

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

利用 LT 編碼增進網路通訊系統吞吐量之研究

Throughput Enhancement Using LT Codes in Erasure

Network Communications

研究生：胡健甫

指導教授：張錫嘉 教授

中 華 民 國 九 十 七 年 十 二 月

利用 LT 編碼增進網路通訊系統吞吐量之研究

Throughput Enhancement Using LT Codes in Erasure

Network Communications

研 究 生： 胡健甫 Student：Chien-Fu Hu

指導教授： 張錫嘉 Advisior：Hsie-Chia Chang

國 立 交 通 大 學

電 子 工 程 學 系 電 子 研 究 所 碩 士 班

碩 士 論 文

A Thesis

Submitted to Department Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

In Partial Fulfillment of the Requirements

for the Degree of Master

In

Electronics Engineering

December 2008

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 七 年 十 二 月

利用 LT 編碼增進網路通訊系統吞吐量之研究

學生：胡健甫 指導教授：張錫嘉

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

網路傳輸時所發生的瓶頸於接收端已造成嚴重的吞吐量降低。這篇論文

中，我們介紹了一個將LT碼的編碼系統應用於傳輸環境之下來增進吞吐量。所

提的LT編碼能改善吞吐量來逼近理論上的最大值。同時也能提供重要的資料保

護能力來對抗於通道的封包遺失。在LT編碼系統中，相對於所有傳輸資料量，

中間節點所需要的緩沖器變成不重要的因素而能大量地減少。在某些網路中，我

們結合LT碼和特定的網路編碼機制來得到更進一步接收端吞吐量的改善，同時

也對資料提供強大的保護。在整個傳輸過程，因編碼機制所造成的額外負擔也在

一個合理的代價。

所提出的LT碼工作在封包數目從4K到64K，每個封包的大小為1KB。提出

的方法能在兩種網路之下成功的減輕瓶頸：含edge-disjoint edges（EDPs）以及不

含EDPs。同時也能給予強大的資料保護在封包遺失比率從0%到20%。我們提及

的LT碼能改善20%到30%的吞吐量。於包含EDPs的網路之中，結合的LT-網路編

碼能提供更進一步到達約50%的吞吐量改善。最後，編碼運算是在有限場GF(2)

而所需的額外負擔為每一個碼字大約30個exclusive-or運算。

Throughput Enhancement Using LT Codes in Erasure

Network Communications
Student：Chien-Fu Hu Advisor：Hsie-Chia Chang

Department of Electronics Engineering

Institute of Electronics
National Chiao Tung Eunversity

Abstract

Bottlenecks occurring during the transmission in the network have caused serious

consequences on the throughput degradation in receivers. In this thesis, a coding

system that applies low degree LT codes in transmission environment to enhance the

throughput is introduced. The proposed LT code can improve the throughput

approach to the theoretical maximum. In the meanwhile, it provides a significant data

protection ability against the packet loss in erasure channels. The required buffer size

in the intermediates in the LT codes system becomes a inconsequential factor that it

can be reduced considerably compared to the data size. In some network topology, we

combine low degree LT codes with specified network coding mechanism to get

further improvement in throughput of every receiver and also give strong protection

of data. The overhead of the coding mechanism causes the reasonable computation

cost in whole transmission.

For each packet of 1KB, the proposed LT codes work under the entire packet

number from 4K to 64K. The proposed method alleviates the bottlenecks successfully

in two kinds of topologies, with edge-disjoint paths (EDPs) and without EDPs. It also

gives strong protection of data in the erasure channels with different scale of loss rate

from 0% to 20%. Our proposed low degree LT code can enhance the throughput in

the range from 20% to 30%. In the network with edge-disjoint paths, the combined

LT-network code offers advanced improvement up to 50% or so. Finally, the

computation is over GF(2) and the coding overhead is about 30 XOR operations per

codeword.

