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Script-Controlled Constrained-Random Pattern

Generator for Processor Verification

Student: Han-Wei Hsu Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

IC complexity is increasing so rapidly: that the time spent on whole design flow
increases in this situation. It is-necessary to reduce the development time due to the
pressure from the time to market. Verification presents about 60-70% of the total design
effort and advances in verification methodology can improve the time to market
considerably. Directed tests and golden reference models are becoming the primitive
tools in the modern design verification environment. Verification strategies are
consequently developed towards advance methodologies like constrained-random
approach to reduce verification pattern development time, and speed up the time it takes
to achieve complete verification. Constrained-random pattern generation tools create
tests for corner cases that the microprocessor designers may not expect and hence find
bugs early in the verification stage. This thesis describes the details of the
constrained-random generator and the script file that helps easily produce a huge

amount of constrained-random patterns for designated corner cases.
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Chapter 1 Introduction

1.1 Motivation

Today’s IC and System-on-Chip (SOC) design trends have placed an increasingly
heavy load on the shoulders of verification engineers. Processor functionality, custom
logic, software content, and system performance are all getting more complicated at the
same time that all the schedules are being pressed. The percentage of the time that is
spent on verification in the design flow grows up with the complexity of design. It
consumes about 70% of design effort today [1].

Based on the report of the functional verification for IC designs in Collett
International 2000, the bugs found in IC.designs mostly come from the errors in
function and 50% of chips require one or more re-spins. Moreover, Figure 1.1 shows the
analysis for the chips which require re-spinsiand 74% of re-spins are due to functional
defect. The fact indicates that superior functional verification methodologies are needed.
Advances in verification methodology can improve the time to market when IC designs
are more complex than before.

Verification is a process used to demonstrate the functional correctness of a design
[2]. The main purpose of functional verification is to ensure that a design implements
intended functionality. Functional verification for a design in million-gate-count always
needs more than billions of clock cycles in simulation to verify fully.

Simulation of automatically-generated test programs is the main means for verifying
complex hardware designs. Random verification may be one selection to speedup the
process. Language features such as Verilog random sequence generator can create a

great amount of input signals randomly based on a structured set of rules. Such



random-sequence generation schemes are not difficult to produce but can not cover full

cases efficiently for lager designs, such as processors.
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Figure'1.1 Reasons of re-spins [3]

Constrained-random simulation is the main workhorse in today's hardware
verification flows. It requires the random generation of input stimuli that obey a set of
declaratively specified input constraints, which are then applied to validate given design
properties by simulation. Constrained-random verification can offer a highly effective
way to deal with the challenges of microprocessor verification [8]. These verification
challenges include: complex instruction sets, multiple pipeline stages, in-order or
out-of-order execution strategies, instruction parallelism, and other features for some
specific applications. The time that traditional direct tests require becomes
uncontrollable, and simple random sequences are no longer sufficient to verify a

processor fully.



1.2 Thesis Organization

The remainder of the thesis is organized as follows: Chapter 2 discusses the
simulation-based methodology in processor verification. Chapter 3 gives a detailed
description on the proposed verification strategy. Chapter 4 makes an introduction to the
study case. Chapter 5 describes the experiment setup and simulation result, and Chapter

6 concludes the thesis.



Chapter 2 Related Works

In this chapter, we give a brief description of processor verification and the main idea

about our proposed strategy.

2.1 Processor Verification

Verification on processors can be basically classified into two categories: formal
verification and simulation-based verification. Formal verification mathematically
analyzes the design and verifies if it functions correctly. Simulation-based verification
verifies the design by comparing the result of the design with the golden model through
simulation. Although the formal verification can check the consistency with the
functional specification and verify:the eguivalence across several design levels, it is
difficult to handle a large design due to high computing complexity and memory
explosion. So, generating test patterns for the simulation-based verification should play
an important role in processor verification
2.2.1 Simulation-based Verification

In simulation-based approach, it generates test programs automatically to verify the
processor through simulation, so called instruction-based verification. To prove
functional correctness of a new processor design, deterministic test patterns for
simulation would be a common choice. Patterns for basic features verification are like
data processing, memory access, branch and interrupt, etc. Except the basic cases, there
are patterns for special cases that designed for special applications: over 32-bit shift
amount, scalar/vector operations, and block data transfer, etc. These test patterns usually
are designed for single instruction, and the completeness is assured by code coverage

tool.



As the set of test patterns becomes lager and is hard to handle manually, additional
verification strategies are the next necessary selections. Real applications or programs
like Dhrystone, Whetstone, DSPstone, and JPEG2000 encoder program are usually used
as test bench for processor designs. Most bugs come from unexpected corner cases like
different combinations of multiple instructions when using this strategy.

To find out more unexpected corner cases, random verification which can easily
generate a great deal of patterns would be used to deal with this problem. Random code
generator produces massive random pattern as input to RTL and golden model.
Designers compare the output result come from RTL and model to check the
consistency or dump the difference information; as show in Figure 2.1. The test pattern
produced by pure random generator usually hits®a corner case after a long-time

simulation and may still lose sorme cases.

