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Abstract

Detection is an important function of human vision. However, it is
still a big challenge for computer'vision. In this thesis, we propose a new
grid feature for boosting-kind face classifiers. The grid features contain
three major properties: (1). they use a grid representation to reduce the
number and redundancy of features; (2). they adopt a progressive way to
combine simple features together to form more complex and
discriminative features; and (3). they add the variance measure to
discover more information than the sum measurement. We train a face
classifier cascaded by 5 layers and use 200 weak learners in total. In the
first four layers, we only use symmetric features for the sake of
robustness. Based on the experiments over two test patterns, our grid
feature performs better than the commonly used traditional Harr-like
feature.
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Chapter 1.

INTRODUCTION

Detection is a basic and important function of human vision; even a young child
can easily do it. However, it’s still a big problem for computer vision. We face the
following challenges: 1. View point variation. 2. Illumination change. 3. Occlusion. 4.
Different scales. 5. Deformation. 6. Background Clutter. [6] Until today, we are not
clear how the human vision overcomes these difficulties.

Above all things, the face is one of the most interesting objects we want to detect.
In many applications, if we achieve the face detection, we could do following
processes, for example, tracking, identification and face expression extraction.

In the computer vision, we, usually use statistic approaches to deal with the
detecting issue. We formulate it'as a classification problem. There are two main
different ways to solve it; ope is the-|generative. method and the other is the
discriminative method. The former tries o model the prior distribution of faces and
other classes. The later just considers the posterior probability to find a boundary. In
this paper, we adopt the boosting-kind classifier which belongs to the discriminative
method. One reason is because we believe that the distribution of face isn’t easy to be
approximated by simple model.

In chapter 2, we introduce the background of using boosting-kind classifiers on
the face detection. We focus on how to select features and how does the boosting
method work. In chapter 3, we propose a new kind feature, grid feature, to extract
more information from human faces. We also discuss the relation of features and the
classifier’s hypothesis space here. In chapter 4, we describe the detail of training a
boosting-kind classifier with our grid features. And we show the performance
comparisons between grid features and Harr- like features. We have our conclusion in
chapter 5.



Chapter 2.

BACKGROUNDS

2.1 FEATURE

How to design and select features is an important issue in the classification and
machine learning. It transfers raw data from the original space into a new space which
Euclidean distance is more suitable to measure our data. Here we introduce two ways
to create suit-able features for the face detection.

2.1.1 HARR-LIKE FEATURE

In 2001, Viola and Jones:used Harr-like features with Adaboost classifiers to
construct a fast real-time face-detection system [4}: They chose it because of the
advantage of boosting- kind classifiers and the fast computation character of Harr-like
features. In their system, they uses three kind Harr-like features (using 2, 3 and 4
rectangles) as in Figure 2-1(a) and the first two selected features by Adaboost are
showed in Figure 2-1(b)
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(a) (b)

Figure 2-1(a) 3 kind Harr-like features (2, 3 and 4 rectangles) (b) The first 2 selected features

How do we compute Harr-like features? First, we sum up every pixel in each
rectangle of the feature. Then we use the sum of white rectangles to minus the sum of
black rectangles. Every feature will produce a real number in this way. App lying these
features on training data or test images, we can transfer inputs from the original space
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to the feature space. Viola and Jones used the above three kind Harr-like features to
create ~160°000 Harr- like features in 24*24 windows as their feature space . We show
some samples in Figure 2-2
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Figure 2-2 Samples of Harr-like features

Why do we need a so Iarge i‘eature space'> The r&ason is we want to find the best
feature from the set to co nstrijet qu—k—"Ieamer We need to create enough
candidates for selection; otherwisé thebest st one- rmght be still useless. The “best” here
means the feature can distinguee wélghted training faces (positive data) from
weighted training non-faces (negative data) better than the others. We can look these
Harr-like features as a highly dependent vector set. We project training faces and
non-faces to those vectors. In ~160°000 vectors, we pick out the one which separates
two projected data mostly. We record the separating threshold and call the feature plus
the threshold as a weak learner (a weak classifier). We use Figure 2-3 and Figure 2-4
to illustrate the idea.




~160000 vectors

Figure 2-3 Harr-like features are like highly dependent vector set

In the original pixel space, the ~160°000 Harr-like features are like highly dependent vector set. We

project training faces and non-faces on these vectors.

eature value

Figure 2-4 The threshold for Harr-like features

After we project training data to those vectors, we find a threshold for every feature. We pick out the
best one which separates projected data mostly. The feature plus the threshold is called the weak

learner.



