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應用於處理器驗證之腳本導引的限制隨機樣本產生器 

 

研究生：許瀚蔚 指導教授：黃俊達  博士 

國立交通大學 

電子工程學系 電子研究所碩士班 

摘     要 

積體電路設計複雜度的快速成長使得整個設計流程所需的時間也跟著拉長，但

是在受到上市時間的限制下，縮短開發時程是必須的。在設計過程中驗證這步驟

大約佔了全部時程的 60%至 70%，發展新的驗證策略來縮短產品推出的時程是相當

重要的。標準參考模型和直接測試在現今的驗證環境中變為基本的方法。驗證策

略必然朝向更新的方式，例如以有限制的隨機生產方式來縮短測試樣本的發展時

間，進而加快完成積體電路的完整驗證。針對某些被微處理器設計者忽略的不常

發生的情境與狀況，以有限制的隨機生產方式產生相對應的測試樣本達到在驗證

階段的初期就能及早發現設計的錯誤。在本論文中，詳細的介紹了有限制的隨機

生產器以及如何利用我們提供的命令文件(script file)便能簡單地針對指定的情

況製造出大量的測試樣本。 
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Script-Controlled Constrained-Random Pattern 

Generator for Processor Verification 

Student: Han-Wei Hsu     Advisor: Dr. Juinn-Dar Huang 

 

Department of Electronics Engineering & Institute of Electronics 

National Chiao Tung University 

 

Abstract 

IC complexity is increasing so rapidly that the time spent on whole design flow 

increases in this situation. It is necessary to reduce the development time due to the 

pressure from the time to market. Verification presents about 60-70% of the total design 

effort and advances in verification methodology can improve the time to market 

considerably. Directed tests and golden reference models are becoming the primitive 

tools in the modern design verification environment. Verification strategies are 

consequently developed towards advance methodologies like constrained-random 

approach to reduce verification pattern development time, and speed up the time it takes 

to achieve complete verification. Constrained-random pattern generation tools create 

tests for corner cases that the microprocessor designers may not expect and hence find 

bugs early in the verification stage. This thesis describes the details of the 

constrained-random generator and the script file that helps easily produce a huge 

amount of constrained-random patterns for designated corner cases. 
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Chapter 1 Introduction 

1.1 Motivation 

Today’s IC and System-on-Chip (SOC) design trends have placed an increasingly 

heavy load on the shoulders of verification engineers. Processor functionality, custom 

logic, software content, and system performance are all getting more complicated at the 

same time that all the schedules are being pressed. The percentage of the time that is 

spent on verification in the design flow grows up with the complexity of design. It 

consumes about 70% of design effort today [1].  

Based on the report of the functional verification for IC designs in Collett 

International 2000, the bugs found in IC designs mostly come from the errors in 

function and 50% of chips require one or more re-spins. Moreover, Figure 1.1 shows the 

analysis for the chips which require re-spins and 74% of re-spins are due to functional 

defect. The fact indicates that superior functional verification methodologies are needed. 

Advances in verification methodology can improve the time to market when IC designs 

are more complex than before. 

Verification is a process used to demonstrate the functional correctness of a design 

[2]. The main purpose of functional verification is to ensure that a design implements 

intended functionality. Functional verification for a design in million-gate-count always 

needs more than billions of clock cycles in simulation to verify fully.  

Simulation of automatically-generated test programs is the main means for verifying 

complex hardware designs. Random verification may be one selection to speedup the 

process. Language features such as Verilog random sequence generator can create a 

great amount of input signals randomly based on a structured set of rules. Such 
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random-sequence generation schemes are not difficult to produce but can not cover full 

cases efficiently for lager designs, such as processors. 

 

Figure 1.1 Reasons of re-spins [3] 

Constrained-random simulation is the main workhorse in today's hardware 

verification flows. It requires the random generation of input stimuli that obey a set of 

declaratively specified input constraints, which are then applied to validate given design 

properties by simulation. Constrained-random verification can offer a highly effective 

way to deal with the challenges of microprocessor verification [8]. These verification 

challenges include: complex instruction sets, multiple pipeline stages, in-order or 

out-of-order execution strategies, instruction parallelism, and other features for some 

specific applications. The time that traditional direct tests require becomes 

uncontrollable, and simple random sequences are no longer sufficient to verify a 

processor fully. 

 



 3

1.2 Thesis Organization 

The remainder of the thesis is organized as follows: Chapter 2 discusses the 

simulation-based methodology in processor verification. Chapter 3 gives a detailed 

description on the proposed verification strategy. Chapter 4 makes an introduction to the 

study case. Chapter 5 describes the experiment setup and simulation result, and Chapter 

6 concludes the thesis. 
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Chapter 2 Related Works 
In this chapter, we give a brief description of processor verification and the main idea 

about our proposed strategy.  

2.1 Processor Verification 

Verification on processors can be basically classified into two categories: formal 

verification and simulation-based verification. Formal verification mathematically 

analyzes the design and verifies if it functions correctly. Simulation-based verification 

verifies the design by comparing the result of the design with the golden model through 

simulation. Although the formal verification can check the consistency with the 

functional specification and verify the equivalence across several design levels, it is 

difficult to handle a large design due to high computing complexity and memory 

explosion. So, generating test patterns for the simulation-based verification should play 

an important role in processor verification. 