Golden Model
Random —»  Result
Code Comparator
Generator > P
Random seed Information dump

Figure 2.1 Random verification

Many techniques have been proposed for generation of directed test programs.
Aharon et al. [14] have proposed a test program generation methodology for functional
verification of PowerPC processors in IBM. Miyake et al. [15] have presented a

combined scheme of random test generation and specific sequence generation. A



coverage driven test generation technique is presented by Fine et al. [13]. Shen et al.
[16] have used the processor to generate tests at run-time by self-modifying code, and
performs signature comparison with the one obtained from emulation. Ur and Yadin
[19] present a method for generation of assembler test programs that systematically
probe the micro- architecture of a PowerPC processor. lwashita et al. [18] use an FSM
based processor modeling to automatically generate test programs. Mishra et al. [17]
have proposed a graph-based functional test program generation technique for pipelined
processors using model checking. These techniques present the methodologies of

generating test patterns and checking with model for processor verification.

2.2 Proposed Verification Strategy

In order to make the generating patterns beceme efficient for covering all cases, the
first step is to add constraints on generating patterns. Figure 2.2 shows that adding a
constraint file that contains some rules in random verification. Therefore, the generator
can be controlled by writing code generating rules in constrained file and produce the
patterns focusing on specific instruction groups and makes a special case happen
frequently. To design a suitable rule and syntax for constraint file such that a generator
can produce appropriate pattern become the mains issue.

The proposed strategy focuses on generating variant test patterns which have specific
combinations of different instruction groups. Every segment of single instruction and
every instruction in combinations are generated individually. The freedom in generating
test patterns can help engineers easily test special cases by writing rule in script file and,

moreover, modify a little content of script file for different cases. In contrast with a



verification tool: Cadence Specman Elite [20] which uses a high language: e-language
to write the script file, we propose an assembly-like syntax to control more details in the

test patterns.

Result
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!

information dump

script
file

f

instructions

Figure 2.2 Constrained-Rand serification with constraint file



Chapter 3 Constrained-Random Verification

In this chapter, the flow of proposed constrained-random verification is introduced in
the first section. The remaining sections give the detailed description of the proposed

strategy.

3.1 Overview of Verification Flow

As described in Chapter 2, we add some constraint rules on random code generator,
and the process of whole verification flow becomes a little more complex than a
pure-random one. It can be divided into 3 steps: writing a script file, compiling the
script file, and generating then outputting codes.

First, according to the case which would.like“to be tested, writing the rules of
constraint in the script file. It depends on the architecture of the target design. The
random code generator compiles-the scriptfile-and generates assembly codes based on
rules then transforms codes into maching codes and outputs the codes at last. Figure 3.1

shows the architecture of constrained-random code generator.

Constrained-Random Code Generator

Scriot Assembly

Pt | wies| || Code  |assembly| Assembler machine

File i code code
Generator

Figure 3.1 Architecture of constrained-random code generator



3.2 User Input Script File

The content of a script file can be separated into two major parts: “Constraint
Setting” and “Base Pattern”. Base pattern is an assembly-like program and controls the
program flow of test patterns produced by generator. Every line of codes is a
combination of several tokens, and these tokens would be transformed into segments of
assembly code by generator. Segments such as operation code or operand in every line
of codes are ruled by constraint setting. There are three basic parts: constant, variable,
and parameter in constraint setting. Organization of script file is shown in Figure 3.2.

Following sections give details about syntax of these two.

Script File

Constraint Setting
.cont
Constants

.var
Variables

.para
Parameters

.main

Base Pattern

.end

Figure 3.2 Organization of user input script file

3.2.1 Constant, Variable, and Parameter
Constant part is used to assist in controlling the program flow in base pattern. There

are two program flow mechanisms: loop function and random selection (introduced in



Section 3.2.2) in the base pattern syntax. The counts of loops and random selections are
declared in this part. It is convenient for user to change the counts of loop in this part
rather than in base pattern.

Objects declared in variable part are able to store the segments in pattern that is
generated this time and can be fetched later in place of generating new one. For
example, it can fix two or three registers and make them identical in generating
assembly code to fulfill certain cases, or make two registers in different codes to test
data hazard. Detailed usage of variable is illustrated in Section 3.2.2. Simple format of
constant part and variable part is shown in Figure 3.3.

.const
const_name; const_value;
const_name, const_value,

const_name, const_value,
var

var_name;

var_name,

var_name,

Figure 3.3 Format of constant & variable

The range of the segments randomly produced in assembly codes is defined in
parameter part. A parameter is a group with elements. When a generator wants to
generate one segment, it would randomly select one element in some parameter which is
mentioned in the base pattern. User can build a new parameter that contains elements
for generator to choose. There are two kinds of format in parameter. One of them has
independent elements and can be decided the relative percentage of every element

selected by adjusting the corresponding weights. If the weight of some element is

10



greater, it means that this element has higher probability chosen by generator. On the

other hand, an element with smaller weight would be picked in lower probability. The
format (i) and one example are shown below:

parameter = {element, (weight, ), element, (weight, ),---,element_ (weight,)} (i)

reg _1={r1(8),r3(6), r4(3),r11(),sp(2)} 1)

In Example (1), a parameter named “reg_1" has five elements: r1, r3, r4, r11, and sp

in the braces. The number in the parentheses behind every element means the

corresponding weight, and none for the weight of element r11 means the default value:

1. So the weights of the five elements: rl1, r3, r4, r11, and sp are 8, 6, 3, 1, and 2. When

generator wants to generate a patternfrom:parameter reg_1, the percentage of every

element which is chosen in this grouprare presented in Table 3.1.