In order to accelerate the detection time, Viola used integral image to compute
these features. We use Figure 2-5 to explain it. When we input an image, we use top
left corner P and every pixel Xito form different size rectangles. Then we sum up all
pixels in the rectangle and record it at the bottom right corner Xi. After we’ve done
this, we can compute Harr-like features very fast. For example, when we want to
compute the feature in the right side of Figure 2-5, we only use the value of X4 minus
2 times the value of X2. The computation is only about 5~10% comparing to
original one (it depends onthe Harr-like feature size).

1+ 2+

i+ 44 i 14

Figure.2:5.Integralimages

2.1.2 PART-BASED FEATURE

In 2007, Torralba and et al invented a system sharing visual features for
multi-class and multi-view object detections. [7] In his system, he also used a
boosting-kind classifier but with different features. He chose part-based features
inspired from Vidal-Naquet’s work. We use following 5 steps and Figure 2-6 to
introduce the feature.

Five steps to construct part-based features:

1. Collect training images and mark the object we want to detect. Resize
images to make marking area in 32*32 windows.

2. Extract patches from the object windows as templates and record the
location. The template sizes are from 4*4 to 14*14 pixels. One template
plus the location is equal to a feature.

3. Compute the normalized correlation between images and patch P,

4. Compute the convolution of step3 output and the relative patch location
mask.



5. Use the center value of the object windows as the positive training data’s
output of this feature. Samples outside the windows are outputs of negative
data.

=
o |
]
=M

Step2

Stepd Step3

Figure 2-6 Five steps to construct part-based features
== P =]

In step 1 and 2, usually we collect about 2000 patches as our templates. These
patches are parts of the object we want to detect. After we run boosting algorithm to
combine some good ones of all patches together, we can look them as voters. If a test
image can pass the classifier, it means that many parts of this image are similar to the
object. That’s why we call them part-based features. Instep 3 and 4, Torralba used the
convolution of relative location instead of the full object template because it allows
some flexibility.

2.2 BOOSTING

Boosting is a method to combine many simple “hypotheses” together to form a
more accurate and complex hypothesis. We can use it to combine weak learners (weak
classifiers) together to form a stronger classifier. It is based on PAC learning and has
many good characters, such like “robust”, “not easy overfitting”, “fast convergence”...
After Freund and Schapire proposed the first practical boosting algorithm, Adaboost,
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many other kinds boosting algorithm are invented in recent years [1][2][3]. In 2001,
Viola used Adaboost classifier on face detection and achieved a remarkable result.
After that, the boosting method is the state of art on the fast face detection issue. Here
we introduce PAC learning first. Then we discuss the detail of Adaboost algorithm.
Finally, we prove the upper bound of the error.

2.2.1 PAC LEARNING

Learning methods are more and more popular in recent years. One of the reasons
we use them is because we don’t know the real model and distribution. Instead of
using the simple model to approximate it, we collect many training data and try to
find some regulations. In the training process, we learn to find a hypothesis h with
low error rate on training data (efr,(h)) then use it to bound the expected error
(err, (h)). Inother words, we want to discover some rules from training data and hope
these rules executable for future inputs. However, there is always a chance that it is
impossible to arbitrarily bound the erroriof.expected error (err,(h)) because of a
highly abnormal training set. Thus, we,want the algorithm generating h to be
“probably approximately correct” (PAC).‘The math form is in Eq.2-1 [11].

Prlerr, (h) —efr, (h)| <] >1-& Eq.2-1

There is a nice theorem named “uniform convergence” connecting the training
error and the expected error.

Uniform convergence theorem
Given m examples, assume H is finite, with probability >1-¢6

1
In|H|+In>
vh ferr,(h)—efr, (W) <e if m=0(———9),
8

|H|is the size of the hypothesis space.

By uniform convergence theorem, we can derive the bound of expected error.

In 2|H|+In(1/§) Eq. 2.2

erry (h) <efry(h) + \/



For a fixed 6, we can see that there are 3 factors to alter the upper bound. The
first factor is the training error; when we minimize it, the upper bound of expected
error is also minimized. The second factor is the size of the hypothesis space; the
larger size of the hypothesis space leads to larger upper bound. The last factor is the
number of training data. It is inverse to the bound, and that’s why we usually use large
training data. These factors are not independent, especially the front two factors.
When we enlarge the size of the hypothesis space, usually we can get better training
error. However, the smaller training error doesn’t ensure better expected error because
we also increase the second term of the upper bound. This phenomenon is called
“overfitting”. We use the following Figure 2-7 to express it.

error

test

trai

[H]

Figure 2-7 Overfitting

2.2.2 ADABOOST

Working in Valiant’s PAC learning model, Kearns and Valiant posed the question
of whether a “weak” learning algorithm can be boosted into a stronger learning
algorithm. The answer is yes. In 1995, Freund and Schapire came up with the first
practical boosting algorithm, Adaboost. It combines ‘“weak” learners h which have
error rate just better than random guess into a strong classifier.