誌 謝

時間過得很快，兩年多的研究生活就這樣匆匆而過。回首來時，是許多人

的幫助才能讓我順利完成。首先要感謝指導我的張錫嘉老師，在研究上放心地讓

我做新的嘗試，並作適時的修正。除此之外，平日也相當照顧學生，尤其在我研

究上最低潮的時候，總不停地鼓勵我，十分感動。也很幸運能待在 OASIS 和 OCEAN

這氣氛良好的實驗室。謝謝建青學長教導我使用 LATEX 軟體，彥欽學姐在畢業之

後還特地花費時間研讀 Network Coding 的書，充實我的理論基礎。國光不厭其

煩地教導我 LT CODE，平日更是一起玩樂的朋友。齊哥耐心地聽我一次次的口試

並給予建議，大頭跟阿龍學長也叮嚀我投影片的修改。胖達、義凱、佳瑋、元等

學長姐也給我許多指導。大嘴、永裕、QMO、鑫偉更是一起奮鬥的好伙伴，尤其

最後半年總是一起討論、互相打氣，沒日沒夜地做實驗、趕論文。而高守、振揚、

裕淳、晶今、廷聿等更是不可多得的學弟妹。

此外，在 316 實驗室的大大、承曄、JUJU、已畢業的 apu、阿俊讓我在實驗

之餘，能放鬆心情。感謝 VAN 在我苦悶的碩三生活相互打氣，也謝謝篤雄、老大、

acer 總是在我詢問程式問題的時候，非常耐心且仔細地教導、指正我。也謝謝

國權、孟琦陪我一起打球鍛鍊體魄。也謝謝遠在美國的包子三不五時跟我哈拉，

讓我心情保持愉悅。身為棒球愛好會唯二會員之ㄧ並且一起騎腳踏車環島的秀

逗，從考試開始到碩三，一路互相扶持砥礪到最後，非常感動。更特別感謝 spice

和俊男兩位朋友從我重考開始無論在研究、生活上一直給予我支持、鼓勵，也一

起度過許多美好的時光。

最後，我要謝謝我的父母、姐姐總在生活上給我最大的支柱，給予我正面

的能量。謝謝小嗨在我漫長的碩士生活中每天回應我的喜怒哀樂，一路陪伴，當

我的避風港。千言萬語，還是只有感謝，再感謝！

Throughput Enhancement Using LT Codes in Erasure

Network Communications

Student: Chien-Fu Hu

Advisor: Dr. Hsie-Chia Chang

Department of Electronics Engineering

National Chiao Tung University

Contents

1 Introduction 1

2 Network Coding 3

2.1 Max-flow Theorem . 3

2.2 Main concept on Network Coding . 4

2.2.1 Butterfly Network (Coding in Intermediates) 5

2.2.2 One-source Three-Sinks Network (Coding in Source) 8

2.3 Mathematical Representation . 10

2.3.1 Butterfly Network over GF (2) . 13

2.3.2 Butterfly Network over GF (F) . 15

2.4 Random Network Coding . 15

2.5 Summary . 17

3 LT Code 18

3.1 Fountain Code . 18

3.2 LT code . 19

3.2.1 Encoding . 19

v

3.2.2 Decoding . 20

3.2.3 Distribution Design . 22

3.3 Summary . 24

4 Cooperative Network Coding with LT Code 26

4.1 Network Topology Specification . 28

4.2 Data Fragment . 28

4.3 LT Encoding . 33

4.4 Packets Transmission / Receiving . 34

4.5 Buffering . 34

4.6 LT Decoding . 35

4.7 Degree Distribution Analysis . 37

5 Comparison and Simulation Result 40

5.1 Throughput . 40

5.2 Buffer Size . 44

5.3 Coding Overhead Analysis . 45

6 Conclusion and Discussion 53

6.1 Conclusion . 53

6.2 Discussion . 53

A Several Ideas to Transmit Packets Efficiently 57

A.1 Drawback Discovery and Node Analysis . 57

vi

A.2 Intermediates Coding . 59

A.2.1 Thought . 59

A.2.2 Phenomenon . 59

A.2.3 Note . 60

A.3 Codeword Cache . 60

A.3.1 Thought . 60

A.3.2 Phenomenon . 63

A.3.3 Note . 68

A.4 Repeated Codeword Table . 68

A.4.1 Thought . 68

A.4.2 Phenomenon . 71

A.4.3 Note . 71

A.5 Constraints Alteration on Intermediates . 72

A.6 Summary . 73

Bibliography 74

vii

List of Figures

2.1 Butterfly network . 5

2.2 Tradition routing in butterfly network . 6

2.3 Network coding in butterfly network . 7

2.4 One-source three-sinks network . 8

2.5 Tradition routing in one-source three-sinks network 9

2.6 Network coding in one-source three-sinks network 9

2.7 Corresponding mapping of butterfly network in Fig 2.3 13

2.8 General mapping modified of butterfly network in Fig 2.7 14

3.1 LT decoding procedure cited from Fig.4 in [7] 22

4.1 Simulation flow chart . 27

4.2 Basic concept of fragmentation . 30

4.3 Data fragment . 32

4.4 Illustration of an encoding symbol . 33

4.5 Decoding flow chart . 36

4.6 Robust Soliton Distribution with two components ρ and τ 39

viii

5.1 (a) Butterfly. (b) One-source three-sinks. 41

5.2 Normalized throughput of two networks . 50

5.3 Butterfly network with different buffer size 51

6.1 Edge disjoint paths in butterfly network . 54

A.1 Butterfly network . 58

A.2 Encoding flow chart of encode and store mechanism 62

A.3 Illustration of labeling operation . 63

A.4 Same operation while coding . 65

A.5 Inverse operation while coding . 66

