

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

基於格狀特徵值之推舉式人臉分類器

Boosting-kind Face Classifier Based on

Grid Features

研 究 生：駱俊晟

指導教授：王聖智 博士

中 華 民 國 九 十 七 年 九 月

基於格狀特徵值之推舉式人臉分類器

Boosting-kind Face Classifier Based on Grid Features

研 究 生：駱俊晟 Student：Lo Chun Chen

指導教授：王聖智博士 Advisor：Dr. Sheng-Jyh Wang

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of Master

in

Electronics Engineering

September 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年九月

i

基於格狀特徵值之推舉式人臉分類器

 研究生：駱俊晟 指導教授：王聖智 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

偵測是人眼視覺中的一項重要功能，但對於電腦視覺仍是一大挑

戰。在本論文中，我們提出一種用於推舉式人臉偵測器的新的特徵:

「格狀特徵」，它有三項特點：一、特徵以格子網狀的形式來表現，

藉此減少特徵的數量與特徵之間的重疊性。二、以漸進的方式擴大特

徵空間，將簡單的特徵結合成一更具分辨能力的新特徵。三、加入「變

化量」做為測量方法，用來獲取使用「總合」測量所不能獲取的資訊。

實驗中，我們訓練了一個由五級分類器串接而成的人臉分類器，總共

使用了兩百個弱分類器（特徵＋閾），前面四級分類器我們使用對稱

的特徵使得偵測更為穩定強健。在兩組測試圖檔中，使用格狀特徵的

分辨能力比傳統 Harr 特徵效果來得更好。

ii

Boosting-kind Face Classifier Based on

Grid Features

 Student: Lo Chun Chen Advisor: Dr. Sheng-Jyh Wang

Department of Electronics Engineering, Institute of Electronics

National Chiao Tung University

Abstract

Detection is an important function of human vision. However, it is

still a big challenge for computer vision. In this thesis, we propose a new

grid feature for boosting-kind face classifiers. The grid features contain

three major properties: (1). they use a grid representation to reduce the

number and redundancy of features; (2). they adopt a progressive way to

combine simple features together to form more complex and

discriminative features; and (3). they add the variance measure to

discover more information than the sum measurement. We train a face

classifier cascaded by 5 layers and use 200 weak learners in total. In the

first four layers, we only use symmetric features for the sake of

robustness. Based on the experiments over two test patterns, our grid

feature performs better than the commonly used traditional Harr-like

feature.

iii

誌謝

我要感謝 王聖智老師這兩年的指導；老師給予充分的空間讓我

探索尋找喜歡的研究方向，每次討論中以身作則地告訴我做研究應該

有的態度與責任，從老師身上我學習到身為讀書人該有的做為。另外

我也要感謝 黃日鋒副組長與工研院 W200同仁，除了給予我學術上

的指導也帶給我家庭般的溫暖。

在這兩年中還有很多要感謝的人事物，例如下班後特地撥出時間

和我討論的信嘉學長，經常提醒幫助我的亦安，以及在日本認識的許

多朋友…。要感謝的人太多了，除了謝天，我也希望今後能有一番作

為，不辜負你們的厚愛。

iv

Content
Chapter 1. Introduction .. 1

Chapter 2. Backgrounds... 2

2.1 Feature.. 2

2.1.1 Harr- like feature .. 2

2.1.2 Part-based feature.. 5

2.2 Boosting ... 6

2.2.1 PAC Learning .. 7

2.2.2 Adaboost.. 8

Chapter 3. Proposed Method ... 12

3.1 Grid Representation ... 12

3.2 Progressive Feature Space ... 15

3.3 Variance Measurement ... 22

Chapter 4. Experiments ... 25

4.1 Training Data ... 25

4.1.1 Positive training data... 25

4.1.2 Negative Data.. 26

4.2 Symmetric Property of Front Face... 29

4.3 Cascade Structure and Bootstrap Method .. 31

4.4 Results .. 33

4.4.1 Comparison Between Grid Feature and Harr- like Features on Test

Pattern One... 33

4.4.2 Comparison Between Grid Feature and Harr- like Features on Test

Pattern Two .. 37

4.4.3 Summery of Experiments ... 40

Chapter 5. Conclusion ... 41

References .. 42

v

List of Figures
Figure 2-1(a) 3 kind Harr-like features (2, 3 and 4 rectangles) (b) The first 2 selected

features .. 2

Figure 2-2 Samples of Harr-like features.. 3

Figure 2-3 Harr-like features are like highly dependent vector set 4

Figure 2-4 The threshold for Harr-like features.. 4

Figure 2-5 Integral images.. 5

Figure 2-6 Five steps to construct part-based features... 6

Figure 2-7 Overfitting ... 8

Figure 2-8 Training data are linear separated in the weak learner space 10

Figure 3-1 Two similar Harr-like features .. 12

Figure 3-2 The hypothesis space of boosting-kind classifiers..................................... 13

Figure 3-3 The grid representation reduces many redundancies in Harr-like features

 ... 13

Figure 3-4 grid-Harr-like features .. 14

Figure 3-5 The error rates of two classifiers with Harr-like features and grid-Harr-like

features .. 14

Figure 3-6 The 6*6 grid structure ... 15

Figure 3-7 Combine two simple features to a more discriminative feature 16

Figure 3-8 Features at iteration 1 in progressive feature space process 17

Figure 3-9 Features at iteration 2 in progressive feature space process 17

Figure 3-10 Features at iteration 2 in progressive feature space process 18

Figure 3-11 the relation between the progressive feature space and the hypothesis

space .. 18

Figure 3-12 constructed features in the progressive process 20

Figure 3-13 Performances of two classifiers (with Harr-like features and with our

features) ... 21

Figure 3-14 Performances of 10*10 and 6*6 grid sizes ... 22

Figure 3-15 (a) The sum of two rectangles are close. (b) The rectangles with new

measurement may be a good feature ... 23

Figure 3-16 the grid feature with the variance measurement 23

Figure 3-17 Performances of three classifiers (Harr-like features, grid features with

sum measurement and grid features with sum & variance measurement).