f=>" &
Zt:l th‘ Eq. 2-3



The main idea of Adaboost is to focus on miss-classified training data. At each
time, Adaboost picks the best weak learner which generates the smallest weighted
error (g, <1/2—y,). Then it increases the weight of miss-classified data and
decreases the weight of right ones. In next round, it finds a new weak learner
minimizing reweighted error. After T rounds, the strong classifier can achieve a much

smaller error (error(f) <] ]2 [e.(1—&,) ). The overall algorithm is as following:
t

Adaboost algorithm

Input: N examples{(x;, ¥,)(X,, ¥,),--,(Xy, Yn )}, V. isthe class label of x;

Initialize: d} =}{\| foralln=1,2... N
Fort=1...T

1. Find the best weak learner h, :x —{£1} to minimize weighted

error & = Z:ﬂd;l (Y = h (X))

1-¢ )= 1 Iog(1+—7t)
P 2 —

1
2. Compute hypothesis weight &, :EIOQ( 1

t 7t

3. Update example distribution d,t1+1 = d; exp(—¢, ynht xN/Z,,
N
Z, =Y d; exp(—a,y,h'(x,))
n=1
End

.
Output: final hypothesis Ffinar = Z oh (%)
t=1

The final hypothesis is the linear combination of weak learners. It means that
after we transfer positive and negative training data into the weak learner space, we
can linear separate them. We use Figure 2-8 to illustrate this idea.



X

Inputspace X = | X Weaklearnerspace
k: 8
3 2 ++
e B + ¥
X, #(x) = hzfx) i

Figure 2-8 Training data are linear separated in the weak learner space
In the algorithm, e« is the coefficient to combine weak learners. How do we
choose the ¢, in Adaboost algorithm? We look Z, as a lose function and try to find

asuitable ¢, to minimize it.

N
Z, =Y d; exp(-a,y,h'(x,))

n=1

Y diexp(-a)+ Y. diexp(a)

yn:ht(xn) yn;tht(xn)

= (1_ gt) exp(—at) + & exp(at)

d « 1
E ((1_ 8t) EXp(—Olt) + & exp(at )) =0— a, = 2

t t

The last thing we want to prove is the upper bound of the error. We want to show
a few weak learners can theoretically generate a stronger classifier.

10



The upper bound of the error

Step 1: unwrapping recurrence:

ina 1
dnf = E X (exp(_alyn hl(xn )) / Zl) KeeeX (exp(_aT ynhT (Xn )) / ZT)

5 exp(_yn f (Xn ))

|12
t

_1
m

Step 2: training error < H Z,
t

1 1if  y f(x)<0 1
Train error S_Z{ SHZ‘,eXp(ynf(Xn))=1_[Zt
n t

m <~ |0 else

Step3: Z, = 2\/6} 1-¢)
Zt = Z drt1 exp(_at)
Ya=h'(x,)

+ > drexp(e) = (1-¢)exp(-a,) + & exp(a

Yo=h' (%)

1, 1-¢
a, :Eln( . Y =27, =2 0-¢)
Thenwe can get that €rror(f) < HZ\/% 1-£)
t

Set
A

11




Chapter 3.

PROPOSED METHOD

Our work focuses on proposing a new feature named “grid feature” for the
boosting-kind face classifiers. There are three main differences comparing to before
works. First, we adopt the grid representation to construct our features so we can
decrease the feature space size. Second, unlike Viola and Jones limited their feature in
3 kinds Harr-like features, we use a progressive method to gradually enlarge our
feature space toward “good” direction. Finally, we add the variance measurement to
discover more information than the sum measurement used in Harr-like features. We
introduce the detail in following sections.

3.1 GRID REPRESENTATION

Viola and Jones used 3 kind Harr-like features to create nearly 160°000 Harr-like
features as their feature space for picking-weak-learners. There are many features very
similar in this set. For example, Figure 3-1 shows two Harr- like features; they are just
a little different in their position and size.  The highly dependent and redundant
properties of those Harr- like features cause the difficulty of training. If we don’t only
use 3 kind Harr-like features but want to add more varieties to the feature space. It
might increase the features to hundreds of millions. It’s impossible to train a classifier
with such a huge feature space.