2.2.1 Simulation-based Verification 

In simulation-based approach, it generates test programs automatically to verify the 

processor through simulation, so called instruction-based verification. To prove 

functional correctness of a new processor design, deterministic test patterns for 

simulation would be a common choice. Patterns for basic features verification are like 

data processing, memory access, branch and interrupt, etc. Except the basic cases, there 

are patterns for special cases that designed for special applications: over 32-bit shift 

amount, scalar/vector operations, and block data transfer, etc. These test patterns usually 

are designed for single instruction, and the completeness is assured by code coverage 

tool. 
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As the set of test patterns becomes lager and is hard to handle manually, additional 

verification strategies are the next necessary selections. Real applications or programs 

like Dhrystone, Whetstone, DSPstone, and JPEG2000 encoder program are usually used 

as test bench for processor designs. Most bugs come from unexpected corner cases like 

different combinations of multiple instructions when using this strategy. 

To find out more unexpected corner cases, random verification which can easily 

generate a great deal of patterns would be used to deal with this problem. Random code 

generator produces massive random pattern as input to RTL and golden model. 

Designers compare the output result come from RTL and model to check the 

consistency or dump the difference information, as show in Figure 2.1. The test pattern 

produced by pure random generator usually hits a corner case after a long-time 

simulation and may still lose some cases. 

 

Figure 2.1 Random verification 

 

Many techniques have been proposed for generation of directed test programs. 

Aharon et al. [14] have proposed a test program generation methodology for functional 

verification of PowerPC processors in IBM. Miyake et al. [15] have presented a 

combined scheme of random test generation and specific sequence generation. A 
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coverage driven test generation technique is presented by Fine et al. [13]. Shen et al. 

[16] have used the processor to generate tests at run-time by self-modifying code, and 

performs signature comparison with the one obtained from emulation. Ur and Yadin 

[19] present a method for generation of assembler test programs that systematically 

probe the micro- architecture of a PowerPC processor. Iwashita et al. [18] use an FSM 

based processor modeling to automatically generate test programs. Mishra et al. [17] 

have proposed a graph-based functional test program generation technique for pipelined 

processors using model checking. These techniques present the methodologies of 

generating test patterns and checking with model for processor verification. 

 

2.2 Proposed Verification Strategy 

In order to make the generating patterns become efficient for covering all cases, the 

first step is to add constraints on generating patterns. Figure 2.2 shows that adding a 

constraint file that contains some rules in random verification. Therefore, the generator 

can be controlled by writing code generating rules in constrained file and produce the 

patterns focusing on specific instruction groups and makes a special case happen 

frequently. To design a suitable rule and syntax for constraint file such that a generator 

can produce appropriate pattern become the mains issue. 

The proposed strategy focuses on generating variant test patterns which have specific 

combinations of different instruction groups. Every segment of single instruction and 

every instruction in combinations are generated individually. The freedom in generating 

test patterns can help engineers easily test special cases by writing rule in script file and, 

moreover, modify a little content of script file for different cases. In contrast with a 
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verification tool: Cadence Specman Elite [20] which uses a high language: e-language 

to write the script file, we propose an assembly-like syntax to control more details in the 

test patterns. 

 

Figure 2.2 Constrained-Random verification with constraint file 
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Chapter 3 Constrained-Random Verification 
In this chapter, the flow of proposed constrained-random verification is introduced in 

the first section. The remaining sections give the detailed description of the proposed 

strategy. 

3.1 Overview of Verification Flow 

As described in Chapter 2, we add some constraint rules on random code generator, 

and the process of whole verification flow becomes a little more complex than a 

pure-random one. It can be divided into 3 steps: writing a script file, compiling the 

script file, and generating then outputting codes. 

First, according to the case which would like to be tested, writing the rules of 

constraint in the script file. It depends on the architecture of the target design. The 

random code generator compiles the script file and generates assembly codes based on 

rules then transforms codes into machine codes and outputs the codes at last. Figure 3.1 

shows the architecture of constrained-random code generator. 

 

Figure 3.1 Architecture of constrained-random code generator 
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3.2 User Input Script File 

The content of a script file can be separated into two major parts: “Constraint 

Setting” and “Base Pattern”. Base pattern is an assembly-like program and controls the 

program flow of test patterns produced by generator. Every line of codes is a 

combination of several tokens, and these tokens would be transformed into segments of 

assembly code by generator. Segments such as operation code or operand in every line 

of codes are ruled by constraint setting. There are three basic parts: constant, variable, 

and parameter in constraint setting. Organization of script file is shown in Figure 3.2. 

Following sections give details about syntax of these two. 

 

Figure 3.2 Organization of user input script file 

 

3.2.1 Constant, Variable, and Parameter 

Constant part is used to assist in controlling the program flow in base pattern. There 

are two program flow mechanisms: loop function and random selection (introduced in 
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Section 3.2.2) in the base pattern syntax. The counts of loops and random selections are 

declared in this part. It is convenient for user to change the counts of loop in this part 

rather than in base pattern. 