A.6 (a) Step I. (b) Step II. 67

A.7 Distribution table . 69

A.8 Modified encoding flow chart adding repeated LUT and distribution table . . 70

A.9 LT-network code with different coding mechanisms 72

ix

List of Tables

4.1 Design parameters . 29

4.2 Example of the parameters setup . 31

4.3 Parameters of illustrated distribution . 37

5.1 Parameters of simulation . 41

5.2 Relations between Noriginal and Ncoding . 42

5.3 Average run cycles of file size 4MB, 8MB, 16MB in butterfly network . . . 46

5.4 Average run cycles of file size 32MB, 62.5MB in butterfly network 47

5.5 Average run cycles of file size 4MB, 8MB, 16MB in one-source three-sinks

network . 48

5.6 Average run cycles of file size 32MB, 62.5MB in one-source three-sinks network 49

5.7 XOR operations of coding systems in Fig 5.1(a) 51

5.8 XOR operations of coding systems in Fig 5.1(b) 52

6.1 Average run cycles with LT-network codes of file size from 4MB to 62.5MB

in butterfly network . 56

A.1 Buffer allocation . 61

x

A.2 Buffer cut of example . 64

xi

Abstract

Bottlenecks occurring during the transmission in the network have caused serious con-

sequences on the throughput degradation in receivers. In this thesis, a coding system that

apply low degree LT codes in transmission environment to enhance the throughput is in-

troduced. The proposed LT code can improve the throughput approach to the theoretical

maximum. In the meanwhile, it provides a significant data protection ability against the

packet loss in erasure channels. The required buffer size in the intermediates in the LT codes

system becomes a inconsequential factor that it can be reduced considerably compared to

the data size. In some network topology, we combine low degree LT codes with specified net-

work coding mechanism to get further improvement in throughput of every receiver and also

give strong protection of data. The overhead of the coding mechanism causes the reasonable

computation cost in whole transmission.

For each packet of 1KB, the proposed LT codes work under the entire packet number

from 4K to 64K. The proposed method alleviates the bottlenecks successfully in two kinds

of topologies, with edge-disjoint paths (EDPs) and without EDPs. It also gives strong

protection of data in the erasure channels with different scale of loss rate from 0% to 20%.

Our proposed low degree LT code can enhance the throughput in the range from 20% to

30%. In the network with edge-disjoint paths, the combined LT-network code offers advanced

improvement up to 50% or so. Finally, the computation is over GF (2) and the coding

overhead is about 30 XOR operations per codeword.

Chapter 1

Introduction

Network has existed for nearly 30 years, and it plays a significant role in computer commu-

nication. Owing to the enhancement of the bandwidth, a large quantity of data are able

to deliver from the server to users such as MOD (Multimedia On Demand) that the server

multicasts data to the users who request the services. Data transmits from one source to

the other destination through some nodes called intermediates during the transmission. In

the exiting network system, the tradition method is that every intermediate node just does

store-and-forward to pass the information to the next node. We find that the tradition

routing, however, can not achieve the max flow proved by the max-flow min-cut theorem,

particularly in the multicasting applications. Therefore, network coding theory is proposed

to alleviate the intermediate bottleneck and to elevate the utility of the network channel.