Figure 3-1 Two similar Harr-like features

Besides the training problem, a huge feature space also has risk to make
overfitting. From EQ.2-2, we showed that the complexity of hypothesis space
influences the upper bound of the test error. The hypothesis space of the boosting-kind

12



classifier is controlled by two factors. One is the number of weak learners and the
other one is the feature space for picking weak learners (because the threshold is fixed
after we pick the feature). When we enlarge the feature space, we also increase the
complexity of hypothesis space. As a result, even if we have the ability to train a
classifier with hundreds of millions features, it still not a good idea because of the
overfitting risk. We use Figure 3-2 to illustrate the relation between the feature space
and the hypothesis space.

Feature

Weak learnerspace

Figure 3-2 The h;fﬁ.éthesisf;ﬁ‘l;ice i_i'f;b,odgtingkind classifiers
= HAEE N e

Considering above two pr65igrﬁ§;- wedecrdeto construct our features based on
the grid representation. Our idea is inspired:from Li Fei Fei’s tutorial course in CVPR
2007. She showed that the grid representation has good performance on the category
classification. In other words, when we use the grid representation, we still have
enough information to classify the image.

If we apply the grid representation on original Harr- like features, we can reduce
the redundancy. For example, in Figure 3-3, we can use the right side feature to
approximate features on the left side.

Figure 3-3 The grid representation reduces many redundancies in Harr-like features

13



In order to verify the influence of the grid representation, we train two classifiers
with different features. One classifier uses original Harr-like features and the other
one uses “grid-Harr-like features”. The grid-Harr-like feature means we round off the
rectangles to the near grid. Now the rectangles of Harr- like features can’t be placed at
arbitrary places and the sizes are also limited. We can see the cell of grid as a unitand
each Harr-like feature is composed of integral cells. We use Figure 3-4 to illustrate
this idea.

Figure 3-4 grid-Harr-Iike features

We take 1000 faces and non- faces as our tralnlng data and another 1000 faces
and non-faces are used to test the performant:es ofthese two classifiers. The detail of
the training and test data is descrlbed |n chapter 4. The results are plotted in Figure
3-5. = .- “' -

0.4

Error rate
0.35 A

03 \\
el \\

N
N N
| -

0.1

Harr-like feature

Grid-Harr-like feature

0.05

'Weak learners
0 20 40 60 80 100 120

Figure 3-5 The error rates of two classifiers with Harr-like features and grid-Harr-like features
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There is a gap between the error rates of two classifiers but the one with
grid-Harr- like features is still notable of its classification ability.

In summary, the grid representation can reduce space redundancies and is not
easy to overfitting. In next two sections, we will show how to construct our features
based on the grid representation to compensate the gap and even achieve better
performance.

3.2 PROGRESSIVE FEATURE SPACE

In the above section, we used Harr-like features to discuss the influence of the
grid representation. We compared original Harr- like features to grid-Harr- like features.
Now we want to ask that if we don’t use Harr-like features, how we create features
based onthe grid form. Considering the 6*6 grid structure (see Figure 3-6, we sum up
every pixel inside of each cell. Then we can use {-1,0,+1} coefficient set to arbitrarily
combine any cells of the grid to form a new feature. In other words, we have
2xCP¥+22xCP +2°<C3*° apiiose =<CZ> possible combinations (it only
considers {-1,0,+1} combination'coefficients). -

= ¥ )
|

Figure 3-6 The 6*6 grid structure

In each feature, we use the sumof every pixel in black cells to minus the sum in white cells.

It’s hard to search all possible combinations so we need to have a strategy to
find the suitable combination of cells as our feature. This problem is very similar to
the classification problem. We want to find a boundary to separate two classes but
there are too many choices. If our classifier is simple, it can’t distinguish them very
well. If the classifier is very complex, it has the risk to overfitting. When we face this
problem, we use boosting to combine weak classifiers together to form a stronger
classifier. Using boosting method, we can overcome the dilemma above. This idea
inspires us for finding the combination of cells in the same way.

15



Since it’s hard to directly find the combination of cells to form our features, we
start from simple features which contain only few cell combinations. We build a
simple feature set and pick out several good ones. “Good” means it has discrimination
for training faces and non-faces. Then we combine some of these features to form a
more complicated feature. We use Figure 3-7 to demonstrate our idea.

amount W amount
P P

- 0(\"' -,. B /)&

featurevalue S featurevalue

amount

—— Trainingfaces ‘
= Training non-faces ; | M
featurevalue ﬁ

Figure 3-7 Combine two simple féaturesto a more discriminative feature

1

There is a drawback in above idea. We can’t ensure all more complicated
features perform better than simple ones. So we need to preserve those simple features
in case of that situation. In other words, every time we keep original feature space and
use the picked features to create more features. Add these new features to original
space to form a new feature space. We can not only do this process one time to
gradually enlarge our feature space. Using this method, we don’t construct a huge
feature space at first time (for example, Viola and Jones used ~160°000 features). Our
feature space size is determined by how many iterations we run. We use the following
figures to illustrate it.

