1% LT g e e rtid s kS5 ek 8277
Throughput Enhancement Using LT Codes in Erasure

Network Communications

Frd iy

th g BAE

F1# LT %3 el s 5t £ 2777
Throughput Enhancement Using LT Codes in Erasure

Network Communications

[T F“fhﬁiﬁj Student : Chien-Fu Hu
?‘F’,éj"i‘%? D IR Advisior : Hsie-Chia Chang

AThesis
Submitted to Department Electronics'Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
In Partial Fulfillment of the Requirements
for the Degree of Master

In

Electronics Engineering
December 2008

Hsinchu, Taiwan, Republic of China

PoE 3 F 4 L - & L - o

FII LT AREST SRR A T B VP

s IS © S,

S

AR [y ol 2 OSSR BT = g S B Y I RIBE IS < SRR
FIT > 25 b LTRSEARS = a7 e By ™ S hnE - A
HRPOLTARIIS= 0, i o e SELoR it S © [~ 0 1 R
R e SR SRR f SER e LT 1 AT EE) R
e AR G o OS2 A RS S el B e B 25y b« 5 S Bl =5
P £ LT EaEa Aol IR - g o Y B Ve Tl
“UEFe R A Iﬁ\%" ST O - PR g 7 ORE T IR
- M RV
B ENOLTHR . (B B R | e dKE[64K > &) i v [BR1KB - el
AR T PR L R TR - ﬁedge-diSJ'oint edges (EDPs) '] % 1
FIEDPs « [l A 3 ARl (R S 58 L= 1£0%2120% o =5 ML
AULTRS R ZO%TUBO%EJF,p Bl o ”ﬁwr‘jEDPsﬁJ AR ??F,EJLT-?ﬁf}%‘ il
= RIS~ AR AY50%U ik Bl o Ji » SIS RTRL T) PR GR(2)
FJ%:ﬁ VEEE R f[a'ﬁ%ﬂ"i,%%o|[a'exclusive-or3Q$,T o

Throughput Enhancement Using LT Codes in Erasure

Network Communications
Student : Chien-Fu Hu Advisor : Hsie-Chia Chang

Department of Electronics Engineering
Institute of Electronics
National Chiao Tung Eunversity

Abstract

Bottlenecks occurring during the transmission in the network have caused serious
consequences on the throughput degradation in receivers. In this thesis, a coding
system that applies low degree LT codes in transmission environment to enhance the
throughput is introduced. The proposed. L:l: code can improve the throughput
approach to the theoretical maximum. Inthe-meanwhile, it provides a significant data
protection ability against the packet-loss in erasure-channels. The required buffer size
in the intermediates in the LT codes system becomes-a inconsequential factor that it
can be reduced considerably compared to the data size. In some network topology, we
combine low degree LT codes with specified network coding mechanism to get
further improvement in throughput of every receiver and also give strong protection
of data. The overhead of the coding mechanism causes the reasonable computation
cost in whole transmission.

For each packet of 1KB, the proposed LT codes work under the entire packet
number from 4K to 64K. The proposed method alleviates the bottlenecks successfully
in two kinds of topologies, with edge-disjoint paths (EDPs) and without EDPs. It also
gives strong protection of data in the erasure channels with different scale of loss rate
from 0% to 20%. Our proposed low degree LT code can enhance the throughput in
the range from 20% to 30%. In the network with edge-disjoint paths, the combined
LT-network code offers advanced improvement up to 50% or so. Finally, the
computation is over GF(2) and the coding overhead is about 30 XOR operations per

codeword.

=+
wS ¥
PGB 9 (e A 5 R 4 AR S F A B e o kPE 0 L3F 5 1

TR RRAEf A o F AR R BHg Nk X A e R

\
P2
—

RATEE E 0 X ICE DB gt b TR AR RAEE S > AR AR
Tt B PR iR o A T 23 B % A {33 38 it # & 0ASIS 4= OCEAN
HFF AWRRE HMIE TR L KEAR Y LATEX ¥ S b2 ¥
o B4y =7 PR FAE Network Coding 93 » 2 F A I A A #H - M7 RE
s EALTCODE » T p { #- A2z eip) 3 o AP mfo b A - K =xenr 3
TSR AFRPTWEE LS TEAR PP g i P Em s E
E4p s A %a‘giﬁ- o AP N RAE QMO ATF{ A - A2 B PraEic s £ H
L EBE A2 TG o R P RE RFHR AR oA BT R
{ 77 38 chBdde o

by B 36 FHR e AN ARESJUIU E 2 Ehapu- P REN BT %

’

2 A do Rt i o S VAN Bt SHSERIRS LR An T 47 0 4 S s

fsw

acer B A 038 BARSY K AL PR iz BERIAT G 1 5w o s dp N 0w SRR
Bl ~ T3 - Asdr IR MR - v B A2 Wohe 3 2 7 7 A
AR o LSRR EE s R - - AR R g id
o K BRI - BRI APREFAEI R YR o { F R B spice
Frie 3 d B AN ET R ERBAE 2 F - BRI AL . -

AL B FF 5 OF AF epE sk o

\

Bots » ABBANCE SR At E L EAR Pt BT AL G
SR B o W LA R E LA EP E A RANE R RS - F

SE (T EEEE S XF LER T LAY

Throughput Enhancement Using LT Codes in Erasure
Network Communications

Student: Chien-Fu Hu

Advisor: 'Di"'. Hsic-Chie, Chang

Department of Rlectioies Engineering

National Chiaojlung Uhiversity

Contents

1 Introduction

2 Network Coding

2.1 Max-flow Theorem
2.2 Main concept on Network Coding
2.2.1 Butterfly Network (Codi.r}g..in Interg}ediates) o
2.2.2 One-source Three—Sinké Netwc:)m{:'(ppc:ling in Source)
2.3 Mathematical Representatioi.li - L g3
2.3.1 Butterfly Network ovéi“—'.GF (2;$
2.3.2 DButterfly Network over GF()
2.4 Random Network Coding,
2.5 SUMMATY . . . o v v ot e
3 LT Code
3.1 Fountain Code
3.2 LT code e
3.2.1 Encoding

10

13

15

15

17

18

3.2.2 Decoding 20

3.2.3 Distribution Designo 22
3.3 Summary ... 24
Cooperative Network Coding with LT Code 26
4.1 Network Topology Specification 28
4.2 Data Fragmento 28
4.3 LT Encoding e 33
4.4 Packets Transmission / Receiving L. 34
4.5 Buffering 34
4.6 LT Decoding e 35
4.7 Degree Distribution Analysis . b bl S 37
Comparison and Simulation Result = .:VZF' P | "@ 40
5.1 Throughput 77 4 .* 40
5.2 Buffer Size 3 g Al 44
5.3 Coding Overhead Analysis 45
Conclusion and Discussion 53
6.1 Conclusion 53
6.2 Discussion 53
Several Ideas to Transmit Packets Efficiently 57
A.1 Drawback Discovery and Node Analysis. 57

vi

A.2 Intermediates Coding 59

A.2.1 Thought 59
A.2.2 Phenomenon 59
A23 Note o 60
A3 Codeword Cache 60
A3.1 Thought 60
A.3.2 Phenomenon 63
A33 Note 68
A.4 Repeated Codeword Table 68
A4.1 Thought 68
A.4.2 Phenomenon B R 71

A43 Note4 Y mma ... 71
A5 Constraints Alteration on I) 7 ,. | 72

A6 Summary C Ll ¥ & 73

Bibliography 74

vil

List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

3.1

4.1

4.2

4.3

4.4

4.5

4.6

Butterfly networko 5
Tradition routing in butterfly networko 6
Network coding in butterfly network 7
One-source three-sinks network 8
Tradition routing in one-source three-sinks network 9
Network coding in one-source th_reeiSiriks" 'network 9
Corresponding mapping of btitrte.rﬂylﬁé:twojrk ir‘l'l*?ig 23 ..o 13
General mapping modified of nbutterfrl;rrl.((etwork 11‘1 Fig27. 14
LT decoding procedure cited from Fig.4 in [7] 22
Simulation flow charto 27
Basic concept of fragmentationo 30
Data fragment 32
[lustration of an encoding symbol 33
Decoding flow chart 36
Robust Soliton Distribution with two components p and 7 39

viil

5.1 (a) Butterfly. (b) One-source three-sinks. 41

5.2 Normalized throughput of two networks 50
5.3 Butterfly network with different buffer size 51
6.1 Edge disjoint paths in butterfly networko 0000 54
A.1 Butterfly network 58
A.2 Encoding flow chart of encode and store mechanism 62
A.3 Tllustration of labeling operation 63
A.4 Same operation while coding 65
A.5 Inverse operation while coding oL 66
A6 (a)Step L. (b) Step IL. 67
A.7 Distribution table, R ".:: , . e e 69
A.8 Modified encoding flow chart—l addmg!l:(lp'eated LUT and distribution table . . 70
A9 LT-network code with differ;é;g_l%c(co&mg‘rrrevhamsrlrlls 72

X

List of Tables

4.1 Design parameterso 29
4.2 Example of the parameters setup o000 31
4.3 Parameters of illustrated distribution00 37
5.1 Parameters of simulationo 41
5.2 Relations between Nopigina and Neoging - - - -« - - o o o oo oo 0oL 42
5.3 Average run cycles of file size 44 B, 8M B,16M B in butterfly network . . . 46
5.4 Average run cycles of file size:){.-?.)QM B,!_62'5MB 1r1 butterfly network 47
5.5 Average run cycles of file SIZE 4M B,%T 16MiB in one-source three-sinks

network) ' -; S 48
5.6 Average run cycles of file size 32M B, 62.5M B in one-source three-sinks network 49
5.7 XOR operations of coding systems in Fig 5.1(a) 51
5.8 XOR operations of coding systems in Fig 5.1(b) 52
6.1 Average run cycles with LT-network codes of file size from 4M B to 62.5M B

in butterfly network 56
A.1 Buffer allocation 61

A.2 Buffer cut of example

X1

Abstract

Bottlenecks occurring during the transmission in the network have caused serious con-
sequences on the throughput degradation in receivers. In this thesis, a coding system that
apply low degree L'T' codes in transmission environment to enhance the throughput is in-
troduced. The proposed LT code can improve the throughput approach to the theoretical
maximum. In the meanwhile, it provides a significant data protection ability against the
packet loss in erasure channels. The required buffer size in the intermediates in the LT codes
system becomes a inconsequential factor that it can be reduced considerably compared to
the data size. In some network topology, we combine low degree LT codes with specified net-
work coding mechanism to get further impfovement in throughput of every receiver and also
give strong protection of data. The oxief}iééd :,o'uf, the Codmg mechanism causes the reasonable

= L o R
|

computation cost in whole transmissiont SRV e

For each packet of 1K B, the pro‘fj(-)rsedn‘ LL’ITM Wqﬂ; under the entire packet number
from 4K to 64K. The proposed methoc’l;"znllquviates: Kthé.‘l;ottlenecks successfully in two kinds
of topologies, with edge-disjoint paths (EDPs) and without EDPs. It also gives strong
protection of data in the erasure channels with different scale of loss rate from 0% to 20%.
Our proposed low degree LT code can enhance the throughput in the range from 20% to
30%. In the network with edge-disjoint paths, the combined LT-network code offers advanced
improvement up to 50% or so. Finally, the computation is over GF(2) and the coding

overhead is about 30 XOR operations per codeword.

Chapter 1

Introduction

Network has existed for nearly 30 years, and it plays a significant role in computer commu-
nication. Owing to the enhancement of the bandwidth, a large quantity of data are able
to deliver from the server to users such as MOD (Multimedia On Demand) that the server
multicasts data to the users who request the services. Data transmits from one source to
the other destination through some nodes’ ééﬂléd 'ir-iﬁérr}?ediates during the transmission. In
the exiting network system, the tradition mefﬁéﬁ)d. 1sthat .every intermediate node just does

store-and-forward to pass the informé"tion[tvof’c:h“e next dee. We find that the tradition

routing, however, can not achieve thé"_maﬁc-‘ﬂow'ﬁzl"()ved,by the max-flow min-cut theorem,
particularly in the multicasting applicatibﬁs: Therefbfe, network coding theory is proposed

to alleviate the intermediate bottleneck and to elevate the utility of the network channel.

Packets flooding in the communication networks suffer the loss due to the disturbance.
In the erasure channels, every sink either believe what it receives or get nothing. Now
that we can’t avoid the loss, we have to facilitate systems to have good capability to fight
against error and protect the information. Our goal is to enhance the throughput of the sink
and in the meantime, to enable system to establish error protection mechanism to reduce

information loss.

The thesis is organized as followed. Firstly, we introduce some basic concepts regard-
ing network coding including some simple examples, mathematical representation, and a

innovated method called random network coding which have been announced.

Although the theory confirms the benefit on network coding, the implementation is cum-
bersome due to the restrict of the true network transmission such as packet loss, network
topology, etc. In order to give consideration to both network throughput and error protec-
tion mechanism, we propose LT code to apply for the network coding to fulfill our goals.
In chapter 3, we introduce LT code, a famous code applied in erasure channel. We will
give explicit description concerning coding procedure, decoding procedure and the design of

degree distribution.

In chapter 4, we evaluate the method that network coding collaborates with LT code
to approach the optimal performance proved by the theory. The construction of simulation
environment will be explained. For the saké/of simplicity, the acyclic network and single

source multicast condition are specifically Cong;érpéa- injeur simulation.
- —Edml s B Lo

We show our simulation results irze¢hapter 5:2We compare three different systems includ-
=1 | - =]

ing routing, a coding method have been pll"op(:;géd;éfnd LT code applied to network according
different packet loss rate. “In

Finally, some conclusions and discussions will show in chapter 6. In the meantime, we

point out some experimental experience in the appendix.

