

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

利用與資料相依之延遲改善運算單元之能量效率

Improving Energy Efficiency of Functional Units by
Exploiting its Data-Dependent Latency

研究生： 林彥呈

指導教授： 劉志尉

中 華 民 國 九 十 七 年 十 一 月

利用與資料相依之延遲改善運算單元之能量效率

Improving Energy Efficiency of Functional Units by Exploiting its

Data-Dependent Latency

研 究 生：林彥呈 Student: Yen-Cheng Lin

指導教授：劉志尉 博士 Advisor: Dr. Chih-Wei Liu

國 立 交 通 大 學
電子工程學系 電子研究所班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

In partial Fulfillment of the Requirements for the Degree of

Master of Science

in

Electronics Engineering

November 2008

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 七 年 十 一 月

利用與資料相依之延遲改善運算單元之能量效率

研究生：林彥呈 指導教授：劉志尉 博士

國立交通大學

電子工程學系 電子研究所

摘要

 隨著可攜式裝置的需求持續增加，以及多媒體和通訊應用所需要的運算能力也越來

越強，因此降低能量消耗已經變成電路設計中主要的考量因素。在一般同步數位電路中，
為了確保運算都能正確無誤，合成電路的時序限制(timing constraint)都會根據所希望的

操作時脈來設定，但是當操作時脈拉高時，電路所消耗的能量會隨著時序限制的變緊而

劇烈增加。在本篇論文中，我們提出一個改善運算單元(functional units)能量效率的方

法，而這個方法主要是利用資料相依延遲(data-dependent latency)的特性來放鬆合成電路

時的時序限制，如此可以有效降低運算單元的能量消耗而且不需要降低運算單元的操作

時脈，這樣的方式雖然會造成一些資料的運算錯誤以及修復錯誤所花費的效能代價，但

是在運算單元裡的最長路徑通常只會被少數的特定資料所感應(sensitize)，大部分的資料

所需要的運算時間都小於操作時脈，所以只需要很小的效能代價。因此，我們設計一個

偵測單元(detection logic)來偵測這些會造成運算錯誤的少數的資料，並且額外多花費一

個週期的運算時間來修復錯誤，此外，我們也提出一個系統化的方法來設定運算單元合

成時的時序限制以及調整資料運算錯誤的發生機率，讓我們可以利用最小的效能代價來

節省最大的能量消耗。在我們的模擬中，我們利用所提出的方法來改善一個 8-bit 乘法

器的能量效率，並且利用隨機資料(random pattern)，還有色彩空間轉換(color space
transform)和有限脈衝響應(FIR)等測試程式來分析，在製程環境是 UMC 90nm CMOS cell
library 下，和傳統設計方法相比可以有效降低 10%~29%的能量消耗，而所花費的效能

代價是非常小的甚至是可以忽略的(<1%)。

Improving Energy Efficiency of Functional
Units by Exploiting its Data-Dependent Latency

 Student: Yen-Cheng Lin Advisor: Dr. Chih-Wei Liu

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

ABSTRACT

 For the increasing demand of portable devices and high computing power requirement
for the multimedia and communication applications, the energy reduction now has become a
major issue in the circuit design. In the synchronous digital circuits, synthesis timing
constraint is based on the desired clock period for function correctness, but the circuit energy
increases drastically when the synthesis timing constraint and clock frequency approach peak
value (peak speed). In this thesis, we propose a design method for improving energy
efficiency of functional unit. It exploits data-dependent latency to relax synthesis timing
constraint so that the energy consumption can be reduced effectively and the desired clock
period will not be degraded, but it will cause some computation errors and spend performance
penalty for correcting the errors. Critical paths of the circuits are usually sensitized by very
specific data sequences, and computation time of most data sequences is smaller than clock
period. Hence the performance penalty may be very small. Because of this property we
generate the detection logic to detect the specific data sequences that will cause computation
errors and spend one-cycle latency penalty to correct the errors. Besides, we also propose a
design flow which systematically determines the synthesis timing constraint and fine tunes the
error rates, therefore we can trade the minimum performance penalty for the maximum energy
reduction. In our simulations, we use the proposed technique in an 8-bit multiplier to improve
the energy efficiency with the UMC 90nm CMOS cell library. The benchmarks consist of
random patterns, color space transform and FIR. Compared with conventional synthesis
strategy, the proposed method can reduce 10% ~ 29% of energy consumption and the
performance penalty is negligible (<1%).

誌 謝

研究生涯轉眼即逝，兩年來受到許多人幫助及鼓勵，才能順利完成碩士學業，在此致

上最深的感激。

感謝劉志尉教授的照顧。使我在專業知識及研究態度上更臻成熟。此外，特別感謝任

建葳教授、周景揚教授及周世傑教授，謝謝你們在百忙之中，撥冗參與論文口試，並對

我的研究給予寶貴的意見，讓此篇論文更加完備充實。

 感謝林泰吉學長在研究上的指導，而且時常在我遇到困難時伸出援手，讓我適時得到

幫助，並培養我做人做事上應有的態度。另外感謝 Hardware team 的成員，歐士豪學長、

呂進德同學以及甘禮源學弟平時在研究和生活的諸多幫忙和協助。

 感謝實驗室學長，感謝陳信凱學長、郭羽庭學長、林禮圳學長、鄧翔升學長、卓志宏

學長、劉士賢學長、陳慶至學長、王炳勛學長、卓毅學長、林佑昆學長以及張彥中學長，

感謝你們平時對於我提供的諸多協助和意見。

 感謝實驗室同學及學弟妹，感謝顏于凱同學、洪正堉同學、張巍瀚同學以及李岳泰同

學，我們一同經歷了許多的努力和奮鬥，這回憶我永生難忘。感謝張國強學弟、莊明勳

學弟、葉世賢學弟、吳聲昀學弟、張雅婷學妹、蔡安綺學妹，謝謝你們在我研究生活上

的一切幫忙。

 最後，感謝我最親愛的家人。爸、媽、姊以及芝瑄，感謝你們一路上的支持及鼓勵，

沒有你們就沒有今日的我，我愛你們。

謹將此篇論文獻給所有曾支持我、協助我的人，衷心的感謝並祝福你們。

彥呈

謹誌於 新竹

2008 冬

CONTENTS

1 Introduction...1
1.1 Motivation.. 1
1.2 Problem Statement and Related Works.. 3
1.3 Thesis Organization .. 5

2 Low-Power & Energy-Efficient Design Methods...7
2.1 CMOS Power/Energy Dissipation ... 8

2.1.1 Static Power Dissipation ..8
2.1.2 Dynamic Power Dissipation... 11

2.2 Static Approaches .. 14
2.2.1 Supply Voltage ...15
2.2.2 Switching Activity and Capacitance ..17

2.3 Dynamic Approaches .. 20
2.3.1 Supply Voltage ...20
2.3.2 Switching Activity and Capacitance ..21

2.4 Adaptive Approaches .. 24
2.4.1 Supply Voltage ...25
2.4.2 Switching Activity and Capacitance ..25

3 Proposed Energy-Efficient Design...29
3.1 Delay of CMOS Circuits ... 29
3.2 Variable Latency Design ... 34

3.2.1 Template of Variable Latency Design ..34
3.2.2 Detection Logic..37

3.3 Design Flow.. 48
3.3.1 Characterization ...50
3.3.2 Overhead Estimation..53
3.3.3 Overhead Reduction...56

4 Experimental Results..61
4.1 Simulation Results of Energy-Efficient Design... 61
4.2 Comparison of Energy Reduction Techniques ... 63

5 Conclusions..71
Reference...73

LIST OF FIGURES

FIGURE 1-1 POWER DENSITY TREND ..2
FIGURE 1-2 ENERGY V.S TIMING CONSTRAINT ...3
FIGURE 1-3 EXPLOITING PARALLELISM..4
FIGURE 2-1 CMOS INVERTER MODEL..9
FIGURE 2-2 MODEL DESCRIBING PARASITIC DIODES PRESENT IN A CMOS INVERTER..............10
FIGURE 2-3 MODEL DESCRIBING PARASITIC DIODES PRESENT IN A CMOS INVERTER..............12
FIGURE 2-4 SWITCHING POWER IN A CMOS INVERTER..13
FIGURE 2-5 PARALLEL AND PIPELINED DATAPATH...16
FIGURE 2-6 EXAMPLE OF OPERATOR REORDERING ..18
FIGURE 2-7 GATE RESTRUCTURING ...19
FIGURE 2-8 ARCHITECTURE OF THE DVFS SYSTEM...21
FIGURE 2-9 CLOCK-GATED D FLIP-FLOP ..22
FIGURE 2-10 PRE-COMPUTATION LOGIC ..23
FIGURE 2-11 COMPUTATIONAL KERNEL ..24
FIGURE 2-12 ARCHITECTURE OF THE AVS SYSTEM ...25
FIGURE 2-13 EXAMPLE OF BIT SWAPPING ..26
FIGURE 2-14 PATH DELAY DISTRIBUTION ..27
FIGURE 2-15 CONCEPTUAL CIRCUIT OF PROPOSED DESIGN ..28
FIGURE 3-1 PATH DELAY DISTRIBUTION (8-BIT MULTIPLIER)...31
FIGURE 3-2 ENERGY CURVE OF 8-BIT MULTIPLIER ...32
FIGURE 3-3 PATH DELAY DISTRIBUTION (8-BIT MULTIPLIER)...33
FIGURE 3-4 TEMPLATE OF VARIABLE LATENCY DESIGN...35
FIGURE 3-5 DETECTION LOGIC...36
FIGURE 3-6 TIMING DIAGRAM OF THE VARIABLE LATENCY DESIGN ...36
FIGURE 3-7 DETECTION LOGIC GENERATION ...38
FIGURE 3-8 EXACT PATH SENSITIZATION CRITERION ...42
FIGURE 3-9 DELAY-DEPENDENT FALSE PATH...42
FIGURE 3-10 VIABLE PATH SENSITIZATION CRITERION ..43
FIGURE 3-11 AN EXAMPLE OF GIVEN CRITICAL PATH...44
FIGURE 3-12 MODIFIED VIABLE PATH SENSITIZATION CRITERION..45
FIGURE 3-13 FLOWCHART OF FAULT FUNCTION...46
FIGURE 3-14 TWO VIOLATING PATHS...47
FIGURE 3-15 DESIGN FLOW OF ENERGY-EFFICIENT FUNCTIONAL UNIT49
FIGURE 3-16 CHARACTERIZATION RESULTS ...52

FIGURE 3-17 CHARACTERIZATION RESULTS (SUB-SET CELL LIBRARY)54
FIGURE 3-18 OVERHEAD ESTIMATION (CLOCK PERIOD IS 1.7NS)..55
FIGURE 3-19 OVERHEAD ESTIMATION (CLOCK PERIOD IS 2NS)...56
FIGURE 3-20 RE-SYNTHESIS FLOW...58
FIGURE 3-21 BEFORE OVERHEAD REDUCTION (RE-SYNTHESIS)..59
FIGURE 3-22 AFTER OVERHEAD REDUCTION (RE-SYNTHESIS)..60
FIGURE 4-1 BASELINE DSP MODEL..64
FIGURE 4-2 DSP MODEL WITH PARALLEL MULTIPLIER DESIGN ...65
FIGURE 4-3 DSP MODEL WITH PIPELINE MULTIPLIER DESIGN ...65
FIGURE 4-4 DSP MODEL WITH PROPOSED MULTIPLIER DESIGN...66
FIGURE 4-5 AREA IS NORMALIZED BY THE RESULT OF SINGLE CYCLE DESIGN67
FIGURE 4-6 ASSEMBLY CODE OF CHROMA ...68
FIGURE 4-7 NORMALIZED BY THE RESULT OF SINGLE CYCLE DESIGN69
FIGURE 4-8 ENERGY-DELAY VALUE NORMALIZED BY SINGLE CYCLE DESIGN..........................70

LIST OF TABLES

TABLE 3-1 CHARACTERIZE MULTIPLIER FOR DIFFERENT CLOCK PERIODS53
TABLE 4-1 ESTIMATED AREA..62
TABLE 4-2 ESTIMATED ENERGY PER MULTIPLICATION..63
TABLE 4-3 ESTIMATED TOTAL AREA..66
TABLE 4-4 SIMULATION RESULTS ...69

1 Introduction

1.1 Motivation

As number of transistor is doubled every technology generation, chips grow in

functionality and switching frequencies [1]. The millions of parasitical capacitances

charging and discharging at an ever-increasing rate have led to a soaring amount of

power dissipation. For desktop computers, the high power densities reduce chip

reliability and life expectancy [2], shown in Figure 1-1. To keep the system stable,

the cooling system is necessary and thus induces additional cost.