16



Figure 3-8 Features at iteration 1 in progressive feature space process

At first iteration, we use only one cell to construct our feature set. There are total 36 features.

(We don’t consider the minus sum of each cell because they have the same discriminative abilities)

Figure 3-9 Features atiteratlon % n.Progresswe feature space process

At second iteration, we pick out: all featlfres ln the Iast |terdt ion and use combinations of themto

create more features. New feature space is composeﬁ aforlg lﬂal features and new features. (We only

pick out all features this time. In other’ |terat|ons we p1ck out several good features instead of all

u
L) TA"

features)
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Figure 3-10 Features at iteration 2 in progressive feature space process

At third iteration, we pick out M good features (the number we need to choose by hands) from
the last iteration. We use all possible combinations of these picked features and original 36 features to

create new features. This process keeps going until T iterations finish. Yellow means multiply by 2.

Each time we pick good features to increase our feature space. That’s why we
call the space progressing toward good direction. We show the relation between the

progressive feature space and the hypothesis space of boosting-kind classifiers in
Figure 3-11.

Feature space

2 cells
3 cells

4 cells

Our hypothesis space

Figure 3-11 The relation between the progressive feature space and the hypothesis space

In the above process, we start from all possible combinations of features with
one cell but it’s not necessary. One can start with more cells. For example, if we start

with 2 cells, we have CX+2xC3’=2556 features at first iteration. And in the next

iteration, we will have 2556+2x C2* features. It cost more training time. We state

this progressive process in math form in next page.
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Progressive Feature Space

Training set: X z{;(l,...;(n},‘;(i‘ =m

Grid measurement transfer matrix: erm ,F=#grid x 2 measurements

Loy =Gx, Y ={y’..y3}

0 _ : .
2. Initial coefficient matrix: Ckoxr —| * |,C:setarbitrary 2 elements =1 or -1,

others = 0, k0=2><(:2r
3. For t=12,...T
t 1 ot tt-1
Lo =122, 12 =Cy}

k'™ is the dimension ofcurrent  Zi

(2) Use Boosting algorithm to find the best # I' features with thresholds

t-1
Y'= Y
©) Zt
rxn _d(r+rt)
.
C,
t .
Kix(rert)y | ° _ . _
4) __ | Ci:setarbitrary2elements=1or-1,
t
_th _

t r+rt
others = 0, K' =2x Cz

G r=r+r

End
4. Use r' features with thresholds as weak learners to construct a classifier
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First, we transfer pictures from the raw data space ({x..x }) to the grid
measurement space {y;...y ...y°}. We can see each grid measurement as a feature. At

iteration t = 1, we use {-1, +1} to combine any two of y® as a new feature to form

the first hypothesis space. Then we apply boosting algorithm on the space to pick out
“good” few features (so we say that it’s toward the good direction). Adding these

features and original features (each grid measurements) together, we gety-. At
iteration t =2, we combine any 2 features of y' as a new feature to form the second

hypothesis space and keep on. |yi‘| = |y§‘1| +numbers of features we picked at iteration

t. When t increases, we gradually enlarge the hypothesis space and find more
complicated features.

We give some constructed fquqfes in the'pracess in Figure 3-12.

- pobe] B
| =1 -
- -

Figure 3-12 constructed features in the progressive process
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Now we want to compare the features we found to original Harr-like features.
We use 1000 training faces and 1000 training non-faces to train two classifiers. One
uses our features and the other one use Harr-like features. The grid size we chose is 6
cells*6 cells and we run 3 iterations in the progressive process. The test data are 1000
faces and 2000 non-faces. The result is in Figure 3-13.

01 [Errorrate

0.09 E—

0.08 \\
oar LN\

0.06 \

0.05 \\

0.04 Our feature

Harr-like feature

0.03

0.02

0.01

Weak learners
10 20 30 40 50 60

Figure 3-13 Performances of twe classifiers (with"Harr-hke features and with our features)

We can see there is still a small gap between two performances. However, the
gap is less than 3%. We can run more iteration to get even closer results. And in next
section, we will add another measurement to our features. It can cross the gap to
achieve better performance.