Packets flooding in the communication networks suffer the loss due to the disturbance.

In the erasure channels, every sink either believe what it receives or get nothing. Now

that we can’t avoid the loss, we have to facilitate systems to have good capability to fight

against error and protect the information. Our goal is to enhance the throughput of the sink

and in the meantime, to enable system to establish error protection mechanism to reduce

information loss.

1

The thesis is organized as followed. Firstly, we introduce some basic concepts regard-

ing network coding including some simple examples, mathematical representation, and a

innovated method called random network coding which have been announced.

Although the theory confirms the benefit on network coding, the implementation is cum-

bersome due to the restrict of the true network transmission such as packet loss, network

topology, etc. In order to give consideration to both network throughput and error protec-

tion mechanism, we propose LT code to apply for the network coding to fulfill our goals.

In chapter 3, we introduce LT code, a famous code applied in erasure channel. We will

give explicit description concerning coding procedure, decoding procedure and the design of

degree distribution.

In chapter 4, we evaluate the method that network coding collaborates with LT code

to approach the optimal performance proved by the theory. The construction of simulation

environment will be explained. For the sake of simplicity, the acyclic network and single

source multicast condition are specifically concerned in our simulation.

We show our simulation results in chapter 5. We compare three different systems includ-

ing routing, a coding method have been proposed and LT code applied to network according

different packet loss rate.

Finally, some conclusions and discussions will show in chapter 6. In the meantime, we

point out some experimental experience in the appendix.

2

Chapter 2

Network Coding

Over the last decade, there has been a large interest in network coding. The concept was

firstly propounded by [1] and there is dramatic increase in the number of publications on

it. Firstly, we describe the main concept of network coding and the well-known butterfly

network will be illustrated. Secondly, We generalize the method in mathematical domain,

representing the equivalent network coding. Because of the impractical efficient coefficients

assignment of every intermediate, random network coding is proposed [3]. In the end of

the chapter, we consider the packet loss during the realistic transmission. Therefore, we

propose the cooperative method between network and LT code to enhance the throughput

of network, in the meantime, to provide error protection of the data.

2.1 Max-flow Theorem

Before we describe the concept on network coding, we should know how to evaluate the

theoretical max flow of a sink in the network to be the target we want to achieve. A network

consisting of nodes and edges can be viewed as a kind of graph. And the acyclic network is

the network that contains no circle or loop composed by the directed edges. The transmission

model is in a condition called single source multicast circumstance that there exists only one

3

source node to transmit the data to different number of destinations. In graph theory, we

know that for a given network topology, we can calculate the max flow of each sink. The

max-flow min-cut theorem is described as followed.

Theorem 2.1.1 (Max-flow min-cut Theorem). If f is a flow network G = (V,E) with source

s and sink t, then the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains on augmenting paths.

3. |f | = c(S, T) for some cut (S, T) of G.

There are some algorithms to calculate the max flow such as Ford-Fulkerson algorithm,

Edmonds-Karp algorithm, and the Relabel-to-Front algorithm in [6].

2.2 Main concept on Network Coding

As mentioned before, data packets are delivered from the source to the destination according

the path composed of the chain of the intermediate nodes. Every intermediate node receives

the data packets from its input link, storing, and then passes the packets to the next node

by the output link. In the case that one intermediate node in the path transmit the data

toward multiple nodes or destinations, it copies the data from the input link and then

pass the same copy to the different output links. In some situation, this store-and-forward

method causes that the node receives the same data by the different input links belonged

to distinct nodes, decreasing the utility of the bandwidth. Now that the intermediate nodes

process data during the transmission, we let them do arithmetic calculation rather than

store-and-pass. The packets transmitted during the path become either true information

or some combination (linear or non-linear) of the data. Every destination node also called

4

W

UT

Y

X

Z

S

Figure 2.1: Butterfly network

sink receives the sufficient processed packets, decoding them to recover the true information.

