a battery change. Power dissipation of digital CMOS circuits consists 

of static power dissipation and dynamic power dissipation. Static power dissipation 

is defined as the power that is dissipated without any switching in the circuit. 

Leakage current is the major source of static power dissipation. On the other hand, 

the dynamic power dissipation is due to the signal transitions in the circuit. Dynamic 

power consists of two parts: the first (switching power) is caused by charging and 
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discharging load capacitance of gates, and another (short circuit power) is due to the 

conduction path between supply voltage and ground appears during signal transition. 

Static power consumption has been traditionally ignored since it has been 

negligible; however it is becoming more significant with the downward-scaling of 

transistor dimensions. Therefore opportunities for significant power reduction are 

available in both static and dynamic power.  

This chapter focuses on methods for dynamic power (dynamic energy) reduction 

mainly. The methods of dynamic power (energy) reduction are classified to three 

approaches (static approaches、dynamic approaches、adaptive approaches), they 

would be discussed in detail below. 

2.1  CMOS Power/Energy Dissipation 

Power dissipation in CMOS circuits can be divided into three main components: 

short-circuit power, switching power, and leakage power. Although the terms 

“power” and “energy” have different definitions, both serve to achieve the same 

objective [2]. Power is defined as the average power that is supplied to a circuit from 

the power supply and is measured in “watts”. Meanwhile, the term energy refers to 

the total amount of power dissipation over a period of time. Energy is measured in 

“joules”. In fact, energy can be expressed in terms of the power-delay product that is 

shown in equation (2-1), which is the product of power consumption and execution 

time. 

Time Power  Energy ×=                     (2-1) 

2.1.1  Static Power Dissipation 
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Ideally, the CMOS circuits dissipate no static power since there is no direct path 

from VDD to ground in the steady state. In Figure 2-1 shows a CMOS inverter model, 

for a complementary CMOS circuit, if Vin is “0” that N-MOS will be turned off 

while the P-MOS is turned on. The output voltage (Vout) will be “1”. On the 

opposite, if Vin is “1” that N-MOS will be turned on while the P-MOS is turned off. 

The output voltage (Vout) will be “0”. From this scenario, the CMOS circuit has no 

direct path from VDD to ground, therefore it will not induce the static power 

dissipation. However, the scenario of ideal CMOS circuit cannot be realized in 

practice since the MOS transistor is not a perfect switch. There are some small static 

dissipation due to reverse bias leakage current (junction reverse bias current) 

between the diffusion regions and the substrate [10]. In addition, “sub-threshold 

conduction current” and “gate-induced drain leakage” can contribute to the static 

power dissipation. 

 

Figure 2-1 CMOS inverter model 

 

The reverse bias leakage current is due to the parasitic diodes existing in CMOS 

transistor. To give a comprehensive explanation, Figure 2-2 depicts the parasitic 
9 

 



 

diodes in a CMOS inverter. Consider when Vi equals ground, the NMOS is turned 

off, and the PMOS is turned on. Thus Vo is driven to high, and parasitic diode made 

of n+ diffusion and p-substrate is reversely biased. That is, there will be a diode 

reverse saturation current drawn from supply to ground. 

 

Figure 2-2 Model describing parasitic diodes present in a CMOS inverter 

The sub-threshold conduction current is between source and drain when supply 

voltage is below threshold voltage. The gate-induced drain leakage current arises in 

the high electric field under gate and drain overlap region causing a thinner 

depletion region of drain to well junction. 

The static power dissipation equals the product of device leakage current and 

supply voltage. Equation (2-2) represents the static power dissipation, where 

“Ileakage” is a sum of all leakage currents. The static power is independent of signal 

switching. 

leakageDDstatic IVPower ×=                   (2-2) 

The leakage current is related to the threshold voltage. Threshold voltage will 

affect the leakage current exponentially. Higher threshold voltage will result smaller 
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leakage current and smaller static power dissipation. But the high-threshold 

transistor takes longer time to complete a transition. Therefore, Dual threshold 

voltage [11][12] is a scheme of reducing leakage current by assigning some 

high-threshold voltage transistors in the non-critical paths, and using low-threshold 

transistors in the critical paths. 

 

2.1.2  Dynamic Power Dissipation 

The dynamic power dissipation consists of two parts: one is due to short-circuit 

current when both pull-up and pull-down transistors are momentarily on at the same 

time, another is due to switching current from charging and discharging parasitic 

capacitance of the CMOS circuits. 

 Short Circuit Power Dissipation 

The short circuit power dissipation is dependent on signal switching. During the 

output transfers from logic 1 to logic 0 or from logic 0 to logic 1, there exists a 

discharging path from supply voltage to ground for a short period. This is because of 

the rising time and falling time of PMOS or NMOS are not ideal zero. Taking 

CMOS inverter as an example, if the rising and falling time of input waveforms are 

not zero, when Vtn < Vin < VDD - |Vtp| holds for the input voltage, there will be a 

conductive path open between VDD and ground because both the NMOS and PMOS 

devices are turned-on (where Vtn and Vtp are threshold voltages of NMOS and 

PMOS). The short circuit current is from VDD to ground, as described in Figure 2-3.  

On a low-to-high transition at the input, the NMOS will start to conduct when 

Vin is equal to Vtn, and the PMOS will stop conducting when Vin is equal to {VDD - 

|Vtp|}. In this inverter example [6], the short circuit power is given by equation (2-3). 
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The “t” is the rising time or the falling time of the input signal, and Vt = Vtn = 

|Vtp|. Also, the effective transistor strengths are equal for the NMOS and PMOS; let 

ppnn WW βββ == . 

 

Figure 2-3 Model describing parasitic diodes present in a CMOS inverter 

 

By the equation (2-3), short circuit current is significant when the rising or 

falling time at the input of a gate is much longer period of time, which means more 

significant short circuit dissipation. Thus to minimize the short circuit dissipation, it 

is desirable that the short-circuit dissipation is minimized by making the output 

rising or falling time larger than the input rising or falling times [6][13]. Careful 

design is required to keep this component of power dissipation small enough to be 

ignored [14]. 
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 Switching Power Dissipation 

The other part of dynamic power dissipation is due to signal switching of the 

nodes in the circuit. The power is dissipated when the circuit capacitance is charged 

to VDD throughout the pull-up network (PMOS) and discharged to ground 

throughout the pull-down network (NMOS). Figure 2-4 describes the switching 

power in a CMOS inverter. The equation (2-4) is calculating the energy that needed 

to charge the circuit capacitance and the equation (2-5) is calculating the energy that 

will be discharged while pull-down network is turned on [6]. 

 

Figure 2-4 Switching power in a CMOS inverter 
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It means that the capacitance only sustained half-the-energy that charged. 

Obviously, for each switching cycle (consisting of an L  H and an H  L 

transition) takes a fixed amount of energy,  2
DDLVC .

 
In order to compute the power consumption, we have to take into account how 
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often the device is switched. If the gate is switched on and off “f” times per second, 

the power consumption is given by equation (2-6), where “α ” is the switching 

activity factor which represents the probability of the switching from 0 to 1. 

fVCP 2
DDLswitching α=                        (2-6) 

So far we know that power dissipation is composed of static power dissipation 

and dynamic power dissipation. The total power consumption of the CMOS is the 

sum of its three components. The dynamic power dissipation (switching power 

dissipation) is the major source of total power dissipation, when the signal is 

switching [6]. From equation (2-1), we can derive the dynamic energy consumption 

(per transition) that is shown in equation (2-7). 

22 VCTimefVCTimePowerEnergy αα =×≈×= DDLDDL           (2-7) 

The dynamic energy consumption is related to the supply voltage, switching 

activity and switching capacitance. Reducing energy consumption is independent of 

clock frequency. It is related to the supply voltage and circuit capacitance (switching 

activity and switching capacitance). If it is possible, using lowest voltage and 

smallest amount of capacitance will result the design with minimum energy 

dissipation, but it will slow down the path delay. On the other hand, increasing the 

supply voltage or gate size (capacitance) will improve the circuit delay, but it will 

increase the circuit energy. 

Here I classify the methods of power and energy reduction into three categories: 

static approaches, dynamic approaches and adaptive approaches. 

2.2  Static Approaches 
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This category is said that the circuit is optimized at design time and it is 

inflexible at run time. I’ll introduce the techniques of energy reduction by reducing 

supply voltage and switch activity/capacitance respectively. 