Table 3.1 Percentage of elements chosen in parameter “reg_1".

Element | Weight Percentage

rl 8 8 6. 3.1, 27100%=40%
r3 6 6/0%100% =30%

r4 3 3/0%100% =15%

ri1 1 %0 x100% = 5%

sp 2 2/ ,%100% =10%

11



The other kind of format in parameter is format (ii) with pound sign “#” in front of
parameter name. It is used to deal with immediate integer value in assembly code.
Contrast to format (i), there are no multiple elements in one parameter. This kind of
parameter defines the range of immediate integer value by the minimum and maximum
value in the braces, and a factor limits the output value to be multiple of it. The syntax

and two examples are shown below.

# parameter = {min, max, factor} (ii)
#imm1={4,1000,4} )
#imm2={-100, 400} 3)

In Example (2), the minimum and maximum.values of parameter “#imm1” are 4 and
1000, and the factor is 4. When generator- fetches the information of this parameter, it
would output immediate integer-value which'is multiple of 4 and limit the value in the
range of 4 to 1000. None for the factor'in the Example (3) means the default value: 1.
So parameter “#imm2” tells generator to produce immediate integer value in range of
-100 to 400.

3.2.2 Instruction Syntax in Base Pattern

We provide an assembly-like syntax to edit the base pattern. Codes in base pattern
would be converted into assembly code by the generator. For one line of code, it has
several tokens which can be converted into segments of assembly code such as
operation code, conditional code, registers, or operands depending on the assembly code
syntax of target design. What segment a token will be converted into is decided by
variable and parameter. The produced segments can be randomly generated from token
individually or specified by user. Token has three kinds of format, and syntax is shown

below.

12



$var,[para, | (iii)

$[para, | (iv)

$var,[] (v)

In the formats, “var” and “para” in each token mean variable and parameter. The
dollar sign “$” indicates a token that is recognized by the generator and makes generator
start the generating process. For the generator, parameter means to generate new
segment, and variable means to store or load segment. Format (iii) is the basic format of
token. It has variable and parameter in the brackets. This format tells generator to
produce segment from elements in the group “para;” which is declared in parameter
part and store the produced segment in.variable; var,”. Format (iv) is a token with only
parameter in the brackets and tells generator-only to‘produce segment from elements in
the group “paray”. In contrast to format (iii), generator would not save the segment
when processing format (iv). Format (V) is a token‘with only variable in front the blank
brackets. It tells generator to load segment from variable “vars” that was stored before.

Formats of token with corresponding actions in generator are listed in Table 3.2.

Table 3.2 Formats with corresponding actions in generator

Format Variable Parameter | Action in generator
(iii) | $var[para] [V Y Generate and Store
(iv) | $[para, ] N Y Generate
(v) | $vary] Y N Load

13



A simple case is written for ARM ISA Version 5 [9] and shown in Figure 3.4. We
take three tokens in this case which belong to three kinds of formats individually as
examples. For the first line of base pattern, the first token “$[d_2]” which only has
parameter belongs to the format (iv). When the generator fetches this token, it would
randomly choose one element in parameter “d_2” to replace this token and make it
become one segment of assembly code. Figure 3.5 shows this process with one possible

result.

.var
reg1
.para
shift = {Isl(5), Isr(2), asr(), ror()}
d_2 = {tst(), teq(), cmp(), cmn()}
r_1={r0(), r1(), r2(), r3(), r4(), r3(), r6(), r7(), r8()}
cond = {eq(), ne(), cc()}

.main
$[d_2]$[cond] $reg1[r_1], r6, $[shift] $[r_1]
$[d_2] $[r_1], $reg1]]

.end

Figure 3.4 Example of base pattern

y

d_2 = {tst(), teq(), cmp(), cmn()}

fetch

para: randomly

d?2 choose
$/[d_2] tst

Figure 3.5 Possible result of token “$[d_2]"

The third token “$regl[r_1]” that has both parameter and variable belongs to the
format (iii). Generator would store segment in variable “regl” after randomly choosing
one element in parameter “r_1”. The last token “$regl1[]” that has variable only in the
second line belongs to the format (v) and tells the generator to load segment that was

produced before. In this case, the loaded segment is the result of the third token

14



converted in the first line. The processes and possible results of converting these two
token are shown in Figure 3.6. Characters, signs, and spaces which do not belong to
token will be retained in the process. Generator repeats converting these tokens until
fetch the line end of code. Figure 3.7 shows one possible outcome of every token in two

lines after conversion and final assembly code.

r 1 ={r0(), r1(), r2(), r3(), r4(), r5(), r6(), r7(), r8()}
fetch

para: randomly
choose

store in var: regl

load from var: regl

S

Figure 3.6 Possible results of takens “$regl[r_1]" & “$regl[]”