Network coding aims to resolve the bottleneck of the intermediate node, and to let every

sink fulfill its theoretical max flow. The butterfly network is illustrated in Figure A.1.

2.2.1 Butterfly Network (Coding in Intermediates)

Fig A.1 is a communication network represented by the nodes and directed edges (links).

Nodes are categorized with three types such as source, intermediate and sink. Node without

any incoming edges is called source that transmits the information, and by contrast, node

without outgoing edges is called sink which is the destination of the messages. Node which is

neither source nor sink is called intermediate. In the figure, the node labeled S is source, the

nodes labeled Y and Z are sinks, and the other nodes labeled T, U, W, X are intermediates.

The directed edge represents the direction of the lossless packet transmission channel and

each one has its own capacity per unit time. Each edge capacity of the example is set to 1.

The network is said to be acyclic if there exits no directed circle in the whole network

5

topology. The multicast condition is that the source wants to transmit the data to all the

sinks in the network. In the example, the source S multicasts the data to both the sinks,

node Y and Z.

First, we consider the traditional store-and-forward method. In the first transmission,

S sends data b1 and b2 to the T and U by the edges ST and SU respectively. And then

every intermediate sends the data it receives to the next node. Obviously, we can find that

the node W has 2 incoming edges TW and UW but only one edge WX. Therefore, node W

chooses either b1 or b2 passing to the X. Assume that W choose b1 and b2 in order, node Z

will receive both b1 and b2 but node Y will only receive the data b1. That is to say, we need

extra transmission to let W send data b2 to Y through the edge WX and XY. The equivalent

throughput of the entire network for node Y and Z is 1 meaning that every sink receive one

data per transmission.

b1

b1

b1

W

UT

Y

X

Z

b2b1

b1

b1 b2

b2

S

(a)

b3

b3

b3

W

UT

Y

X

Z

b3b2

b2

b3

b3

b2

S

(b)

Figure 2.2: Tradition routing in butterfly network

There is one modification in store-and-forward. The optimal method is that in the first

time S send two data b1 and b2 to node T and U, and W sends the data b1. After the first

run, the outcome is the same as mentioned above. Y receives the only data b1 and Z receives

6

W

UT

Y

X

Z

b2b1

b1

b1 b2

b2

S

b1⊕b2

b1⊕b2b1⊕b2

Figure 2.3: Network coding in butterfly network

both b1 and b2. The different is that in the second time, S sends the data b2 and b3 to the

node T and U, and node W chooses the b3 passing to the X. When the second transmission

ends, we find that every sink has three data b1, b2 and b3 respectively. Hence, every sink

obtains 3 data in 2 transmission, the throughput of each sink enhances to 1.5. The procedure

is shown in Fig 2.2.

Based on the Theorem 2.1.1, the theoretical max throughput of the sink in the example

is 2. Unfortunately, the tradition method is 1 and even the improved method is 1.5, which

can not reach the max flow.

In the example above, we locate that the the network obstacle is node W. The number

of incoming edges is 2, whereas that of outgoing edges is 1, causing that one of the two data

packets needs to be stored in the buffer awaiting the extra delivery. The bottleneck of W

can be resolved by the network coding skill. Let W do exclusive-or operation of two packets

from incoming edges. The edge WX will transmit the data b1

⊕

b2 to node X. We see that

Y will receive the data b1 and b1

⊕

b2, and Z will receive the data b2 and b1

⊕

b2. Both of

7

them can recover the true information b1 and b2 by doing the XOR operation of two packets

they receive as shown in Fig 2.3. The equivalent throughput is elevated to 2, the theoretical

maximum.

2.2.2 One-source Three-Sinks Network (Coding in Source)

Fig 2.4 is another network topology. Capacity of every edge is also set to 1. Source S needs

to multicast data to all the destinations, node X, Y, and Z. The max flow of every sink is 2.