Chapter 2

Network Coding

Over the last decade, there has been a large interest in network coding. The concept was
firstly propounded by [1] and there is dramatic increase in the number of publications on
it. Firstly, we describe the main concept of network coding and the well-known butterfly
network will be illustrated. Secondly, We generalize the method in mathematical domain,
representing the equivalent network codi‘ng’. -.Béca:ﬁsé of the impractical efficient coefficients
assignment of every intermediate, rafidorh nefworkcodmg is proposed [3]. In the end of

the chapter, we consider the packet?l@ss dpﬁhéthe fealistic transmission. Therefore, we

propose the cooperative method betvx;'é_en, network and LT code to enhance the throughput

of network, in the meantime, to provide eTror protecfion of the data.

2.1 Max-flow Theorem

Before we describe the concept on network coding, we should know how to evaluate the
theoretical max flow of a sink in the network to be the target we want to achieve. A network
consisting of nodes and edges can be viewed as a kind of graph. And the acyclic network is
the network that contains no circle or loop composed by the directed edges. The transmission

model is in a condition called single source multicast circumstance that there exists only one

source node to transmit the data to different number of destinations. In graph theory, we
know that for a given network topology, we can calculate the max flow of each sink. The

max-flow min-cut theorem is described as followed.

Theorem 2.1.1 (Max-flow min-cut Theorem). If f is a flow network G = (V, E) with source

s and sink t, then the following conditions are equivalent:

1. f is a mazimum flow in G.
2. The residual network Gy contains on augmenting paths.

3. |f| = e(S,T) for some cut (S,T) of G.

There are some algorithms to calculate the max flow such as Ford-Fulkerson algorithm,

Edmonds-Karp algorithm, and the Relabel-to-Front algorithm in [6].

2.2 Main concept on Nethrk _('jjo_ding
As mentioned before, data packets aria_ delivéréd_fggmthg Source to the destination according
the path composed of the chain of the vi'rntgéljn‘r};ediétc; ﬁp_déHS. Every intermediate node receives
the data packets from its input link, storingn, andr.tKhen passes the packets to the next node
by the output link. In the case that one intermediate node in the path transmit the data
toward multiple nodes or destinations, it copies the data from the input link and then
pass the same copy to the different output links. In some situation, this store-and-forward
method causes that the node receives the same data by the different input links belonged
to distinct nodes, decreasing the utility of the bandwidth. Now that the intermediate nodes
process data during the transmission, we let them do arithmetic calculation rather than
store-and-pass. The packets transmitted during the path become either true information

or some combination (linear or non-linear) of the data. Every destination node also called

4

Figure 2.1: Butterfly network

sink receives the sufficient processed packets, decoding them to recover the true information.
Network coding aims to resolve the bottleneck of the intermediate node, and to let every

sink fulfill its theoretical max flow. The Bﬁfterﬂy nequrk is illustrated in Figure A.1.

2.2.1 Butterfly Network (-:Coding':ii'r.l I'ntérmediates)

Fig A.1 is a communication network rfép'réts}entéd by Ktiie nodes and directed edges (links).
Nodes are categorized with three types such as soﬁfce, intermediate and sink. Node without
any incoming edges is called source that transmits the information, and by contrast, node
without outgoing edges is called sink which is the destination of the messages. Node which is
neither source nor sink is called intermediate. In the figure, the node labeled S is source, the
nodes labeled Y and 7 are sinks, and the other nodes labeled T, U, W, X are intermediates.
The directed edge represents the direction of the lossless packet transmission channel and

each one has its own capacity per unit time. Each edge capacity of the example is set to 1.

The network is said to be acyclic if there exits no directed circle in the whole network

topology. The multicast condition is that the source wants to transmit the data to all the

sinks in the network. In the example, the source S multicasts the data to both the sinks,

node Y and Z.

First, we consider the traditional store-and-forward method. In the first transmission,
S sends data b; and by to the T and U by the edges ST and SU respectively. And then
every intermediate sends the data it receives to the next node. Obviously, we can find that
the node W has 2 incoming edges TW and UW but only one edge WX. Therefore, node W
chooses either by or by passing to the X. Assume that W choose b; and b, in order, node Z
will receive both b; and by but node Y will only receive the data b;. That is to say, we need
extra transmission to let W send data by to Y through the edge WX and XY. The equivalent
throughput of the entire network for node Y and Z is 1 meaning that every sink receive one

data per transmission.

Figure 2.2: Tradition routing in butterfly network

There is one modification in store-and-forward. The optimal method is that in the first
time S send two data b; and by to node T and U, and W sends the data b;. After the first

run, the outcome is the same as mentioned above. Y receives the only data b1l and Z receives

Figure 2.3: Network coding in butterfly network

both b; and by. The different is that in the second time, S sends the data by and b3 to the
node T and U, and node W chooses the bs passing to the X. When the second transmission
ends, we find that every sink has three aaté by, bvg;rand bs respectively. Hence, every sink
obtains 3 data in 2 transmission, the tgroughpﬁ;c df {_e’éch sink enhances to 1.5. The procedure

is shown in Fig 2.2.

Based on the Theorem 2.1.1, the théorefical max throughput of the sink in the example
is 2. Unfortunately, the tradition method is 1 an‘d‘even the improved method is 1.5, which

can not reach the max flow.

In the example above, we locate that the the network obstacle is node W. The number
of incoming edges is 2, whereas that of outgoing edges is 1, causing that one of the two data
packets needs to be stored in the buffer awaiting the extra delivery. The bottleneck of W
can be resolved by the network coding skill. Let W do exclusive-or operation of two packets
from incoming edges. The edge WX will transmit the data b; @ by to node X. We see that

Y will receive the data by and by @ b, and Z will receive the data by and by @ by. Both of

them can recover the true information b; and by by doing the XOR operation of two packets
they receive as shown in Fig 2.3. The equivalent throughput is elevated to 2, the theoretical

maximum.

2.2.2 One-source Three-Sinks Network (Coding in Source)

Fig 2.4 is another network topology. Capacity of every edge is also set to 1. Source S needs

to multicast data to all the destinations, node X, Y, and Z. The max flow of every sink is 2.

Figure 2.4: Oﬂe—sogri::(a three-sinks network

The tradition routing is shown in Flg 25 FifStly; node S sends data by, by, b3 to their
adjacent nodes, U, T and W. After first transmission, each sink receives two data as shown
in 2.5(a). Then, we allocate the data by shifting them to different edges clockwise (shifting
counterclockwise gets the same outcome) as shown in 2.5(b). Each sink can get the third
data from one edge of two, and get the repeated data from the other one. The efficient

throughput of each sink is 1.5.

How can we apply the network coding method in this network topology? In this situation,
all we do is let source S do coding. S sends data b; to U by edge SU and data by to T by

edge ST as routing does. However, S node doesn’t send the data bs but by @ by. Obviously,

8

Figure 2.5: Tradition routing in one-source three-sinks network

by this alteration applying coding technique, each sink X, Y and Z will receive two data
(b1,b2), (b1,b1 @ bs), and (by, by @ bs) in turn. Every sink is capable of get two data in one

time. Hence, the throughput of every sink is approach to 2, the theoretical maximum.

Figure 2.6: Network coding in one-source three-sinks network

The benefit of the network coding is illustrated in two examples above. We claim that
network coding can enlarge throughput by letting intermediates or sources do some sim-
ple operations. However, it is insufficient to elucidate the delicacy of network coding by

merely indicating the specified operation in some nodes to convince that the result will get

reformed coincidentally. In the following, we will formulate the method mathematically and

theoretically.

2.3 Mathematical Representation

We exemplify two cases how network coding apply to multicasting system in different network
and gain the improvement compared to the method nowadays. However, we can’t foresee and
control every operation in every node intuitively, expecting our straightforward innovation
work successfully. In this subchapter, we will formulate the mathematical model to generalize
the network coding issue. Adhere to this formulation, we can analyze and resolve the problem

systematically.

Network coding is proposed to enhance the flow in the network by doing some computa-
tion of original data either in sources or intermediates. Every data packet flooding in network
can be regarded as one combination of_(aﬂl_Iﬁ"intrinsi(n: iaa@{a. (Here, only the linear operation

is discussed for the implementation &mphmtﬁrj - We ﬁnd that the original data spans one

space, and packets in every edge span ..anothe{;- That is té say, there exists one mapping in

every edge between two spaces. The fiin}cnti()'ﬁal"irt—}"f-ﬁéfe_\}:@ry node becomes to map the entire
received symbols from its incoming edgeé t0 & symbbl for outgoing edges. Network coding

can be converted to the mechanism for encoding process of every edge.

For the clarification, the definition and symbol notations used in our mathematical Rep-

resentation are listed as followed. The notation is quoted by [2].

Notations

e Source: A node without any truly incoming edges.

e Every edge in graph represents channel with capacity data unit per unit time.

10

e In(T)/Out(T): The set of incoming/outgoing edges of node T.
e In(S): a set of imaginary edges without originating nodes.

e w: The number of the imaginary edges.

data unit: An element of GF'(F).

e message z: A w-dimension row vector € F“.

e A network code is in GF(F) and w dimension.
Definition 2.3.1. A network consists of a local encoding mapping
ke : FI"MI L p

for each node T in the network and each channel e € Out(T).

By Definition 2.3.1, we construct the ther transferm between the incoming and outgoing
edges in one node. Since the acyclic network prt];\vldes the upstream to downstream procedure,
data is transmitted by the path cornposed of edges The mapplng of each edge is equivalent
to continual transforming by the passed edges'b_efoTe Hence we give another definition to

represent the outcome of the processmg @f the recurswe mapplng

Definition 2.3.2. A network consists of a local encoding mapping k. : FII"MI — F and a

global encoding mapping fe . FY — F for each edge e in the network such that:

e For every node T and edge e € Out(T), f.(z) is uniquely determinded by (fq(x),d €
In(T)), and k. is the mapping via

(.fd(x)7d € ITL(T)) — fe(m)

o The mapping f. are the natural projections from the space F¥ to the w different coor-

dinates,respectively.

11

Considering the physical implementation, it is desirable that the fast computation and
simple circuit in the node. Therefore, the linear transformation is involved. If the encoding
mapping f.(z) is linear, there exists a corresponding column vector f, with w dimension
such that the product x - f. is equal to fe(w), where x is the w-dimensional row vector data
generated from the source. Similarly, there exists |In(T")|-dimensional column vector k. such
that y - k. = lge(y), where y € FI™DI represents the symbol received in the node T. Since
every edge has its own mapping column vector, we can formulate the operation in the node
of every edges connected in one node. If a pair of edge (d, e) is linked by one node T with
d € In(T) and e € Out(T), we call these two edges an adjacent pair. Therefore, we can

formulate the coding process by matrix form in every node.

Definition 2.3.3. Network consists of a scalar kq., called the local encoding kernel, for
every adjacent pair (d,e). Meanwhile, the encoding kernel at the node T means the |In(T)| x
|Out(T')| matrix
Kr = ':[kd,-e]cqe}é(T);f{:eQﬁ'(D
bt A f:’;
The network coding can be there}dre Vlewed -;sv formlng the effective matrix of every
node, and every edge can be viewed as a series of éérﬁputation of the column vector in every

matrix of the node that data passes. Note that the structure of matrix assures the order of

linked edges.

Definition 2.3.4. A network consists of a scalar kq., for every adjacent pair (d,e)in the

network as well as an w-dimensional column vector f. for every channel e such that:

o fe =2 s kaela . where e € Out(T).

o The vector f. for the w imaginary channels e € In(S) form the natural basis of the

vector space F*.

12

e The vector f, is called global encoding kernel for the channel e.

2.3.1 Butterfly Network over GF(2)

Figure 2.7: Corresponding mapping-ef butterfly network in Fig 2.3

The corresponding edge mapping and operation matrix of every node in Fig 2.3 is showed
in Fig 2.7. The imaginary edges of source S is two, and global encoding kernel of two edges,
fos and f,¢, represent the mapping of the original data to produce the information data
by and by. The exclusive-or operation means the computation is in GF(2). According the

matrix of every node, we can calculate the global coding kernel f, of every edge.

We give some examples to derive the global encoding kernel in Definition 2.4. Observing
the source matrix Kg with 2 incoming and 2 outgoing edges, the element of matrix repre-

sents the scalar of two specified linked edge. Based on the definition2.4, we can finds that

13

the equivalent global encoding kernel is the summation of the global encoding kernel with

corresponding scalar in node matrix.

for = Z kaefe = ki1fos + kafosr =1 ((1)> A (g) - (é>

deIn(S),ecOut(S)

Jwx = > kaefe = ki fos + kafos =1+ ((1)) o ((1)) - G)

deIn(W),ecOut(W)

Fig 2.7 is the special case that the chosen finite field F' is 2. However, scalars in every

matrix and computations are done in the GF(F'), and it can be generalized in Fig 2.8.

nsw+ qux

nswy + quxy psw+ rux

pswy +rux

y

Ky = [y z]
nswz + quxz
pswz +ruxz

Figure 2.8: General mapping modified of butterfly network in Fig 2.7

14

2.3.2 Butterfly Network over GF(F')

In Fig 2.8, each global kernel can be calculated by the same steps described above. The
design parameters are the scalars in every matrix such as n,p,q,r,...,z. The assignment
of all scalars influences the efficiency of the network utility. Concerning to sink Y , if we
want to approach the theoretical maximum, 2, the global kernel fry and fxy should be
linear independent ;namely , the space spanned by these two vector should also be 2. The
condition of another sink Z is the same. If the two vectors are linear dependent, the sink
will suffer the flow decreasing.Therefore, we can remark that when the source transmits a
message of w data units into the network, a receiving node 1" obtains sufficient information
to decode the message if and only if dim(Vy) = w, of which a necessary prerequisite is
that maxflow(7) < w. The prerequisite assures the necessity to applying network coding
to enhance utility of the network. If maxflow(7) > w, the entire network is capable of
affording the whole being transmitted datg."T here oxists no bottleneck in the network and
transmission will certainly accomplish‘é(ii Wlthqmt_dlﬁculty

We convert linear network coding ',1_:0 mta!:rﬁ& ".formi:ng,fand comprehend that the key to

enhance the throughput and decode iﬁforﬁiaﬁoh"si{i;écesé_!fully is the well designed coefficients
in every matrix of each node in whole network. ’Hdwever, it is difficult to implement this

concept directly, and the random coding mechanism is recommended in the next subchapter.