 

2.2.1  Supply Voltage 

 Algorithmic transformation 

The choice of algorithm is the most highly leveraged decision in meeting the 

power constraints. Transformations are changes of the computational structure in a 

manner that the input/output behavior is preserved. The use of transformations 

makes it possible to explore a number of alternative architectures and to choose 

which result in the lowest power. The key approach is reducing the supply voltage 

by minimizing the number of operations and exploitation of concurrency. 

At algorithm level, minimizing the number of operations and exploitation of 

concurrency can increase the throughput such that the supply voltage can be reduced 

to meet the requirement. The example is a first order IIR filter shown in [15] that it 

is applying loop unrolling and algebraic transformations to exploit data concurrency. 

We also can design a FIR filter with polyphase decomposition to minimize the 

number of operations [16]. 

 Parallelism & pipelining 

At the architecture level parallelism and pipelining are also the effective way to 

increase the circuit throughput and frequency such that the supply voltage can be 

reduced. Although it would increase the circuit capacitance (area), supply voltage is 

square proportioned to energy consumption such that energy can be reduced.  

 Show parallelism and pipelining examples in Figure 2-5 (b) and (c) 

respectively [5]. Figure 2-5 (a) is the original structure. Equation (2-8), equation 
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(2-9) and equation (2-10) represent the power dissipation of original datapath, 

parallel datapath and pipelining datapath respectively. 
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Figure 2-5 Parallel and pipelined datapath 

 Dual supply voltage 

 

The alternative approach for optimizing supply voltage is to selectively decrease 

the supply voltage on some of the gates based on the path delay. The critical paths are 

supplied by higher supply voltage, and the non-critical paths can be supplied by lower 

supply voltage. Using dual supply voltage in different parts of a circuit may reduce 

the energy consumption of a design at a rather small cost in terms of algorithmic 
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and/or architectural modifications [17][18][19][20]. 

Using dual supply voltage on the same circuit requires the use of level 

converters at the boundaries of the various modules (a level converter is needed 

between the output of a gate supplied by a low VDD and the input of a gate supplied 

by a high VDD). 

 

2.2.2  Switching Activity and Capacitance 

 Operation substitution & operator reordering 

The switching activity and switching capacitance can be reduced by optimizing 

the ordering of operations and using operation substitution in a design. To illustrate 

this, consider the problem of multiplying a signal with a constant coefficient, which 

is a very common operation in signal processing applications.  

Multiplications with constant coefficients are often optimized by decomposing 

the multiplication into shift-add operations and using the canonical sign digit 

representation. Thus the circuit area (capacitance) can be reduced. Consider the 

example in which a multiplication with a constant is decomposed into IN + IN >>7 

+ IN>>8, shown in Figure 2-6. 

In the Figure 2-6 (b) (obtained by applying associativity and commutativity), the 

two small number IN>>7 and IN>>8 are summed in the first adder and the output is 

added to IN in the second adder. In this case, the output of the first adder has a small 

amplitude (since we are adding 2 scaled number of the same sign) and therefore 

lower switching activity. The second implementation switched 30% less capacitance 

than the first implementation [15]. 
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Figure 2-6 Example of operator reordering 

 Data representation & bus encoding 

In most signal processing applications, two’s complement is typically chosen to 

represent numbers since arithmetic operations (addition and subtraction) are easy to 

perform. One of the problems with two’s complement representation is 

sign-extension, which causes the msb sign-bits to switch when a signal transitions 

from positive to negative or vice-versa (for example, going from -1 to 0 will result in 

all of the bits toggling). Therefore using a two’s complement representation can 

result in significant switching activity when the signals being processed switch 

frequently around zero and when they do not utilize the entire bit-width (i.e., the 

dynamic range is much smaller than the maximum possible value determined from 

the bit-width) since a lot of the msb bits will perform sign-extension. 

Minimizing the switching in the msbs can use a sign-magnitude representation, 

in which only one bit is allocated for the sign and the rest for the magnitude [6][15]. 

In this case, if the dynamic range of a signal does not span the entire bit width, only 

one bit will toggle when the signal switches sign, as opposed to the two’s 

complement representation where due to sign extension several of the bits will 

switch. 

 

For the bus encoding, we also can use the gray code to substitute for binary code 

such that the signal transitions of the program and the data memory address busses 
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can be reduced. For sequentially access, the average toggling of binary and gray 

code are 2 and 1 respectively [6][15]. 

 Logic reordering (circuit optimization) 

There are many ways to build a circuit out of logic gates. One decision that 

affects power consumption (glitch activity) is how to arrange the gates [6][15]. For 

example, consider two implementations of a four-input AND gate shown in Figure 

2-7, a chain implementation (a), and a tree implementation (b). 

 

Figure 2-7 Gate restructuring 

There is a issue of glitches or spurious transitions that occur when a gate does 

not receive all of its inputs at the same time. These glitches are more common in 

chain implementations where signals can travel along different paths having widely 

varying delays. One solution to reduce glitches is to change the topology so that the 

different paths in the circuit have similar delays. This solution, known as path 

balancing often transforms chain implementations into tree implementations. 

 Gate sizing 

Gate sizing is an effective method for circuit power-reduction, because the major 

power dissipation is consumed inside the block rather than in driving the external 

load capacitance. Reduce gate size can reduce circuit capacitance such that the 

circuit power consumption can be reduced. Applying this technique in [5][21] 

usually associate with each gate a tolerable delay which varies depending on how 

close that gate is to critical path. Then, we can try to scale each gate to be as small as 
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possible without violating its tolerable delay. The main objective of transistor sizing 

is to downsize the gate off the critical path to save power. 

2.3  Dynamic Approaches 

This category is said that the supply voltage and switch activity/capacitance can 

be adjusted dynamically for different applications and throughput requirement. It is 

more flexible than the static approaches. I’ll introduce the techniques of energy 

reduction by reducing supply voltage and switch activity/capacitance respectively.  

 

2.3.1  Supply Voltage 

 Dynamic voltage and frequency scaling (DVFS) 

The gap between high performance and low power can be bridged through the 

use of dynamic voltage scaling, where periods of low processor utilization are 

exploited by lowering the clock frequency to the minimum required level, allowing 

corresponding reduction in the supply voltage [22][23]. 

Figure 2-8 shows the overall architecture of a DVFS system. The performance 

manager uses a software interface to predict performance requirements. Once 

performance requirement for the next task is determined, the performance manager 

sets the voltage and frequency just necessary to accomplish the task. The target 

frequency is sent to the phase-locked loop (PLL) to accomplish frequency scaling. 

Based on the target voltage, the voltage regulator scales supply voltage to meet 

performance target. 
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Figure 2-8 Architecture of the DVFS system 

A robust system should be able to meet the deadlines at any voltage, process and 

temperature condition. The conventional approach performs voltage scaling that it 

uses a target operating voltage for each required operating frequency. To guarantee a 

robust operation, the frequency-voltage relationship is determined via chip 

characterization at worst case conditions. This technique is utilized in open-loop 

dynamic voltage and frequency scaling system where the frequency-voltage 

relationship is stored in a look-up table. Since such LUT (look up table) is 

pre-loaded with voltage-frequency points, DVFS systems are not able to adapt to 

process variations or environmental conditions. 

2.3.2  Switching Activity and Capacitance 

 Clock gating & operand isolation 

Clock gating is a common method for reducing the unnecessary signal 

transitions. In [24], it proposes a technique to automatically synthesize gated clocks 

for finite-state machines to reduce power dissipation. The following graph (Figure 

2-9) is a gated-clock D flip-flop. 
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Figure 2-9 Clock-gated D flip-flop 

There will be an additional signal named “Enable”. For a D flip-flop without 

gated-clock, the input will be passed to output at the rising edge of clock. The input 

of gated D flip-flop will only be passed to output at the rising edge of clock if the 

enable signal is “1”. 

We can control the enable signal dynamically according to the different 

requirements. It reduces the signal transitions of register and combinational circuit. 

If the inputs of a circuit are gated, the inputs are the same with the ones in the 

previous cycle. And all the nodes in circuit remain unchanged. If the circuit is 

without gated-clock input registers, there might be some glitches in this cycle which 

consumes power also. 

Hence, we also can insert latches (flip-flops) at the inputs of the functional units. 

If the output of the functional units is not necessary, the input data can be isolated 

using latches (flip-flops). 

 Pre-computation logic 

It relies on the idea of duplicating part of the logic with the purpose of 

pre-computing the circuit output values one clock cycle before they are required, 

and it uses these values to reduce the total amount of switching in the circuit during 

the next clock cycle. 