 1

Figure 1-1 Power density trend [2]

With today’s growing popularity of portable devices such as cell phones, PDAs,

and laptops, low energy consumption is also one of important issues in VLSI

designs. The duration of operation time is limited by the battery capacity in

microamp-hour or watt-hour. Devices that operate with high energy consumption

can only be used for short duration of time. The duration of operating time can be

lengthened by using a battery with higher capacity. Unfortunately, projected

improvements in the capacity of batteries (5-10% CAGR [3]) are much slower than

what is needed to support the increasing complexity, functionality and performance

of the systems they power [4]. The need to improve battery life time has driven the

research and development of low power and energy-efficient design techniques for

electronic circuits and systems. The low power and energy-efficient circuit design

methods are discussed in Chapter 2.

Generally, the DSP processor is the key component of portable system, and it

always dominates the performance of the system and consumes large amount of

 2

energy from battery. The functional units in the DSP processor are used to

implement multimedia processing, and they always dominate the clock frequency

and determine the performance of the processing. However, the demand for

high-performance portable systems incorporating multimedia capabilities has

elevated the design for low-energy to the forefront of design requirement in order to

maintain reliability and provide longer hours of operation.

1.2 Problem Statement and Related Works

High performance and low energy always represent contradictory design

requirements. In our experiments, we found the relationship between energy and

timing constraint, and it is shown in Figure 1-2.

Figure 1-2 Energy v.s timing constraint

Tightening the timing constraint of the circuit will induce the increasing of the

circuit energy consumption. Especially when the timing constraint approaches the

peak value (the minimum value), the circuit energy increases drastically. The reason

for the soared energy is to use the cells with high driving ability and low threshold

voltage, improve the circuit structure and use high supply voltage [5]. Hence,

 3

relaxing timing constraint can reduce the circuit energy effectively, but it makes

clock frequency degradation.

Exploiting parallelism is one of the effective methods to compensate for the loss

in clock frequency [6]. Figure 1-3 (a) shows the original circuit with sample rate 1/T,

and the timing constraint of the multiplier is T. Figure 1-3 (b) shows the multiplier

with the timing constraint of the multiplier is relaxed to 2T, and therefore the energy

consumption is reduced. Although the energy is reduced, the clock frequency is

degraded to 2T for functional correctness and the sample rate is 1/2T. Exploiting

parallelism can compensate the clock frequency degradation and gain the energy

reduction, shown in Figure 1-3 (c) and (d).

2T
1

T
1

T
1

T
1

T
1

2T
1

T
1

T
1

T
1

Figure 1-3 Exploiting parallelism

Parallel design (Figure 1-3 (c)) uses two low energy multipliers (Figure 1-3 (b))

to interleave computation, hence both the sample rate and clock frequency are 1/T.

The average energy per operation is almost the same as Figure 1-3 (b), but it needs

 4

mux and de-mux to control the computation. Pipeline design (Figure 1-3 (d)) inserts

registers into the low energy multiplier (Figure 1-3 (b)) to compensate the clock

frequency and sample rate. The overhead is pipeline registers. The main drawback

of these two designs is data latency. Therefore, they require high data parallelism to

hide latency. If the instruction level parallelism in a program is inefficient and

limited, the design will incur serious data hazards and many stall cycles.

In the thesis, we exploit the circuit data-dependent delay [7][8][9] to achieve

energy reduction. In many designs, the critical paths may be activated infrequently.

Hence we propose a method to relax the synthesis timing constraint for energy

reduction, and it doesn’t make clock frequency degradation. Because of this

property we generate the detection logic to detect the specific data sequences that

will cause computation errors and spend one-cycle latency penalty to correct the

errors. Besides, we also propose a design flow which systematically determines the

synthesis timing constraint and fine tunes the error rates, therefore we can trade the

minimum performance penalty for the maximum energy reduction.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 introduces several

techniques of energy reduction the techniques are classified into categories. The

proposed design method is also described. Chapter 3 addresses the data-dependent

delay and the template of the variable latency design. The variable latency design

can tolerate the computation errors by two-cycle latency, and the detection logic that

is included in the variable latency design is responsible to detect the computation

errors. Moreover, the design flow for the proposed energy-efficient circuit is also

introduced in the Chapter 3. Chapter 4 shows simulation results consist of area,

 5

energy and performance. The proposed technique is compared with parallel design

and pipeline design. Finally, Chapter 5 concludes this thesis and describes the future

works.

 6

2 Low-Power &

Energy-Efficient Design

Methods

Power dissipation and energy consumption are critical factors in the design of

any system-on-chip. For battery-powered applications, these are extremely

important because they govern battery lifetime and users always value products that

run longer on a battery change. Power dissipation of digital CMOS circuits consists

of static power dissipation and dynamic power dissipation. Static power dissipation

is defined as the power that is dissipated without any switching in the circuit.

Leakage current is the major source of static power dissipation. On the other hand,

the dynamic power dissipation is due to the signal transitions in the circuit. Dynamic

power consists of two parts: the first (switching power) is caused by charging and

 7

discharging load capacitance of gates, and another (short circuit power) is due to the

conduction path between supply voltage and ground appears during signal transition.

Static power consumption has been traditionally ignored since it has been

negligible; however it is becoming more significant with the downward-scaling of

transistor dimensions. Therefore opportunities for significant power reduction are

available in both static and dynamic power.

This chapter focuses on methods for dynamic power (dynamic energy) reduction

mainly. The methods of dynamic power (energy) reduction are classified to three

approaches (static approaches、dynamic approaches、adaptive approaches), they

would be discussed in detail below.

2.1 CMOS Power/Energy Dissipation

Power dissipation in CMOS circuits can be divided into three main components:

short-circuit power, switching power, and leakage power. Although the terms

“power” and “energy” have different definitions, both serve to achieve the same

objective [2]. Power is defined as the average power that is supplied to a circuit from

the power supply and is measured in “watts”. Meanwhile, the term energy refers to

the total amount of power dissipation over a period of time. Energy is measured in

“joules”. In fact, energy can be expressed in terms of the power-delay product that is

shown in equation (2-1), which is the product of power consumption and execution

time.

Time Power Energy ×= (2-1)

2.1.1 Static Power Dissipation

 8

Ideally, the CMOS circuits dissipate no static power since there is no direct path

from VDD to ground in the steady state. In Figure 2-1 shows a CMOS inverter model,

for a complementary CMOS circuit, if Vin is “0” that N-MOS will be turned off

while the P-MOS is turned on. The output voltage (Vout) will be “1”. On the

opposite, if Vin is “1” that N-MOS will be turned on while the P-MOS is turned off.

The output voltage (Vout) will be “0”. From this scenario, the CMOS circuit has no

direct path from VDD to ground, therefore it will not induce the static power

dissipation. However, the scenario of ideal CMOS circuit cannot be realized in

practice since the MOS transistor is not a perfect switch. There are some small static

dissipation due to reverse bias leakage current (junction reverse bias current)

between the diffusion regions and the substrate [10]. In addition, “sub-threshold

conduction current” and “gate-induced drain leakage” can contribute to the static

power dissipation.

Figure 2-1 CMOS inverter model

The reverse bias leakage current is due to the parasitic diodes existing in CMOS

transistor. To give a comprehensive explanation, Figure 2-2 depicts the parasitic
9

diodes in a CMOS inverter. Consider when Vi equals ground, the NMOS is turned

off, and the PMOS is turned on. Thus Vo is driven to high, and parasitic diode made

of n+ diffusion and p-substrate is reversely biased. That is, there will be a diode

reverse saturation current drawn from supply to ground.

Figure 2-2 Model describing parasitic diodes present in a CMOS inverter

The sub-threshold conduction current is between source and drain when supply

voltage is below threshold voltage. The gate-induced drain leakage current arises in

the high electric field under gate and drain overlap region causing a thinner

depletion region of drain to well junction.

The static power dissipation equals the product of device leakage current and

supply voltage. Equation (2-2) represents the static power dissipation, where

“Ileakage” is a sum of all leakage currents. The static power is independent of signal

switching.

leakageDDstatic IVPower ×= (2-2)

The leakage current is related to the threshold voltage. Threshold voltage will

affect the leakage current exponentially. Higher threshold voltage will result smaller

 10

leakage current and smaller static power dissipation. But the high-threshold

transistor takes longer time to complete a transition. Therefore, Dual threshold

voltage [11][12] is a scheme of reducing leakage current by assigning some

high-threshold voltage transistors in the non-critical paths, and using low-threshold

transistors in the critical paths.

2.1.2 Dynamic Power Dissipation

The dynamic power dissipation consists of two parts: one is due to short-circuit

current when both pull-up and pull-down transistors are momentarily on at the same

time, another is due to switching current from charging and discharging parasitic

capacitance of the CMOS circuits.

 Short Circuit Power Dissipation

The short circuit power dissipation is dependent on signal switching. During the

output transfers from logic 1 to logic 0 or from logic 0 to logic 1, there exists a

discharging path from supply voltage to ground for a short period. This is because of

the rising time and falling time of PMOS or NMOS are not ideal zero. Taking

CMOS inverter as an example, if the rising and falling time of input waveforms are

not zero, when Vtn < Vin < VDD - |Vtp| holds for the input voltage, there will be a

conductive path open between VDD and ground because both the NMOS and PMOS

devices are turned-on (where Vtn and Vtp are threshold voltages of NMOS and

PMOS). The short circuit current is from VDD to ground, as described in Figure 2-3.

On a low-to-high transition at the input, the NMOS will start to conduct when

Vin is equal to Vtn, and the PMOS will stop conducting when Vin is equal to {VDD -

|Vtp|}. In this inverter example [6], the short circuit power is given by equation (2-3).

11

()
clk

tDD T
tV-Vβ 3

meanDDcircuit-short 2
12

IVP =×= (2-3)

The “t” is the rising time or the falling time of the input signal, and Vt = Vtn =

|Vtp|. Also, the effective transistor strengths are equal for the NMOS and PMOS; let

ppnn WW βββ == .

Figure 2-3 Model describing parasitic diodes present in a CMOS inverter

By the equation (2-3), short circuit current is significant when the rising or

falling time at the input of a gate is much longer period of time, which means more

significant short circuit dissipation. Thus to minimize the short circuit dissipation, it

is desirable that the short-circuit dissipation is minimized by making the output

rising or falling time larger than the input rising or falling times [6][13]. Careful

design is required to keep this component of power dissipation small enough to be

ignored [14].
12

 Switching Power Dissipation

The other part of dynamic power dissipation is due to signal switching of the

nodes in the circuit. The power is dissipated when the circuit capacitance is charged

to VDD throughout the pull-up network (PMOS) and discharged to ground

throughout the pull-down network (NMOS). Figure 2-4 describes the switching

power in a CMOS inverter. The equation (2-4) is calculating the energy that needed

to charge the circuit capacitance and the equation (2-5) is calculating the energy that

will be discharged while pull-down network is turned on [6].