2.4 Random Network Coding

We have derived the identical method for network coding from the inference above. Designing
a effective linear network code is equivalent to finding out adequate coding matrix K of every
node in the network to guarantee that every sink receive enough information to decode

the data. However, in the real communication network is enormous and complex that we

15

we should avoid the cumbersome and inefficient task such as detecting the entire network.
Observing the example in Fig 2.8, the number of design parameters in the network with seven

nodes is twelve, and it will increase explosively with the total number of network grows.

Since the coefficients assignment of each node is time-consuming and exhausted, we let
each node produce the coefficients randomly rather than appoint them. Linear random
network coding provides the method that every node independently and randomly select
linear mapping from inputs to outputs from some finite field. By doing this, we don’t
need to design the coefficients tiresomely and the key factor becomes how to choose the
linear combinations effectively. Coefficients are chosen uniformly or more generally, based
on a distribution. We can regard uniformly choice as a special case that every candidates
are selected with equal probability. Regarding the sink, it receives the packets which is
the linear combination of the intrinsic information and recover data from them. If the
distribution performs outstandingly, everyr_sink is able to recover the original data after it

receives N data ,where N is the tota{l'rhu‘mberg ofv-dnat.'a‘;- in source. Namely, the dimension

-
1

of the packets originated from the lifiear randéim- 'dd@ng should span N-dimensional space

equivalent to the space spanned by N 'aataf ~—

Random network coding offers a Cc;'d"i'%l'g'_mechgpivsﬁf by statistic property instead of de-
terministic structure. However, we ought to know that designing a well performed encoding
matrix in every intermediate is difficult but not impossible. If we try hard to find efficient
encoding matrix in every intermediate, we can therefore get the optimal solution as two
examples mentioned above. In the meantime, assigning every encoding matrix varies sig-
nificantly due to the network topologies. Namely, we have to design the specified encoding
matrix whenever we meet different networks. Random network coding let intermediate en-
code independently regardless of the topologies. The performance should be basically not

as good as the well-designed optimal structure for specified networks. However, if we can

16

find a good mechanism to combine packets effectively, the outcome can be approach to the

optimal solutions.

Another factor we should concern is the filed size we choose. If the computation is under
a insufficient finite filed, the combinations of data will be easily dependent with each other.
It shortens the codeword space which should be as large as the data space and therefore
degrade the network utility. The innovated random network coding and some theorems can

be found in [3] and [4].

2.5 Summary

The discussion above is on the basis that packets are delivered in lossless communication
channel. However, in real system, the packet will suffer loss from the unsteady and noised
environment. It causes that even the well designed random method performs poorly due to
the packet loss. In order to work against; thepacket To's% during the transmission, we request
the coding mechanism with the folloy\{'iﬁg prdﬂtéfrﬁ_iei_s:i %

| :-7(

e Coding is based on distribution:.-.,,i
e Simple encoding operation.

e Good protection of data.

First property continues the random network coding method, and second one simplify
hardware implementation and operation complexity. The final property is involved to protect
the data due to the inevitable loss. Hence , we bring up a method that applying LT code
to network coding to fulfill the demands and enhance the throughput of every sink during

entire transmission.

17

Chapter 3

LT Code

LT code (Luby Transform code) is a sparse random linear fountain code designed by
Michael Luby with a outstandingly cheap computation for decoding algorithm. It especially
outperforms in the communication for channels with erasures, such as the internet. Every
receiver collects any N packets to recover the original data, where N is slightly greater than
the original files size K. The computatiqn'cb}ﬁpie);i-tji is astonishingly small, growing linearly
with the file size K. 3 ._ 1 , :

The chapter is organized as followed Flrstlmmroduce the main concept on fountain
code. Secondly, we specifically dlscuss the LT code mcludlng encoding process, decoding

process , and code structure regarding to dlstrlbutlon Finally, we focus on how LT code

applying to network coding to enhance the efficient low quantity to fulfill our goal.

3.1 Fountain Code

Fountain code is the one kind of rateless code for erasure channel that packets are either
received correctly or lost. Packets passing during the erasure channels gets loss with the
probability, causing the sink receives incomplete data, asking retransmission instruction

for the erasure parts. The retransmission mechanism results inefficiency of the utility of

18

network. The situation becomes worse when multicasting or broadcasting applied in the
system. Thus, the need for the erasure correct code is needed to avoid the retransmission.
The concept of Fountain code is that the source produces considerable quantities encoded
packets, limitless potentially. Comparatively, the sink is respected to receives a slightly
larger quantities compared to the total size of data to recover successfully. The encoding
method is randomly picks of file with size N. Every encoded packet is a randomly linear
summation under modulo 2. If the process continues, it forms a generator matrix of infinite
length. However, sink only receives packets of size N due to the erasure channels. The
received N packets and the K file forms another generator matrix GG. Every element G,
is set to 1 to represent that source and encoded packets is connected, otherwise represent
no connection. Supposed that we know the matrix GG, we can therefore decode the whole
data without retransmission. If N < K, there can be no opportunity to decode successfully
because of the insufficient information. If tbe nu_r_r_lber of received packets is exactly K, we
need the K x K matrix is invertible, Hl'eal..li;f-lg spannif'lé'-the same space of the file space. The
key of the performance that N is cloéef to K !mdef)ends i?;fif}ether any subspace of K x N be

capable of forming isomorphism space of file.space. More: detail is introduced in [7].

3.2 LT code

LT code is introduced in [9], and is the first realization of a class of the random linear fountain
codes which is the record-breaking sparse-graph code for erasure channels. It substantially

reduce encoding and decoding complexity.

3.2.1 Encoding

Consider source file sq, 9, S3, ..., s of size K, the encoded packet t,, is produced as follows:

19

1. Randomly choose the degree d,, of the packet from a degree distribution p(d); the

appropriate choice of p depends on the source file size K, as we will discuss later.

2. Uniformly choose d,, distinct input packets, and set t,, equal to the bitwise sum of these
d,, packets. The equivalent operation can be done by continuously exclusive-or-ing the

packets until d,, times.

After the encoding process, source defines a bipartite graph categorized by source in-
formation and encoded symbols. Connection structure between two groups depends on the
degree distribution significantly. Degree d,, means the number of distinct source information
connected to an encoded symbol. If the mean degree d is extremely smaller than K, the
graph is spare. We can regard the produced code as an irregular low-density generator-matrix

code.

In order to decode successfully, sinks hayve 'to"know the the information including con-
nected degree and the members of the connect?ud source 1nformat10n of the received symbols.
There are two method for the source to commumcaté code information with the sinks. First
is relied on the synchronized clocks. Wecan serthe ,random number generator which is
seeded by the clock to decode every éﬁéo@ed sy_r(nbo'l?based on random degree and each
connection members of this symbol. Another is to carry the information with the packets.
However, the overhead is significantly depended on the max degree of distribution and the
size of the index bits to assign identical number of each source information. The cost is tiny

if the size of packet is much longer than these carried information.

3.2.2 Decoding

Decoding process is easily in the erasure channel. All that a decoder need to do is to solve

the equivalent function ¢t = Gs to recover s from t, where s are source information and t

20

are received symbols. Since the channel is erasure, we receive the certainly correct symbols
or get nothing due to lost. The simple method to decode is by message-passing, using the
complete certain symbols to recover those with uncertainly. The decoding procedure are

described as follows.

1. Find a check node t,, is degree 1 (only connected with one source packet si). (If there
exists no such check node, this decoding algorithm stops right now, and fails to decode

all the source packets).

(a) Set s =t,.

(b) Add sy to all check nodes ¢, that are connected to s
tn/ = tn/ + Sk

for all n’ such that G = 1. _gaal

(c) Remove all the edges connected td_:ﬁlglq sléhrcej;’packet Sk

2. Repeat 1 until all s, are decoded, | — 3

A simple example is illustrated in Fig 3.1, %fhere are E}-n."ee source information (Si, Sy, S3)and
four encoded check symbols (t1,ts,13,t4). At the beginning, only ¢; is connected merely to
S1. We set S = t; = 1 and cancel the edge between them after the first iteration as showed
in b. Then, we add the S; to all connected check nodes, deleting the edges between S; and
its connected group. In second iteration, we find that ¢4 is only connected to S, and we can
recover Sy from t,. Similarly, we delete the edge between S, and t4. Repeat the iteration,

we can finally recover all three source packet successfully.

In our example above, total data can be decoded. However, if we find that there exist

no check nodes with degree one, decoding procedure will stop, meaning that the process

21

crashes. Namely, we need to receive extra symbols to decode the remaining to recover source

Sl Sz S3 C
+ + +

Sl Sz S3 d Sl 82 S3 € f

O®0O | OO

information.

S Sy S; a Si S, S; b

+| |+ +| |+
11 11

Figure 3.1: LT decodin{g--pfcﬂ)(":edu'f-"e"(':iut_ed from Fig.4 in [7]

| :-7(

3.2.3 Distribution Design:
We have described coding process and dééé)d’ing proceSs"i;q the case that the operation is based

on a determined distribution p(d). In the following, we discuss how to design a distribution

to performs well.

In the decoding process, we discover that decoding procedure fails if there exists no sym-
bol with degree one. If we want decoding continues, there must also exist some symbols with
lower degree that have chance to become a new degree one symbol to let process keep going.
At the same time, if the max degree of distribution is too low, there may exists some source
information that are connected to none of the encoded symbol and therefore causes tremen-

dous loss. Thus, the performance is vitally depended on the designed distribution. In order

22

to fulfil the desired requirements, ideal soliton distribution is derived from mathematical

theory.

Ideal soliton distribution defines p(d) as follows:

1/K ford=1
d) = 3.1
p(d) {m ford=2,3,....K (3.1)

The expected value of degree is roughly log. K.

Soliton distribution works poorly in the real transmission. Because when we obey on this
distribution, it gets high probability that there exist no degree one check symbol during the

decoding process. Thus, robust soliton distribution modifies the degree distribution.

Robust soliton distribution defines extra two parameters, ¢ and 4.

¢ : a constant determined by the designer.

0 : the probability that the decoding fails rtc_%(:'fle.cig'ide C-é)'mpletely after a certain number K’

of symbols have been received. ;’ '. b a =

W =
| - a

The modified terms are

£1 ford=1,2,...,(K/S) -1
7(d) = ¢ #log(S/6) ford=K/S (3.2)
0 ford > K/S
S is a constant calculated by
S =c-log(K/SO)VK (3.3)

Add the modified terms to ideal soliton distribution and normalizes, we get the robust

soliton distribution u(d)

23

where

Z=> p(d)+7(d) (3.5)

d

Regarding to the additional distribution 7(d) summed to the ideal solition p(d), the max
degree d is extended to K/S. The spike at d = K/S ensures whole source information
connected with higher probability during the encoding process. The max degree required
is proportional to the size of files, with inverse proportion to S calculated by the tuning
parameter ¢ and §. 0 can be viewed as the probability of decoding failure, and if we want
to lower the failure probability, we have the higher corresponding max degree, which fits in

with the straightforward intuition.

If we want to decode the source information completely after receiving the whole symbols
with a probability (1 — §) at least, théﬁ' fhe g".equif_ed."'number of total received packets is
K' = KZ. Tt is obvious that Z will:slightly larget than -1, and equal to 1 for the optimal

solution we look forward. = | L ~— =

Robust soliton distribution offer tw-(; HGSiugned rp_afa‘ufrieters c and ¢ to design distribution.
The number of each degree depends on ¢, §, K essentially. The more representative factor
is Z in equation 3.5, the excess quantity of necessitated symbols. A good distribution can
be tuned to the result that the needed overhead is usually about 5 to 10 percentage. And

the constant ¢ is usually chosen smaller than to 1 to get better performance.

3.3 Summary

Recall the requirements we desired to enhance the throughput of the network utility.

24

e Coding is based on distribution.

e Simple encoding operation.

e Good protection of data.
We can easily discover that LT code can meet these desired requirements. Therefore, we

propose a method to apply LT code for network coding to accomplish our targets. More

detail will be illustrated in the next chapter.

25

Chapter 4

Cooperative Network Coding with LT
Code

We have introduced the network coding theoretically in chapter 2 and the L'T code in chapter
3. In this chapter, we will demonstrate the innovative ideas how to gather them to achieve
our targets, high throughput and prominenp error protection. The flow chart below shows
the simulation procedure, cutting into sé'\}éral partj;c'ibn(s. We will explain the work of each
section according the Fig 4.1. CEIS)Y .

The chapter is organized as follolvyéd. Fl:fSi;,—W@AVlll 'sipecify the network and calculate
the max flow quantity, the goal we pui‘vsurit,t'of every sink. Due to the coding, every packet
must carry the extra index of combined info‘l]rmati‘(.)‘n, which causes the fragmentation. After
the initialization, the packets will be encoded, transmitted, received, buffered, and decoded
recursively until the sink decodes the whole information source delivered. Simulation ends if

every node recover the total information. The whole simulation environment is using C++

and the detail will be discussed in every section.

