第一章 緒論

二十世紀初期,具光學活性的有機硫化物首先被解析。1960年代後, 對於掌性 (chiral) 硫化物的硫原子中心所進行的親核取代反應,其機制與 立體化學有完整地探討,包括多價配位的硫化物也被發展成掌性輔助基 (chiral auxiliaries),至今已發展達40多種掌性硫化物,能在不對稱合成上 有效地控制立體結構,尤其是合成三和四配位的鏡像純硫化物 (enantiomerically pure sulfur compounds),另外,以硫化物為媒介進行不對 稱合成而得的掌性物質,如天然物、藥物或農藥,每年仍有多項成果被發 表¹。

本論文所研究的 sultine 是屬於三配位 (tricoordinate) 掌性硫化物,為 環形的亞磺酸酯 (sulfinate ester)²,環的大小為三、四、五、六員環,依序 是 α 、 β 、 γ 、 δ -sultine 等,例如:化合物 1 (δ -sultine) 是鄰醌二烯 (*o*-quinodimethane, *o*-QDM)常用的前驅物,而 *o*-QDM 是廣泛應用在有機 合成的中間體。Sultine 的硫氧鍵常為求方便而表示為 S=O 雙鍵,正確應該 表示為 S⁺-O⁻或 S→O,以強調配位鍵的鍵結形式及硫原子中心是具掌性的 四面體結構。

1.1 Sultine 之相關文獻

以下針對 sultine 的製備、應用、物理性質等,作詳細的探討。

1.1.1 Sultine 的合成方法

最早的 sultine 合成是在 1893 年,由亞磺酸 (sulfinic acid) 與羥基經脫 水而得,文獻中製備的方法,其類型可歸納為下列方法:

1.1.1.1 羥基與硫官能基之環化

羟基可能攻擊帶正電性的硫原子,生成 sultine,而含硫官能基可以是 sulfinic acid、sulfinyl halide、sulfenyl halide 或 oxosulfonium ion。具有 sulfinic acid 的醇類在酸性條件脫水而環化,可得到α位置不同取代的 sultine³,式 1-3:

製備 α ,β-不飽和-γ-sultine 常用的方法是以二氧化硫與含有甲基醇取代的乙烯基 Grignard 試劑反應而得^{4a},式4;四至八員環 sultine 可由第三丁基羟化烷基亞砜而得^{4b},式5:

羥化亞砜 (hydroxyl sulfoxide) 經 N-氯丁二內亞醯胺 (N-chlorosuccinimide, NCS) 處理,生成 oxosulfonium ion 中間產物,而得 benzosultine^{4c},式6:

Fellous 提供一簡單且高產率的方法合成γ-sultine,即利用過碘酸鈉氧 化生成二硫基 (disulfide) 中間產物再行環化反應^{4d},式7:

1.1.1.2 含親核基之環化

環化過程是經由亞磺酸陰離子 (sulfinate anion) 攻擊在離去基的碳 上,而生成 sultine。Dittmer 利用 Rongalite (sodium formaldehydesulfoxylate) 試劑及溴化四丁基銨鹽 (tetrabutylammonium bromide, TBAB) 為催化劑, 單一步驟合成 benzosultine,是近期合成 sultine 最常用的方法⁵,對於芳香 環 sultine 的合成與衍生應用尤其方便⁶,式 8;δ-sultine 可由加成-消去反 應而得⁷,式9:

1.1.1.3 含親電基之環化

羥基轉換成 chlorosulfite 中間體,即 ROS(O)Cl,可以促使鄰近的不飽 和鍵進行親電基反應,替換氯離子而生成 sultine^{8a-c},式 10、11;三氯化鋁 催化 chlorosulfite ester 進行 Friedel-Crafts 類型的環化反應^{8d},生成 biphenylene sultine,式 12:

1.1.1.4 經由擴環、縮環或重排反應

以加熱和照光都能成功使環形砜 (sulfone) 化合物擴環生成 sultine, 過程應屬於發生重排機制。四員環砜 (thietane 1,1-dioxide) 經加熱或鹼的 處理可重排得五員環 sultine (γ-sultine)^{9a,b},式 13、14:

重氮甲烷 (diazomethane) 經照光脫除氮氣,產生亞甲烯體(carbene), 此 sulfonylcarbene 發生 Wolff 重排,生成的 sulfene 屬於動力學不穩定的 (kinetically labile) 產物,容易再次重排生成α-sultine^{9d},式 16:

1.1.1.5 經由氧化或還原¹⁰

1.1.1.6

環形的 sulfenate 及 sultone 分別在氧化及還原條件下,可生成 sultine,式 17、18。

$$\overset{\mathsf{S}}{\longleftarrow} \overset{\mathsf{mCPBA}}{\longrightarrow} \overset{\mathsf{O}}{\overset{\mathsf{S}}{\longleftarrow}} \overset{\mathsf{O}}{\overset{\mathsf{O}}{\longrightarrow}} \tag{17}^{10a}$$

二氧化硫可以加成在高反應性的雙烯,生成 sultine^{11a},式 19:

芳香基取代環丙烷與液態二氧化硫經照光生成γ-sultine (產物為混和的 幾何異構物)^{11b},式 20:

Marson^{11c} 發展不飽和醇類合成掌性的 sultine,且 S=O 為軸向 (axial) 的高立體選擇,式 21:

亞磺酸酯易與空間相鄰的不飽和雙鍵發生碘環化反應 (iodocyclization),生成 sultine,相較於鄰位酯基取代產生內酯 (lactone) 有 較高的選擇性^{11d},式22:

1.1.2 Sultine 的反應類型

Sultine 可進行的反應類型大致可分為以下幾種:

1.1.2.1 親核基、鹼基和親電子基的開環反應

非鏡像亞磺酸酯常用於製備一系列光學活性的亞砜,此高立體選擇性的合成稱為 Anderson 反應 (式 23)^{12a}。利用 Grignard 或其他有機金屬試劑 可得完全反轉 (inversion) 結構,而親核基試劑使 sultime 開環也可獲得相

似結果^{12b,c},式24:

鹼催化 sultine 發生水解反應^{12d},式25;含羥基 sultine 2 在氯化條件 下誘導開環反應,生成 sulfonyl chloride,於鹼性條件下有一醛基亞磺酸鹽 的平衡結構式^{12e,f},式26:

1.1.2.2 脫除 SO2 或 SO 反應

β,γ-不飽和六員環 sultine 比 sulfolene 低溫條件即可脫去二氧化硫,產 生雙烯體;而苯環并式 sultine (benzosultine) 是鄰醌二烯 (*o*-QDM) 的前驅 物,反應溫度也較 benzosulfolene 低許多,生成的 *o*-QDM 中間體可進行 Diels-Alder 環化加成反應,因此在合成上常被應用^{4c},式27:

1.1.2.3 氧化和還原反應

Sultine 可以氧化得到高產率的 sultone,氧化劑包含間氯過苯酸 (mCPBA)、過氧化氫、Oxone[®]、過錳酸鉀等;氫鋁化鋰 (LiAlH₄) 可以還 原 sultine,得開環之硫醇和羥基雙官能基產物 ^{8d},式 29:

1.1.2.4 環上取代基的反應

5-氯-3,4-苯并式-γ-sultine 水解發生羥基取代氯原子,如式 26 中的化合物 2 (p. 9),而在鹼性條件下存在含醛基化合物的平衡^{12e,f},式 30:

1.1.3 Sultine 的物理性質²

Sultine 的結構探討最直接的方法是 X 光單晶繞射分析^{9b,14}。四員環化 合物 3 其介於 O-S-C 及 C-C-O 平面的雙面夾角為 20.3^o,環外的氧原子 為水平方向 (equatorial),而五員環 sultine 4 則是為軸向 (axial)。另外,額 外的效應被認為會影響 sultine 的構形,如化合物 5 中,環上除硫原子之外 的環上四個原子是處於同一平面,與鐵金屬鍵結的環戊二烯與硫原子在空 間上是靠近的,並與 S=O 鍵朝同一方向 (*syn*)^{14b};化合物 6 的氧原子則是 朝外 (*exo*)。

其他的研究包括 NMR、IR 和偶極矩 (dipole moments) 的探討,都顯示六員環 sultine 的 S=O 鍵為軸向。在¹H NMR 研究中,位於與 S=O 鍵同向的氫原子有明顯的去遮蔽效應 (deshielding effect);在¹³C NMR 的化學位移,如化合物 7 說明氧原子鄰位的碳比硫原子鄰位的碳位在較低磁場,

而此分子構形轉換快速,甚至-90 °C 還存在內部椅形-椅形構形反轉的現象,其翻轉能量障礙大於 2 kcal/mol 左右¹⁵。

近幾年, Vogel 針對質子酸或路易士酸促進二氧化硫參與雜原子 Diels-Alder 環化加成生成 sultine 的過程,及鉗合加成 (cheletropic addition) 產生 sulfolene 的競爭反應, 做完整的探討¹⁶。主要是利用低溫 NMR 動力 學實驗、X 光繞射分析及理論計算,提出 pseudo-椅式構形是較穩定的形 式, S=O 鍵傾向 pseudo-軸向及立體阻礙小的反式構形,如式圖一所示:

2-取代-1,3-丁二烯和二氧化硫的雜原子 Diels-Alder 環化加成中,預期 會產生雙自由基 (diradicaloid) 且 sultine 的 C-S 鍵比 C-O 鍵快形成,幾何 選擇性較傾向化合物 8 的生成,而與 sulfolene 的競爭結果決定於取代基本 身的特性,如式圖二所示:

1.1.4

文獻已報導 Sultine 能有效合成鄰醌二烯的中間體及進行 Diels-Alder 環化加成反應^{3-5,18}, 而 sultine 因本身的掌性結構, 所以可能具備生化活性, 例如化合物9及其類似物對於蛋白質受體結合能力與類固醇有競爭關係: 一為鼠類的醛固酮乙酸酯 (aldosterone acetate) 的抑制劑 17a, 另一則為利尿 劑^{17b}。含硫的化合物常带有特殊的氣味,其中 3-丙基-γ-sultine 是一種百香 果香氣的來源^{17c},而 3,3-二甲基-γ-sultine 則存在貓的尿液中。

Sultine 10 及其六員環類似物可作為掌性的核磁共振解析試劑 (chiral NMR resolving agents)^{17d}。化合物 11^{17e} 的顏色變化如同內酯 (lactone) 體系 的酚酞對於酸鹼在顏色程度的靈敏,可作為酸鹼指示劑,在一般情形下為 無色或淡色,將置於酸性條件時,則轉為暗藍色,因此可發展為酸變色物 質、酸性的顯影劑和結合物質 (binder)。

1.2 研究動機

本研究延續實驗室長期探討的主題—雙自由基與鄰醌二烯之前驅物的 合成及其在 Diels-Alder 反應上的應用¹⁸。此前驅物為 Sultine,這類分子在 室溫下安定,且不需要過於嚴苛的反應條件,即可脫除二氧化硫分子產生 活性中間體,適合做為研究的對象。

本論文大致分為三部分:

第一部份:Non-Kekulé 雙自由基衍生物之研究;合成 2,5-雙取代噻吩 sultine,在加熱條件下與 C₆₀進行環化加成反應。

ATTILLED.

第二部份:鄰醌二烯衍生物之研究;合成不同長度的不飽和碳鏈之 benzosultine,經加熱生成鄰醌二烯中間體,及其產物分析討論。

第三部份:其他雜環 sultine 之合成研究;合成噻吩、吡啶等雜環結構的 sultine 分子。

第二章 結果與討論

第一部份: Non-Kekulé 雙自由基衍生物之研究 (thienosultines 與 C_{60} 之加

成反應)

2.1.1 研究背景

2.1.1.1 Non-Kekulé 雙自由基之簡介

所謂 non-Kekulé 分子是指完全共軛的分子,其結構至少擁有兩個未以 π鍵鍵結的原子,且電子因未鍵結而形成自由基¹⁹。如 trimethylenemethane (TMM, **12**)、tetramethyleneethane (TME, **13**)、1,2,4,5-tetramethylenebenzene (TMB, **14**) 皆為此類的雙自由基分子。

Non-Kekulé 雙自由基的基態電子組態是單態 (singlet) 或參態 (triplet),一直以來廣受討論。1950 年,Longuet-Higgins 證明了非四員環 non-Kekulé 的碳氫化合物,不以 π 鍵鍵結的電子數目與其未鍵結之分子軌 域 (Non-Bonding Molecular Orbitals,NBMOs) 數目及其所容納之電子數相 同²⁰。此外,根據罕德定則 (Hund's Rule),預測若 n 個 NBMOs 就有 n 個 自由電子,處於基態時的自旋量子數為 S = n/2,因此這類分子之基態皆應 為參態,其 S = 1。但此種預測是否正確,需要利用理論計算以及合成此類 的分子進行相關的實驗來驗證。直到 1997 年 Iwamura 等人利用 SQUID 實 驗證明 TME 雙自由基分子的參態與單態間的能階差僅 2 J (1.5 cal/mol) 的 差異,也就是參態與單態的能階幾乎相同²¹。

在此期間 Berson 設計變換不同異原子之 TME 衍生物²²,藉由異原子 之 P_z軌域對 NBMOs 產生微擾作用 (perturbative interaction),使分子的參 態與單態能階差變大,以利於研究的進行。Berson 教授選用異原子環化分 子 15、16 及 17 來進行研究,其軌域圖如圖一^{22e}:

圖一:異原子對 TME 的微擾作用圖

當異原子的電負度較大,如氮原子上有強拉電子基時,造成 P_z 能階降低而與 Ψ_s 的微擾作用變弱,使得 Ψ'_s 與 Ψ'_A 的能階接近,電子組態趨向於參態;相反的,當 P_z 能階升高,會與 Ψ_s 產生較大的作用,而拉大了 Ψ'_s 與 Ψ'_A 的能階,其電子組態則較趨向於單態。

因此 Berson 合成異原子環化分子 **15**、**16**及 **17**之前驅物 diazene **18**、 **19、20**,對其進行熱化學及光化學等研究²²。其中 thienodiazene **19**的熱化 學及光化學反應如式圖三^{22d}所示:

Thienodiazene 19 經過照光或加熱產生雙自由基 16,當不加入任何淬 熄物 (quencher)時,會形成二聚物 21 及 22 和少量的三聚物 (trimer)。經 由高溫真空裂解可得到雙自由基自我環化的環丁烯產物 23;而當加入親雙 烯體 (dienophiles)得到并式 (fused)產物 24 及 25,並保有烯類原有的立 體化學,也利用低溫 UV-vis^{22a,e}及 NMR^{22b,h} 光譜及未能觀測到 EPR 訊號, 可證明單態雙自由基中間體 16 的存在。

2.1.1.2 非古典鄰醌二烯 (nonclassical o-QDM) 之介紹

TME 異原子衍生物 15、16、及 17 是屬於雜環鄰醌二烯 (heteroaromatic o-QDM 26) 的結構異構物, Chou 將它們歸類為非古典鄰醌二烯 (nonclassical o-QDM)²³。近年來, 雜環 o-QDM 的研究相當熱門^{24b}, 其製備 方式可以歸類如式圖四²³所示。

式圖四

而非古典 *o*-QDM 的製備在文獻所提到的方法,除了 Berson 採用的 diazene 之外,還可利用 diynes 27 在鹼性條件下生成雙聚合 29 其過程中的 中間體證實²⁵,如式圖五所示。

式圖五

1990年起,Takayama²⁶等人合成 furanosulfolene **30** 及 pyrrolosulfolene **31**,並對此類分子進行熱化學、高壓反應及衍生化研究,探討其在合成應用上的價值。

Furanosulfolene 30 與親雙烯體進行熱化學反應結果與 furanodiazene 18 相似,皆可生成并式 (fused) 及橋式 (bridged) 產物,因此 Takayama 提出 以下的反應機制,如式圖六所示。Takayama 認為反應途徑為親雙烯體與呋 喃環先進行 Diels-Alder 反應生成 Type A 產物,脫去二氧化硫生成 Type B,再進行第二次 Diels-Alder 反應生成 Type C 產物,而後再進行 retro Diels-Alder 反應脫去一當量親雙烯體而得產物 Type D,即反應的進行是 Diels-Alder 反應與 retro Diels-Alder 反應交互進行,中間體 Type A 並經由 高壓反應實驗單離出,因此 Takayama 等人認為熱化學反應過程應不涉及 雙自由基中間體。

式圖六

本實驗室延續 Berson 對 TME 衍生物的研究,由於 diazene 分子在室溫 極不安定,如 thienodiazene²²¹ 19 及 pyrrolodiazene^{22j} 20 必須在-10 °C 以下 的溫度才可存活,因此選擇仿照 Dittmer 的方法引進二氧化硫的 sultine 分 子,合成了 furanosultine 32、thienosultine 33 及 pyrrolosultine 34,和一系列 的親雙烯體進行 Diels-Alder 加成反應,並提出可能的反應機制 ^{18a,e,f},如式 圖七所示:

式圖七

Sultine 分子的熱化學反應可能的兩種機制,其中最有可能的脫除二氧 化硫形成 non-Kekulé 雙自由基中間體 35,與親雙烯體生成并式產物 36 或 橋式產物 37,此兩種加成產物均可再與另一當量親雙烯體形成雙加成產物 38。另外,sultine 也有可能斷裂碳氧鍵,以另一個雙自由基 35'的形式存在, 進行分子內的重排而得到 sulfolene 39,或與親雙烯體進行分子間加成,而 後脫除二氧化硫得到 1:1 的并式加成物 36。另一個可能的機制是類似於 Takayama 所提出 sulfolene 反應機制,即 Diels-Alder 反應與 retro Diels-Alder 反應交互進行 ^{18a,e,f}。

2.1.1.3 C₆₀ 簡介與其衍生化

1990 年, Krätschmer 等人 27發展大量製備 C_{60} 的方法之後,這種新型 碳結構的化學迅速被研究,尤其在與有機體的結合 (organofullerenes) 更是 多到不勝枚舉 28。

C₆₀ 為一球形對稱的分子, 在室溫下為面心立方 (face-centered-cubic) 構造,密度 1.68 g/cm³, 直徑為 7.1 Å, 具有三十個雙鍵, 對稱性為 I_h。它 的 UV 吸收光譜顯示在 190-410 nm 間有很強的吸收, 在 IR 光譜上有四個 吸收值分別為 528, 577, 1183, 1429 cm⁻¹, 在 ¹³C NMR 光譜上只有 143.2 ppm 單一訊號²⁸。

C₆₀是除了鑽石,石墨外另一種完全由碳元素所組成的分子,可以溶解 在一些有機溶劑中,如甲苯,四氯化碳,二硫化碳等。由於C₆₀具可溶性,

22

相較於不具溶解性的鑽石和石墨,它具有很大的研究及應用潛力,引起了 科學家極大的興趣。C₆₀的衍生化已被廣泛的研究與探討,一些反應如:親 核基加成反應,環化加成反應,自由基加成反應,氧化還原反應,鹵化反 應及金屬的配位反應等均被報導用於C₆₀的衍生化,而C₆₀的衍生物在催化 劑,光電材料,填充劑及生化藥劑上的應用亦與日俱增^{28,29}。

環化加成反應是 C₆₀ 衍生化常用的方法,不論是[2+1]、[2+2]、[3+2] 或[4+2]均是在 C₆₀的 6-6 環間雙鍵進行反應,如式圖八所示:

式圖八

1997 年, Martín 等人以 sultine 為 o-QDM 的前驅物與 C_{60} 進行 Diels-Alder 環化加成反應, 再氧化成苯醌- C_{60} 的目標物, 作為新型 C_{60} 有機體類 型的電子受體 ^{30a,b}, 如式圖九:

本實驗室合成具有雜環的 sultine,經加熱生成 o-QDM 中間體與 C_{60} 進行反應,皆可得到 sultine 與 C_{60} 為1:1 加成的產物 ^{18c}。

而 non-Kekulé 雙自由基與 C₆₀ 的加成反應在文獻中卻相當少。Wudl^{32a} 和 Luh^{32b} 成功探討 TMM-C₆₀ 的[3+2]環化反應。在 Wudl 的工作中 ^{32a}, 取亞 甲基環丙酮衍生物和 C₆₀ 的加熱反應單離到化合物 45 及 46, 酯基產物 46 被認為是酮烯縮醛 47 (ketene acetal) 經矽膠管柱催化水解反應而得, 故提 出 TMM 中間體參與反應, 如式圖十一。

式圖十一

Luh^{32b} 以鈀 (Pd^o) 催化[3+2]環化反應,過程產生 TMM-palladium 中間 體與缺電性的 C₆₀ 生成 TMM-C₆₀ 加成物 **48**,如式圖十二,並以光譜技術探 討此化合物,如¹H、¹³C NMR、質譜及測量在戊烷溶劑的螢光放射光譜其 最大放射波長為 704 nm。

2001 年, Ohno^{32c} 等人首度發表 TME 雙自由基 **50** 與 C₆₀ 加成,以 3,4-并式 pyrrolo-3-sulfolenes **49** 為 TME 前驅物,如式圖十三所示:

式圖十三

本實驗室長期針對雜環 sultine 分子,經加熱或照光可產生 non-Kekulé 雙自由基 ^{18a,e,f} 或鄰醌二烯 (o-quinodimethane, o-QDM) 中間體 ^{18b-d},再與 典型的親雙烯體生成 Diels-Alder 環化產物。其中,thienosultines **33a-d** 可 當作 non-Kekulé 雙自由基的前驅物 ^{18e},其合成是將 2,5-雙取代噻吩 **53a-d** 在氯甲基甲基醚及四氯化錫催化下,可在 3、4 號碳進行 Friedel-Crafts 氯 甲基化反應而得到化合物 **54a-d**,再以 Rongalite (sodium formaldehyde sulfoxylate) 及溴化四丁基銨鹽 TBAB (tetrabutylammonium bromide) 為催 化劑⁵(此為 Dittmer 的合成方法),可得 thienosultine **33a-d**。而含苯基取代 之噻吩 **53c,d** 的合成則是運用鈀 (Pd^o)的催化反應,可進行芳香環間的偶合 反應而得到,如式圖十四所示:

Method:

(a) *n*BuLi, THF, 0 °C, 3 h; ZnCl₂, THF, rt, 2 h; (b) Pd(PPh₃)₄, THF, 55 °C, 24 h; (c) *n*BuLi, THF, 0 °C, 3 h; CH₃I, 0 °C–rt, 24 h.

式圖十四

在此,我們持續合成 thienosultines 並與 C₆₀ 進行衍生化反應及嘗試利 用微波加熱來加速反應進行。

2.1.2 Non-Kekulé 雙自由基前驅物之合成

首先我們合成雙自由基分子的前驅物 sultine,其合成流程如式圖十五 所示:

式圖十五

將 2,5-二溴噻吩 55 在-78 ℃ 下進行鋰交換及硫甲基、硫苯基化反應 ³³,得化合物 53e、53f,產率為 79%及 95%。再對噻吩 3、4 號碳進行 Friedel-Crafts 氯甲基化反應 ³⁴,分別以甲醛水溶液及濃鹽酸反應可得到化 合物 54e,產率 87%;氯甲基甲基醚及氯化鋅催化可得化合物 54f 為主之 產物,未經分離以 Rongalite 及溴化四丁基銨鹽 TBAB 為催化劑 ⁵,可得 thienosultine 33f,兩步總產率 11%;化合物 33e 也可以相同反應條件獲得, 產率 24%。

2.1.3 Thienosultines 與 C₆₀ 加成之應用

以 C₆₀ 為限量試劑,及 1.5 當量 thienosultines **33e**,**f** 在鄰二氯苯 (*o*-dichlorobenzene, ODCB) 中迴流 2 小時 (約 180 °C), sultine 會脫去二氧 化硫生成 non-Kekulé 雙自由基與 C₆₀ 反應得 1:1 及 2:1 加成產物 **57** 及 **58**, 比例約 2:1。當取 **33a**-**f** 和 C₆₀ 在微波反應器中以 900 瓦能量照射 4 分鐘,以溫度控制器控制在 180 °C,亦可得到加成物 **57**、**58**,時間大幅縮 短,總產率為 37-79% (若以消耗的 C₆₀計算,總產率為 58-96%),且單一 加成產物與二次加成產物的比例由 2-3:1 提升至 3.5-6:1,如式圖十六 及表一所示:

近幾年,微波技術運用在有機合成的文獻已經超過兩千篇,微波加速 有機合成 (microwave-assisted organic synyhesis, MAOS)³⁵不僅可縮短反應 時間 (由數小時減短至數分鐘完成反應)、降低旁反應發生、提高產率及再 現性。其原理是建立在物質 (溶劑或試劑) 的有效吸收微波與順利轉換成 熱,只有具介電或是極性物質才能被微波加熱,因此我們以鄰二氯苯為溶 劑,除了對 C₆₀有極佳的溶解度 (每毫升可溶 27 毫克 C₆₀),還有本身的高 沸點、高極性,都是微波在促進 C₆₀加成反應的常用溶劑。

	microwave ^a			conventional heating ^b			
-		yield	(%)		yield (%)		
sultine	time	monoadduct	bisadduct	time	monoadduct	bisadduct	
	(min)	57	58	(h)	57	58	
33 a	4	$47 (64)^c$	$11 (15)^c$	2	38 (73) ^c	$12(23)^c$	
33b	4	d	^c	24	$28 (44)^c$	9 (14) ^c	
33c	4	$39(64)^c$	e	2	$47 (62)^{c}$	$16(20)^c$	
33d	4	53 (81) ^c	$9(14)^{c}$	2	$52(65)^{c}$	$20(25)^c$	
33 e	4	$41 (52)^c$	$10(13)^c$	2	$52 (62)^c$	$27(32)^{c}$	
33f	4	51 (76) ^c	15 (22) ^c	2	$51 (63)^c$	$27 (33)^c$	

表一: Thienosultines 33a-f 與 C60 利用微波及傳統加熱之比較

^{*a*} Power 900 W, ODCB, 180°C. ^{*b*} ODCB, reflux. ^{*c*} Based on consumed C₆₀. ^{*d*} Sultine **33b** was completely converted to sulfolene without reacting with C₆₀. ^{*e*} Trace.

所有 C₆₀ 加成產物皆可以環已烷和甲苯的混合溶劑為沖提液的矽膠管 柱層析分離,唯有 **33b** 的反應產率偏低,可能是雙自由基中間體 **56b** 的 HOMO 和 C₆₀ 的 LUMO 之間的能階差過大,而不利於環化加成。二次加成 產物 **58a-f** 皆為幾何異構物之混合物難以分離,因此主要以 FAB-MS 及¹H NMR 光譜鑑定。化合物 **57a-f** 的 UV-Vis 光譜顯示在 435 nm 附近都有一 典型的微弱吸收峰,表示 C₆₀ 單一加成的二氫化結構 (dihydrofullerene)。

圖二:單一加成產物之¹H NMR 變溫實驗 (500 MHz for 57e, 600 MHz for 57f, $CDCl_3/CS_2 = 1:2$) (a) 57e, for which Tc is 298 K; and (b) 57f, for which Tc is 298 K.

而由變溫¹H NMR 光譜實驗發現,當室溫 25 °C (298 K)時,化合物 57e 和 57f 其六員環上的兩組亞甲基氫訊號皆為一組單重峰 (圖二),表示 此時的溫度已達 coalescence 溫度 (Tc)。所謂的 coalescence 溫度是指六員 還 boat-to-boat 構形迅速交換時的溫度,因此高於 Tc時,快速的構形翻轉 使亞甲基氫屬動力學平衡狀態而無法做區別,可觀察到更尖銳的單重峰; 而低於 Tc時,六員環構形交換趨緩並轉變為一個安定的構形,兩個不同環 境的亞甲基氫互相耦合可觀察到 AB quartet 的分裂,因此藉由變溫實驗可 算出六員環構形交換的活化能 ΔG_c^{\pm} 約為 14.6 ± 0.2 和 14.0 ± 0.2 kcal/mol。 與先前完成的工作做比較^{36a,b},活化能皆介於 13.5 至 14.8 kcal/mol 之間, 而相較於文獻^{30b}類似的化合物 **59a,b** 則平均高出 2.8 kcal/mol,如表二的整 理所示。

thienoadduct (substituents)	Tc (K)	$\Delta v (\text{Hz})^b$	$J_{\mathrm{AB}}\left(\mathrm{Hz}\right)^{b}$	ΔG_c^{\neq} (kcal/mo	l) reference
57 \mathbf{a}^{c} (2,5-dimethyl)	291	53.8	14.0	14.0 ± 0.2	36b
57b ^{<i>d</i>} (2,5-dichloro)	286	95.6	14.1	13.5 ± 0.2	36b
$57 c^{c} (2 m other 1.5 m h or s 1)$	290	48.7	14.1	14.2 ± 0.2	36a
5/c (2-metnyl-5-pnenyl)	290	42.6	14.0	14.2 ± 0.2	36a
57d ^{<i>c</i>} (2,5-diphenyl)	304	59.1	14.1	14.8 ± 0.2	36a
$57e^{c}$ (2,5-dimethlthio)	298	120.9	14.5	14.6 ± 0.2	this work
57f ^c (2,5-diphenylthio)	298	152.3	_14.4	14.0 ± 0.2	this work
59а	245	26.2	14.7	12.0 ± 0.2	30b
S CC2CH3	241	14.8	13.9	11.9 ± 0.2	30b
59b	223	51.0	15.4	10.7 ± 0.2	30b
	231	86.7	15.4	11.0 ± 0.2	30b

表二:單一加成產物 57a-f 活化能(ΔGc[≠])之比較"

^{*a*} Various temperature measurements were taken in a 600 MHz NMR (**57e** in a 500 MHz NMR). The activation free energies were obtained using equation: $k_c = 2.22 (\Delta v_{AB}^2 + 6J_{AB}^2)^{1/2}$, $\Delta G_c^{\neq} = 4.58 \ Tc (10.32 + \log (Tc/k_c)) \times 10^{-3}$ kcal/mol.³⁷ ^{*b*} Data are reported at the highest temperature that affords well-separated quartet: -10 °C for **57a**, -15 °C for **57b**, 7 °C for **57c**, 20 °C for **57d**, -5 °C for **57e**, and 0 °C for **57f**. ^{*c*} In CDCl₃/CS₂ = 1:2. ^{*d*} In d_4 -ortho-dichlorobenzene. Martín 等人 ^{30b} 曾以 thieno-、pyrazino-*o*-QDMs 為中間體,以微波或加 熱方式與 C_{60} 進行[4+2]環化加成反應,均可得到單一衍生化產物,由所得 到六員環 pyrazine 衍生物 **41a** 之 T_c (323 K) 和 ΔG_c^{\pm} (15.4 kcal/mol) 值都相 近於文獻記載的碳環的 (carbocyclic) 衍生物之值 ^{30c},而具五員環噻吩衍生 物 **59a,b** 之 T_c 和 ΔG_c^{\pm} 其值則皆小許多,表示 **59a,b** 的構形較其他衍生物易 翻轉。Martín 以理論計算來解釋影響活化能大小的因素,他認為是六員環 的扭曲張力 (torsional strain) 及角張力 (angular strain) 為主。

由 PM3 計算結果發現噻吩的外角 (120.4° 和 120.9°) 較 pyrazine 環 (116.6°) 大,且其六員環構形也較 pyrazine 環趨於平面;化合物 **59a** 之 torsional angle: C(1)-C(61)-C(62)-S(65)為 148.1°及 C(6)-C(64)-C(63)-C(67) 為 149.3°,化合物 **41a** 之 torsional angle: C(1)-C(61)-C(62)-N(65)為 131.5° 較接近於 Rubin 於碳環系統中所得到之值 (135°)。我們也以 PM3 計算 ³⁸ 化合物 **57a**,得到噻吩的外角為 117.7°及 torsional angle: C(1)-C(61)-C(62)-S(65)為 134.9°,這項結果與 Martín 的推論相符,也就是說:當芳香環部份

的外角及 torsional angle 越大時,使六員環構形越趨於平面,則 ΔG_c^{\neq} 值越 小,如化合物 **59a** (其 ΔG_c^{\neq} 值約為 12.0 kcal/mol);反之,當芳香環部份的外 角及 torsional angle 越小時,使六員環構形越不趨於平面,則 ΔG_c^{\neq} 值越大, 如化合物 **41a** (其 ΔG_c^{\neq} 值約為 15.4 kcal/mol) 及化合物 **57a** (其 ΔG_c^{\neq} 值約為 14.0 kcal/mol)。

另一點值得探討的是 Martín 在另一篇文章 ^{30a} 提出 C₆₀ 加成物的 ΔG_c^{*} 與雜環及六員環間的鍵長有著線性關係: C(62)-C(63)的鍵長越長, ΔG_c^{*} 值 越高; C(62)-C(63)的鍵長越短, ΔG_c^{*} 值越低。Martín 以 PM3 計算結果得化 合物 60 的鍵長為 1.348 Å, ΔG_c^{*} 值為 11.3 ± 0.1 kcal/mol,而化合物 61 的鍵 長為 1.4 Å, ΔG_c^{*} 值為 15.2 kcal/mol。我們以 PM3 計算化合物 57a 的 C(62)-C(63)鍵長為 1.439 Å,而由變溫 ¹H NMR 光譜實驗求得的 ΔG_c^{*} 值為 14.0 ± 0.2 kcal/mol。無論鍵長與 ΔG_c^{*} 值的比較,化合物 57a 都與化合物 61 相近, 都是屬於相對鍵長較長的 C₆₀ 衍生物,導致有較大的 ΔG_c^{*} 值,因此鍵長也 是影響 ΔG_c^{*} 的重要因素。

另外,針對實驗室^{36b}之前發現 C₆₀ 衍生物 57a 置於室內光下會發生與 氧氟作用的現象做釐清及詳細完整的探討。首先,取化合物 57a 溶於二硫 化碳 (CS₂),在室溫、室內光下攪拌直到 57a 反應完畢 (約三天),環己烷 和氯仿混合溶劑為沖提液,以矽膠管柱層析順利分離兩個化合物 62、63 (約 1:2 的比例),總產率 50-73%,如將化合物 57b-f 置於氧氟或照光的單一 條件下,則可安定存在,由表三的光譜資料可證明結構:

ELSAN

•		
	化合物 62 1896	化合物 63
¹ H NMR ^{<i>a</i>} (δ)	4.56 (CH ₂), 4.45 (CH ₂), 2.71	4.31 (2CH ₂), 2.63 (2CH ₃)
	(CH ₃), 2.53 (CH ₃)	
¹³ C NMR ^{b} (δ)	197.7 (C=O), 193.0 (C=S→O),	200.6 (C=O), 41.7 (CH ₂), 29.2
	49.1 (CH ₂), 42.6 (CH ₂), 30.9	(CH ₃)等共21根訊號 (應有21
	(CH3), 30.3 (CH3)等共 35 根訊	根)
	號,4根重疊 (應有40根)	
$FT-IR (cm^{-1})$	1700 (C=O), 1530 (C=C), 1180	1680 (C=O)
	(C=S→O)	
FAB-MS ^{c} (m/z)	$891 (M + H^{+})$	$859 (M + H^{+})$

表三:化合物 62、63 光譜資料對照表

^{*a*} 600 MHz in CDCl₃ at 298 K. ^{*b*} 150 MHz in CDCl₃ at 298 K. ^{*c*} matrix: *m*-nitrobenzylalcohol.