Figure 2-4 Switching power in a CMOS inverter

2
DDL

V

0
outDDL

0

out
LDD

0
DDVDDVDD VCdVVCdt

dt
dV

CVdt(t)ViE
DD

==== ∫∫∫
∞∞

 (2-4)

2
VCdVVCdtV

dt
dV

Cdt(t)ViE
2
DDL

V

0
outoutL

0
out

out
L

0
outVDDCL

DD

==== ∫∫∫
∞∞

 (2-5)

It means that the capacitance only sustained half-the-energy that charged.

Obviously, for each switching cycle (consisting of an L H and an H L

transition) takes a fixed amount of energy, 2
DDLVC .

In order to compute the power consumption, we have to take into account how

13

often the device is switched. If the gate is switched on and off “f” times per second,

the power consumption is given by equation (2-6), where “α ” is the switching

activity factor which represents the probability of the switching from 0 to 1.

fVCP 2
DDLswitching α= (2-6)

So far we know that power dissipation is composed of static power dissipation

and dynamic power dissipation. The total power consumption of the CMOS is the

sum of its three components. The dynamic power dissipation (switching power

dissipation) is the major source of total power dissipation, when the signal is

switching [6]. From equation (2-1), we can derive the dynamic energy consumption

(per transition) that is shown in equation (2-7).

22 VCTimefVCTimePowerEnergy αα =×≈×= DDLDDL (2-7)

The dynamic energy consumption is related to the supply voltage, switching

activity and switching capacitance. Reducing energy consumption is independent of

clock frequency. It is related to the supply voltage and circuit capacitance (switching

activity and switching capacitance). If it is possible, using lowest voltage and

smallest amount of capacitance will result the design with minimum energy

dissipation, but it will slow down the path delay. On the other hand, increasing the

supply voltage or gate size (capacitance) will improve the circuit delay, but it will

increase the circuit energy.

Here I classify the methods of power and energy reduction into three categories:

static approaches, dynamic approaches and adaptive approaches.

2.2 Static Approaches
 14

This category is said that the circuit is optimized at design time and it is

inflexible at run time. I’ll introduce the techniques of energy reduction by reducing

supply voltage and switch activity/capacitance respectively.

2.2.1 Supply Voltage

 Algorithmic transformation

The choice of algorithm is the most highly leveraged decision in meeting the

power constraints. Transformations are changes of the computational structure in a

manner that the input/output behavior is preserved. The use of transformations

makes it possible to explore a number of alternative architectures and to choose

which result in the lowest power. The key approach is reducing the supply voltage

by minimizing the number of operations and exploitation of concurrency.

At algorithm level, minimizing the number of operations and exploitation of

concurrency can increase the throughput such that the supply voltage can be reduced

to meet the requirement. The example is a first order IIR filter shown in [15] that it

is applying loop unrolling and algebraic transformations to exploit data concurrency.

We also can design a FIR filter with polyphase decomposition to minimize the

number of operations [16].

 Parallelism & pipelining

At the architecture level parallelism and pipelining are also the effective way to

increase the circuit throughput and frequency such that the supply voltage can be

reduced. Although it would increase the circuit capacitance (area), supply voltage is

square proportioned to energy consumption such that energy can be reduced.

 Show parallelism and pipelining examples in Figure 2-5 (b) and (c)

respectively [5]. Figure 2-5 (a) is the original structure. Equation (2-8), equation
15

(2-9) and equation (2-10) represent the power dissipation of original datapath,

parallel datapath and pipelining datapath respectively.

ref
2
refrefref fVCP = (2-8)

ref
ref2

refrefpar 0.36P)
2

f
())(0.58V(2.15CP ≈= (2-9)

refref
2

refrefpipe 0.39Pf))(0.58V(1.15CP ≈= (2-10)

T
1

T
1

T
1

T
1

T
1

2T
1

T
1

2T
1

Figure 2-5 Parallel and pipelined datapath

 Dual supply voltage

The alternative approach for optimizing supply voltage is to selectively decrease

the supply voltage on some of the gates based on the path delay. The critical paths are

supplied by higher supply voltage, and the non-critical paths can be supplied by lower

supply voltage. Using dual supply voltage in different parts of a circuit may reduce

the energy consumption of a design at a rather small cost in terms of algorithmic
16

and/or architectural modifications [17][18][19][20].

Using dual supply voltage on the same circuit requires the use of level

converters at the boundaries of the various modules (a level converter is needed

between the output of a gate supplied by a low VDD and the input of a gate supplied

by a high VDD).

2.2.2 Switching Activity and Capacitance

 Operation substitution & operator reordering

The switching activity and switching capacitance can be reduced by optimizing

the ordering of operations and using operation substitution in a design. To illustrate

this, consider the problem of multiplying a signal with a constant coefficient, which

is a very common operation in signal processing applications.

Multiplications with constant coefficients are often optimized by decomposing

the multiplication into shift-add operations and using the canonical sign digit

representation. Thus the circuit area (capacitance) can be reduced. Consider the

example in which a multiplication with a constant is decomposed into IN + IN >>7

+ IN>>8, shown in Figure 2-6.

In the Figure 2-6 (b) (obtained by applying associativity and commutativity), the

two small number IN>>7 and IN>>8 are summed in the first adder and the output is

added to IN in the second adder. In this case, the output of the first adder has a small

amplitude (since we are adding 2 scaled number of the same sign) and therefore

lower switching activity. The second implementation switched 30% less capacitance

than the first implementation [15].

17

Figure 2-6 Example of operator reordering

 Data representation & bus encoding

In most signal processing applications, two’s complement is typically chosen to

represent numbers since arithmetic operations (addition and subtraction) are easy to

perform. One of the problems with two’s complement representation is

sign-extension, which causes the msb sign-bits to switch when a signal transitions

from positive to negative or vice-versa (for example, going from -1 to 0 will result in

all of the bits toggling). Therefore using a two’s complement representation can

result in significant switching activity when the signals being processed switch

frequently around zero and when they do not utilize the entire bit-width (i.e., the

dynamic range is much smaller than the maximum possible value determined from

the bit-width) since a lot of the msb bits will perform sign-extension.

Minimizing the switching in the msbs can use a sign-magnitude representation,

in which only one bit is allocated for the sign and the rest for the magnitude [6][15].

In this case, if the dynamic range of a signal does not span the entire bit width, only

one bit will toggle when the signal switches sign, as opposed to the two’s

complement representation where due to sign extension several of the bits will

switch.

For the bus encoding, we also can use the gray code to substitute for binary code

such that the signal transitions of the program and the data memory address busses
18

can be reduced. For sequentially access, the average toggling of binary and gray

code are 2 and 1 respectively [6][15].

 Logic reordering (circuit optimization)

There are many ways to build a circuit out of logic gates. One decision that

affects power consumption (glitch activity) is how to arrange the gates [6][15]. For

example, consider two implementations of a four-input AND gate shown in Figure

2-7, a chain implementation (a), and a tree implementation (b).

Figure 2-7 Gate restructuring

There is a issue of glitches or spurious transitions that occur when a gate does

not receive all of its inputs at the same time. These glitches are more common in

chain implementations where signals can travel along different paths having widely

varying delays. One solution to reduce glitches is to change the topology so that the

different paths in the circuit have similar delays. This solution, known as path

balancing often transforms chain implementations into tree implementations.

 Gate sizing

Gate sizing is an effective method for circuit power-reduction, because the major

power dissipation is consumed inside the block rather than in driving the external

load capacitance. Reduce gate size can reduce circuit capacitance such that the

circuit power consumption can be reduced. Applying this technique in [5][21]

usually associate with each gate a tolerable delay which varies depending on how

close that gate is to critical path. Then, we can try to scale each gate to be as small as

 19

possible without violating its tolerable delay. The main objective of transistor sizing

is to downsize the gate off the critical path to save power.

2.3 Dynamic Approaches

This category is said that the supply voltage and switch activity/capacitance can

be adjusted dynamically for different applications and throughput requirement. It is

more flexible than the static approaches. I’ll introduce the techniques of energy

reduction by reducing supply voltage and switch activity/capacitance respectively.

2.3.1 Supply Voltage

 Dynamic voltage and frequency scaling (DVFS)

The gap between high performance and low power can be bridged through the

use of dynamic voltage scaling, where periods of low processor utilization are

exploited by lowering the clock frequency to the minimum required level, allowing

corresponding reduction in the supply voltage [22][23].

Figure 2-8 shows the overall architecture of a DVFS system. The performance

manager uses a software interface to predict performance requirements. Once

performance requirement for the next task is determined, the performance manager

sets the voltage and frequency just necessary to accomplish the task. The target

frequency is sent to the phase-locked loop (PLL) to accomplish frequency scaling.

Based on the target voltage, the voltage regulator scales supply voltage to meet

performance target.

20

Figure 2-8 Architecture of the DVFS system

A robust system should be able to meet the deadlines at any voltage, process and

temperature condition. The conventional approach performs voltage scaling that it

uses a target operating voltage for each required operating frequency. To guarantee a

robust operation, the frequency-voltage relationship is determined via chip

characterization at worst case conditions. This technique is utilized in open-loop

dynamic voltage and frequency scaling system where the frequency-voltage

relationship is stored in a look-up table. Since such LUT (look up table) is

pre-loaded with voltage-frequency points, DVFS systems are not able to adapt to

process variations or environmental conditions.

2.3.2 Switching Activity and Capacitance

 Clock gating & operand isolation

Clock gating is a common method for reducing the unnecessary signal

transitions. In [24], it proposes a technique to automatically synthesize gated clocks

for finite-state machines to reduce power dissipation. The following graph (Figure

2-9) is a gated-clock D flip-flop.

 21

Figure 2-9 Clock-gated D flip-flop

There will be an additional signal named “Enable”. For a D flip-flop without

gated-clock, the input will be passed to output at the rising edge of clock. The input

of gated D flip-flop will only be passed to output at the rising edge of clock if the

enable signal is “1”.

We can control the enable signal dynamically according to the different

requirements. It reduces the signal transitions of register and combinational circuit.

If the inputs of a circuit are gated, the inputs are the same with the ones in the

previous cycle. And all the nodes in circuit remain unchanged. If the circuit is

without gated-clock input registers, there might be some glitches in this cycle which

consumes power also.

Hence, we also can insert latches (flip-flops) at the inputs of the functional units.

If the output of the functional units is not necessary, the input data can be isolated

using latches (flip-flops).

 Pre-computation logic

It relies on the idea of duplicating part of the logic with the purpose of

pre-computing the circuit output values one clock cycle before they are required,

and it uses these values to reduce the total amount of switching in the circuit during

the next clock cycle.

In [25][26], they present an algorithm to synthesize pre-computation logic for

22

the complete input-disabling architecture. The pre-computation logic is a function of

all of the input variables. It is shown in Figure 2-10, the complete input-disabling

architecture can reduce power dissipation for a larger class of sequential circuits.

Figure 2-10 Pre-computation logic

 Computation kernel

It also duplicates a part of the original circuit. The sub-set logic is smaller and

faster such that it dissipates less power. At the most time, the sub-set logic can

accomplish the circuit operation, and the original circuit is turned off.