26

Start

Data Fragment

i

LT Encoding

Packet Transm1ss10n and
Receiving

Bufferlng

(
(
(
|
(
(

LT Decodmg

No

s data decode

completely?

End]

Figure 4.1: Simulation flow chart

27

4.1 Network Topology Specification

In the simulation, the acyclic network is specifically concerned. The transmission model is in
single source multicast communication and no edges are connected between sinks meaning
that sinks receive the data from either sources or intermediates, or both. The conditions are

listed below.

e Acyclic network.
e Single source multicast.

e No shared content among sinks.

Based on these conditions above, two network topologies exemplified in Fig 2.1 and Fig
2.4 are particularly discussed whose max flow is 2 unit capacities in every sink.

4.2 Data Fragment

I

We apply LT code for network codin(é';:_,' Thusf,;evgi;f}'; packet includes two parts. One part is
the outcome by series of exclusive-or opef‘a:tions of.thé-;)riginal information. The other is the
overhead that records the indices of all original information involved during the encoding
process. It is intuitive that additional overhead will lengthen if the total transmitted data
enlarges, and we will need more number of bits to record the data correspondingly. We can

evaluate by the following formula.
F+DxI=B8B

The parameters are listed in Table 4.1 .

We explain every parameter below.

28

Table 4.1: Design parameters
total files
unit capacity
max degree of LT code
fragment information size
data index

~| | 0| | =

. The total files to be transmitted. When M enlarges, the number of transmission time

increases.

: The unit capacity of the edge. We set this by finding out the greatest common divi-
sor(G.C.D) of all edges. The capacity is the multiple of B. In reality, it should be the

last guaranteed bandwidth of network.

: The max degree of the LT Code, meanwhile, is the largest number allowed to combine

the information.

. The actual information size of the encoded ;symbolf'-lf network coding is not executed,

F will be the same with B. s

: The number of bits to assign the’r'm_u_rrnlber of evéry fragment for identification. It can

be calculated by I = loga(3F).

We find that the real information carried in a packet shortens due to the overhead of

encoding information. The efficiency drops out after the segmentation, causing extra trans-

mission compared to simple routing. (In existing system, there exists particular headers to

record the information of transmitted packet.) We define some notations as followed.

® Noyriginar- Total number of packets a sink should receive in routing method.

coding- Lotal number of packets a sink should receive in coding method.

29

o M= Nor'ig'inal X B = Ncoding x I

® Ofpqg. Normalized overhead after the fragmentation.

The loss can be calculated by

Ofrag = %
B Noriginal =10
iriaieisielTiedo il No Otmg
(a) Iy 12 1.2
(b) Fy 13 1.3
© F, i L2 2
(@) | Eq TTTITTRE 100 10

Figure 4.2: B:ééicn Concept 'gf,fr;isgmentation

We describe the basic concept discussed above 1n Fig 4.2. Assume the unit capacity of the
transmission channel is B, and the number of times needed to delivery is Nyyiginar, Which is
10 without any coding mechanism. Every small block labeled from 1 to 10 is helpful to show
the ratio of every fragment in different examples. Fig 4.2-(a) shows the fragment F, is 90% of
B and max codeword degree D is 2. The required transmission times is therefore increased
t0 Neoding, 12. That is to say, we have two extra transmissions due to the fragmentation, and
the overhead Oy, is 1.2. Compared (a) and (b), the difference is that the number of bits to

index each fragment in (b) is twice as large as that in (a). The quantity of true information

a packet can carry is from 90% to 80% of B, causing one extra transmission. Considering

30

two examples in (c¢) and (d), the max degree D increases to 10 and 18, weighting 50% and
90% of a packet. When true information weights lower percentage in a packet, it results in a
huge quantity of transmission times. In examples (c¢) and (d), Neoging are increased to 20 and
100 which are much more than Noyigina. That means we must design a outstanding coding
mechanism to make up for additional transmission due to fragmentation. The accurate

calculation is showed below.

Table 4.2: Example of the parameters setup

M D B F(bits) D X1 Ofyg

1K B = 8192, 8172 20, 1.0024
012KB 2 4KB = 32768, 32752 16, 1.0005
8K B = 65536, 65522 14, 1.0002

1K B = 8192, 8152 40, 1.0049
384MB 2 4KB =32768, 32732 36, 1.0011
8K B = 65536, 65502 34, 1.0005

2 = e s e -
L ey T

4B = 32, X X X
384MB 2 16B = 128, 76 52, 1.6842
64B = 512, 462 50, 1.108
30 o 7502 600, 1.0790
384MB 60 1KB=28192, 6992 1200, 1.1716
120 5792 2400, 1.4144

Table 4.2 is the illustration of the relation of the designed parameters. We can find that
Ofrqg Teach 1 closely if the unit bandwidth is not extremely small, meaning the overhead is
slight after fragmentation. However, if the bandwidth is quite small compared to the total
data, it causes vital overhead due to the significantly large quantity of index bits carried on.
If the case happens, such as the x sign in the table (implying that the required number of

index bits is larger than the unit capacity can afford), we recommend the tradition routing

31

method. Another factor, the max degree of the LT code D, also influences overhead. We have
to control the overhead to be adequate or reasonable for fear that even the well performed
LT code can’t compensate for the fragmentation overhead, and consequently lowers utility

of whole network.

The required index bits can be derived from the formula introduced above. It varies due
to different numbers of the transmitted packets. We provide two modes that index bits to
record each fragment is either 16, or 32;,. The former permits 2'® — 1 transmitted fragments
in total and the later permits 232 — 1. If we consider the case that total file size is 32M B,
unit capacity is 1K B, and max degree is 10, the required index bits is 13, total overhead is
1305, and the corresponding Oy,q4 is 1.016. If we apply 16, mode, the required overhead is
160, and Oy,qq4 is 1.02.

When data are fragmented, we cut the total file into pieces. At the same time, we assign
the number to each slice as the packet ID, Fhtis] every non-coding packet can be viewed as

a encoded symbol of degree one. Fig 4.3 is-the éxample.-

Without fragment : Data fragment

’ Fl 1
Bl GEs 7 B

B2 F2 F3 13 3
M - B3 F3| F4 - F4 4
B4 F5 F6 F5 5
B5 F6 F7 F6 6
F7 7

D

Figure 4.3: Data fragment

32

4.3 LT Encoding

Coding process is completely the same with the operations of the LT code encoding. A slight
different is that since the packets contain the indices of the combined fragments, we need
to reallocate the indices after finishing the encoding process. The detail discussion will be

presented below.

Source node possesses total fragments also called symbols with degree one, and it can

easily encode any symbol with requested degree. Encoding process is described as followed.

1. Randomly choose the degree d of this coding based on distribution.
2. Randomly choose the index of the Ncoging uniformly in d iterations.
3. Do XOR operations of the fragments.