化合物 **62** 顯示分子峰 (M+H⁺) 為 891,即化合物 **57a** 再加 32; FT-IR 光譜 (圖三) 在 1700 和 1529 cm⁻¹ 有中強訊號,而化合物 **63** 顯示 1685、1636 及 1617 cm⁻¹ 有強訊號,分子量則與化合物 **57a** 相同 (m/z = 859);另外由 ¹³C NMR 顯示化合物 **62** 的兩個 carbonyl 碳:197.7 ppm 的 C=O 及 193.0 ppm 的 C=S→O,和 C₆₀ 部分的四級碳:65.8 ppm 及 65.5 ppm,而化合物 **63** 只 顯示一個 carbonyl 碳在 200.6 ppm 和一個 C₆₀ 部分的四級碳在 65.3 ppm,如 圖四、五所示:

圖三: 化合物 62 與 63 之 FT-IR 光譜

圖四:化合物 62 之 NMR 光譜 (a) ¹H NMR; (b) ¹³C NMR

圖五:化合物 63 之 NMR 光譜 (a) ¹H NMR; (b) ¹³C NMR

(a)

由上述光譜資料,我們認為是單態氧 (¹O₂) 先與化合物 57a 的噻吩部 分反應,而形成 endoperoxide 64,再進行重排得到兩個新產物:非對稱結構的 sulfine-enone 62 及對稱結構的 endione 63,如式圖十七所示。

在 2,5-二甲基噻吩上相似的反應曾經被報導 ^{39a},在 520 nm 照光下甲基 藍 (methylene blue) 敏化產生單態氧與 2,5-二甲基噻吩的氯仿溶液反應, 得到 *cis*-sulfine **66** (56%) 和 *trans*-diketone (28%);若以甲醇為溶劑的相同 照光條件, sulfine **66** 可提升至 70%, diketone 的產率則只有 2%。

Matturro^{39c}利用低温 NMR 光譜證實中間體 thioozonide **65** 的存在並做 更深入的探討。產生 sulfine **66** 及 *cis*-3-hexene-2,5-dione **67** 的幾個可能途徑 (式圖十八), 起始步驟可能包括:(1) 脫除硫原子;(2) 逆向-1,3-偶極環化 加成;(3) 氧-氧鍵均勻斷裂;(4) 氧-氧鍵斷裂,同時伴隨β-斷裂 (β-scission)。路徑 (2) 為 carbonyl oxide 中間體 70 的生成,及內部氧原子 的轉移而得到 sulfine 66,在極性溶劑中反應較趨於偶極物種的發生,如中 間物 65 在甲醇中顯示 sulfine 66 產率的提升,同時壓縮 endione 67 的生成。 而直接脫除單一硫原子 (路徑(1)) 的可能性,在能量上是不利的,卻無法 單由實驗觀察而排除。Oxathiirane 71 的生成是經由路徑 (3) 和路徑 (4) 產 生的雙自由基,且由理論計算證明 sulfine 66 可安定存在,其他異構物的能 量皆高於 sulfine 66,分別為: carbonyl *O*-sulfide 68,9 kcal/mol;三員環 oxathiirane 71,20 kcal/mol;開環形式 oxathiirane 69,33 kcal/mol (單態與 三態能量差很小),因此斷言 oxathiirane 71 可開環生成 (a) sulfine 66 或 (b) carbonyl *O*-sulfide 68,而 68 能自發脫去硫原子生成安定的 endione 67。

式圖十八

值得注意的是其他的 C_{60} 加成物 57b-f 置於空氣中及室內光數月,即表

示單態氧可能存在下仍然安定,有兩個可能的原因:(1)在 57b-f 的溶液 中並沒有產生單態氧,所以能安定存活,或(2)單態氧有產生,但是 57b-f 沒有與它產生反應。因此為了釐清單態氧對於 2,5-不同取代基的 C₆₀ 加成物 的影響,我們做了兩個控制實驗,第一:將 2,5-二甲基噻吩在其他 C₆₀ 衍生 物(如化合物 57d)存在下,置於空氣中及 60 W 的鎢絲燈下,發現仍會進 行光誘導氧化反應,這證明在不同的 C₆₀ 衍生物溶液中仍會產生單態氧, 如表四之項次 3;第二:製備 2,5-雙取代噻吩 (53a-f)及含有當單態氧敏 化劑 C₆₀ (1.5 mol%)的氘-氯仿溶液,於飽和空氣或通氧氣下照射 60 W 的 鎢絲燈 42 小時,其結果如表四所示,發現不同取代基的噻吩與單態氧反 應,以轉換率排序依序為:2,5-二甲基噻吩 53a (37%),2,5-二硫甲基噻吩 53e (26%),2-甲基-5-苯基噻吩 53c (< 6%),而其他取代噻吩(53b,d,f) 幾乎 沒有反應,這說明含有甲基取代的噻吩對於單態氧有較高的反應性,如圖 六:

圖六: 2,5-二甲基噻吩 53a 與 C₆₀ 照光的¹H NMR 光譜分析

表四:2,5-雙取代噻吩 53a-f 與單態氧之光化學反應"

R S R	³ Sen, hv (60W tune O ₂ *, CDCl ₃ *air-saturated or ox	gsten-lamp	eled R	s ⁰ 0 0 ₅	$ \begin{array}{c} & & \\ & & $				
			Ι		Π	II	ĺ	IV	
entry	thiophene	sen ^b	O ₂	time,	product (%)				
			source	h	Ι	II	III	III	
1	53a , $R = CH_3$	C ₆₀	air	42	23	0	4	10	
					$(61)^{c}$		$(11)^{c}$	$(28)^{c}$	
2	53a , R = CH ₃	C ₆₀	O^2	4	8	0	1.8	0.6	
					$(77)^{c}$		$(17)^{c}$	$(6)^{c}$	
3	53a , R = CH ₃	57d	air	42	54	0	16	3	
		- ÉA	ES	E C	$(74)^{c}$		$(22)^{c}$	$(4)^{c}$	
4	53b , R = Cl	C ₆₀	air	42	no reaction				
5	53c , $R = CH_3$,	C ₆₀	air ⁸⁹⁶	42	complex mixture (< 6%)				
	Ph	100	44000	La la					
6	53d , R = Ph	C ₆₀	air	42		no rea	action		
7	53e , R = SCH ₃	C ₆₀	air	42	complex mixture (< 26%)				
8	53f , $R = SPh$	C ₆₀	air	42		no rea	action		

^{*a*} 2,5-Disubstituted-thiophenes **53a–f** (40 mM in CDCl₃) were prepared in separate NMR tubes each containing a catalytic amount of triplet sensitizer and was irradiated with 60 W tungsten-lamp at room temperature. Samples were either pre-saturated with air and then irradiated or bubbled with oxygen during photolysis. ^{*b*} The concentration of C₆₀ was ca. 1.5 mol% and that of **57d** was about 2.5 mol%. ^{*c*} The yields were based on recovered thiophene (**53a–f**) determined by 300 MHz NMR.

2.1.4 總結

在本研究中,我們成功合成出 2,5-雙取代噻吩 sultine (**33e**,**f**),並與 C₆₀ 反應時,均可得到和 C₆₀ 的加成產物,而將此系列的噻吩 sultine (**33a**-**f**) 以 微波方式加熱也可進行相同反應,並在反應時間和產物的選擇性有顯著的 改善,由以上的研究成果可知:

- 在熱化學反應中, 噻吩 sultine 以迴流加熱和微波加熱均會脫去二氧 化硫分子生成 non-Kekulé 中間體 56,與 C₆₀反應可得到單一加成產 物 57 與二次加成產物 58,而微波反應不僅大幅縮短反應時間為 4 分 鐘且單加成與二次加成產物的比例由 2-3:1 提升至 3.5-6:1。
- 2、 由變温¹H NMR 實驗可計算出 C₆₀加成產物 57e,f 六員環構形交換的 活化能ΔG_c[≠],皆介於 13.5 至 14.8 kcal/mol 之間,及化合物 57a 的 PM3 理論計算結果說明了六員環的鍵角與鍵長是影響活化能的主因。
- 3、 釐清化合物 57a 的光誘導氧化反應,成功單離出 sulfine-enone 62 和 endione 63,反應機制為化合物的 C₆₀部分當光敏化劑經照光產生單 態氧及 thioozonide 中間體的生成與重排過程而得。

第二部份:鄰醌二烯衍生物之研究 (benzosultines 之分子內環化加成反應) 2.2.1 研究背景

2.2.1.1 鄰醌二烯 (o-QDM) 之簡介

1957年, Cava 等人首先提出鄰醌二烯 (*o*-quinodimethane, *o*-QDM 72) 或稱為鄰二亞甲基苯 (*o*-xylylene) 為可能存在的反應中間體,有關此類化 合物的製備、化性以及其衍生物的合成皆引起化學家極大的興趣²⁴。

72

由於其具有的共軛雙烯易與親雙烯體進行 Diels-Alder 反應而恢復芳 香性,在合成上有極大的用途,被廣泛地應用在類固醇 (steroids) 及其他 天然物合成和藥物的開發上⁴⁰,近十年更應用在富勒烯化學 (fullerene chemistry)^{24b}、高分子材料等。

o-QDM 的製備方法可以歸納有下列幾種,如式圖十九所示,以前驅物 分類,大致可分為五大類: X X=Y=Br X X=SiMe₃,Y=N⁺Me₃Γ

(1) Benzocyclobutene 的加熱反應 (途徑 A): benzocyclobutene 經加熱 開環生成 o-QDM 的方法是使用最頻繁的,其過程屬於 conrotatory 電子開 環反應。若有取代基於四員環上,會傾向生成反式 o-QDM,即朝立體障礙 較小的途徑發生,且取代基會降低其開環所需的溫度,如烷氧基取代為 110 °C,烷基取代為 140 °C, 無取代的 benzocyclobutene 則需 200 °C。

(2) 1,4-消去過程(途徑 B):此方法包含加熱消去、鹼催化消去、還原 消去及氟離子消去。

(3) 反向 Diels-Alder 反應(途徑 C、D):通常是在加熱或照光條件脫除一氣體分子然後變成雙烯的 o-QDM,如 diazene 脫去氮氯(加熱或照光); isochromanone 脫去二氧化碳(加熱); sultine (加熱或照光)和 sulfolene (加熱) 脫去二氧化硫; 2-indanone 脫去一氧化碳(照光)。

(4) 光烯醇化 (photoenolisation) 和光重排 (photorearrangement) (途徑
E):鄰位-烷基苯甲醛(酮)可有效生成α-羥基-o-QDM, 經照光激發至 nπ*參

態,進行分子內抓氫而得到參態雙自由基,最後以反式的α-羥基-o-QDM 存在;鄰位-烷基苯乙烯也可經照光誘導[1,5]-氫轉移而生成 o-QDM。

(5) o-QDM 與金屬之錯合物⁴¹ (途徑 F):過渡金屬是常用與 o-QDM 錯合的金屬,如鎳 (Ni)^{41a}、鉑 (Pt)^{41b} 和鐵 (Fe)^{41c}。2003 年, Mishiyama 嘗試使用內過渡金屬的鑭 (La),也可以成功地形成 o-QDM-金屬之錯合物^{41d}。

2.2.1.2 分子內 Diels-Alder 環化加成反應之介紹

Diels-Alder 環化加成在有機合成是被廣泛利用的反應,尤其在合成多 環天然物,此反應的幾何與立體特一性可提供有機合成化學家同時建立多 個掌性中心。

o-QDM 是極具活性的中間體²⁴,可合成多環分子,如類固醇 (steroids) 的合成,常利用分子內 Diels-Alder 環化加成反應而得到⁴⁰,可一步生成四 環骨架中的三環,且可有效控制其幾何與立體化學。

雖然可生成 o-QDM 的前驅物有很多種,但是為了避免加入的反應試 劑影響分子中其他官能基,常利用加熱或照光的方式來進行分子內的環化 反應,如式圖二十所示:

其中 benzocyclobutene (74) 是最常被用於這類合成的化合物^{40,42}。首 先經過加熱的可逆反應生成 o-QDM 73,而不可逆的環化加成得到三環結 構,且有高幾何選擇性而得到化合物 78,不會生成化合物 79。如 Kametani 曾以此前驅物合成 Estradiol⁴³,如式圖二十一所示:

式圖二十一

Oppolzer^{44a,b}及 Nicolaou^{44c} 也利用 benzosulfolene 75 衍生物為 o-QDM 的前驅物,合成多個天然物,如式圖二十二所示: Oppolzer • 40000 OŚI Ē ടറ - SO₂ NC NC NC Nicolaou • Н Δ Ē SO $-SO_2$

式圖二十二

Benzocyclobutene 74 及 benzosulfolene 75 所需的反應溫度約在180-250 °C,而 isochromanone 76 也有被用來探討分子內 Diels-Alder 反應,但需更高的溫度 (300 °C) 才可脫去二氧化碳 ⁴⁵,生成 *o*-QDM。相較之下, benzosultine 1 只需 80 °C 或以 254 nm 光源照射 ^{4c},即可生成 *o*-QDM (72) 中間體,不需要太苛刻的反應條件且室溫下安定,所以被廣為利用,如式圖二十三所示。

1974年, Durst^{4c}首次成功合成 benzosultine 1, 且往後幾年對於此分子 的合成方法及引進取代基進行系統化探討^{3,46},其方法是經合成羥基亞砜化 合物 81 再以 SO₂Cl₂或 NCS 環化生成。1991年, Dittmer⁵發展以單一步驟 合成 benzosultine 1,利用 Rongalite (sodium formaldehyde sulfoxylate)及 TBAB (tetrabutylammonium bromide)為催化劑,大幅簡化合成步驟,如式 圖二十四。

Durst

因此,我們希望結合 Durst 及 Dittmer 的方法合成 benzosultine,其分 子上接有烯類的長碳鏈,並進行分子內 Diels-Alder 反應,如 C-4 取代的化 合物 82 或 C-1 取代的化合物 83。其關鍵步驟是仿照 Durst 的方法,以 SO₂Cl₂ 或 NCS 環化羥基亞砜化合物,而生成 benzosultine 衍生物,其中合成具取 代基之羥基亞砜化合物的工作中,若以強鹼去質子化化合物 81 亞砜基α碳 上的氫,則可合成化合物 84 的結構;若將羥基氧化成醛基,則可進一步合 成化合物 85 的結構。另外,以 Dittmer 方法合成的 benzosultine,再用 Grignard 試劑處理,可一步生成羥基和亞砜之雙官能基化合物 81,能大幅縮短其合 成步驟,且過程並不涉及硫原子氧化至亞砜的步驟,所以可避免 Durst 合 成方法中使用 mCPBA 而得過氧化之產物----砜(sulfone),因此這是另一個可 考慮的合成途徑。

2.2.2 鄰醌二烯 (o-QDM) 前驅物之合成

4-Alkenyl-3,4-dihydro-1*H*-2,3λ⁴-benzoxathiin-3-one 的合成

首先我們嘗試合成 benzosultine 硫原子α碳上接烯基長碳鏈分子 86,其 合成流程如式圖二十五所示:

式圖二十五

以 Dittmer 的方法取得 benzosultine 1,加入 Grignard 試劑打開具掌性 的 sultine 環,生成構形反轉 (inversion)的羥基亞砜化合物 81,產率 90%, 此步驟稱為 Anderson 反應 ^{12a}。文獻中有明確討論非環形結構的亞磺酸衍 生物在進行親核取代反應,會生成構形反轉的產物 ⁴⁷,可能形成五配位的 雙三角錐中間體 sulfurane,或經由 S_N2 途徑而得到,其中高價配位的中間 體較多被採納,但是 S_N2 的機制還是不能完全排除,如式圖二十六所示:

取2當量的鹼可以對化合物 81 的亞砜α碳上氫去質子化,接上烯基長碳鏈,選擇性的得到兩個非鏡像異構物 (diastereomers) 86a 與 86b,比例約 1:7,分別是反邊 (anti-)及同邊 (syn-)取代產物,其立體位向是參考文 獻中探討 2-苯亞砜乙醇的取代反應結果⁴⁸,異構物的¹H NMR 如圖七所示:

圖七:非鏡像異構物 86 之¹H NMR 光譜(a)86a; (b)86b

接著,試圖將 86b 以 NCS 進行合環反應得化合物 87,產率 28%,由 於副產物甚多,除了以氫、碳核磁共振光譜鑑定產物結構,也利用質譜推 論此結構存在之證據 [m/z 236 (M⁺),172 (M⁺ – SO₂)],如圖八所示:

此反應雜亂,可能的原因:(1) 第三丁基與苄基 (benzyl) 形成的碳陽 離子,都是穩定的離去基,彼此競爭⁴⁹;(2) 羥基的親核性不夠。

1997 年, Durst 等人合成多環體系的 sultine^{46e},可是在合環步驟卻只 得到雙氯化產物 91,並沒有生成 sultine 89,產生的 oxo-sulfoxonium 88 中 間體顯示有幾個可能被氯離子攻擊的途徑,而相鄰帶電硫原子的碳原子比 氧原子旁的苄基碳原子更具親電子性,因此只需考慮途徑 b 與 c,其中途 徑 c 所產生穩定的二級苄基碳陽離子直接與氯離子鍵結,及二次的取代反 應而得到雙氯化產物 91,相較之下,途徑 b 的反應性低並無法生成 sultine。 值得一提的是, Durst 嘗試將相似物 α,α'-二溴二甲苯 92 以 Dittmer 的方法 獲得 sultine,但是仍然失敗,如式圖二十七。

式圖二十七

1-Alkenyl-3,4-dihydro-1*H*-2,3λ⁴-benzoxathiin-3-one 的合成

硫原子α碳的 C-4 亞甲基氫為 diastereotopic,¹H NMR 光譜會呈現 AB quartet 峰,若保留此亞甲基氫,可方便產物結構的分析,為了化合物鑑定 方便及改善反應性,因此選擇在 C-1 位置 (即氧原子α碳) 接烯基長碳鏈, 合成 sultine 的前驅物羥基亞砜化合物可從兩個途徑:(A) 對亞砜醛基進行 Grignard 試劑的加成反應;或 (B) 先得到加成產物,再氧化成亞砜。 benzosultine 合成流程其如式圖二十八所示:

如式圖二十九,亞砜醛基化合物 93 是利用 PCC 氧化⁵⁰ 順利得到,產 率 75-85%,而化合物 96 則需要較多步驟的合成,首先將 2-溴甲基苯乙腈 利用第三丁基硫醇的鹼性條件,取代生成高產率之化合物 94,產率 98%。 再經氫化二異丁基鋁 (DIBAL-H) 處理,可還原腈基得到醛類化合物 95, 產率 83%。最後以不同碳數的烯類 Grignard 試劑可加成而得到一系列的二 級醇 96,且其質譜最大斷裂碎片都是顯示 (M⁺-OH)。

		major isomer (97)			minor isomer (97')		
entry		H _a	H _b	$J_{ab}{}^a$	H _a	H _b	$J_{ab}{}^{a}$
1	n = 0	3.77	4.18	12.3	3.48	4.67	12.0
2	n = 1	3.71	4.13	12.6	3.67	4.66	12.0
3	n = 2	3.67	4.14	12.6	3.68	4.65	11.9
4	n = 3	3.70	4.14 s	12.5	3.65	4.72	12.0
5	n = 4	3.71	4.14	12.5	3.66	4.70	11.9
6	n = 5	3.70	4.14	12.5	3.66	4.67	11.9
7	n = 6	3.70	4.13	12.5	3.66	4.70	11.9

表五:非鏡像異構物 97 和 97'其特徵氫之化學位移及耦合常數

^{*a*} Estimated accuracy for coupling constants is ca. ± 0.2 Hz. All measurements were done in CDCl₃ in a 300 MHz NMR spectrometer.

如式圖三十所示:二級羥基亞砜化合物 97 具有兩個立體中心,由¹H NMR 可觀察到兩組非鏡像異構物,主要是以亞砜基鄰位的亞甲基氫,擁有 不一樣的化學位移來做區分(表五)。以途徑(A)得到一系列化合物 97, 產率 80-98%,預期金屬離子對雙官能基的鉗合(cheletropic)效應,應有 助於提高非鏡像選擇性(diastereoselectivity)及提出Grignard 試劑碳鏈長 短與立體選擇的關連性(式圖三十一),結果顯示非鏡像立體異構物的比例 約1.2:1至 5.7:1,而與碳鏈的長短大致可呈線性關係,如表六之項次 3、 5、7、9和14,當碳鏈越長則立體選擇性越高。在文獻中,γ-醛基(酮基)亞 砜化合物以金屬離子輔助的親核反應都有所報導⁵¹。

式圖三十一

另外,途徑 (B) 是將二級羥基硫化物以過碘酸鈉氧化⁵²,均可得到高 產率的亞砜化合物 97 (>80%),異構物的比例約 1.7-1:1,並無明顯的選 擇性。異構物 97 以TLC 檢視,其極性相同而無法經管柱層析來分離,且 化合物 81、93 及 97 系列的含亞砜之雙官能基產物,皆無法使用一般的乙 酸乙酯與正己烷為沖提液的條件進行分離,此類化合物完全吸附在矽膠管 柱內,必須使用極性之溶劑,如甲醇、二氯甲烷,之後改用取得容易的丙 酮及正己烷的混合沖提液才解決分離上的問題。最後再以混合形式的化合 物 97 和 NCS 進行合環反應,仍可得到非鏡像立體異構化的 sultine 98,其 產率及異構物比例如表六所示:

entry	reactant	method ^a	97	dr^b	Yield, ^c %	98	dr^b	Yield, ^c %
1	93	А	97a	77:23	88	98a	d	d
2	96a	В	97a	50:50	82	98a	d	d
3	93	А	97b	54:46	84	98b	78:22	64
4	96b	В	97b	53:47	98	98b	88:12	80
5	93	А	97c	62:38	92	98c	85:15	82
6	96c	В	97c	50:50	96	98c	85:15	73
7	93	А	97d	74:26	97	98d	87:13	81
8	96d	В	97d	63:37	98	98d	85:15	74
9	93	А	97e	72:28	98	98e	85:15	66
10	96e	В	97e	60:40	96	98e	85:15	63
11	93	А	97f	66:34	80	98f	87:13	74
12	96f	В	97f	64:36	91	98f	81:19	76
13	93	А	97g	85:15	87	98g	85:15	77
14	96g	В	97g	56:44	91	98g	84:16	83

表六:羥基亞砜化合物 97 及 sultine 98 之合成

^{*a*} Method A: $CH_2=CH(CH_2)_nMgX$ (X = Br for n = 0, 2–6; X = Cl for n = 1), THF, 0 °C, 1 h; method B: NaIO₄, MeOH–H₂O, rt, 30 min. ^{*b*} The diastereomeric ratio was evaluated by ¹H NMR analysis. ^{*c*} Isolated yield. ^{*d*} Not obtained.

除乙烯取代的化合物 98a 無法得到外,其他化合物 98b-g 皆可順利合成,其產率為 63-83%。由表六得知,合環反應結果顯示產物傾向其中一種異構物 (平均約 85:15),就理論而言,NCS 在此是提供氯陽離子,誘導羥基攻擊硫原子生成 oxo-sulfoxonium 中間體 99 並自發地脫除 *t*BuCl 分子 ^{46a} (式圖三十二),立體中心硫原子應該只改變成反轉構形,且保持異構物之比例,即非鏡像超越值 (diastereomeric excess),所以環化結果是氯化過程中立體化學的改變,還是生成的 sultine 再發生逆向反應,抑或其他因素影響立體特一性的喪失,值得進一步探討。

鹽酸催化下的亞磺酸酯有機溶液會發生消旋異構化 (racemization)。 Herbrandson 和 Dickerson⁵³發現芳香亞磺酸甲酯在鹽酸及氯離子存在下, 會產成亞磺醯氯 (sulfinyl chloride),造成差向異構化 (epimerization),如式 圖三十三;在 sultine 的體系中,若考慮此因素則可能的機制,如式圖三十 四:

由 Vogel 的工作¹⁶可知 S=O 為軸向是較穩定的構形 (p. 12), 再考慮 R 取代基的空間立體障礙而處於水平位置,則最安定得構形應該是 A,其六 員環翻轉因素也可能有 A'的平衡存在;同理,另一個非鏡像異構物 98'也 可能存在 B 與 B'的構形。當氯離子存在時,此四種化合物發生差向異構化

而最終熱力學的平衡反應仍是傾向反式化合物98。

而亞磺酸酯在有水分子的存在時,也可能發生水解反應 (hydrolysis) 而得到亞磺酸,或交換反應而回復酯類,如上述所討論的,交換過程中極 有可能因差向異構化而改變立體化學。Okuyama⁵⁴在比較γ-(五員環)和 δ-sultine (六員環) 於酸性與鹼性水溶液下,討論開環、合環及氧同位素¹⁸O 交換的反應性,作出以下結論:(1) γ-sultine 在開環及合環反應都比δ-sultine 快;(2) 在酸催化下,氧同位素交換的反應速率則是γ-sultine 較慢 (式圖三 十五)。

在合成一系列的化合物 98, 確實有單離到極少量且極性較化合物 98 低的未知物,如化合物 98d 的少量副產物,我們推論可能為亞磺醯氯化合物 100 或亞磺酸化合物 101,以圖九為例:¹H NMR 光譜中,第三丁基已 消失 (約 δ 1.35 ppm), S=O 的 α -位置亞甲基氫其分裂模式為近似三重峰的 AB quartet (δ 4.70 ppm, J = 12 Hz),仍保有 S=O 的掌性特徵,其苯環與起 始物 97d 有類似的分裂: 7.54-7.51 (1H, m) 及 7.40-7.25 (3H, m),而與化

合物 98d 的苯環部份則有明顯的差異:7.42-7.28 (1H, m) 及 7.25-7.20 (3H, m) (附圖 75, p. 247); 而 ¹³C NMR 光譜可觀察到 13 根訊號 (其中二級碳 5 根, 三級碳 6 根, 四級碳 2 根), 與化合物 98d 的碳數相同。巧合的是其質 譜最大吸收峰卻呈現與化合物 98d 相同,對化合物 100 而言是[M⁺ - HCI], 而對化合物 101 是[M⁺ - H₂O], 也都能合理解釋,因此最後是以分子極性 的比較來推定,此附產物為較低極性的亞磺醯氯化合物 100,而非高極性 的亞磺酸化合物 101,但也不能排除其存在的可能性。

式圖三十六

2.2.3 分子內 Diels-Alder 環化加成反應之探討

前述已討論過,benzosultine 1 於苯的迴流溫度(約80°C)即會脫除二 氧化硫分子,生成 o-QDM 中間體,其共軛雙烯結構與親雙烯體進行 Diels-Alder 環化加成反應而恢復芳香性。在此我們合成一系列烯類長碳鏈取代基 的 benzosultine 98,希望探討碳鏈的長短與反應的關聯性,包括分子內 Diels-Alder 環化加成與其他競爭反應的比較、sultine 與其他 o-QDM 前驅 物在幾何與立體選擇性的比較及嘗試不同加熱方式(如迴流、封管或微波) 對產率或選擇性的比較。

歸納 o-QDM 中間體 102 可進行的反應類型有三種: Type I---分子內 Diels-Alder 環化加成,可生成三環結構產物 103; Type II---[1,5]-氫轉移反 應,得到苯乙烯衍生物 104; Type III----鉗合加成反應,生成 sultine 98 之 異構化分子 sulfolene 105。如式圖三十七及表七所示:

式圖三十七

					product, % ^b		
entry	sultine		condition ^{<i>a</i>}	time	Type I (103)	Type II (104)	Type III (105)
1	98b	n = 1	А	48 h	<i>c</i>	<i>c</i>	54
2	98b	n = 1	C^d	10 min	^c	<i>c</i>	100
3	98c	n = 2	А	24 h	^C	C	67
4	98d	n = 3	А	24 h	15	trace	64
5	98e	n = 4	А	12 h	27	trace	54
6	98e	n = 4	В	24 h	6	trace	73
7	98e	n = 4	С	5 min	4	trace	71
8	98f	n = 5	А 💉	48 h	^c	38	53
9	98g	n = 6	в 们	24 h	c	13	46

表七:C-1 位置為烯類碳鏈取代的 sultine 98 之熱化學反應 "

^{*a*} Condition A: PhH, reflux (0.1 M); condition B: PhH, sealed tube, 100 ± 2 °C (0.1 M); condition C: CH₃CN, MW, 600 W (0.1 M). ^{*b*} Isolated yield. ^{*c*} Not obtained. ^{*d*} Neat condition, MW, 300 W.