Figure 2-11 (a) shows an example with the standard topology. The paradigm for

improving its quality with respect to a given cost function is based on the

architecture shown in Figure 2-11 (b). The architecture consists of the combinational

portion of the original circuit (block CL), the computational kernel (block K), the

selector function (block S), the double state flip-flops (DSFF), and the output

multiplexers (MUX).

 23

Figure 2-11 Computational kernel [27]

In [27] that presents a power optimization technique by exploiting the concept of

computational kernel of a sequential circuit, which is a highly simplified logic block

that imitates the steady-state behavior of the original specification. This block is

smaller, faster, and less power consuming than the circuit from which it is extracted

and can replace the original network for a large fraction of the operation time.

In [28] that presents a low power adder for SIMD data path. By exploiting the

difference length in the critical path for the types of operations (e.g., 4x8/2x16/1x32),

energy-efficient SIMD adders can be developed. Indeed, 8-bit adders have smaller

gates and energy consumption. Hence, 4x8-bit operations on an 8-bit ripple adder

consume 1.8 times less compared 1x32-bit operation on a 32-bit adder. To alleviate

the power dissipation, it combines four 8-bit energy optimized adders and one 32-bit

adder to support SIMD.

2.4 Adaptive Approaches

This category is said that the supply voltage and switch activity/capacitance can

be adjusted adaptively. It is also more flexible than the static approaches. Compared

 24

with dynamic approaches, it can adapt to environmental conditions or data

correlations. I’ll introduce the techniques of energy reduction by reducing supply

voltage and switch activity/capacitance respectively.

2.4.1 Supply Voltage

 Adaptive voltage scaling (AVS)

It is a one method of dynamic voltage scaling. It can adaptively scale the supply

voltage by monitoring the actual silicon speed [23][29]. Therefore, worst case

characterization is no longer required.

The actual performance is monitored using on-chip structures. The frequency of

the ring oscillator is sampled using a counter as shown in Figure 2-12. The

frequency count is then compared to the frequency required by the system and the

difference is filtered using the system’s filter. It has to be built in the ring oscillator

to accommodate for all types of gates and all conditions. A better approach is to use

a critical path replica as shown in Figure 2-12.

Figure 2-12 Architecture of the AVS system

2.4.2 Switching Activity and Capacitance

25

 Bit swapping

The most effective method to reduce the number of transitions in functional units

is increasing the correlation of input data. The bit-swapping method is to change the

input bit of functional unit according to the previous input bit status such that the

number of signal transitions can be minimized [6].

Shown an example in Figure 2-13, the exclusive-OR gate is a selection logic that

it manages the bit swapping. Previous data of in1 is 4’b0011 and in2 is 4’b1100, and

the next data of in1 is 4’b0100 and in2 is 4’b1011. After bit swapping, the next data

of in1 is swapped as 4’b0011 and in2 is swapped as 4’b1100.

ALU

1
0

1
0

in1

in2

Figure 2-13 Example of bit swapping

 Guarded evaluation

Guarded evaluation is based on placing some guarded logic, consisting of

transparent latches with an enable signal, at the inputs of each block of the circuit

that needs to be power managed. When the block must execute some useful

computation in a clock cycle, the enable signal makes the latches transparent.

Otherwise, the latches retain their previous states and block any transition within the

logic block.

In [30], it proposes a technique which is called partially guarded computation.

The technique disables a part of a circuit based on the dynamic range of input

 26

operands. They divide a circuit into two parts – MSP and LSP – and allow only the

LSP computation when the range of input operands is covered by the range of the

LSP. Therefore, it can reduce unnecessary signal transitions.

 Proposed energy-efficient design

Circuit delay is strongly data dependent, and only exhibits its critical path delay

for very specific data sequences [7][8][9]. Proposed design is exploiting

data-dependent delay to reduce circuit energy. Shown in Figure 2-14 (a) is an

example that it depicts a path delay distribution of original circuit. The x-axis

represents the path delay, and the y-axis represents the number of patterns.

In this example, we assume that it is a normal distribution. Noted the distribution,

delay time of most patterns is smaller than the critical path delay (clock period), and

only few patterns can activate the critical path. We can attempt to optimize the

common case for energy reduction based on the clock period, rather than to optimize

the worst-case (critical paths) based on the clock period, shown in Figure 2-14 (b).

Therefore path delay of some paths (critical paths) may be longer than the clock

period, but the circuit energy can be reduced effectively. As long as we can tolerate

these critical paths, we can gain the energy reduction.

Figure 2-14 Path delay distribution

Shown in Figure 2-14 (b), there are a% of total input patterns that can not

27

accomplish a computation within a clock period and may cause to computing errors.

In order to tolerate the errors, all patterns that will incur computing errors are

operated two clock cycles (one-cycle latency penalty). Hence we generate a

“detection logic” that is responsible for the error detection, and the circuit is

augmented with the “detection logic”.

Shown in Figure 2-15, the input pattern of the detection logic is the same as the

functional unit, and the output of detection logic is a 1-bit “wait” signal. If the

“wait” signal is asserted, the input patterns would be latched one more cycle and

output data is not available.

Figure 2-15 Conceptual circuit of proposed design

From this scenario, although the circuit energy can be reduced, the performance

may be degraded also. In order to reduce the performance penalty, the detection

logic needs to exactly detect the computation errors. We can also reduce the number

of violating paths to reduce performance penalty, but that also influences the effect

upon the energy reduction. It has to trade-off between energy and performance. This

part is the main problem I want to solve.

 28

3 Proposed Energy-Efficient

Design

Energy consumption has become a critical issue in modern VLSI designs. For

the circuit energy reduction, we propose a method that trades small performance

penalty for large energy reduction. In this chapter, I will introduce our proposed

energy-efficient design that it consists of the CMOS circuit delay, the template of

variable latency design and proposed design flow.

3.1 Delay of CMOS Circuits

In the synchronous circuit design, traditional strategies for circuit optimization

are based on worst case (critical path). For the given clock period, the critical paths

of the circuit must be optimized to meet it, but that usually spends much energy

effort to accomplish. The energy effort consists of gate size, structure and voltage.
 29

In [7][8][9], we observe that the circuit delay is strongly data dependent, and

only exhibits its critical path delay for very specific data sequences. Because, CMOS

circuit delay is equal to the elapsed time of charging and discharging the circuit

capacitances [31]. The computation time of each input pattern is based on the

original status of the circuit capacitance. The same input patterns with different

status of circuit capacitances will activate different paths such that the computation

times are different.

Hence, estimating the circuit delay or path delay requires a two-pattern

sequence — the first pattern initializes the circuit while the second pattern causes

and propagates the desired transition [32][33].

To observe the delay of CMOS circuits, we synthesized a 8-bit unsigned

carry-save-array multiplier using the UMC 90nm CMOS cell library. After the gate

level synthesis, we used the 10,000 random pattern sequences for gate-level

simulation. Figure 3-1 shows the path delay distribution of the 8-bit carry-save-array

multiplier. The x-axis represents the delay time of the data computation (path delay),

and the y-axis represents the number of patterns.

The green line represents the path delay distribution of the multiplier. The clock

period is 1.6ns, so the critical path of the multiplier can not be larger than the clock

period. The path delay distribution is similar to the normal distribution, and the

probability of sensitizing the critical paths is very low.

 30

Figure 3-1 Path delay distribution (8-bit multiplier)

For the 1.6ns clock period, the conventional design method is directly

synthesizing the circuit with 1.6ns timing constraint. From the path delay

distribution we found that the delay time of most patterns are smaller than 1.4ns

even. From this scenario, the circuit energy can be optimized for common case,

rather than the few critical cases. In other words, we can relax the synthesis timing

constraint for energy reduction and tolerate the few critical cases.

Then we observe the relationship between the circuit energy and synthesis

timing constraint. We use the UMC 90nm CMOS cell library and 10,000 random

patterns to estimate the energy consumption (average energy consumption per

operation). Figure 3-2 shows the energy curve of 8-bit carry-save-array multiplier

with different synthesis timing constraints. The x-axis represents the synthesis

timing constraint (circuit delay), and the y-axis represents the energy per

multiplication.

 31

Figure 3-2 Energy curve of 8-bit multiplier

Tightening the timing constraint of the multiplier will induce the increasing of

the energy per multiplication. Especially when the timing constraint approaches the

peak value (1.6ns), the energy consumption increases drastically. Even if we

synthesize the circuit with power optimization constraint, the circuit energy

decreases also as the synthesis timing constraint relaxes.

Optimizing the circuit delay needs to spend large energy effort. From the path

delay distribution, we found that the energy effort is spent on the few circuit critical

paths. The energy effort consists of optimizing the circuit structure and upping the

gate sizes, and it makes the circuit delay (critical path delay) to be reduced.

Optimizing the circuit structure or upping the gate sizes usually causes the circuit

capacitance to be increased, and therefore the circuit energy is increased.

Multimedia systems are desired not only for low-energy consumption but also

for high speed (high performance). Although relaxing timing constraint is an

effective method for energy reduction. In Figure 3-2, the timing constraint is relaxed

from 1.6ns to 1.9ns will lead the energy consumption to be reduced about 45%, but

 32

it indicates that the clock frequency (performance) is degraded directly.

Hence, exploiting the data-dependent delay of circuit can not only avoid clock

frequency degradation but also gain the energy reduction. For instance, from the

above multiplier, if the operating clock period is 1.6ns, the synthesis timing

constraint can be relaxed to 1.9ns, and therefore the energy can be reduced about

45%. Then we observe the path delay distribution of the multiplier with 1.9ns

critical path, it is shown in Figure 3-3.

Figure 3-3 Path delay distribution (8-bit multiplier)

The delay time of most patterns (98.88% of pattern) is less than 1.6ns (clock

period), and only 1.12% of pattern that delay time is greater than 1.6ns. The delay

time (computation time) of few input patterns will exceed 1.6ns, and these patterns

may incur computing errors. The possible computing errors can be detected and it

can be corrected by two-cycle operation. This implies that a one-cycle latency

penalty. The detection and correction will be discussed in detail later.

From Figure 3-2 and Figure 3-3, only 1.12% of pattern that the delay time is

greater than 1.6ns, the probability of spending one-cycle latency penalty is 1.12%,

so the performance penalty is very light and negligible. If few errors (one-cycle

latency penalty) can be tolerated by the multiplier design, the energy per

 33

multiplication can be reduced about 45%.

 In order to detect the computing errors and accommodate the one-cycle latency

penalty, we proposed a variable latency design that it can be simply integrated into

other systems.

3.2 Variable Latency Design

3.2.1 Template of Variable Latency Design

The proposed variable latency design can accommodate the additional one-cycle

latency penalty. In other words, the latency of the functional unit can adapt to the

input patterns, most patterns only need one-cycle latency and few patterns need

two-cycle latency.

The template of variable latency design is shown in Figure 3-4. We assume the

functional unit has the input and out registers, and it is augmented with the detection

logic. In normal situation, the functional unit has only one-cycle latency, and the

detection logic does not influence the functional unit. When the computation time of

input patterns exceeds a clock period, the input patterns need to be operated two

clock cycles to avoid the computing error. The detection logic is responsible to

detect the input pattern that the computation time exceeds a clock period and control

the latency of the functional unit.

34

Functional
Unit

Detection
logic

Wait

Clock

Out

Gated_clk

In

to next
pipeline stage

Figure 3-4 Template of variable latency design

Detection logic shown in Figure 3-4 is responsible to detect the input patterns

that will result in computing errors. The input pattern of the detection logic is the

same as the input pattern of the functional unit. If the detection logic detects a

computing error will occur, the output signal “wait” will be asserted. The wait signal

will propagate to the next stage and make the output data of the functional unit

invalid. At the same time, the wait signal will control the flip-flops of the previous

stage to latch all patterns one more cycle. The behavior is like the stall cycle in the

processor. In other words, if the wait signal is asserted, the functional unit needs a

stall cycle.