 
In [25][26], they present an algorithm to synthesize pre-computation logic for 
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the complete input-disabling architecture. The pre-computation logic is a function of 

all of the input variables. It is shown in Figure 2-10, the complete input-disabling 

architecture can reduce power dissipation for a larger class of sequential circuits. 

 

Figure 2-10 Pre-computation logic  

 Computation kernel 

It also duplicates a part of the original circuit. The sub-set logic is smaller and 

faster such that it dissipates less power. At the most time, the sub-set logic can 

accomplish the circuit operation, and the original circuit is turned off. 

Figure 2-11 (a) shows an example with the standard topology. The paradigm for 

improving its quality with respect to a given cost function is based on the 

architecture shown in Figure 2-11 (b). The architecture consists of the combinational 

portion of the original circuit (block CL), the computational kernel (block K), the 

selector function (block S), the double state flip-flops (DSFF), and the output 

multiplexers (MUX). 
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Figure 2-11 Computational kernel [27]

In [27] that presents a power optimization technique by exploiting the concept of 

computational kernel of a sequential circuit, which is a highly simplified logic block 

that imitates the steady-state behavior of the original specification. This block is 

smaller, faster, and less power consuming than the circuit from which it is extracted 

and can replace the original network for a large fraction of the operation time. 

In [28] that presents a low power adder for SIMD data path. By exploiting the 

difference length in the critical path for the types of operations (e.g., 4x8/2x16/1x32), 

energy-efficient SIMD adders can be developed. Indeed, 8-bit adders have smaller 

gates and energy consumption. Hence, 4x8-bit operations on an 8-bit ripple adder 

consume 1.8 times less compared 1x32-bit operation on a 32-bit adder. To alleviate 

the power dissipation, it combines four 8-bit energy optimized adders and one 32-bit 

adder to support SIMD. 

2.4  Adaptive Approaches 

This category is said that the supply voltage and switch activity/capacitance can 

be adjusted adaptively. It is also more flexible than the static approaches. Compared 
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with dynamic approaches, it can adapt to environmental conditions or data 

correlations. I’ll introduce the techniques of energy reduction by reducing supply 

voltage and switch activity/capacitance respectively. 

 

2.4.1  Supply Voltage 

 Adaptive voltage scaling (AVS) 

It is a one method of dynamic voltage scaling. It can adaptively scale the supply 

voltage by monitoring the actual silicon speed [23][29]. Therefore, worst case 

characterization is no longer required. 

The actual performance is monitored using on-chip structures. The frequency of 

the ring oscillator is sampled using a counter as shown in Figure 2-12. The 

frequency count is then compared to the frequency required by the system and the 

difference is filtered using the system’s filter. It has to be built in the ring oscillator 

to accommodate for all types of gates and all conditions. A better approach is to use 

a critical path replica as shown in Figure 2-12. 

 

Figure 2-12 Architecture of the AVS system 

2.4.2  Switching Activity and Capacitance 
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 Bit swapping 

The most effective method to reduce the number of transitions in functional units 

is increasing the correlation of input data. The bit-swapping method is to change the 

input bit of functional unit according to the previous input bit status such that the 

number of signal transitions can be minimized [6]. 

Shown an example in Figure 2-13, the exclusive-OR gate is a selection logic that 

it manages the bit swapping. Previous data of in1 is 4’b0011 and in2 is 4’b1100, and 

the next data of in1 is 4’b0100 and in2 is 4’b1011. After bit swapping, the next data 

of in1 is swapped as 4’b0011 and in2 is swapped as 4’b1100. 

ALU

1
0

1
0

in1

in2

 

Figure 2-13 Example of bit swapping 

 Guarded evaluation 

Guarded evaluation is based on placing some guarded logic, consisting of 

transparent latches with an enable signal, at the inputs of each block of the circuit 

that needs to be power managed. When the block must execute some useful 

computation in a clock cycle, the enable signal makes the latches transparent. 

Otherwise, the latches retain their previous states and block any transition within the 

logic block. 

In [30], it proposes a technique which is called partially guarded computation. 

The technique disables a part of a circuit based on the dynamic range of input 

 26 

 



 

operands. They divide a circuit into two parts – MSP and LSP – and allow only the 

LSP computation when the range of input operands is covered by the range of the 

LSP. Therefore, it can reduce unnecessary signal transitions. 

 Proposed energy-efficient design 

Circuit delay is strongly data dependent, and only exhibits its critical path delay 

for very specific data sequences [7][8][9]. Proposed design is exploiting 

data-dependent delay to reduce circuit energy. Shown in Figure 2-14 (a) is an 

example that it depicts a path delay distribution of original circuit. The x-axis 

represents the path delay, and the y-axis represents the number of patterns. 

In this example, we assume that it is a normal distribution. Noted the distribution, 

delay time of most patterns is smaller than the critical path delay (clock period), and 

only few patterns can activate the critical path. We can attempt to optimize the 

common case for energy reduction based on the clock period, rather than to optimize 

the worst-case (critical paths) based on the clock period, shown in Figure 2-14 (b). 

Therefore path delay of some paths (critical paths) may be longer than the clock 

period, but the circuit energy can be reduced effectively. As long as we can tolerate 

these critical paths, we can gain the energy reduction. 

 

Figure 2-14 Path delay distribution 

 
Shown in Figure 2-14 (b), there are a% of total input patterns that can not 
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accomplish a computation within a clock period and may cause to computing errors. 

In order to tolerate the errors, all patterns that will incur computing errors are 

operated two clock cycles (one-cycle latency penalty). Hence we generate a 

“detection logic” that is responsible for the error detection, and the circuit is 

augmented with the “detection logic”.  

Shown in Figure 2-15, the input pattern of the detection logic is the same as the 

functional unit, and the output of detection logic is a 1-bit “wait” signal. If the 

“wait” signal is asserted, the input patterns would be latched one more cycle and 

output data is not available. 

 

Figure 2-15 Conceptual circuit of proposed design 

From this scenario, although the circuit energy can be reduced, the performance 

may be degraded also. In order to reduce the performance penalty, the detection 

logic needs to exactly detect the computation errors. We can also reduce the number 

of violating paths to reduce performance penalty, but that also influences the effect 

upon the energy reduction. It has to trade-off between energy and performance. This 

part is the main problem I want to solve. 
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3   Proposed Energy-Efficient 

Design  

Energy consumption has become a critical issue in modern VLSI designs. For 

the circuit energy reduction, we propose a method that trades small performance 

penalty for large energy reduction. In this chapter, I will introduce our proposed 

energy-efficient design that it consists of the CMOS circuit delay, the template of 

variable latency design and proposed design flow. 

3.1  Delay of CMOS Circuits 

In the synchronous circuit design, traditional strategies for circuit optimization 

are based on worst case (critical path). For the given clock period, the critical paths 

of the circuit must be optimized to meet it, but that usually spends much energy 

effort to accomplish. The energy effort consists of gate size, structure and voltage. 
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In [7][8][9], we observe that the circuit delay is strongly data dependent, and 

only exhibits its critical path delay for very specific data sequences. Because, CMOS 

circuit delay is equal to the elapsed time of charging and discharging the circuit 

capacitances [31]. The computation time of each input pattern is based on the 

original status of the circuit capacitance. The same input patterns with different 

status of circuit capacitances will activate different paths such that the computation 

times are different. 

Hence, estimating the circuit delay or path delay requires a two-pattern 

sequence — the first pattern initializes the circuit while the second pattern causes 

and propagates the desired transition [32][33]. 

To observe the delay of CMOS circuits, we synthesized a 8-bit unsigned 

carry-save-array multiplier using the UMC 90nm CMOS cell library. After the gate 

level synthesis, we used the 10,000 random pattern sequences for gate-level 

simulation. Figure 3-1 shows the path delay distribution of the 8-bit carry-save-array 

multiplier. The x-axis represents the delay time of the data computation (path delay), 

and the y-axis represents the number of patterns. 

The green line represents the path delay distribution of the multiplier. The clock 

period is 1.6ns, so the critical path of the multiplier can not be larger than the clock 

period. The path delay distribution is similar to the normal distribution, and the 

probability of sensitizing the critical paths is very low. 
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Figure 3-1 Path delay distribution (8-bit multiplier) 

For the 1.6ns clock period, the conventional design method is directly 

synthesizing the circuit with 1.6ns timing constraint. From the path delay 

distribution we found that the delay time of most patterns are smaller than 1.4ns 

even. From this scenario, the circuit energy can be optimized for common case, 

rather than the few critical cases. In other words, we can relax the synthesis timing 

constraint for energy reduction and tolerate the few critical cases. 