Objects declared in variable part are able to store the segments in pattern that is 

generated this time and can be fetched later in place of generating new one. For 

example, it can fix two or three registers and make them identical in generating 

assembly code to fulfill certain cases, or make two registers in different codes to test 

data hazard. Detailed usage of variable is illustrated in Section 3.2.2. Simple format of 

constant part and variable part is shown in Figure 3.3. 

.const
    const_name1 const_value1
    const_name2 const_value2

    const_namen   const_valuen
.var
    var_name1
    var_name2

    var_namem

 

Figure 3.3 Format of constant & variable  

 

The range of the segments randomly produced in assembly codes is defined in 

parameter part. A parameter is a group with elements. When a generator wants to 

generate one segment, it would randomly select one element in some parameter which is 

mentioned in the base pattern. User can build a new parameter that contains elements 

for generator to choose. There are two kinds of format in parameter. One of them has 

independent elements and can be decided the relative percentage of every element 

selected by adjusting the corresponding weights. If the weight of some element is 
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greater, it means that this element has higher probability chosen by generator. On the 

other hand, an element with smaller weight would be picked in lower probability. The 

format (i) and one example are shown below: 

{ })(,),(),( 2211 nn weightelementweightelementweightelementparameter L=    (i) 

{ })2((),11),3(4),6(3),8(11_ sprrrrreg =                 (1) 

In Example (1), a parameter named “reg_1” has five elements: r1, r3, r4, r11, and sp 

in the braces. The number in the parentheses behind every element means the 

corresponding weight, and none for the weight of element r11 means the default value: 

1. So the weights of the five elements: r1, r3, r4, r11, and sp are 8, 6, 3, 1, and 2. When 

generator wants to generate a pattern from parameter reg_1, the percentage of every 

element which is chosen in this group are presented in Table 3.1. 

 

Table 3.1 Percentage of elements chosen in parameter “reg_1”. 

Element Weight Percentage 

r1 8 %40%10021368
8 =×++++  

r3 6 %30%10020
6 =×  

r4 3 %15%10020
3 =×  

r11 1 %5%10020
1 =×  

sp 2 %10%10020
2 =×  
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The other kind of format in parameter is format (ii) with pound sign “#” in front of 

parameter name. It is used to deal with immediate integer value in assembly code. 

Contrast to format (i), there are no multiple elements in one parameter. This kind of 

parameter defines the range of immediate integer value by the minimum and maximum 

value in the braces, and a factor limits the output value to be multiple of it. The syntax 

and two examples are shown below. 

{ }factorparameter max,min,# =                    (ii) 

{ }4,1000,41# =imm                          (2) 

{ }400,1002# −=imm                         (3) 

In Example (2), the minimum and maximum values of parameter “#imm1” are 4 and 

1000, and the factor is 4. When generator fetches the information of this parameter, it 

would output immediate integer value which is multiple of 4 and limit the value in the 

range of 4 to 1000. None for the factor in the Example (3) means the default value: 1. 

So parameter “#imm2” tells generator to produce immediate integer value in range of 

-100 to 400. 

3.2.2 Instruction Syntax in Base Pattern 

We provide an assembly-like syntax to edit the base pattern. Codes in base pattern 

would be converted into assembly code by the generator. For one line of code, it has 

several tokens which can be converted into segments of assembly code such as 

operation code, conditional code, registers, or operands depending on the assembly code 

syntax of target design. What segment a token will be converted into is decided by 

variable and parameter. The produced segments can be randomly generated from token 

individually or specified by user. Token has three kinds of format, and syntax is shown 

below. 
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[ ]11var$ para                              (iii) 

[ ]2$ para                                (iv) 

[]var$ 3                                 (v) 

In the formats, “var” and “para” in each token mean variable and parameter. The 

dollar sign “$” indicates a token that is recognized by the generator and makes generator 

start the generating process. For the generator, parameter means to generate new 

segment, and variable means to store or load segment. Format (iii) is the basic format of 

token. It has variable and parameter in the brackets. This format tells generator to 

produce segment from elements in the group “para1” which is declared in parameter 

part and store the produced segment in variable “var1”. Format (iv) is a token with only 

parameter in the brackets and tells generator only to produce segment from elements in 

the group “para2”. In contrast to format (iii), generator would not save the segment 

when processing format (iv). Format (v) is a token with only variable in front the blank 

brackets. It tells generator to load segment from variable “var3” that was stored before. 

Formats of token with corresponding actions in generator are listed in Table 3.2. 

 

Table 3.2 Formats with corresponding actions in generator 

 Format Variable Parameter Action in generator 

(iii) [ ]11var$ para  Y Y Generate and Store 

(iv) [ ]2$ para  N Y Generate 

(v) []var$ 3  Y N Load 
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A simple case is written for ARM ISA Version 5 [9] and shown in Figure 3.4. We 

take three tokens in this case which belong to three kinds of formats individually as 

examples. For the first line of base pattern, the first token “$[d_2]” which only has 

parameter belongs to the format (iv). When the generator fetches this token, it would 

randomly choose one element in parameter “d_2” to replace this token and make it 

become one segment of assembly code. Figure 3.5 shows this process with one possible 

result. 