The last issue we want to discuss in this section is the grid size. Different grid
sizes have different performances and training times. In our experiments, we’ve tried
10 cells *10 cells, 6 cells*6 cells and 5cells *5cells three sizes in 30*30 windows.
They all use the same progressive strategy to create features. Again, the training data
are 1000 faces and 1000 non-faces and the test data are 1000 faces and 2000
non-faces. The performances of former two are very close and much better than the
later one. We only plot the performances of former two here.
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Error rate
0.07

0.06

0.03

6*6

——10*10
0.02

0.01

0 T T T T T T 1
10 20 30 40 50 60 Weak learners

Figure 3-14 Performances of 10*10 and 6*6 grid sizes

Although their results are very close, we notice there is a little overfitting in
10*10 grid size case. So in Iater'experirqents, we always use 6*6 grid size. This also
supports our words that the grid representation is'less chance to have overfitting (as
long as we use too big grid size or too small cell size);

3.3 VARIANCE MEASUREMENT

In the above sections, we always use the sum measurement in each cell of the
grid. The goodness is that the computation is very easy and fast. The drawback is that
sometimes the sum measurement can’t give us enough information. Or we can say the
sum measurement has no discrimination in some situations. For example, in Figure
3-15 (a) the sums of two rectangles are very near. It can’t distinguish the mouse with
many details from the smooth cheek. In Figure 3-15 (b), if we can apply a
measurement which tells the difference between two green rectangles, we can use
themto construct a good feature.
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Figure 3-15 (a) The sum of two rectangles are close. (b) The rectangles with new measurement may

be a good feature

Because of the above defect, we bring in another measurement, variance. We not
only compute the sum ofeach cell but also compute the variance. There are two main
advantages to use the variance as our measurement. First, it’s the second moment
which tells us extra information than the first moment. Besides, the computation is
affordable. After we compute the sum of each cell, we already know the means and it
lessens the computation of varlance We use Figure 3-16 to illustrate what the feature

~l |
o l[?l......ﬂ
TREEEr | TRE

Figure 3-16 the grid feature with the variance measurement

The right side is a grid feature. It equivalent to
sum(J) —sum(l) +variance(L) —variance(J) Eq 3-1

We want to know the influence of the variance measurement so we train two
classifiers again. This time we use the same training data and test data in order to
compare with the results in the before experiment. We plot the comparison in
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following figure.

0.1

0.09 e —

0:08 \
0.07 \
N\

0.06 \
0.05 \ Te— — Our feature with sum
0.04 measurement

0.03 \

Harr-like feature

Our fiture with sum &

eceS~— variance measurement
0.02
0.01
0 T T T T T 1
10 20 30 40 50 60

Flgure 3-17 Performances of three cIasmﬂeWﬂpﬁeatures grid features with sum measurement

classifier with Harr-like features_,-, In otk *s.e

| w.,:,,

Sum:

Variance:

Feature 1 eature 2 eature 3

Figure 3-18 The first three features with the variance measurement
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Chapter 4.

EXPERIMENTS

In this chapter, we use the grid feature to train a face classifier with 200 weak
learners. We compare its performance with the one using Harr-like features. Before
we show the result, we discuss three notable issues in the training process. The first
one is how we collect training data. Then second is the symmetric property of front
faces. The last one is the overall cascade structure.

4.1 TRAINING DATA

4.1.1 POSITIVE TRAININ G. DATA

Training data takes an important position on the learning type classifier. If the
data is abnormal, we may not-find real-boundary between two classes. One of the
most famous training databases s built by MIT cbcl. They collect 2429 faces and
4548 non-faces in 19*19 pixels as-‘training ‘data. Another 472 faces and 23573
non-faces are used for testing. However, both Viola and we found the too small size
couldn’t give us enough information for detection. So we build a new database for our
experiments. We collect 2678 faces in the 30*30 pixels size. A half is male and the
other half is female. Most of these faces come from Asians, especially Taiwanese and
Japanese. Before we fully construct our database, we notice the different marking area
(only face or include the hair) also affects the training result. From our small test, the
former is more robust so we adopt it in our experiments. We show both in Figure 4-1
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Figure 4-1 Positive tr'ai-r]'ir__lg data (a) or]lyufé{ce (b) include the hair

The asymmetric property is the main problem when we collect the negative
training data. Because there are too many different classes belonging to negative set,
we need a very large negative set to represent them. But when we train our classifier,
the amount of two training set size should be close; otherwise the boosting algorithm
will focus on the small set at beginning (we give equal weights for two training set).
After a few iterations, the weight of miss classified data would be reweighted too
large to find the real boundary. If we randomly use a subspace of the large negative
set, we might find a set which is easy to be separated from positive data. The
boundary of these training data has no generalization. So we need to choose our
negative data near to positive data as close as possible. We use Figure 4-2 and Figure
4-3 to demonstrate this problem.