$[d_2] $[cond] | |$regd[r_1] |, r6, $[shift] |S[r_1]

// <= convert
ne| |3, r6,

Isr| [r8 —€3Ut , tstne 3, 16, Isr r8

tst

$[d_2]| |$[r_1]|, $regl]]

/4— convert

cmp | 4|, r3 —fesult »cmp r4, 13

Figure 3.7 One possible outcome
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3.2.3 Program Flow Mechanism in Base Pattern

Base pattern has two program flow mechanisms: loop function and random selection.
Figure 3.8 shows the syntax of two. They would repeat codes in the braces basically.
Compared with the loop function, the syntax of the random selection has additional
weights in the parentheses behind dollar sign “$” and “w”. Weights can be adjusted by

user and decide the relative percentage of codes.

loop (loop count) select (select count)
{ {
code; $w(weight;): code,
code, $w(weight,): code,
code, $w(weighty,): coden,
} }

Figure 3.8 Syntax of loop function and-random selection

Unlike the loop function which converts-whole codes sequentially for one loop, the
random selection only selects one line of code in the braces to convert for one loop. For
example, a base pattern has five lines of codes in the loop function with loop count n,
five lines of codes in the random selection with loop count m. The codes in the loop
function will be converted in the sequence which is shown in (4), and the codes in the

random selection may be converted in the order shown in (5).

(code, — code, — code, — code, — code; ),,,., —
(code, — — code; )., = @
(code, — — code, ).,

(code,),,, o (code, )., 0 = (codel)I00p3 — (codel)Ioop , = — (code, )Ioopm (5)

16



When entering the random selection, generator calculates percentage of all codes in
the braces first. For one loop, one code is randomly selected to be converted. It would
repeat this flow until the count of random selection reaches zero. Random selection can
produce random combination of multiple codes that would help user to test some corner

cases. Figure 3.9 shows the flow chats of the loop function and the random selection.

Loop Selection ,| Calculate
Begin Begin percentage

Selection

count=0 count - N
End
A
Loo

P randomly

End
4= select to
convert

sequentially [ code; ] [ code, ] [ code; ] ......

—
- \

Figure 3.9 Flow chats of loop function and random selection
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3.3 Constrained-Random Code Generator

Main function of the constrained-random code generator is to convert the content of
script file into test pattern in machine code. The generator is written in SystemC and
generates patterns for processor RTL and golden model on the fly. The architecture of
the constrained-random code generator is shown in Figure 3.10 and can be divided into

several parts. Connections between parts are also shown in Figure 3.10.

clk
Script file rst Machine
enable code
A
A\ 4 A
Script Compile System Machine
- N Assembler
compiler enable controller code
Compiled Assembly
data start code
A 4
Database '
base pattern L inf
& constant Base oop info. Loop_&
Base > pattern oo Selection
ointer
pattern decoder «—— counter
constant Code info.
parameter _Token info.
[ parameter) orvariable | Token [T Code
"| converter __Segment || replacer
[ variable [ Segment |

Figure 3.10 Architecture of the generator
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System controller: System controller handles the interface signals to the RTL and

model and controls the actions of the Script compiler and the Base pattern decoder.

Script compiler: Script compiler reads the script file and transforms the content

into self defined data type then storing them in the Database.

Base pattern decoder: Base pattern decoder fetches the content of the base pattern

in the Database and decodes then proceeds one of the two actions:

€ Fetching the loop function or random selection command: The decoder sends
the counts of loop, the beginning, and the end pointer to the Loop and Selection
counter and receives the pointer of the next code.

€ Fetching the other code: Thesdecoder, sends the code information to Code
replacer.

Loop and Selection counter: The counter calculates the remaining loop count and

also calculates the pointer of the next code in-the base pattern then sending this

pointer to the Base pattern decoder.

Code replacer: The function sends the information of a token in the received code

to the Token converter sequentially and replaces the token with the segment of

assembly code returned from the Token converter. After all the tokens are

converted, the function will send the complete assembly code to assembler.

Token converter: Toke converter has three actions for converting a token into a

segment of assembly code depending on the format of token: generating from

parameter, loading from variable, and storing to variable. The generated segment is

returned to the Code replacer.

Assembler: Assembler function receives the assembly code from the Code replace

function and transforms it into machine code for System controller to output.
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When simulation starting, generator would set up internal parameters and compile
user input script file after receiving the “reset” signal, then entering standby state.
Action of generator in standby state for microprocessor RTL and golden model is like
an instruction memory. It would output machine code of instruction when receiving
“enable” signal. Figure 3.11 shows flow chat of constrained-random code generator.

Generator would fetch one line of code in base pattern and convert it into assembly
code. In the process of converting code, there are four flow paths to deal with three
kinds of token and characters which do not belong to token. Actions for three kinds of
token are noted in Table 3.2 and show in Figure 3.11. For format (iii) and (iv), segment
generating from parameter is the first step: ‘Compared to format (iv), additional step for
format (iii) is to store segment in.variable.-There.is no generating from parameter in the
flow path of converting format (v). Loading segment from variable is instead. Generator
would save the produced segment-in temporary then deals with the next token or other
characters. Unlike tokens, characters which are not part of token are directly saved
without generating or loading process.