The detection logic consists of a fault function and additional flip flops, and it is

shown in Figure 3-5. The additional flip flops are used to latch the previous input

pattern, because the circuit delay is data-dependent [32][33]. The propagation time

of input patterns is based on the original signal status of the each gate in the

functional unit [31].

35

[] []()t, xt-1xf

Figure 3-5 Detection logic

The previous input pattern is latched by the additional flip flops, and hence the

original signal status of each gate in the functional unit can be estimated. Hence, the

signal propagation time of the functional unit can be estimated accurately. If the

maximum delay at the certain input bit is guaranteed to meet the clock period, the

additional flip flop of the certain bit does not need.

The fault function is a function of all of the input variables, [] []()t, xt-1xf . If the

input pattern satisfies the function, the input pattern spends a one-cycle latency

penalty (two-cycle operation). I will introduce about how to derive the fault function

in detail later.

Figure 3-6 timing diagram of the variable latency design

Timing diagram in Figure 3-6 shows an example for the variable latency design.

Each signal in Figure 3-6 corresponds to it in Figure 3-4. We show an example that
36

the input pattern “b” of functional unit in cycle 1 is a violating data (the computation

time of input data exceeds a clock period). In this case, the detection logic detects

that a computing error will occur, hence the wait signal is asserted at cycle 1. That

represents the output data is invalid, input data will be latched one more cycle and

the clock will be gated.

At cycle 2, the input pattern “b” needs to be latched one more cycle. In other

words, it incurs one-cycle latency penalty. The output data “B” that corresponds to

the input data “b” can not be available at cycle 2. The clock is gated at cycle 2,

therefore the input data is still “b”, and output data at cycle 2 is invalid.

At cycle 3, the correct output data “B” is available, and the circuit is restored to

normal in the subsequent cycle.

Next section, the detection logic generation will be introduced.

3.2.2 Detection Logic

The detection logic generation is shown in Figure 3-7. The input file contains a

netlist file of functional unit and the given clock period. After receiving the input

files, three steps need to be executed in sequence. Then the detection logic can be

generated.

37

Figure 3-7 Detection logic generation

First step is to use the static timing analysis (STA) analyzing the path delay of

functional unit. Static timing analysis (STA) is a method of validating the timing

performance of a design by checking all possible paths for timing violations [34]. It

checks for violations of timing constraints inside the design and at the input/output

interface.

In our experiments, we use the Synopsys Prime-Time tool to perform static

timing analysis (STA), and the timing constraints is the given clock period. It can

report all paths that path delay exceeds one clock period, and these paths are called

“violating paths”. Then, we can perform path sensitization to find all patterns that

would sensitize the violating paths.

Second step is to analyze the violating paths based on the path sensitization

criterion. After the path sensitization algorithm is accomplished, all input patterns

that the propagation time from input to output is larger than one clock period can be

found. Such input patterns we called “violating patterns”. After all violating patterns
38

are found, the “fault function” can be derived. The fault function is a function of all

of the input variables, [] [](t, xt-1xf) , and it contains all violating patterns. All

violating patterns must be included in the ON-set of the fault function. If the fault

function is satisfied by the input patterns, the input patterns need to be operated two

cycles. We will discuss the path sensitization and fault function in detail later.

The final step is to synthesize the fault function, and therefore the detection logic

can be obtained. If the complexity of fault function is very great, some don’t care

patterns can be added to the fault function such that the complexity of fault function

can be simplified. In our experiment, we directly synthesize the fault function (PLA

format) by Synopsys Design Compiler. The synthesis timing constraint is one clock

period, and we need to guarantee the critical path of detection logic is smaller than

one clock period.

Before introducing the path sensitization and fault function, some definition and

notations have to be defined. This will help the explanation of the method of

deriving the fault function.

 Definition and notations

A combinational circuit is bounded by primary inputs and primary outputs and it

is composed of simple gates (i.e., AND, NAND, OR, NOR, and NOT gates). The

delay of gate G is denoted by d(G).

Definition 1 (path)

A path P = (I, G1, G2, …, Gm, O) in a combinational circuit is an sequence of

primary input (I), gates (Gi), and primary output (O). The primary input (I) connects

to gate Gi, output of gate Gi connects to input of gate Gi+1, where gate Gi,

1-mi1 ≤≤ , and output of gate Gm connects to primary output (O). The delay of

path P is the sum of the delays of all the gates, and is denoted by d(P).

 39

Definition 2 (on-input and side-input)

Let P = (I, G1, G2, …, Gm, O) be a path. Primary input I is an on-input of gate G1,

and output of gate Gi that connects to gate Gi+1 is an on-input of gate Gi+1, where

gate Gi, 1-mi1 ≤≤ . Other inputs of gate Gi are defined as side-inputs, where gate

Gi, mi1 ≤≤ .

Definition 3 (controlling value)

A logic value is the controlling value to a gate if and only if the logic value at an

input to the gate independently determines the value at the output of the gate. The

controlling value to gate G is denoted by c(G). For examples, c(G) is logic 0 if G is

an AND gate or a NAND gate, and c(G) is logic 1 if G is an OR gate or a NOR gate.

Definition 4 (non-controlling value)

The non-controlling value to gate G, denoted by nc(G), it is the complementary

value of c(G). For examples, nc(G) is logic 1 if G is an AND gate or a NAND gate,

and nc(G) is logic 0 if G is an OR gate or a NOR gate.

For a NOT gate which has single input, both logic 0 and logic 1 are considered

to be its controlling values.

Definition 5 (input vector)

An input vector v is a vector of logic values at all the primary inputs. Each logic

value is either logic 0 or logic 1.

Definition 6 (stable value and stable time)

Let v be an input vector applied to the circuit under analysis. The logic values

stabilized at the end of the output of gate G are called the stable values at G under v.

When the end of the output of G becomes stable, the time is called the stable time at

G under v.

 40

Definition 7 (sensitizable)

A path is sensitizable if there is at least one input vector to activate it. A path is

false if there is no input vector to activate it. The critical paths are the longest

sensitizable paths.

 Path sensitization

Delay of the circuit is equal to the delay of the longest sensitizable path. A path

is sensitizable if it can be activated by at least one input vector. Therefore,

determining the sensitizability of a path is equivalent to determine the existence of

input vectors which activate the path [35]. Thus it will be very helpful to develop a

criterion which is capable of computing the set of input vectors that activate the path.

Now, we will focus on how to find all input vectors that activate a given path.

The exact criterion can find all input vectors that can activate a given path. If

that finds no input vectors, the given path is a false path. I briefly introduce the exact

criterion.

Exact Path Sensitization Criterion

The path P is a exact sensitizable path if there is at least one primary input such

that for each on-input of path P and for each side-input of path P hold either one of

the following conditions (shown in Figure 3-8):

1) The on-input is the earliest controlling input, otherwise all side-inputs

are non-controlling inputs

2) The on-input is the latest non-controlling input, given all its side-inputs

is also non-controlling inputs

 41

t)(c,or (nc,-) :input -Side ≥

t)(c, :input -On

t)(c,or (nc,-) :input -Side ≥ t)(nc, :input -Side ≤

t)(nc, :input -Side ≤

t)(nc, :input -On

Figure 3-8 Exact path sensitization criterion

Figure 3-9 shows an example of a delay-dependent false path in carry-look-ahead

logic. Let the delay of each gate be 1 time unit. The highlighted path P=(x, C, D, E,

F, G, O) is false for a rising transition at input x. From the exact path sensitization

criterion, we found that the side-input of gate “F” is the earliest controlling input

such that the shorter direct path Ps=(x, F, G, O) determines the longest true path.

Therefore the path P can not be sensitized.

Figure 3-9 Delay-dependent false path

The exact path sensitization criterion is the general path sensitization criterion,

regardless of the longer path or the shorter path. The violating paths are the most

critical paths, so we can use some criteria that they are proposed only for dealing

with the critical paths. These criteria are only applied to the critical paths, and they

are less restricted than the exact criterion.

Our purpose is to analyze the violating paths based on the viable path

sensitization criterion, and violating paths are the most critical paths in the circuit.

The viable criterion and the loose criterion achieve the same estimation of the

critical paths [35]. The loose criterion and the exact criterion achieve the same

 42

estimation of the critical paths [35]. So, the viable criterion and the exact criterion

can also achieve the same estimation of the critical paths. The viable criterion is

easier to implement. Hence we use this criterion to analyze the critical path, and I

briefly introduce the viable criterion.

Viable Path Sensitization Criterion

According to McGeer and Brayton, a path P is viable [36] if there is at least one

primary input such that for each on-input of path P and for each side-input of path P

hold either one of the following conditions (shown in Figure 3-10) :

1) All side-inputs are non-controlling inputs

2) If any side-input is controlling input, the stable time of side-input must

be later than on-input

Git)(x, :input -On

t)(c,or (nc,-) :input -Side ≥

t)(c,or (nc,-) :input -Side ≥

Figure 3-10 Viable path sensitization criterion

All the input patterns that activate the given critical paths can be found based on

the viable path sensitization criterion, and the stable time of side-input is given by

the static timing analysis. We show an example in Figure 3-11, the critical path

P=(A, G1, G2, G3, O) is given by the static timing analysis, and it has a rising

transition. Use the viable path sensitization criterion to find all patterns that can

sensitize the given critical path.

Based on the viable path sensitization criterion, we set non-controlling values on

the side-input of all gates on the critical path. Because the path is critical path, the
43

stable time of all side-inputs is earlier than on-input. In others words, we needn’t

consider the controlling values on the side-inputs of all gates. Therefore, the

non-controlling value of AND gate and NAND gate is logic 1, the non-controlling

value of OR gate is logic 0. The values are backtracked to the primary inputs, and

the input patterns (A, B, C, D) = (x, 1, 0, 1) are obtained, where “x” represents don’t

care.

Figure 3-11 An example of given critical path

The above path sensitization criteria use pattern-independent timing, and they

only consider a single pattern to sensitize the path. The results are usually very

pessimistic [34]. Indeed circuit delay is pattern dependent, and it is caused by the

signal transition and propagation [32][33]. Therefore, if we want to find the

violating patterns exactly, we need to use pattern-dependent timing to analyze the

path [37].

In other words, we need to consider the previous patterns. Thus we need to

consider two-pattern sequence, where the first pattern initializes the circuit and the

second pattern causes transition. Therefore the viable path sensitization criterion can

be modified to consider the on-input transition (i.e., 0 1 or 1 0) [38][39]. We

have a brief explanation below.

Modified Viable Path Sensitization Criterion

A path P is sensitizable if there is at least one input sequence (two-pattern

sequence) such that for each on-input of path P and for each side-input of path P

 44

hold either one of the following conditions (also shown in Figure 3-12) :

1) All side-inputs are non-controlling inputs, and on-input (primary input)

has an event (i.e., 0 1 or 1 0).

2) If any side-input is controlling input, the stable time of side-input must

be later than on-input, and on-input (primary input) has an event (i.e.,

0 1 or 1 0).

t)(c,or (nc,-) :input -Side ≥

t)(c,or (nc,-) :input -Side ≥

Figure 3-12 Modified viable path sensitization criterion

We analyze the example shown in Figure 3-11 again based on the modified

viable path sensitization criterion and the critical path that is reported by static

timing analysis (Prime Time). Because the transition on the primary input of the

critical path is considered, the given critical path is sensitized by the two-pattern

sequence. The non-controlling values are backtracked to the primary inputs and the

transition on the primary inputs is considered, therefore all the pattern sequences

(ABCD[t-1], ABCD[t]) = (0xxx, 1101) that can sensitize the given critical path are

obtained, where “x” represents don’t care.