4.1.2 NEGATIVE DATA
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The negative data
we collected

The boundary we found
Realboundary

Figure 4-2 Using wron can t find real boundary

AThe boundary we found

N

Realboundary

Figure 4-3 Choose the negative data as close to positive data as possible
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In order to conquer the problem, we use our collected faces and non-faces from
MIT cbcl to train a classifier first. The classifier is used as a filter to eliminate those
absolute non-faces candidates. We pass many non-faces patches to the filter and only
collect the miss-classified ones. These miss-classified ones have more similarities to
faces. We show the source of negative data and details of the procedure in Figure 4-4

Collect 100 photosfrom a Collect 100 photos with
subset of CMU test pattern facesinside frominternet

A4

Covertheface area and

segment each photointo
20000~40000 patches Use our 2000 faces and 2000
non-facesfrom MIT cbcl to

' P train a classifier
Applythe classn‘le_r on the.se.: patches T
then collect the miss classified patches MIT chel

Uniformly sample 3000~5000
patches fromthose miss classified ones

Figure 4-4 The procedure to find our negative set

We do uniformly sampling in the last step because there are many redundancies
created in the second step. And the size of negative data is also 30*30 pixels. In the
after experiments, we use these three negative sets to train our cascade classifiers.
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Here we show some samples of each set.

U1 B8 M
| (Al = W &g o
b 7. B
EERD

8

>l Ha

= A
2N TR
S A ES
k= IS I

M NS
gl s

(a) (b) (c)

Figure 4-5 (a) negative set A (b) negative set B (c) negative set C

4.2 SYMMETRIC PROPERTY OF FRONT FACE

We all know that human facés have-highly symmetric property and we want to
add this knowledge into our training brroce:ss. So: when we train our front face
classifiers, we only find features onthe left half face. Then we map each feature from
this side to right half side to forma hew: symmetric feature. In ideal case, we should
double the threshold of each original feature because we have double cells in our new
feature. But considering there are still some asymmetric parts on most human faces,
we need to find a new suitable threshold. The threshold is changed with different
training dada. If our training negative data is highly asymmetric, we can use a low
threshold to achieve a good discrimination and vice versa.

In our experience, if we normalize the original threshold to 1, the best new
threshold which separate training faces from non-faces mostly usually locates around
1.45to0 1.75 times. Later when we train the cascade classifiers, we adjust the threshold
according to different training set.

We show how we map half features to new symmetric features in Figure 4-6.
And in Figure 4-7 we plot different thresholds to its error rates (the original threshold
is normalized to 1).
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Figure 4-7 Error rates to different thresholds
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4.3 CASCADE STRUCTURE AND BOOTSTRAP

METHOD

There are two reasons to use the cascade structure on the face detection. First, it
can reject most non-faces at the beginning few layers. It decreases the computation
loading and makes real-time applications possible. Another advantage of cascade
structure is allowing us use more negative training data. In section 4.1, we mention
the asymmetry problem of training set. Although we filter out many redundancies, the
negative training set is still larger than the positive one. To cooperate with the large
negative training set, we can train several classifiers with the same positive training
data but different parts of negative set. When we cascade these classifiers together,
our final classifier is equivalent to see the whole negative training set.

Furthermore, we adopt the bootstrap ,method in the cascade structure. We
collect those miss-classified negative training ddta at this layer and use them as
negative data again in the next-layer. Through this way, our classifier can focus on
those “hard” training data which is not easily classified, and the boundary is also more
robust. We use Figure 4-8 to illustrate’how toiconstruct the cascade structure with the
bootstrap method.
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Figure 4-8 The ¢z ga ic h '\'-ootstrap method
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At the first layer, we use our collected 2678 faces and 3500 non-faces from MIT
cbcl to train a classifier with 25 weak learners. At this layer, we have to set to
detection rate very high so faces can pass to the next layer. Usually we adjust the
threshold of classifier A to allow more than 99% training faces pass. At the second
and third layers, we use the same faces set but different negative set B and C to train
the classifier B and C. We also set the detection rate higher than 99%. At last two
layers, we still use the same positive training data but we collect miss-classified
negative data from before layers. If those negative data are not enough, we can add
some negative data which we don’t use in before layers. The last layer we use 100
weak learners because the negative data here are miss-classified from above layers. It
means these are “hard” negative data. We want to find more precise boundary to
separate training faces from those hard training non-faces. And from chapter 3 we
know the number of weak learners can control the discriminative capability of the
classifier. That’s the reason we adopt 100 weak learners at this layer.