雖然乙烯取代 sultine 98a 無法順利取得,而在文獻⁵⁵ 討論以 benzenocyclobutene 106 生成之 o-QDM,順式結構可得到環化產物 1,2-二氫化萘 107;若為反式-2-丙烯取代之前驅物 108 也可進行環化反應,而其順式異 構物 109 則只發生[1,7]-氫轉移反應,並沒有環化產物的生成,如式圖三十 八:

丙烯和丁烯取代的的 benzosultine **98b**,c 經苯為溶劑的迴流加熱生成 o-QDM 中間體,難以進行分子內 Diels-Alder 反應生成高環張力之化合物 **103b** 及 **103c**,僅得到異構化產物 sulfolene **105b** 及 **105c**。文獻中,化合物 **103b** 可經由 1,3-偶極環化加成反應,產生之偶氮化合物以光化學或熱化學 脫除氮氣分子的偶合而得到 ^{56a};亦可利用亞甲烯體 (carbene) 進行的[1+2] 環化反應得到 ^{56b},式圖三十九。

式圖三十九

丙烯取代的 benosultine **98b** 其異構化分子 sulfolene **105b**,則需更高溫 才能脫除二氧化硫。化合物 **105b** 在高溫真空裂解條件下 (380°C),除回收 起始物外,合環之 benzocyclobutene 化合物 **110** 是唯一產物 ^{57a};若更高溫 度反應 (450°C) 時,將以[1,5]-氫轉移產物 **104b** 為主。當丙烯改為苄基取 代時,氫轉移產物為唯一 (即 stilbene),推測是因為環丁烯化合物不穩定或 直接脫除二氧化硫產生順式 o-QDM,如式圖四十所示:。

式圖四十

另外,值得考慮的是中間體 102b 有無可能發生自身二聚化,生成五 環體系的二聚體 111。因此,我們以無溶劑狀態置入微波反應器中進行加 熱(300 瓦,反應 10 分鐘),試圖縮短分子間距離與提供瞬間高能量的條件 來增進分子間的作用。結果發現異構化分子 105b 為唯一產物,而推測的 分子間二聚化途徑並不進行,或許在更嚴苛的條件才有機會發生,如高壓 環境下。

五員環與六員環之并環衍生物在合成類固醇的骨架是最直接的,因此 是在這領域中是最多研究團對探討的對象。Oppolzer^{44a}、Nicolaou^{44c}及 Durst^{57b}分別合成 benzosulfolene **105d**,e 及 benzocyclobutene **112** 在高溫下可 有效地生成三環結構,結果顯示兩者前驅物形成六員環的立體選擇性幾乎 以反式(*trans*-)為主,而五員環則是以混合物存在(非鏡像異構物比例約為 3:1),而化合物 **105d**,e 的熱裂解都有少量苯乙烯類似物 **104d**,e 的[1,5]-氫 轉移反應發生,如式圖四十一:

Oppolzer, Nicolaou

在表七中,我們合成的戊烯和己烯取代的 benzosultine 98d,e,產物分 析也可獲得類似的結果。化合物 98d,e 在苯為溶劑下迴流,生成的五員環 之三環產物 103d 其異構物比約 1:1,產率 15%;而六員環之三環產物 103e 則是反式結構為單一產物,產率 27%,及皆有極少量的氫轉移化合物 104d,e,但主產物仍是異構化分子 sulfolene 105d,e,總產率約 80%。主要 原因應是缺乏拉電子性的烯類,並不是很好的親雙烯體,因此相互競爭結 果無法得到高產率的分子內 Diels-Alder 產物。以封管方式下的化合物 98e, sulfolene 105e 的產率反而從 57%提升至 73%,同時壓縮了三環產物 的生成,說明了在密封的反應條件下,二氧化硫再次鉗合的反應速率與機 會都遠大於烯類,而以微波加熱也有與封管條件同樣的效果,此外,表七 的項次7中,反應溶劑改用乙腈,是因為苯屬於非極性溶劑並不吸收微波。
表七項次8、9中,在庚烯和辛烯取代的 benzosultine **98f**,g 的加熱產物 分析,主產物為異構化產物 sulfolene **105f**,g,產率 46-53%,其次是[1,5]-氫轉移化合物 **104f** 及 **104g**,產率分別為 38%及 13%,並無單離到分子內 環化加成產物。

我們可藉由 H,H-COSY 及 H,C-COSY 二維 NMR 實驗,來定義[1,5]-氫轉移化合物 104f 和 104g 的氫、碳關係。以化合物 104f 為例,從 H,H-COSY 光譜可知 (圖十): C-8 的氫只受 C-7 的氫分裂成二重峰,可確定其位置 (δ

¹³ 14 15

2

12

圖十:化合物 104f 之 H,H-COSY 二維光譜

6.57); C-7 的氫除了受 C-8 的氫耦合又受 C-6 的氫分裂為 doublet of triplets,
可確定 C-7 的氫 (δ 6.08)及 C-6 的氫 (δ 2.15-2.02); C-2 的氫顯示最複雜的
多重峰 (δ 5.75-5.90), 且分別與 C-1 及 C-3 的氫耦合, 其位置因此可定出;
最後由 C-3 得知 C-4, 及由 C-6 得知 C-5, 故所有長鏈上的氫之間關係都能
確定。

由 H,H-COSY 光譜可知全部碳上氫的位置,再從 H,C-COSY 光譜即可 得知對應的碳原子 (圖十一),除了 C-2 的氫與碳的耦合並不明顯外,其他 高於δ 120 位置的苯環的碳及長鏈上的不飽和碳都能順利解析: C-8 的氫 (δ 6.57)對應其碳在δ 127.7, C-7 的氫(δ 6.08)對應其碳在δ 132.3, C-1 的氫

圖十一:化合物 104f 之 H,C-COSY 二維光譜

(δ 5.08-4.91)對應其碳在δ 114.3,其餘皆是苯環上的碳。位於高磁場的二、
三級碳分別為: C-3 (δ 33.6)、C-6 (δ 33.1)、C-5 (δ 28.9)、C-4 (δ 28.4)及 C-15
(δ 19.8)。

由一系列benzosultine 98b-g的熱化學實驗結果分析,所產生的o-QDM 中間體 102 與二氧化硫進行鉗合加成反應,而得異構化產物 benzosulfolene 105 為主要產物,產率較分子內 Diels-Alder 產物 103 高許多,原因是無拉 電子基的烯類,並不是很好的親雙烯體,因此二氧化硫與親雙烯體相互競 爭結果無法得到高產率的分子內 Diels-Alder 產物。

2.2.4 總結

在本研究中,我們可以很成功地在 benzosultine 的 C-1 上,即亞磺酸 酯的氧原子α碳,接上不同碳數的烯類取代基,並對其進行熱化學反應, 由以上的研究成果可知:

- Benzosultine 98b-g 在苯的迴流溫度(80°C)以上,可脫除二氧化硫 分子,生成 o-QDM 中間體,分別有三個類型的反應互相競爭: Type I---分子內 Diels-Alder 環化加成反應; Type II---[1,5]-氫轉移反應; Type III---二氧化硫的鉗合加成反應,即異構化得 benzosulfolene。
- 2、 依碳數的不同,其反應結果可歸納如下:
 - (1) 丙、丁烯基取代時,僅得到 Type III 的異構化產物。
 - (2) 戊、己烯基取代時,以 Type III 的異構化產物為主,分子內 Diels-Alder 的 Type I 產物其次,而 Type II 的氫轉移產物為極少量。

(3) 庚、辛烯基取代時,仍是以 Type III 的異構化產物為主,其次是 Type II 的氫轉移產物,並無得到 Type I 的分子內環化加成反應。

3、由上述結果可知 benzosultine 是 o-QDM 良好的前驅物,但是對於化 合物 98 分子內的環化加成反應並不能有效地進行,除了高環張力的 103b,c 及大環結構的 103f,g 在熱力學上不傾向生成外,sultine 分子 內缺乏拉電子的高反應性烯基也是影響分子內 Diels-Alder 反應進行 的主因,所以皆是以其競爭反應的異構化產物 105 為主。 第三部份:其他雜環 sultine 之合成研究

2.3.1 母體化合物---Thienosultine 的合成

一直以來本實驗室希望合成 2,5 位置沒有取代的 thienosultine 117,與 Berson 研究的 thienodiazene 19 分子做比較,探討其熱化學與光化學條件下 生成的 non-Kekulé 雙自由基分子的基態電子組態。

合成流程如式圖四十二所示:

化合物 113、114 的合成是仿照文獻步驟 ^{34a}。3,4-雙氯甲基取代之噻吩 經水解而得到高產率之醇類衍生物 113,產率 96%;接著在 Pd-C 催化的強 鹼條件下通入氫氣及甲醇為溶劑,可除去氯保護基生成化合物 114,產率 58%;將醇類化合物 114 溶於二氯甲烷,以 PPh₃Br₂ 反應可得到溴化產物 115,產率 70%;最後,以 Dittmer 的方法合成 sultine,將化合物 115 與 Rongalite 及 TBAB 當相轉移催化劑,以 DMF 為溶劑,室溫下攪拌可得到 目標物 116,產率 47%。

再以 dimethyl fumarate 為親雙烯體與 sultine **116** 在 180 ℃ 下進行高溫 封管,可生成雙自由基中間體 **16**,而得到并式的加成產物 **117** (24%)及少 量的異構化產物 sulfolene **118** (3%)。

2002 年, Braverman 曾探討類似的 thienosultine 化合物 58, 同時也得到 異構化產物 sulfolene,如式圖四十三。主要是以 bis-allenyl thiosulfonate 119 進行分子內[3,3]-sigmatropic 重排反應,可得到 sulfene 官能基 (C=SO₂) 的

式圖四十三

中間體 120,此中間體是已知的親電基,可被分子內硫醛基的硫原子攻擊, 而以途徑 (a) 的[2,3]-sigmatropic 重排可生成 sultine 121;若以途徑 (b) 的 [1,3]-sigmatropic 重排可生成 sulfolene 122;有趣的是,也生成含不飽和碳 碳雙鍵的噻吩衍生物 123,而提出自由基反應機制,此自由基與本實驗室 長期致力研究的 non-Kekulé 雙自由基相關 (途徑 (c))。

2.3.2 含噻吩之分子内環化反應

多環體系的類固醇骨架其生化藥理活性是已知的,而含雜環結構的類 似物並不多,如化合物 124,是屬於抗雄性激素 (antiandrogen) 的類固醇 藥物,可治療前列腺失調的症狀 ⁵⁹。

Macco 曾經以路易士酸誘導不對稱環化反應⁶⁰,可合成含噻吩結構的 類固醇,由消旋起始物 125 可得到非鏡像選擇性 97%的四環產物 126a 及 126b。

Chou發表噻吩^{61a}、quinoline^{61b}、isoquinoline^{61c}等雜環結構的 sulfolene, 熱化學條件下可進行分子內 Diels-Alder 環化加成反應,其反應中間體是 o-QDM (式圖四十四):

式圖四十四

1993 年, Takayama 成功合成一具抗徽菌效果的海洋天然物 euryfuran^{26c},其反應機制仍是如先前已經說明過的 Takayama 所提出 furan^{26a,b,f}或 pyrrole-sulfolene^{26e,h}的反應途徑 (p. 20),認為親雙烯體先與雜 環部分進行 Diels-Alder 反應,脫去二氧化硫,再進行第二次 Diels-Alder 反應,最後脫去一分子的親雙烯體 (retro Diels-Alder 反應),其中並不涉及 non-Kekulé 雙自由基的產生,而分子內的環化反應亦可進行^{26d},如式圖四 十五所示:

式圖四十五

我們嘗試合成含不飽和碳鏈的 thienosultine,希望以 non-Kekulé 雙自由基中間體進行分子內環化加成反應,其合成流程如式圖四十六所示:。

以thienosultine **33a** 為衍生化對象,其合成方法同實驗室先前完成的工作^{18a,e},僅氣甲基化合物 **127** 之取得方法改用甲醛環狀三聚物(1,3,5-trioxane)及 2,5-二甲基噻吩在濃鹽酸下迴流而得^{34c},產率 52%,與 在氣甲基甲基醚及四氯化錫催化反應可得相似的結果。再將 sultine **33a** 以 Grignard 試劑處理,可生成羥基亞砜化合物 **128**,產率約 70%;羥基氧化 成醛基衍生物 **128** 的方法依然以 PCC 為氧化劑⁵⁰而得到,產率 60%;最後, 以戊烯及己烯取代的 Grignard 試劑與醛基化合物 **129** 反應可生成以 (*Rs*, *Sc*) 羥基亞砜化合物 **130** 為主的產物,產率為 75% (**130a**)及 45% (**130b**),其 絕對構形可以化合物 **130b** 之單晶 X 光繞射光譜而確定,如圖十二。但是 以 NCS 環化合成 sultine **131**,並無法順利取得,主要是回收起始物。

圖十二:化合物 130b 之 X 光繞射光譜圖

2.3.3 Thieno[3,4-b]pyrazinosultine 的合成

高共軛性的有機高分子有著低能帶間隙 (energy bandgap) 的特性, -般的有機高分子為絕緣體,其能帶間隙遠大於 3.5 eV,由於σ電子無法沿 著主鏈移動,其導電度約在 10⁻⁹ S/cm 以下,必須掺入金屬粉或導電級碳黑 才能賦予導電性。導電高分子之主鏈結構是由交替的單鍵-雙鍵共軛鍵結而 成,其能帶間隙隨著共軛程度增加而逐漸降低,約在 1.0-3.5 eV 之間,具 有半導體材料的主要特徵,此半導體特性使導電高分子可應用在各種半導 體元件之製作 ^{62a}。

其中聚噻吩 (poly(thiophene)) 在這領域發展最迅速,從理論觀點,聚 噻吩已經被認為是導電高分子在非簡併 (nondegenerated) 基態時電荷傳輸 研究的對象;另一方面,本身具備在摻雜 (doping) 與不摻雜時的高穩定 性,可多樣發展在導體材料、電極材料和有機半導體的應用^{62b}。

Poly(2,3-R,R-thieno[3,4-b]pyrazine) 132 是聚噻吩延伸的一種共軛高分 子^{62c,d},一般可用三氯化鐵 (FeCl₃) 將單體聚合而得到。其特性是有較低 的能帶間隙,以母體化合物為例:當 R 為氫取代時,能帶間隙為 0.70 eV 比 poly(benzo[c]thiophene) 133 的 0.80 eV 低;而烷基的取代可在一般的有 機溶劑表現出較佳的溶解度。

132 133

Rasmussen 等人^{62e} 合成一系列的 thieno[3,4-b]pyrazine,以電化學分析 這類分子是產生低能隙的共軛高分子的良好前驅物,可進行不可逆的氧化 反應,生成帶自由基陽離子,噻吩部分並迅速聚合成高分子化合物,比一 般噻吩的氧化電位低,而 pyrazine 部分的可逆還原性與 pKa 值都會影響整 個分子的共軛性。

在此,我們希望合成含雜環的 thieno[3,4-b]pyrazinosultine 134,討論另 一類型的雜原子雙自由基中間體 135 存在的可能性。化合物 134 之合成流 程如式圖四十七所示:

式圖四十七

化合物 136 是以 2,5-二溴噻吩發煙硝酸及發煙硫酸進行硝化反應而 得,產率 56%。而文獻 ^{62e}說明若不使用發煙酸類,則只會得到單一硝基產 物。化合物 137 以錫粉和濃鹽酸處理,可同時還原硝基及去除溴保護基, 而酸性的還原條件會得到酸化的二銨鹽 (137·2H⁺) 沈澱,再以氫氧化鈉水 溶液去質子化,即可得到化合物 137,產率 31%。取化合物 137 及 1,4dibromobutane-2,3-dione 在苯中 Dean-Stark 的裝置下加熱迴流一小時⁶³,可 得縮合產物 138 的鮮黃色固體,產率 81%。

Thieno[3,4-b]pyrazinosultine 134 的合成仍是仿照 Dittmer 的方法,取化 合物 138 與 Rongalite 試劑反應,以粗產物的¹H NMR 光譜可明顯看出有 sultine 的生成,相鄰亞磺酸酯基的兩組亞甲基分別都顯示為 AB quartet: 5.57, 5.20 (2H, ABq, J = 15.6 Hz, CH₂S(O)O<u>CH₂</u>)和 4.55, 4.03 (2H, ABq, J = 16.0 Hz, <u>CH₂S(O)OCH₂</u>),另一主要產物為脫溴的雙甲基產物 139,此結果 與實驗室已發表之工作 quinoxalino-2,3-sultine 141 的合成相似^{18b,e},主產物 為雙甲基化合物 141,如式圖四十八所示。化合物 134 之粗產物以矽膠管 柱分離的過程,sultine 134 幾乎都分解,即使純化所得的少量 sultine,仍 在短時間內分解而變黑,有趣的是此分解後的產物經¹H NMR 分析為化合 物 139 (圖十三),這項結果也和 quinoxalino-2,3-sultine 134 的熱化學結果頗 為類似,如式圖四十九所示:

式圖四十八

式圖四十九

Thieno[3,4-*b*]pyrazinosultine 134 的合成與其結果發現,化合物 138 和 140 與 Rongalite 試劑反應皆可生成 sultine 134 及 141,以及另一雙甲基主 產物 139 和 142,然而 quinoxalino-2,3-sultine 141 的系列中,經熱化學高溫 封管反應,會脫去二氧化硫分子生成 quinoxalino-*o*-QDM 143 再與親雙烯體 進行可得到高產率的 1:1 環化加成產物 144,而與 DMAD (dimethyl acetylenedicarboxylate)反應時,甚至會脫去氫氣分子而生成芳香化產物 145。若 不加入任何淬熄物,以單獨進行熱化學封管時,會得到環丁烯產物 146。 另外,雙甲基產物 142 則是與醇類、硫醇和 1,4-環已二烯等氫提供試劑反 應而得 ^{18b}。

比較兩者 sultine 134 和 141 的相似與相異性,可以歸納出下列幾點: (1) 經與 Rongalite 反應而得的 sultine,都會生成另一主產物—雙甲基衍生 物 139 及 142;(2) 化合物 134 在室溫下不穩定,而 141 在室溫下安定;(3) 化合物 134 和 141 都會脫去二氧化硫再進行抓氫反應,得到雙甲基衍生物; 其中,134 可能形成雙自由基中間體 135,而 141 則生成鄰醌二烯中間體 143。

1994年,Attardo 在還原條件下可加成取代而生成 sultine⁶⁴。我們也嘗 試以還原的方法合成 thieno[3,4-b]pyrazinosultine **134**,將化合物 **138** 溶於 DMF,加入鋅粉、碘化鈉及液態二氧化硫 (-10 °C 以下可由氣態冷凝而 得),而回收不到任何化合物,疑似因還原劑而發生分解,如式圖五十所示:

Thieno[3,4-b]pyrazinosultine 134 在室溫下容易脫除二氧化硫分子並進行抓氫反應,因此其不穩定性是此研究難以克服之主因。

2.3.4 Pyridinosultine 的合成與其熱化學反應

近幾年,科學家著重開發尼古丁藥物,以生物學角度理解尼古丁益處, 期望研發出神經和功能紊亂型疾病的新療法,能作用在神經性尼古丁受體 (neuronal nicotinic receptor,簡稱 nAChR),使藥物在人體體內對神經介質 乙醯膽鹼起自然反應,而調節神經活動。Crooks 等人⁶⁵合成吡啶衍生物, 尤其是含硼氫烷的多環體對於神經性尼古丁受體有強的結合力。

1982年, Ito 等人⁶⁶合成化合物 147 及 148, 藉以研究 pyridino-o-QDM 分子間與分子內 Diels-Alder 環化加成反應,如式圖五十一所示:

1998年, Chou 等人^{61c}合成含氮雜環的 isoquinolino-3-sulfolene 化合物 149及151 並探討分子內 Diels-Alder 環化加成反應 (式圖五十二)。C-3上 的戊烯及已烯取代之 sulfolene 149a、149b 在 210 °C 高溫封管下,會脫除 二氧化硫分子,生成 o-QDM 中間體,並進行分子內 Diels-Alder 環化加成 反應,可分別得到高產率的四環骨架之化合物 150a 及 150b。而 C-1上的 戊烯及已烯取代之 sulfolene 151a、151b,則因為立體障礙,所以需要更高 的反應溫度 (>240 °C),才可脫除二氧化硫而生成 o-QDM,除了可得到分 子內 Diels-Alder 環化加成產物 152a、152b,仍會有[1,5]-氫轉移產物 153a,b 的發生,若將反應溫度升高至 270 °C,則可提高分子內 Diels-Alder 環化加 成產物,並同時降低[1,5]-氫轉移的旁反應發生。

本實驗室已有學長利用 Dittmer 方法合成 pyridinosultine,所得的兩種 幾何異構物 154 及 155 的位向鑑定,可經由二維 NMR 的光譜技術 HMBC (即逆向偵測的 long range H,C-COSY) 而確定⁶⁷。

並將 pyridinosultine 154 和 155 的混合物與過量的親雙烯體進行熱化學 反應,可以得到 1:1 環化加成產物,如式圖五十三所示。Pyridinosultine 154 和 155 會脫去二氧化硫分子,生成 pyridino-o-QDM 中間體 156,再與親雙 烯體進行 Diels-Alder 反應生成環化加成產物。其中,也可得到少量的異構 化產物 pyridinosulfolene 157,然而 sulfolene 亦可以是良好 o-QDM 的前驅 物,但是嘗試以更高的反應溫度 (200 °C) 將 pyridinosulfolene 157 與親雙 烯體 (如 NPM) 進行熱化學封管反應實驗,結果並無法得到環化加成產 物,而只回收起始物,顯然 pyridinosulfolene 157 要脫去二氧化硫分子生成 pyridino-o-QDM 可能需要更高的溫度條件。

式圖五十三

在此,我們利用先前已討論過的方法,也能合成相同之 pyridino-o-QDM 前驅物 155,雖然步驟較為繁瑣,可是唯有這方法才可獲得多樣性的衍生 化 sultine,無論進行分子間或分子內的環化反應,都是值得探討的對象, 化合物 155 的合成如式圖五十四所示:

首先取 ethyl 2-methylnicotinate 進行甲基的溴化反應⁶⁸,利用 NBS 及 AIBN 催化下於四氯化碳中迴流,直到 NBS 消耗完,經初步過濾殘餘固體, 即可再進行第三丁基硫醇的取代,可得硫化物 158,兩步的產率可達 70%。 接著以氫鋁化鋰還原成羥基硫化物 159,及以過碘酸鈉氧化⁵² 成羥基亞砜 化合物 160,此二步皆可得到高產率。而以 NCS 環化得到 sultine 155 的反 應溫度必須達到二氯甲烷的迴流溫度才可反應,產率 46%。

式圖五十四

含不飽和長碳鏈的 pyridinosultine 164 之合成策略與 benzosultine 相關 合成類似,如式圖五十五所示。先將一級醇化合物 159 以氧化劑 PCC 處理, 可得醛基產物 161,產率並不高,約 30-40%;改用過量的二氧化錳⁶⁹ (MnO₂) 也可得醛基產物 161,產率可提高至 76%。再加入製備好的戊烯及已烯取 代之 Grignard 試劑,可得具掌性但無法分離的二級醇立體異構物 162a,b, 接著於甲醇與去離子水混合溶劑下,加入過碘酸鈉氧化得亞砜化合物 163a,b, 粗產率約80%,產物皆為兩個非鏡向異構物,比例約為2:1。最 後以NCS進行環化反應,可分別得化合物164a及164b,產率約60%,兩 個異構物比例為9:1。

將戊烯取代之 pyridinosultine 164a 以異構物的混合方式進行高溫封管,以甲苯為溶劑,在150°C下加熱五小時,溶液由原來的淡黃色變成深 紅色,經管柱分離可得到分子內 Diels-Alder 環化加成反應之產物 166a, 產率 20%,此三環結構的異構物比約1:1,及異構化產物 sulfolene 167a, 產率 53%,由產物可證明中間體 165a 的存在。而將已烯取代之 sultine 164b 置於相同的反應條件,同樣地能脫除二氧化硫分子,生成 o-QDM 中間體 165b,並進行分子內 Diels-Alder 環化加成反應,可得反式異構物為主的化 合物 166b,產率 16%,及二氧化硫與 o-QDM 中間體鉗合之異構化產物 167b,產率 34%(式圖五十六)。

式圖五十六

其中三環產物 166b 為已知化合物。1982 年, Claudi 以氫化條件還原 benzo[f]quinoline⁷⁰,可以得到不同程度之還原產物,而以保留 pyridine 環 的芳香性之化合物 166b 為主。 $(1) H_2, PtO_2$ CF_3COOH $(2) Ac_2O$ $(2) Ac_2O$ $(2) Ac_2O$ (31%) 169 (19%) 166b (47%)

在本研究中,我們合成 Pyridinosultine 164a,b 並對其進行熱化學封管 反應,可脫除二氧化硫氣體,生成 o-QDM 中間體 165a,b,可進行分子內 Diels-Alder 環化加成反應及二氧化硫與雙烯的鉗合反應,分別得到三環加 成物 166a,b 及 sultine 的異構化分子 sulfolene 167a,b,總產率分別為 73% 及 50%,並沒有單離到[1,5]-氫轉移之產物 170。

另外,sulfolene 衍生物是已知很好的 o-QDM 前驅物,如 Chou 等人的 類似研究 (式圖五十二,p.91),其反應溫度要比 sultine 高許多,因此,將 化合物 167 再進行後續的熱化學反應,如式圖五十七所示,先取化合物 167a 溶於沸點較高的氯苯溶劑中 (bp 130 °C) 並進行高溫封管反應,於 200 °C 下反應 5 小時,僅回收起始物 167a,所以升高反應溫度至 230 °C 進行反應, 並分析其產物,除了 Diels-Alder 環化加成的三環產物 166a,產率 93%, 並沒有[1,5]-氫轉移之產物 170a 生成。相同反應條件下的已烯取代 sulfolene 167b,完全轉換且生成 Diels-Alder 環化加成的三環產物 166b。

式圖五十七

由反應性而言, sulfolene 167 需要較 sultine 164 高的溫度才能脫除二 氧化硫,生成 o-QDM 165,且分子內環化反應是唯一路徑,而 sultine 164 則是有分子內環化反應及 sulfolene 的異構化反應競爭。由產物 166 的立體 選擇性發現:來自 sultine 164a 及 sulfolene 167a 所生成的 166a,皆是得到 約1:1 的立體異構物比;而來自 sultine 164b 及 sulfolene 167b 所生成的 166b,幾乎是以一種異構物存在,此異構物應該為反式 (trans) 構形。 若直接將化合物 164a 置於式圖五十七的反應條件中,也僅得到分子內 環化產物 166a,產率為 74%,與 164a 置於 150°C 下反應的總產率相近, 即式圖五十六中的環化加成產物 166a (20%)及 167a (53%),其中 sulfolene 167a 在 230°C 時可以有效地生成 o-QDM 中間體 165a,並進行環化加成得 到 166a (式圖五十八)。有此推知 sultine 164a 在加熱生成 165a 的轉換率約 為 70-80%,若反應溫度高於 150°C 而低於 sulfolene 167a 可反應的溫度 時,可得到約 30%的環化產物 166a 及約 70%的異構化產物 sulfolene 167a; 當反應溫度達 230°C 時,70%的異構化產物 sulfolene 167a 可近乎完全的轉 換而到環化產物 166a。

式圖五十八

第三章 結論

本論文主要是以兩種方法合成含芳香(雜)環之δ-sultine 化合物: (一)合成相鄰的雙鹵化甲基芳香(雜)環衍生物,經 Rongalite 試劑處理; (二)合成羥化亞砜化合物,經 NCS處理,生成 oxosulfonium ion 中間產物, 可得芳香(雜)環之δ-sultine。

成功以方法 (一) 和成 2,5-雙取代噻吩 sultine **33e**,**f**,並與 C₆₀ 加熱反應 生成 1:1 加成為主之化合物,而對於全系列噻吩 sultine **33a**-**f** 改以微波方 式加熱,1:1 及 2:1 加成物之比例 (**57**:**58**) 可由 2-3:1 提升至 3.5-6: 1。另外,釐清化合物 **57a** 的光誘導氧化反應,即 2,5-二甲基噻吩部份與單 態氧 (¹O₂) 生成 thioozonide 中間體,產生新化合物 **62** (sulfine-enone) 及 **63** (endione)。

以方法 (二) 合成含不飽和烯類之長碳鏈 benzosultine 98b-g,並進行 熱化學反應,其中 98d,e 可進行分子內 Diels-Alder 環化加成反應,98d-g 可得到[1,5]氫轉移產物,而全系列之化合物仍以異構化分子 benzosulfolene 105 為主。也以此方法成功應用在合成 pyridinosultine 155 和 164a,b,含不 飽和烯類之戊烯、己烯取代之化合物 164a,b 經高溫封管 (150 °C) 可得分 子內環化加成之三環產物 166a,b 及異構化產物 167a,b,其總產率分別是 73%及 50%。另外,我們也以 pyridinosulfolene 167a,b 在更高溫度反應 (230 °C),可得到高產率之分子內環化加成產物 166a,b,而相同反應條件之 pyridinosultine 164a 雖也得到分子內環化加成之 166a 為唯一產物,但產率 卻無法如 pyridinosulfolene 167a 相近,所以就反應之轉換率而言,需要較 高溫度才能反應的 pyridinosulfolene 是較有利於合成的應用;若就反應溫 度而言,pyridinosultine 較 pyridinosulfolene 低許多 (150 °C vs. 230 °C)。

98

第四章 實驗

4.1 一般敘述

- 氢核磁共振光譜及碳核磁共振光譜之測定係使用 Varian Unity 300 MHz 型及 Bruker DRX300 MHz 型核磁共振光譜儀。所使用之溶劑為氘-氯仿 (CDCl₃),化學位移是以 7.24 ppm 或以四甲基矽烷 (tetramethyl silane, 簡稱 TMS) 0 ppm 為內標準。化學位移單位為 ppm,偶合常數單位為 Hz。氫核磁共振光譜:s表單峰 (singlet),d表二重峰 (doublet),t表三 重峰 (triplet),q表四重峰 (quartet),m表多重峰 (multiplet),br表寬峰 (broad peak)。碳核磁共振光譜 (BB-decoupling) 以及 DEPT (90) 和 DEPT (135) 使用 75.45 MHz:CH₃表一級碳,CH₂表二級碳,CH表三 級碳,Cq表四級碳。
- 2. C₆₀衍生化之¹H NMR 光譜及¹³C NMR 光譜係使用國科會新竹貴儀中心 Bruker DMX600 MHz 或 Varian AS500 MHz 核磁共振光譜測定。
- 3. 低解析質譜係以交通大學 TRIO-2000 型測定,高解析質譜係以國立中央大學貴重儀器中心 JMS-700 型或國立中興大學貴重儀器中心 Finnigan/Thermo Quest MAT 型。
- 4. 元素分析儀係使用 Heraeus CHN-0 Rapid 型。
- 5. 微波加熱反應係使用 CEM Microwave Technology Ltd. 所生產的 MARS-X 型反應器。

- 6. 熔點測定係使用 Yanaco MP-500 熔點測定儀,溫度未經校正。
- 7. 減壓濃縮係使用 Büchi Rotavapor R-100 型旋轉濃縮儀。
- 8. 色層分析法 (a) 薄層分析 (TLC) 係使用 Merck Art. 13973
 PSC-Fertigplatten Kieselgel 矽膠片。(b) 重力式管柱色層分析係使用 Merck Art. 9358 Kieselgel 60 (230~400 Mesh ASTM) 及 Merck Art. 7734
 Kieselgel 60 (60~230 Mesh ASTM) 型矽膠為吸附劑。
- 9. 使用藥品為 Merck、Aldrich、TCI、Lancaster 等公司出品之試藥及藥品。

ATT ILLER

4.2 實驗步驟及光譜資料

第一部份: Non-Kekulé 雙自由基衍生物之研究 (thienosultines 與 C₆₀之加成反應)

Thienosultines 33e-f 之合成

2,5-Bis(methylthio)thiophene (53e)

H₃CS SCH₃

參考文獻³³之方法。取2,5-二溴噻吩 (5.00克,20.7毫莫耳) 溶於乙醚 (100毫升),於-78°C下逐滴加入正丁基鋰 (2.5 M之正已烷溶液,43.4毫莫 耳),攪拌30分鐘後,再逐滴加入二甲基二硫化物 (4.28克,45.5毫莫耳) 的 乙醚 (20毫升) 溶液,-78°C下持續攪拌1小時後,回至室溫並加入冰飽和 氯化銨水溶液 (50毫升) 終止反應,分離有機及水層,水層再以乙醚 (3 × 30毫升) 萃取三次,收集有機層,以硫酸鎂乾燥後,過濾並濃縮有機層, 所得之粗產物以正已烷為沖提液進行管柱層析,得化合物53e (2.89克),產 率79%。

Colorless oil; $R_f = 0.68$ (hexane); ¹H NMR (CDCl₃, 300 MHz,) δ 6.90 (2H, s), 2.48 (6H, s); ¹³C NMR (CDCl₃, 75.4 MHz,) δ 139.1 (Cq), 131.0 (CH), 21.9 (CH₃); MS (EI) *m/z* 178/177/176 (M⁺, 9/5/95), 161 (M⁺ – CH₃, 100), 114 (M⁺ – CH₃ – SCH₃, 42), 69 (42); HRMS *m/z* calcd for C₆H₈³²S₃ 175.9789, found 175.9788.