4. Reallocate the indices of the choseaf 'ffégmer'lffs'i'n.' Qrder.

5. Repeat 3 and 4 until the degreé€ of packét'ils_,» d. 7 ‘ -

..........

~~~~

FIOF3PF4DOFTDF83DF9 0/0[0[0(9]8|7|4|3|1

Figure 4.4: Illustration of an encoding symbol

Fig 4.4 is the example of an encoded symbol whose degree is 6. The max degree D is
10, and we set the residual indices to 0 in the unused index positions. In the same time, the
index number we use is started from 1, not 0. The indices sequence is ordered from low to

high during the encoding process.

33



4.4 Packets Transmission / Receiving

Packets are transmitted from nodes to nodes by edges with packet loss rate L. Since we
transmit the data in the erasure channel, meaning that the we either lose the packets or
believe every value we receive, we set the packet loss mechanism to point whether packet
is lost. If mechanism occurs no loss, the packets will be sent to the adjacent nodes by the
edges successfully, otherwise, the adjacent nodes will receive zero packets, representing the
null transmission due to the loss. We create data to be all zeros to represent loss occurrence.
Simulation result will be shown to compare the throughput and the ability of error protection

in every sink with different packet loss.

4.5 Buffering

Buffer are used to store the packets frO{r}_, theringoming edges. It provide the temporary
storage to preserve the data especially;-lijééfﬁl v&uf_hen the .Eert_al incoming flow is larger than the
total outgoing flow. The buffering method iS(I(K)_;b;y"éc'l Qﬁ E‘IFO, fist in first out mechanism.
In traditional routing, we should ChO:'Q:S-e adeqmte—ste _,of buffer size for fear that the when
bottleneck occurs in some intermediate-,' ‘E—lnler“e Wﬂlr l:{)eﬁ' eagsiderable packet loss if the buffer is
too small. When we apply LT code on network, the entire packets flooding the network are
encoded symbols. If receiving rate is higher than transmitting rate of a certain node, some
packets are definitely discarded. Entire packets are encoded symbols, obeying the designed
distribution and therefore, even we lose some encoded symbols, causing the difference of
desired distribution a source should conform, the difference will be subtlety tiny. That is
to say, the buffer size will no longer a ignoring problem because of the coding mechanism

and we can use smaller size of buffer to save the hardware cost, achieving well performed

throughput as well.

34



4.6 LT Decoding

Decoding process resembles the LT decoding. A sink receives symbols continuously, mean-
while, activate the decoding procedure. We will receive and decode recursively until whole
data are covered completely. The decoded symbol is one segment of the original data,
therefore, we have to recover the true information by extra de-fragmenting operation. The

procedure is listed below corresponding to a received symbol.

1. Check the symbol degree. If degree is one, step 2 ,else step 4.

2. Check whether this degree one symbol has been decoded before. If so, step 6, else step
3.

3. Defragment the new symbol, labeling it in decoded index list.

4. Check whether there exists the same 'i;naicés 'b'"etwe_en the symbol and the decoded index

list. If yes, step 5, else, step 6. =

L f e
|

5. XOR operation of two matched. codewords, erasiig the same index of the symbol.

Return to step 1.

6. Finish.

The decoding process can be shortly summarized as searching the same indices among the
decoded index list, XOR operation, and erasing the computed index to decrease the degree
iteratively. Since the property of the LT decoding is vitally dependent on the degree one
symbol, we should check two conditions to start the decoding. First condition is the new
decoded index, and the other is the same degrees between this received symbol and the
list of decoded indices. If the received symbol can not fit in with these two conditions, no

decoding process is started up. In the meantime, after one coding process, there should exist

35



( Start |

Check received symbol

degree
Check whether symbol Yes
: Is1? 4
1s decoded
No
Yes Check same index

Has decoded? between symbol and Check symbol degree

decoded list

'Y

Defragment, labeling )
new index J

XOR operation, erasing
the same index

[ Finish j

Figure 4.5: Decoding flow chart

no indices the same with any index in decoded list. That is to say, the decoding procedure
stops if there is no valuable information among the un-decoded symbols. The flow chart is

in Fig 4.5.

Decoding flow chart describes the decoding process when receiving one encoded symbol.
Firstly, we need to check the degree of the new arrived symbol. If the degree is not one,
we have to examine the index members of this symbol to see if we can reduce its degree by

exclusive-or-ing the same index in the decoded list. If not, the decoding is finished leafing

36



the symbol which can not be decoded. If we find any symbol with index matched to any
index member of the symbols, we extract its information, reducing the degree and return
the degree check condition. If we discover the degree of received symbol is one, we firstly
examine whether we have decoded this symbol before. If so, it represents this symbol is
helpless for us to get more information and we stops the decoding procedure right away
for fear that we spend much time searching whether there exists same index of this useless
symbol. We should avoid the meaningless check. If this symbol is newly decoded, we have to
search symbols with this new information to reduce the degrees of those un-decoded symbols

to help the procedure go on.

4.7 Degree Distribution Analysis

The discussion above is established on the known well designed degree distribution. In
chapter 3, We have studied how to obtam ideal sohton distribution and the robust soliton
distribution modified by two additional param‘e"ter i and 5 Also, we realize the ratio of the
degree one and degree max relevantly 1nﬂuence the decodmg performance. If we want to
get distribution by robust soliton dlst*f}bqtlgn,Mample below shows the corresponding

procedure to find distribution with following parametéfs.

Table 4.3: Parameters of illustrated distribution

M 10000K B
B 1KB
Nom’ginal 10000

1 16,

c 0.2

) 0.05

F

D

We have cut file into 10000 pieces, and Noyyigina is 10000. We have to design the dis-

37



tribution and realize the max degree D can be decided by the K/S, the max degree used
in robust soliton distribution. Assume we choose ¢ = 0.2 and § = 0.05, we can therefore
calculate out S = 244, K/S = 41, and Z ~ 1.33. The corresponding distribution of p(d) and
7(d) is showed in Fig 4.6. In Fig 4.6, we find that the modified term 7(d) adds the weighting
mostly in max degree K/S, and in degree one. Weighting of every degree in distribution
is the sum of p(d) and 7(d). After the calculation, we get max degree D is 41, and the
fragment size will be 1K B — 41 x 16, = 7356p. Neoding is therefore increased to 11137. Since
LT code concerns the number of actual transmitted symbols, we have to put Neoging = 10871
to the calculation to get another required max degree and distribution, obtaining another
new fragment size. The process will go on iteratively till the outcome converges. The final

design will be Neoging = 10917 and D = 43.

If we obey the soliton distribution, we can tune a adequate one in sufficient tries. In
our experience, we find that what we do care,is the equivalent throughput in the sink. If

we attempt to elevate the probability,df 'sﬁcces_sful- deébding and reduce parameter Z with

smaller transmission times, we must paya high_;_max'dgegrré:e for the coding system. It fatally
decreases our ability to carry true ianf’matfoiiieffgﬁepackét. The well designed distribution

is usually hard to compensate for the Ng@"dmg, the acfcu‘afl transmission times.

Now that we concern most is the throughput, we hope to let Neoging is closer to Noriginai
as possible as we can. The intuitive thought is that the quantity of information carried on
one packet should be larger. Our methodology is to limit the max degree D and we tune the
distribution below our restriction. The goal we want to reach is quite the same, the difference
is the way approach to it. If the degree we set up is too small, it is almost impossible for us
to tune a adequate distribution. Therefore, we have to enlarge out max degree and tune it

again. The process continues till the overall outcome of throughput get enhanced.

In our tries, we change the relative weighting of every degree. The most importance is

38



Robustl Soliton Distribution
0.5 T T

— tau

0.45F |
— rtho

0.4 .

0.35 .
03+ : : : : : : ]
0.25 : : . . : : |
0.2 .
0.15 ]
0.1F .

0.05

I ‘llllllllx;A;;;;x . I I I
0
5 10 15

204 w REEEZC. 30 35 40 45

Figure 4.6: Robust Soliton:Distribd%idn with' fwo components p and T

to enlarge the distribution of degree-‘:_(?:ne btecaﬁseﬁﬁlsthe key to get decoding keep going
by belief propagation. On the other hérid; '-VVG lower[th‘ér weighting of degree two because if
we don’t have sufficient degree one codewords, We.have more degree two codewords in vain.
The third modification is to lower the weighting the distribution of max degree. The max
degree functions as the trunk of the code structure, seizing the total information. We let
this task distributed to other degrees, and expect that we can alleviate the risk to be unable
to decode because of the too many codewords with max degree. Hence, we get much lower

distribution of max degree and let the weighting transferred to other degrees.

39



Chapter 5

Comparison and Simulation Result

In this chapter, we will show our simulations to verify our proposed method. We take two
kind of network topologies we have introduced in chapter 2. Every network is operated
in multicasting environment. The chapter will be separated to several parts according to

different topics.

Every section contains the comparison"s: Withdiﬁéfén@ methods including traditional rout-
ing, coding method proposed in Chaptér 2, an‘d”‘xpf{r)pbrsed‘ LTF code applied to network coding.
We simulate in the environment with packet}gﬂate 70%; 5%, 10%, and 20%. We compare
every throughput of different methoéblogyr"énd':c-z;iculf;ute the total overhead of the coding

system such as coding operations and decoding operations.

5.1 Throughput

In this section, we focus on the throughput of the network by different transmission mecha-
nisms. We show the results of two different kinds of networks in Fig 5.1. Since the capacity
of all channels is quite the same, we use 1K B as the unit capacity. On the other hand,
LT code performs variously owing to different numbers of transmitted packets, we set up

different size of file M from 4MB, 8M B, 16 M B, 32M B, to 62.5M B. Number of bits a

40



s

(b)

@Aé

Figure 5.1: (a) Butterfly. (b) One-source three-sinks.

packet index uses is 16,. The max degree we design here is 10 so that the overhead due to
the fragmentation will be substantially tiny. The corresponding Nyiginar to each size of files
is 4K, 8K, 16K, 32K and 64K. Buffer size of each intermediate is set to 1K. Parameters

and the relations between Nyigina and »Ncéding are summarized as followed in Table 5.1 and

Table 5.2.

Table 5.1% Paraiﬁét@rmf simiilation

M ANIB, 8M B, T6MB,-32M B, 62.5M B
B 1KB " ‘
Novigmal | 4K, 8K, 16K, 32K, 625K
1 16,
D 10
Buffer size 1K
L (loss rate ) | 0%, 5%, 10% , 20%

In our simulations, we compare three different methods. The first one is traditional
routing method existed in the current system. The second one is network coding proposed
in [1]. The third one is our proposed LT code applied to network environment. Since we do

care is the utility of network of every sink, that is to say, if we use less cycles to let all sinks

41



Table 5.2: Relations between Nyyiginar and Neoding
File Size M | 4MB 8MB 16MB 32MB 62.5MB
Noriginal 4K 8K 16K 32K 62.50K
Noriginal 4178 8356 16711 33421 65275
Ofrag 1.02 1.02 1.02 1.02 1.02

receive the data, the system has higher efficient utility. Results are showed in Table 5.3 to
Table 5.6.

Table 5.3 and Table 5.4 show the average required run cycles in Fig 5.1(a) according
to different levels of completeness in different loss rate. As the tables show, run cycles of
routing is close to the required times a source should transmit when edges occur no loss.
And we can also find that in lossless environment, results of the methoed proposed in [1]
outperforms quite a lot compared to routing and proposed LT. It should be no surprise
because this code is a specified design for thls p_e_rticular network so that it can performs
outstandingly. However, when it suﬂers"ffem diffei"e'nxt'-ﬁlevel of packet loss, we observe that
routing mechanism and the specified: des1gn perform from bad to worse sharply. It means
that the ability to protect packets from loss 15 Mmsnfﬁment so that we can not recover
the lost packets from what we recelved therefore we requ1re more cycles to transmit data to
sinks. Regarding proposed LT, we find that requ1red cycles to decode data are also increasing
with severe loss. Since proposed LT code offer mechanism against packet loss, we can still
decode a certain part of information when some packets are lost. Run cycles of proposed
LT are significantly smaller than all the others especially when sinks receive 90% and 95%
of entire data. Namely, if you can bear data loss that is from 5% to 10% or so, proposed

LT supply a well constructed coding system to enhance throughput in the erasure channels

that the worst loss rate scale up to 20%.

The result of Fig 5.1(b) is showed in Table 5.5 and Table 5.6. In this network, we get

42



similar outcomes displayed in former example above. Proposed LT can give more vigorous
protection against more serious packet loss compared to other methods. The difference of
run cycles among three methods are much larger than the result above. The reason causes

such vital phenomenon is the structure of the network. We will discuss in detail later.

The tables listed above show the run cycles required to let every sink receive data ac-
cording the different level of completeness. In order to comprehend how close we are to the
theoretical upper bond, we normalizes results to show the equivalent throughput. Fig 5.2

shows the results.

We illustrate the throughput of the two networks with parameters that file size is 4M B,
and buffer size of every intermediate is 1K. Numbers labeled form 10 to 100 in x-axis
are completeness percentage of entire data and numbers in y-axis are the corresponding
normalized throughput, meaning the equivalent decoded data per run cycle. We should
note that when we calculate the equivalent "thr'ou'ghput we have to take the overhead due
to the fragmentation into con81derat1011 Thue requlred number for the real transmission
enlarges because extra degree components occupy a certain part of every packet. When we
calculate the effective throughput, wes have to m the throughput in the L'T code system
by the overhead to get normalized one. Becguse Qqnstruct LT codes with a very small scale
of degree, the overhead is therefore tiny, and the normalized throughput gets smaller in a
tiny difference. In Fig 5.2-(a), we observe that the throughput is about 1.3 at most when
during 90% to 95% of data are recovered. It gets 0.3 enhancement compared to store-and-
forward system. The performance drops with the increase of the packet loss without surprise.
Compared to the routing system, we find that the loss in every different level of packet loss