 ... 24

Figure 3-18 The first three features with the variance measurement.......................... 24

Figure 4-1 Positive training data (a) only face (b) include the hair 26

Figure 4-2 Using wrong negative data can’t find real boundary 27

vi

Figure 4-3 Choose the negative data as close to positive data as possible 27

Figure 4-4 The procedure to find our negative set .. 28

Figure 4-5 (a) negative set A (b) negative set B (c) negative set C 29

Figure 4-6 Train features on half side then map them to the other side of face.......... 30

Figure 4-7 Error rates to different thresholds ... 30

Figure 4-8 The cascade structure with the bootstrap method 32

Figure 4-9 First two features of each stage... 34

Figure 4-10 ROC curves of two classifiers (with grid features and Harr-like features)

 ... 35

Figure 4-11 Some detected photos by the classifier with grid features 36

Figure 4-12 ROC curves of two classifiers (with grid features and Harr-like features)

on CMU test pattern .. 37

Figure 4-13 Some detected photos in CMU test file by the classifier with grid features

 ... 39

Figure 4-14 The worse case .. 39

vii

List of Tables
Table 4-1 The detection rate to false positive rate of the classifier with Harr-like

features .. 35

Table 4-2 The detection rate to false positive rate of the classifier with grid features 35

Table 4-3 The detection rate to false positive rate of the classifier with Harr-like

features .. 38

Table 4-4 The detection rate to false positive rate of the classifier with grid features 38

1

Chapter 1.

INTRODUCTION

Detection is a basic and important function of human vision; even a young child

can easily do it. However, it’s still a big problem for computer vision. We face the

following challenges: 1. View point variation. 2. Illumination change. 3. Occlusion. 4.

Different scales. 5. Deformation. 6. Background Clutter. [6] Until today, we are not

clear how the human vision overcomes these difficulties.

Above all things, the face is one of the most interesting objects we want to detect.

In many applications, if we achieve the face detection, we could do following

processes, for example, tracking, identification and face expression extraction.

 In the computer vision, we usually use statistic approaches to deal with the

detecting issue. We formulate it as a classification problem. There are two main

different ways to solve it; one is the generative method and the other is the

discriminative method. The former tries to model the prior distribution of faces and

other classes. The later just considers the posterior probability to find a boundary. In

this paper, we adopt the boosting-kind classifier which belongs to the discriminative

method. One reason is because we believe that the distribution of face isn’t easy to be

approximated by simple model.

In chapter 2, we introduce the background of using boosting-kind classifiers on

the face detection. We focus on how to select features and how does the boosting

method work. In chapter 3, we propose a new kind feature, grid feature, to extract

more information from human faces. We also discuss the relation of features and the

classifier’s hypothesis space here. In chapter 4, we describe the detail of training a

boosting-kind classifier with our grid features. And we show the performance

comparisons between grid features and Harr- like features. We have our conclusion in

chapter 5.

2

Chapter 2.

BACKGROUNDS

2.1 FEATURE

How to design and select features is an important issue in the classification and

machine learning. It transfers raw data from the original space into a new space which

Euclidean distance is more suitable to measure our data. Here we introduce two ways

to create suit-able features for the face detection.

2.1.1 HARR-LIKE FEATURE

In 2001, Viola and Jones used Harr- like features with Adaboost classifiers to

construct a fast real-time face detection system [4]. They chose it because of the

advantage of boosting- kind classifiers and the fast computation character of Harr-like

features. In their system, they uses three kind Harr- like features (using 2, 3 and 4

rectangles) as in Figure 2-1(a) and the first two selected features by Adaboost are

showed in Figure 2-1(b)

Figure 2-1(a) 3 kind Harr-like features (2, 3 and 4 rectangles) (b) The first 2 selected features

How do we compute Harr- like features? First, we sum up every pixel in each

rectangle of the feature. Then we use the sum of white rectangles to minus the sum of

black rectangles. Every feature will produce a real number in this way. App lying these

features on training data or test images, we can transfer inputs from the original space

3

to the feature space. Viola and Jones used the above three kind Harr- like features to

create ~160’000 Harr- like features in 24*24 windows as their feature space . We show

some samples in Figure 2-2

Figure 2-2 Samples of Harr-like features

Why do we need a so large feature space? The reason is we want to find the best

feature from the set to construct our weak learner. We need to create enough

candidates for selection; otherwise the best one might be still useless. The “best” here

means the feature can distinguee weighted training faces (positive data) from

weighted training non-faces (negative data) better than the others. We can look these

Harr- like features as a highly dependent vector set. We project training faces and

non-faces to those vectors. In ~160’000 vectors, we pick out the one which separates

two projected data mostly. We record the separating threshold and call the feature plus

the threshold as a weak learner (a weak classifier). We use Figure 2-3 and Figure 2-4

to illustrate the idea.