2,5-Bis(phenylthio)thiophene (53f)

PhS SPh

參考化合物53e之合成步驟。取2,5-二溴噻吩 (5.00克,20.7毫莫耳) 溶 於乙醚 (100毫升),於-78 °C下逐滴加入正丁基鋰 (2.5 M之正已烷溶液, 43.4毫莫耳),攪拌30分鐘後,再逐滴加入二苯基二硫化物 (9.48克,43.4 毫莫耳)的乙醚 (20毫升)溶液,-78 °C下持續攪拌1小時後,回至室溫並 加入冰飽和氯化銨水溶液 (50毫升) 終止反應,分離有機及水層,水層再 以乙醚 (3×30毫升) 萃取三次,收集有機層,以硫酸鎂乾燥後,過濾並濃 縮有機層,所得之粗產物以正已烷為沖提液進行管柱層析,得化合物53f (5.79克),產率93%。

Colorless solid; mp 42–43 °C (hexane); $R_f = 0.33$ (hexane); ¹H NMR (CDCl₃, 300 MHz) δ 7.30–7.18 (10H, m), 7.16 (2H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 137.4 (Cq), 136.9 (Cq), 135.5 (CH), 129.1 (CH), 128.1 (CH), 126.7 (CH); MS (EI) *m/z* 303/302/301/300 (M⁺, 3/16/24/100), 299 (M⁺ – 1, 23), 190 (78); HRMS *m/z* calcd for C₁₆H₁₂S₃ 300.0103, found 300.0096; Anal. Calcd for C₁₆H₁₂S₃: C, 63.96; H, 4.03. Found: C, 63.73; H, 4.17.

3,4-Bis(chloromethyl)-2,5-bis(methylthio)thiophene (54e)

參考文獻^{34b}之方法。取濃鹽酸 (12 M, 20毫升) 加入化合物53e (2.00 克,11.3毫莫耳) 及37%甲醛水溶液 (1.70克,56.7毫莫耳) 之混合溶液中, 室溫攪拌8小時後,將反應混合物倒入去離子水中 (30毫升),以二氯甲烷 (3 × 20毫升) 萃取三次,收集有機層,再以去離子水 (2×30毫升) 洗二次, 硫酸鎂乾燥後,過濾並濃縮有機層,得化合物54e (2.71克),粗產率87%。(此 化合物無法經矽膠管柱易分解)

A colorless solid after recrystallization from hexane; mp 75.5–77 °C (hexane) (lit⁷¹ 78–78.5 °C); $R_f = 0.75$ (hexane:EtOAc = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 4.77 (4H, s), 2.47 (6H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 139.2 (Cq), 138.9 (Cq), 37.2 (CH₂), 21.7 (CH₃); MS (EI) *m/z* 276/275/274/273 (M⁺, 7/6/30/15), 272 (M⁺ – 1, 61), 239 (30), 237 (M⁺ – Cl, 100), 186 (38), 69 (57); HRMS *m/z* calcd for C₈H₁₀³⁵Cl₂S₃ 271.9324, found 271.9318.

5,7-Bis(methylthio)-1,4-dihydro-1H-3 λ^4 -thieno[3,4-d][2,3]oxathiin-3-oxide, Sultine (33e)

取化合物54e (2.86克, 10.5毫莫耳)、Rongalite (3.33克, 20.9毫莫耳)及 TBAB (1.71克, 5.24毫莫耳)為相轉移催化劑,以 DMF (50毫升)當溶劑, 室溫攪拌24小時,加入去離子水 (40毫升)稀釋,以二氯甲烷 (3×50毫升) 萃取三次,硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷: 乙酸乙酯 = 6:1為沖提液進行管柱層析,得化合物33e (0.68克),產率24%。

A white solid after recrystallization from a solvent of CH₂Cl₂ and hexane: mp 71–73 °C (CH₂Cl₂/hexane); $R_f = 0.45$ (hexane:EtOAc = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 5.19, 5.10 (2H, ABq, J = 14.7 Hz), 3.91, 3.81 (2H, A'B'q, J = 15.9 Hz), 2.44 (3H, s), 2.42 (3H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 137.1 (Cq), 132.8 (Cq), 132.0 (Cq), 126.8 (Cq), 58.8 (CH₂), 51.1 (CH₂), 21.3 (CH₃), 21.3 (CH₃); MS (EI) *m*/*z* 268/267/266 (M⁺, 3/5/13), 265 (M⁺ – 1, 22), 202 (M⁺ SO₂, 32), 201 (40), 187 (100); HRMS *m/z* calcd for C₈H₁₀O₂S₄ 265.9565, found 265.9577; Anal. Calcd for C₈H₁₀O₂S₄: C, 36.07; H, 3.78. Found: C, 36.42; H, 4.20.

3,4-Bis(chloromethyl)-2,5-bis(phenylthio)thiophene (54f) and 5,7-Bis(phenylthio)-1,4-dihydro-1*H*- $3\lambda^4$ -thieno[3,4-*d*][2,3]oxathiin-3-oxide, Sultine (33f)

ALL DATE

參考文獻^{34b}之方法。取化合物**53f**(200克,6.66毫莫耳)和氯化鋅(1.4 克,10毫莫耳)溶於氣仿(20毫升)中,室溫下逐滴加入氯甲基甲基醚(1.6 克,20毫莫耳)且反應溶液轉為暗綠色,氮氯下持續攪拌3小時,將反應混 合物倒入去離子水中(20毫升)及加入二氯甲烷(40毫升),攪拌10分鐘, 分離有機及水層,再以去離子水(20毫升)洗有機層,以硫酸鎂乾燥後, 過濾並濃縮有機層,所得之粗產物**54f**(2.67克)為橘色黏稠液,未經純化, 粗產物溶於DMF(50毫升)並加入Rongalite(5.15克,33.5毫莫耳)及TBAB (1.08克,3.45毫莫耳)為相轉移催化劑,室溫攪拌10小時,加入去離子水(40 毫升)稀釋,以二氯甲烷(3×20毫升)萃取三次,硫酸鎂乾燥後,過濾並 濃縮有機層,所得之粗產物以正已烷:乙酸乙酯 = 10:1為沖提液進行管 柱層析,得化合物**33f**(0.29克),兩步總產率11%。

Data of 54f. Colorless liquid; $R_f = 0.3$ (hexane); ¹H NMR (CDCl₃, 300 MHz) δ 7.32–7.20 (10H, m), 4.85 (4H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ

104

141.5 (Cq), 136.6 (Cq), 135.7 (Cq), 129.3 (CH), 128.9 (CH), 127.3 (CH), 37.1 (CH₂); MS (EI) *m/z* 398/399/400 (M⁺, 87/76/13), 396 (M⁺ – 1, 100), 348 (37), 231 (51), 216 (69), 215 (81), 203 (61), 184 (43), 171 (40), 51 (50), 50 (74), 38 (55); HRMS *m/z* calcd for $C_{18}H_{14}^{35}Cl_2S_3$ 395.9637, found 395.9625.

Data of 33f. A white solid after recrystallization from a solvent of CH₂Cl₂ and hexane; mp 71–72 °C (CH₂Cl₂/hexane); $R_f = 0.65$ (hexane:EtOAc = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.30–7.18 (10H, m), 5.17, 5.10 (2H, ABq, J =15.0 Hz), 3.87, 3.81 (2H, A'B'q, J = 16.4 Hz); ¹³C NMR (CDCl₃, 75.4 MHz) δ 136.0 (Cq), 135.7 (Cq), 135.5 (Cq), 134.2 (Cq), 130.6 (2Cq), 129.5 (CH), 129.4 (CH), 128.0 (CH), 127.7 (CH), 127.0 (CH), 126.9 (CH), 58.6 (CH₂), 51.0 (CH₂); MS (EI) m/z 390/391 (M⁺, 2/14), 326 (M⁺ – SO₂, 80), 325 (M⁺ – 1 – SO₂, 100), 216 (38), 215 (41), 184 (67), 77 (40), 51 (71); HRMS m/z for C₁₈H₁₄O₂S₄ 389.9878, found 389.9885; Anal. Calcd for C₁₈H₁₄O₂S₄: C, 55.36; H, 3.61. Found: C, 55.19; H, 3.73.

Thienosultines 33a-f 與 C60 之加成反應

一般步驟:

取C₆₀ (50毫克,0.069毫莫耳)與thienosultine (1.5 當量之**33a-f**)溶於 鄰二氯苯 (20毫升),於氮氣下迴流或以微波照射 (900瓦,≤180°C),反應 後為棕色溶液,以減壓除去溶劑,所得之粗產物以環已烷:甲苯 = 4:1 為沖提液進行管柱層析,反應條件及產率整理於表一。

1',3'-Bis(methylthio)-4',5',6',7'-tetrahydrobenzo[*c*]thieno-[5',6':1,2][60]fullerene (57e)

A brown solid; mp > 495 °C; $R_f = 0.45$ (cyclohexane); ¹H NMR (25 °C, 500 MHz, 1:2 CDCl₃/CS₂) δ 4.62 (4H, br s), 2.46 (6H, s); ¹H NMR (-25 °C, 500 MHz, 1:2 CDCl₃/CS₂) δ 4.74, 4.49 (4H, ABq, J = 14.5 Hz), 2.46 (6H, s); ¹³C NMR (70 °C, 150 MHz, *o*-C₆D₄Cl₂) δ 157.3, 148.5, 147.3, 147.0, 146.5, 146.2, 146.2, 146.0, 145.5, 143.9, 143.4, 142.9, 142.4, 141.1, 136.2, 135.8, 135.0, 66.5 (sp³ C of C₆₀), 41.8 (CH₂), 23.2 (CH₃); FAB-MS (MNB) *m*/*z* 923 (M + H⁺, 3), 614 (32), 462 (100), 444 (26); UV (CHCl₃) λ_{max} , nm (log ε) 435 (3.67), 310 (4.80), 256 (5.31); HRMS (FAB+) calcd for C₆₈H₁₀S₃ 921.9946, found 922.0023.

Adduct (58e)

A brown solid; $R_f = 0.41$ (cyclohexane: toluene = 9:1); FAB-MS (MNB) m/z 1124 (M + H⁺, 3), 1123 (M⁺, 3) 720 (18), 442 (25), 308 (100); HRMS (FAB+) calcd for C₇₆H₂₀S₆ 1123.9892, found 1123.9897. 1',3'-Bis(phenylthio)-4',5',6',7'-tetrahydrobenzo[*c*]thieno-[5',6':1,2][60]fullerene (57f)

A brown solid; mp > 495 °C; $R_f = 0.35$ (cyclohexane); ¹H NMR (40 °C, 600 MHz, 1:2 CDCl₃/CS₂) δ 7.32–7.30 (4H, m), 7.17–7.15 (4H, m), 7.10–7.09 (2H, m), 4.66 (4H, br s); ¹H NMR (–30 °C, 600 MHz, 1:2 CDCl₃/CS₂) δ 7.28–7.24 (4H, m), 7.19–7.16 (4H, m), 7.11–7.10 (2H, m), 4.78, 4.52 (4H, ABq, J = 14.4 Hz); ¹³C NMR (40 °C, 150 MHz, 1:2 CDCl₃/CS₂) δ 156.0, 147.5, 146.3, 146.1, 145.6, 145.4, 145.3, 144.9, 144.5, 144.4, 143.0, 142.4, 141.9, 141.9, 141.4, 140.1, 136.8, 135.2, 131.2, 129.0 (CH), 128.3 (CH), 126.7 (CH), 65.0 (sp³ C of C₆₀), 40.7 (CH₂); FAB-MS (MNB) m/z 1047 (M + H⁺, 5), 1046 (M⁺, 5), 766 (5), 720 (20), 613 (40), 460 (100); UV (CHCl₃) λ_{max} , nm (log ε) 435 (3.67), 310 (4.80), 256 (5.31); HRMS (FAB+) calcd for C₇₈H₁₄S₃ 1046.0259, found 1046.0404.

Adduct (58f)

A brown solid; $R_f = 0.28$ (cyclohexane:toluene = 9:1); FAB-MS (MNB)

m/z 1373 (M + H⁺, 5), 1372 (M⁺, 5), 721 (32), 442 (37), 308 (100); HRMS (FAB+) calcd for C₉₆H₂₈S₆ 1372.0518, found 1372.0522.

製備化合物 (62) 和 (63)

62

63

將化合物57a (25毫克,0.029毫莫耳) 溶於二硫化碳 (15毫升),室溫及 飽和空氣下以室內光照射,並以TLC追蹤直到起始物完全反應 (約三天), 移除溶劑,所得之粗產物以環已烷:氯仿 = 3-1:2為沖提液進行管柱層析, 得化合物62 (7.3毫克),產率28%,及化合物63 (11.6毫克),產率45%。

Data of (62). A brown solid, mp > 495 °C; $R_f = 0.3$ (cyclohexane: CHCl₃ = 1:1); FT-IR (KBr, cm⁻¹) 1700 (C=O), 1529 (C=C); ¹H NMR (25 °C, 600 MHz, CDCl₃) δ 4.56 (2H, br s), 4.45 (2H, br s), 2.71 (3H, s), 2.53 (3H, s); ¹³C NMR (25 °C, 150 MHz, CDCl₃) δ 197.7 (C=O), 193.0 (C=S \rightarrow O), 155.5, 155.4, 147.7 (2C), 146.6 (2C), 146.3 (2C), 145.8, 145.6 (3C), 145.5 (2C), 145.2, 144.7 (2C), 143.2, 142.7, 142.6, 142.3, 142.2, 142.1 (2C), 141.7 (2C), 140.2 (2C), 137.9, 135.8, 135.7, 65.8 (sp³ C of C₆₀), 65.5 (sp³ C of C₆₀), 49.1 (CH₂), 42.6 (CH₂), 30.9 (CH₃), 30.3 (CH₃); FAB-MS (MNB) *m*/*z* 891 (M + H⁺, 2), 890 (M⁺, 3), 889 (M⁺ - 1, 2), 721 (100); HRMS (FAB+) calcd for C₆₈H₁₀O₂S 890.0402, found 890.0382.

Data of (63). A brown solid; mp > 495 °C; $R_f = 0.25$ (cyclohexane:CHCl₃ = 2:3); FT-IR (KBr, cm⁻¹) 1685 (C=O); ¹H NMR (25 °C, 600 MHz, CDCl₃) δ
4.31 (4H, s), 2.63 (6H, s); ¹³C NMR (25 °C, 150 MHz, CDCl₃) δ 200.6 (C=O), 155.2, 147.5, 146.6, 146.4, 145.7, 145.7, 145.6, 145.2, 144.9, 144.7, 143.2, 142.7, 142.3, 142.1, 141.7, 140.3, 135.7, 65.3 (sp³ C of C₆₀), 41.7 (CH₂), 29.2 (CH₃); FAB-MS (NMB) 859 (M + H⁺, 2), 858 (M⁺, 2), 720 (100); HRMS (FAB+) calcd for C₆₈H₁₀O₂ 858.0681, found 858.0712.

2,5-雙取代噻吩對單態氧反應性之控制實驗:

使用的化合物及儀器如下:

53a: 2,5-dimethylthiophene

UV(CH₃CN) λmax, nm (log ε) 236 (3.81)

- **53b:** 2,5-dichlorothiophene UV(CH₃CN) λ max, nm (log ε) 251 (3.82)
- **53c:** 2-methyl-5-phenylthiophene UV(CH₃CN) λ max, nm (log ε) 292 (4.21)
- **53d:** 2,5-diphenylthiophene UV(CH₃CN) λ max, nm (log ε) 325 (3.38)
- **53e:** 2,5-bis(methylthio)thiophene UV(CH₃CN) λmax, nm (log ε) 294 (4.04)
- 53f: 2,5-bis(phenylthio)thiophene

UV(CH₃CN) λmax, nm (log ε) 301 (3.98), 247 (4.42)

- C₆₀: [60]fullerene
- 57d: 2,5-diphenylthieno[60]fullerene
- 光源:60W 鎢絲燈。
- **反應瓶:NMR** 試管 (直徑 0.5 cm)。

氧氟鋼瓶:使用 19 號鋼針以 bubble 方式通入反應瓶中,反應瓶不加蓋或 血清塞。

實驗方法:

- (1) 取7個4mL 樣本瓶,分別裝入0.04mmol 的化合物53a-f 於編號1-6 瓶中,7號瓶則裝入0.04mmol 化合物53a及1mg化合物57d(約 2.5%),溶於1mL CDCl₃,另外取3mgC₆₀及7mL CDCl₃置入20mL 樣本瓶中,以超音波振盪,靜置,分別取1mL 淡紫色澄清液加入編 號1-6 樣本瓶中,經均勻混和後,分別加入編號1-7的NMR 試管中, 開放環境下以60W 鎢絲燈近距離照射,不同時間以NMR追蹤。
- (2) 配置如(1)的編號1的試管,以 bubble 方式通入氧氣,開放環境下以 60W 鎬絲燈近距離照射,不同時間以 NMR 追蹤。結果如表四所示:

1896

取化合物1 (4.06克,24.1毫莫耳) 溶於無水四氫呋喃 (100毫升),於冰 浴下將Grignard試劑 (29毫莫耳) 逐滴加入,攪拌1小時後,以飽和氯化銨 水溶液終止反應,以二氯甲烷 (3 × 50毫升) 萃取3次,收集有機層,以硫 酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷:丙酮 = 3:2 為沖提液進行管柱層析,得化合物81 (4.91克),產率90%。

Clear crystal after recrystallization from a solvent of CH₂Cl₂ and hexane;

m.p. 96–98 °C (CH₂Cl₂/hexane); $R_f = 0.2$ (hexane:acetone = 3:2); ¹H NMR (CDCl₃, 300 MHz) δ 7.44–7.32 (4H, m), 4.72, 4.46 (2H, ABq, J = 12.0 Hz), 4.07, 3.78 (2H, A'B'q, J = 12.6 Hz), 1.40 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 141.8 (Cq), 131.2 (CH), 131.1 (CH), 129.9 (Cq), 128.8 (2CH), 62.5 (CH₂), 54.2 (Cq), 48.6 (CH₂), 23.0 (CH₃); MS (EI) *m*/*z* 227 (M⁺ + 1, 0.1), 170 (M⁺ + 1 – *t*Bu, 11), 152 (M⁺ + 1 – *t*Bu – OH, 58), 91 (59), 77 (64), 57 (100); HRMS *m*/*z* calcd for C₁₂H₁₈O₂S 226.1028, found 226.1042; Anal. Calcd for C₁₂H₁₈O₂S: C, 63.68; H, 8.02. Found: C, 63.47; H, 7.85.

取化合物81 (0.50克,2.21毫莫耳)溶於無水四氫呋喃 (20毫升),於-78 °C下逐滴加入LDA (5.53毫莫耳),攪拌30分鐘後,再加入5-溴-1-戊烯 (0.50 克,3.32毫莫耳)並回室溫攪拌2小時後,以飽和氯化銨水溶液終止反應, 以二氯甲烷 (3 × 20毫升)萃取3次,收集有機層,以硫酸鎂乾燥後,過濾 並濃縮有機層,所得之粗產物以正已烷:丙酮 =4:1為沖提液進行管柱層 析,得化合物86a (66毫克)和86b (462毫克),產率77%。 方法 (2):

取化合物81 (0.50克,2.21毫莫耳) 溶於無水四氫呋喃 (20毫升),於0 ℃ 下逐滴加入2.21 M的CH₃Li (2.5毫升,5.53毫莫耳),攪拌30分鐘後,再加入 5-溴-1-戊烯 (0.50克,3.32毫莫耳) 並回室溫攪拌2小時後,以飽和氯化銨水溶液終止反應,以二氯甲烷 (3 × 20毫升) 萃取3次,收集有機層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷:丙酮 = 4:1 為沖提液進行管柱層析,得化合物86a (66毫克) 和86b (478毫克),產率80%。

Data of 86a. Light yellow oil; $R_f = 0.38$ (hexane:acetone = 3:2); ¹H NMR (CDCl₃, 300 MHz) δ 7.54–7.51 (1H, m), 7.42–7.26 (3H, m), 5.73–5.63 (1H, m), 5.01–4.98 (2H, m), 4.77, 4.43 (2H, ABq, J = 11.7 Hz), 4.45 (1H, t), 3.42 (1H, br. s), 2.13–1.93 (4H, m), 1.39 (9H, s), 1.39–1.23 (2H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 141.7 (Cq), 137.6 (CH), 133.5 (Cq), 130.7 (CH), 129.0 (CH), 128.3 (CH), 127.7 (CH), 115.5 (CH₂), 62.7 (CH₂), 58.7 (CH), 55.9 (Cq), 33.0 (CH₂), 29.2 (CH₂), 26.0 (CH₂), 24.4 (CH₃); MS (EI) *m*/*z* 295 (M⁺ + 1, 0.23), 220(M⁺ – *t*Bu – OH, 0.79), 189 (M⁺ – SO*t*Bu, 15), 171 (M⁺ – 1 – SO*t*Bu – OH, 69), 129 (100).

Data of 86b. Light yellow oil; $R_f = 0.33$ (hexane:acetone = 3:2); ¹H NMR (CDCl₃, 300 MHz) δ 7.47–7.27 (4H, m), 5.77–5.63 (1H, m), 5.00–4.88 (2H, m), 4.79, 4.72 (2H, ABq, J = 12.6 Hz), 4.22 (1H, br. s), 2.33–1.82 (4H, m), 1.45–1.23 (2H, m), 1.14 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 138.6 (Cq), 137.9 (CH), 136.2 (Cq), 128.9 (CH), 128.3 (CH), 127.9 (CH), 127.5 (CH), 114.8 (CH₂), 62.3 (CH₂), 58.8 (Cq), 55.6 (CH), 33.5 (CH₂), 31.3 (CH₂), 25.2 (CH₂), 23.6 (CH₃); MS (EI) *m*/*z* 295 (M⁺ + 1, 0.21), 220(M⁺ – *t*Bu – OH, 0.34), 189 (M⁺ – SO*t*Bu, 6), 171 (M⁺ – 1 – SO*t*Bu – OH, 53), 129 (100); HRMS *m*/*z* calcd for C₁₇H₂₆O₂S 294.1653, found 294.1654.

4-(4-Pentenyl)-3,4-dihydro-1*H*-2, $3\lambda^4$ -benzoxathiin-3-one (87)

取化合物86b (200毫克,0.65毫莫耳) 溶於二氯甲烷 (10毫升),室溫下 加入NCS (95毫克,0.71毫莫耳),攪拌1小時後,倒入5% Na₂SO₃(aq)終止反 應,以二氯甲烷萃取,收集有機層,以硫酸鎂乾燥後,過濾並濃縮有機層, 所得之粗產物以正已烷:丙酮 = 10:1為沖提液進行管柱層析,得化合物 87 (43毫克),產率28%。(其立體化學未決定)

Color- less oil; $R_f = 0.4$ (hexane:acetone = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.59–7.56 (1H, m), 7.40–7.29 (3H, m), 5.85–5.71 (1H, m), 5.34 (1H, dd, J = 8.6, 6.0 Hz), 5.07–4.93 (2H, m), 4.81, 4.76 (2H, ABq, J = 12.5 Hz), 2.30–2.95 (4H, m), 2.95–1.40 (2H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 140.4 (Cq), 138.1 (CH), 128.9 (CH), 128.8 (CH), 128.3 (CH), 127.8 (Cq), 127.2 (CH), 115.1 (CH₂), 63.2 (CH₂), 58.8 (CH), 38.5 (CH₂), 33.1 (CH₂), 26.4 (CH₂); (MS (EI) m/z 236 (M⁺, 5), 172 (M⁺ – SO₂, 10), 171 (M⁺ – 1 – SO₂, 54), 128 (86), 91 (100); HRMS m/z calcd for C₁₃H₁₆O₂S 236.0871, found 236.0869.

2-[(*tert*-Butylsulfinyl)methyl]benzaldehyde (93)

取化合物81 (4.91克,21.7毫莫耳) 溶於無水二氯甲烷 (50毫升),室溫 下加入PCC (7克,32.6毫莫耳) 和矽藻土 (7克),攪拌1小時後,過濾固體 並濃縮殘留液,所得之粗產物以正已烷:丙酮 = 3:2為沖提液進行管柱層 析,得化合物93(4.12克),產率85%。

Light yellow solid; m.p. 91–92 °C (CH₂Cl₂/hexane); $R_f = 0.38$ (hexane:acetone = 3:2); ¹H NMR (CDCl₃, 300 MHz) δ 10.11 (1H, s), 7.86–7.84 (1H, m), 7.63–7.55 (2H, m), 7.50–7.48 (1H, m), 4.97, 3.59 (2H, ABq, J = 11.7Hz), 1.41 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 193.6 (CH), 135.8 (CH), 133.8 (CH), 133.8 (2Cq), 133.7 (CH), 54.3 (Cq), 50.2 (CH₂), 23.1 (CH₃); MS (EI) m/z 225 (M⁺ + 1, 0.6), 224 (M⁺, 0.4), 168 (M⁺ + 1 – tBu, 22), 150 (M⁺ + 1 – tBu – OH, 27), 91 (51), 57 (100); HRMS m/z calcd for C₁₂H₁₆O₂S 224.0871, found 224.0871.

取2-溴甲基苯乙腈 (3克,15.3毫莫耳) 溶於乙醇 (50毫升),室溫下加 入第三丁基硫醇 (15克,168毫莫耳) 並逐滴加入40%氫氧化鈉水溶液,攪 拌30分鐘後,倒入100毫升去離子水稀釋,以乙酸乙酯 (3×50毫升) 萃取3 次,收集有機層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以 減壓蒸餾得化合物94 (3.08克),產率98%。

Colorless liquid; b.p. 106 °C at 110 mtorr; $R_f = 0.35$ (hexane:EtOAc = 10:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.62 (1H, d, J = 7.8 Hz), 7.57–7.50 (2H, m), 7.35–7.30 (1H, m), 3.96 (2H, s), 1.39 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 142.5 (Cq), 132.9 (CH), 132.8 (CH), 130.3 (CH), 127.3 (CH), 117.6 (Cq),

112.5 (Cq), 43.6 (Cq), 31.4 (CH₂), 30.8 (CH₃); MS (EI) m/z 207/206/205 (M⁺, 2/7/40), 190 (M⁺ – CH₃, 100), 150 (82), 117 (M⁺ + 1 – StBu, 84), 116 (M⁺ – StBu, 64), 115 (83), 90 (M⁺ – StBu – CN, 26), 88 (40), 56 (95); HRMS m/z calcd for C₁₂H₁₅NS 205.0925, found 205.0925.

2-[(tert-Butylsulfanyl)methyl]benzaldehyde (95)

取化合物94 (3.86克,18.8毫莫耳) 溶於無水二氯甲烷 (80毫升),室温 下逐滴加入1.0 M DIBAL-H之正已烷溶液 (21毫升),攪拌30分鐘後,冰浴 下小心加入30毫升的3N鹽酸水溶液終止反應,攪拌約15分鐘後,分離水層 及有機層,水層再以二氯甲烷 (2×20毫升) 萃取2次,收集有機層,以硫 酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以減壓蒸餾得化合物95 (3.27克),產率83%。

Colorless liquid; b.p. 114 °C at 130 mtorr; $R_f = 0.4$ (hexane:EtOAc = 10:1); ¹H NMR (CDCl₃, 300 MHz) δ 10.34 (1H, s), 7.86–7.83 (1H, m), 7.55–7.49 (1H, m), 7.45–7.38 (2H, m), 4.18 (2H, s), 1.40 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 191.1 (CH), 140.5 (2Cq), 133.8 (CH), 131.4 (2CH), 127.6 (CH), 43.6 (Cq), 30.7 (CH₃), 29.6 (CH₂); MS (EI) *m*/*z* 208 (M⁺, 6), 190 (11), 151 (96), 118 (M⁺ – 1 – S*t*Bu, 100); HRMS *m*/*z* calcd for C₁₂H₁₆OS 208.0922, found 208.0921.