The result is more precise than it that is analyzed by the viable criterion, but the

complexity of the result is greater than it that is analyzed by the viable criterion.

 Fault function

Fault function contains all and only those input patterns [] [](n, xn-1xf)
 45

(violating patterns) that the propagation time from the inputs to the outputs is longer

than one clock period. All violating patterns can be found by analyzing the violating

paths based on the modified viable path sensitization criterion.

We use a flowchart shown in Figure 3-13 to explain how we derive the fault

function. The input file “violating paths” is reported by performing the static timing

analysis. The timing information about stable time of each signal is also based on the

result of performing the static timing analysis.

Therefore, we only analyze the logic value of all gates, instead of stable time of

all signals of all gates. The stable time of all signals of all gates on the most critical

path is the latest. When all of the violating paths are obtained, three recursive steps

have to be taken iteratively.

Figure 3-13 Flowchart of fault function

First step is to analyze the violating paths based on the modified viable path

 46

sensitization criterion. The violating paths are in path-delay order, the longest path is

analyzed first and only one path is analyzed at a time. After one path is analyzed,

two sub-functions are obtained. One sub-function “ [] []()t, xt-1xf_nc ” is derived

based on all side-inputs of the path are non-controlling values, and another

sub-function “ [] []()t, xt-1xf_c ” is based on any side-input of the path has a

controlling value.

Second step is to combine two sub-functions to form a complete function

“ ” of the path. The pattern sequence satisfies the function is

represented that the pattern sequence sensitizes the path. Finally, we accumulate the

function of each path until all violating paths have been analyzed, and the fault

function is obtained “ ”.

[] [](t, xt-1xf)

[] []()t, xt-1xF

 Example

In Figure 3-14, we show an example with two violating paths. The longest path

P1 = (A, G1, G2, O) has a rising transition at input A. Another path P2 = (C, G3, G2,

O) has a falling transition at input C.

Figure 3-14 Two violating paths

For the fist path P1 = (A, G1, G2, O)

Step 1 :

 [] []() ()0xx,101CBAFBAt, ABCt-1ABCf_nc =⋅⋅↑=⋅⋅↑=

 47

 [] []() φt, ABCt-1ABCf_c =

Step 2 :

 [] []() ()0xx,101f_cf_nct, ABCt-1ABCf =+=

Step 3 :

 [] []() ()0xx,101fFt, ABCt-1ABCF =+=

For the second path P2 = (C, G3, G2, O)

Step 1 :

 [] []() ()xx1, 000BACECt, ABCt-1ABCf_nc =⋅⋅↓=⋅↓=

 [] []() ()0x1, 100BACECt, ABCt-1ABCf_c =⋅↑⋅↓=⋅↓=

Step 2 :

 [] []() () ()0x1, 100xx1, 000f_cf_nct, ABCt-1ABCf +=+=

Step 3 :

 [] []() () ()0x1, 100xx1, 000(0xx,101)fFt, ABCt-1ABCF ++=+=

We obtain the final result after the two paths are analyzed.

3.3 Design Flow

 48

The functional units are the main blocks for the multimedia applications and

portable devices. High speed and low energy consumption are both the requirements

for the embedded systems. In this section, I will introduce a design flow that can

help us to systematically design the most energy-efficient functional units. The

energy-efficient functional unit represents that it is the one that consumed the least

energy among all configurations that deliver the same performance [40], and the

energy-delay product is usually used to be a metric. Smaller energy-delay values

imply a lower energy solution at the same level of performance — a more

energy-efficient design. The proposed energy-efficient functional units can be

operated at the desired clock period, and it trades the minimum performance penalty

for the maximum energy reduction.

Functional unit
(RTL)

Energy-efficient
functional unit

Clock period

Overhead estimation

Characterization

Overhead reduction

Figure 3-15 Design flow of energy-efficient functional unit

Figure 3-15 illustrates the design flow for energy-efficient design, and it consists of

three steps that need to be executed in sequence. The flow is based on the cell-based

design flow, and it can easily obtain the most energy-efficient result.

 49

First step is to characterize the functional unit to know the relationship between

circuit energy per operation, error rate, and timing constraints. The error rates of the

functional unit with different timing constraints are estimated at the given clock

period. The energy or error rate can be estimated by using the random patterns or a

real application. In our experiments, we use 10,000 random patterns to characterize

the functional units.

Second step is overhead estimation. The overhead is the energy consumption of

detection logic. The most energy-efficient design is consuming the minimum energy

that includes both functional unit energy and detection logic energy, and the

performance is negligible.

Final step is overhead reduction. The area and energy of detection logic or the

performance penalty may be very great, hence the objective of this step is to reduce

these overhead. It reduces the complexity of detection logic and performance

penalty.

3.3.1 Characterization

Characterization is the first step of our proposed design flow. When the clock

period is given, the functional unit is characterized to know the relationship between

circuit energy, error rate and timing constraints. The objective of the characterization

is to know how many space that the circuit energy can be reduced, and the

corresponding performance penalty.

The minimum value of the timing constraint is the value of clock period, and the

maximum value of the timing constraint is the value of the double clock period. The

timing constraint must be smaller than the double clock period, because the

operation with computation error only has a one-cycle latency penalty (two-cycle

50

operation). If the timing constraint is larger than the double clock period, the

operation with computation error may need a two-cycle latency penalty (three-cycle

operation) to correct it. In our variable latency design, we only can accommodate a

one-cycle latency penalty.

Multiplier is one of the most energy-hungry functional units in datapath of DSP.

Here we will use a multiplier as an example to show the characterization results. The

structure of the multiplier is 8-bit unsigned carry-save-array multiplier. The

characterization in this example is cell based using UMC 90nm CMOS cell library

with Synopsys Design Compiler (Version V2007-03) as synthesizer. The CAD tools

used to measure power and error rate are Synopsys PrimePower (Version V2006.06)

and Cadence Verilog-XL respectively.

The peak operating frequency of the multiplier is 1.6ns, hence the 1.6ns is

assumed as the given clock period. Figure 3-16 shows the results of the

characterization. The x-axis represents the timing constraint, the left y-axis

represents the energy per multiplication, and right y-axis represents the error rate.

The blue line represents the circuit energy that the circuits are synthesized with

different timing constraints, and the green line represents the error rate that the

circuits are operated at the 1.6ns clock period with different timing constraints.

 51

0.90

1.20

1.50

1.80

2.10

2.40

1.5 1.7 1.9 2.1 2.3 2.5
0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

En
er

gy
 p

er
 m

ul
tip

lic
at

io
n

(p
J)

Er
ro

r r
at

e(
%

)

Timing constraint (ns)

Clock period
1.6ns

Error rate

Energy (multiplier)

Figure 3-16 Characterization results

The energy represents average energy consumption per multiplication, and it is

estimated at gate-level. The energy of the multiplier is decreased rapidly as the

timing constraint is relaxed from 1.6ns.

The error rate represents the probability of the multiplier can’t complete the

operation within the given clock period. It is estimated using gate-level simulation

with 10,000 random pattern sequences operated at the 1.6ns clock period. For

instance, the circuit with 2.1ns timing constraint would complete 93.28% of all

operations without errors, and it would save about 55% energy consumption.

The range of timing constraints is from 1.6ns to 2.4ns, because the energy per

multiplication is almost the same when the timing constraint is larger than 2.1ns but

the error rate keeps increasing.

The concept of out proposed energy-efficient design is trading light performance

penalty for large energy reduction. Hence, from the energy curve shown in Figure

3-16, we are only interested to the multipliers that with timing constraint from 1.6ns

to 2.1ns, because the energy per multiplication is almost the same when the timing

 52

constraint is larger than 2.1ns.

From the error rate curve shown in Figure 3-16, we are only interested to the

multipliers that with timing constraint from 1.6ns to 1.9ns, because the error rate in

this region is very small. So, we can only estimate the energy overhead (detection

logic) in this region.

Before we perform the step 2 — overhead estimation, we show the complete

characterization results in Table 3-1.The column 1 shows the timing constraints

(critical path delay) of the multiplier. The area and energy of the multiplier are

shown in column 2 and column 3 respectively. The column 4-9 in Table 3-1

represent the error rates of multiplier operating at different clock periods. The clock

period is only shown from 1.6ns to 2.1ns, because the energy can’t be saved when

the clock period is larger than 2.1ns. Hence, this energy reduction technique is only

suitable for the high clock frequency.

1.6 1.7 1.8 1.9 2.0 2.1

1.6 3,809 2.0464 0.00%

1.7 3,447 1.7935 0.14% 0.00%

1.8 2,982 1.4582 1.81% 0.06% 0.00%

1.9 2,484 1.1191 1.12% 0.07% 0.00% 0.00%

2.0 2,319 0.9984 6.03% 0.96% 0.04% 0.00% 0.00%

2.1 2,193 0.9192 6.72% 1.08% 0.10% 0.02% 0.00% 0.00%

2.2 2,183 0.9392 10.38% 2.39% 0.30% 0.04% 0.00% 0.00%

2.3 2,161 0.9644 20.02% 7.99% 1.78% 0.12% 0.01% 0.00%

2.4 2,161 0.9696 22.10% 9.04% 2.37% 0.31% 0.06% 0.01%

area (um2)timing constraint (ns) energy (pJ)
clock period (ns) & error rate (%)

Table 3-1 Characterize multiplier for different clock periods

3.3.2 Overhead Estimation

 53

Overhead estimation is the second step of our proposed design flow. The

overhead is the energy consumption of the detection logic. After the circuit

characterization, we generate the detection logic and estimate its energy

consumption (energy per operation). The energy consumption of detection logics is

estimated at gate level and operated at the given clock period.

For simplicity, we reduce the cell library space. The space of UMC 90nm CMOS

cell library is restricted to 2-input gates except XOR gate. If all gates are 2-input

gates in the netlist file, we can easily to program the detection logic generation and

analyze the violating paths of functional units.

Hence, we re-characterize the multiplier using the sub set of cell library. The

characterization results are shown in Figure 3-17.

Figure 3-17 Characterization results (sub-set cell library)

If we assume the clock period is 1.7ns, and the timing constraint of the multiplier

is from 1.7ns to 2.4ns. Compared with using full cell library (Figure 3-16), the

energy by using the reduced cell library is larger (Figure 3-17). Although restricting

 54

the cell library would influence the circuit energy, the increase trend of energy is

also very drastic. It still exist a space for energy reduction also. For instance, the

circuit energy can be reduced about 60%, when the timing constraint is relaxed from

1.7ns to 2.3ns. The error rate is estimated with 1.7ns clock period and it is very great

when the timing constraint is larger than 1.8ns.

Next, we generate the detection logic and estimate the energy consumption. The

result is shown in Figure 3-18. The pink line represents the total energy consumption

that consists of multiplier and detection logic. The difference between the pink line

and blue line represents the energy consumption of detection logic.

Figure 3-18 Overhead estimation (clock period is 1.7ns)

When the timing constraint is larger than 1.8ns the error rate is very great such

that the performance penalty and complexity of detection logic are both very great

also. Because we only focus on light performance penalty, the error rate in Figure

3-18 needs to be reduced. The final step of our proposed design flow is overhead

reduction. I will introduce it in detail later.

 55

If the clock period is 2ns, we re-characterize the error rate and re-estimate the

overhead. The result is shown in Figure 3-19. From it we can find the error rate is

very small and the total energy (multiplier + detection logic) is similar to a convex

function. Hence, the structure with minimum energy in this convex curve is the most

energy-efficient. The multiplier with 2.3ns timing constraint consumes 2.83pJ

(multiplier + detection logic), and it is operated at 2ns clock period only with 0.83%

performance penalty. The energy-delay value is the minimum value with the 2.3ns

timing constraint, and it can be called the most energy-efficient design.