When the end of the fetched code is read, generator transforms assembly code in
temporary into machine code and outputs. Then generator would jump into standby
state. Next time receiving enable signal, the next line of code in base pattern would be
fetched and transformed into machine code. Generator repeats the process until fetches

the end of base pattern.
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Generate

Figure 3.11 Flow chat of generator
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Chapter 4 Introduction to Study Case: ACARM9

Processor Core Design

This chapter describes the in-house ACARMS9 processor core design. An
ARMOE-like [10], 32-bit RISC embedded processor core is implemented in the
register-transfer level (RTL) with verilog language. Section 4.1 depicts the organization
of ACARMO. Section 4.2 describes the implementation of multi-cycle multiplication,

and Section 4.3 describes the verification strategy.

4.1 Organization of ACARM9

The verilog RTL of ACARMY consists 0f:13. major functional blocks including the
decoder, register file (RF), barrel shifter-(BS), .arithmetic/logical unit (ALU), 32x32
multiplier (MUL), count leading zero (CLZ), forwarding unit, program counter (PC)
selector, operand fetcher (OF), load/store data address generator (DAG), read/write data

operation and control unit. The block diagram is shown in Figure 4.1.
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Figure 4.1 Block diagram of ACARM9

all the information needed for the other functional unit.

® The register file is composed of total 37 registers — 31general-purpose 32-bit

registers and 6 status registers.

® The execution stage consists of a BS, an ALU, a CLZ, and a 32x32 multiplier.
The arithmetic and logical operations are implemented with the ALU module
whose second operand is received the BS to perform shift operations if needed.

The 32x32 multiplier produces a 32-bit product. More details of multi-cycle

multiply operation will be described in Section 4.2.

® The forwarding unit forwards the output data of EX stage to make sure that the

next instruction can get these data as soon as possible.
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The program counter selector chooses on valid address from five sources
including the PC incrementer, the ALU output, LDM (load multiple)/STM (store

multiple) output, read data and the interrupt as shown in Figure 4.2.

Interrupt —»,
ALU —

LDM/STM ——»

\ 4

Read data —»

PC incrementer »>

PC

A

Figure 4.2 Source selection of the address registers

The operand fetcher select data from register file, read data, ALU output, data

address generator, immediate value or forwarding value as shown in Figure 4.3

RF a,b,c —»

Read data >

ALU —»

Data address ——»
Immediate value —»
Forwarding value —»

—— Operand A
—— Operand B

—— Operand C

Figure 4.3 Operand selection

The data address generator calculates the read/write data address on data bus
includes the multiple load/store, and branch address on instruction bus.
The control logic controls all the data flows of combinational logic and all the

state transitions of sequential logic.
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® The read/write data operation performs data alignment. As shown in Figure 4.4,

the read operation shifts byte data and half-word data to the bottom of a 32-bit

register with zero-extended or sign-extended when the processor reads byte data

or half-word data from memory. For writing half-word data to memory, the

write operation copies the low half-word part to the high half-word part to fill

the 32-bit data width. For writing byte data to memory, the write operation

copies least significant byte to the other three more significant bytes.

31 16

data \

23 16

| data |

Memory

Figure 4.4 Read/write operation

4.2 Multi-cycle Multiplication

Load
half-word 31 _ 16 15 0
—— | zero/sign extended | |

Load
byte 31 . 8 7 0
\ zero/sign extended \ |

Store
half-word 31 16 15 0
— | data | data |

t |

Store
byte 31 2423 1615 87 0
«——— | data | data | data | data |

t t t |

For a multiply instruction, source operand A and source operand B are fed to the

multiplier directly to perform multiply operation. Figure 4.5 shows the multi-stage

multiplication FSM.
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and
Set Flag

Figure 4.5-Multiplication FSM 'of ACARM9

A normal multiply instruction with/without accumulation needs two cycles, since two
64-bit partial products are obtained in the first on cycle. The tow low half 32-bit partial
products and the value that is accumulated to the product are added by a carry save
adder to generate two values, and then add the two values by a 32-bit adder to get final
32-bit result. While all 32-bit of product is valid, two cycles are needed. A long
multiply instruction with/without accumulation needs three cycles, after the first cycle
to obtain two 64-bit partial products, the 64-bit values need to take two cycles to
perform 32-bit addition twice.

While the multi-cycle multiply operation is finished, a finish signal is sent from
multiplication FSM to main FSM to tell that the multi-cycle operation is finished and

the next instruction may get executed to continue the program flow.
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4.3 Verification Strategy

A functional verification flow is proposed in the section. Section 4.3.1 proposes the
overall functional verification flow. Section 4.3.2 proposes coding style checking by
Linting; Section 4.3.3 proposes a deterministic verification approach.

4.3.1 Functional Verification

The functional verification flow diagram is listed in Figure 4.6 and in each of steps
the RTL code is verified with a SystemC behavior model which is designed for
matching all the cycle behaviors of ADS. All mismatches during the comparison will

cause the flow back to RTL revision step for modification.