1-2-[(tert-Butylsulfanyl)methyl]phenyl-2-propen-1-ol (96a)

取化合物95(208毫克,1毫莫耳)溶於無水四氫呋喃(5毫升),於冰浴 下將Grignard試劑(2毫莫耳)逐滴加入,攪拌1小時後,以飽和氯化銨水溶 液終止反應,以乙酸乙酯(3×10毫升)萃取3次,收集有機層,以硫酸鎂 乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷:乙酸乙酯 = 20:1 為沖提液進行管柱層析,得化合物96a(197毫克),產率91%。

Colorless oil; $R_f = 0.3$ (hexane:EtOAc = 10:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.45-7.40 (1H, m), 7.34-7.20 (3H, m), 6.18-6.06 (1H, m), 5.65-5.58 (1H, m), 5.45 (1H, d, J = 17.0 Hz), 5.27 (1H, d, J = 10.6 Hz), 3.88 (2H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 141.1 (Cq), 139.4 (CH), 135.0 (Cq), 130.8 (CH), 128.0 (CH), 127.8 (CH), 127.7 (CH), 114.8 (CH₂), 71.2 (CH), 43.5 (Cq), 30.7 (CH₃), 25.6 (CH₂); MS (EI) m/z 219 (M⁺ – OH, 3), 146 (61), 145 (100), 131 (52); HRMS m/z calcd for C₁₄H₂₀SO 236.1235, found (送測中).

1-2-[(tert-Butylsulfanyl)methyl]phenyl-3-buten-1-ol (96b)

取化合物95(208毫克,1毫莫耳)溶於無水四氫呋喃(5毫升),於冰浴

下將Grignard試劑 (2毫莫耳) 逐滴加入,攪拌1小時後,以飽和氯化銨水溶 液終止反應,以乙酸乙酯 (3 × 10毫升) 萃取3次,收集有機層,以硫酸鎂 乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷:乙酸乙酯 = 10:1 為沖提液進行管柱層析,得化合物96b (229毫克),產率91%。

Colorless liquid; $R_f = 0.48$ (hexane:EtOAc = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.52-7.49 (1H, m), 7.31-7.18 (3H, m), 5.96-5.82 (1H, m), 5.23-5.09 (3H, m), 3.84, 3.81 (2H, ABq, J = 11.1 Hz), 2.26-2.58 (2H, m), 2.40 (1H, br. s), 1.40 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 142.3 (Cq), 135.1 (CH), 134.3 (Cq), 130.6 (CH), 127.8 (CH), 127.6 (CH), 126.3 (CH), 117.9 (CH₂), 69.3 (CH), 43.3 (Cq), 42.5 (CH₂), 30.6 (CH₃), 30.6 (CH₃); MS (EI) m/z 249 (M⁺ - 1, 7), 233 (M⁺ - OH, 2), 232 (M⁺ - 1 - OH, 5), 175 (M⁺ - 1 - OH - *t*Bu, 45), 161 (M⁺ - S*t*Bu, 36), 143 (M⁺ - 1 - OH - S*t*Bu, 88), 128 (65), 119 (100); HRMS m/z calcd for C₁₅H₂₂OS 250.1391, found (送測中).

1-2-[(tert-Butylsulfanyl)methyl]phenyl-4-penten-1-ol (96c)

取化合物95 (400毫克,1.92毫莫耳) 溶於無水四氫呋喃 (10毫升),於 冰浴下將製備好的Grignard試劑 (3.84毫莫耳) 逐滴加入,攪拌1小時後,以 飽和氯化銨水溶液終止反應,以乙酸乙酯 (3 × 10毫升) 萃取3次,收集有 機層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷:乙 酸乙酯 = 10:1為沖提液進行管柱層析,得化合物96c (284毫克),產率56%。

Colorless liquid; $R_f = 0.23$ (hexane:EtOAc = 10:1); ¹H NMR (CDCl₃, 300

MHz) δ 7.53–7.46 (1H, m), 7.34–7.17 (3H, m), 5.96–5.81 (1H, m), 5.15–4.95 (3H, m), 3.85, 3.78 (2H, ABq, J = 10.9 Hz), 2.35–2.10 (2H, m), 2.10–1.80 (2H, m), 1.40 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 143.0 (Cq), 138.3 (CH), 134.3 (Cq), 130.6 (CH), 127.9 (CH), 127.6 (CH), 127.3 (CH), 115.0 (CH₂), 69.2 (CH), 43.4 (Cq), 36.5 (CH₂), 30.7 (CH₃), 30.6 (CH₂), 30.5 (CH₂); MS (EI) *m*/*z* 248 (M⁺ + 1 – OH, 5.5), 247 (M⁺ – OH, 38), 191 (M⁺ + 1 – OH – *t*Bu, 78), 174 (M⁺ – 1 – S*t*Bu, 50), 119 (100); HRMS *m*/*z* calcd for C₁₆H₂₄OS 264.1548, found 264.1557.

1-2-[(tert-Butylsulfanyl)methyl]phenyl-5-hexen-1-ol (96d)

取化合物95(0.5克,2.4毫莫耳) 溶於無水四氫呋喃(10毫升),於冰浴 下將製備好的Grignard試劑(4.8毫莫耳)逐滴加入,攪拌1小時後,以飽和 氯化銨水溶液終止反應,以乙酸乙酯(3×10毫升)萃取3次,收集有機層, 以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷:乙酸乙酯 = 20:1為沖提液進行管柱層析,得化合物96d(494毫克),產率74%。

Colorless liquid; $R_f = 0.25$ (hexane:EtOAc = 10:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.47–7.44 (1H, m), 7.29–7.16 (3H, m), 5.88–5.74 (1H, m), 5.05–4.93 (3H, m), 3.82, 3.77 (2H, ABq, J = 11.0 Hz), 2.46 (1H, br. s), 2.15–2.07 (2H, m), 1.92–1.74 (2H, m), 1.66–1.60 (1H, m), 1.49–1.42 (1H, m), 1.39 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 143.1 (Cq), 138.6 (CH), 134.2 (Cq), 130.5 (CH), 127.7 (CH), 127.5 (CH), 126.2 (CH), 114.6 (CH₂), 69.8 (CH), 43.2 (Cq), 37.0

(CH₂), 33.6 (CH₂), 30.6 (CH₃), 30.5 (CH₂), 25.5 (CH₂); MS (EI) m/z 261 (M⁺ – OH, 2), 205 (M⁺ + 1 – OH – tBu, 5), 188 (M⁺ – 1 – StBu, 46), 134 (39), 119 (100); HRMS m/z calcd for C₁₇H₂₅S (M⁺ – OH) 261.1678, found 261.1677.

1-2-[(tert-Butylsulfanyl)methyl]phenyl-6-hepten-1-ol (96e)

取化合物95(0.5克,2.4毫莫耳)溶於無水四氫呋喃(10毫升),於冰浴 下將製備好的Grignard試劑(4.8毫莫耳)逐滴加入,攪拌1小時後,以飽和 氯化銨水溶液終止反應,以乙酸乙酯(3×10毫升)萃取3次,收集有機層, 以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷:乙酸乙酯 = 20:1為沖提液進行管柱層析,得化合物96e(439毫克),產率63%。

Colorless liquid; $R_f = 0.23$ (hexane:EtOAc = 10:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.49–7.47 (1H, m), 7.31–7.17 (3H, m), 5.88–5.74 (1H, m), 5.07–4.91 (3H, m), 3.85, 3.79 (2H, ABq, J = 11.0 Hz), 2.11–2.04 (2H, m), 1.93–1.73 (3H, m), 1.64–1.43 (3H, m), 1.40 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 143.2 (Cq), 138.9 (CH), 134.3 (Cq), 130.6 (CH), 127.8 (CH), 127.5 (CH), 126.3 (CH), 114.3 (CH₂), 69.9 (CH), 43.3 (Cq), 37.4 (CH₂), 33.7 (CH₂), 30.6 (CH₃), 30.6 (CH₂), 28.8 (CH₂), 25.8 (CH₂); MS (EI) m/z 275 (M⁺ – OH, 1), 219 (M⁺ + 1 – OH – *t*Bu, 3), 202 (M⁺ – 1 – S*t*Bu, 26), 187 (M⁺ + 1 – OH – S*t*Bu, 6), 134 (27), 119 (100); HRMS m/z calcd for C₁₈H₂₇S (M⁺ – OH) 275.1835, found 275.1834.

1-2-[(tert-Butylsulfanyl)methyl]phenyl-7-octen-1-ol (96f)

取化合物95(287毫克,1.38毫莫耳)溶於無水四氫呋喃(5毫升),於冰 浴下將製備好的Grignard試劑(2.7毫莫耳)逐滴加入,攪拌1小時後,以飽 和氯化銨水溶液終止反應,以乙酸乙酯(3×10毫升)萃取3次,收集有機 層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷:乙酸 乙酯 = 20:1為沖提液進行管柱層析,得化合物96f(285毫克),產率67%。

Colorless liquid; $R_f = 0.25$ (hexane:EtOAc = 10:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.48 (1H, d, J = 7.3 Hz), 7.30–7.17 (3H, m), 5.87–5.73 (1H, m), 5.06–4.91 (3H, m), 3.85, 3.79 (2H, ABq, J = 11.0 Hz), 2.30 (1H, br. s), 2.05–2.01 (2H, m), 1.94–1.72 (2H, m), 1.61–1.38 (6H, m), 1.40 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 143.2 (Cq), 139.1 (CH), 134.3 (Cq), 130.5 (CH), 127.8 (CH), 127.5 (CH), 126.3 (CH), 114.2 (CH₂), 69.9 (CH), 43.3 (Cq), 37.5 (CH₂), 33.7 (CH₂), 30.7 (CH₃), 30.6 (CH₂), 29.0 (CH₂), 28.8 (CH₂), 26.2 (CH₂); MS (EI) *m*/*z* 289 (M⁺ – OH, 0.01), 216 (M⁺ – 1 – S*t*Bu, 20), 119 (100); HRMS *m*/*z* calcd for C₁₉H₂₉S (M⁺ – OH) 289.1191, found 289.1992.

1-2-[(tert-Butylsulfanyl)methyl]phenyl-8-nonen-1-ol (96g)

取化合物95(260毫克,1.25毫莫耳)溶於無水四氫呋喃 (5毫升),於冰

浴下將製備好的Grignard試劑 (2.5毫莫耳) 逐滴加入,攪拌1小時後,以飽 和氯化銨水溶液終止反應,以乙酸乙酯 (3 × 10毫升) 萃取3次,收集有機 層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷:乙酸 乙酯 = 10:1為沖提液進行管柱層析,得化合物96g (227毫克),產率57%。

Colorless liquid; $R_f = 0.25$ (hexane:EtOAc = 10:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.48–7.45 (1H, m), 7.30–7.16 (3H, m), 5.87–5.73 (1H, m), 5.05–4.90 (3H, m), 3.84, 3.78 (2H, ABq, J = 11.0 Hz), 2.35 (1H, br. s), 2.06–2.00 (2H, m), 1.93–1.712 (2H, m), 1.57–1.33 (8H, m), 1.40 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 143.3 (Cq), 139.1 (CH), 134.3 (Cq), 130.5 (CH), 127.8 (CH), 127.5 (CH), 126.2 (CH), 114.1 (CH₂), 69.9 (CH), 43.3 (Cq), 37.6 (CH₂), 33.7 (CH₂), 30.6 (CH₃), 30.6 (CH₂), 29.4 (CH₂), 29.0 (CH₂), 28.8 (CH₂), 26.3 (CH₂); MS (EI) m/z 303 (M⁺ – OH, 0.19), 245 (M⁺ + 1 – *t*Bu, 3), 230 (M⁺ – 1 – *St*Bu, 18), 134 (36), 119 (100); HRMS m/z calcd for C₂₀H₃₁S (M⁺ – OH) 303.2148, found 303.2147.

1-2-[(tert-Butylsulfinyl)methyl]phenyl-2-propen-1-ol (97a)

方法 (A):

取化合物93 (200毫克,0.89毫莫耳) 溶於無水四氫呋喃 (5毫升),於冰 浴下將Grignard試劑 (1.78毫莫耳) 逐滴加入,攪拌1小時後,以飽和氯化銨 水溶液終止反應,以二氯甲烷 (3 × 10毫升) 萃取3次,收集有機層,以硫 酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷:丙酮 = 4:1 為沖提液進行管柱層析,得化合物97a (198毫克,異構物比77:23),產率 88%。

方法 (B):

取化合物96a (178毫克,0.82毫莫耳) 溶於甲醇 (5毫升) 和去離子水 (5毫升),於室溫下加入過碘酸鈉 (193毫克,0.9毫莫耳),待雲霧狀生成, 持續攪拌30分鐘,加入20毫升去離子水稀釋,以二氯甲烷 (3×10毫升) 萃 取3次,收集有機層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物 以正己烷:丙酮 = 4:1為沖提液進行管柱層析,得化合物97b (170毫克, 異構物比50:50),產率82%。

White solid; mp 61–63 °C (CH₂Cl₂/hexane); $R_f = 0.4$ (hexane:acetone = 3:2); major isomer: ¹H NMR (CDCl₃, 300 MHz) δ 7.49–7.30 (4H, m), 6.16–6.00 (1H, m), 5.55 (1H, dt, J = 17.4, 1.8 Hz), 5.40–5.31 (2H, m), 4.18, 3.77 (2H, ABq, J = 12.3 Hz), 1.97 (1H, br. s), 1.42 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 143.5 (Cq), 138.4 (CH), 131.1 (CH), 129.4 (Cq), 128.6 (CH), 128.5 (CH), 128.3 (CH), 115.1 (CH₂), 69.1 (CH), 54.1 (Cq), 48.1 (CH₂), 23.0 (CH₃); minor isomer: ¹H NMR (CDCl₃, 300 MHz) δ 7.49–7.30 (4H, m), 6.16–6.00 (1H, m), 5.40–5.31 (2H, m), 5.16 (1H, dt, J = 10.5, 2.1 Hz), 4.67, 3.48 (2H, ABq, J = 12.0 Hz), 1.97 (1H, br. s), 1.40 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 143.4 (Cq), 141.3 (CH), 132.2 (CH), 129.9 (CH), 129.5 (Cq), 128.4 (CH), 128.3 (CH), 113.7 (CH₂), 75.4 (CH), 54.2 (Cq), 47.4 (CH₂), 23.1 (CH₃); MS (EI) m/z 252/253 (M⁺, 0.4/0.7), 235 (M⁺ – OH, 12), 178 (M⁺ – OH – *t*Bu, 41), 130 (M⁺ – OH – SO*t*Bu, 30), 129 (100), 117 (67); HRMS m/z calcd for C₁₄H₂₀O₂S 252.1184, found (送測 中); Anal. Calcd for C₁₄H₂₀O₂S: C, 66.63; H, 7.99. Found: C, 66.47; H, 7.88.

1-2-[(tert-Butylsulfinyl)methyl]phenyl-3-buten-1-ol (97b)

方法 (A):

取化合物93 (200毫克,0.89毫莫耳) 溶於無水四氫呋喃 (5毫升),於冰 浴下將Grignard試劑 (1.78毫莫耳) 逐滴加入,攪拌1小時後,以飽和氯化銨 水溶液終止反應,以二氯甲烷 (3 × 10毫升) 萃取3次,收集有機層,以硫 酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷:丙酮 = 4:1 為沖提液進行管柱層析,得化合物97b (199毫克,異構物比54:46),產率 84%。

方法 (B):

取化合物96b (225毫克,0.9毫莫耳) 溶於甲醇 (5毫升) 和去離子水 (5 毫升),於室溫下加入過碘酸鈉 (214毫克,1.0毫莫耳),待雲霧狀生成,持 續攪拌30分鐘,加入20毫升去離子水稀釋,以二氯甲烷 (3×10毫升) 萃取 3次,收集有機層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以 正己烷:丙酮 = 4:1為沖提液進行管柱層析,得化合物97b (235毫克,異 構物比53:47),產率98%。

Colorless oil; $R_f = 0.46$ (hexane:acetone = 3:2); major isomer: ¹H NMR (CDCl₃, 300 MHz) δ 7.58–5.54 (1H, m), 7.41–7.24 (3H, m), 5.88–5.73 (1H, m), 5.17–5.01 (2H, m), 4.83 (1H, t, *J* = 7.0 Hz), 4.13, 3.71 (2H, ABq, *J* = 12.6 Hz), 2.68–2.56 (1H, m), 2.52–2.46 (1H, m), 1.39 (9H, m); minor isomer: ¹H NMR (CDCl₃, 300 MHz) δ 7.58–5.54 (1H, m), 7.41–7.24 (3H, m), 5.88–5.73 (1H, m), 5.17–5.01 (2H, m), 4.94 (1H, t, J = 6.4 Hz), 4.66, 3.67 (2H, ABq, J = 12.0 Hz), 2.82–2.74 (1H, m), 2.52–2.46 (1H, m), 1.36 (9H, s); mixture of two isomers: ¹³C NMR (CDCl₃, 75.4 MHz) δ 144.4 (Cq), 144.0 (Cq), 135.2 (CH), 134.8 (CH), 132.2 (CH), 131.1 (CH), 129.3 (Cq), 128.8 (CH), 128.7 (Cq), 128.5 (CH), 128.1 (2CH), 127.7 (CH), 126.9 (CH), 117.5 (CH₂), 117.2 (CH₂), 74.3 (CH), 68.1 (CH), 54.1 (2Cq), 48.2 (CH₂), 47.8 (CH₂), 44.2 (CH₂), 39.9 (CH₂), 23.2 (CH₃), 23.0 (CH₃); MS (EI) *m*/*z* 268 (M⁺ + 2, 2.33), 267 (M⁺ + 1, 16), 249 (M⁺ – OH, 25), 161 (M⁺ – SOtBu, 40), 143 (M⁺ – OH – SOtBu 100), 128 (67), 119 (56), 91 (66); HRMS *m*/*z* calcd for C₁₅H₂₃O₂S (M⁺ + H) 267.1420, found 267.1430.

方法 (A):

取化合物93 (200毫克,0.89毫莫耳) 溶於無水四氫呋喃 (5毫升),於冰 浴下將製備好的Grignard試劑 (1.78毫莫耳) 逐滴加入,攪拌1小時後,以飽 和氯化銨水溶液終止反應,以二氯甲烷 (3 × 10毫升) 萃取3次,收集有機 層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷:丙酮 = 4:1為沖提液進行管柱層析,得化合物97c (280毫克,異構物比80:20), 產率92%。

方法 (B):

取化合物96c (244毫克, 0.92毫莫耳) 溶於甲醇 (5毫升) 和去離子水

(2毫升),於室溫下加入過碘酸鈉 (214毫克,1.0毫莫耳),待雲霧狀生成, 持續攪拌30分鐘,加入10毫升去離子水稀釋,以二氯甲烷 (3×10毫升) 萃 取3次,收集有機層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物, 以正己烷:丙酮 = 4:1為沖提液進行管柱層析,得化合物97c (247毫克, 異構物比50:50),產率96%。

Colorless oil; $R_f = 0.5$ (hexane:acetone = 3:2); major isomer: ¹H NMR (CDCl₃, 300 MHz) δ 7.58–7.53 (1H, m), 7.40–7.22 (3H, m), 5.92–5.76 (1H, m), 5.06–4.92 (3H, m), 4.79 (1H, t, J = 6.2 Hz), 4.14, 3.67 (2H, ABq, J = 12.6 Hz), 2.22–2.04 (3H, m), 1.80–1.68 (1H, m), 1.36 (9H, s); minor isomer: ¹H NMR (CDCl₃, 300 MHz) δ 7.58–7.53 (1H, m), 7.40–7.22 (3H, m), 5.92–5.76 (1H, m), 5.06–4.92 (3H, m), 4.86 (1H, dd, J = 7.4, 5.8 Hz), 4.65, 3.68 (2H, ABq, J = 11.9 Hz), 2.22–2.04 (3H, m), 1.96–1.83 (1H, m), 1.38 (9H, s); mixture of two isomers: ¹³C NMR (CDCl₃, 75.4 MHz) δ 145, 1 (Cq), 144.7 (Cq), 138.4 (2CH), 132.3 (CH); 131.0 (CH), 129.1 (Cq), 128.9 (CH), 128.5 (CH), 128.5 (Cq), 128.1 (CH), 128.0 (CH), 127.7 (CH), 126.9 (CH), 114.8 (CH₂), 114.7 (CH₂), 74.2 (CH), 67.4 (CH), 54.1 (2Cq), 48.0 (CH₂), 47.5 (CH₂), 38.9 (CH₂), 34.4 (CH₂), 30.5 (CH₂), 30.1 (CH₂), 23.2 (CH₃), 23.0 (CH₃); MS (EI) m/z 280 (M⁺, 0.02), 263 (M⁺ – OH, 0.19), 175 (M⁺ – SOtBu, 22), 157 (M⁺ – 1 – OH – SOtBu, 91), 129 (100), 119 (38), 91 (47), 57 (71); HRMS m/z calcd for C₁₆H₂₅O₂S (M⁺ + H) 281.1576, found 281.1501.

1-2-[(tert-Butylsulfinyl)methyl]phenyl-5-hexen-1-ol (97d)

O_≿S*t*Bu

方法 (A):

取化合物93 (400毫克,1.78毫莫耳) 溶於無水四氫呋喃 (5毫升),於冰 浴下將製備好的Grignard試劑 (3.56毫莫耳) 逐滴加入,攪拌1小時後,以飽 和氯化銨水溶液終止反應,以二氯甲烷 (3 × 10毫升) 萃取3次,收集有機 層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷:丙酮 = 4:1為沖提液進行管柱層析,得化合物97d (508毫克,異構物比74:26), 產率97%。

方法 (B):

取化合物96d (524毫克,1.88毫莫耳) 溶於甲醇 (10毫升) 和去離子水 (5毫升),於室溫下加入過碘酸鈉 (443毫克,2.07毫莫耳),待雲霧狀生成, 持續攪拌30分鐘,加入20毫升去離子水稀釋,以二氯甲烷 (3×10毫升) 萃 取3次,收集有機層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物 以正已烷:丙酮 = 4:1為沖提液進行管柱層析,得化合物97d (542毫克, 異構物比63:37),產率98%。

Colorless oil; $R_f = 0.43$ (hexane:acetone = 3:2); major isomer: ¹H NMR (CDCl₃, 300 MHz) δ 7.56–7.52 (1H, m), 7.40–7.21 (3H, m), 5.85–5.73 (1H, m), 5.05–4.91 (3H, m), 4.77 (1H, t, J = 6.8 Hz), 3.70, 4.14 (2H, ABq, J = 12.5 Hz), 2.53 (1H, br s), 2.14–2.00 (3H, m), 1.88–1.46 (3H, m), 1.39 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 144.8 (Cq), 138.7 (CH), 131.1 (CH), 129.1 (Cq), 128.9 (CH), 128.0 (CH), 126.8 (CH), 114.5 (CH₂), 68.2 (CH), 54.1 (Cq), 48.2 (CH₂), 34.8 (CH₂), 33.7 (CH₂), 25.7 (CH₂), 23.0 (CH₃); minor isomer: ¹H NMR (CDCl₃, 300 MHz) δ 7.56–7.52 (1H, m), 7.40–7.21 (3H, m), 5.85–5.73 (1H, m), 5.01–4.89 (3H, m), 4.85 (1H, dd, J = 7.2, 4.8 Hz), 4.72, 3.65 (2H, ABq, J =12.0 Hz), 2.53 (1H, br s), 2.14–2.00 (3H, m), 1.88–1.46 (3H, m), 1.37 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 145.4 (Cq), 138.7 (CH), 132.3 (CH), 128.6 (CH), 128.5 (Cq), 128.1 (CH), 127.6 (CH), 114.6 (CH₂), 75.0 (CH), 54.1 (Cq), 47.5 (CH₂), 39.4 (CH₂), 33.6 (CH₂), 25.2 (CH₂), 23.2 (CH₃); MS (EI) *m/z* 295 (M⁺ + 1, 5), 278 (M⁺ + 1 - OH, 38), 277 (M⁺ - OH, 51), 221 (M⁺ + 1 - OH - *t*Bu, 49), 203 (58), 189 (M⁺ - SO*t*Bu, 16), 171 (M⁺ - 1 - OH - SO*t*Bu, 49), 129 (100), 91 (76), 57 (68); HRMS *m/z* calcd for C₁₇H₂₆O₂S 294.1653, found 294.1635.

1-2-[(tert-Butylsulfinyl)methyl]phenyl-6-hepten-1-ol (97e)

方法 (A):

取化合物93 (300毫克,1.34毫莫耳) 溶於無水四氫呋喃 (5毫升),於冰 浴下將製備好的Grignard試劑 (2.68毫莫耳) 逐滴加入,攪拌1小時後,以飽 和氯化銨水溶液終止反應,以二氯甲烷 (3 × 10毫升) 萃取3次,收集有機 層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正己烷:丙酮 = 4:1為沖提液進行管柱層析,得化合物97e (405毫克,異構物比72:28), 產率98%。

方法 (B):

取化合物96e (374毫克,1.28毫莫耳) 溶於甲醇 (10毫升) 和去離子水 (10毫升),於室溫下加入過碘酸鈉 (302毫克,1.41毫莫耳),待雲霧狀生成,持續攪拌30分鐘,加入20毫升去離子水稀釋,以二氯甲烷 (3×15毫升) 萃

取3次,收集有機層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷:丙酮 = 4:1為沖提液進行管柱層析,得化合物97e (378毫克, 異構物比60:40),產率96%。

Colorless oil; $R_f = 0.5$ (hexane:acetone = 3:2); major isomer: ¹H NMR (CDCl₃, 300 MHz) & 7.57-7.52 (1H, m), 7.40-7.21 (3H, m), 5.87-5.71 (1H, m), 5.02-4.88 (2H, m), 4.76 (1H, t, J = 7.0 Hz), 4.14, 3.71 (2H, ABq, J = 12.5Hz), 2.10–1.95 (3H, m), 1.71–1.55 (1H, m), 1.50–1.20 (4H, m), 1.39 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 144.8 (Cq), 138.9 (CH), 131.1 (CH), 129.2 (Cq), 128.9 (CH), 128.0 (CH), 126.8 (CH),114.3 (CH₂), 68.3 (CH), 54.1 (Cq), 48.2 (CH₂), 35.2 (CH₂), 33.7 (CH₂), 28.9 (CH₂), 25.9 (CH₂), 23.0 (CH₃); minor isomer: ¹H NMR (CDCl₃, 300 MHz) & 7.57-7.52 (1H, m), 7.40-7.21 (3H, m), 5.87–5.71 (1H, m), 5.01–4.88 (2H, m), 4.84 (1H, t, J = 6.0 Hz), 4.70, 3.66 (2H, ABq, J = 11.9 Hz), 2.10–1.95 (3H, m), 1.90–1.73 (1H, m), 1.50–1.20 (4H, m), 1.37 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 145.5 (Cq), 138.9 (CH), 132.2 (CH), 128.6 (CH), 128.5 (Cq), 128.1 (CH), 127.6 (CH), 114.3 (CH₂), 75.0 (CH), 54.1 (Cq), 47.5 (CH₂), 39.8 (CH₂), 33.7 (CH₂), 28.9 (CH₂), 25.5 (CH₂), 23.2 (CH₃); MS (EI) m/z 307 (M⁺ – 1, 0.01), 291 (M⁺ – OH, 0.21), 217 (42), 185 (M⁺ – OH – SOtBu, 55), 143 (78), 129 (99), 119 (75), 117 (98), 104 (48), 91 (66), 57 (100); HRMS m/z calcd for C₁₈H₂₈O₂S 308.1810, found 308.1813.

1-2-[(tert-Butylsulfinyl)methyl]phenyl-7-octen-1-ol (97f)

O_SfBu OH 方法 (A):

取化合物93 (310毫克,1.38毫莫耳) 溶於無水四氫呋喃 (5毫升),於冰 浴下將製備好的Grignard試劑 (2.75毫莫耳) 逐滴加入,攪拌1小時後,以飽 和氯化銨水溶液終止反應,以二氯甲烷 (3 × 10毫升) 萃取3次,收集有機 層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正己烷:丙酮 = 4:1為沖提液進行管柱層析,得化合物97f (356毫克,異構物比66:34), 產率80%。

方法 (B):

取化合物96f (280毫克,0.91毫莫耳) 溶於甲醇 (10毫升) 和去離子水 (10毫升),於室溫下加入過碘酸鈉 (214毫克,1.0毫莫耳),待雲霧狀生成, 持續攪拌30分鐘,加入20毫升去離子水稀釋,以二氯甲烷 (3×15毫升) 萃 取3次,收集有機層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物 以正已烷:丙酮 = 4:1為沖提液進行管柱層析,得化合物97f (267毫克, 異構物比64:36),產率91%。

Colorless oil; $R_f = 0.5$ (hexane:acetone = 3:2); major isomer: ¹H NMR (CDCl₃, 300 MHz) δ 7.55–7.52 (1H, m), 7.40–7.21 (3H, m), 5.86–5.74 (1H, m), 5.01–4.90 (2H, m), 4.76 (1H, t, J = 6.8 Hz), 4.14, 3.70 (2H, ABq, J = 12.5 Hz), 2.04–1.20 (10H, m), 1.39 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 144.9 (Cq), 139.1 (CH), 131.0 (CH), 129.2 (Cq), 128.9 (CH), 127.9 (CH), 126.8 (CH),114.2 (CH₂), 68.3 (CH), 54.1 (Cq), 48.2 (CH₂), 35.5 (CH₂), 33.7 (CH₂), 29.1 (CH₂), 28.8 (CH₂), 26.3 (CH₂), 23.0 (CH₃); minor isomer: ¹H NMR (CDCl₃, 300 MHz) δ 7.55–7.52 (1H, m), 7.40–7.21 (3H, m), 5.86–5.73 (1H, m), 5.01–4.90 (2H, m), 4.84 (1H, t, J = 6.2 Hz), 4.69, 3.66 (2H, ABq, J = 11.9 Hz), 2.04–1.20 (10H, m), 1.37 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 145.5

(Cq), 139.1 (CH), 132.2 (CH), 128.5 (Cq), 128.6 (CH), 128.0 (CH), 127.6 (CH),114.2 (CH₂), 75.0 (CH), 54.1 (Cq), 47.5 (CH₂), 39.9 (CH₂), 33.7 (CH₂), 29.1 (CH₂), 28.8 (CH₂), 25.8 (CH₂), 23.2 (CH₃); MS (EI) m/z 303 (M⁺ – OH, 0.19), 245 (M⁺ + 1 – tBu, 3), 230 (M⁺ – 1 – StBu, 18), 134 (36), 119 (100); HRMS m/z calcd for C₁₉H₃₁O₂S (M⁺ + H) 323.2046, found 323.2043.