Then we observe the relationship between the circuit energy and synthesis 

timing constraint. We use the UMC 90nm CMOS cell library and 10,000 random 

patterns to estimate the energy consumption (average energy consumption per 

operation). Figure 3-2 shows the energy curve of 8-bit carry-save-array multiplier 

with different synthesis timing constraints. The x-axis represents the synthesis 

timing constraint (circuit delay), and the y-axis represents the energy per 

multiplication. 
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Figure 3-2 Energy curve of 8-bit multiplier 

Tightening the timing constraint of the multiplier will induce the increasing of 

the energy per multiplication. Especially when the timing constraint approaches the 

peak value (1.6ns), the energy consumption increases drastically. Even if we 

synthesize the circuit with power optimization constraint, the circuit energy 

decreases also as the synthesis timing constraint relaxes. 

Optimizing the circuit delay needs to spend large energy effort. From the path 

delay distribution, we found that the energy effort is spent on the few circuit critical 

paths. The energy effort consists of optimizing the circuit structure and upping the 

gate sizes, and it makes the circuit delay (critical path delay) to be reduced. 

Optimizing the circuit structure or upping the gate sizes usually causes the circuit 

capacitance to be increased, and therefore the circuit energy is increased. 

Multimedia systems are desired not only for low-energy consumption but also 

for high speed (high performance). Although relaxing timing constraint is an 

effective method for energy reduction. In Figure 3-2, the timing constraint is relaxed 

from 1.6ns to 1.9ns will lead the energy consumption to be reduced about 45%, but 
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it indicates that the clock frequency (performance) is degraded directly. 

Hence, exploiting the data-dependent delay of circuit can not only avoid clock 

frequency degradation but also gain the energy reduction. For instance, from the 

above multiplier, if the operating clock period is 1.6ns, the synthesis timing 

constraint can be relaxed to 1.9ns, and therefore the energy can be reduced about 

45%. Then we observe the path delay distribution of the multiplier with 1.9ns 

critical path, it is shown in Figure 3-3. 

 

Figure 3-3 Path delay distribution (8-bit multiplier) 

The delay time of most patterns (98.88% of pattern) is less than 1.6ns (clock 

period), and only 1.12% of pattern that delay time is greater than 1.6ns. The delay 

time (computation time) of few input patterns will exceed 1.6ns, and these patterns 

may incur computing errors. The possible computing errors can be detected and it 

can be corrected by two-cycle operation. This implies that a one-cycle latency 

penalty. The detection and correction will be discussed in detail later. 

From Figure 3-2 and Figure 3-3, only 1.12% of pattern that the delay time is 

greater than 1.6ns, the probability of spending one-cycle latency penalty is 1.12%, 

so the performance penalty is very light and negligible. If few errors (one-cycle 

latency penalty) can be tolerated by the multiplier design, the energy per 

 33 

 



 

multiplication can be reduced about 45%. 

 In order to detect the computing errors and accommodate the one-cycle latency 

penalty, we proposed a variable latency design that it can be simply integrated into 

other systems. 

3.2  Variable Latency Design 

 

3.2.1  Template of Variable Latency Design 

The proposed variable latency design can accommodate the additional one-cycle 

latency penalty. In other words, the latency of the functional unit can adapt to the 

input patterns, most patterns only need one-cycle latency and few patterns need 

two-cycle latency. 

The template of variable latency design is shown in Figure 3-4. We assume the 

functional unit has the input and out registers, and it is augmented with the detection 

logic. In normal situation, the functional unit has only one-cycle latency, and the 

detection logic does not influence the functional unit. When the computation time of 

input patterns exceeds a clock period, the input patterns need to be operated two 

clock cycles to avoid the computing error. The detection logic is responsible to 

detect the input pattern that the computation time exceeds a clock period and control 

the latency of the functional unit. 
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Figure 3-4 Template of variable latency design 

Detection logic shown in Figure 3-4 is responsible to detect the input patterns 

that will result in computing errors. The input pattern of the detection logic is the 

same as the input pattern of the functional unit. If the detection logic detects a 

computing error will occur, the output signal “wait” will be asserted. The wait signal 

will propagate to the next stage and make the output data of the functional unit 

invalid. At the same time, the wait signal will control the flip-flops of the previous 

stage to latch all patterns one more cycle. The behavior is like the stall cycle in the 

processor. In other words, if the wait signal is asserted, the functional unit needs a 

stall cycle. 

The detection logic consists of a fault function and additional flip flops, and it is 

shown in Figure 3-5. The additional flip flops are used to latch the previous input 

pattern, because the circuit delay is data-dependent [32][33]. The propagation time 

of input patterns is based on the original signal status of the each gate in the 

functional unit [31]. 
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Figure 3-5 Detection logic 

The previous input pattern is latched by the additional flip flops, and hence the 

original signal status of each gate in the functional unit can be estimated. Hence, the 

signal propagation time of the functional unit can be estimated accurately. If the 

maximum delay at the certain input bit is guaranteed to meet the clock period, the 

additional flip flop of the certain bit does not need. 

The fault function is a function of all of the input variables, [ ] [ ]( )t, xt-1xf . If the 

input pattern satisfies the function, the input pattern spends a one-cycle latency 

penalty (two-cycle operation). I will introduce about how to derive the fault function 

in detail later. 

 

Figure 3-6 timing diagram of the variable latency design 

 

Timing diagram in Figure 3-6 shows an example for the variable latency design. 

Each signal in Figure 3-6 corresponds to it in Figure 3-4. We show an example that 
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the input pattern “b” of functional unit in cycle 1 is a violating data (the computation 

time of input data exceeds a clock period). In this case, the detection logic detects 

that a computing error will occur, hence the wait signal is asserted at cycle 1. That 

represents the output data is invalid, input data will be latched one more cycle and 

the clock will be gated. 

At cycle 2, the input pattern “b” needs to be latched one more cycle. In other 

words, it incurs one-cycle latency penalty. The output data “B” that corresponds to 

the input data “b” can not be available at cycle 2. The clock is gated at cycle 2, 

therefore the input data is still “b”, and output data at cycle 2 is invalid.  

At cycle 3, the correct output data “B” is available, and the circuit is restored to 

normal in the subsequent cycle. 

Next section, the detection logic generation will be introduced. 

 

3.2.2  Detection Logic 

The detection logic generation is shown in Figure 3-7. The input file contains a 

netlist file of functional unit and the given clock period. After receiving the input 

files, three steps need to be executed in sequence. Then the detection logic can be 

generated. 
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Figure 3-7 Detection logic generation 

First step is to use the static timing analysis (STA) analyzing the path delay of 

functional unit. Static timing analysis (STA) is a method of validating the timing 

performance of a design by checking all possible paths for timing violations [34]. It 

checks for violations of timing constraints inside the design and at the input/output 

interface.  

In our experiments, we use the Synopsys Prime-Time tool to perform static 

timing analysis (STA), and the timing constraints is the given clock period. It can 

report all paths that path delay exceeds one clock period, and these paths are called 

“violating paths”. Then, we can perform path sensitization to find all patterns that 

would sensitize the violating paths. 

 

Second step is to analyze the violating paths based on the path sensitization 

criterion. After the path sensitization algorithm is accomplished, all input patterns 

that the propagation time from input to output is larger than one clock period can be 

found. Such input patterns we called “violating patterns”. After all violating patterns 
38 

 



 

are found, the “fault function” can be derived. The fault function is a function of all 

of the input variables, [ ] [ ]( t, xt-1xf ) , and it contains all violating patterns. All 

violating patterns must be included in the ON-set of the fault function. If the fault 

function is satisfied by the input patterns, the input patterns need to be operated two 

cycles. We will discuss the path sensitization and fault function in detail later. 

The final step is to synthesize the fault function, and therefore the detection logic 

can be obtained. If the complexity of fault function is very great, some don’t care 

patterns can be added to the fault function such that the complexity of fault function 

can be simplified. In our experiment, we directly synthesize the fault function (PLA 

format) by Synopsys Design Compiler. The synthesis timing constraint is one clock 

period, and we need to guarantee the critical path of detection logic is smaller than 

one clock period. 

Before introducing the path sensitization and fault function, some definition and 

notations have to be defined. This will help the explanation of the method of 

deriving the fault function. 

 Definition and notations 

A combinational circuit is bounded by primary inputs and primary outputs and it 

is composed of simple gates (i.e., AND, NAND, OR, NOR, and NOT gates). The 

delay of gate G is denoted by d(G). 