WU T

YX Z

S

Figure 2.4: One-source three-sinks network

The tradition routing is shown in Fig 2.5. Firstly, node S sends data b1, b2, b3 to their

adjacent nodes, U, T and W. After first transmission, each sink receives two data as shown

in 2.5(a). Then, we allocate the data by shifting them to different edges clockwise (shifting

counterclockwise gets the same outcome) as shown in 2.5(b). Each sink can get the third

data from one edge of two, and get the repeated data from the other one. The efficient

throughput of each sink is 1.5.

How can we apply the network coding method in this network topology? In this situation,

all we do is let source S do coding. S sends data b1 to U by edge SU and data b2 to T by

edge ST as routing does. However, S node doesn’t send the data b3 but b1

⊕

b2. Obviously,

8

WU T

YX Z

b1

S

b2

b1 b2 b1 b2

b3

b3 b3

(a)

WU T

YX Z

b1

S

b2

b1b2 b1b2

b3

b3 b3

(b)

Figure 2.5: Tradition routing in one-source three-sinks network

by this alteration applying coding technique, each sink X, Y and Z will receive two data

(b1, b2), (b1, b1

⊕

b2), and (b2, b1

⊕

b2) in turn. Every sink is capable of get two data in one

time. Hence, the throughput of every sink is approach to 2, the theoretical maximum.

WU T

YX Z

b1

S

b1⊕b2
b2

b1 b2 b1 b1⊕b2 b2 b1⊕b2

Figure 2.6: Network coding in one-source three-sinks network

The benefit of the network coding is illustrated in two examples above. We claim that

network coding can enlarge throughput by letting intermediates or sources do some sim-

ple operations. However, it is insufficient to elucidate the delicacy of network coding by

merely indicating the specified operation in some nodes to convince that the result will get

9

reformed coincidentally. In the following, we will formulate the method mathematically and

theoretically.

2.3 Mathematical Representation

We exemplify two cases how network coding apply to multicasting system in different network

and gain the improvement compared to the method nowadays. However, we can’t foresee and

control every operation in every node intuitively, expecting our straightforward innovation

work successfully. In this subchapter, we will formulate the mathematical model to generalize

the network coding issue. Adhere to this formulation, we can analyze and resolve the problem

systematically.

Network coding is proposed to enhance the flow in the network by doing some computa-

tion of original data either in sources or intermediates. Every data packet flooding in network

can be regarded as one combination of all intrinsic data. (Here, only the linear operation

is discussed for the implementation simplicity.) We find that the original data spans one

space, and packets in every edge span another. That is to say, there exists one mapping in

every edge between two spaces. The functionality of every node becomes to map the entire

received symbols from its incoming edges to a symbol for outgoing edges. Network coding

can be converted to the mechanism for encoding process of every edge.

For the clarification, the definition and symbol notations used in our mathematical Rep-

resentation are listed as followed. The notation is quoted by [2].

Notations

• Source: A node without any truly incoming edges.

• Every edge in graph represents channel with capacity data unit per unit time.

10

• In(T)/Out(T): The set of incoming/outgoing edges of node T.

• In(S): a set of imaginary edges without originating nodes.

• ω: The number of the imaginary edges.

• data unit: An element of GF (F).

• message x: A ω-dimension row vector ∈ F ω.

• A network code is in GF (F) and ω dimension.

Definition 2.3.1. A network consists of a local encoding mapping

k̃e : F |In(T)| → F

for each node T in the network and each channel e ∈ Out(T).

By Definition 2.3.1, we construct the the transform between the incoming and outgoing

edges in one node. Since the acyclic network provides the upstream to downstream procedure,

data is transmitted by the path composed of edges. The mapping of each edge is equivalent

to continual transforming by the passed edges before. Hence, we give another definition to

represent the outcome of the processing of the recursive mapping.

Definition 2.3.2. A network consists of a local encoding mapping k̃e : F |In(T)| → F and a

global encoding mapping f̃e : F ω → F for each edge e in the network such that:

• For every node T and edge e ∈ Out(T), f̃e(x) is uniquely determinded by (f̃d(x), d ∈

In(T)), and k̃e is the mapping via

(f̃d(x), d ∈ In(T)) 7−→ f̃e(x)

• The mapping f̃e are the natural projections from the space F ω to the ω different coor-

dinates,respectively.