 
Figure 3.4 Example of base pattern 

 

Figure 3.5 Possible result of token “$[d_2]” 

 

The third token “$reg1[r_1]” that has both parameter and variable belongs to the 

format (iii). Generator would store segment in variable “reg1” after randomly choosing 

one element in parameter “r_1”. The last token “$reg1[]” that has variable only in the 

second line belongs to the format (v) and tells the generator to load segment that was 

produced before. In this case, the loaded segment is the result of the third token 
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converted in the first line. The processes and possible results of converting these two 

token are shown in Figure 3.6. Characters, signs, and spaces which do not belong to 

token will be retained in the process. Generator repeats converting these tokens until 

fetch the line end of code. Figure 3.7 shows one possible outcome of every token in two 

lines after conversion and final assembly code. 

r_1 = {r0(), r1(), r2(), r3(), r4(), r5(), r6(), r7(), r8()}

r3reg1$ [r_1]

randomly 
choose

fetch 
para: 
r_1

store in var: reg1

r3reg1$ []

load from var: reg1

 

Figure 3.6 Possible results of tokens “$reg1[r_1]” & “$reg1[]” 

 

$[d_2] $[cond] $reg1[r_1] , r6, $[r_1]$[shift]

tst ne r3 , r6, lsr r8

convert

tstne r3, r6, lsr r8result

$[d_2] $[r_1] $reg1[]

cmp

, 

r4 r3

convert

cmp r4, r3result, 
 

Figure 3.7 One possible outcome 
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3.2.3 Program Flow Mechanism in Base Pattern 

Base pattern has two program flow mechanisms: loop function and random selection. 

Figure 3.8 shows the syntax of two. They would repeat codes in the braces basically. 

Compared with the loop function, the syntax of the random selection has additional 

weights in the parentheses behind dollar sign “$” and “w”. Weights can be adjusted by 

user and decide the relative percentage of codes. 

loop (loop count)
{
  code1
  code2

  coden
}

select (select count)
{
  $w(weight1): code1
  $w(weight2): code2

  $w(weightm): codem
}

 
Figure 3.8 Syntax of loop function and random selection 

 

Unlike the loop function which converts whole codes sequentially for one loop, the 

random selection only selects one line of code in the braces to convert for one loop. For 

example, a base pattern has five lines of codes in the loop function with loop count n, 

five lines of codes in the random selection with loop count m. The codes in the loop 

function will be converted in the sequence which is shown in (4), and the codes in the 

random selection may be converted in the order shown in (5). 

( )
( )

( )loopn

loop

loop

codecode

codecode

codecodecodecodecode

51

251

154321

→→

→→→

→→→→→

L

M

L
         (4) 

( ) ( ) ( ) ( ) ( )loopmlooplooplooploop codecodecodecodecode 241312513 →→→→→ L    (5) 
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When entering the random selection, generator calculates percentage of all codes in 

the braces first. For one loop, one code is randomly selected to be converted. It would 

repeat this flow until the count of random selection reaches zero. Random selection can 

produce random combination of multiple codes that would help user to test some corner 

cases. Figure 3.9 shows the flow chats of the loop function and the random selection. 

 

…

 

Figure 3.9 Flow chats of loop function and random selection 
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3.3 Constrained-Random Code Generator 

Main function of the constrained-random code generator is to convert the content of 

script file into test pattern in machine code. The generator is written in SystemC and 

generates patterns for processor RTL and golden model on the fly. The architecture of 

the constrained-random code generator is shown in Figure 3.10 and can be divided into 

several parts. Connections between parts are also shown in Figure 3.10. 

 

 

Figure 3.10 Architecture of the generator 
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 System controller: System controller handles the interface signals to the RTL and 

model and controls the actions of the Script compiler and the Base pattern decoder. 

 Script compiler: Script compiler reads the script file and transforms the content 

into self defined data type then storing them in the Database. 

 Base pattern decoder: Base pattern decoder fetches the content of the base pattern 

in the Database and decodes then proceeds one of the two actions: 

 Fetching the loop function or random selection command: The decoder sends 

the counts of loop, the beginning, and the end pointer to the Loop and Selection 

counter and receives the pointer of the next code. 

 Fetching the other code: The decoder sends the code information to Code 

replacer. 

 Loop and Selection counter: The counter calculates the remaining loop count and 

also calculates the pointer of the next code in the base pattern then sending this 

pointer to the Base pattern decoder. 

 Code replacer: The function sends the information of a token in the received code 

to the Token converter sequentially and replaces the token with the segment of 

assembly code returned from the Token converter. After all the tokens are 

converted, the function will send the complete assembly code to assembler. 

 Token converter: Toke converter has three actions for converting a token into a 

segment of assembly code depending on the format of token: generating from 

parameter, loading from variable, and storing to variable. The generated segment is 

returned to the Code replacer. 