4

Figure 2-3 Harr-like features are like highly dependent vector set

In the original pixel space, the ~160’000 Harr-like features are like h ighly dependent vector set. We

project train ing faces and non-faces on these vectors.

Figure 2-4 The threshold for Harr-like features

After we pro ject training data to those vectors, we find a threshold for every feature. We pick out the

best one which separates projected data mostly. The feature plus the threshold is called the weak

learner.

5

In order to accelerate the detection time, Viola used integral image to compute

these features. We use Figure 2-5 to explain it. When we input an image, we use top

left corner P and every pixel Xi to form different size rectangles. Then we sum up all

pixels in the rectangle and record it at the bottom right corner Xi. After we’ve done

this, we can compute Harr-like features very fast. For example, when we want to

compute the feature in the right side of Figure 2-5, we only use the value of X4 minus

2 times the value of X2. The computation is only about 5~10% comparing to

original one (it depends on the Harr- like feature size).

Figure 2-5 Integral images

2.1.2 PART-BASED FEATURE

In 2007, Torralba and et al invented a system sharing visual features for

multi-class and multi-view object detections. [7] In his system, he also used a

boosting-kind classifier but with different features. He chose part-based features

inspired from Vidal-Naquet’s work. We use following 5 steps and Figure 2-6 to

introduce the feature.

Five steps to construct part-based features:

1. Collect training images and mark the object we want to detect. Resize

images to make marking area in 32*32 windows.

2. Extract patches from the object windows as templates and record the

location. The template sizes are from 4*4 to 14*14 pixels. One template

plus the location is equal to a feature.

3. Compute the normalized correlation between images and patch Pi

4. Compute the convolution of step3 output and the relative patch location

mask.

6

5. Use the center value of the object windows as the positive training data ’s

output of this feature. Samples outside the windows are outputs of negative

data.

Figure 2-6 Five steps to construct part-based features

In step 1 and 2, usually we collect about 2000 patches as our templates. These

patches are parts of the object we want to detect. After we run boosting algorithm to

combine some good ones of all patches together, we can look them as voters. If a test

image can pass the classifier, it means that many parts of this image are similar to the

object. That’s why we call them part-based features. In step 3 and 4, Torralba used the

convolution of relative location instead of the full object template because it allows

some flexibility.

2.2 BOOSTING

Boosting is a method to combine many simple “hypotheses” together to form a

more accurate and complex hypothesis. We can use it to combine weak learners (weak

classifiers) together to form a stronger classifier. It is based on PAC learning and has

many good characters, such like “robust”, “not easy overfitting”, “fast convergence”...

After Freund and Schapire proposed the first practical boosting algorithm, Adaboost,

7

many other kinds boosting algorithm are invented in recent years [1][2][3]. In 2001,

Viola used Adaboost classifier on face detection and achieved a remarkable result.

After that, the boosting method is the state of art on the fast face detection issue. Here

we introduce PAC learning first. Then we discuss the detail of Adaboost algorithm.

Finally, we prove the upper bound of the error.

2.2.1 PAC LEARNING

Learning methods are more and more popular in recent years. One of the reasons

we use them is because we don’t know the real model and distribution. Instead of

using the simple model to approximate it, we collect many training data and try to

find some regulations. In the training process, we learn to find a hypothesis h with

low error rate on training data (ˆ ()Derr h) then use it to bound the expected error

(()Derr h). In other words, we want to discover some rules from training data and hope

these rules executable for future inputs. However, there is always a chance that it is

impossible to arbitrarily bound the error of expected error (()Derr h) because of a

highly abnormal training set. Thus, we want the algorithm generating h to be

“probably approximately correct” (PAC). The math form is in Eq.2-1 [11].

ˆPr[() ()] 1D Derr h err h      Eq.2-1

There is a nice theorem named “uniform convergence” connecting the training

error and the expected error.

By uniform convergence theorem, we can derive the bound of expected error.

ln 2 ln(1/)
ˆ() ()

2
D D

H
err h err h

m


  Eq. 2-2

Uniform convergence theorem

Given m examples, assume H is finite, with probability 1  

h ˆ() ()D Derr h err h   if
2

1
ln ln

()

H

m O 




 ,

H is the size of the hypothesis space.

8

For a fixed  , we can see that there are 3 factors to alter the upper bound. The

first factor is the training error; when we minimize it, the upper bound of expected

error is also minimized. The second factor is the size of the hypothesis space; the

larger size of the hypothesis space leads to larger upper bound. The last factor is the

number of training data. It is inverse to the bound, and that’s why we usually use large

training data. These factors are not independent, especially the front two factors.

When we enlarge the size of the hypothesis space, usually we can get better training

error. However, the smaller training error doesn’t ensure better expected error because

we also increase the second term of the upper bound. This phenomenon is called

“overfitting”. We use the following Figure 2-7 to express it.

Figure 2-7 Overfitting

2.2.2 ADABOOST

Working in Valiant’s PAC learning model, Kearns and Valiant posed the question

of whether a “weak” learning algorithm can be boosted into a stronger learning

algorithm. The answer is yes. In 1995, Freund and Schapire came up with the first

practical boosting algorithm, Adaboost. It combines “weak” learners h which have

error rate just better than random guess into a strong classifier.

1

T

t tt
f h




Eq. 2-3

9

.