RTL @:

Y

Linting

A 4

Deterministic
> Verification

RTL Revision

A\ 4

A 4

A 4

Random verification

Figure 4.6 Functional verification flow
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4.3.2 Coding Style Checking by Linting Free

This section describes a static coding style check which improves the quality of the
design in reuse and verification perspectives of RTL code. Checking the coding style of
the design by Novas nLint tool with 328 lint rules adopted from Frescale Semiconductor
Reuse Standard (SRS) can avoid all kinds of warnings and errors including naming,
synthesis simulation common syntax, undeclared objects, unexpected latches, DFT

issue, and so on.

4.3.3 Deterministic Verification

This section describes deterministicyverification which is made to check all regular
cases and special corner case should be confronted with in the simulation phase.
Deterministic verification is composed of three parts including specialized handcrafted
pattern, real application pattern.

The handcrafted pattern is written in all cases of instructions implemented in the
ACARM?9 design. It checks all results of instructions to be right in the first step in
deterministic verification.

The real application patterns are implemented by some benchmarks like Dhrystone,
Whetstone, and DSPstone. Moreover a JPEG encoder and an MP3 decoder program are
also provided to verify the correctness of the design. This kind of pattern checks real
cases met in applications of real world and is essential in deterministic verification

phase.
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Chapter 5 Experimental Results

This chapter provides the experimental results of the proposed verification strategy.
The experimental environment is described in Section 5.1. Section 5.2 presents that
proposed strategy is used on ACARM?9 processor core introduced in Chapter 4. Results

of performance compared with pure-random are present in Section 5.3.

5.1 Experimental Environment

We conduct all the experiments on a HP wx8400 workstation. The commercial
simulators are the Cadence NC-Verilog simulator and the Cadence NC-SC simulator.

Table 5.1 shows the detail of the experimental hardware and software platform.

Table 5.1'Experimental environment

Hardware

CPU: Intel® Xeon®!CPU 2.0GHz

RAM: DDR2-667 ECC FB-DIMM 14GB

Software

OS: CentOS 5 x86_64 (with Linux 2.6 kernel)

Cadence NC-Verilog version 6.1

Cadence NC-SC version 6.1

29



5.2 Cases Study

We use the proposed verification strategy on in-house ACARMO core with ARM ISA
version 5E [9] fully compatible. To check if the output of RTL correct, efficient
two-layered cycle-accurate model [11] is used as a golden model.

5.2.1 Simulation Environment

We run co-simulation for the ACARM9 RTL code and the golden model and use the
constrained-random code generator as instruction memory. Generator would send
instructions in machine code to both RTL and model when receiving instruction enable
signal which comes from RTL. We also use a comparator to collect all outputs of both
RTL and model such as external sngnals and reglsters and compare them every cycle
when running simulation. Comparator wourld dump detall information if the outputs of
RTL and model have mlsmatches The mformatlon '|ncludes signal name or register

number, values, and cycle number Flgure 5.1 shows the environment.

enable external signals
&
registers

clk

Academic ARM9
RTL

Result
Comparator

!

information dump

f

instructions

Figure 5.1 Simulation environment
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5.2.2 Script Files and Bugs Found

To test different cases on the ACARM9 core, we write different base pattern with
corresponding constraint setting in script files. The ACARMY9 core has passed the
deterministic verification and other real applications such as Dhrystone, Whetstone, and
JPEG2000 encoder. Finally, it is used to execute an MP3 program on the FPGA
successfully. However we still find two more bugs in the ACARMS9 RTL code using the
proposed method; moreover, two bugs in the model. The details of the four bugs with
contents of script files used are listed below.
(1) Bug of Shift Operation in RTL

In ARM ISA, the operand shift operations. can be parallely executed with other
operations. The script file of shift operation-testing*(1) which focuses on this point is
shown in Figure 5.2. The first instruction in the base pattern would give random value
to registers by loading from memory. We find one‘bug in the RTL code and one bug in

the model individually by using this script file.

.const
loop_count 100000
.para
shift = {Isl(), Isr(), asr(), ror()}
d_1 = {add(), adc(), sub(), sbc(), rsb(), rsc(), and(), eor(), oor(), bic()}
d_2 = {tst(), teq(), cmp(), cmn(), mov(), mvn()}
r_1={r0(), r1(), r2(), r3(), r4(), r5(), r6(), r7(), r8(), ra(), r10(), r11(),
r12(), r13(), r14()}
#imml = {0, 32}

.main

Idmed rO0, {r0-r14}

loop (loop_count)

{
$[d_1] $[r_1], $[r_1], $[r_1], $[shift] #$[#imm1]
$[d_1] $[r_1], $[r_1], $[r_1], $[shift] $[r_1]
$[d_2] $[r_1], $[r_1], $[shift] #$[#imm1]
$[d_2] $[r_1], $[r_1], $[shift] $[r_1]

.end

Figure 5.2 Script file of shift operation testing (1)
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The RTL code has calculation error in the logic shift right (Isr) operation with
register specified shift amount when the shift amount is zero. In ARM ISA, the shift
amount of shift operations has two sources: instruction specified or register specified.
Different sources will cause different special operation for the particular value of shift
amount. The correct outputs of logic shift right with zero shift amounts for different
shift amount sources are listed in Table 5.2. For this case, the correct output should be
the input operand without shift operation, but the RTL code recognizes it as special case
in logic shift right operation with instruction specified shift amount: “Isr #0” which is

used to encode “Isr #32”. It has a zero result with bit 31 of operand as the carry output.