is decreased smoothly, meaning decreased throughput due to packet loss is tolerable. We get
the enhanced performance and degrades obviously only when we have to obtain the entire

data. This is because when LT code get a sufficient data, un-decoded weights a significantly

43



small part of the data. Since the LT code encodes randomly merely based on distribution, we
have no ability to control the system to send the combinations symbols with the un-decoded
data . Another reason is that we use the smaller max degree in the code structure, it causes
that the probability to carry different information what we need in our last decoding run
cycle to obtain 100% data. Therefore, we have to transmit more time to finish the tail data

to accomplish our task.

Results in Fig 5.2-(b) is quite similar to that in Fig 5.2-(a). The throughput gets upgraded

steadily to the max 1.8 or so and also decreases when total data are recovered.

5.2 Buffer Size

Intermediates have adequate buffer to store incoming packets temporarily. The size of the
buffer differs with the different application. In the traditional routing, when the data rate
of the incoming data is higher than the Outgomg data 1ntermed1ate can not afford for this
congestion and suspend the request KE).I‘ lose sbr;n-t_e ‘_parts Qf data. If we don’t want to lose

any packet, we have to offer several 5ﬁmes §ca1é' of total data according to the ratio of the

total incoming rate to total outgoing rate It 1S qulte 1mp0881b1e and dispensable to fit with
this requirement and we hope to have Smalier néeded size of buffer to lower the hardware
cost. In our simulation, we find that when we apply LT code for network coding, the size
of buffer affects performance slightly. In Fig 5.3, we show compare the throughput in buffer
network with parameters that file size is 8M B and packet loss is 0%. The buffer size is from
32 to 16 K. We observe that the performance is quite similar in such a different buffer size.
Buffer size with 16K is twice as the size of entire data, assuring that the encoded packet
in the node that causes bottleneck can be obtained to delivery to the adjacent edges. The
extremely small buffer size with 16 causes data overwritten in a considerable level. However,

the entire system play a role as LT coding system so that even some encoded symbol drop,

44



the whole packets roughly abide by the LT code. LT code applied for network coding can

lower the hardware cost.

5.3 Coding Overhead Analysis

We apply coding mechanism in the network to gain the benefit in throughput. In the same
time, we have additional process such as encoding and decoding compared to the routing
system. We show these overhead in Table 5.7 and Table 5.8. In these two tables, we find
that the xor operation per codeword in [1] is 1 because they merely combine two packets
in together. Decoding is increasing when the loss rate is higher. The xor operation per
codeword in LT is approximately closer to the expatiation of the degree distribution minus
one because we get degree d in d — 1 xor operations. Xor operations in the decoding is
about 24 to 30 or so. It is also increased due to the loss rate roughly. It varies because we
calculate this when the total data is ﬁnished and there exists probability to get completeness
in a extremely large cycle, increasing ébnérm@@lf ;dgdédiné"operation. The total operation per

codeword are the summation of two showed beib'\k}.
== |

45



Table 5.3: Average run cycles of file size 4M B, 8M B, 16 M B in
butterfly network

4MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%
Pass-and-Forward 1921 2770 3696 3899 4104
0% NC in [1] 1441 1647 1852 1955 2059
Proposed LT *2852 *2857 2862 2985 6696
Pass-and-Forward 3691 4027 4305 4940 11904
5% NC in [1] 2990 3472 3915 4602 10025
Proposed LT 3051 x3070 3132 3417 6921
Pass-and-Forward 3716 4286 4841 5945 16152
10% NC in [1] 3228 3680 4493 4990 12558
Proposed LT *3421 %3424 3458 3586 8248
Pass-and-Forward 3853 4479 6134 8305 22683
20% NC in [1] 3728 4399 5676 7275 20487
Proposed LT *4175 *4196 4213 4423 11130

SMB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%
Pass-and-Forward 3840 5027 6874 7797 8208
0% NC in [1] 2880 3291 3703 3908 4115
Proposed LT 5660 +*5666 5672 6039 13870
Pass-and-Forward 5743 6853 8135 8581 25304
5% NC in [1] 4625 5157 6660 7971 18703
Proposed LT *6142 %6203 6264 6466 20752
Pass-and-Forward 5965 7254 8527 11381 32196
10% NC in [1] 4907 6278 7742 8506 24569
Proposed LT *6889 ‘ %6908 6926 7236 23584
Pass-and-Forward 7794 8888 12964 15616 42774
20% NC in [1] 7308 8391 11451 13970 41241
Proposed LT x8344  *8451 8487 8952 27910

16M B Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%
Pass-and-Forward 7678 10055 13236 15082 16416
0% NC in [1] 5759 6581 7404 7815 8227

Proposed LT *11245  *11271 11297 11991 45629

Pass-and-Forward 9719 12274 15231 16628 48569
5% NC in [1] 7785 8694 12352 14704 43935
Proposed LT x10898  *11728 12285 12989 46335

Pass-and-Forward 10732 14258 16542 21469 62036
10% NC in [1] 8352 12338 15396 16785 55055
Proposed LT x13667 13699 13730 14681 64070

Pass-and-Forward 13834 16379 24370 30632 103112
20% NC in [1] 12996 15547 20809 25642 83602
Proposed LT x16917 *16937 16958 17767 64912

I Number labeled * is the value calcilgted by interpolation.



Table 5.4: Average run cycles of file size 32M B, 62.5M B in butterfly
network

32MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%
Pass-and-Forward 15353 20109 26471 29652 32832
0% NC in [1] 11515 13160 14805 15628 16451

Proposed LT x22624  *22644 22665 23966 93450

Pass-and-Forward 17816 24464 30013 32539 115502
5% NC in [1] 14172 15982 24160 29450 85504
Proposed LT *24711  *24804 24556 26291 122334

Pass-and-Forward 21061 27128 33378 44135 134121
10% NC in [1] 16471 22367 29602 33502 107365
Proposed LT *27365  *27423 27481 28973 138472

Pass-and-Forward 26704 33091 47781 61709 230788

20% NC in [1] 24815 30309 41238 50706 168448
Proposed LT x33526 x33422 33319 34893 142634

62.5M B ) :Perlcéhta__ge of Decoded Data
Loss Rate Method &0 70%mpna80%, 90% 95%  100%
Pass-and-Forward 20984 34267 38551 40693 42384
0% NC in [1] 22489 25702 28914 30521 32128

Proposed LT *44344  %44370 44396 46715 183967

Pass-and-Forward 32573 36938 41317 54754 208561
5% NC in [1] 927528 31054 45031 56027 192734
Proposed LT~ #47767 *47803 47840 50595 188459

Pass-and-Forward 35231 39696 55741 74609 262800
10% NC in [1] 31289 41682 56760 63385 244616
Proposed LT xH2658  *52722 52787 55651 206357

Pass-and-Forward 40605 56119 80482 107524 432963
20% NC in [1] 47602 58983 81493 100596 366815
Proposed LT x64119  *64348 64578 68200 247981

! Number labeled x is the value calculated by interpolation.

47



Table 5.5: Average run cycles of file size 4AM B, 8M B, 16M B in
one-source three-sinks network

4M B Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%
Store-and-Forward 1920 2194 2468 2605 2472
0% NC in [1] 1440 1646 1851 1954 2057
Proposed LT 2110 *2121 2132 2269 7683
Store-and-Forward 3002 3279 3558 4165 10265
5% NC in [1] 2573 2794 3055 4180 6428
Proposed LT %2304 %2330 2356 2490 8293
Store-and-Forward 3061 3351 3992 5381 16238
10% NC in [1] 2712 3001 4060 4523 8846
Proposed LT *2579 %2608 2619 2739 8595
Store-and-Forward 255 4118 5394 7632 20094
20% NC in [1] 3251 3951 4507 5298 12604
Proposed LT 3275 *3270 3284 3461 9999

SMB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%
Store-and-Forward 3839 4387 4935 5209 5484
0% NC in [1] 2879 3290 3702 3907 4113
Proposed LT *4206 %4220 4235 4473 12993
Store-and-Forward 4951 5511 6068 7752 16441
5% NC in [1] 4150 4593 5723 7335 14687
Proposed LT *4681 *_4692 4702 4935 17473
Store-and-Forward ~ 5071 5645 7638 9644 25652
10% NC in [1] 4404 5338 7131 8030 19076
Proposed LT *5172 #5177 5182 5467 18680
Store-and-Forward 5419 8085 10173 13376 36002
20% NC in [1] 5579 7592 8705 10506 29786
Proposed LT *6457 %6476 6495 6811 23040

16M B Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%
Store-and-Forward 7677 8773 9870 10418 10966
0% NC in [1] 5758 6580 7403 7814 8225
Proposed LT +8405 %8439 8474 8881 25803
Store-and-Forward 8862 9980 11098 14433 45436
5% NC in [1] 7284 8176 10487 13725 29536
Proposed LT %9368 %9389 9410 9816 28895
Store-and-Forward 9082 10229 14928 19191 65454
10% NC in [1] 7868 9683 14013 15818 36915
Proposed LT x10340 *10373 10406 11014 31975
Store-and-Forward 10545 14763 20603 27343 101599
20% NC in [1] 10884 13769 16454 20152 64317
Proposed LT *12838 12841 12844 13506 39112

I Number labeled * is the value calc%%ted by interpolation.



Table 5.6: Average run cycles of file size 32M B, 62.5M B in one-source
three-sinks network

32MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%
Store-and-Forward 1535% 17545 19739 20835 21932
0% NC in [1] 11514 13159 14804 15627 16449

Proposed LT %16909 16924 16940 17755 61314

Store-and-Forward 16704 18934 21169 28400 73766
5% NC in [1] 13549 15342 19664 27342 66295
Proposed LT x14630 *16671 18711 19639 68529

Store-and-Forward 18059 20344 28236 37478 122955
10% NC in [1] 15639 19168 26791 30655 85904
Proposed LT x20833  *20860 20886 21858 75871

Store-and-Forward ~ 20865 28737 39864 48351 177511

20% NC in [1] 21767 26477 32586 39536 139863
Proposed LT ¥25817 25841 25865 27212 94598

62.5M B ) :Perlcéli-tia_ge of Decoded Data
Loss Rate Method &0 70%6me80%, 90% 95%  100%
Store-and-Forward 20984 34267 38551 40693 42834
0% NC in [1] 22488 25701 28913 30520 32126

Proposed LT *x33088  *33107 33126 34858 128781

Store-and-Forward =~ 32573 36938 41317 54754 208561
5% NC in [1] 26445 29949 38746 51962 119185
Proposed LT ¥36277 +36389 36501 38532 156108

Store-and-Forward 35231 39696 55741 74609 262800
10% NC in [1] 29491 36567 51571 59501 185834
Proposed LT 40502 40541 40580 42515 166623

Store-and-Forward 40605 56119 80482 107524 432963
20% NC in [1] 41650 51688 63119 77028 278323
Proposed LT *x49976  +50009 50043 53043 211449

! Number labeled x is the value calculated by interpolation.

49



Throuphout

Throuphout

Butterfly Network with file size 4MB , buffer size 1K, LT code with different packet loss

% A A A A A A A A A i
Max
18 =——f— |oss rate 0% B
~=— loss rate 5%
16 : : : : : : —O— lossrate 10% ||
+ loss rate 20%

|
10 20 30 40 50 60 70 80 90 95 100
Decoded percentage (%)
(a)
One-source three—sink network with file size 4MB, buffer size 1K, LT code with different packet loss
- B B B - i

7 T T T T

Max

181 ——}— Ioss rate 0%
~4— loss rate 5%
1.6 | —@— loss rate 10%
+ loss rate 20%

14

12

| | | | | |
10 20 30 40 50 60 70 80 90 95 100
Decoded percentage (%)

(b)

Figure 5.2: Normalized throughput of two networks
50



Butterfly Network with file size 8M, loss rate 0%, LT code in different buffer size of intermediates

1.6

T
—— 32
—%— 256

—¥— 1K
4K

—0— s«
—¥F— 16K

Throuphout
N
T

o
©

0.6

0.4

02 | | | | | | |
10 20 30 40 50 60 70 80 90 95 100
Decoded percentage (%)
Figure 5.3: Butterfly network with different buffer size
r e 0 — =
- @S E5)r\ 3
- | -~ '.l
; N =
| . "-" =N § .'l . .
Table 5.7: XOR operationsofcoding systems in Fig 5.1(a)
File Size is 4NMB%. JFile Size is 8M B File Size is 16M B
Items Method Loss Rate 4 S 4  Loss Rate Loss Rate
0% 5%  10%  20% [} "0% 5%  10%  20% | 0% 5%  10%  20%
Encodin Proposed in [1] 1 1 1 1 1 1 1 1 1 1 1 1
coding LT 243 242 242 240 240 341 240 242 240 241 240  3.40
Decoding  Proposed in [1] 1 109 432 5.06 1 387  4.32 557 1 457 488  5.35
& LT 21.20 21.74 23.83 22.67 || 25.02 27.94 2224 21.18 || 24.05 23.05 28.16 27.92
Total Proposed in [1] 2 509 5.32  6.06 2 187 5.32  6.57 2 557  5.88  6.35
ota LT 23.63 24.16 26.25 25.07 || 27.42 31.35 24.64 23.60 || 26.45 25.46 31.56 31.32
File Size is 32M B File Size is 62.5M B
Items Method Loss Rate Loss Rate
0% 5%  10%  20% || 0% 5%  10%  20% ||
Encodi Proposed in [1] 1 1 1 1 1 1 1 1
neoding LT 241 240 239 240 2.40 240 240  2.40
Docoding  Proposed in [1] 1 444 479  5.44 1 519 5.60  6.07
& LT 24.42 39.43 30.84 24.65 || 25.86 25.11 26.12 28.47
Total Proposed in [1] 2 5.44 5.79 6.44 2 6.19 6.60 7.07
LT 26.83 41.83 33.23 27.05 || 28.26 27.51 28.52 30.87

1 Each value is the average exclusive-or operations per codeword.

o1



Table 5.8: XOR operations of coding systems in Fig 5.1(b)

File Size is 4AM B

File Size is 8M B

File Size is 16 M B

Items Method Loss Rate Loss Rate Loss Rate
0% 5%  10%  20% || 0% 5%  10%  20% || 0% 5%  10%  20%
Encoding Proposed in [1] 1 1 1 1 1 1 1 1 1 1 1 1
LT 2.40 2.40 2.41 2.41 2.40 2.41 2.40 2.40 2.41 2.40 2.40 2.40
Decoding Proposed in [1] 1 2.84 3.55 4.18 1 3.20 3.61 5.05 1 3.20 4.34 5.53
LT 25.00 24.04 25.18 27.65 24.96 25.73 26.50 29.35 29.13 26.35 23.81 26.52
Total Proposed in [1] 2 3.84 4.55 5.18 2 4.20 4.61 6.05 2 4.20 5.34 6.63
LT 27.40 26.44 27.59  30.06 ; 22:36 28.14  28.90 31.75 31.54  28.75 26.21  28.92
File Size is 32M B “File Size is 62.5M B
Items Method Loss Rate! & = 4 7 -#Loss Rate
0% 5% 10% - [20% 4] 0%, % 5% 10%  20% ||
Encoding Proposed in [1] 1 1 ~ 1 ’ __:"I"i Al : 1 1
LT 2.40 2.40 2:40 240 | -2.40 2.40, 240 2.40
Decoding Proposed in [1] 1 3.20 434 Bl53- 1T 332 4.18 5.27
LT 24.77 38.97 28W01. 26.52 |[ 2559 33.63 33.33 34.67
Total Proposed in [1] 2 4.20 5.34 7 .30.68 2 44’32 5.18 6.27
LT 27.17  41.37  30.41 "¢33:08 || 27.99 +36.03 36.73 37.07

1 Each value is the average exclusive-or operations per codeword.

52



Chapter 6

Conclusion and Discussion

6.1 Conclusion

In the thesis, we propose LT code applied for network coding in the multicast network. The
proposed method enhances network throughput by 20% to 30% improvement at most when
transmission completeness is in the range, from '90% to 95%. LT code can also perform
well against the loss rate form 0% ‘goi ‘2:0%1 Yvit_h"qorﬁp-ared to the routing system. Our

proposed LT-Network codes alleviate the requiréd buffer size in the intermediates to maintain

good performance such that the buffe'r si,zle’_f_’l_jegomes negligible factor regardless the data
size. Finally, the additional coding overhead for enc'o‘d;ing and decoding is about 30 XOR

operations per codeword.

6.2 Discussion

In our simulation, we observe what varies significantly in two different networks is the gap of
throughput between the real and the theoretically max flow. In butterfly network, through-
put enhances but falls behind the theoretical max in a large scale. However, the result in
another network is much closer the theoretical bound. The reason causes such fatal difference

is that there exists edge disjoint paths in the transmission network. Edge disjoint paths is

93



d————— = -

—— e m =

.

Figure 6.1: Edge disjoint paths in butterfly network

defined as that two paths from node u to v have no common internal edge. In the Fig 6.1,
we find that there exist two paths from nodg TtoY, path TY and path TW XY. The sink
Y get packets from these two path. Becaﬁsé we allgrv'v' intermediates pass and forward, node
T send two copies what it receives to :both edg&as :'_irrni_.'the ‘sfftrting of two paths. When sink Y
receives a packet from T, after a certain cycle Lns, in Wﬂl get the same packets from XY
which originate from the node T'. Altﬁdugh 1t Wiil get Ks(Kr)me partial of additional information
from the path UW XY, it still can not ‘avéid reééi{fing the repeated packets what it has
obtained. The same condition is displayed in the node Z because of the edge disjoint paths

UZ and UW X Z. The utility of network is therefore degraded due to this phenomenon.

Regarding to another network, we observe there exists no edge disjoint paths in the