The main idea of Adaboost is to focus on miss-classified training data. At each

time, Adaboost picks the best weak learner which generates the smallest weighted

error (1/2t t  ). Then it increases the weight of miss-classified data and

decreases the weight of right ones. In next round, it finds a new weak learner

minimizing reweighted error. After T rounds, the strong classifier can achieve a much

smaller error (() 2 (1)t t

t

error f   ). The overall algorithm is as following:

The final hypothesis is the linear combination of weak learners. It means that

after we transfer positive and negative training data into the weak learner space, we

can linear separate them. We use Figure 2-8 to illustrate this idea.

Adaboost algorithm

Input: N examples 1 1 2 2{(,)(,),..., (,)}N Nx y x y x y , iy is the class label of ix

Initialize:
1 1
nd

N
 for all n = 1, 2… N

For t = 1…T

1. Find the best weak learner : { 1}th x   to minimize weighted

error
1

(())
N t

t n n t nn
d I y h x


 

2. Compute hypothesis weight
1 11 1

log() log()
2 2 1

t t
t

t t

 


 

 
 



3. Update example distribution
1 exp(()) /t t t

n n t n n td d y h x Z   ,

1

exp(())
N

t t

t n t n n

n

Z d y h x


 

End

Output: final hypothesis
1

()
T

final t t

t

f h x




10

1

() ()

exp(())

exp() exp()

(1)exp() exp()

t t
n n n n

N
t t

t n t n n

n

t t

n t n t

y h x y h x

t t t t

Z d y h x

d d



 

   



 

 

  

   



 

* 11
((1)exp() exp()) 0 log()

2

t
t t t t t

t t

d

d


    

 


     

Figure 2-8 Training data are linear separated in the weak learner space

In the algorithm, t is the coefficient to combine weak learners. How do we

choose the t in Adaboost algorithm? We look tZ as a lose function and try to find

a suitable t to minimize it.

The last thing we want to prove is the upper bound of the error. We want to show

a few weak learners can theoretically generate a stronger classifier.

11

The upper bound of the error

Step 1: unwrapping recurrence:

1

1 1

1
(exp(()) /) (exp(()) /)

exp(())1

final T

n n n T n n T

n n

t

t

d y h x Z y h x Z
m

y f x

m Z

      


 





Step 2: training error t

t

Z

Train error

11

0nm


 




() 0n nif y f x

else

 1
exp(())n n t

n t

y f x Z
m

  

Step 3: 2 (1)t t tZ   

()

()

exp()

exp() (1)exp() exp()

t
n n

t
n n

t

t n t

y h x

t

n t t t t t

y h x

Z d

d



    





 

    



 Set

11
ln()

2

t
t

t







 2 (1)t t tZ    

Then we can get that () 2 (1)t t

t

error f   

12

Chapter 3.

PROPOSED METHOD

Our work focuses on proposing a new feature named “grid feature” for the

boosting-kind face classifiers. There are three main differences comparing to before

works. First, we adopt the grid representation to construct our features so we can

decrease the feature space size. Second, unlike Viola and Jones limited their feature in

3 kinds Harr- like features, we use a progressive method to gradually enlarge our

feature space toward “good” direction. Finally, we add the variance measurement to

discover more information than the sum measurement used in Harr- like features. We

introduce the detail in following sections.

3.1 GRID REPRESENTATION

Viola and Jones used 3 kind Harr- like features to create nearly 160’000 Harr-like

features as their feature space for picking weak learners. There are many fea tures very

similar in this set. For example, Figure 3-1 shows two Harr- like features; they are just

a little different in their position and size. The highly dependent and redundant

properties of those Harr- like features cause the difficulty of training. If we don’t only

use 3 kind Harr- like features but want to add more varieties to the feature space. It

might increase the features to hundreds of millions. It’s impossible to train a classifier

with such a huge feature space.

Figure 3-1 Two similar Harr-like features

Besides the training problem, a huge feature space also has risk to make

overfitting. From Eq.2-2, we showed that the complexity of hypothesis space

influences the upper bound of the test error. The hypothesis space of the boosting-kind

13

classifier is controlled by two factors. One is the number of weak learners and the

other one is the feature space for picking weak learners (because the threshold is fixed

after we pick the feature). When we enlarge the feature space, we also increase the

complexity of hypothesis space. As a result, even if we have the ability to train a

classifier with hundreds of millions features, it still not a good idea because of the

overfitting risk. We use Figure 3-2 to illustrate the relation between the feature space

and the hypothesis space.

Figure 3-2 The hypothesis space of boosting-kind classifiers

Considering above two problems, we decide to construct our features based on

the grid representation. Our idea is inspired from Li Fei Fei’s tutorial course in CVPR

2007. She showed that the grid representation has good performance on the category

classification. In other words, when we use the grid representation, we still have

enough information to classify the image.

If we apply the grid representation on original Harr- like features, we can reduce

the redundancy. For example, in Figure 3-3, we can use the right side feature to

approximate features on the left side.

Figure 3-3 The grid representation reduces many redundancies in Harr-like features

Hypothesis space

14

In order to verify the influence of the grid representation, we train two classifiers

with different features. One classifier uses original Harr- like features and the other

one uses “grid-Harr- like features”. The grid-Harr- like feature means we round off the

rectangles to the near grid. Now the rectangles of Harr- like features can’t be placed at

arbitrary places and the sizes are also limited. We can see the cell of grid as a unit and

each Harr- like feature is composed of integral cells. We use Figure 3-4 to illustrate

this idea.