Most
energy-efficient

2.0

2.5

3.0

3.5

4.0

1.9 2.0 2.1 2.2 2.3 2.4
0.00%

1.00%

2.00%

3.00%

4.00%Clock period
2ns

Timing constraint (ns)

Total energy

Error rate

Energy (multiplier)

Figure 3-19 Overhead estimation (clock period is 2ns)

3.3.3 Overhead Reduction

Overhead reduction is the final step of our proposed design flow. The objective

of this step is to reduce performance penalty and energy overhead of the detection

logic.

Because the increase of error rate will cause the increase of performance penalty

56

and the complexity of detection logic, reducing the error rate is an effective method

to achieve overhead reduction. In order to reduce the error rate, we can reduce the

number of violating paths such that the probability of sensitizing the violating paths

can be reduced.

The number of violating paths can be reduced by upping the gate size of the

violating paths such that the path delay of some violating paths can meet clock

period [21][41], but it may increase the area and energy of the original functional

unit. Here, we re-synthesize the functional unit to adjust the number of violating

paths, and estimate the energy consumption of the functional unit and detection logic.

Hence we can find the most energy-efficient functional units.

Figure 3-20 shows the re-synthesis flow. The input files are the netlist file of the

functional unit and the violating paths report, and the functional unit is operated at

the given clock period. The delay time of all violating paths is larger than the given

clock period. In order to reduce the number of violating paths we need to perform

one pre-step and three recursive steps.

 57

Min. energy ?
No

Choose the shortest path

Re - synthesis

Estimation

Energy report

Functional unit
(Netlist) Violating paths

Set all violating paths as
2-cycle path

Energy-efficient
functional unit

Figure 3-20 Re-synthesis flow

The pre-step is to set all violating paths as 2-cycle path. The violating paths

represent that they can not complete computation in one clock cycle. In other words,

they need two clock cycles. Because the number of the violating path may be very

great, we only consider the input ports and output ports of the functional unit.

Next we select the “shortest path” of all violating paths as one-cycle path. Then

we re-synthesize the functional unit such that path delay of the “shortest path” will

be optimized. In other words, the path delay of the “shortest path” will meet one

clock period such that the number of violating path will be decreased. Hence, the

performance penalty and complexity of detection logic are also reduced, but the area

and energy of function unit may be increased. After re-synthesis, we need to

 58

estimate the energy consumption of the functional unit and the detection logic. The

above steps need to be executed iteratively until the minimum energy design with

negligible performance penalty is found.

The re-synthesis flow is a heuristic solution, because we only consider the input

port and output port of the violating path instead of all gates on the path. Although

the re-synthesis can’t adjust the violating paths precisely, it can find a not bad

solution and very fast.

Here we choose a case that shown in Figure 3-18 to perform the re-synthesis

flow. The scale of the error rate (y-axis) is rearranged and the result (before

re-synthesis) is shown in Figure 3-21.

E
ne

rg
y

pe
r

m
ul

tip
lic

at
io

n
(p

J)

Er
ro

r r
at

e(
%

)

Figure 3-21 Before overhead reduction (re-synthesis)

Then perform the re-synthesis flow, the results is shown in Figure 3-22. The

error rate can be reduced effectively by the re-synthesis method, but the multiplier

energy is also increased. We also can find a convex curve of total energy that it has a

minimum energy value with negligible error rate.

 59

The multiplier with 1.8ns timing constraint consumes 4.56pJ (multiplier +

detection logic), and it is operated at 1.7ns clock period only with 0.13%

performance penalty.

Figure 3-22 After overhead reduction (re-synthesis)

 60

4 Experimental Results

In chapter 4 we show two experimental results. The first is to evaluate the energy

and area of the functional unit with the proposed energy-efficient design. The second

is to compare the different energy reduction techniques for functional unit of DSP

core. These techniques that consist of parallel design, pipeline design and proposed

design are evaluated from area, energy, and performance penalty.

4.1 Simulation Results of Energy-Efficient Design

Most digital signal processor systems incorporate a multiplier to implement

algorithms such as convolution and filtering. In many DSP algorithms, the multiplier

lies in the critical path delay and ultimately determines the performance of the

algorithm. However, the demand for high-performance portable systems

incorporating multimedia capabilities has elevated the design for low-energy to the

forefront of design requirement in order to maintain reliability and provide longer

 61

hours of operation.

Hence, the objective of this experiment is to find the most energy-efficient

multiplier that is operated at the peak clock frequency by our proposed design flow.

The multiplier is 8 bit and the structure of the multiplier is Booth-encoded

Wallace-tree. It is one of the fastest multipliers from Synopsys DesignWare IP. The

most energy-efficient multiplier represents that it is the one that consumed the least

energy among all configurations that deliver almost the same performance [40].

In this experiment, the proposed design flow is performed, and the multiplier is

synthesized using the Synopsys Design Compiler (Version V2007-03) with the

sub-set UMC 90nm CMOS cell library. The timing constraint is 1.2ns, because it is

the peak value of the multiplier can achieve. The Table 4-1 summarizes the area of

the conventional single-cycle multiplier and the proposed energy-efficient multiplier.

The overhead in column 3 (Table 4-1) is represented the area of detection logic.

Compared with the conventional multiplier, the proposed multiplier can save about

30% of total area.

Multiplier Overhead Total

Conventional 6816 0 6816

Proposed 3982 782 4764

Improvement 30%

Area (um2)

Table 4-1 Estimated area

After the gate level synthesis, we used the Synopsys PrimePower (Version

V2006.06) to estimate the energy consumption (energy per multiplication) with

back-annotated timing and parasitic information. The multiplier works at 833 MHz

and computes 10,000 random patterns. Table 4-2 shows the energy per

 62

multiplication of the conventional multiplier and the proposed multiplier. The

overhead in column 3 (Table 4-2) is represented the energy consumption of

detection logic. Compared with the conventional multiplier, the proposed multiplier

can save about 21% of total energy.

Multiplier Overhead Total

Conventional 3.236 0.000 3.236

Proposed 2.387 0.178 2.565

Improvement 21%

Energy (pJ)

Table 4-2 Estimated energy per multiplication

The proposed multiplier has 0.17% error rate that is estimated by 10,000 random

patterns. In other words, the conventional multiplier needs 10,000 cycles to compute

the 10,000 random patterns, but the proposed multiplier needs 10,017 cycles to

compute the 10,000 random patterns. Compared with the energy reduction (21%),

the performance penalty (0.17%) is very light.

If we synthesize the multiplier with power optimization constraint, the multiplier

energy with conventional synthesis strategy can be reduced to 2.8pJ. Our proposed

method can also apply the power optimization constraint, and the energy of the

proposed multiplier can also be reduced. The ratio of the energy reduction by

proposed method is almost the same as the ratio of the energy reduction by

conventional method.

4.2 Comparison of Energy Reduction Techniques

Although relaxing the timing constraint is an effective method for energy

reduction, it directly causes the performance (clock frequency) degradation. The
63

proposed energy-efficient design can compensate the clock frequency degradation,

and it has only light performance penalty.

Exploiting parallelism or pipelining is also an effective method to compensate

for the loss in performance. They can achieve the same clock frequency and data

throughput, but the data latency is increased such that high data parallelism is

required.

In this experiment, we compare the three different energy reduction techniques

for multiplier of DSP core. The multiplier is the major component of DSP core, and

it consumes the most energy among the datapath (adder, shifter and multiplier) in

DSP core. The different techniques that consist of parallel design, pipeline design

and proposed design, they are evaluated from area, energy, and performance penalty.

The structure of the 8-bit multiplier is Booth-encoded Wallace-tree.

The baseline DSP model is similar as MIPS architecture [42]. It is a single-issue

and in-order pipeline with 5 pipeline stages. The conceptual architecture is shown in

Figure 4-1. It has forwarding path and only the arithmetic instructions are

considered such that the ideal CPI of this DSP model is 1.

Figure 4-1 Baseline DSP model

The DSP model with parallel multiplier design and pipeline multiplier design are

shown in Figure 4-2 and Figure 4-3 respectively. Although the two designs can

reduce the multiplier energy and achieve the same throughput, they may suffer data

hazards from limited instruction level parallelism. When the result of multiplier is

 64

needed to the next instruction immediately, it can not be forwarded immediately

such that these systems require a stall cycle. If the application has very poor

instruction level parallelism, the performance of the systems will be degraded

seriously.

Figure 4-2 DSP model with parallel multiplier design

Figure 4-3 DSP model with pipeline multiplier design

The DSP model with proposed multiplier design is shown in Figure 4-4. The

multiplier is augmented with the detection logic. When the detection logic detects a

computation error in multiplier, all of the previous stages are stalled one cycle and

the next stage is inserted a bubble (no-op) signal. Since the multiplier has one

additional cycle to re-compute the multiplication such that the computation error can

be corrected, but it spend a one-cycle latency penalty.

 65

Detection
Unit

bubble

MEMIF ID WB

clk

ALU

Mult

Figure 4-4 DSP model with proposed multiplier design

We use the sub-set of UMC 90nm CMOS cell library to evaluate area of

multiplier and overhead. The operating period is 1.2ns that is the peak performance

of the multiplier. The area of the multiplier is shown in Table 4-4. The single cycle

design has the maximum. Compared with single cycle design, all of the three

designs can reduce area effectively. Although the parallel design has two multipliers,

the total area of the parallel design is smaller than the total area of the single cycle

design. The timing constraint of the parallel design can be relaxed to double of the

clock period such that the average area per multiplier is the minimum of four

designs.

Single cycle 6816

Parallel 5967

Pipeline 4175

Proposed 4764

Design Area (um2)

Table 4-3 Estimated total area

 66

Figure 4-5 Area is normalized by the result of single cycle design

We use the MIPS compiler (gcc 4.21) to compile the benchmarks. One

benchmark is color space transform of JPEG [43], and the input file is 64 x 64 Lena

image. Another benchmark is a 16 taps finite impulse response (BDTI benchmark

[44]), and the input file has 200 samples.

After the benchmark is compiled, we count the cycle count and generate the

input patterns for multiplier based on the different DSP models. We take the

assembly code of Chroma part to explain how we count the cycle count, and the

code is shown in Figure 4-6.

 67

Figure 4-6 Assembly code of Chroma

We only consider the arithmetic instructions of the code — 3 multiplication and

2 addition. For baseline DSP model, it spends 5 cycles to execute the 5 instructions.

For DSP model with parallel or pipeline multiplier design, it spends 7 cycles to

execute the 5 instructions, because “addition after multiplication” incurs data hazard.

The output of multiplier can not forward to adder immediately. For the DSP model

with proposed multiplier design, it spends 5~8 cycles to execute the 5 instructions

according to the computation errors in multiplier.

Hence, the total cycle count of finishing color space transform of the Lena image

and 200 samples of 16-tap FIR is shown in column 2 and column 4 of Table 4-4.

Both the parallel and pipeline design spend longer execution time, because they has

many stall cycles according to the data hazards. “Addition follows multiplication” is

very common in many applications, such as image, audio, and video.

Column 3 and column 5 of Table 4-4 show the energy consumption of these

 68

multipliers to compute the multiplications of color space transform and the 16-tap

FIR.