Definition 1 (path) 

A path P = (I, G1, G2, …, Gm, O) in a combinational circuit is an sequence of 

primary input (I), gates (Gi), and primary output (O). The primary input (I) connects 

to gate Gi, output of gate Gi connects to input of gate Gi+1, where gate Gi, 

1-mi1 ≤≤ , and output of gate Gm connects to primary output (O). The delay of 

path P is the sum of the delays of all the gates, and is denoted by d(P). 
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Definition 2 (on-input and side-input) 

Let P = (I, G1, G2, …, Gm, O) be a path. Primary input I is an on-input of gate G1, 

and output of gate Gi that connects to gate Gi+1 is an on-input of gate Gi+1, where 

gate Gi, 1-mi1 ≤≤ . Other inputs of gate Gi are defined as side-inputs, where gate 

Gi, mi1 ≤≤ . 

Definition 3 (controlling value) 

A logic value is the controlling value to a gate if and only if the logic value at an 

input to the gate independently determines the value at the output of the gate. The 

controlling value to gate G is denoted by c(G). For examples, c(G) is logic 0 if G is 

an AND gate or a NAND gate, and c(G) is logic 1 if G is an OR gate or a NOR gate. 

Definition 4 (non-controlling value) 

The non-controlling value to gate G, denoted by nc(G), it is the complementary 

value of c(G). For examples, nc(G) is logic 1 if G is an AND gate or a NAND gate, 

and nc(G) is logic 0 if G is an OR gate or a NOR gate. 

For a NOT gate which has single input, both logic 0 and logic 1 are considered 

to be its controlling values. 

Definition 5 (input vector) 

An input vector v is a vector of logic values at all the primary inputs. Each logic 

value is either logic 0 or logic 1. 

Definition 6 (stable value and stable time) 

Let v be an input vector applied to the circuit under analysis. The logic values 

stabilized at the end of the output of gate G are called the stable values at G under v. 

When the end of the output of G becomes stable, the time is called the stable time at 

G under v. 
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Definition 7 (sensitizable) 

A path is sensitizable if there is at least one input vector to activate it. A path is 

false if there is no input vector to activate it. The critical paths are the longest 

sensitizable paths. 

 Path sensitization 

Delay of the circuit is equal to the delay of the longest sensitizable path. A path 

is sensitizable if it can be activated by at least one input vector. Therefore, 

determining the sensitizability of a path is equivalent to determine the existence of 

input vectors which activate the path [35]. Thus it will be very helpful to develop a 

criterion which is capable of computing the set of input vectors that activate the path. 

Now, we will focus on how to find all input vectors that activate a given path. 

The exact criterion can find all input vectors that can activate a given path. If 

that finds no input vectors, the given path is a false path. I briefly introduce the exact 

criterion. 

Exact Path Sensitization Criterion 

The path P is a exact sensitizable path if there is at least one primary input such 

that for each on-input of path P and for each side-input of path P hold either one of 

the following conditions (shown in Figure 3-8): 

1) The on-input is the earliest controlling input, otherwise all side-inputs 

are non-controlling inputs 

2) The on-input is the latest non-controlling input, given all its side-inputs 

is also non-controlling inputs 

 41 

 



 

t)(c,or  (nc,-) :input -Side ≥

t)(c, :input -On

t)(c,or  (nc,-) :input -Side ≥ t)(nc, :input -Side ≤

t)(nc, :input -Side ≤

t)(nc, :input -On

 

Figure 3-8 Exact path sensitization criterion 

Figure 3-9 shows an example of a delay-dependent false path in carry-look-ahead 

logic. Let the delay of each gate be 1 time unit. The highlighted path P=(x, C, D, E, 

F, G, O) is false for a rising transition at input x. From the exact path sensitization 

criterion, we found that the side-input of gate “F” is the earliest controlling input 

such that the shorter direct path Ps=(x, F, G, O) determines the longest true path. 

Therefore the path P can not be sensitized. 

 

Figure 3-9 Delay-dependent false path 

The exact path sensitization criterion is the general path sensitization criterion, 

regardless of the longer path or the shorter path. The violating paths are the most 

critical paths, so we can use some criteria that they are proposed only for dealing 

with the critical paths. These criteria are only applied to the critical paths, and they 

are less restricted than the exact criterion. 

Our purpose is to analyze the violating paths based on the viable path 

sensitization criterion, and violating paths are the most critical paths in the circuit. 

The viable criterion and the loose criterion achieve the same estimation of the 

critical paths [35]. The loose criterion and the exact criterion achieve the same 
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estimation of the critical paths [35]. So, the viable criterion and the exact criterion 

can also achieve the same estimation of the critical paths. The viable criterion is 

easier to implement. Hence we use this criterion to analyze the critical path, and I 

briefly introduce the viable criterion. 

Viable Path Sensitization Criterion 

According to McGeer and Brayton, a path P is viable [36] if there is at least one 

primary input such that for each on-input of path P and for each side-input of path P 

hold either one of the following conditions (shown in Figure 3-10) :  

1) All side-inputs are non-controlling inputs 

2) If any side-input is controlling input, the stable time of side-input must 

be later than on-input 

Git)(x, :input -On

t)(c,or  (nc,-) :input -Side ≥

t)(c,or  (nc,-) :input -Side ≥  

Figure 3-10 Viable path sensitization criterion 

All the input patterns that activate the given critical paths can be found based on 

the viable path sensitization criterion, and the stable time of side-input is given by 

the static timing analysis. We show an example in Figure 3-11, the critical path 

P=(A, G1, G2, G3, O) is given by the static timing analysis, and it has a rising 

transition. Use the viable path sensitization criterion to find all patterns that can 

sensitize the given critical path. 

 

Based on the viable path sensitization criterion, we set non-controlling values on 

the side-input of all gates on the critical path. Because the path is critical path, the 
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stable time of all side-inputs is earlier than on-input. In others words, we needn’t 

consider the controlling values on the side-inputs of all gates. Therefore, the 

non-controlling value of AND gate and NAND gate is logic 1, the non-controlling 

value of OR gate is logic 0. The values are backtracked to the primary inputs, and 

the input patterns (A, B, C, D) = (x, 1, 0, 1) are obtained, where “x” represents don’t 

care. 

 

Figure 3-11 An example of given critical path 

The above path sensitization criteria use pattern-independent timing, and they 

only consider a single pattern to sensitize the path. The results are usually very 

pessimistic [34]. Indeed circuit delay is pattern dependent, and it is caused by the 

signal transition and propagation [32][33]. Therefore, if we want to find the 

violating patterns exactly, we need to use pattern-dependent timing to analyze the 

path [37]. 

In other words, we need to consider the previous patterns. Thus we need to 

consider two-pattern sequence, where the first pattern initializes the circuit and the 

second pattern causes transition. Therefore the viable path sensitization criterion can 

be modified to consider the on-input transition (i.e., 0  1 or 1  0) [38][39]. We 

have a brief explanation below. 

Modified Viable Path Sensitization Criterion 

A path P is sensitizable if there is at least one input sequence (two-pattern 

sequence) such that for each on-input of path P and for each side-input of path P 
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hold either one of the following conditions (also shown in Figure 3-12) :  

1) All side-inputs are non-controlling inputs, and on-input (primary input) 

has an event (i.e., 0  1 or 1  0). 

2) If any side-input is controlling input, the stable time of side-input must 

be later than on-input, and on-input (primary input) has an event (i.e., 

0  1 or 1  0). 

t)(c,or  (nc,-) :input -Side ≥

t)(c,or  (nc,-) :input -Side ≥  

Figure 3-12 Modified viable path sensitization criterion 

We analyze the example shown in Figure 3-11 again based on the modified 

viable path sensitization criterion and the critical path that is reported by static 

timing analysis (Prime Time). Because the transition on the primary input of the 

critical path is considered, the given critical path is sensitized by the two-pattern 

sequence. The non-controlling values are backtracked to the primary inputs and the 

transition on the primary inputs is considered, therefore all the pattern sequences 

(ABCD[t-1], ABCD[t]) = (0xxx, 1101) that can sensitize the given critical path are 

obtained, where “x” represents don’t care. 

The result is more precise than it that is analyzed by the viable criterion, but the 

complexity of the result is greater than it that is analyzed by the viable criterion. 

 Fault function 

Fault function  contains all and only those input patterns [ ] [ ]( n, xn-1xf )
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(violating patterns) that the propagation time from the inputs to the outputs is longer 

than one clock period. All violating patterns can be found by analyzing the violating 

paths based on the modified viable path sensitization criterion. 

We use a flowchart shown in Figure 3-13 to explain how we derive the fault 

function. The input file “violating paths” is reported by performing the static timing 

analysis. The timing information about stable time of each signal is also based on the 

result of performing the static timing analysis.  