1-2-[(tert-Butylsulfinyl)methyl]phenyl-8-nonen-1-ol (97g)

方法 (A):

取化合物93 (280毫克,1.25毫莫耳) 溶於無水四氫呋喃 (5毫升),於冰 浴下將製備好的Grignard試劑 (2.5毫莫耳) 逐滴加入,攪拌1小時後,以飽 和氯化銨水溶液終止反應,以二氯甲烷 (3 × 10毫升) 萃取3次,收集有機 層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷:丙酮 = 4:1為沖提液進行管柱層析,得化合物97g (368毫克,異構物比85:15), 產率87%。

方法 (B):

取化合物96g (195毫克,0.61毫莫耳) 溶於甲醇 (5毫升) 和去離子水 (5毫升),於室溫下加入過碘酸鈉 (143毫克,0.67毫莫耳),待雲霧狀生成, 持續攪拌30分鐘,加入20毫升去離子水稀釋,以二氯甲烷 (3×15毫升) 萃 取3次,收集有機層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物 以正已烷:丙酮 = 4:1為沖提液進行管柱層析,得化合物97g (187毫克, 異構物比56:44),產率91%。

Colorless oil; $R_f = 0.5$ (hexane:acetone = 3:2); major isomer: ¹H NMR (CDCl₃, 300 MHz) & 7.55–7.52 (1H, m), 7.39–7.22 (3H, m), 5.86–5.72 (1H, m), 5.02–4.90 (2H, m), 4.76 (1H, t, *J* = 6.8 Hz), 4.13, 3.70 (2H, ABq, *J* = 12.5 Hz), 2.31 (1H, br s), 2.04–1.94 (3H, m), 1.87–1.75 (1H, m), 1.52–1.20 (8H, m), 1.39 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 144.9 (Cq), 139.2 (CH), 131.0 (CH), 129.1 (Cq), 128.9 (CH), 127.9 (CH), 126.8 (CH),114.1 (CH₂), 68.3 (CH), 54.1 (Cq), 48.2 (CH₂), 35.3 (CH₂), 33.8 (CH₂), 29.5 (CH₂), 29.0 (CH₂), 28.8 (CH₂), 26.4 (CH₂), 23.0 (CH₃); minor isomer: ¹H NMR (CDCl₃, 300 MHz) δ 7.55–7.52 (1H, m), 7.39–7.22 (3H, m), 5.86–5.72 (1H, m), 5.02–4.90 (2H, m), 4.81 (1H, t, J = 6.8 Hz), 4.70, 3.66 (2H, ABq, J = 11.9 Hz), 2.31 (1H, br s), 2.04–1.94 (3H, m), 1.70–1.57 (1H, m), 1.52–1.20 (8H, m), 1.37 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) & 145.5 (Cq), 139.2 (CH), 131.0 (CH), 128.6 (CH), 128.6 (Cq), 128.0 (CH), 127.6 (CH),114.1 (CH₂), 75.0 (CH), 54.1 (Cq), 47.5 (CH₂), 40.0 (CH₂), 33.8 (CH₂), 29.4 (CH₂), 29.0 (CH₂), 28.8 (CH₂), 25.9 (CH₂), 23.2 (CH₃); MS (EI) m/z 337 (M⁺ + 1, 3.7), 319 (M⁺ – OH, 15), 245 (28), 131 (78),117 (100); HRMS m/z calcd for C₂₀H₃₃O₂S (M⁺ + H) 337.2202, found 337.2203.

1-Alkenyl-3,4-dihydro-1*H*-2,3λ⁴-benzoxathiin-3-one (98b-g) 的合成

一般實驗步驟:

分別取來自方法 (A) 及 (B) 的混合異構物97b-g溶於二氯甲烷 (濃度約0.2 M),室溫下加入1.1當量的NCS,攪拌1小時後,倒入5% Na₂SO₃(aq) 終止反應,以二氯甲烷萃取,收集有機層,以硫酸鎂乾燥後,過濾並濃縮

有機層,所得之粗產物以正已烷:乙酸乙酯 = 10:1為沖提液進行管柱層 析,得化合物98b-g,產率及異構物比整理如表六。光譜分析以主要異構 物為主。

1-Allyl-3,4-dihydro-1*H*-2, $3\lambda^4$ -benzoxathiin-3-one (98b)

Major isomer: colorless oil; $R_f = 0.28$ (hexane:EtOAc = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.41–7.31 (3H, m), 7.24–7.21 (1H, m), 5.98–5.85 (1H, m), 5.33 (1H, dd, J = 7.3, 4.8 Hz), 5.30–5.16 (2H, m), 4.42, 3.56 (2H, ABq, J = 15.1 Hz), 3.02–2.93 (1H, m), 2.87–2.77 (1H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 136.7 (Cq), 132.6 (CH), 129.9 (CH), 128.3 (CH), 127.9 (CH), 126.5 (Cq), 124.5 (CH), 118.7 (CH₂), 72.4 (CH), 57.4 (CH₂), 37.5 (CH₂); MS (EI) *m/z* 209 (M⁺ + 1, 3), 144 (M⁺ – SO₂, 51), 143 (M⁺ – SO₂ – 1, 48), 129 (100), 128 (68); HRMS *m/z* calcd for C₁₁H₁₂O₂S 208.0558, found 208.0555.

1-(3-Butenyl)-3,4-dihydro-1*H*-2, $3\lambda^4$ -benzoxathiin-3-one (98c)

Major isomer: colorless oil; $R_f = 0.38$ (hexane:EtOAc = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.42–7.29 (3H, m), 7.25–7.21 (1H, m), 5.97–5.82 (1H, m), 5.25 (1H, dd, J = 8.9, 3.1 Hz), 5.19–5.03 (2H, m), 4.45, 3.54 (2H, ABq, J = 15.1 Hz), 2.45–2.23 (3H, m), 2.19–2.05 (1H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 137.4 (Cq), 137.1 (CH), 129.8 (CH), 128.3 (CH), 127.9 (CH), 126.7 (Cq), 124.2 (CH), 115.8 (CH₂), 72.4 (CH), 57.7 (CH₂), 32.1 (CH₂), 29.2 (CH₂); minor isomer: colorless oil; $R_f = 0.38$ (hexane:EtOAc = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.43–7.21 (4H, m), 5.96–5.81 (1H, m), 5.25 (1H, dd, J = 8.9, 3.1 Hz), 5.18–5.00 (2H, m), 3.99, 3.96 (2H, ABq, J = 14.4 Hz), 2.50–2.21 (3H, m), 2.20–2.04 (1H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 137.2 (CH), 135.8 (CH), 130.9 (CH), 128.5 (CH), 128.3 (CH), 125.0 (Cq), 124.8 (CH),115.7 (CH₂), 79.4 (CH), 55.9 (CH₂), 33.9 (CH₂), 29.4 (CH₂); MS (EI) m/z 223 (M⁺ + 1, 1), 158 (M⁺ – SO₂, 56), 143 (99), 129 (97), 117 (98), 115 (100); HRMS m/z calcd for C₁₂H₁₄O₂S 222.0715, found 222.0722.

1-(4-Pentenyl)-3,4-dihydro-1*H*-2, $3\lambda^4$ -benzoxathiin-3-one (98d)

Major isomer: colorless oil; $R_f = 0.33$ (hexane:EtOAc = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.42–7.28 (3H, m), 7.25–7.20 (1H, m), 5.90–5.76 (1H, m), 5.24 (1H, dd, J = 8.7, 3.8 Hz), 5.13–4.98 (2H, m), 4.45, 3.54 (2H, ABq, J = 15.2 Hz), 2.30–2.14 (3H, m), 2.09–1.96 (1H, m), 1.85–1.62 (2H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 138.1 (CH), 137.5 (Cq), 129.8 (CH), 128.2 (CH), 127.9 (CH), 126.7 (Cq), 124.2 (CH),115.2 (CH₂), 72.9 (CH), 57.7 (CH₂), 33.3 (CH₂), 32.2 (CH₂), 24.2 (CH₂); MS (EI) m/z 237 (M⁺ + 1, 2.5), 171 (M⁺ – 1 – SO₂, 59), 130 (46), 128 (63), 120 (100), 118 (81), 91 (73); HRMS m/z calcd for

C₁₃H₁₆O₂S 236.0871, found 236.0872.

1-(5-Hexenyl)-3,4-dihydro-1*H*-2, $3\lambda^4$ -benzoxathiin-3-one (98e)

Major isomer: colorless oil; $R_f = 0.33$ (hexane:EtOAc = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.42–7.29 (3H, m), 7.25–7.21 (1H, m), 5.90–5.75 (1H, m), 5.22 (1H, dd, J = 8.7, 3.8 Hz), 5.08–4.94 (2H, m), 4.46, 3.53 (2H, ABq, J = 15.1 Hz), 2.25–1.95 (4H, m), 1.76–1.42 (4H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 138.6 (CH), 137.7 (Cq), 129.7 (CH), 128.2 (CH), 127.9 (CH), 126.8 (Cq), 124.2 (CH),114.6 (CH₂), 73.1 (CH), 57.8 (CH₂), 33.5 (CH₂), 32.7 (CH₂), 28.6 (CH₂), 24.6 (CH₂); MS (EI) m/z 251 (M⁺ + 1, 5), 233 (5), 186 (M⁺ – SO₂, 35), 185 (M⁺ – 1 – SO₂, 31), 143 (53), 129 (100), 117 (36), 115 (46), 104 (68), 91 (53); HRMS m/z calcd for C₁₄H₁₈O₂S 250.1028, found 250.1028.

1-(6-Heptenyl)-3,4-dihydro-1*H*-2, $3\lambda^4$ -benzoxathiin-3-one (98f)

Major isomer: colorless oil; $R_f = 0.33$ (hexane:EtOAc = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.42–7.29 (3H, m), 7.25–7.20 (1H, m), 5.89–5.74 (1H, m), 5.22 (1H, dd, J = 8.7, 3.8 Hz), 5.06–4.91 (2H, m), 4.46, 3.53 (2H, ABq, J = 15.1 Hz), 2.26–1.95 (4H, m), 1.70–1.35 (6H, m); ¹³C NMR (CDCl₃, 75.4 MHz)

δ 138.9 (CH), 137.7 (Cq), 129.7 (CH), 128.2 (CH), 127.9 (CH), 126.8 (Cq), 124.2 (CH),114.4 (CH₂), 73.1 (CH), 57.8 (CH₂), 33.6 (CH₂), 32.8 (CH₂), 28.8 (CH₂), 28.7 (CH₂), 25.0 (CH₂); MS (EI) *m*/*z* 200 (M⁺ – SO₂, 69), 142 (100), 129 (93), 118 (77), 103 (59), 91 (43); HRMS *m*/*z* calcd for C₁₅H₂₀O₂S 264.1184, found 264.1183.

1-(7-Octenyl)-3,4-dihydro-1*H*-2, $3\lambda^4$ -benzoxathiin-3-one (98g)

Major isomer: colorless oil; $R_f = 0.38$ (hexane:EtOAc = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.42–7.29 (3H, m), 7.25–7.21 (1H, m), 5.88–5.75 (1H, m), 5.22 (1H, dd, J = 8.6, 3.9 Hz), 5.06–4.91 (2H, m), 4.45, 3.53 (2H, ABq, J = 15.1 Hz), 2.28–1.94 (4H, m), 1.80–1.31 (8H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 139.0 (CH), 137.8 (Cq), 129.7 (CH), 128.2 (CH), 127.9 (CH), 126.8 (Cq), 124.2 (CH),114.3 (CH₂), 73.1 (CH), 57.8 (CH₂), 33.7 (CH₂), 32.8 (CH₂), 29.2 (CH₂), 28.9 (CH₂), 28.8 (CH₂), 25.1 (CH₂); MS (EI) *m*/*z* 279 (M⁺ + 1, 6), 214 (M⁺ – SO₂, 100), 142 (96), 129 (90), 118 (79), 103 (77), 91 (42); HRMS *m*/*z* calcd for C₁₆H₂₂O₂S 278.1341, found 278.1335.

1-Alkenyl-3,4-dihydro-1*H*-2,3λ⁴-benzoxathiin-3-one (98b-g) 的熱化學反應 1-Allyl-2,3-dihydro-1*H*-2λ⁶-benzo[c]thiophene-2,2-dione (105b)

取化合物98b (41毫克,0.20毫莫耳) 溶於苯 (2毫升),加熱迴流12小時後,抽乾溶劑之粗產物進行管柱層析,以正已烷:丙酮 = 10:1分離出化合物105b (22毫克),產率54%。

Colorless oil; $R_f = 0.23$ (hexane:acetone = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.29–7.27 (4H, m), 6.00–5.85 (1H, m), 5.30–5.19 (2H, m), 4.29 (2H, d, J = 2.5 Hz), 4.35–4.24 (1H, m), 2.99–2.88 (1H, m), 2.77–2.66 (1H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 135.6 (Cq), 132.3 (CH), 130.2 (Cq), 128.7 (2CH), 125.9 (CH), 125.6 (CH), 119.3 (CH₂), 64.9 (CH), 55.5 (CH₂), 33.8 (CH₂); MS (EI) m/z 208 (M⁺, 6), 144 (M⁺ – SO₂, 49), 129 (100), 128 (62), 115 (40); HRMS m/z calcd for C₁₁H₁₂O₂S 208.0558, found (送測中).

a shiller

1-(3-Butenyl)-2,3-dihydro-1H-2 λ^6 -benzo[c]thiophene-2,2-dione (105c)

SO₂

取化合物98c (96毫克,0.43毫莫耳) 溶於苯 (4.5毫升),加熱迴流24小時後,抽乾溶劑之粗產物進行管柱層析,以正已烷:丙酮 = 10:1分離出化合物105c (64毫克),產率67%。

Colorless oil; $R_f = 0.28$ (hexane:acetone = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.40–7.28 (4H, m), 5.93–5.79 (1H, m), 5.20–5.08 (2H, m), 4.31 (2H, s), 4.23 (1H, dd, J = 8.3, 5.6 Hz), 2.51–2.36 (2H, m), 2.36–2.21 (1H, m), 2.10–1.97 (1H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 136.4 (CH), 136.1 (Cq), 130.1 (Cq), 128.7 (CH), 128.6 (CH), 125.9 (CH), 125.3 (CH), 116.6 (CH₂), 64.4 (CH), 55.4 (CH₂), 30.3 (CH₂), 28.8 (CH₂); MS (EI) *m/z* 222 (M⁺, 2), 158 (M⁺ – SO₂, 32), 157 (100), 143 (80), 129 (78), 115 (68); HRMS *m/z* calcd for

C₁₂H₁₄O₂S 222.0715, found (送測中).

Cis- and *Trans*- 2,3,3a,4,5,9b-hexahydro-1*H*-cyclopenta[*a*]-naphthalene^{44c} (103d)

取化合物98d (110毫克,0.47毫莫耳) 溶於苯 (5毫升),加熱迴流24小 時後,抽乾溶劑之粗產物進行管柱層析,先以正已烷為沖提液分離出化合 物103d (12毫克,順式與反式異構物比約1:1),產率15%,及少量化合物 104d。再以正已烷:丙酮 = 10:1分離出化合物105d (70毫克),產率64%。

Colorless oil; $R_f = 0.6$ (hexane); mixture of two isomers: ¹H NMR (CDCl₃, 300 MHz) δ 7.18–7.06 (4H, m), 3.11–2.92 (2H, m), 2.71–2.64 (1H, m), 2.40–1.25 (9H, m); two isomers mixture: ¹³C NMR (CDCl₃, 75.4 MHz) δ 141.5 (Cq), 140.9 (Cq), 137.2 (Cq), 136.9 (Cq), 129.1 (CH), 128.5 (CH), 128.4 (CH), 126.0 (CH), 125.7 (CH), 125.5 (CH), 125.3 (CH), 125.0 (CH), 47.5 (CH), 43.9 (CH), 42.6 (CH), 37.3 (CH), 35.1 (CH₂), 32.5 (CH₂), 30.7 (CH₂), 30.1 (CH₂), 29.3 (CH₂), 28.6 (CH₂), 28.2 (CH₂), 27.5 (CH₂), 24.5 (CH₂), 22.6 (CH₂); MS (EI) m/z 172 (M⁺, 100), 144 (74), 143 (56), 129 (92), 127 (56), 115 (36); HRMS m/z calcd for C₁₃H₁₆ 172.1252, found 172.1250.

1-(4-Pentenyl)-2,3-dihydro-1*H*-2 λ^6 -benzo[*c*]thiophene-2,2-dione^{44c} (105d)

Colorless oil; $R_f = 0.25$ (hexane:EtOAc = 4:1); ¹H NMR (CDCl₃, 300 MHz)

δ 7.41–7.25 (4H, m), 5.88–5.74 (1H, m), 5.09–4.99 (2H, m), 4.31 (2H, s), 4.20 (1H, dd, J = 8.4, 5.7 Hz), 2.23–2.08 (3H, m), 2.06–1.92 (1H, m), 1.88–1.65 (2H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 137.6 (CH), 136.1 (Cq), 130.1 (Cq), 128.7 (CH), 128.6 (CH), 125.9 (CH), 125.3 (CH), 115.4 (CH₂), 65.3 (CH), 55.4 (CH₂), 33.4 (CH₂), 29.0 (CH₂), 25.6 (CH₂); MS (EI) *m/z* 236 (M⁺, 2.66), 172 (M⁺ – SO₂, 10), 171 (26), 129 (100), 115 (48); HRMS *m/z* calcd for C₁₃H₁₆O₂S 206.0871, found 206.0876.

Trans-1,2,3,4,4a,9,10,10a-octahydrophenanthrene^{44c} (103e)

取化合物98e (110毫克,0.44毫莫耳) 溶於苯 (4.5毫升),加熱迴流12 小時後,抽乾溶劑之粗產物進行管柱層析,先以正已烷為沖提液分離出化 合物103e (30毫克,以反式異構物為主),產率27%,及少量化合物104e。 再以正已烷:丙酮 = 10:1分離出化合物105e (59毫克),產率54%。

Colorless oil; $R_f = 0.6$ (hexane); ¹H NMR (CDCl₃, 300 MHz) δ 7.34–7.27 (1H, m), 7.20–7.02 (3H, m), 2.96–2.74 (2H, m), 2.45 (1H, br dd, J = 13.0, 3.1 Hz), 2.35–2.22 (1H, m), 2.04–1.15 (10H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 140.6 (Cq), 137.1 (Cq), 129.0 (CH), 125.5 (CH), 125.4 (2CH), 43.8 (CH), 40.6 (CH), 34.4 (CH₂), 31.0 (CH₂), 30.6 (CH₂), 29.9 (CH₂), 27.0 (CH₂), 26.3 (CH₂); MS (EI) m/z 186 (M⁺, 100), 158 (25), 143 (43), 129 (30), 128 (38); HRMS m/z calcd for C₁₄H₁₈ 186.1409, found 186.1411.

1-(5-Hexenyl)-2,3-dihydro-1*H*-2 λ^6 -benzo[*c*]thiophene-2,2-dione^{44c} (105e)

Colorless oil; $R_f = 0.33$ (hexane:EtOAc = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.41–7.25 (4H, m), 5.88–5.74 (1H, m), 5.08–4.93 (2H, m), 4.30 (2H, s), 4.18 (1H, dd, J = 8.3, 5.9 Hz), 2.23–2.06 (3H, m), 2.04–1.90 (1H, m), 1.75–1.47 (4H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 138.3 (CH), 136.2 (Cq), 130.1 (Cq), 128.7 (CH), 128.5 (CH), 125.9 (CH), 125.3 (CH), 114.7 (CH₂), 65.4 (CH), 55.4 (CH₂), 33.3 (CH₂), 29.5 (CH₂), 28.7 (CH₂), 26.0 (CH₂); MS (EI) *m/z* 251 (M⁺ + 1, 0.65), 250 (M⁺, 1.15), 186 (M⁺ – SO₂, 45), 185 (M⁺ – 1 – SO₂, 41), 143 (70), 129 (100), 128 (71), 117 (66), 115 (89), 91 (50); HRMS *m/z* calcd for C₁₄H₁₈O₂S 250.1028, found 250.1018.

(1E)-1-(2-Methylphenyl)-1,7-octadiene (104f)

取化合物98f (187毫克,0.71毫莫耳) 溶於苯 (7毫升),加熱迴流48小 時後,抽乾溶劑之粗產物進行管柱層析,先以正已烷為沖提液分離出化合 物104f (54毫克),產率38%。再以正已烷:乙酸乙酯 = 10:1分離出化合物 105f (99毫克),產率53%。

Colorless oil; $R_f = 0.58$ (hexane); ¹H NMR (CDCl₃, 300 MHz) δ 7.44–7.38 (1H, m), 7.19–7.09 (3H, m), 6.57 (1H, d, J = 15.7 Hz), 6.08 (1H, dt, J = 15.7, 6.9 Hz), 5.90–5.75 (1H, m), 5.08–4.91 (2H, m), 2.33 (3H, s), 2.25–2.18 (2H,

m), 2.15–2.02 (2H, m), 1.55–1.40 (4H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 139.0 (CH), 137.0 (Cq), 134.9 (Cq), 132.3 (CH), 130.1 (CH), 127.7 (CH), 126.7 (CH), 126.0 (CH), 125.4 (CH), 114.3 (CH₂), 33.6 (CH₂), 33.1 (CH₂), 28.9 (CH₂), 28.4 (CH₂), 19.8 (CH₃); MS (EI) *m*/*z* 200 (M⁺, 66), 143 (52), 131 (100), 118 (81), 115 (50), 105 (58), 91 (53); HRMS *m*/*z* calcd for C₁₅H₂₀ 200.1565, found 200.1570.

1-(6-Heptenyl)-2,3-dihydro-1*H*-2 λ^{6} -benzo[*c*]thiophene-2,2-dione (105f)

Colorless oil; $R_f = 0.33$ (hexane:EtOAc = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.41–7.27 (4H, m), 5.88–5.73 (1H, m), 5.08–4.90 (2H, m), 4.30 (2H, s), 4.18 (1H, dd, J = 8.3, 5.9 Hz), 2.23–1.82 (4H, m), 1.82–1.60 (2H, m), 1.53–1.37 (4H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 138.8 (CH), 136.2 (Cq), 130.1 (Cq), 128.7 (CH), 128.6 (CH), 125.9 (CH), 125.3 (CH), 114.5 (CH₂), 65.5 (CH), 55.4 (CH₂), 33.6 (CH₂), 29.6 (CH₂), 28.9 (CH₂), 28.5 (CH₂), 26.4 (CH₂); MS (EI) m/z 266 (M⁺ + 2, 2.2), 264 (M⁺, 1.8), 200 (M⁺ – SO₂, 37), 144 (58), 130 (69), 117 (100), 115 (59); HRMS m/z calcd for C₁₅H₂₀O₂S 264.1184, found 264.1177.

(1E)-1-(2-Methylphenyl)-1,8-nonadiene (104g)

取化合物98g (109毫克,0.39毫莫耳) 溶於苯 (4毫升),進行熱化學封 管反應,於100 ℃下反應24小時,抽乾溶劑之粗產物進行管柱層析,先以 正己烷為沖提液分離出化合物104g (11毫克),產率13%。再以正己烷:乙 酸乙酯 = 10:1分離出化合物105g (51毫克),產率47%。

Colorless oil; $R_f = 0.5$ (hexane); ¹H NMR (CDCl₃, 300 MHz) δ 7.44–7.38 (1H, m), 7.18–7.09 (3H, m), 6.56 (1H, d, J = 15.6 Hz), 6.08 (1H, dt, J = 15.6, 6.9 Hz), 5.89–5.75 (1H, m), 5.06–4.91 (2H, m), 2.33 (3H, s), 2.28–2.17 (2H, m), 2.12–2.01 (2H, m), 1.55–1.35 (6H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 139.1 (CH), 137.0 (Cq), 134.8 (Cq), 132.4 (CH), 130.1 (CH), 127.6 (CH), 126.7 (CH), 126.0 (CH), 125.4 (CH), 114.2 (CH₂), 33.7 (CH₂), 33.2 (CH₂), 29.3 (CH₂), 28.8 (CH₂), 28.6 (CH₂), 19.8 (CH₃); MS (EI) *m*/*z* 214 (M⁺, 50), 143 (50), 131 (100), 128 (55), 118 (83), 115 (34), 105 (40); HRMS *m*/*z* calcd for C₁₆H₂₂ 214.1721, found 214.1725.

1-(7-Octenyl)-2,3-dihydro-1H-2 λ^6 -benzo[c]thiophene-2,2-dione (105g)

Colorless oil; $R_f = 0.33$ (hexane:EtOAc = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.41–7.25 (4H, m), 5.88–5.73 (1H, m), 5.05–4.91 (2H, m), 4.30 (2H, s), 4.18 (1H, dd, J = 8.3, 5.9 Hz), 2.22–1.88 (4H, m), 1.75–1.53 (2H, m), 1.49–1.29 (6H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 139.0 (CH), 136.3 (Cq), 130.1 (Cq), 128.7 (CH), 128.5 (CH), 125.9 (CH), 125.3 (CH), 114.3 (CH₂), 65.5 (CH), 55.4 (CH₂), 33.7 (CH₂), 29.6 (CH₂), 29.3 (CH₂), 28.7 (2CH₂), 26.5 (CH₂); MS (EI) m/z 279 (M⁺ + 1, 2.2), 215 (M⁺ + 1 – SO₂, 29), 144 (44), 129 (100), 115 (33), 103 (36); HRMS m/z calcd for C₁₆H₂₂O₂S 278.1341, found 278.1347.

第三部份:其他雜環 sultine 之合成研究

[4-(Hydroxymethyl)-3-thienyl]methanol (114)

參考文獻^{34a}的合成方法。

¹H NMR (CDCl₃, 300 MHz) δ 7.22 (2H, s), 4.63 (4H, s), 2.82 (2H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 140.4 (Cq), 125.0 (CH), 59.4 (CH₂); MS (EI) m/z 144 (M⁺, 11), 127 (M⁺ – OH, 14), 126 (60), 125 (100), 110 (M⁺ – 2OH, 4).

取化合物114 (400毫克,2.77毫莫耳) 溶於二氯甲烷 (20毫升),室溫 下加入PPh₃Br₂ (2.93克,6.93毫莫耳),攪拌3小時後,倒入20毫升飽和碳酸 氫鈉水溶液終止反應,以二氯甲烷 (3 × 10毫升) 萃取3次,收集有機層, 以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷為沖提液進 行管柱層析,得化合物115 (526毫克),產率70%。

White solid; mp 139 °C (CH₃OH) (lit.⁷² mp 83 °C); $R_f = 0.45$ (hexane); ¹H NMR (CDCl₃, 300 MHz) δ 7.35 (2H, s), 4.63 (4H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 136.4 (Cq), 127.1 (CH), 25.5 (CH₂); MS (EI) *m/z* 272/270 (M⁺, 5/9), 191/189 (M⁺ – Br, 86/87), 110 (M⁺ – 2Br, 100); HRMS *m/z* calcd for C₆H₆⁷⁹Br₂S 267.8557, found 267.8551.

3,4-Dihydro-1*H*-3 λ^4 -thieno[3,4-*d*][1,2]oxathiin-3-one (116)

取化合物115 (260毫克,0.96毫莫耳)、Rongalite (590毫克,3.84毫莫耳) 及 TBAB (155毫克,0.48毫莫耳) 為相轉移催化劑,以 DMF (20毫升) 當 溶劑,室溫攪拌12小時,加入去離子水 (20毫升) 稀釋,以二氯甲烷 (3×20 毫升) 萃取三次,硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以二 氯甲烷為沖提液進行管柱層析,得化合物116 (78毫克),產率47%。

Colorless oil; $R_f = 0.53$ (CH₂Cl₂); ¹H NMR (CDCl₃, 300 MHz) δ 7.19 (1H, d, J = 2.8 Hz), 7.15 (1H, d, J = 2.8 Hz), 5.38, 5.08 (2H, ABq, J = 14.0 Hz), 4.15, 3.78 (2H, ABq, J = 15.5 Hz); ¹³C NMR (CDCl₃, 75.4 MHz) δ 130.2 (Cq), 124.3 (CH), 123.8 (Cq), 119.5 (CH), 59.6 (CH₂), 52.7 (CH₂); MS (EI) *m/z* 174/175 (M⁺, 12/3), 110/111/112 (M⁺ - SO₂, 60/100/98); HRMS *m/z* calcd for C₆H₆O₂S₂ 173.9809, found (送測中).

Dimethyl (5*R*,6*R*)-4,5,6,7-tetrahydrobenzo[*c*]thiophene-5,6-dicarboxylate^{22g} (117)

取化合物116 (35毫克,0.2毫莫耳) 及dimethylfumarate (86毫克,0.6毫 莫耳) 溶於甲苯 (2毫升),進行熱化學封管反應,在180 °C下反應12小時 後,抽乾溶劑,以正己烷:丙酮 = 10:1為沖提液進行管柱層析,得化合 物117 (12毫克),產率24%,及化合物118 (1.1毫克),產率3%。

Light yellow soild; mp 87–91 °C; $R_f = 0.3$ (hexane:acetone = 4:1); ¹H

NMR (CDCl₃, 300 MHz) δ 6.93 (2H, s), 3.73 (6H, s), 3.25–3.14 (2H, m), 3.10–2.98 (2H, m), 2.85–2.74 (2H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 174.8 (Cq), 134.8 (Cq), 119.8 (CH), 52.1 (CH3), 42.8 (CH), 28.4 (CH2); MS (EI) *m/z* 254/255/256 (M⁺, 52/6/3), 223 (26), 194 (48), 135 (100); HRMS *m/z* calcd for C₁₂H₁₄O₄S 254.0613, found (送測中).

2,3-Dihydro-1*H*-2 λ^6 -thieno[3,4-*c*]thiophene-2,2-dione (118)

Colorless solid; mp 163–164.5 °C (hexane/acetone); $R_f = 0.18$ (hexane:acetone = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 7.27 (2H, s), 4.27 (4H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 130.6 (Cq), 120.8 (CH), 54.7 (CH₂); MS (EI) m/z 174/175 (M⁺, 48/6), 110 (M⁺ – SO₂, 100); HRMS *m*/*z* calcd for C₆H₆O₂S₂ 173.9809, found (送測中).

4-[(tert-Butylsulfinyl)methyl]-2,5-dimethyl-3-thienylmethanol (128)

取化合物127 (370毫克,1.83毫莫耳) 溶於無水四氫呋喃 (10毫升),於 冰浴下將Grignard試劑 (2.75毫莫耳) 逐滴加入,攪拌1小時後,以飽和氯化 銨水溶液終止反應,以二氯甲烷 (3 × 10毫升) 萃取3次,收集有機層,以 硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷:丙酮 =4:1
為沖提液進行管柱層析,得化合物128(341毫克),產率72%。

Light yellow solid; mp 122.5–125 °C (CH₂Cl₂/hexane); $R_f = 0.38$ (hexane:acetone = 3:2); ¹H NMR (CDCl₃, 300 MHz) δ 4.46, 4.32 (2H, ABq, J = 12.6 Hz), 3.77, 3.68 (2H, ABq, J = 13.2 Hz), 2.42 (3H, s), 2.36 (3H, s), 1.37 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 137.8 (Cq), 134.0 (Cq), 133.8 (Cq), 125.8 (Cq), 55.3 (CH₂), 53.7 (Cq), 43.0 (CH₂), 22.7 (CH₃), 13.2 (CH₃), 12.8 (CH₃); MS (EI) m/z 260/261/262 (M⁺, 0.82/1.05/0.23), 243 (M⁺ – OH, 2), 154/155 (M⁺ – OH – StBu, 67/100); HRMS m/z calcd for C₁₂H₂₀O₂S₂ 260.0905, found (送測中).