11

Considering the physical implementation, it is desirable that the fast computation and

simple circuit in the node. Therefore, the linear transformation is involved. If the encoding

mapping f̃e(x) is linear, there exists a corresponding column vector fe with ω dimension

such that the product x · fe is equal to f̃e(x), where x is the ω-dimensional row vector data

generated from the source. Similarly, there exists |In(T)|-dimensional column vector ke such

that y · ke = k̃e(y), where y ∈ F |In(T)| represents the symbol received in the node T. Since

every edge has its own mapping column vector, we can formulate the operation in the node

of every edges connected in one node. If a pair of edge (d, e) is linked by one node T with

d ∈ In(T) and e ∈ Out(T), we call these two edges an adjacent pair. Therefore, we can

formulate the coding process by matrix form in every node.

Definition 2.3.3. Network consists of a scalar kd,e, called the local encoding kernel, for

every adjacent pair (d,e). Meanwhile, the encoding kernel at the node T means the |In(T)|×

|Out(T)| matrix

KT = [kd,e]d∈In(T),e∈Out(T)

The network coding can be therefore viewed as forming the effective matrix of every

node, and every edge can be viewed as a series of computation of the column vector in every

matrix of the node that data passes. Note that the structure of matrix assures the order of

linked edges.

Definition 2.3.4. A network consists of a scalar kd,e, for every adjacent pair (d,e)in the

network as well as an ω-dimensional column vector fe for every channel e such that:

• fe =
∑

d∈In(T) kd,efd , where e ∈ Out(T).

• The vector fe for the ω imaginary channels e ∈ In(S) form the natural basis of the

vector space F ω.

12

• The vector fe is called global encoding kernel for the channel e.

2.3.1 Butterfly Network over GF (2)

W

UT

S

Y

X

Z









=

10

01

SK

[]11=TK []11=UK









=
1

0

'osf







=
0

1

osf









=
1

1

WK










0

1










1

0










1

0










0

1










1

1








0

1










1

0










1

1










1

1[]11=WK

Figure 2.7: Corresponding mapping of butterfly network in Fig 2.3

The corresponding edge mapping and operation matrix of every node in Fig 2.3 is showed

in Fig 2.7. The imaginary edges of source S is two, and global encoding kernel of two edges,

fos and fos′ , represent the mapping of the original data to produce the information data

b1 and b2. The exclusive-or operation means the computation is in GF (2). According the

matrix of every node, we can calculate the global coding kernel fe of every edge.

We give some examples to derive the global encoding kernel in Definition 2.4. Observing

the source matrix KS with 2 incoming and 2 outgoing edges, the element of matrix repre-

sents the scalar of two specified linked edge. Based on the definition2.4, we can finds that

13

the equivalent global encoding kernel is the summation of the global encoding kernel with

corresponding scalar in node matrix.

fST =
∑

d∈In(S),e∈Out(S)

kd,efe = k11fOS + k21fOS′ = 1 ·
(

1
0

)

+ 0 ·
(

0
1

)

=

(

1
0

)

fWX =
∑

d∈In(W),e∈Out(W)

kd,efe = k11fOS + k21fOS′ = 1 ·
(

1
0

)

+ 1 ·
(

0
1

)

=

(

1
1

)

Fig 2.7 is the special case that the chosen finite field F is 2. However, scalars in every

matrix and computations are done in the GF (F), and it can be generalized in Fig 2.8.

W

UT

S

Y

X

Z









=

rp

qn
KS

[]tsKT = []vuKU =









=
1

0

'osf







=
0

1

osf









=
x

w
KW

[]zyK X =










p

n









r

q










ps

ns









ru

qu










pt

nt









rv

qv










+
+
ruxypswy

quxynswy










+
+
ruxzpswz

quxznswz










+
+
ruxpsw

quxnsw

Figure 2.8: General mapping modified of butterfly network in Fig 2.7

14

2.3.2 Butterfly Network over GF (F)

In Fig 2.8, each global kernel can be calculated by the same steps described above. The

design parameters are the scalars in every matrix such as n, p, q, r, . . . , z. The assignment

of all scalars influences the efficiency of the network utility. Concerning to sink Y , if we