Table 5.2 Logic shiftright with zero shift amounts

Shift amount source | Special case? |-Encode | Output

Standard | Instruction specified”: |.Y Isr#32 | Zero out, C = bit 31
Register specified N Isr#0 No effect

RTL Instruction specified |Y Isr#32 | Zero out, C = bit 31
Register specified Y Isr#32 | Zero out, C = bit 31

Note: “C” means the carry-out flag
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(2) Bug of Shift Operation in Model

The model has one bug which is found by the script file of shift operation testing (1),
too. The bug happens when the RTL executes the three kinds of shift operation except
rotation right with register specified shift amount as the shift amount equal to or greater
than 32.

In ARM ISA, only the least significant byte (bit O to bit 7) of the contents of the shift
amount register is used to determine the shift amount. But the model takes only least 5
bits (bit O to bit 4) of the shift amount register as the shift amount. Figure 4.3 shows the
different bit-range of the shift amount register used as shift amount in standard and the
model. The correct results of this caseare result,zero for both logic shift left and right,
and result filled with bit 31 of the operand for arithmetic shift right. The outputs of the
model are shift operation with shift amount which is the remainder of the contents of the
register divided by 32. Table 4.3-lists*the different results of the three kinds of shift

operations in standard and the model.

Standard:

31 24 23 16 15 87 0
]

| | 7 0

Model:

31 24 23 16 15 87 0

| | | I

Figure 5.3 Different used bit-range of shift amount register.
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Table 5.3 Results of shift operations in standard and the model

Shift type Shift amount = 32 Shift amount > 32
Standard | Logic shift right Zeroout, C=hit31 | Zeroout,C=0
Logic shift left Zeroout, C=hit0 Zeroout,C=0
Arithmetic shift right | Filled with bit 31, C = bit 31
Model Logic shift right No effect Operand shifted with
Logic shift left No effect shift amount mod 32,
Arithmetic shift right | No effect C = corresponding bit

“C” means the carry-out flag

Note: shift amount means the least significant byte of the shift amount register

(3) Bug in Usage of the Program Counter(PC)

For the ARM core architecture, register.15 (r15) holds the Program Counter (PC) and
has limits when used as a destination register or an operand. We change the script file of
shift operand testing (1) by adding a new parameter which has higher probability to

produce r15 and modifying tokens in the base pattern. Figure 5.4 shows the script file of

shift operand testing (2). One more bug in the model is found by using this script file.

In this script file, r15 is used as an operand. The value of r15 will be different
depending on the source of shift amount. It will be the address of the instruction, plus 8
bytes for instruction specified shift amount or 12 bytes for register specified shift
amount. The model fetches the value of r15 which is the address of the instruction plus

8 bytes for both cases. Table 5.4 lists the value of rl15 for standard and the model with

different shift amount source.
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.const
loop_count 100000
.para
shift = {Isl(), Isr(), asr(), ror()}
d_1 ={add(), adc(), sub(), sbc(), rsb(), rsc(), and(), eor(), oor(), bic()}
d_2 = {tst(), teq(), cmp(), cmn(), mov(), mvn()}
r_1 ={r0(), r1(), r2(), r3(), r4(), r5(), r6(), r7(), r8(), r9(), r10(), r11(),
r12(), r13(), r14(}
r_2 ={r0(), r1(), r2(), r3(), r4(), r5(), r6(), r7(), r8(), ro(), r10(), r11(),
r12(), r13(), r14(), r15(30)}
#imm1 = {0, 32}

.main
Idmed r0, {r0-r14}
loop (loop_count)

{
$[d_1] $[r_1], $[r_2], $[r_2], S[shift] #$[#imm1]

$[d_1] $[r_1], $[r_2], $[r_2], $[shift] $[r_1]
$[d_2] $[r_1], $[r_2], $[shift] #$[#imm1]
$[d_2] $[r_1], $[r_2], $[shift] $[r_1]

}

.end

Figure 5.4 Script filerof shift.operand testing (2)

Table 5.4 Value of r15 fetched as operand in:different source of shift amount

Instruction specified Register specified

Standard PC +8 PC +12

Model PC+8 PC +8
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(4) Bug in Combination of Two Multiplication Instructions

We find one more bug in the RTL code by the script file shown in Figure 5.5. This
script file focuses on all instructions about multiplication in ARM ISA version 5E;
moreover, random selection is used to make random combinations of these
multiplication instructions.