Figure 3-4 grid-Harr-like features

We take 1000 faces and non-faces as our training data and another 1000 faces

and non-faces are used to test the performances of these two classifiers. The detail of

the training and test data is described in chapter 4. The results are plotted in Figure

3-5.

Figure 3-5 The error rates of two classifiers with Harr-like features and grid-Harr-like features

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100 120

Harr-like feature

Grid-Harr-like feature

Weak learners

Error rate

15

There is a gap between the error rates of two classifiers but the one with

grid-Harr- like features is still notable of its classification ability.

In summary, the grid representation can reduce space redundancies and is not

easy to overfitting. In next two sections, we will show how to construct our features

based on the grid representation to compensate the gap and even achieve better

performance.

3.2 PROGRESSIVE FEATURE SPACE

In the above section, we used Harr-like features to discuss the influence of the

grid representation. We compared original Harr- like features to grid-Harr- like features.

Now we want to ask that if we don’t use Harr- like features, how we create features

based on the grid form. Considering the 6*6 grid structure (see Figure 3-6, we sum up

every pixel inside of each cell. Then we can use {-1,0,+1} coefficient set to arbitrarily

combine any cells of the grid to form a new feature. In other words, we have
36 2 36 3 36 36 36

1 2 3 362 C +2 C 2 ... 2C C       possible combinations (it only

considers {-1,0,+1} combination coefficients).

Figure 3-6 The 6*6 grid structure

In each feature, we use the sum of every pixel in b lack cells to minus the sum in white cells.

 It’s hard to search all possible combinations so we need to have a strategy to

find the suitable combination of cells as our feature. This problem is very similar to

the classification problem. We want to find a boundary to separate two classes but

there are too many choices. If our classifier is simple, it can’t distinguish them very

well. If the classifier is very complex, it has the risk to overfitting. When we face this

problem, we use boosting to combine weak classifiers together to form a stronger

classifier. Using boosting method, we can overcome the dilemma above. This idea

inspires us for finding the combination of cells in the same way.

16

Since it’s hard to directly find the combination of cells to form our features, we

start from simple features which contain only few cell combinations. We build a

simple feature set and pick out several good ones. “Good” means it has discrimination

for training faces and non-faces. Then we combine some of these features to form a

more complicated feature. We use Figure 3-7 to demonstrate our idea.

Figure 3-7 Combine two simple features to a more discriminative feature

There is a drawback in above idea. We can’t ensure all more complicated

features perform better than simple ones. So we need to preserve those simple features

in case of that situation. In other words, every time we keep original feature space and

use the picked features to create more features. Add these new features to original

space to form a new feature space. We can not only do this process one time to

gradually enlarge our feature space. Using this method, we don’t construct a huge

feature space at first time (for example, Viola and Jones used ~160’000 features). Our

feature space size is determined by how many iterations we run. We use the following

figures to illustrate it.

17

Figure 3-8 Features at iteration 1 in progressive feature space process

At first iteration, we use only one cell to construct our feature set. There are total 36 features.

(We don’t consider the minus sum of each cell because they have the same discriminative ab ilities)

Figure 3-9 Features at iteration 2 in progressive feature space process

At second iteration, we pick out all features in the last iterat ion and use combinations of t hem to

create more features. New feature space is composed of orig inal features and new features. (We only

pick out all features this time. In other iterat ions, we pick out several good features instead of all

features)

18

Figure 3-10 Features at iteration 2 in progressive feature space process

At third iteration, we p ick out M good features (the number we need to choose by hands) from

the last iteration. We use all possible combinations of these picked features and original 36 features to

create new features. This process keeps going until T iterations finish. Yellow means multip ly by 2.

Each time we pick good features to increase our feature space. That’s why we

call the space progressing toward good direction. We show the relation between the

progressive feature space and the hypothesis space of boosting-kind classifiers in

Figure 3-11.

Figure 3-11 The relation between the progressive feature space and the hypothesis space

In the above process, we start from all possible combinations of features with

one cell but it’s not necessary. One can start with more cells. For example, if we start

with 2 cells, we have
36 36

1 2C +2 C =2556 features at first iteration. And in the next

iteration, we will have
2556

22556+2 C features. It cost more training time. We state

this progressive process in math form in next page.

19

Progressive Feature Space

Training set: 1{ ,... }nX x x
 

, ix m


Grid measurement transfer matrix: r mG  , r = # grid  2 measurements

1.
0

i iy Gx
 

,
0 0 0

1{ ,... }r n nY y y 
 

2. Initial coefficient matrix:

1

0

0

0

0

0

k r

k

c

C

c



 
 

  
 
  




 , ic : set arbitrary 2 elements = 1 or -1,

others = 0,
0

22 rk C 

3. For t = 1,2,…,T

(1)
1

1{ ,..., | }t

t t t t t t

n i ik n
Z z z z C y 


 

   
,

1tk 
 is the dimension of current iz



(2) Use Boosting algorithm to find the best #
tr features with thresholds

(3)

1

()
t t

t

t

t

r n r r

Y
Y

Z



 

 
  
  

(4)

1

()t t

t

t

t

k r r

t

k

c

C

c

 

 
 

  
 
  




 ic : set arbitrary 2 elements = 1 or -1,

others = 0, 22
tt r rk C  

(5)
tr r r 

 End

4. Use Tr features with thresholds as weak learners to construct a classifier

20

First, we transfer pictures from the raw data space ({ ... }i nx x) to the grid

measurement space 0 0 0

1{ }i ny y y . We can see each grid measurement as a feature. At

iteration t = 1, we use {-1, +1} to combine any two of 0

iy as a new feature to form

the first hypothesis space. Then we apply boosting algorithm on the space to pick out

“good” few features (so we say that it’s toward the good direction). Adding these

features and original features (each grid measurements) together, we get 1

iy . At

iteration t =2, we combine any 2 features of 1

iy as a new feature to form the second

hypothesis space and keep on. 1t t

i iy y   numbers of features we picked at iteration

t. When t increases, we gradually enlarge the hypothesis space and find more

complicated features.