Therefore, we only analyze the logic value of all gates, instead of stable time of 

all signals of all gates. The stable time of all signals of all gates on the most critical 

path is the latest. When all of the violating paths are obtained, three recursive steps 

have to be taken iteratively. 

 

Figure 3-13 Flowchart of fault function 

First step is to analyze the violating paths based on the modified viable path 
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sensitization criterion. The violating paths are in path-delay order, the longest path is 

analyzed first and only one path is analyzed at a time. After one path is analyzed, 

two sub-functions are obtained. One sub-function “ [ ] [ ]( )t, xt-1xf_nc ” is derived 

based on all side-inputs of the path are non-controlling values, and another 

sub-function “ [ ] [ ]( )t, xt-1xf_c ” is based on any side-input of the path has a 

controlling value. 

Second step is to combine two sub-functions to form a complete function 

“ ” of the path. The pattern sequence satisfies the function is 

represented that the pattern sequence sensitizes the path. Finally, we accumulate the 

function of each path until all violating paths have been analyzed, and the fault 

function is obtained “ ”. 

[ ] [ ]( t, xt-1xf )

[ ] [ ]( )t, xt-1xF

 Example 

In Figure 3-14, we show an example with two violating paths. The longest path 

P1 = (A, G1, G2, O) has a rising transition at input A. Another path P2 = (C, G3, G2, 

O) has a falling transition at input C. 

 

Figure 3-14 Two violating paths 

For the fist path P1 = (A, G1, G2, O) 

Step 1 : 

  [ ] [ ]( ) ( )0xx,101CBAFBAt, ABCt-1ABCf_nc =⋅⋅↑=⋅⋅↑=  
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   [ ] [ ]( ) φt, ABCt-1ABCf_c =

Step 2 : 

  [ ] [ ]( ) ( )0xx,101f_cf_nct, ABCt-1ABCf =+=  

Step 3 : 

  [ ] [ ]( ) ( )0xx,101fFt, ABCt-1ABCF =+=  

For the second path P2 = (C, G3, G2, O) 

Step 1 : 

  [ ] [ ]( ) ( )xx1, 000BACECt, ABCt-1ABCf_nc =⋅⋅↓=⋅↓=  

  [ ] [ ]( ) ( )0x1, 100BACECt, ABCt-1ABCf_c =⋅↑⋅↓=⋅↓=    

Step 2 : 

  [ ] [ ]( ) ( ) ( )0x1, 100xx1, 000f_cf_nct, ABCt-1ABCf +=+=  

Step 3 : 

  [ ] [ ]( ) ( ) ( )0x1, 100xx1, 000(0xx,101)fFt, ABCt-1ABCF ++=+=  

We obtain the final result after the two paths are analyzed. 

3.3  Design Flow 
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The functional units are the main blocks for the multimedia applications and 

portable devices. High speed and low energy consumption are both the requirements 

for the embedded systems. In this section, I will introduce a design flow that can 

help us to systematically design the most energy-efficient functional units. The 

energy-efficient functional unit represents that it is the one that consumed the least 

energy among all configurations that deliver the same performance [40], and the 

energy-delay product is usually used to be a metric. Smaller energy-delay values 

imply a lower energy solution at the same level of performance — a more 

energy-efficient design. The proposed energy-efficient functional units can be 

operated at the desired clock period, and it trades the minimum performance penalty 

for the maximum energy reduction. 

Functional unit
(RTL)

Energy-efficient
functional unit

Clock period

Overhead estimation

Characterization

Overhead reduction

 

Figure 3-15 Design flow of energy-efficient functional unit 

Figure 3-15 illustrates the design flow for energy-efficient design, and it consists of 

three steps that need to be executed in sequence. The flow is based on the cell-based 

design flow, and it can easily obtain the most energy-efficient result. 
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First step is to characterize the functional unit to know the relationship between 

circuit energy per operation, error rate, and timing constraints. The error rates of the 

functional unit with different timing constraints are estimated at the given clock 

period. The energy or error rate can be estimated by using the random patterns or a 

real application. In our experiments, we use 10,000 random patterns to characterize 

the functional units. 

Second step is overhead estimation. The overhead is the energy consumption of 

detection logic. The most energy-efficient design is consuming the minimum energy 

that includes both functional unit energy and detection logic energy, and the 

performance is negligible. 

Final step is overhead reduction. The area and energy of detection logic or the 

performance penalty may be very great, hence the objective of this step is to reduce 

these overhead. It reduces the complexity of detection logic and performance 

penalty. 

 

3.3.1  Characterization 

Characterization is the first step of our proposed design flow. When the clock 

period is given, the functional unit is characterized to know the relationship between 

circuit energy, error rate and timing constraints. The objective of the characterization 

is to know how many space that the circuit energy can be reduced, and the 

corresponding performance penalty. 

The minimum value of the timing constraint is the value of clock period, and the 

maximum value of the timing constraint is the value of the double clock period. The 

timing constraint must be smaller than the double clock period, because the 

operation with computation error only has a one-cycle latency penalty (two-cycle 
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operation). If the timing constraint is larger than the double clock period, the 

operation with computation error may need a two-cycle latency penalty (three-cycle 

operation) to correct it. In our variable latency design, we only can accommodate a 

one-cycle latency penalty. 

Multiplier is one of the most energy-hungry functional units in datapath of DSP. 

Here we will use a multiplier as an example to show the characterization results. The 

structure of the multiplier is 8-bit unsigned carry-save-array multiplier. The 

characterization in this example is cell based using UMC 90nm CMOS cell library 

with Synopsys Design Compiler (Version V2007-03) as synthesizer. The CAD tools 

used to measure power and error rate are Synopsys PrimePower (Version V2006.06) 

and Cadence Verilog-XL respectively. 

The peak operating frequency of the multiplier is 1.6ns, hence the 1.6ns is 

assumed as the given clock period. Figure 3-16 shows the results of the 

characterization. The x-axis represents the timing constraint, the left y-axis 

represents the energy per multiplication, and right y-axis represents the error rate. 

The blue line represents the circuit energy that the circuits are synthesized with 

different timing constraints, and the green line represents the error rate that the 

circuits are operated at the 1.6ns clock period with different timing constraints. 
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Figure 3-16 Characterization results 

The energy represents average energy consumption per multiplication, and it is 

estimated at gate-level. The energy of the multiplier is decreased rapidly as the 

timing constraint is relaxed from 1.6ns. 

The error rate represents the probability of the multiplier can’t complete the 

operation within the given clock period. It is estimated using gate-level simulation 

with 10,000 random pattern sequences operated at the 1.6ns clock period. For 

instance, the circuit with 2.1ns timing constraint would complete 93.28% of all 

operations without errors, and it would save about 55% energy consumption. 

The range of timing constraints is from 1.6ns to 2.4ns, because the energy per 

multiplication is almost the same when the timing constraint is larger than 2.1ns but 

the error rate keeps increasing. 

The concept of out proposed energy-efficient design is trading light performance 

penalty for large energy reduction. Hence, from the energy curve shown in Figure 

3-16, we are only interested to the multipliers that with timing constraint from 1.6ns 

to 2.1ns, because the energy per multiplication is almost the same when the timing 
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constraint is larger than 2.1ns. 

From the error rate curve shown in Figure 3-16, we are only interested to the 

multipliers that with timing constraint from 1.6ns to 1.9ns, because the error rate in 

this region is very small. So, we can only estimate the energy overhead (detection 

logic) in this region. 

Before we perform the step 2 — overhead estimation, we show the complete 

characterization results in Table 3-1.The column 1 shows the timing constraints 

(critical path delay) of the multiplier. The area and energy of the multiplier are 

shown in column 2 and column 3 respectively. The column 4-9 in Table 3-1 

represent the error rates of multiplier operating at different clock periods. The clock 

period is only shown from 1.6ns to 2.1ns, because the energy can’t be saved when 

the clock period is larger than 2.1ns. Hence, this energy reduction technique is only 

suitable for the high clock frequency. 