 Assembler: Assembler function receives the assembly code from the Code replace 

function and transforms it into machine code for System controller to output. 
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When simulation starting, generator would set up internal parameters and compile 

user input script file after receiving the “reset” signal, then entering standby state. 

Action of generator in standby state for microprocessor RTL and golden model is like 

an instruction memory. It would output machine code of instruction when receiving 

“enable” signal. Figure 3.11 shows flow chat of constrained-random code generator. 

Generator would fetch one line of code in base pattern and convert it into assembly 

code. In the process of converting code, there are four flow paths to deal with three 

kinds of token and characters which do not belong to token. Actions for three kinds of 

token are noted in Table 3.2 and show in Figure 3.11. For format (iii) and (iv), segment 

generating from parameter is the first step. Compared to format (iv), additional step for 

format (iii) is to store segment in variable. There is no generating from parameter in the 

flow path of converting format (v). Loading segment from variable is instead. Generator 

would save the produced segment in temporary then deals with the next token or other 

characters. Unlike tokens, characters which are not part of token are directly saved 

without generating or loading process. 

When the end of the fetched code is read, generator transforms assembly code in 

temporary into machine code and outputs. Then generator would jump into standby 

state. Next time receiving enable signal, the next line of code in base pattern would be 

fetched and transformed into machine code. Generator repeats the process until fetches 

the end of base pattern. 
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Figure 3.11 Flow chat of generator 
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Chapter 4 Introduction to Study Case: ACARM9 

Processor Core Design 
This chapter describes the in-house ACARM9 processor core design. An 

ARM9E-like [10], 32-bit RISC embedded processor core is implemented in the 

register-transfer level (RTL) with verilog language. Section 4.1 depicts the organization 

of ACARM9. Section 4.2 describes the implementation of multi-cycle multiplication, 

and Section 4.3 describes the verification strategy. 

4.1 Organization of ACARM9 

The verilog RTL of ACARM9 consists of 13 major functional blocks including the 

decoder, register file (RF), barrel shifter (BS), arithmetic/logical unit (ALU), 32x32 

multiplier (MUL), count leading zero (CLZ), forwarding unit, program counter (PC) 

selector, operand fetcher (OF), load/store data address generator (DAG), read/write data 

operation and control unit. The block diagram is shown in Figure 4.1. 
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Figure 4.1 Block diagram of ACARM9 

 The decoder unit obtains the instruction from IF phase and decodes it to generate 

all the information needed for the other functional unit. 

 The register file is composed of total 37 registers – 31general-purpose 32-bit 

registers and 6 status registers. 

 The execution stage consists of a BS, an ALU, a CLZ, and a 32x32 multiplier. 

The arithmetic and logical operations are implemented with the ALU module 

whose second operand is received the BS to perform shift operations if needed. 

The 32x32 multiplier produces a 32-bit product. More details of multi-cycle 

multiply operation will be described in Section 4.2. 

 The forwarding unit forwards the output data of EX stage to make sure that the 

next instruction can get these data as soon as possible. 
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 The program counter selector chooses on valid address from five sources 

including the PC incrementer, the ALU output, LDM (load multiple)/STM (store 

multiple) output, read data and the interrupt as shown in Figure 4.2. 

 

Figure 4.2 Source selection of the address registers 

 

 The operand fetcher select data from register file, read data, ALU output, data 

address generator, immediate value or forwarding value as shown in Figure 4.3 

 

Figure 4.3 Operand selection 

 

 The data address generator calculates the read/write data address on data bus 

includes the multiple load/store, and branch address on instruction bus. 

 The control logic controls all the data flows of combinational logic and all the 

state transitions of sequential logic. 
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 The read/write data operation performs data alignment. As shown in Figure 4.4, 

the read operation shifts byte data and half-word data to the bottom of a 32-bit 

register with zero-extended or sign-extended when the processor reads byte data 

or half-word data from memory. For writing half-word data to memory, the 

write operation copies the low half-word part to the high half-word part to fill 

the 32-bit data width. For writing byte data to memory, the write operation 

copies least significant byte to the other three more significant bytes. 

 

Figure 4.4 Read/write operation 

 

4.2 Multi-cycle Multiplication 

For a multiply instruction, source operand A and source operand B are fed to the 

multiplier directly to perform multiply operation. Figure 4.5 shows the multi-stage 

multiplication FSM. 



 26

 
Figure 4.5 Multiplication FSM of ACARM9 

 

A normal multiply instruction with/without accumulation needs two cycles, since two 

64-bit partial products are obtained in the first on cycle. The tow low half 32-bit partial 

products and the value that is accumulated to the product are added by a carry save 

adder to generate two values, and then add the two values by a 32-bit adder to get final 

32-bit result. While all 32-bit of product is valid, two cycles are needed. A long 

multiply instruction with/without accumulation needs three cycles, after the first cycle 

to obtain two 64-bit partial products, the 64-bit values need to take two cycles to 

perform 32-bit addition twice. 