4-[(tert-Butylsulfinyl)methyl]-2,5-dimethyl-3-thiophenecarbaldehyde (129)

取化合物128 (600毫克,2.3毫莫耳) 溶於無水二氯甲烷 (15毫升),室 溫下加入PCC (755毫克,3.5毫莫耳) 和矽藻土 (0.8克),攪拌1小時後,過 濾固體並濃縮殘留液,所得之粗產物以正已烷:丙酮 =4:1為沖提液進行 管柱層析,得化合物129 (355克),產率60%。

Clear cyrsital after recrystallization from a solvent of CH₂Cl₂ and hexane; mp 159–161 °C (CH₂Cl₂/hexane); $R_f = 0.4$ (hexane:acetone = 3:2); ¹H NMR (CDCl₃, 300 MHz) δ 10.07 (1H, s), 4.49, 3.63 (2H, ABq, J = 12.3 Hz), 2.72 (3H, s), 2.43 (3H, s), 1.39 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 185.1 (CH), 152.4 (Cq), 137.0 (Cq), 134.0 (Cq), 127.2 (Cq), 53.8 (Cq), 44.6 (CH₂), 23.1 (CH₃), 13.1 (2CH₃); MS (EI) m/z 258 (M⁺, 1), (M⁺ + 1 – *t*Bu, 19), 153 (M⁺ – SOtBu, 100); HRMS *m*/z calcd for C₁₂H₁₈O₂S₂ 258.0748, found (送測中); Anal. Calcd for C₁₂H₁₈O₂S₂: C, 55.78; H, 7.02. Found: C, 55.58; H, 7.01.

(*R*s*, *S**)-1-4-[(*tert*-Butylsulfinyl)methyl]-2,5-dimethyl-3-thienyl-5-hexen-1ol (130a)

取化合物129 (200毫克,0.77毫莫耳) 溶於無水四氫呋喃 (5毫升),於 冰浴下將製備好的Grignard試劑 (1.54毫莫耳) 逐滴加入,攪拌1小時後,以 飽和氯化銨水溶液終止反應,以二氯甲烷 (3 × 10毫升) 萃取3次,收集有 機層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正已烷:丙 酮 =4:1為沖提液進行管柱層析,得化合物130a (190毫克),產率75%。

Light yellow solid; mp 82–86 °C (CH₂Cl₂/hexane); $R_f = 0.48$ (hexane:acetone = 3:2); ¹H NMR (CDCl₃, 300 MHz) δ 5.87–5.73 (1H, m), 5.03–4.92 (2H, m), 4.68 (1H, dd, J = 8.1, 6.3 Hz), 3.78 (2H, s), 2.42 (3H, s), 2.36 (3H, s), 2.15–1.89 (3H, m), 1.82–1.70 (1H, m), 1.63–1.39 (2H, m), 1.35 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 139.6 (Cq), 138.7 (CH), 134.3 (Cq), 131.8 (Cq), 126.3 (Cq), 114.6 (CH₂), 69.0 (CH), 53.7 (Cq), 43.4 (CH₂), 35.5 (CH₂), 33.6 (CH₂), 25.8 (CH₂), 23.0 (CH₃), 14.2 (CH₃), 13.5 (CH₃); MS (EI) m/z 308 (M⁺, 0.02), 223 (M⁺ – SO*t*Bu, 98), 205 (M⁺ – 1 – SO*t*Bu, 100); HRMS m/z calcd for C₁₇H₂₈O₂S₂ 328.1687, found (送測 中).

(*R*s*, *S**)-1-4-[(*tert*-Butylsulfinyl)methyl]-2,5-dimethyl-3-thienyl-6-hepten-1-ol (130b)

取化合物129 (200毫克,0.77毫莫耳) 溶於無水四氫呋喃 (5毫升),於 冰浴下將製備好的Grignard試劑 (1.54毫莫耳) 逐滴加入,攪拌1小時後,以 飽和氯化銨水溶液終止反應,以二氯甲烷 (3 × 10毫升) 萃取3次,收集有 機層,以硫酸鎂乾燥後,過濾並濃縮有機層,所得之粗產物以正己烷:丙 酮 =4:1為沖提液進行管柱層析,得化合物130b (120毫克),產率45%。

Clear cyrsital after recrystallization from a solvent of CH₂Cl₂ and hexane; mp 77–79 °C (CH₂Cl₂/hexane); $R_f = 0.5$ (hexane:acetone = 3:2); ¹H NMR (CDCl₃, 300 MHz) δ 5.86–5.73 (1H, m), 5.01–4.90 (2H, m), 4.67 (1H, dd, J =8.3, 6.5 Hz), 3.78 (2H, s), 2.41 (3H, s), 2.36 (3H, s), 2.20–1.23 (8H, m), 1.35 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 139.6 (Cq), 138.9 (CH), 134.3 (Cq), 131.7 (Cq), 126.3 (Cq), 114.3 (CH₂), 69.0 (CH), 53.7 (Cq), 43.4 (CH₂), 35.9 (CH₂), 33.7 (CH₂), 28.8 (CH₂), 26.0 (CH₂), 23.0 (CH₃), 14.2 (CH₃), 13.5 (CH₃); MS (送測中); HRMS *m*/*z* calcd for C₁₈H₃₀O₂S₂ 342.1687, found (送測中).

3,4-Thiophenediamine (137)

¹H NMR (CDCl₃, 300 MHz) δ 6.17 (2H, s), 3.45 (4H, br. s).

2,3-Di(bromomethyl)thieno[3,4-b]pyrazine (138)

取化合物137 (285毫克,2.5毫莫耳) 及1,4-dibromobutane-2,3-dione (610 毫克,2.5毫莫耳) 溶於苯 (15毫升),在Dean-Stark的裝置下加熱迴流1小時 後,抽乾溶劑,所得之粗產物以正已烷:乙酸乙酯 = 10:1為沖提液進行 管柱層析,得化合物138 (650毫克),產率81%。

Yellow solid; mp 123–126 °C; $R_f = 0.48$ (hexane:ethylacetate = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 8.02 (2H, s), 4.83 (4H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 150.0 (Cq), 141.4 (Cq), 118.5 (CH), 31.1 (CH₂); MS (EI) *m/z* 324/322 (M⁺, 30/52), 243 (M⁺ – ⁷⁹Br, 100), 241 (M⁺ – ⁸¹Br, 93), 162/161 (26/43), 82 (68); HRMS *m/z* calcd for C₈H₆⁷⁹Br₂N₂S 319.8618, found (送測中).

3,4-Dihydro-1*H*- $3\lambda^4$ -[1,2]oxathiino[4,5-*b*]thieno[3,4-*e*]pyrazin-3-one (134)

取化合物138 (500毫克,1.55毫莫耳)、Rongalite (0.96克,6.2毫莫耳), 以 DMF (10毫升) 當溶劑,於冰浴下攪拌3小時,加入去離子水 (20毫升) 稀釋,以二氯甲烷 (3 × 50毫升)萃取三次,硫酸鎂乾燥後,過濾並濃縮有 機層,所得之粗產物以正己烷:乙酸乙酯 = 4:1為沖提液進行管柱層析, 由於化合物134通過矽膠管柱會分解以致無法單離出。(化合物139為其分解 產物)

2,3-Dimethylthieno[3,4-b]pyrazine (139)

Colorless solid; mp 143–145 °C (CH₂Cl₂) (lit.⁷³ 143 °C); ¹H NMR (CDCl₃, 300 MHz) δ 7.79 (2H, s), 2.63 (6H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 153.1 (Cq), 141.7 (Cq), 115.9 (CH), 23.6 (CH₃); MS (EI) *m/z* 166/164 (M⁺, 9/100), 123 (41); HRMS *m/z* calcd for C₈H₈N₂S 164.0408, found (送測中); Anal. Calcd for C₈H₈N₂S: N, 17.06; C, 58.51; H, 4.91. Found: N, 17.16; C, 58.42; H, 5.13.

Ethyl 2-[(tert-butylsulfanyl)methyl]nicotinate (158)

取ethyl 2-methylnicotinate (5.0克,30.3毫莫耳),NBS (5.4克,30.3毫莫 耳),AIBN (50毫克,0.3毫莫耳) 溶於四氯化碳 (120毫升),加熱迴流5小 時,待冷卻後過濾並濃縮,將溴化之粗產物溶於乙醇 (30毫升),加入第三 丁基硫醇 (2.7克,30.3毫莫耳),於室溫下逐滴加入40%氫氧化鈉水溶液 (3 毫升),攪拌30分鐘後,倒入100毫升去離子水稀釋,再以3 M的HCl中和至 pH約7,以二氯甲烷 (3×20毫升) 萃取3次,收集有機層,以硫酸鎂乾燥後, 過濾並濃縮有機層,所得之粗產物以正已烷:乙酸乙酯 = 10:1為沖提液 進行管柱層析,得化合物158 (5.37克),產率70%。

Light yellow liquid; $R_f = 0.23$ (hexane:ethyl acetate = 10:1); ¹H NMR (CDCl₃, 300 MHz) δ 8.63 (1H, dd, J = 4.8, 1.7 Hz), 8.20 (1H, dd, J = 7.8, 1.7 Hz), 7.25 (1H, dd, J = 7.8, 4.8 Hz), 4.41 (2H, q, J = 7.1 Hz), 4.37 (2H, s), 1.42

149

(3H, t, J = 7.1 Hz), 1.34 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 166.2 (Cq), 160.5 (Cq), 151.3 (CH), 139.0 (CH), 126.1 (Cq), 121.7 (CH), 61.4 (CH₂), 43.0 (Cq), 34.3 (CH₂), 30.9 (CH₃), 14.2 (CH₃); MS (EI) *m/z* 254 (M⁺ + 1, 3), 253 (M⁺, 18), 238 (M⁺ – CH₃, 3), 197 (M⁺ – *t*Bu, 100), 151 (34), 125 (34); HRMS *m/z* calcd for C₁₃H₁₉NO₂S 253.1136, found 253.1132.

2-[(*tert*-Butylsulfanyl)methyl]-3-pyridylmethanol (159)

OH S*t*Bu

取化合物158 (500毫克,1.97毫莫耳) 溶於四氫呋喃 (10毫升),於室溫 下加入氫鋁化鋰 (150毫克,3.94毫莫耳),室溫攪拌10分鐘,加入2毫升甲 醇終止反應,過一短矽澡土管柱去除鹽類,以甲醇沖洗,濃縮,得化合物 159 (406毫克),產率96%。

Light yellow solid; mp 95–97 °C (CH₂Cl₂); R_f = 0.38 (hexane:ethyl acetate = 1:1); ¹H NMR (CDCl₃, 300 MHz) δ 8.45 (1H, d, *J* = 4.8 Hz), 7.75 (1H, d, *J* = 7.6 Hz), 7.22 (1H, dd, *J* = 7.5, 4.9 Hz), 4.78 (2H, s), 4.06 (2H, s), 2.95 (1H, br s), 1.38 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 156.1 (Cq), 148.2 (CH), 137.4 (CH), 135.1 (Cq), 122.8 (CH), 62.3 (CH₂), 43.8 (Cq), 33.3 (CH₂), 30.7 (CH₃); MS (EI) *m*/*z* 211 (M⁺, 3), 154 (M⁺ – *t*Bu, 14), 122 (M⁺ – *St*Bu, 66), 121 (M⁺ – 1 – *St*Bu, 100), 93 (43); HRMS *m*/*z* calcd for C₁₁H₁₇NOS 211.1031, found (送 測 中).

2-[(tert-Butylsulfinyl)methyl]-3-pyridylmethanol (160)

OH

取化合物159 (400毫克,1.89毫莫耳) 溶於甲醇 (10毫升) 和去離子水 (10毫升),於室溫下加入過碘酸鈉 (445毫克,2.08毫莫耳),待雲霧狀生成, 持續攪拌30分鐘,加入20毫升去離子水稀釋,以二氯甲烷 (3×15毫升) 萃 取3次,收集有機層,以硫酸鈉乾燥後,過濾並濃縮有機層,得化合物160 (410毫克),產率95%。

Light yellow solid; mp 99.5–101 °C (CH₂Cl₂); R_f = 0.08 (ethyl acetate); ¹H NMR (CDCl₃, 300 MHz) δ 8.61 (1H, d, J = 4.5 Hz), 7.76 (1H, d, J = 7.5 Hz), 7.31 (1H, dd, J = 7.6, 4.8 Hz), 4.73, 4.49 (2H, ABq, J = 12.4 Hz), 4.26, 4.05 (2H, ABq, J = 11.9 Hz), 1.42 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 150.7 (Cq), 149.3 (CH), 139.2 (CH), 138.0 (Cq), 123.6 (CH), 62.0 (CH₂), 54.5 (Cq), 51.0 (CH₂), 23.0 (CH₃); MS (EI) *m*/*z* 228 (M⁺ + 1, 2), 171 (M⁺ – *t*Bu, 47), 123 (M⁺ – SO*t*Bu, 100); HRMS *m*/*z* calcd for C₁₁H₁₇NO₂S 227.0980, found (送測 中).

7,8-Dihydro-5*H*-7 λ^4 -[1,2]oxathiino[4,5-*b*]pyridin-7-one⁶⁷ (155)

取化合物160(150毫克,0.66毫莫耳)溶於二氯甲烷(5毫升),加入NCS (97毫克,0.73毫莫耳),加熱迴流1小時後,倒入10毫升5% Na₂SO₃(aq)終止 反應,以二氯甲烷(3×10毫升)萃取3次,收集有機層,以硫酸鈉乾燥後, 過濾並濃縮有機層,所得之粗產物以乙酸乙酯為沖提液進行管柱層析,得 化合物155(51毫克),產率46%。

Light yellow oil; $R_f = 0.38$ (EtOAc); ¹H NMR (CDCl₃, 300 MHz) δ 8.59 (1H, d, J = 4.4 Hz), 7.53 (1H, d, J = 7.7 Hz), 7.30 (1H, dd, J = 7.8, 4.9 Hz),

5.41, 5.03 (2H, ABq, *J* = 14.4 Hz), 4.48, 3.81 (2H, ABq, *J* = 16.2 Hz); ¹³C NMR (CDCl₃, 75.4 MHz) δ 149.6 (CH), 145.6 (Cq), 133.1 (CH), 128.5 (Cq), 122.9 (CH), 60.9 (CH₂), 57.4 (CH₂).

2-[(*tert*-Butylsulfanyl)methyl]nicotinaldehyde (161)

CHO S*t*Bu

方法 (1):

取化合物159 (425毫克,1.92毫莫耳) 溶於無水二氯甲烷 (10毫升),室 溫下加入PCC (828毫克,3.84毫莫耳) 和矽藻土 (0.6克),攪拌1小時後,過 濾固體並濃縮殘留液,所得之粗產物以正已烷:乙酸乙酯 =4:1為沖提液 進行管柱層析,得化合物161 (145毫克),產率36%。 方法 (2):

取化合物159 (1.58克,7.48毫莫耳) 溶於無水二氯甲烷 (50毫升),室 溫下加入二氧化錳 (13克,0.15莫耳),攪拌15小時後,通過一短矽藻土管 柱過濾固體,並以二氯甲烷洗之、濃縮殘留液,所得之粗產物以正已烷: 乙酸乙酯 = 4:1為沖提液進行管柱層析,得化合物161 (1.19克),產率76%。

Light yellow crystal; mp 58–61 oC (acetone/hexane); $R_f = 0.35$ (hexane:EtOAc = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 10.39 (1H, s), 8.70 (1H, dd, J = 4.8, 1.8 Hz), 8.16 (1H, dd, J = 7.8, 1.8 Hz), 7.38 (1H, dd, J = 7.7, 4.8 Hz), 4.32 (2H, s), 1.39 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 190.4 (CH), 160.6 (Cq), 153.1 (CH), 138.1 (CH), 129.5 (Cq), 122.8 (CH), 43.9 (Cq), 32.7 (CH₂), 30.7 (CH₃); MS (EI) m/z 210 (M⁺ + 1, 53), 152 (M⁺ – tBu, 100), 124 (M⁺ + 1 – tBu – CHO, 40), 120 (M⁺ – StBu, 29); HRMS m/z calcd for

152

C₁₁H₁₅NOS 209.0874, found (送測中).

1-2-[(tert-Butylsulfanyl)methyl]-3-pyridyl-5-hexen-1-ol (162a)

取化合物161 (256毫克,1.22毫莫耳) 溶於無水四氫呋喃 (5毫升),於 冰浴下將製備好的Grignard試劑 (2.4毫莫耳) 逐滴加入,攪拌1小時後,以 去離子水終止反應,再以3 M的HCl中和至pH約7,以二氯甲烷 (3×10毫升) 萃取3次,收集有機層,以硫酸鈉乾燥後,過濾並濃縮有機層,所得之粗產 物以正己烷:丙酮 = 10:1為沖提液進行管柱層析,得化合物162a (256毫 克),產率75%。

Light yellow oil; $R_f = 0.3$ (hexane:EtOAc = 4:1);¹H NMR (CDCl₃, 300 MHz) δ 8.43 (1H, dd, J = 4.8, 1.6 Hz), 7.82 (1H, dd, J = 7.8, 1.5 Hz), 7.22 (1H, dd, J = 7.8, 4.8 Hz), 5.88–5.74 (1H, m), 5.08–4.94 (3H, m), 4.01 (2H, s), 2.64 (1H, br s), 2.13 (2H, q, J = 7.1 Hz), 2.09–1.40 (4H, m), 1.38 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 154.7 (Cq), 147.9 (CH), 138.9 (Cq), 138.4 (CH), 134.7 (CH), 122.8 (CH), 114.9 (CH₂), 69.3 (CH), 43.6 (Cq), 36.7 (CH₂), 33.5 (CH₂), 33.1 (CH₂), 30.7 (CH₃), 25.3 (CH₂); MS (EI) *m*/*z* 280 (M⁺ + 1, 3.2), 279 (M⁺, 6), 222 (M⁺ – tBu, 29), 190 (M⁺ – StBu, 38), 148 (61), 120 (100); HRMS *m*/*z* calcd for C₁₆H₂₅NOS 279.1657, found (送測中).

1-2-[(tert-Butylsulfanyl)methyl]-3-pyridyl-6-hepten-1-ol (162b)

OH Ś*t*Bu

取化合物161 (500毫克,2.39毫莫耳) 溶於無水四氫呋喃 (10毫升),於 冰浴下將製備好的Grignard試劑 (4.8毫莫耳) 逐滴加入,攪拌1小時後,以 去離子水終止反應,再以3 M的HCl中和至pH約7,以二氯甲烷 (3×10毫升) 萃取3次,收集有機層,以硫酸鈉乾燥後,過濾並濃縮有機層,所得之粗產 物以正已烷:丙酮 = 10:1為沖提液進行管柱層析,得化合物162b (240毫 克),產率34%。

Light yellow oil; $R_f = 0.18$ (hexane:acetone = 4:1); ¹H NMR (CDCl₃, 300 MHz) δ 8.43 (1H, dd, J = 4.8, 1.9 Hz), 7.82 (1H, dd, J = 7.8, 1.6 Hz), 7.23 (1H, dd, J = 7.8, 4.8 Hz), 5.87–5.73 (1H, m), 5.05–4.91 (3H, m), 4.02 (2H, s), 2.56 (1H, br s), 2.11–2.03 (2H, m), 1.90–1.73 (3H, m), 1.61–1.33 (3H, m), 1.38 (9H, s); ¹³C NMR (CDCl₃, 75.4 MHz) δ 154.7 (Cq), 147.9 (CH), 138.9 (Cq), 138.7 (CH), 134.8 (CH), 122.8 (CH), 114.5 (CH₂), 69.4 (CH), 43.6 (Cq), 37.2 (CH₂), 33.6 (CH₂), 33.1 (CH₂), 30.7 (CH₃), 28.7 (CH₂), 25.6 (CH₂); MS (EI) *m*/*z* 293 (M⁺, 3), 236 (M⁺ – *t*Bu, 11), 204 (M⁺ – S*t*Bu, 33), 160 (56), 120 (100); HRMS *m*/*z* calcd for C₁₇H₂₇NOS 293.1813, found (送測 中).

1-2-[(tert-Butylsulfinyl)methyl]-3-pyridyl-5-hexen-1-ol (163a)

ΟH o^{∽ St}Bu

取化合物162a (318毫克,1.14毫莫耳) 溶於甲醇 (5毫升) 和去離子水 (5毫升),於室溫下加入過碘酸鈉 (267毫克,1.25毫莫耳),待雲霧狀生成,持續攪拌1小時,加入20毫升去離子水稀釋,以二氯甲烷 (3 × 10毫升) 萃

取3次,收集有機層,以硫酸鈉乾燥後,過濾並濃縮有機層,所得之粗產物 163a (267毫克,異構物比約2:1),產率79%,未經純化可直接進行下一步 反應。

Light yellow oil; $R_f = 0.37$ (hexane:acetone = 3:2);major isomer: ¹H NMR (CDCl₃, 300 MHz) δ 8.58 (1H, dd, J = 4.8, 1.6 Hz), 7.87 (1H, dd, J = 8.0, 1.6 Hz), 7.32 (1H, dd, J = 7.9, 4.7 Hz), 5.85–5.72 (1H, m), 5.04–4.92 (2H, m), 4.85–4.76 (1H, m), 4.33, 3.94 (2H, ABq, J = 11.9 Hz), 2.15–1.54 (6H, m), 1.41 (9H, s); minor isomer: ¹H NMR (CDCl₃, 300 MHz) δ 8.55 (1H, dd, J = 4.8, 1.5 Hz), 7.52 (1H, dd, J = 7.8, 1.5 Hz), 7.23 (1H, dd, J = 7.8, 4.7 Hz), 5.85–5.72 (1H, m), 5.04–4.92 (2H, m), 4.85–4.76 (2H, m), 3.89 (1H, d, J = 11.2 Hz), 2.15–1.54 (6H, m), 1.37 (9H, s); two isomers mixture: ¹³C NMR (CDCl₃, 75.4 MHz) δ 149.7 (Cq), 149.2 (Cq), 148.9 (CH), 148.5 (CH), 141.9 (Cq), 141.1 (Cq), 138.4 (2CH), 136.8 (CH), 135.0 (CH); 123.7 (CH), 122.6 (CH), 114.8 (CH₂), 114.7 (CH₂), 73.8 (CH), 67.9 (CH), 54.3 (2Cq), 50.5 (CH₂), 50.1 (CH₂), 39.1 (CH₂), 34.4 (CH₂), 33.6 (CH₂), 33.5 (CH₂), 25.5 (CH₂), 24.9 (CH₂), 23.2 (CH₃), 23.0 (CH₃); MS (EI) *m*/*z* 296 (M⁺ + 1, 15), 240 (69), 239 (86), 123 (95), 41 (100); HRMS *m*/*z* calcd for C₁₆H₂₅NO₂S 295.1606, found (送測 中).

1-2-[(*tert*-Butylsulfinyl)methyl]-3-pyridyl-6-hepten-1-ol (163b)

取化合物162b (240毫克,0.82毫莫耳) 溶於甲醇 (5毫升) 和去離子水 (5毫升),於室溫下加入過碘酸鈉 (193毫克,0.9毫莫耳),待雲霧狀生成,

155

持續攪拌1小時,加入20毫升去離子水稀釋,以二氯甲烷 (3 × 10毫升) 萃 取3次,收集有機層,以硫酸鈉乾燥後,過濾並濃縮有機層,所得之粗產物 163b (209毫克,異構物比約2:1),產率82%,未經純化可直接進行下一步 反應。

Light yellow oil; $R_f = 0.43$ (hexane:acetone = 2:3); major isomer: ¹H NMR (CDCl₃, 300 MHz) δ 8.58–8.54 (1H, m), 7.87 (1H, d, J = 7.4 Hz), 7.31 (1H, dd, J = 7.9, 4.7 Hz), 5.86–5.70 (1H, m), 5.04–4.88 (2H, m), 4.84–4.71 (1H, m), 4.33, 3.95 (2H, ABq, J = 11.9 Hz), 2.10–1.32 (8H, m), 1.41 (9H, s); minor isomer: ¹H NMR (CDCl₃, 300 MHz) δ 8.58–8.54 (1H, m), 7.52 (1H, d, J = 7.7Hz), 7.22 (1H, dd, J = 7.7, 4.8 Hz), 5.86–5.70 (1H, m), 5.04–4.88 (2H, m), 4.84–4.71 (2H, m), 3.90 (1H, d, J = 11.5 Hz), 2.10–1.32 (8H, m), 1.37 (9H, s); two isomers mixture: ¹³C NMR (CDCl₅, 75.4 MHz) δ 149.8 (Cq), 149.3 (Cq), 148.8 (CH), 148.4 (CH), 142.0 (Cq), 141.1 (Cq), 138.7 (2CH), 136.7 (CH), 135.0 (CH), 123.7 (CH), 122.6 (CH), 114.4 (2CH₂), 73.8 (CH), 68.0 (CH), 54.3 (2Cq), 50.6 (CH₂), 50.1 (CH₂), 39.5 (CH₂), 23.2 (CH₂), 23.0 (CH₂); MS (EI) m/z 310 (M⁺ + 1, 11), 253 (M⁺ + 1 – *t*Bu, 62), 204 (M⁺ – SO*t*Bu, 19), 190 (38), 123 (100); HRMS m/z caled for C₁₇H₂₇NO₂S 309.1762, found (送利 中).

5-(4-Pentenyl)-7,8-dihydro-5H-7 λ^4 -[1,2]oxathiino[4,5-*b*]pyridin-7-one

(164a)

取化合物163a (265毫克, 0.9毫莫耳) 溶於二氯甲烷 (5毫升), 加入NCS

(134毫克,1.0毫莫耳),加熱迴流1小時後,倒入10毫升5% Na₂SO₃(aq)終止 反應,以二氯甲烷 (3×10毫升) 萃取3次,收集有機層,以硫酸鈉乾燥後, 過濾並濃縮有機層,所得之粗產物以正已烷:丙酮 =5:1為沖提液進行管 柱層析,得化合物164a (136毫克),產率64% (異構物比9:1,由¹H NMR 積分分析而來)。

Major and less polar isomer (164a): light yellow oil; $R_f = 0.45$ (hexane:acetone = 2:3);¹H NMR (CDCl₃, 300 MHz) δ 8.57 (1H, d, J = 4.8 Hz), 7.58 (1H, d, J = 7.5 Hz), 7.31 (1H, dd, J = 7.8, 4.8 Hz), 5.88–5.74 (1H, m), 5.36 (1H, dd, J = 8.5, 3.5 Hz), 5.10-4.98 (2H, m), 4.52, 3.78 (2H, ABq, J = 15.8 Hz),2.25-2.10 (3H, m), 2.07-1.94 (1H, m), 1.74-1.60 (2H, m); ¹³C NMR (CDCl₃, 75.4 MHz) & 149.7 (CH), 145.4 (Cq), 138.0 (CH), 132.6 (CH), 131.4 (Cq), 123.2 (CH), 115.3 (CH₂), 79.3 (CH), 58.1 (CH₂), 34.5 (CH₂), 32.2 (CH₂), 24.5 (CH₂); MS (EI) m/z 238 (M⁺ + 1, 1.4), 173 (M⁺ – SO₂, 44), 144 (66), 130 (100), 117 (61); HRMS m/z calcd for C17H15NO2S 237.0823, found (送测中); minor and more polar isomer (164'a): light yellow oil; $R_f = 0.4$ (hexane:acetone = 2:3);¹H NMR (CDCl₃, 300 MHz) δ 8.62 (1H, d, J = 4.9 Hz), 7.58 (1H, d, J = 7.6 Hz), 7.35 (1H, dd, J = 7.8, 4.9 Hz), 5.90–5.76 (1H, m), 5.13 (1H, dd, J = 8.8, 4.4 Hz), 5.11–4.98 (2H, m), 4.19 (2H, s), 2.29–2.05 (3H, m), 1.90–1.60 (3H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 149.2 (CH), 146.3 (Cq), 137.8 (CH), 132.5 (Cq), 132.0 (CH), 122.9 (CH), 115.3 (CH₂), 71.6 (CH), 58.5 (CH₂), 33.1 (CH₂), 32.5 (CH₂), 23.8 (CH₂); MS (EI) m/z 238 (M⁺ + 1, 5), 173 (M⁺ - SO₂, 72), 144 (86), 130 (100), 117 (60); HRMS m/z calcd for C₁₇H₁₅NO₂S 237.0823, found (送測中).

5-(5-Hexenyl)-7,8-dihydro-5H-7 λ^4 -[1,2]oxathiino[4,5-*b*]pyridin-7-one (164b)

取化合物163b(226毫克,0.73毫莫耳)溶於二氯甲烷(5毫升),加入 NCS(107毫克,0.8毫莫耳),加熱迴流1小時後,倒入10毫升5% Na₂SO₃(aq) 終止反應,以二氯甲烷(3×10毫升)萃取3次,收集有機層,以硫酸鈉乾 燥後,過濾並濃縮有機層,所得之粗產物以正己烷:丙酮=5:1為沖提液 進行管柱層析,得化合物164(116毫克),產率63%(異構物比9:1,由¹H NMR 積分分析而來)。

Major and less polar isomer (**164b**): light yellow oil; $R_f = 0.5$ (hexane:acetone = 2:3); ¹H NMR (CDCl₃, 300 MHz) δ 8.57 (1H, d, J = 4.7 Hz), 7.58 (1H, d, J = 7.7 Hz), 7.31 (1H, dd, J = 7.7, 4.9 Hz), 5.87–5.74 (1H, m), 5.35 (1H, dd, J = 8.3, 3.4 Hz), 5.94–4.94 (2H, m), 4.53, 3.77 (2H, ABq, J = 15.8 Hz), 2.25–1.94 (4H, m), 1.69–1.40 (4H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 149.2 (CH), 146.4 (Cq), 138.4 (CH), 132.6 (Cq), 132.0 (CH), 122.9 (CH), 114.7 (CH₂), 71.7 (CH), 58.7 (CH₂), 33.5 (CH₂), 33.1 (CH₂), 28.5 (CH₂), 24.2 (CH₂); MS (EI) m/z 252 (M⁺ + 1, 0.15), 187 (M⁺ – SO₂, 52), 186 (M⁺ – 1 – SO₂, 100), 158 (66), 144 (78), 130 (78), 41 (92); minor and more polar isomer (**164'b**): orange oil; $R_f = 0.45$ (hexane:acetone = 2:3); ¹H NMR (CDCl₃, 300 MHz) δ 8.61 (1H, d, J = 4.8 Hz), 7.58 (1H, d, J = 7.8 Hz), 7.34 (1H, dd, J = 7.8, 4.8 Hz), 5.89–5.75 (1H, m), 5.11 (1H, dd, J = 8.6, 4.5 Hz), 5.07–4.93 (2H, m), 4.18 (2H, s), 2.21–2.00 (4H, m), 1.68–1.45 (4H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 149.7 (CH), 145.5 (Cq), 138.5 (CH), 132.6 (CH), 131.6 (Cq), 123.2 (CH), 114.7 (CH₂), 79.5 (CH), 58.2 (CH₂), 35.1 (CH₂), 33.5 (CH₂), 28.5 (CH₂), 24.9 (CH₂); MS (EI) *m*/*z* 252 (M⁺ + 1, 0.56), 187 (M⁺ – SO₂, 62), 186 (M⁺ – 1 – SO₂, 100), 158 (47), 144 (50), 130 (78), 41 (63); HRMS *m*/*z* calcd for C₁₃H₁₇NO₂S 251.0980, found (送測中).