1.6 1.7 1.8 1.9 2.0 2.1

1.6 3,809 2.0464 0.00%

1.7 3,447 1.7935 0.14% 0.00%

1.8 2,982 1.4582 1.81% 0.06% 0.00%

1.9 2,484 1.1191 1.12% 0.07% 0.00% 0.00%

2.0 2,319 0.9984 6.03% 0.96% 0.04% 0.00% 0.00%

2.1 2,193 0.9192 6.72% 1.08% 0.10% 0.02% 0.00% 0.00%

2.2 2,183 0.9392 10.38% 2.39% 0.30% 0.04% 0.00% 0.00%

2.3 2,161 0.9644 20.02% 7.99% 1.78% 0.12% 0.01% 0.00%

2.4 2,161 0.9696 22.10% 9.04% 2.37% 0.31% 0.06% 0.01%

area (um2)timing constraint (ns) energy (pJ)
clock period (ns) & error rate (%)

 

Table 3-1 Characterize multiplier for different clock periods 

3.3.2  Overhead Estimation 
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Overhead estimation is the second step of our proposed design flow. The 

overhead is the energy consumption of the detection logic. After the circuit 

characterization, we generate the detection logic and estimate its energy 

consumption (energy per operation). The energy consumption of detection logics is 

estimated at gate level and operated at the given clock period. 

For simplicity, we reduce the cell library space. The space of UMC 90nm CMOS 

cell library is restricted to 2-input gates except XOR gate. If all gates are 2-input 

gates in the netlist file, we can easily to program the detection logic generation and 

analyze the violating paths of functional units. 

Hence, we re-characterize the multiplier using the sub set of cell library. The 

characterization results are shown in Figure 3-17. 

 

Figure 3-17 Characterization results (sub-set cell library) 

If we assume the clock period is 1.7ns, and the timing constraint of the multiplier 

is from 1.7ns to 2.4ns. Compared with using full cell library (Figure 3-16), the 

energy by using the reduced cell library is larger (Figure 3-17). Although restricting 
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the cell library would influence the circuit energy, the increase trend of energy is 

also very drastic. It still exist a space for energy reduction also. For instance, the 

circuit energy can be reduced about 60%, when the timing constraint is relaxed from 

1.7ns to 2.3ns. The error rate is estimated with 1.7ns clock period and it is very great 

when the timing constraint is larger than 1.8ns. 

Next, we generate the detection logic and estimate the energy consumption. The 

result is shown in Figure 3-18. The pink line represents the total energy consumption 

that consists of multiplier and detection logic. The difference between the pink line 

and blue line represents the energy consumption of detection logic. 

 

Figure 3-18 Overhead estimation (clock period is 1.7ns) 

When the timing constraint is larger than 1.8ns the error rate is very great such 

that the performance penalty and complexity of detection logic are both very great 

also. Because we only focus on light performance penalty, the error rate in Figure 

3-18 needs to be reduced. The final step of our proposed design flow is overhead 

reduction. I will introduce it in detail later. 
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If the clock period is 2ns, we re-characterize the error rate and re-estimate the 

overhead. The result is shown in Figure 3-19. From it we can find the error rate is 

very small and the total energy (multiplier + detection logic) is similar to a convex 

function. Hence, the structure with minimum energy in this convex curve is the most 

energy-efficient. The multiplier with 2.3ns timing constraint consumes 2.83pJ 

(multiplier + detection logic), and it is operated at 2ns clock period only with 0.83% 

performance penalty. The energy-delay value is the minimum value with the 2.3ns 

timing constraint, and it can be called the most energy-efficient design. 

Most
energy-efficient
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Figure 3-19 Overhead estimation (clock period is 2ns) 

3.3.3  Overhead Reduction 

Overhead reduction is the final step of our proposed design flow. The objective 

of this step is to reduce performance penalty and energy overhead of the detection 

logic. 

 
Because the increase of error rate will cause the increase of performance penalty 

56 

 



 

and the complexity of detection logic, reducing the error rate is an effective method 

to achieve overhead reduction. In order to reduce the error rate, we can reduce the 

number of violating paths such that the probability of sensitizing the violating paths 

can be reduced. 

The number of violating paths can be reduced by upping the gate size of the 

violating paths such that the path delay of some violating paths can meet clock 

period [21][41], but it may increase the area and energy of the original functional 

unit. Here, we re-synthesize the functional unit to adjust the number of violating 

paths, and estimate the energy consumption of the functional unit and detection logic. 

Hence we can find the most energy-efficient functional units. 

Figure 3-20 shows the re-synthesis flow. The input files are the netlist file of the 

functional unit and the violating paths report, and the functional unit is operated at 

the given clock period. The delay time of all violating paths is larger than the given 

clock period. In order to reduce the number of violating paths we need to perform 

one pre-step and three recursive steps. 
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Figure 3-20 Re-synthesis flow 

The pre-step is to set all violating paths as 2-cycle path. The violating paths 

represent that they can not complete computation in one clock cycle. In other words, 

they need two clock cycles. Because the number of the violating path may be very 

great, we only consider the input ports and output ports of the functional unit. 

Next we select the “shortest path” of all violating paths as one-cycle path. Then 

we re-synthesize the functional unit such that path delay of the “shortest path” will 

be optimized. In other words, the path delay of the “shortest path” will meet one 

clock period such that the number of violating path will be decreased. Hence, the 

performance penalty and complexity of detection logic are also reduced, but the area 

and energy of function unit may be increased. After re-synthesis, we need to 
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estimate the energy consumption of the functional unit and the detection logic. The 

above steps need to be executed iteratively until the minimum energy design with 

negligible performance penalty is found. 

The re-synthesis flow is a heuristic solution, because we only consider the input 

port and output port of the violating path instead of all gates on the path. Although 

the re-synthesis can’t adjust the violating paths precisely, it can find a not bad 

solution and very fast. 

Here we choose a case that shown in Figure 3-18 to perform the re-synthesis 

flow. The scale of the error rate (y-axis) is rearranged and the result (before 

re-synthesis) is shown in Figure 3-21.  
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Figure 3-21 Before overhead reduction (re-synthesis) 

Then perform the re-synthesis flow, the results is shown in Figure 3-22. The 

error rate can be reduced effectively by the re-synthesis method, but the multiplier 

energy is also increased. We also can find a convex curve of total energy that it has a 

minimum energy value with negligible error rate. 
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The multiplier with 1.8ns timing constraint consumes 4.56pJ (multiplier + 

detection logic), and it is operated at 1.7ns clock period only with 0.13% 

performance penalty. 

 

Figure 3-22 After overhead reduction (re-synthesis) 
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4   Experimental Results 

In chapter 4 we show two experimental results. The first is to evaluate the energy 

and area of the functional unit with the proposed energy-efficient design. The second 

is to compare the different energy reduction techniques for functional unit of DSP 

core. These techniques that consist of parallel design, pipeline design and proposed 

design are evaluated from area, energy, and performance penalty. 

4.1  Simulation Results of Energy-Efficient Design 

Most digital signal processor systems incorporate a multiplier to implement 

algorithms such as convolution and filtering. In many DSP algorithms, the multiplier 

lies in the critical path delay and ultimately determines the performance of the 

algorithm. However, the demand for high-performance portable systems 

incorporating multimedia capabilities has elevated the design for low-energy to the 

forefront of design requirement in order to maintain reliability and provide longer 
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hours of operation. 

Hence, the objective of this experiment is to find the most energy-efficient 

multiplier that is operated at the peak clock frequency by our proposed design flow. 

The multiplier is 8 bit and the structure of the multiplier is Booth-encoded 

Wallace-tree. It is one of the fastest multipliers from Synopsys DesignWare IP. The 

most energy-efficient multiplier represents that it is the one that consumed the least 

energy among all configurations that deliver almost the same performance [40].  

In this experiment, the proposed design flow is performed, and the multiplier is 

synthesized using the Synopsys Design Compiler (Version V2007-03) with the 

sub-set UMC 90nm CMOS cell library. The timing constraint is 1.2ns, because it is 

the peak value of the multiplier can achieve. The Table 4-1 summarizes the area of 

the conventional single-cycle multiplier and the proposed energy-efficient multiplier. 

The overhead in column 3 (Table 4-1) is represented the area of detection logic. 

Compared with the conventional multiplier, the proposed multiplier can save about 

30% of total area. 

Multiplier Overhead Total

Conventional 6816 0 6816

Proposed 3982 782 4764

Improvement 30%

Area (um2)

 

Table 4-1 Estimated area 

After the gate level synthesis, we used the Synopsys PrimePower (Version 

V2006.06) to estimate the energy consumption (energy per multiplication) with 

back-annotated timing and parasitic information. The multiplier works at 833 MHz 

and computes 10,000 random patterns. Table 4-2 shows the energy per 
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multiplication of the conventional multiplier and the proposed multiplier. The 

overhead in column 3 (Table 4-2) is represented the energy consumption of 

detection logic. Compared with the conventional multiplier, the proposed multiplier 

can save about 21% of total energy. 