While the multi-cycle multiply operation is finished, a finish signal is sent from 

multiplication FSM to main FSM to tell that the multi-cycle operation is finished and 

the next instruction may get executed to continue the program flow. 
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4.3 Verification Strategy 

A functional verification flow is proposed in the section. Section 4.3.1 proposes the 

overall functional verification flow. Section 4.3.2 proposes coding style checking by 

Linting; Section 4.3.3 proposes a deterministic verification approach. 

4.3.1 Functional Verification 

The functional verification flow diagram is listed in Figure 4.6 and in each of steps 

the RTL code is verified with a SystemC behavior model which is designed for 

matching all the cycle behaviors of ADS. All mismatches during the comparison will 

cause the flow back to RTL revision step for modification. 

 

Figure 4.6 Functional verification flow 
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4.3.2 Coding Style Checking by Linting Free 

This section describes a static coding style check which improves the quality of the 

design in reuse and verification perspectives of RTL code. Checking the coding style of 

the design by Novas nLint tool with 328 lint rules adopted from Frescale Semiconductor 

Reuse Standard (SRS) can avoid all kinds of warnings and errors including naming, 

synthesis simulation common syntax, undeclared objects, unexpected latches, DFT 

issue, and so on. 

 

4.3.3 Deterministic Verification 

This section describes deterministic verification which is made to check all regular 

cases and special corner case should be confronted with in the simulation phase. 

Deterministic verification is composed of three parts including specialized handcrafted 

pattern, real application pattern. 

The handcrafted pattern is written in all cases of instructions implemented in the 

ACARM9 design. It checks all results of instructions to be right in the first step in 

deterministic verification. 

The real application patterns are implemented by some benchmarks like Dhrystone, 

Whetstone, and DSPstone. Moreover a JPEG encoder and an MP3 decoder program are 

also provided to verify the correctness of the design. This kind of pattern checks real 

cases met in applications of real world and is essential in deterministic verification 

phase. 
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Chapter 5 Experimental Results 
This chapter provides the experimental results of the proposed verification strategy. 

The experimental environment is described in Section 5.1. Section 5.2 presents that 

proposed strategy is used on ACARM9 processor core introduced in Chapter 4. Results 

of performance compared with pure-random are present in Section 5.3. 

5.1 Experimental Environment 

We conduct all the experiments on a HP wx8400 workstation. The commercial 

simulators are the Cadence NC-Verilog simulator and the Cadence NC-SC simulator. 

Table 5.1 shows the detail of the experimental hardware and software platform. 

 

Table 5.1 Experimental environment 

Hardware 

CPU: Intel® Xeon® CPU 2.0GHz 

RAM: DDR2-667 ECC FB-DIMM 14GB 

Software 

OS: CentOS 5 x86_64 (with Linux 2.6 kernel) 

Cadence NC-Verilog version 6.1 

Cadence NC-SC version 6.1 
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5.2 Cases Study 

We use the proposed verification strategy on in-house ACARM9 core with ARM ISA 

version 5E [9] fully compatible. To check if the output of RTL correct, efficient 

two-layered cycle-accurate model [11] is used as a golden model. 

5.2.1 Simulation Environment 

We run co-simulation for the ACARM9 RTL code and the golden model and use the 

constrained-random code generator as instruction memory. Generator would send 

instructions in machine code to both RTL and model when receiving instruction enable 

signal which comes from RTL. We also use a comparator to collect all outputs of both 

RTL and model such as external signals and registers and compare them every cycle 

when running simulation. Comparator would dump detail information if the outputs of 

RTL and model have mismatches. The information includes signal name or register 

number, values, and cycle number. Figure 5.1 shows the environment. 

 

Figure 5.1 Simulation environment 
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5.2.2 Script Files and Bugs Found 

To test different cases on the ACARM9 core, we write different base pattern with 

corresponding constraint setting in script files. The ACARM9 core has passed the 

deterministic verification and other real applications such as Dhrystone, Whetstone, and 

JPEG2000 encoder. Finally, it is used to execute an MP3 program on the FPGA 

successfully. However we still find two more bugs in the ACARM9 RTL code using the 

proposed method; moreover, two bugs in the model. The details of the four bugs with 

contents of script files used are listed below. 

(1) Bug of Shift Operation in RTL 

In ARM ISA, the operand shift operations can be parallely executed with other 

operations. The script file of shift operation testing (1) which focuses on this point is 

shown in Figure 5.2. The first instruction in the base pattern would give random value 

to registers by loading from memory. We find one bug in the RTL code and one bug in 

the model individually by using this script file. 

.const
     loop_count 100000
.para

shift = {lsl(), lsr(), asr(), ror()}
d_1 = {add(), adc(), sub(), sbc(), rsb(), rsc(), and(), eor(), oor(), bic()}
d_2 = {tst(), teq(), cmp(), cmn(), mov(), mvn()}
r_1 = {r0(), r1(), r2(), r3(), r4(), r5(), r6(), r7(), r8(), r9(), r10(), r11(), 

r12(), r13(), r14()}
     #imm1 = {0, 32}

.main
     ldmed r0, {r0-r14}
     loop (loop_count)

 {
    $[d_1] $[r_1], $[r_1], $[r_1], $[shift] #$[#imm1]

     $[d_1] $[r_1], $[r_1], $[r_1], $[shift] $[r_1]
    $[d_2] $[r_1], $[r_1], $[shift] #$[#imm1]
    $[d_2] $[r_1], $[r_1], $[shift] $[r_1]

    }
.end  

Figure 5.2 Script file of shift operation testing (1) 
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The RTL code has calculation error in the logic shift right (lsr) operation with 

register specified shift amount when the shift amount is zero. In ARM ISA, the shift 

amount of shift operations has two sources: instruction specified or register specified. 