4.4 RESULTS

4.4.1 COMPARISON BETWEEN GRID FEATURE AND

HARR-LIKE FEATURES ON TEST PATTERN ONE

In order to compare our new feature to the original Harr-like feature, we
randomly collect 74 photos with 140 faces from the internet as our test pattern. We
use our training database and the cascade structure to train two classifiers with overall
200 weak learners. One classifier uses Harr-like features and the other one uses our
grid features. We run 4 iterations in the progressive feature space process and each
time we keep the best 40 features. In the beginning forth layers, we all adopt
symmetric gird features to training our classifier. Only in the last layer we don’t limit
it. The reason is as mentioned above. We want construct a more complex classifier to
handle those hard negative data at the last layer. We show the first two features in
each layer in Figure 4-9.
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Figure 4-9 First two features of each stage
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The ROC curves are plotted in Figure 4-10 and detection rates of two classifiers
are listed at Table 4-1 and Table 4-2

Detection rate

-1 T T T I
0.9+ -
086 -
07 -
0.6 -
0.5 .
0.4} :
L) Grid features
Harr-like features
0.2} .
[]_-1 1 | | 1 1
0 0.5 1 1.5 2 25 3
-, . -\3
False positive rate x 10
Figure 4-10 ROC curves of two classifiers (with grid features and Harr-like features)
Table 4-1 The detection rate to false positive rate of the classifier with Harr-like features
False positive rate(*10™) 0.16 0.66 3.1 8.7 23
Detection rate (Harr-like) 35.71% | 58.57% | 78.57% | 93.57% | 97.86%
Table 4-2 The detection rate to false positive rate of the classifier with grid features
False positive rate(*10%) 0.22 1 3.8 10
Detection rate (Grid) 55.71% 82.86% 92.14% 97.71%

We show some detected photos in Figure 4-11.
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Figure 4-11 Some detected photos by the classifier with grid features
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4.4.2 COMPARISON BETWEEN GRID FEATURE AND

HARR-LIKE FEATURES ON TEST PATTERN TwWO

We use the classifiers mentioned above on another test pattern. This time we test
one of CMU test files (This file is not related to those files which we used to create
negative data). It contains 60 photos and 172 faces.

The ROC curves are showed below.

Deg‘ection rate

0.5 Grid features 1
: Harr-like features
[]_,.jr 1 ] 1 ] 1
0 0.4 1 14 2 24 3
e -3
False positive rate x 10

Figure 4-12 ROC curves of two classifiers (with grid features and Harr-like features) on CMU test

pattern
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The detection rates to false positive rates of both classifiers are list in Table 4-3

and Table 4-4.

Table 4-3 The detection rate to false positive rate of the classifier with Harr-like features

False positive rate(*10%)

0.16

2.5

6.3

10

12

25

Detection rate (Harr-like)

48.26%

76.16%

81.98%

86.63%

88.37%

92.44%

Table 4-4 The detection rate to false positive rate of the classifier with grid features

False positive rate(*10™)

0.47

1.69

4.74

8.37

13

28

Detection rate (Grid)

51.74%

78.49%

87.79%

92.44%

94.19%

95.93%

We show some detected photos in Figure 4-13.
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Figure 4-13 Some detected photos in CMU test file by the classifier with grid features

CMU test pattern is harder than those photos we find on internet, so both two
classifiers can’t achieve nearly 10_0%1"right' by 200-__weak learners. We show our worse
case in Figure 4-14. o :'_u‘-_‘; - AR

Figure 4-14 The worse case
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4.4.3 SUMMERY OF EXPERIMENTS

In the above two experiments, the classifier using our gird features performs
better than the one with Harr-like features on both test patterns. Although the test
patterns are not big enough to claim our feature is exactly better. At least the results
show that our grid features are useful on the face detection problem. There are still
many parameters (such as the iteration times...) we don’t optimize them yet. It might
be helpful to the performance. If we want to apply grid features in real-time
applications, we can use only sum measurements in first few layers. So the integral
image is still applicable.
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Chapter 5.

CONCLUSION

In this thesis, we develop a new feature named “grid feature” for boosting-kind
classifiers. There are three main differences from before works. First, we use the grid
representation to construct our features. It reduces the redundancy between features so
we have space to do further design. Second, adopt a progressive method to gradually
enlarge our feature space toward the good direction. It combines two simple features
into a more complex and discriminative feature. In this way, we can find more
different type features but don’t need to create a huge initial feature space. Lastly, we
add the variance measurement inside the feature. It can compensate the insufficiency
of the original sum measurement.

In order to apply harder negativeidata in, the training process, we trained one
classifier as a filter to eliminate .€asy classified negative data. And we use uniform
sampling to reduce the redundancy. When we train the front face, we take advantage
of its symmetric property. We find half face features-first and map them to the other
side to create new symmetric features. This-method can not only save training time
but also constructs more robust features.

Our experiment results support our grid features. Both using 200 weak
learners in 5 cascade classifiers (layers), our grid features perform better than
Harr-like features on two test patterns. To apply other measurements on this structure
is a possible way for future works.
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