network. Therefore, efficiency of the LT code can gain high enhancement approach to the
theoretical max flow. Since throughput degradation is due to the repeated codewords, we
propose a combined LT-Network to let node W do exclusive-or operations of two codewords

it receives. By doing this, every receiver has opportunity to get additional information from

o4



the re-combined codewords instead of the completely same codeword it has received. Re-
combined codewords bear more useful information to help each node get higher probability to
process decoding procedure, therefore, to decode successfully. When we apply LT-Network
code we should notice that we design the LT code with the max degree D. If the combination
of two codewords in node W results a codeword with degree larger than the max degree, we

drop this combination to pass the codewords in the buffer. The result is showed below.

We find that the required run cycles get further decreased if we apply LT-Network Codes
in this network. However, this LT-Network Codes is designed for this specified network. In
our simulation, we give a startup for LT-Network codes in erasure channel to exemplify the
improvement and good ability to protect data. The further research can focus on how to get

a well combined LT-Network in generic situation.

25



Table 6.1: Average run cycles with LT-network codes of file
size from 4M B to 62.5M B in butterfly network

4MB Percentage of Decoded Data

Loss Rate Method 70% 80% 90% 95% 100%

0% LT *2852 %2857 2862 2985 6696

¢ LT-Network Code *2670 *2671 2672 2673 11953

10% LT #3051 3070 3132 3417 6921

0 LT-Network Code %2912 %2929 2945 2961 10681

20% LT #3421 *3424 3458 3586 8248

0 LT-Network Code *3257 %3273 3290 3353 11514

30% LT *4175 *4196 4213 4423 11130

0 LT-Network Code *4235 4265 4296 4326 12812
8MB Percentage of Decoded Data

Loss Rate Method 70% 80% 90% 95% 100%

0% LT #5660 +*5666 5672 6039 13870

0 LT-Network Code #5269 *5279 *5289 5300 34565

5% LT %6142 6203 6264 6466 20752

0 LT-Network Code *5770 *5781 5792 5848 24726

10% LT *6889 *6908 6926 7236 23584

0 LT-Network Code #6500 *6503 *6506 6512 25962

20% LT 8344 *8451 8487 8952 27910

0 LT-Network Code *8276 8297 8319 8341 28631
16 M B Percentage of Decoded Data

Loss Rate Method 70% 80% 90% 95% 100%

0% LT 12450 0AT271 11207 11991 45629

0 LT-Network Code ,4.%10380 10432+ 10484 10536 41372

5% LT 5 #0898 | =178 | 12285 12080 46335

0 LT-Network Cgde  #11826%| 11853, '%11881 11908 50941

L0 LT = 13667 ~*18699 18730 14681 64070

0 LT-Network Cade *13059 *13076  %13093 13110 63194

20% LT " #16917L5i6987 /516958 17767 64912

° LT-Network Codé+ 516550 16580, #x16611 16642 70597
32MB o, e Pe;éqerffalge of Decoded Data

Loss Rate Method 70% 80% 90% 95% 100%

0% LT *22624  %22644 22665 23966 93450

0 LT-Network Code  %20735 20807  *20879 20951 98520

5% LT *24711  %24804 24556 26291 122334

0 LT-Network Code  %23319  %23373  %23427 23482 78833

10% LT *27365  %27423 27481 28973 138472

0 LT-Network Code  %25905  %25973  %26040 26108 153647

20% LT *33526  %33422 33319 34893 142634

0 LT-Network Code  *32970 %33034 %33090 33146 101303
62.5M B Percentage of Decoded Data

Loss Rate Method 70% 80% 90% 95% 100%

0% LT *44344  x44370 44396 46715 183967

0 LT-Network Code  *41122  *41129  %41135 41141 254453

5% LT *4T767  %x47803 47840 50595 188459

0 LT-Network Code  *45268 45436  x45604 45772 217532

10% LT *52658  x52722 52787 55651 206357

0 LT-Network Code  %51307 %51333 %51359 51385 197169

20% LT *64119  %x64348 64578 68200 247981

LT-Network Code  x645§% *64611  x64569 64708 268342

I Number labeled # is the value calculated by interpolation.



Appendix A

Several Ideas to Transmit Packets
Efficiently

We have discussed the repeated codewords phenomenon in some edges disjoint paths started
from some node and ended at sinks in the network. It fatally decreases the throughput
because that sinks get some packets receive(nibefgre at certain ratio, carrying no beneficial
information for decoding. In this chap»té'rz,‘ we desgf'ibert some thoughts that we attempt to
resolve this troublesome problems. Unfortu‘r'ﬁ;tély;‘thérél is no any breakthrough for this

topic.

A.1 Drawback Discovefyr”and‘ Node Analysis

Network with edge disjoint paths ended at sink node will causes harmful influence on through-
put regarding coding mechanism. In the previous discussion, we find that even we apply
LT code on network to let the whole system paly as a coding mechanism, if we does not let
intermediates participate in encoding process, and merely pass-and-forward as traditional
routing does, the efficiency will be restricted by the network topology. The way to avoid this

limitation is to let intermediates encode as the source does during transmission.

Before we start, we should check whether every intermediate need coding. If not all the

o7



intermediates are necessary, we can save the extra coding overhead such as computations
and time. At this subchapter, we will clarify the necessity of coding for any intermediate.

Considering the butterfly network in Fig A.1, we observe there exist two edge disjoint paths

Figure A.Js! Butterﬂy metwork

from node T to sink Y, path TY and path TWXY : Ndde T has one unit capacity of all
incoming edges, and two unit capaci”gy off al}ﬁﬂtgemg edlges. Number of received packets
can not keep up with that needed for t-fahsillission. In'this situation, we have to copy what
we receive to delivery for separate edges, céﬁsing.éink Y receive a certain part of repeated
packets. On the other hand, if one intermediate have more packets than what it transmits,
there is no need for coding because of the sufficient information even it cause edge disjoint

paths.

The conditions we judge whether a intermediate needs coding are based on relations
between total incoming packets and outgoing edges and if it causes edge disjoint paths.
However, it is tiresome to find edge disjoint paths and indicate such nodes. This task is

NP-hard so that we have to modify the methods to decide coding or not.

o8



We conclude the necessity for coding in intermediates as followed.

e A intermediate needs coding if total capacity of incoming edges is larger than that of

outgoing edges.

Based on this condition, we find intermediates require coding are node 7', U, and X. Node
W can do simply pass and forward contracted to original method. We can also observe that
node X have to do coding even if it causes no edge disjoint paths. By this constraint, every

node can decide coding or passing regardless to the whole network.

A.2 Intermediates Coding

A.2.1 Thought

Since we can decide every work a node should follow, we discuss how to do coding on inter-
mediates. Remember that we apply LE i(;c')(;le Hl?’ ;cr?@smission system, the entire environment
can be viewed as a L'T coding structﬁfe. It W(;K.;lef 'iﬁterﬁlédiates code, we should follow the
LT distribution as well. So before W(;'-_vs.-tartﬂ Ltréjns_nﬁ'1.,1‘5§101f1, rizve should send information of LT

distribution to them.

Intermediates get information from the incoming edges and can not obtain entire data as
a source does. Coding can be merely depends on what we store in the buffer. So, we start
coding mechanism after receiving some packets. Encoding procedure is the same with that

in the source.

A.2.2 Phenomenon

The result is not as we expected. We check degree of every packet received in sinks and find

that the distribution differs seriously compared what we design in the lossless circumstance.

29



That is because intermediates code according to desired distribution and we have to encode
the packets by the picked degree chosen according to distribution. We set a high stop criteria
until the degree is what we need in this encoding cycle. If we can’t produce the codeword
with desired degree, we randomly choose a packet in the buffer to transmit. Since the degree
of packets in the buffer is biased, we can not encode freely causing a quite large difference

between true distribution and designed distribution and the result performs poorly.

A.2.3 Note

Let intermediate encode as possible as it can in a finite stop criteria causes considerable

computations and disturbs the degree distribution.

A.3 Codeword Cache

A.3.1 Thought

We encounter significant disorder of degree dlétleutlon due to the coding in intermediates.

Therefore, our task is to avoid the ihtermédi‘@fe being p'r'iobably not to encode the desired

degree in a high opportunity.

At every encoding, we choose a degree mrando.rKnly dgesirea Dased on distribution. If we
can’t make it, procedure will continues till the the desired one shows up. During this long
encoding loop, there exists a codeword that its degree is not what we need. The quantity
of these codewords will increase if we can’t produce codeword with degree dcog4ing matched
t0 dgesireq- If we save these codewords in the buffer, we obtain packets with various degrees
except dyesireq- When the next encoding cycle runs, we can firstly search in the buffer to find

whether any packet in buffer with the degree matched to this new degree dgesired-

We store codewords during coding loop and we search the buffer firstly in the next

60



encoding cycle. The recommended way to allocate the packets in the buffer is cut buffer into
separate parts according the degree distribution. Therefore, we can save searching time to

find the degree.

Table A.1: Buffer allocation

Degree 11213 (4].../18[119] 20
Distribution | 5 |4 |1 |1 1] 1 | 1 5

Ratio 0.3 0.5 0.2
Buffer store | 0 to 14 15 to 38 | 38 to 47

Table A.1 is a illustration. Max degree is 20, and every value in distribution row is
the weight of particular degree. Ratio shows the percentage of total degree in three region.
Buffer size is 48 and we cut the buffer into three parts according to the percentage of the
degrees in each region. We find that degrees one to three contain 30% of the distribution,
therefore we cut 30% of buffer labeled from 0 to 14 to store those degrees. When we want
to store a new created codeword in the buffer we need to check the degree to put it in the
relative position. The method that deal Wlth the data lS still FIFO mechanism, meaning

that if this region is filled with the codewords We overwiite it from the first position. The

received data is stored by the higher pr-lqmty. By domg‘so, packets in the buffer are updated
to obtain the newly incoming information received in the buffer. Fig A.2 demonstrate the

encoding flow chart.

Note that when we search the degree of packets, we choose the first one whose degree
is equal to dgesireq- Since we use FIFO in each sub buffer, we can lower the opportunity to
send the same packet we have transmitted before. In the meantime, we create another table
attached to every packets in the buffer to label whether this codeword is transmitted before.
If this packet has been transmitted, we labels it so that if the same degree is required in the
next time, this packet will be skipped. At the same time, when we can not encode what

require, we still have to choose one packet to deliver. In this condition, we will uniformly

61



([ Start )

1 - +
Store in buffer& Give the desired Randomly select
check iteration degree dgesireq one packet

h 4 1 h 4

Search same Update
degree in buffer transmitted label

Encoding & check N
degree doding

1 !
Y [ Finish j

Figure A.2: Encoding flow chart of encode and store mechanism

select one packet in the buffer and label it as identiﬁcationi{ We illustrate labeling in Fig A.3.

Assume that node 1 has three outgoing ‘e‘dré;e's 6 | t‘he selected dgesireq is 2 for each edge
with capacity 1. That means we have to ‘send three“codewords with degree 2 during the
coding in node 1. B_trs_flag is used for labeling and 1 represents the transmitted packet.
Table in the left side shows the information of buffer before coding. Number from 0 to 47
means the position of buffer. The second column is the labeling identification. The third
column shows degree of every codeword in the buffer. Considering the coding procedure in
the node 1, we need to transmit three packets. In the first cycle, d,cquireq is 2 and we search
the degree finding that there exists one packet with degree 2 in position 1 is not transmitted.
We choose this packet to transmit through edge to node 2, labeling it 1. In the next cycle,

dyequired 18 2 again. Since packet in position 1 is labeled transmitted, we have to look for

62



Node 1 B trs flag D B trs flag D

0110 1 0 1
110 2 1 2

<L e -
@ " \@ 2|0 2 2 2
Desired degree = 2 471 0 20 471 0 20

Figure A.3: Illustration of labeling operation

the next one and we find that packet in position 2 fits in with the conditions, selecting and
labeling it. In the final cycle, the d,equireq 1s still 2 and we can not find any packet after the

searching so that we have to do coding to produce the codeword we desire.

A.3.2 Phenomenon

By this modification, we observe thatr-t'he exdp’siﬂve@r Sperations is decreased dramatically.
When we does not store the new encoded codenwoli"d's, thé immber xor operations times is up
to the stop bound we setup closely. Iltfshoﬁ}’sfﬁmgh to encode one codeword in limited
information. After our modification, the"z'we”rage ?{Qf"tiﬁles to encode one codeword is down
less than 10 with a constrain that stop criteria equals 5. Stop criteria means that if we can’t

encode the desired codeword in 5 cycles, we quit encoding procedure and randomly chose

one packet from the whole buffer.

This modification does not work. Distribution we get in the sink gets a slightly improved
but its improvement is insufficient to resolve the problems to enhance the throughput. We
analyze the distribution and we see that we get considerable packets with degree from D to
D — 2 where D is the max degree and extraordinarily less packets with degree 1 and 2. Since

we use belief propagation that number of packets with degree 1 is the vital key to decode

63



the whole information. We slightly balance the overall distribution but the most valuable

part is still biased.

Besides, we find a fatal condition that we obtain a large quantity of the same codewords
after our modification. There are two kind of steps to create repeated codewords during the

coding procedure.

1. Same operation.

e Choose a set that cause equivalent combination.

e This condition occurs apparently when the buffer is spare of packets.
2. Inverse operation.

e The operation procedure is equivalent to the inverse operation of any past oper-

ations.

We describe them separatively. =5 He ' h" %

Fig A.4 explains the same operati(_)'n. The::{n{aft;__t;abler is'a tail part of packet recorded the
relation how packets combine and we czﬂl-‘ ﬁhése informaﬁbn degree list. Number labeled from
0 to 9 is the buffer index. Recall that we store p@ckets based on its degree. The relation

between them is in Table A.2

Table A.2: Buffer cut of example
Degree 1‘2 3‘4\...‘6 7‘8
Buffer store | 0 to 1 2to 7 8to9

We demonstrate equivalent combinations after two xor operations in a encoding cycle.
Assume dgegireq for this cycle is 3 and we firstly initialize the elements to 0 in degree list. In

the first run, we get 0 and 4 to do computation and we get a new codeword with degree 5.

64



Degree List of the Buffer Desired degree is 3

Initialize

0 1 0j0jO0O|O]|]O|O]|O]O
1 2|1 Run 0 : select 0 and 4
2 0|00 |7]|6|5]3]1
3 Store in the No.6
4 71653 After the Reset
5 9152 Run 1 : select 4 and 0
6 g ololo|7]6|5]|3]1
7 7 s s Store in the No.7
8 150120119852 B trs flag D
9 610 5