Cycle count Energy (nJ) Cycle count Energy (nJ)

Single cycle 34,816 61.37 6,400 10.45

Parallel 47,104 42.44 9,600 6.96

Pipeline 47,104 46.09 9,600 8.62

Proposed 34,876 46.74 6,412 7.43

Color space transform FIR
Design

Table 4-4 Simulation results

Figure 4-7 shows the simulation results that are normalized by the results of single

cycle design. All of the three techniques can reduce the energy consumption

effectively, but both the parallel and pipeline design spend longer execution time

according to the data hazards.

Figure 4-7 Normalized by the result of single cycle design

 69

The energy-delay value is shown in Figure 4-8, the results are normalized by the

result of single cycle design. We can find that the proposed design is the most

energy-efficient.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Color space transform FIR

Single cycle

Parallel

Pipeline

Proposed

Figure 4-8 Energy-delay value normalized by single cycle design

 70

5 Conclusions

For the increasing demand of high computing power and high mobility, the

energy reduction now becomes an important issue in the VLSI designs. In the

synchronous digital circuits, traditional synthesis timing constraint is based on the

given clock period for function correctness, but that always makes the energy soar

when the clock frequency and timing constraint approach the peak value. In this

thesis, we propose a design method for improving energy efficiency of functional

units. It exploits data-dependent delay to reduce synthesis timing constraint such that

the energy consumption can be reduced effectively and the desired clock period will

not be degraded, but it will cause computation errors and spend performance penalty

for correcting the errors.

For the computation errors, we generate the detection logic to detect and spend

one-cycle latency penalty to correct. The detection logic is generated by analyzing

the violating paths under transition delay such that it can detect errors more

precisely. If the error is detected by detection logic, all the previous pipeline stages
 71

are latched one more cycle to re-compute the data, and the next stage is inserted a

bubble (no-op) signal. We also propose a design flow which systematically

determines the timing constraint and fine tune the number of violating paths for

maximizing energy reduction and minimizing performance penalty.

In our simulation, we use the proposed technique in 8-bit multiplier to reduce

energy consumption with the UMC 90nm CMOS cell library. The energy

consumption can be reduced about 10% ~ 29% and the performance penalty is

negligible (<1%). We further compare our proposed technique with the techniques

of exploiting parallelism (parallel design and pipeline design) in a multiplier of DSP

core. All the techniques can reduce the circuit energy effectively, but the techniques

of exploiting parallelism have worse performance. Because exploiting parallelism

design need high instruction level parallelism otherwise it incurs serious data

hazards and stall cycles.

Our future work is to improve the energy and area of detection logic. The

complexity of detection logic increases drastically when the error rate lightly

increases. That limits the degree of relaxing the timing constraint. Because the

detection logic is a Boolean function, we can insert some don’t care patterns such

that the complexity of the function can be simplified effectively. We now investigate

the systematic method that can insert some don’t care patterns efficiently.

At the same time, because energy is proportional to the square of the supply

voltage, voltage scaling is one of the most effective methods for energy reduction.

We will apply the same concept to reduce the supply voltage for energy reduction.

 72

Reference

[1] P. P. Gelsinger, “Gigascale integration for teraops performance-challenges,

opportunities, and new frontiers,” in Proc. DAC, 2004

[2] V.Venkatachalam, M. Franz, “Power reduction techniques for microprocessor

systems,” ACM Computing Surveys, Sep. 2005

[3] I. Buchmann. Batteries in a Portable World. [Online]. Available:

http://www.cadex.com

[4] K. Lahiri, A. Raghunathan, S. Dey, D. Panigrahi, “Battery-driven system

design : a new frontier in low power design,” in Proc. VLSI, 2002

[5] A. P. Chandrakasan, S. S. Bradersen, and R. W. Brodersen, “Low-power

CMOS digital design,” IEEE J. Solid-State Circuits, pp. 473-483, Apr. 1992

[6] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic, Digital Integrated Circuits:

A Design Perspective, 2nd Edition, Prentice Hall, 2003

[7] D. Emst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T.

 73

http://www.cadex.com/

Austin, K. Flautner, and T. Mudge, “Razor : a low-power pipeline based on

circuit-level timing speculation,” in Proc. Micro, 2003

[8] G. Wolrich, E. McLellan, L. Harada, J. Montanaro, and R. Yodlowski, ”A high

performance floating point coprocessor,” IEEE J. of Solid-State Circuits, Oct.

1984

[9] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Opportunities and

challenges for Better than Worst-Case Design,” in Proc. ASP-DAC, Jan. 2005

[10] A. Keshavarzi, K. Roy, and C. Hawkins, “Intrinsic leakage in low power deep

submicron CMOS ICs,” in Proc. ITC, 1997

[11] L. Wei, Z. Chen, K. Roy, M. C. Johnson, Y. Ye, and V. K. De, “Design and

optimization for dual-threshold circuits for low-voltage low-power

applications,” IEEE Trans. VLSI Systems, Mar. 1999

[12] Z. Chen, C. Diaz, J. D. Plummer, M. Cao and W. Creene, “0.18um dual Vt

MOSFET process and energy-delay measurement,” in Proc. IEDM, 1996

[13] H. J. M. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its

impact on the design of buffer circuits,” IEEE J. Solid-State Circuits, vol.

SC-19, Aug. 1984

[14] A. Chatterjee, “An investigation of the impact of technology scaling on power

wasted as short-circuit current in low voltage static CMOS circuits,” in Proc.

ISLPED, 1996

[15] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power consumption in

digital CMOS circuits,” in Proc. IEEE, Apr. 1995

[16] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and

Implementation, John Wiley & Sons, 1999

[17] K. Usami and M. Igarashi, “Low-power design methodology and applications

utilizing dual supply voltages,” in Proc. ASP-DAC, Jan. 2000
74

[18] S. H. Kulkarni and D. Sylvester, “Power distribution techniques for dual VDD

circuits,” in Proc. ASP-DAC, 2006

[19] K. Usami, M. Igarashi, F. Minami, T. Ishikawa, M. Kanazawa, M. Ichida, and

K. Nogami, “Automated low-power technique exploiting multiple supply

voltages applied to a media processor,” IEEE J. of Solid State Circuits, Mar.

1998

[20] J.-M. Chang and M. Pedram, “Energy minimization using multiple supply

voltages,” IEEE Trans. VLSI Systems, Dec. 1997

[21] O. Coudert, “Gate sizing for constrained delay/power/area optimization,” IEEE

Trans. VLSI Systems, Dec. 1997

[22] C. Im, H. Kim, and S. Ha, “Dynamic voltage scheduling techniques for

low-power multimedia applications using buffers,” in Proc. ISLPED, Aug.

2001

[23] H. Saputra, M. Kandemir, N. Vijaykrishnan, M. Irwin, J. Hu, C.-H. Hsu, and U.

Kremer, “Energy-conscious compilation based on voltage scaling,” LCTES,

2002

[24] L. Benini, P. Siegel, and G. De Micheli, “Automatic synthesis of gated clocks

for power reduction in sequential circuits,” IEEE Design Test Computer

Magazine, pp. 32-40, 1994

[25] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou,

“Precomputation-based sequential logic optimization for low power,” IEEE

Trans. VLSI Systems, 1994

[26] J. Monteiro, S. Devadas, A. Ghosh, “Sequential logic optimization for low

power using input-disabling,” IEEE Trans. Computer-Aided Design, 1998

[27] L. Benini, G. D. Micheli, A. Lioy, E. Macii, G. Odasso, and M. Poncino,

“Synthesis of power-managed sequential components based on computational
75

kernel extraction,” IEEE Trans. Computer-Aided Design, Sep. 2001

[28] G. Paci, P. Marchal, and L. Benini, ”Exploration of low power adders for a

SIMD data path,” in Proc. ASP-DAC, Jan. 2007

[29] S. Dhar, D. Maksimovic, and B. Kranzen, “Closed-loop adaptive voltage

scaling controller for standard-cell ASICs,“ in Proc. ISLPED, Aug. 2002

[30] J. Choi, J. Jeon, and K. Choi, “Power minimization of functional units by

partially guarded computation,” in Proc. ISLPED, Jul. 2000

[31] B. Razavi, Design of Analog CMOS Integrated Circuits, New York:

McGraw-Hill, 2001

[32] S. Padmanaban, M. K. Michanel, and S. Tragoudas, “Exact path delay fault

coverage with fundamental ZBDD operations,” IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems, 2003

[33] H.-C. Tsai, K.-T. Cheng, and V. D. Agrawal, “A testability metric for path

delay faults and its application,” in Proc. ASP-DAC, Jan. 2000

[34] Synopsys Prime Time User Guide (Fundamentals). [Online]. Available:

http://www.synopsys.com

[35] H.-C. Chen and D. H.-C. Du, “Path sensitization in critical path problem,”

IEEE Trans. Comput. -Aided Design Integrated Circuits, Feb. 1993

[36] P. McGeer and R. Brayton, “Efficient algorithms for computing the longest

viable path in a combinational network,” in Proc. DAC, 1989

[37] B. Konemann, J. Barlow, P. Chang, R. Gabrielson, C. Goertz, B. Keller, K.

McCauley, J. Tischer, V. Iyengar, B. Rosen, and T. Williams, “Delay test: the

next frontier for LSSD test systems,” in Proc. Int. Test Conf., Oct. 1992

[38] A. Kristic and K.-T. Cheng, Delay Fault Testing for VLSI Circuits, Kluwer

Academic Publishers, Boston, 1998.

[39] H. Choi and S. H. Hwang, “Practical use of transition mode delay to solve the

76

http://www.synopsys.com/

problem of floating mode delay under highly correlated input streams,” in Proc.

ICCD, Oct. 1998

[40] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power digital design,” in

Proc. ISLPED, Oct. 1994

[41] S. Raj, S. B. K. Vrudhula, and J. Wang, “A methodology to improve timing

yield in the presence of process variations,” in Proc. DAC, 2004

[42] J. L. Hennessy, and D. A. Patterson, Computer Architecture: A Quantitative

Approach, Morgan Kaufman Publishers, 4th Edition, 2007

[43] Independent JPEG Group. [Online]. Available: http://www.ijg.org

[44] Berkeley Design Technology Inc. [Online]. Available: http://www.bdti.com

 77

http://www.ijg.org/
http://www.bdti.com/

 78

作者簡歷

林彥呈，西元 1984 年 6 月 21 日出生於台中縣。西元 2006 年取得國立中興大學電機

工程學系學士學位，並於同年在國立交通大學電子工程研究所攻讀碩士。西元 2008 年

在劉志尉教授指導下，取得碩士學位。本篇論文「利用與資料相依之延遲改善運算單元

之能量效率」為其碩士論文。

 79

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement and Related Works
	1.3 Thesis Organization

	2 Low-Power & Energy-Efficient Design Methods
	2.1 CMOS Power/Energy Dissipation
	2.1.1 Static Power Dissipation
	2.1.2 Dynamic Power Dissipation

	2.2 Static Approaches
	2.2.1 Supply Voltage
	2.2.2 Switching Activity and Capacitance

	2.3 Dynamic Approaches
	2.3.1 Supply Voltage
	2.3.2 Switching Activity and Capacitance

	2.4 Adaptive Approaches
	2.4.1 Supply Voltage
	2.4.2 Switching Activity and Capacitance

	3 Proposed Energy-Efficient Design
	3.1 Delay of CMOS Circuits
	3.2 Variable Latency Design
	3.2.1 Template of Variable Latency Design
	3.2.2 Detection Logic

	3.3 Design Flow
	3.3.1 Characterization
	3.3.2 Overhead Estimation
	3.3.3 Overhead Reduction

	4 Experimental Results
	4.1 Simulation Results of Energy-Efficient Design
	4.2 Comparison of Energy Reduction Techniques

	5 Conclusions
	 Reference