We give some constructed features in the process in Figure 3-12.

Figure 3-12 constructed features in the progressive process

21

Now we want to compare the features we found to original Harr- like features.

We use 1000 training faces and 1000 training non-faces to train two classifiers. One

uses our features and the other one use Harr-like features. The grid size we chose is 6

cells*6 cells and we run 3 iterations in the progressive process. The test data are 1000

faces and 2000 non-faces. The result is in Figure 3-13.

Figure 3-13 Performances of two classifiers (with Harr-like features and with our features)

We can see there is still a small gap between two performances. However, the

gap is less than 3%. We can run more iteration to get even closer results. And in next

section, we will add another measurement to our features. It can cross the gap to

achieve better performance.

The last issue we want to discuss in this section is the grid size. Different grid

sizes have different performances and training times. In our experiments, we’ve tried

10 cells *10 cells, 6 cells*6 cells and 5cells *5cells three sizes in 30*30 windows.

They all use the same progressive strategy to create features. Again, the training data

are 1000 faces and 1000 non-faces and the test data are 1000 faces and 2000

non-faces. The performances of former two are very close and much better than the

later one. We only plot the performances of former two here.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

10 20 30 40 50 60

Harr-like feature

Our feature

Error rate

Weak learners

22

Figure 3-14 Performances of 10*10 and 6*6 grid sizes

Although their results are very close, we notice there is a little overfitting in

10*10 grid size case. So in later experiments, we always use 6*6 grid size. This also

supports our words that the grid representation is less chance to have overfitting (as

long as we use too big grid size or too small cell size).

3.3 VARIANCE MEASUREMENT

In the above sections, we always use the sum measurement in each cell of the

grid. The goodness is that the computation is very easy and fast. The drawback is that

sometimes the sum measurement can’t give us enough information. Or we can say the

sum measurement has no discrimination in some situations. For example, in Figure

3-15 (a) the sums of two rectangles are very near. It can’t distinguish the mouse with

many details from the smooth cheek. In Figure 3-15 (b), if we can apply a

measurement which tells the difference between two green rectangles, we can use

them to construct a good feature.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

10 20 30 40 50 60

6*6

10*10

Weak learners

Error rate

23

Figure 3-15 (a) The sum of two rectangles are close. (b) The rectangles with new measurement may

be a good feature

Because of the above defect, we bring in another measurement, variance. We not

only compute the sum of each cell but also compute the variance. There are two main

advantages to use the variance as our measurement. First, it’s the second moment

which tells us extra information than the first moment. Besides, the computation is

affordable. After we compute the sum of each cell, we already know the means and it

lessens the computation of variance. We use Figure 3-16 to illustrate what the feature

looks like after we add the variance measurement.

Figure 3-16 the grid feature with the variance measurement

The right side is a grid feature. It equivalent to

() () () ()sum J sum I variance L variance J   Eq 3-1

We want to know the influence of the variance measurement so we train two

classifiers again. This time we use the same training data and test data in order to

compare with the results in the before experiment. We plot the comparison in

24

following figure.

Figure 3-17 Performances of three classifiers (Harr-like features, grid features with sum measurement

and grid features with sum & variance measurement) .

After we add the variance measurement, our performance is better than the

classifier with Harr- like features. In other words, the variance can help us to classify

faces from others.

We show the first three features we find in this experiment in Figure 3-18.

Figure 3-18 The first three features with the variance measurement

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

10 20 30 40 50 60

Harr-like feature

Our feature with sum
measurement

Our fiture with sum &
variance measurement

25

Chapter 4.

EXPERIMENTS

In this chapter, we use the grid feature to train a face classifier with 200 weak

learners. We compare its performance with the one using Harr-like features. Before

we show the result, we discuss three notable issues in the training process. The first

one is how we collect training data. Then second is the symmetric property of front

faces. The last one is the overall cascade structure.

4.1 TRAINING DATA

4.1.1 POSITIVE TRAINING DATA

Training data takes an important position on the learning type classifier. If the

data is abnormal, we may not find real boundary between two classes. One of the

most famous training databases is built by MIT cbcl. They collect 2429 faces and

4548 non-faces in 19*19 pixels as training data. Another 472 faces and 23573

non-faces are used for testing. However, both Viola and we found the too small size

couldn’t give us enough information for detection. So we build a new database for our

experiments. We collect 2678 faces in the 30*30 pixels size. A half is male and the

other half is female. Most of these faces come from Asians, especially Taiwanese and

Japanese. Before we fully construct our database, we notice the different marking area

(only face or include the hair) also affects the training result. From our small test, the

former is more robust so we adopt it in our experiments. We show both in Figure 4-1

26

Figure 4-1 Positive training data (a) only face (b) include the hair

4.1.2 NEGATIVE DATA

The asymmetric property is the main problem when we collect the negative

training data. Because there are too many different classes belonging to negative set,

we need a very large negative set to represent them. But when we train our classifier,

the amount of two training set size should be close; otherwise the boosting algorithm

will focus on the small set at beginning (we give equal weights for two training set).