Different sources will cause different special operation for the particular value of shift 

amount. The correct outputs of logic shift right with zero shift amounts for different 

shift amount sources are listed in Table 5.2. For this case, the correct output should be 

the input operand without shift operation, but the RTL code recognizes it as special case 

in logic shift right operation with instruction specified shift amount: “lsr #0” which is 

used to encode “lsr #32”. It has a zero result with bit 31 of operand as the carry output. 

 

Table 5.2 Logic shift right with zero shift amounts 

 Shift amount source Special case? Encode Output 

Instruction specified Y lsr#32 Zero out, C = bit 31 Standard 

Register specified N lsr#0 No effect 

Instruction specified Y lsr#32 Zero out, C = bit 31 RTL 

Register specified Y lsr#32 Zero out, C = bit 31 

Note: “C” means the carry-out flag 
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(2) Bug of Shift Operation in Model 

The model has one bug which is found by the script file of shift operation testing (1), 

too. The bug happens when the RTL executes the three kinds of shift operation except 

rotation right with register specified shift amount as the shift amount equal to or greater 

than 32. 

In ARM ISA, only the least significant byte (bit 0 to bit 7) of the contents of the shift 

amount register is used to determine the shift amount. But the model takes only least 5 

bits (bit 0 to bit 4) of the shift amount register as the shift amount. Figure 4.3 shows the 

different bit-range of the shift amount register used as shift amount in standard and the 

model. The correct results of this case are result zero for both logic shift left and right, 

and result filled with bit 31 of the operand for arithmetic shift right. The outputs of the 

model are shift operation with shift amount which is the remainder of the contents of the 

register divided by 32. Table 4.3 lists the different results of the three kinds of shift 

operations in standard and the model. 

 

 

Figure 5.3 Different used bit-range of shift amount register. 
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Table 5.3 Results of shift operations in standard and the model 

 Shift type Shift amount = 32 Shift amount > 32 

Logic shift right Zero out, C = bit 31 Zero out, C = 0 

Logic shift left Zero out, C = bit 0 Zero out, C = 0 

Standard 

Arithmetic shift right Filled with bit 31, C = bit 31 

Logic shift right No effect 

Logic shift left No effect 

Model 

Arithmetic shift right No effect 

Operand shifted with 

shift amount mod 32,  

C = corresponding bit 

Note: shift amount means the least significant byte of the shift amount register 

     “C” means the carry-out flag 

 

 (3) Bug in Usage of the Program Counter (PC) 

For the ARM core architecture, register 15 (r15) holds the Program Counter (PC) and 

has limits when used as a destination register or an operand. We change the script file of 

shift operand testing (1) by adding a new parameter which has higher probability to 

produce r15 and modifying tokens in the base pattern. Figure 5.4 shows the script file of 

shift operand testing (2). One more bug in the model is found by using this script file. 

In this script file, r15 is used as an operand. The value of r15 will be different 

depending on the source of shift amount. It will be the address of the instruction, plus 8 

bytes for instruction specified shift amount or 12 bytes for register specified shift 

amount. The model fetches the value of r15 which is the address of the instruction plus 

8 bytes for both cases. Table 5.4 lists the value of r15 for standard and the model with 

different shift amount source. 
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.const
     loop_count 100000
.para

shift = {lsl(), lsr(), asr(), ror()}
d_1 = {add(), adc(), sub(), sbc(), rsb(), rsc(), and(), eor(), oor(), bic()}
d_2 = {tst(), teq(), cmp(), cmn(), mov(), mvn()}
r_1 = {r0(), r1(), r2(), r3(), r4(), r5(), r6(), r7(), r8(), r9(), r10(), r11(), 

r12(), r13(), r14()}
r_2 = {r0(), r1(), r2(), r3(), r4(), r5(), r6(), r7(), r8(), r9(), r10(), r11(), 

r12(), r13(), r14(), r15(30)}
     #imm1 = {0, 32}

.main
     ldmed r0, {r0-r14}
     loop (loop_count)
   {

  $[d_1] $[r_1], $[r_2], $[r_2], $[shift] #$[#imm1]
   $[d_1] $[r_1], $[r_2], $[r_2], $[shift] $[r_1]

    $[d_2] $[r_1], $[r_2], $[shift] #$[#imm1]
   $[d_2] $[r_1], $[r_2], $[shift] $[r_1]

   }
.end  

Figure 5.4 Script file of shift operand testing (2) 

 

Table 5.4 Value of r15 fetched as operand in different source of shift amount 

 Instruction specified Register specified 

Standard PC + 8 PC + 12 

Model PC + 8 PC + 8 
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(4) Bug in Combination of Two Multiplication Instructions 

We find one more bug in the RTL code by the script file shown in Figure 5.5. This 

script file focuses on all instructions about multiplication in ARM ISA version 5E; 

moreover, random selection is used to make random combinations of these 

multiplication instructions. 