710 5

Figure A.4: Same operation while coding

Since 5 is not our desired degree, we-store it ifi the buffef index 6 and continues encoding
till codeword degree is larger than ma% degree or we get required one. Suppose that packet
in the buffer index 6 is not overwritten by ‘others‘and this coding run ends due to degree
explosion. We reset the degree to 0, starting another run. Unfortunate, we choose buffer
indices 4 and 0 that the outcome is quite the same with we encode in the last run. We store

it in another empty buffer indexed 7. Obviously, there are two same packets in the buffer.
We shows another case in Fig A.5.

The basic assumption is the same with the case in Fig A.4. The only difference is the
chosen sets of two coding run. In the first run, we still choose no.0 and no.4 to compute and

the result is stored in no.6. In the next run, if the chosen indices are no.0 and no.6, we find

65



Degree List of the Buffer Desired degree is 3

Initialize
0 1 0|0jO0O|lO]|]O|O]|O]O
1 2|1 Run 0 : select 0 and 4
2 716|523 o|lo|l0|7]6]|5|3]1
3 Store in the No.6
4 71653 After the Reset
5 9152 Run 1 : select 0 and 6
6 76 53 ololo|o0|7|6]|5]3
7 Store in the No.2
8 15/12(11]9|8]5]2 B__trs_ﬂag D
9 6|0 5
210 4

Figure A.5: Inverse operation while coding

that the outcome is the same with that i no4;-a codeword we have already obtained. In

such a case, we contain the same packets Again.

These two kinds of operations cause serious result. It is probably that the combina-
tions of codewords in the buffer are occupied by some particular codewords. If one repeated
codeword is stored in the buffer, the opportunity that this codeword is picked up when we
uniformly choose one for encoding is much higher than others. If the outcome of the opera-
tions involving these repeated codewords result in more repeated codewords unfortunately,
packets in the whole buffer will obtain a certain specified information, causing tragedy. We

illustrate in Fig A.6.

Fig A.6(a) show the degree of each packets in the buffer. We observe that there exists

66



Degree List of the Buffer Desired degree is 3 Degree List of the Buffer

0 1 Run 0 : select 2 and 4 0 1
1 2|1 lolololololololo‘ 1 1
2 78 (F6HHSH e Do not store (Null operation) 2 7|65 |8
3 7o 58 Run 1 : select 3 and 7 3 7 EG s
4 7w 5k 3 ’0[0|0[0|0|0[0[1‘ 4 7|5 5a
5 9|52 Store in the No.1 (Damage) 5 fltieties iy
6 7161531 Run 2 : select 1 and 7 6 i o BB a8
7 2o lEs] g ’0|0|0|0|7|6|5|3‘ 7 78 | B GH | BB R o1
8 IS| 121119 ]8]5]2 Store in the No.5 (Damage) 8 15012011198 |52
9 9
(a) (b)

Figure A.6: (a) Step I. (b) Step II.

two kinds repeated degree combinations stored in no.2 to no.4, and no.6 to no.7. If we
have three coding runs marking in the right. The first causes the null operation because
the outcome is zero due to the two pa(;ke't's”vrvith'fhé'stame degree list. It costs our coding
time for this useless operation. In ruf 2, sinbéipaéi{et from no.2 no.4 is the same, we have

higher probability to select this codeword sinee it weights-a ratio of 3/9 of total buffer. The

outcome after operation in run 1 shoﬁl_d be-'s';c(jré&:in the first region of buffer. If the FIFO
mechanism in this region points it to store rin no.1; we will overwrite the existed codeword.
The condition after in run 2 resembles that in run 1. After the two runs, we find that the
variety of the degree list is significant reduced, meaning the information loss. Now that
number of the degree category is decreasing from 6 down to 4. The ability to encode a
codeword with different degree list degrades vitally. Namely, we will encode more same
packets. Once a certain number of repeated are stored in the buffer, the higher probability
we choose them during coding, causing more same packets in the buffer due to two kinds of
operation described above. The situation goes from bad to worse quickly, hence, we call this

avalanche damage.

67



A.3.3 Note

Labeling the transmitted packet in the buffer can not avoid avalanche damage, causing

repeated codewords as well.

A.4 Repeated Codeword Table

A.4.1 Thought

The repeated codewords can not be solved if we just control in the buffer because the same
codewords may appear again even we label it in the buffer. In order to eliminate this

drawback, we retain that in every transmission.

What bothers fatally the same codewords lowering the utility. We have to assure every
packet sent into network possesses different degree components. Thus, we create a look up
table to record what we have transmitted: and we have to check the codeword degree list

in every transmission. That is, we set upla glliar(_ito manage every packet outgoing to the
network. S :
|

At the same tine, LT code placesz'impbf“c;aﬁéé-'sén the distribution and it does not care
much about whether the codeword of a -kp-afticulémr‘ dégree is encoded early or late as long
as the distribution a sink receives the same with what design. This property gives us a
opportunity to lower the xor operation times, speeding up the encoding. Fig A.8 illustrate

the modified encoding flow chart.

Compared to Fig A.2, we add three blocks including Check d¢oqing in distribution table,

Update distribution table, and Update repeated LUT.

Distribution table is used to record the difference between the desired degree distribution

and real coded one. We explain the functionality in Fig A.7.

68



Desired degree =5 ; Real degree = 3

L1234 |5]|-116[17]18|19]|20

o0 |+1|{O0|-1|O]O[O]O|O]|O

Figure A.7: Distribution table

The top table in the figure is the initiation with max degree 20. If the desired degree of
one encoding run is 5 and that of the real transmission is 3. We will update the table by
adding 1 to degree 3 and subtracting 1 to degree 5. Thus, the positive number represents
the extra quantity that we transmit at this degree compared to the desired one. Similarly,
negative number represents lack and 0 reptésents even. The previous method to treat the
packet that deoging is not equal to dgesired [is merely 1o Store it. If we are short of this kind
of packet that we should have transmitted before, we hax;e to compensate for that in some
transmission somehow to modify the 'distribufion.’ S0, when we encode a degree that is not
match to dgesireq, we should check the table torsee if we should transmit this codeword to
resupply. If we find number of dcoging in the distribution table, we can therefore transmit it
and update it by adding one in depging and subtracting one in dgegireq. Although the desired
degree is discarded after this transmission, there still have chance to compensate for it in
another coding procedure. By doing this, we can save the operation time and balance the

distribution as well.

On the other hand, if we can not create the codeword and find that there is no loss in
the distribution table, we still have to choose a packet in the buffer. In this situation, we

also have to update table.

69



1

check iteration

Repeated ?

[ Store in buffer& J

[

|

N
Encoding & check
repeated LUT )

[

Start |
3 i
Give the desired Randomly select
degree desireq one packet
Search same Update

degree in buffer

|

/ﬁ

transmitted label

A 4

/_\

Update
dlstrlbutlon table

A 4

_.[

Check dcoging In
distribution table

|

[

Update repeated
LUT

|

70

(

Finish

)

Figure A.8: Modified encoding fow Chart"addrin'g' repeated LUT and distribution table

The repeated look up table is used to record every degree list we have transmitted up to
now. As long as we decide the packet we want to transmit at this coding cycle, we have to
record it. Another condition is that we have to check repeated LUT when a new codeword is
created. If we find this codeword is in LUT, we will discard it and encode again. According

to this additional restriction, we can avoid any repeated codeword in the buffer.

Because we have no idea when will the transmission ends, we have to use a dynamical
storage to record repeated codeword. Besides, in order not to waste lots of time in checking

repeated LUT, we arrange the degree lists in the LUT in the order based on degree. And



we will record the boundary of each degree to indicate the start point and end point for

checking.

A.4.2 Phenomenon

After this modification, we find that the result still doesn’t get improved. We find that the
distribution of every sink get tiny difference proving that the distribution performs well and

the codewords are not repeated. Why the result don’t get enhanced?

We look back to the concept of the relation between original data and encoded codewords.
Since the coding can be viewed as the linear mapping between two space. However, we hope
that the dimension of codeword space should be as large as the original data that we can
recover them by some computation. However, when we coding only in the source, we find
that the packets we create get pretty high opportunity to span a space as original data.
Of course, the efficiency get max if your en¢éded space is identical to the original space,
meaning the encoded codewords are }iﬁéaﬂy rl‘ix:ld'ep.emijent. When we apply coding in the
intermediates, we can simply encode;Eased onK.%hé".réceirve"‘:d symbols. The scale of space we
can span will enlarge with the more fe,;:eive[dj;:'ﬁa_gk_etfsf in tﬂe buffer. However, the buffer size
is limited and we may do coding times -fc;-ntirgles in a éo'tining cycle, causing the packets in the
buffer resemble to each other. Even we can encode non-repeated codewords, the packets we

send are too similar that we can not offer enough information for sinks to recover data.

A.4.3 Note

Coding in the intermediates cause that the whole packets are with higher dependence and

can not offer enough information for sinks.

71



A.5 Constraints Alteration on Intermediates

During the discussion above, we do coding in the intermediates that the total incoming
capacity is larger than total outgoing capacity. We discover that we can not span out
larger space to enhance the throughput. Now that we want to carry more information, we
change the condition to do coding in the intermediates where the bottlenecks occurs. At the
meantime, we try another case that we let every intermediate do coding in the whole system

during transmission. The corresponding results are showed below.

LT Code with different coding mechanisms @ Butterfly Network, file size 4MB, buffer size 1K, Loss rate 0%
o - - - -

Max

18 LT+XOR 7
i LT+FIFO

—— LT in Bottleneck : i

—@O— LT except Bottleneck
LT in every Intermediates

=
(2]
T

=
I
T

=
)
T

o
e
T

Throuphout ( codewords / run ')
-
T

o
o

0.4

0 I I I I I I I I I
10 20 30 40 50 60 70 80 90 95 100

Decoded percentage (%)

Figure A.9: LT-network code with different coding mechanisms

We show four kinds of coding mechanisms in Fig A.9. Every method we propose here
is that if the intermediates need coding, they will obey the LT degree distribution we de-
sign. The first FIFO+LT is the method let node W do sample XOR operations between two

received codeword symbols, and we can see that the equivalent throughput is the best com-

72



pared to other mechanisms. Only FIFO mechanism let intermediates do pass-and-forward
as routing does. Coding in the bottleneck is that we do coding only in the node W where
there are two incoming edges but only one outgoing edge. Coding except bottleneck let in-
termediates do coding except the node W. The final mechanism let every intermediate do L'T
encoding during the process. We find that if we do coding except node W in order to avoid
the repeated codewords delivery due to the edge disjoint paths, the throughput doesn’t get
enhanced but lower. The result seems get slightly improved in the case that we do coding in
the node W when the completeness of every sink is in the range from 0% to 80%. However,
it drops down eventually and can not upgrade the throughout approach to the theoretical
maximum. In the last method, we let every intermediate do coding. We find that the result
get much worse than we expected. The reason we conjecture is that the encoding process
in the intermediates causes the code structure mixed up so that what the sink receive will
become some pieces of the shorten and split C_.onde structure. The connection of the codewords

weakens so that even the received codewdfds in the _siﬁks_ differ a tiny minority, the damaged

L f e

LT code can not achieve high througﬁput.

A.6 Summary

We have tried hard to resolve the repeated codewords problems to hope we can give a generic
solution to enhance throughput and work in vain. The described method above are offered
as the experience. We point out the problems to degrade the throughput while applying L'T
code of whole network in our experiments. We give some direction for further study on this

issue. Any discussion and command is welcome.

73



Bibliography

1]

R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, Network information flow, IEEE Trans.
Inf. Theory, vol. 46, no. 4, pp. 1204-1216, Jul. 2000.

R. W. Yeung, S.-Y. R. Li, N. Cai, Z. Zhang, Theory of Network Coding .

T. Ho, R. Koetter, M. Médard, D. R. Karger and M. Effros, " The Benefits of Coding
over Routing in a Randomized Setting, ” IEEE International Symposium on Information

Theory, 2003.

T. Ho, M. Médard, R. Koetter,=D. R. Karger,MEffros, J. Shi, and B. Leong, "A
Random Linear Network Coding -.A:pproach’té .Mu'lticé:tst, "IEEE Transactions on Infor-
mation Theory, vol. 52, no.10, p}tj;_441‘3_-:4130,7'§(7)06:"7

D. B. West, Introduction To Graphy Theroy, -2nd ed, pp. 176-180, N.J.:Prentice-Hall,
2001.

T. H. Cormen, C. E. Leisersin, R. L. Rivest, and C. Stein, Introduction to Algorithm

-2nd ed, pp.651-691, NcGraw-Hill, 2001.

D. J. C. MacKay, "Fountain codes” ,IEEE Proc.-Commun, vol.152, no.6 , pp.1062-168,
Dec 2005.

A. Shokrollahi, ”Raptor Codes,” IEEE Transactions on Information Theory, vol.52,
no.6 pp. 2551-2567, Jun. 2006.

74



[9]

[10]

[13]

[14]

[15]

[16]

M. Luby and "LT Codes,” Proc. 43th IEEE Symposium on Foundations of Computer

Science, pp.271-282, Nov. 2002.

R. Koetter and M. Médard, ” An Algebraic Approach to Network Coding,” IEEE/ACM

Transactions on Networking, vol. 11, no. 5, pp.782-7952, Oct. 2003.

S-Y. R. Li, R. W. Yeung, and N. Cai, "Linear Network coding,” IEFFE Transactions
on Information Theory, vol. 49, no. 2, pp. 371-381, Feb. 2003.

C. Fragouli and E. Soljanin, ” A connetcion Between Network Coding and Convolutional

Codes,” IEEFE Transactions on Information Theory, vol. 2 pp. 661-666, Jun. 2004.

C. Fragouli and E. Soljanin, ”Information Flow Decomposition for Network Coding,”

IEEE Communications Society, vol. 52, no. 3, pp. 829-828, March. 2006.

C. Fragouli, E. Soljanin, and A. Shokrollahl ”Network Coding as a coloring Problem,”

Proc. Conf. Information Sczences aitd Systems Mar 2004.

H. Wang and C.-C. J. Kuo, ” Robust Vldeo multlcast with joint network coding and
AL-FEC,” Proc. IEEE [ntematzenal symp_G’zTuzts and Systems, May. 2008.

H. Zhu, C. Zhang and J. Lu, ”Designing'of Fountain Codes with Short Code-Length,”
Proc. 3rd International Workshop. Signal Design and Its Applications in Communica-

tions, pp. 65-68, Spet. 2007.

M. Langberg, A.Sprintson and J. Bruck, ”Network Coding: A Computational Perspec-

tive,” 40th Information Sciences and Systems Conference, March. 2006.

Z. Li, B. Li, D. Jiang and L. C. Lau, ”On achieving optimal throughput with network
coding,” Proc. IEEE Joint Conf. IEEE Computer and Communications Societies, vol.
3, pp. 2184-2194, Mar.2005.

5



	封面
	中英文摘要
	誌謝
	組合 1.pdf
	9511659.pdf