After a few iterations, the weight of miss classified data would be reweighted too

large to find the real boundary. If we randomly use a subspace of the large negative

set, we might find a set which is easy to be separated from positive data. The

boundary of these training data has no generalization. So we need to choose our

negative data near to positive data as close as possible. We use Figure 4-2 and Figure

4-3 to demonstrate this problem.

27

Figure 4-2 Using wrong negative data can’t find real boundary

Figure 4-3 Choose the negative data as close to positive data as possible

28

In order to conquer the problem, we use our collected faces and non-faces from

MIT cbcl to train a classifier first. The classifier is used as a filter to eliminate those

absolute non-faces candidates. We pass many non-faces patches to the filter and only

collect the miss-classified ones. These miss-classified ones have more similarities to

faces. We show the source of negative data and details of the procedure in Figure 4-4

Figure 4-4 The procedure to find our negative set

We do uniformly sampling in the last step because there are many redundancies

created in the second step. And the size of negative data is also 30*30 pixels. In the

after experiments, we use these three negative sets to train our cascade classifiers.

29

Here we show some samples of each set.

Figure 4-5 (a) negative set A (b) negative set B (c) negative set C

4.2 SYMMETRIC PROPERTY OF FRONT FACE

We all know that human faces have highly symmetric property and we want to

add this knowledge into our training process. So when we train our front face

classifiers, we only find features on the left half face. Then we map each feature from

this side to right half side to form a new symmetric feature. In ideal case, we should

double the threshold of each original feature because we have double cells in our new

feature. But considering there are still some asymmetric parts on most human faces,

we need to find a new suitable threshold. The threshold is changed with different

training dada. If our training negative data is highly asymmetric, we can use a low

threshold to achieve a good discrimination and vice versa.

In our experience, if we normalize the original threshold to 1, the best new

threshold which separate training faces from non-faces mostly usually locates around

1.45 to 1.75 times. Later when we train the cascade classifiers, we adjust the threshold

according to different training set.

We show how we map half features to new symmetric features in Figure 4-6.

And in Figure 4-7 we plot different thresholds to its error rates (the original threshold

is normalized to 1).

30

Figure 4-6 Train features on half side then map them to the other side of face

Figure 4-7 Error rates to different thresholds

31

4.3 CASCADE STRUCTURE AND BOOTSTRAP

METHOD

There are two reasons to use the cascade structure on the face detection. First, it

can reject most non-faces at the beginning few layers. It decreases the computation

loading and makes real-time applications possible. Another advantage of cascade

structure is allowing us use more negative training data. In section 4.1, we mention

the asymmetry problem of training set. Although we filter out many redundancies, the

negative training set is still larger than the positive one. To cooperate with the large

negative training set, we can train several classifiers with the same positive training

data but different parts of negative set. When we cascade these classifiers together,

our final classifier is equivalent to see the whole negative training set.

 Furthermore, we adopt the bootstrap method in the cascade structure. We

collect those miss-classified negative training data at this layer and use them as

negative data again in the next layer. Through this way, our classifier can focus on

those “hard” training data which is not easily classified, and the boundary is also more

robust. We use Figure 4-8 to illustrate how to construct the cascade structure with the

bootstrap method.

32

Figure 4-8 The cascade structure with the bootstrap method

33

At the first layer, we use our collected 2678 faces and 3500 non-faces from MIT

cbcl to train a classifier with 25 weak learners. At this layer, we have to set to

detection rate very high so faces can pass to the next layer. Usually we adjust the

threshold of classifier A to allow more than 99% training faces pass. At the second

and third layers, we use the same faces set but different negative set B and C to train

the classifier B and C. We also set the detection rate higher than 99%. At last two

layers, we still use the same positive training data but we collect miss-classified

negative data from before layers. If those negative data are not enough, we can add

some negative data which we don’t use in before layers. The last layer we use 100

weak learners because the negative data here are miss-classified from above layers. It

means these are “hard” negative data. We want to find more precise boundary to

separate training faces from those hard training non-faces. And from chapter 3 we

know the number of weak learners can control the discriminative capability of the

classifier. That’s the reason we adopt 100 weak learners at this layer.

4.4 RESULTS

4.4.1 COMPARISON BETWEEN GRID FEATURE AND

HARR-LIKE FEATURES ON TEST PATTERN ONE

In order to compare our new feature to the original Harr-like feature, we

randomly collect 74 photos with 140 faces from the internet as our test pattern. We

use our training database and the cascade structure to train two classifiers with overall

200 weak learners. One classifier uses Harr- like features and the other one uses our

grid features. We run 4 iterations in the progressive feature space process and each

time we keep the best 40 features. In the beginning forth layers, we all adopt

symmetric gird features to training our classifier. Only in the last layer we don’t limit

it. The reason is as mentioned above. We want construct a more complex classifier to

handle those hard negative data at the last layer. We show the first two features in

each layer in Figure 4-9.

34

Figure 4-9 First two features of each stage

35

The ROC curves are plotted in Figure 4-10 and detection rates of two classifiers

are listed at Table 4-1 and Table 4-2

Figure 4-10 ROC curves of two classifiers (with grid features and Harr-like features)

Table 4-1 The detection rate to false positive rate of the classifier with Harr-like features

False positive rate(*10-4) 0.16 0.66 3.1 8.7 23

Detection rate (Harr-like) 35.71% 58.57% 78.57% 93.57% 97.86%

Table 4-2 The detection rate to false positive rate of the classifier with grid features

False positive rate(*10-4) 0.22 1 3.8 10

Detection rate (Grid) 55.71% 82.86% 92.14% 97.71%

We show some detected photos in Figure 4-11.