Cis- and *Trans*-6,6a,7,8,9,9a-hexahydro-5*H*-cyclopenta[*f*]quinoline (166a)

方法 (1):

取化合物164a (135毫克,0.57毫莫耳) 溶於甲苯 (3毫升),進行熱化 學封管反應,在150°C下反應5小時後,抽乾溶劑,以正已烷:丙酮 = 5:1 為沖提液進行管柱層析,得化合物166a (20毫克,異構物比1:1),產率20%, 及化合物167a (72毫克),產率53%。

方法 (2):

取化合物167a (48毫克,0.20毫莫耳) 溶於氯苯 (3毫升),進行熱化學 封管反應,在230°C下反應10小時後,抽乾溶劑,以正已烷:丙酮 = 5:1 為沖提液進行管柱層析,得化合物166a (33毫克,異構物比1:1),產率95%。 方法 (3):

取化合物164a (50毫克,0.21毫莫耳) 溶於氯苯 (3毫升),進行熱化學 封管反應,在230°C下反應10小時後,抽乾溶劑,以正已烷:丙酮 = 5:1 為沖提液進行管柱層析,得化合物166a (27毫克,異構物比1:1),產率74%。 Yellow oil; $R_f = 0.63$ (hexane:acetone = 2:3); mixture of two isomers: ¹H NMR (CDCl₃, 300 MHz) δ 8.36–8.31 (2H, m), 7.47 (1H, d, J = 7.5 Hz), 7.41 (1H, d, J = 7.6 Hz), 7.10–7.03 (2H, m), 3.13–2.80 (6H, m), 2.50–1.25 (18H, m); mixture of two isomers: ¹³C NMR (CDCl₃, 75.4 MHz) δ 157.6 (Cq), 157.2 (Cq), 146.2 (CH), 145.9 (CH), 137.0 (CH), 136.6 (Cq), 135.9 (Cq), 133.8 (CH), 121.3 (CH), 120.7 (CH), 47.0 (CH), 43.6 (CH), 42.1 (CH), 36.9 (CH), 34.7 (CH₂), 32.9 (CH₂), 32.0 (CH₂), 31.8 (CH₂), 30.4 (CH₂), 28.2 (CH₂), 27.5 (CH₂), 26.9 (CH₂), 24.4 (CH₂), 22.9 (CH₂); MS (EI) *m/z* 173 (M⁺, 16), 172 (M⁺ – 1, 20), 144 (28), 130 (100); HRMS *m/z* calcd for C₁₂H₁₅N 173.1204, found (送測 ψ).

Yellow oil; $R_f = 0.5$ (hexane:acetone = 2:3); ¹H NMR (CDCl₃, 300 MHz) δ 8.57 (1H, d, J = 4.5 Hz), 7.60 (1H, d, J = 7.7 Hz), 7.34 (1H, dd, J = 7.0, 4.5 Hz), 5.89–5.73 (1H, m), 5.11–4.95 (2H, m), 4.45 (2H, s), 4.30 (1H, dd, J = 8.5, 4.7 Hz), 2.26–2.11 (3H, m), 2.05–1.91 (1H, m), 1.90–1.62 (3H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 150.9 (Cq), 150.0 (CH), 137.3 (CH), 133.2 (CH), 131.8 (Cq), 123.7 (CH), 115.7 (CH₂), 65.8 (CH), 56.8 (CH₂), 33.3 (CH₂), 28.7 (CH₂), 25.7 (CH₂); MS (EI) *m/z* 173 (M⁺ – SO₂, 26), 172 (55), 158 (53), 144 (81), 130 (100), 117 (99), 39 (58); HRMS *m/z* calcd for C₁₇H₁₅NO₂S 237.0823, found (送 測中).

Trans-5,6,6a,7,8,9,10,10a-octahydrobenzo[*f*]quinoline⁷² (166b)

方法 (1):

取化合物164b(128毫克,0.51毫莫耳)溶於甲苯(3毫升),進行熱化 學封管反應,在150°C下反應5小時後,抽乾溶劑,以正已烷:丙酮 = 5:1 為沖提液進行管柱層析,得化合物166b(30毫克,內含少量順式異構物), 產率16%,及化合物167b(43毫克),產率34%。

方法 (2):

取化合物167b(34毫克,0.14毫莫耳)溶於氯苯(2毫升),進行熱化學 封管反應,在230°C下反應10小時後,抽乾溶劑,以正已烷:丙酮=5:1 為沖提液進行管柱層析,得化合物166b(25毫克,內含少量順式異構物), 產率95%。

Light yellow oil; $R_f = 0.65$ (hexane:acetone = 2:3); ¹H NMR (CDCl₃, 300 MHz) δ 8.36 (1H, d, J = 4.4 Hz), 7.64 (1H, d, J = 8.0 Hz), 7.12 (1H, dd, J = 7.7, 4.9 Hz), 3.20–2.95 (2H, m), 2.42–1.10 (12H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 157.2 (Cq), 146.3 (CH), 135.8 (Cq), 133.4 (CH), 120.9 (CH), 42.9 (CH), 39.9 (CH), 33.9 (CH₂), 32.8 (CH₂), 30.5 (CH₂), 30.3 (CH₂), 26.6 (CH₂), 26.1 (CH₂); MS (EI) *m*/*z* 187 (M⁺, 100), 144 (33), 130 (31); HRMS *m*/*z* calcd for C₁₃H₁₇N 187.1361, found (送測中).

5-(5-Hexenyl)-6,7-dihydro-5*H*-6λ⁶-thieno[3,4-*b*]pyridine-6,6-dione (167b)

Light yellow oil; $R_f = 0.45$ (hexane:acetone = 2:3); ¹H NMR (CDCl₃, 300 MHz) δ 8.57 (1H, d, J = 4.2 Hz), 7.59 (1H, d, J = 7.9 Hz), 7.33 (1H, dd, J = 7.8, 5.0 Hz), 5.88–5.73 (1H, m), 5.06–4.95 (2H, m), 4.44 (2H, s), 4.29 (1H, dd, J = 8.2, 5.9 Hz), 2.26–2.08 (3H, m), 2.05–1.90 (1H, m), 1.74–1.43 (4H, m); ¹³C NMR (CDCl₃, 75.4 MHz) δ 150.9 (Cq), 150.0 (CH), 138.2 (CH), 133.2 (CH), 131.8 (Cq), 123.7 (CH), 114.9 (CH₂), 65.9 (CH), 56.7 (CH₂), 33.3 (CH₂), 29.3 (CH₂), 28.6 (CH₂), 26.1 (CH₂); MS (EI) *m*/*z* 187 (M⁺ – SO₂, 11), 186 (33), 158 (43), 144 (79), 130 (100), 118 (89); HRMS *m*/*z* calcd for C₁₃H₁₇NO₂S 251.0980, found (送測中).

第五章 参考文獻

- Mikolajczk, M.; Drabowicz, J.; Kielbasiński, P. Chiral Sulfur Reagents: Applications in Asymmetric and Stereoselective Synthesis; CRC Press: Boca Raton, 1997.
- Dittmer, D. C.; Hoey, M. D. In *The Chemistry of Sulphinic Acids, Esters and Their Derivatives*; Patai, S., Eds.; Wiley: Chichiester, 1990; pp 239–273.
- (a) Charlton, J. L.; Durst, T. *Tetrahedron Lett.* 1984, 25, 5287. (b) Durst, T.; Charlton, J. L.; Mount, D. B. *Can. J. Chem.* 1986, 64. 246.
- 4. (a) Thoumazean, E.; Jousseaume, B.; Tiffon, F.; Durboudin, J.-G. *Heterocycles* 1982, *19*, 2247. (b) Sharma, N. K.; de Reinach-Hirtzbach, F.; Durst, T. *Can. J. Chem.* 1976, *54*, 3012. (c) Jung, F.; Molin, M.; Van Den Elzen, R.; Durst, T. *J. Am. Chem. Soc.* 1974, *63*, 935. (d) Yolka, S.; Fellous, R.; Lizzani-Cuvelier, L.; Loiseau, M. *Tetrahedron Lett.* 1998, *39*, 991.
- 5. Hoey, M. D.; Dittmer, D. C. J. Org. Chem. 1991, 56, 1947.
- (a) Hof, F.; Nuckolls, C.; Craig, S. L.; Martín, T.; Rebek, J., Jr. J. Am. Chem. Soc. 2000, 122, 10991. (b) Schmibt, A. H.; Kircher, G.; Willems, M. J. Org. Chem. 2000, 65, 2379. (c) Kotha, S.; Ganesh, T.; Ghost, A. K. Bioorg. Med. Chem. Lett. 2000, 10, 1755.
- 7. Harpp, D. N.; Gleason, J. G. Tetrahedron Lett. 1969, 10, 1447.
- (a) Dhami, K. S. Chem. Ind. (London) 1968, 1004; Indian J. Chem. 1974, 12, 278.
 (b) Henrich, K.; Johnson, B. L. Aust. J. Chem. 1972, 25, 2263.
 (c) Barbieri, W.; Bernardi, L.; Coda, S.; Vigevani, A. Tetrahedron Lett. 1971, 12, 4913.
 (d) Hanson, G.; Kemp, D. S. J. Org. Chem. 1981, 46, 5441.

- (a) Dittmer, D. C.; Henion, R. S.; Takashina, N. J. Org. Chem. 1969, 34, 1310. (b) Dodson, R. M.; Hammen, P. D.; Davis, R. A. J. Org. Chem. 1971, 36, 2693. (c) Sanin, A.; Nenajdenko, V. G.; Kuz'min, V. S.; Balenkova, E. S. J. Org. Chem. 1996, 61, 1986. (d) Sander, W.; Kirschfeld, A.; Halupka, M. J. Am. Chem. Soc. 1997, 119, 981.
- 10.(a) Davis, A. P.; Whitham, G. H. J. Chem. Soc., Chem. Commun. 1981, 741.
 (b) Wolinsky, J.; Marhenke, R. J. J. Org. Chem. 1975, 40, 1766.
- 11.(a) Heldeweg, R. F.; Hogeveen, H. J. Am. Chem. Soc. 1976, 98, 2341. (b)
 Applequist, D. E.; McKenzie, L. F. J. Org. Chem. 1977, 42, 1251. (c)
 Marson, C. M.; Giles, P. R. J. Org. Chem. 1995, 60, 8067. (d) Lear, Y.;
 Schwan, A. L. J. Org. Chem. 1999, 64, 8138.
- 12.(a) Anderson, K. K.; Gaffield, W.; Papanikolaou, N. E.; Foley, J. W.; Perkins, R. I. J. Am. Chem. Soc. 1964, 86, 5637. (b) Harpp, D. N.; Vines, S. M.; Montillier, J. P.; Chan, T. H. J. Org. Chem. 1976, 41, 3987. (c) Liskamp, R. M. J.; Zeegers, H. J. M.; Ottenheijm, H. C. J. J. Org. Chem. 1981, 46, 5408. (d) Najam, A. A.; Tillett, J. G. J. Chem. Soc., Perkin Trans. 2 1975, 858. (e) King, J. F.; Hawsin, A.; Huston, B. L.; Danks, L. J.; Komery, J. Can. J. Chem. 1971, 49, 943. (f) King, J. F.; Hawsin, A.; Huston, B. L.; Danks, A.; Huston, B. L.; Deaken, D. M.; Komery, J. J. Chem. Soc., Chem. Commun. 1969, 33.
- 13.Squires, T. G.; Veniers, C. G.; Hodgson, B. A.; Chang, L. W.; Davis, F. A.; Panunto, T. W. J. Org. Chem. 1981, 46, 2373.
- 14.(a) Haasnoot, C. A. G.; Liskamp, R. M. J.; van Dael, P. A. W.; Noordik, J. H.;
 Ottenheijm, H. C. J. J. Am. Chem. Soc. 1983, 105, 5406. (b) Harpp, D. N.;
 Gleason, J. G. J. Org. Chem. 1971, 36, 1314.

- 15.Buchanan, G. W.; Sharma N. K.; de Reinach-Hirtzbach, F.; Durst, T. *Can. J. Chem.* **1977**, *55*, 44.
- 16.(a) Markovic, D.; Roversi, E.; Scoppelliti, R.; Vogel, P.; Meana, R.; Sordo, J.
 A. *Chem. Eur. J.* 2003, *9*, 4911. (b) Roversi, E.; Scopelliti, R.; Solari, E.;
 Vogel, P.; Braa, P.; Menndez, B.; Sordo, J. A. *Chem. Eur. J.* 2002, *8*, 1336. (c)
 Roversi, E.; Vogel, P. *Helv. Chim. Acta* 2002, *85*, 761.
- 17.(a) Torelli, V.; Philbert, D. *Chem. Abstr.* 1978, *89*, 110126. (b) *Chem. Abstr.* 1980, *93*, 26659. (c) Yolka, S.; Dunach, E.; Loiseau, M.; Lizzani-Cuvelier, L.; Fellous, R.; Rochard, S.; Schippa, C.; George, G. *Flavour Fragr. J.* 2002, *17*, 425. (d) Pirkle, W. H.; Hoekstra, M. S. *J. Am. Chem. Soc.* 1976, *98*, 1832. (e) Katritzky, A. R.; Zhang, Z. Z.; Lang, H.; Jubran, N.; Leichter, L. M.; Sweeny, N. *J. Mater. Chem.* 1997, *7*, 1399.
- 18.(a) Chung, W.-S.; Lin, W.-J.; Liu, W.-D.; Chen, L.-G. J. Chem. Soc., Chem. Commun. 1995, 2537. (b) Chung, W.-S.; Liu, J.-H. Chem. Commun. 1997, 205. (c) Liu, J.-H.; Wu, A.-T.; Huang, M.-H.; Wu, C.-W.; Chung, W.-S. J. Org. Chem. 2000, 65, 3395. (d) Wu, A.-T.; Liu, W.-D.; Chung, W.-S. J. Chinese Chem. Soc. 2002, 49, 77. (e) Liu, W.-D.; Chi, C.-C.; Pai, I.-F.; Wu, A.-T.; Chung, W.-S. J. Org. Chem. 2002, 67, 9267. (f) Chi, C.-C.; Pai, I.-F.; Chung, W.-S. Tetrahedron 2004, 60, 10869.
- 19.Borden, W. T.; Iwamura, H.; Berson, J. A. Acc. Chem. Res. 1994, 27, 109.
- 20.Longuet-Higgins, H. C. J. Chem. Phys. 1950, 18, 265.
- 21. Matsuda, K.; Iwamura, H. J. Am. Chem. Soc. 1997, 119, 7412.
- 22.(a) Stone, K. J.; Greenberg, M. M.; Goodman, J. L.; Peters, K. S.; Berson, J.
 A. J. Am. Chem. Soc. 1986, 108, 8088. (b) Zilm, K. W.; Merrill, R. A.;

Greenberg, M. M.; Berson, J. A. J. Am. Chem. Soc. 1987, 109, 1567. (c) Greenberg, M. M.; Blackstock, S. C.; Berson, J. A. Tetrahedron Lett. 1987, 28, 4263. (d) Stone, K. J.; Greenberg, M. M.; Blackstock, S. C.; Berson, J. A. J. Am. Chem. Soc. 1989, 111, 3659. (e) Greenberg, M. M.; Blackstock, S. C.; Berson, J. A. J. Am. Chem. Soc. 1989, 111, 3671. (f) Scaiano, J. C.; Wintgens, V.; Bedell, A.; Berson, J. A. J. Am. Chem. Soc. 1988, 110, 4050. (g) Scaiano, J. C.; Wintgens, V.; Haider, K.; Berson, J. A. J. Am. Chem. Soc. 1989, 111, 8732. (h) Greenberg, M. M.; Blackstock, S. C.; Berson, J. A.; Merrill, R. A.; Duchamp, J. C.; Zilm, K. W. J. Am. Chem. Soc. 1991, 113, 2318. (i) Haider, K. W.; Clites, J. A.; Berson, J. A. Tetrahedron Lett. 1991, 32, 5305. (j) Bush, L. C.; Heath, R. B.; Berson. J. A. J. Am. Chem. Soc. 1993, 115, 9830. (k) Heath, R. B.; Bush, L. C.; Feng, X.-W.; Berson, J. A.; Scaiano, J. C.; Berinstain, A. B. J. Phys. Chem. 1993, 97, 13355. (1) Lu, H. S. M.; Berson. J. A. J. Am. Chem. Soc. 1996, 118, 265. (m) Bush, L. C.; Heath, R. B.; Feng,, X.-W.; Wang, P. A.; Maksimovic, L.; Song, A. I.; Chung, W.-S.; Berinstain, A. B.; Scaiano, J. C.; Berson, J. A. J. Am. Chem. Soc. 1997, 119, 1406. (n) Bush, L. C.; Makismovic, L.; Feng, X.-W.; Lu, H. S. M.; Berson, J. A. J. Am. Chem. Soc. 1997, 119, 1416. (o) Lu, H. S. M.; Berson, J. A. J. Am. Chem. Soc. 1997, 119, 1428.

- 23.Chou, T.-S. Rev. Heteroatom Chem. 1993, 8, 65.
- 24.(a) Charlton, J. L.; Alauddin, M. M. *Tetrahedron* 1987, 43, 2873. (b) Segura,
 J. L.; Martín, N. *Chem. Rev.* 1999, 99, 3199.
- 25.(a) Garratt, P. J.; Neoh, S. B. J. Org. Chem. 1979, 44, 2667. (b) Braverman,
 S.; Duar, Y.; Sefev, D. Tetrahedron Lett. 1976, 17, 3181.

- 26.(a) Suzuki, T.; Kubimura, K.; Fuchii, H.; Takayama, H. J. Chem. Soc., Chem. Commun. 1990, 1687. (b) Ando, K.; Kankake, M.; Suzuki, T.; Takayama, H. J. Chem. Soc., Chem. Commun. 1992, 1100. (c) Ando, K.; Akadegawa, N.; Takayama, H. J. Chem. Soc., Perkin Trans. I 1993, 2263. (d) Hayashi, T.; Kawakawi, Y.; Konno, K.; Takayama, H. J. Chem. Soc., Perkin Trans. I 1993, 2387. (e) Suzuki, T.; Takayama, H. Heterocycles 1993, 35, 57. (f) Konno, K.; Kawakami, Y.; Hayashi, T.; Takayama, H. Heterocycles 1994, 38, 961. (g) Konno, H.; Kawakami, Y.; Hayashi, T. Takayama, H. J. Chem. Soc., Perkin Trans. I 1994, 1371. (h) Konno, K.; Kankake, M.; Suzuki, T.; Takayama, H. Tetrahedron 1995, 51, 129.
- 27.Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. *Nature* **1990**, *347*, 354.
- 28.(a) Hirsch, A. Synthesis 1995, 895. (b) Hirsch, A. The Chemistry of the Fullerenes, Thieme Medical Publishers: New York, 1994.
- 29.(a) Wilson, S. R.; Wu, Y. J. Am. Chem. Soc. 1993, 115, 10334. (b) Zhang, S.; Brown, T. L.; Du, Y.; Shaoley, J. R. J. Am. Chem. Soc. 1993, 115, 6705. (c) Bausch, J. W.; Prakash, G. K. S.; Tse, D. S.; Lorents, D. C.; Bae, Y. K.; Malhorta, R. J. Am. Chem. Soc. 1991, 113, 3205. (d) Buffinger, D. R.; Ziebarth, R. P.; Stenger, V. A.; Recchia, C.; Pennington, C. H. J. Am. Chem. Soc. 1993, 115, 9267.
- 30.(a) Illescas, B. M.; Martín, N.; Seoane, C.; Ortí, E.; Viruela, P. M.; Viruela, R.; de la Hoz, A. *J. Org. Chem.* 1997, *62*, 7585. (b) Fernández-Paniagua, U. M.; Illescas, B. M.; Martín, N.; Seoane, C.; de al Cruz, P.; de al Hoz, A.; Langa, F. *J. Org. Chem.* 1997, *62*, 3705. (c) Rubin, Y.; Khan, S.; Freedberg,

D. I.; Yeretzian, C. J. Am. Chem. Soc. 1993, 115, 344.

- 31.Sasabe, H.; Kihara, N.; Furusho, Y.; Mizino, K.; Ogawa, A.; Takata, T. Org. Lett. 2004, 6, 3957.
- 32.(a) Prato, M.; Suzuki, T.; Foroudian, H.; Li, Q.; Khemani, K.; Wudl, F. J. Am. Chem. Soc. 1993, 115, 1594. (b) Shiu, L.-L.; Lin, T.-I.; Peng, S.-M.; Her, G.-R.; Ju, D. D.; Lin, S.-K.; Hwang, J.-H.; Mou, C.-Y.; Luh, T.-Y. J. Chem. Soc., Chem. Commun. 1994, 647. (c) Ishida, H.; Itoh, K.; Ito, S.; Ono, N.; Ohno, M. Synlett 2001, 296.
- 33.Gronowitz, S.; Temciuc, M.; Hörnfeldt, A.-B. J. Heterocyclic Chem. 1993, 30, 1111.
- 34.(a) Wynberg, D.; Zwanenburg, D. J. J. Org. Chem. 1964, 29, 1919.; 1969, 34, 333. (b) Fuson, R. D.; McKeever, C. H. In Organic Reactions, Vol. 1; Adams, R., Ed.; Wiley: New York, 1942; pp 63–90. (c) Schmid, R.; Geobel. F.; Warnecke, A.; Labahn, A. J. Chem. Soc., Perkin Trans. 2 1999, 6, 1199.
- 35.(a) Caddick, S. *Tetrahedron* 1995, *51*, 10403. (b) de la Hoz, A.; Díaz-Ortis, A.; Moreno, A.; Langa, F. *Eur. J. Org. Chem.* 2000, 3659. (c) Lidström, P.; Tiernet, J.; Wathey, B.; Westman, J. *Tetrahedron* 2001, *57*, 9225. (d) Kappe, C. O. *Angew. Chem. Int. Ed.* 2004, *43*, 6250.
- 36.(a) 紀志欽,國立交通大學 2001 碩士論文。 (b) 白易芳,國立交通大學 2002 碩士論文。
- 37.Friebolin, H. Basic One- and Two-Dimensional NMR Spectroscopy, VCH: Weinheim 1993; pp 293.
- 38. The semi-empirical calculation (PM3) was used implanted in PC Spartan Wavefunction, Inc. 2004.

- 39.(a) Skold, C. N.; Schlessinger, R. H. *Tetrahedron Lett.* 1970, *11*, 791. (b)
 Wasserman, H. H.; Strehlow, W. *Tetrahedron Lett.* 1970, *11*, 795. (c)
 Matturro, M. G.; Reynolds, R. P.; Kastrup, R. V.; Pictroski, C. F. J. Am. *Chem. Soc.* 1986, *108*, 2775.
- 40.(a) Oppolzer, W. Synthesis, 1978, 793. (b) Kametani, T.; Nemoto, H. *Tetrahedron* 1981, 37, 3. (c) Nemoto, H.; Fukumoto, K. *Tetrahedron* 1998, 54, 5425.
- 41.(a) Inada, S.-I.; Wehmeyer, R. M.; Forkner, M. W.; Rieke, R. D. J. Org. Chem. 1988, 53, 339. (b) Chappell, S. D.; Cole-Hamilton, D. J. J. Chem. Soc., Chem. Commun. 1980, 238. (c) Roth, W. R.; Meier, J. D. Tetrahedron Lett. 1967, 8, 2053. (d) Nishiyama, Y.; Kawabata, H.; Nishino, T.; Hashimoto, K.; Sonoda, N. Tetrahedron 2003, 59, 6609.
- 42. (a) Klundt, I. *Chem. Rev.* **1970**, *70*, 471. (b) Sadana, A. K.; Saini, R. K.; Billups, W. E. *Chem. Rev.* **2003**, *103*, 1539 and references therein.
- 43.Kametani, T.; Nemoto, H. Tetrahedron 1981, 37, 3.
- 44.(a) Oppolzer, W.; Roberts, D. A.; Bird, T. G. C. *Helv. Chim. Acta* 1979, 62, 2017. (b) Oppolzer, W.; Robert, D. A. *Helv. Chim. Acta.* 1980, 63, 1703. (c) Nicolaou, K. C.; Barnette, W. E.; Ma, P. J. Org. Chem. 1980, 45, 1463.
- 45.Oppolzer, W. Heterocycles 1980, 14, 1615.
- 46.(a)Sharma, N. K.; de Reinach-Hirtzbach, F.; Durst, T. Can. J. Chem. 1976, 54, 3012. (b) Durst, T.; Huang, J. C.; Sharma, N. K.; Smith, D. J. H. Can. J. Chem. 1978, 56, 512. (c) Durst, T.; Tétreault-Ryan, L. Tetrahedron Lett. 1978, 19, 2353. (d) Durst, T.; Kozma, E. C.; Charlton, J. L. J. Org. Chem. 1985, 50, 4829. (e) Connolly, T. J.; Durst, T. Tetrahedron Letters. 1997, 38,

1337.

- 47.(a) Okuyama, T. In *The Chemistry of Sulphinic Acids, Esters and Their Derivatives*; Patai, S. Eds.; Wiley: Chichiester, 1990; pp 623–637. (b) Axelrod, M.; Bickart, P.; Jacobus, J.; Green, M. M.; Mislow, K. J. Am. Chem. Soc. 1968, 90, 4835.
- 48.Ohta, H.; Matsumoto, S.; Sugai, T. Tetrahedron Lett. 1990, 31, 2895.
- 49. Jung, F.; Durst, T. J. Chem. Soc., Chem. Commun. 1973, 4.
- 50.Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979, 20, 399.
- 51.Nakamura, S.; Oda, M.; Yasuda, H.; Toru, T. *Tetrahedron* **2001**, *57*, 8469 and references therein.
- 52. Siegl, W.; Johnson, C. R. J. Org. Chem. 1970, 35, 3657.
- 53.Herbrandson, H. F.; Dickerson, R. T. J. Am. Chem. Soc. 1959, 81, 4102.
- 54.Okuyama, T.; Takano, H.; Ohnishi, K.; Hagase, S. J. Org. Chem. 1994, 59, 472.
- 55.DeCamp, M. R.; Levin, R. H.; Jones, M.; Jr. Tetrahedron Lett. 1974, 40, 3575.
- 56. (a) Padwa, A.; Ku, H. J. Org. Chem. 1980, 45, 3756. (b) Hahn, R. C.; Howard, P. H.; Kong, S.-M.; Lorenzo, G. A.; Miller, N. L. J. Am. Chem. Soc. 1969, 91, 3558.
- 57.Durst, T.; Lancaster, M.; Smith, D. J. H. J. Chem. Soc., Perkin Trans 1 1981, 1846. (b) Gowland, B. D.; Durst, T. Can. J. Chem. 1979, 57, 1462.
- 58.Birsa, M. L.; Cherkinsky, M.; Braverman, S. *Tetrahedron Lett.* 2002, 43, 9615.
- 59. Schering, A. G.; Sauer, G.; Schröter, B.; Hofmeister, H.; Burmby, T.;

Fritzemeier, K.-H.; Michna, H. WO94/04555.

- 60.(a) Macco, A. A.; de Brouwer, R. J.; Buck, H. M. J. Org. Chem. 1977, 42, 3196. (b) Macco, A. A.; de Brouwer, R. J.; Nossin, P. M. M.; Godefroi, E. F.; Buck, H. M. J. Org. Chem. 1978, 43, 1591.
- 61.(a) Chou, T.-S.; Tsai, C.-Y. J. Chem. Soc., Chem. Commun. 1991, 1287. (b)
 Chou, T.-S.; Chen, H.-C. Tetrahedron Lett. 1996, 37, 7823. (c) Chen, H.-C.;
 Chou, T.-S. Tetrahedron 1998, 54, 12609.
- 62. (a) Roncali, J. *Chem. Rev.* 1997, *92*, 173. (b) Roncali, J. *Chem. Rev.* 1992, *92*, 711. (c) Pomerantz, M.; Chaolner-Gill, B.; Harding, L. O.; Tseng, J. J.; Pomerantz, W. J. *J. Chem. Soc., Chem. Commun.* 1992, 1672. (d) Kastner, J.;Kuzmany, H.;Vegh, D.; Landl, M.; Cuff, L.; Kertesz, M. *Macromolecules* 1995, *28*, 2922. (e) Kenning, D. D.;Mitchell, K. A.; Calhoun, T. R.; Funfar, M. R.; Sattler, D. J.; Rasmussen, S. C. J. Org. Chem. 2002, *67*, 9073.
- 63.Baudy, R. B.; Greenblatt, L. P.; Jirkovsky, I. L.; Conklin, M.; Russo, R. J.;
 Bramlett, D. R.; Emrey, T. A.; Simmonds, J. T.; Kowal, D. M.; Stein, R. P.;
 Tasse, R. P. J. Med. Chem. 1993, 36, 331.
- 64. Attardo, G.; Wang, W.; Kraus, J.-L.; Belleau, B. *Tetrahedron Lett.* **1994**, *35*, 4743.
- 65.(a) Crooks, P. A.; Ayers, J. T.; Xu, R.; Sumithran, S. P.; Grinevich, V. P;
 Wilkins, L. H.; Deaciuc, A. G.; Allen, D. D.; Dwoskin, L. P. *Bioorg. Med. Chem. Lett.* 2004, 14, 1869. (b) Xu, R.; Dwoskin, L. P.; Grinevich, V. P.;
 Deaciuc, G.; Crooks, P. A. *Bioorg. Med. Chem. Lett.* 2001, 11, 1245.
- 66. Ito, M.; Nakatsuka, M.; Saegusa, T. J. Am. Chem. Soc. 1982, 104, 7609.
- 67.劉景宏,國立交通大學 1997 碩士論文。

- 68. Léost, F.; Chantegrel, B.; Deshayes, C. Tetrahedron 1998, 54, 6457.
- 69.Ziessel, R.; Nguyen, P.; Douce, L.; Cesario, M.; Estournes, C. Org. Lett. 2004, 6, 2865.
- 70.Cardellini, M.; Cingolani, G. M.; Claudi, F.; Cristalli, G.; Gulini, U.; Martelli,
 S. J. Org. Chem. 1982, 47, 688.
- 71.Goldgarb, Y. L.; Kalik, M. A.; Kirmalova, M. L. Bull. Acad. Aci., USSR, Div. Chem. Sci. 1969, 1638.
- 72. Helmers, R. J. J. Prakt. Chem. 1972, 314, 334.
- 73. Outurquin, F.; Paulmier, C. Bull. Soc. Chim. Fr., II 1983, 159.