.const
select_count 500000
.para
m_1 = {mla(), smlal(), smull(), umlal(), umull()}
m_2 = {smla(), smlal()}
xy ={b(), t()}
r_1={r0(), r1(), r2(), r3(), r4(), r5(), r6(), r7(), r8(), r9(), r10(), r11(),
r12(), r13(), r14()}

.main

Idmed r0, {r0-r14}

select (select_count)

{
Sw
Sw
Sw
Sw
Sw
Sw

}

.end

5):$[m_17 $[r_1], $[r_11, $[r_1], $[r_1]

):mul $[r_11, $[r_1], $[r_1]

8):$[m_2]$[xy]1$[xy] $[r_1], $[r_11, $[r_11, $[r_1]
4):smul$[xy]$[xy] $[r_11, $[r_1], $[r_1]
2):smulw$[xy] $[r_11, $[r_11, $[r_1]
2):smlaw$[xy] $[r_11, $[r_11, $[r_1], $[r_1]

—_A A A A

Figure 5.5 Script file of the multiplication instructions
The bug happens when the RTL sequentially executes a signed or unsigned multiply
long (smull or umull) instruction or a signed or unsigned multiply accumulate long
(smlal or umlal) instruction after an Enhanced DSP instruction: 16-bit signed integer
multiply (smul<x><y>) instruction. The multiply long instruction will output total
64-bit result and divide it into higher 32-bit part and lower 32-bit part then output
sequentially in two cycles. But the lower 32-bit part of the result of the signed multiply

long instruction would become the output of the previous instruction (smul<x><y>).
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As the description in Section 4.2, we use a 32x32 multiplier in the RTL code for
multiplication and modify it such that the multiplication becomes a multi-cycle
operation to fit the timing constraint. A simple block diagram of multiplier in RTL is
shown in Figure 5.6, and the multiplication FSM is shown in Figure 4.5. The multiplier
deals with multiplication instructions which belong to multiply long instructions and
have 64-bit output in three-cycle operation and other normal multiplication instructions
have only 32-bit output in tow-cycle operation. When the multiplier handles a
multiplication instruction, the controller will save some signals from the decoder in the
status registers and control whole the process. The status registers can be separated into
several parts which save corresponding’ control signals for detail functions like
signed/unsigned, accumulation, DSP joperation, and“multiply long, etc. After finishing
calculating, the result will be saved in‘the output register and the controller will clear the
status registers and jump into standby state. The multiplier will output the lower 32-bit
part of result in the second cycle and higher part in the third cycle for multiply long
instructions and output result only in the second cycle for other multiplication

instructions.

Status Operand A Operand B Operand C

registers l l

l T control
mul | signals Multiplier |«
controller g
output :
enable " outputregister

Figure 5.6 Block diagram of multiplier in RTL
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But the controller does not clear the status registers after finishing smul<x><y>
instruction. If other multiplication instruction except the multiply long instructions is
executed after smul<x><y> instruction, some of the status registers which store the
control signals about smul<x><y> instruction would be updated and the multiplier
would work as normal. If a multiply long instruction is executed after smul<x><y>
instruction, these status registers would not be all updated. The output register will be
locked (output enable signal is low) in the second cycle of the process of multiply long
instruction such that the lower 32-bit part of result becomes the result of previous
instruction (smul<x><y=>). In the third cycle, the controller sets the output enable signal
as “high” and the higher 32-bit part of_result‘is-outputted correctly. Table 5.5 lists the all
results of the instruction smul<x><y> and multiply long instruction in RTL and

standard when multiply long instruction iIs executed after smul<x><y> sequentially.

Table 5.5 Output of multiplier in standard and RTL

Multiply Output

Instruction Cyclel |Cycle2 |Cycle3 |[Cycle4 |Cycle5
Standard | smul<x><y> None Result S

Multiply long None Result lo | Result hi
RTL smul<x><y> None Result S

Multiply long None Result S | Result hi
Note: suppose that the output of smul<x><y> is “Result S and the correct outputs
of multiply long are “Result 10” and “Result hi”
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5.3 Compare with Pure Random Verification

We use a pure random code generator to compare the performance with the proposed
constrained-random code generator. The pure random one is also written in SystemC
and will output legal machine codes randomly without any constraint. The
constrained-random code generator and the pure random code generator are used as an
instruction memory in the co-simulation environment individually to measure
performance. We run 100,000,000-cycle simulation for both generators and compare
their simulation time. The simulation time for each generator are shown in Table 5.6.
The proposed generator has about 35% overhead in simulation time when compared to
pure random one.

Table 5.6 Simulation time'of two generators

Generator Stmulation time (seconds)
Constrained-random 8,314
Pure random 6,156
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Chapter 6 Conclusions and Future Works

A constrained-random code generator has been presented in this thesis. The proposed
verification strategy provides an all-purposed syntax in the user input script file that
helps generate test patterns efficiently. It can define the generated range of every
segment in assembly code such as operation code, conditional code, operands, and
immediate value. By changing a small part of constraint setting in the script file,
generator can easily output different patterns to cover different corner cases. It can also
define the relation between segments to test some corner cases such as data hazards.
Moreover, the program flow of the output pattern can be also controlled by the base
pattern in script file. The generator can output the codes in sequence as the order in the
script file or randomly schedule the codes. Finally, the generator is applied on in-house
ARM9 core and finds out more bugs'even if this core has passed many verification
strategies before. However, the proposed strategy cannot cover the verification of
external interrupt behaviors at this moment. Consequently, an advance method [12] may

be applied to our strategy to test the external interrupt behaviors of a processor.
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