False positive rate

Detection rate

Grid features

Harr-like features

36

Figure 4-11 Some detected photos by the classifier with grid features

37

4.4.2 COMPARISON BETWEEN GRID FEATURE AND

HARR-LIKE FEATURES ON TEST PATTERN TWO

We use the classifiers mentioned above on another test pattern. This time we test

one of CMU test files (This file is not related to those files which we used to create

negative data). It contains 60 photos and 172 faces.

The ROC curves are showed below.

Figure 4-12 ROC curves of two classifiers (with grid features and Harr-like features) on CMU test

pattern

Grid features

Harr-like features

False positive rate

Detection rate

38

The detection rates to false positive rates of both classifiers are list in Table 4-3

and Table 4-4.

Table 4-3 The detection rate to false positive rate of the classifier with Harr-like features

False positive rate(*10-4) 0.16 2.5 6.3 10 12 25

Detection rate (Harr-like) 48.26% 76.16% 81.98% 86.63% 88.37% 92.44%

Table 4-4 The detection rate to false positive rate of the classifier with grid features

False positive rate(*10-4) 0.47 1.69 4.74 8.37 13 28

Detection rate (Grid) 51.74% 78.49% 87.79% 92.44% 94.19% 95.93%

We show some detected photos in Figure 4-13.

39

Figure 4-13 Some detected photos in CMU test file by the classifier with grid features

CMU test pattern is harder than those photos we find on internet, so both two

classifiers can’t achieve nearly 100% right by 200 weak learners. We show our worse

case in Figure 4-14.

Figure 4-14 The worse case

40

4.4.3 SUMMERY OF EXPERIMENTS

In the above two experiments, the classifier using our gird features performs

better than the one with Harr- like features on both test patterns. Although the test

patterns are not big enough to claim our feature is exactly better. At least the results

show that our grid features are useful on the face detection problem. There are still

many parameters (such as the iteration times…) we don’t optimize them yet. It might

be helpful to the performance. If we want to apply grid features in real-time

applications, we can use only sum measurements in first few layers. So the integral

image is still applicable.

41

Chapter 5.

CONCLUSION

In this thesis, we develop a new feature named “grid feature” for boosting-kind

classifiers. There are three main differences from before works. First, we use the grid

representation to construct our features. It reduces the redundancy between features so

we have space to do further design. Second, adopt a progressive method to gradually

enlarge our feature space toward the good direction. It combines two simple features

into a more complex and discriminative feature. In this way, we can find more

different type features but don’t need to create a huge initial feature space. Lastly, we

add the variance measurement inside the feature. It can compensate the insufficiency

of the original sum measurement.

In order to apply harder negative data in the training process, we trained one

classifier as a filter to eliminate easy classified negative data. And we use uniform

sampling to reduce the redundancy. When we train the front face, we take advantage

of its symmetric property. We find half face features first and map them to the other

side to create new symmetric features. This method can not only save training time

but also constructs more robust features.

 Our experiment results support our grid features. Both using 200 weak

learners in 5 cascade classifiers (layers), our grid features perform better than

Harr- like features on two test patterns. To apply other measurements on this structure

is a possible way for future works.

42

REFERENCES

[1] R.E. Schapire. “The boosting approach to machine learning: An overview.”

Nonlinear Estimation and Classification. Springer, p149-p172, 2001.

[2] R. Meir and G. Rätsch. “An introduction to boosting and leveraging.” Advanced

Lectures on Machine Learning (LNAI2600), p118-p183, 2003.

[3] R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee, “Boosting the Margin: A

New Explanation for the Effectiveness of Voting Methods.” Proc. Fourth Int’l

Conf. Machine Learning, p322-330, 1997.

[4] P. Viola and M. Jones, “Rapid Object Detection Using a Boosted Cascade of

Simple Features.” Proc. IEEE Conf. Computer Vision and Pattern Recognition,

p511-p518, 2001.

[5] P. Viola and M. Jones. “Robust Real-Time Face Detection” International Journal

of Computer Vision 57(2), p137-p154, 2004.

[6] Li Fei-Fei. “Recognizing and learning object categories” Proc. IEEE Conf.

Computer Vision and Pattern Recognition (CVPR). Short Course, 2007.

[7] A. Torralba, K. P. Murphy and W. T. Freeman. "Sharing features: efficient

boosting procedures for multiclass object detection" Proc. IEEE Conf. Computer

Vision and Pattern Recognition (CVPR). p762-p769, 2004.

[8] C. Rudin, R.E. Schapire and I. Daubechies. “Analysis of Boosting Algorithms

using the Smooth Margin Function” Annals of Statistics, Vol. 35, No. 6,

2723-2768, Mar. 2007.

[9] M.-H. Yang, D.J. Kriegman, and N. Ahuja, “Detecting Faces in Images: A

Survey” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 1,

Jan. 2002.

[10] C. Huang, H.Z. Ai, Y. Li, and S.H. Lao, “Vector Boosting for Rotation Invariant

Multi-View Face Detection” IEEE Trans. Pattern Analysis and Machine

Intelligence, p671-p686, 2005.

[11] R.E. Shapire. “Foundations of Machine Learning” Lectures on the class, 2006.