 

Figure 5.5 Script file of the multiplication instructions 

The bug happens when the RTL sequentially executes a signed or unsigned multiply 

long (smull or umull) instruction or a signed or unsigned multiply accumulate long 

(smlal or umlal) instruction after an Enhanced DSP instruction: 16-bit signed integer 

multiply (smul<x><y>) instruction. The multiply long instruction will output total 

64-bit result and divide it into higher 32-bit part and lower 32-bit part then output 

sequentially in two cycles. But the lower 32-bit part of the result of the signed multiply 

long instruction would become the output of the previous instruction (smul<x><y>).  
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As the description in Section 4.2, we use a 32x32 multiplier in the RTL code for 

multiplication and modify it such that the multiplication becomes a multi-cycle 

operation to fit the timing constraint. A simple block diagram of multiplier in RTL is 

shown in Figure 5.6, and the multiplication FSM is shown in Figure 4.5. The multiplier 

deals with multiplication instructions which belong to multiply long instructions and 

have 64-bit output in three-cycle operation and other normal multiplication instructions 

have only 32-bit output in tow-cycle operation. When the multiplier handles a 

multiplication instruction, the controller will save some signals from the decoder in the 

status registers and control whole the process. The status registers can be separated into 

several parts which save corresponding control signals for detail functions like 

signed/unsigned, accumulation, DSP operation, and multiply long, etc. After finishing 

calculating, the result will be saved in the output register and the controller will clear the 

status registers and jump into standby state. The multiplier will output the lower 32-bit 

part of result in the second cycle and higher part in the third cycle for multiply long 

instructions and output result only in the second cycle for other multiplication 

instructions. 

Operand A Operand B Operand C

Multiplier

output registeroutput 
enable

Status 
registers

mul 
controller

control 
signals

 
Figure 5.6 Block diagram of multiplier in RTL 
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But the controller does not clear the status registers after finishing smul<x><y> 

instruction. If other multiplication instruction except the multiply long instructions is 

executed after smul<x><y> instruction, some of the status registers which store the 

control signals about smul<x><y> instruction would be updated and the multiplier 

would work as normal. If a multiply long instruction is executed after smul<x><y> 

instruction, these status registers would not be all updated. The output register will be 

locked (output enable signal is low) in the second cycle of the process of multiply long 

instruction such that the lower 32-bit part of result becomes the result of previous 

instruction (smul<x><y>). In the third cycle, the controller sets the output enable signal 

as “high” and the higher 32-bit part of result is outputted correctly. Table 5.5 lists the all 

results of the instruction smul<x><y> and multiply long instruction in RTL and 

standard when multiply long instruction is executed after smul<x><y> sequentially.  

 

Table 5.5 Output of multiplier in standard and RTL 

Output  Multiply 

Instruction Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 

smul<x><y> None Result S    Standard 

Multiply long   None Result lo Result hi

smul<x><y> None Result S    RTL 

Multiply long   None Result S Result hi

Note: suppose that the output of smul<x><y> is “Result S” and the correct outputs 

of multiply long are “Result lo” and “Result hi”  
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5.3 Compare with Pure Random Verification 

We use a pure random code generator to compare the performance with the proposed 

constrained-random code generator. The pure random one is also written in SystemC 

and will output legal machine codes randomly without any constraint. The 

constrained-random code generator and the pure random code generator are used as an 

instruction memory in the co-simulation environment individually to measure 

performance. We run 100,000,000-cycle simulation for both generators and compare 

their simulation time. The simulation time for each generator are shown in Table 5.6. 

The proposed generator has about 35% overhead in simulation time when compared to 

pure random one. 

Table 5.6 Simulation time of two generators 

Generator Simulation time (seconds) 

Constrained-random 8,314 

Pure random 6,156 
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Chapter 6 Conclusions and Future Works 
A constrained-random code generator has been presented in this thesis. The proposed 

verification strategy provides an all-purposed syntax in the user input script file that 

helps generate test patterns efficiently. It can define the generated range of every 

segment in assembly code such as operation code, conditional code, operands, and 

immediate value. By changing a small part of constraint setting in the script file, 

generator can easily output different patterns to cover different corner cases. It can also 

define the relation between segments to test some corner cases such as data hazards. 

Moreover, the program flow of the output pattern can be also controlled by the base 

pattern in script file. The generator can output the codes in sequence as the order in the 

script file or randomly schedule the codes. Finally, the generator is applied on in-house 

ARM9 core and finds out more bugs even if this core has passed many verification 

strategies before. However, the proposed strategy cannot cover the verification of 

external interrupt behaviors at this moment. Consequently, an advance method [12] may 

be applied to our strategy to test the external interrupt behaviors of a processor. 
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