Multiplier Overhead Total

Conventional 3.236 0.000 3.236

Proposed 2.387 0.178 2.565

Improvement 21%

Energy (pJ)

 

Table 4-2 Estimated energy per multiplication 

The proposed multiplier has 0.17% error rate that is estimated by 10,000 random 

patterns. In other words, the conventional multiplier needs 10,000 cycles to compute 

the 10,000 random patterns, but the proposed multiplier needs 10,017 cycles to 

compute the 10,000 random patterns. Compared with the energy reduction (21%), 

the performance penalty (0.17%) is very light. 

If we synthesize the multiplier with power optimization constraint, the multiplier 

energy with conventional synthesis strategy can be reduced to 2.8pJ. Our proposed 

method can also apply the power optimization constraint, and the energy of the 

proposed multiplier can also be reduced. The ratio of the energy reduction by 

proposed method is almost the same as the ratio of the energy reduction by 

conventional method. 

4.2  Comparison of Energy Reduction Techniques 

 

Although relaxing the timing constraint is an effective method for energy 

reduction, it directly causes the performance (clock frequency) degradation. The 
63 

 



 

proposed energy-efficient design can compensate the clock frequency degradation, 

and it has only light performance penalty. 

Exploiting parallelism or pipelining is also an effective method to compensate 

for the loss in performance. They can achieve the same clock frequency and data 

throughput, but the data latency is increased such that high data parallelism is 

required. 

In this experiment, we compare the three different energy reduction techniques 

for multiplier of DSP core. The multiplier is the major component of DSP core, and 

it consumes the most energy among the datapath (adder, shifter and multiplier) in 

DSP core. The different techniques that consist of parallel design, pipeline design 

and proposed design, they are evaluated from area, energy, and performance penalty. 

The structure of the 8-bit multiplier is Booth-encoded Wallace-tree. 

The baseline DSP model is similar as MIPS architecture [42]. It is a single-issue 

and in-order pipeline with 5 pipeline stages. The conceptual architecture is shown in 

Figure 4-1. It has forwarding path and only the arithmetic instructions are 

considered such that the ideal CPI of this DSP model is 1. 

 

Figure 4-1 Baseline DSP model 

The DSP model with parallel multiplier design and pipeline multiplier design are 

shown in Figure 4-2 and Figure 4-3 respectively. Although the two designs can 

reduce the multiplier energy and achieve the same throughput, they may suffer data 

hazards from limited instruction level parallelism. When the result of multiplier is 
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needed to the next instruction immediately, it can not be forwarded immediately 

such that these systems require a stall cycle. If the application has very poor 

instruction level parallelism, the performance of the systems will be degraded 

seriously. 

 

Figure 4-2 DSP model with parallel multiplier design 

 

Figure 4-3 DSP model with pipeline multiplier design 

The DSP model with proposed multiplier design is shown in Figure 4-4. The 

multiplier is augmented with the detection logic. When the detection logic detects a 

computation error in multiplier, all of the previous stages are stalled one cycle and 

the next stage is inserted a bubble (no-op) signal. Since the multiplier has one 

additional cycle to re-compute the multiplication such that the computation error can 

be corrected, but it spend a one-cycle latency penalty. 
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Figure 4-4 DSP model with proposed multiplier design 

We use the sub-set of UMC 90nm CMOS cell library to evaluate area of 

multiplier and overhead. The operating period is 1.2ns that is the peak performance 

of the multiplier. The area of the multiplier is shown in Table 4-4. The single cycle 

design has the maximum. Compared with single cycle design, all of the three 

designs can reduce area effectively. Although the parallel design has two multipliers, 

the total area of the parallel design is smaller than the total area of the single cycle 

design. The timing constraint of the parallel design can be relaxed to double of the 

clock period such that the average area per multiplier is the minimum of four 

designs. 

Single cycle 6816

Parallel 5967

Pipeline 4175

Proposed 4764

Design Area (um2)

 

Table 4-3 Estimated total area 
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Figure 4-5 Area is normalized by the result of single cycle design 

We use the MIPS compiler (gcc 4.21) to compile the benchmarks. One 

benchmark is color space transform of JPEG [43], and the input file is 64 x 64 Lena 

image. Another benchmark is a 16 taps finite impulse response (BDTI benchmark 

[44]), and the input file has 200 samples. 

After the benchmark is compiled, we count the cycle count and generate the 

input patterns for multiplier based on the different DSP models. We take the 

assembly code of Chroma part to explain how we count the cycle count, and the 

code is shown in Figure 4-6. 
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Figure 4-6 Assembly code of Chroma 

We only consider the arithmetic instructions of the code — 3 multiplication and 

2 addition. For baseline DSP model, it spends 5 cycles to execute the 5 instructions. 

For DSP model with parallel or pipeline multiplier design, it spends 7 cycles to 

execute the 5 instructions, because “addition after multiplication” incurs data hazard. 

The output of multiplier can not forward to adder immediately. For the DSP model 

with proposed multiplier design, it spends 5~8 cycles to execute the 5 instructions 

according to the computation errors in multiplier. 

Hence, the total cycle count of finishing color space transform of the Lena image 

and 200 samples of 16-tap FIR is shown in column 2 and column 4 of Table 4-4. 

Both the parallel and pipeline design spend longer execution time, because they has 

many stall cycles according to the data hazards. “Addition follows multiplication” is 

very common in many applications, such as image, audio, and video. 

Column 3 and column 5 of Table 4-4 show the energy consumption of these 
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multipliers to compute the multiplications of color space transform and the 16-tap 

FIR. 

Cycle count Energy (nJ) Cycle count Energy (nJ)

Single cycle 34,816 61.37 6,400 10.45

Parallel 47,104 42.44 9,600 6.96

Pipeline 47,104 46.09 9,600 8.62

Proposed 34,876 46.74 6,412 7.43

Color space transform FIR
Design

 

Table 4-4 Simulation results 

Figure 4-7 shows the simulation results that are normalized by the results of single 

cycle design. All of the three techniques can reduce the energy consumption 

effectively, but both the parallel and pipeline design spend longer execution time 

according to the data hazards. 

 

Figure 4-7 Normalized by the result of single cycle design 
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The energy-delay value is shown in Figure 4-8, the results are normalized by the 

result of single cycle design. We can find that the proposed design is the most 

energy-efficient. 
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Figure 4-8 Energy-delay value normalized by single cycle design 
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5   Conclusions 

For the increasing demand of high computing power and high mobility, the 

energy reduction now becomes an important issue in the VLSI designs. In the 

synchronous digital circuits, traditional synthesis timing constraint is based on the 

given clock period for function correctness, but that always makes the energy soar 

when the clock frequency and timing constraint approach the peak value. In this 

thesis, we propose a design method for improving energy efficiency of functional 

units. It exploits data-dependent delay to reduce synthesis timing constraint such that 

the energy consumption can be reduced effectively and the desired clock period will 

not be degraded, but it will cause computation errors and spend performance penalty 

for correcting the errors.  

For the computation errors, we generate the detection logic to detect and spend 

one-cycle latency penalty to correct. The detection logic is generated by analyzing 

the violating paths under transition delay such that it can detect errors more 

precisely. If the error is detected by detection logic, all the previous pipeline stages 
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are latched one more cycle to re-compute the data, and the next stage is inserted a 

bubble (no-op) signal. We also propose a design flow which systematically 

determines the timing constraint and fine tune the number of violating paths for 

maximizing energy reduction and minimizing performance penalty. 

In our simulation, we use the proposed technique in 8-bit multiplier to reduce 

energy consumption with the UMC 90nm CMOS cell library. The energy 

consumption can be reduced about 10% ~ 29% and the performance penalty is 

negligible (<1%). We further compare our proposed technique with the techniques 

of exploiting parallelism (parallel design and pipeline design) in a multiplier of DSP 

core. All the techniques can reduce the circuit energy effectively, but the techniques 

of exploiting parallelism have worse performance. Because exploiting parallelism 

design need high instruction level parallelism otherwise it incurs serious data 

hazards and stall cycles. 

Our future work is to improve the energy and area of detection logic. The 

complexity of detection logic increases drastically when the error rate lightly 

increases. That limits the degree of relaxing the timing constraint. Because the 

detection logic is a Boolean function, we can insert some don’t care patterns such 

that the complexity of the function can be simplified effectively. We now investigate 

the systematic method that can insert some don’t care patterns efficiently.  

At the same time, because energy is proportional to the square of the supply 

voltage, voltage scaling is one of the most effective methods for energy reduction. 

We will apply the same concept to reduce the supply voltage for energy reduction. 
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