want to approach the theoretical maximum, 2, the global kernel fTY and fXY should be

linear independent ,namely , the space spanned by these two vector should also be 2. The

condition of another sink Z is the same. If the two vectors are linear dependent, the sink

will suffer the flow decreasing.Therefore, we can remark that when the source transmits a

message of ω data units into the network, a receiving node T obtains sufficient information

to decode the message if and only if dim(VT) = ω, of which a necessary prerequisite is

that maxflow(T) ≤ ω. The prerequisite assures the necessity to applying network coding

to enhance utility of the network. If maxflow(T) > ω, the entire network is capable of

affording the whole being transmitted data. There exists no bottleneck in the network and

transmission will certainly accomplished without difficulty.

We convert linear network coding to matrix forming, and comprehend that the key to

enhance the throughput and decode information successfully is the well designed coefficients

in every matrix of each node in whole network. However, it is difficult to implement this

concept directly, and the random coding mechanism is recommended in the next subchapter.

2.4 Random Network Coding

We have derived the identical method for network coding from the inference above. Designing

a effective linear network code is equivalent to finding out adequate coding matrix K of every

node in the network to guarantee that every sink receive enough information to decode

the data. However, in the real communication network is enormous and complex that we

15

we should avoid the cumbersome and inefficient task such as detecting the entire network.

Observing the example in Fig 2.8, the number of design parameters in the network with seven

nodes is twelve, and it will increase explosively with the total number of network grows.

Since the coefficients assignment of each node is time-consuming and exhausted, we let

each node produce the coefficients randomly rather than appoint them. Linear random

network coding provides the method that every node independently and randomly select

linear mapping from inputs to outputs from some finite field. By doing this, we don’t

need to design the coefficients tiresomely and the key factor becomes how to choose the

linear combinations effectively. Coefficients are chosen uniformly or more generally, based

on a distribution. We can regard uniformly choice as a special case that every candidates

are selected with equal probability. Regarding the sink, it receives the packets which is

the linear combination of the intrinsic information and recover data from them. If the

distribution performs outstandingly, every sink is able to recover the original data after it

receives N data ,where N is the total number of data in source. Namely, the dimension

of the packets originated from the linear random coding should span N -dimensional space

equivalent to the space spanned by N data.

Random network coding offers a coding mechanism by statistic property instead of de-

terministic structure. However, we ought to know that designing a well performed encoding

matrix in every intermediate is difficult but not impossible. If we try hard to find efficient

encoding matrix in every intermediate, we can therefore get the optimal solution as two

examples mentioned above. In the meantime, assigning every encoding matrix varies sig-

nificantly due to the network topologies. Namely, we have to design the specified encoding

matrix whenever we meet different networks. Random network coding let intermediate en-

code independently regardless of the topologies. The performance should be basically not

as good as the well-designed optimal structure for specified networks. However, if we can

16

find a good mechanism to combine packets effectively, the outcome can be approach to the

optimal solutions.

Another factor we should concern is the filed size we choose. If the computation is under

a insufficient finite filed, the combinations of data will be easily dependent with each other.

It shortens the codeword space which should be as large as the data space and therefore

degrade the network utility. The innovated random network coding and some theorems can

be found in [3] and [4].

2.5 Summary

The discussion above is on the basis that packets are delivered in lossless communication

channel. However, in real system, the packet will suffer loss from the unsteady and noised

environment. It causes that even the well designed random method performs poorly due to

the packet loss. In order to work against the packet loss during the transmission, we request

the coding mechanism with the following properties.

• Coding is based on distribution.

• Simple encoding operation.

• Good protection of data.

First property continues the random network coding method, and second one simplify

hardware implementation and operation complexity. The final property is involved to protect

the data due to the inevitable loss. Hence , we bring up a method that applying LT code

to network coding to fulfill the demands and enhance the throughput of every sink during

entire transmission.

17

Chapter 3

LT Code

LT code (Luby Transform code) is a sparse random linear fountain code designed by

Michael Luby with a outstandingly cheap computation for decoding algorithm. It especially

outperforms in the communication for channels with erasures, such as the internet. Every

receiver collects any N packets to recover the original data, where N is slightly greater than

the original files size K. The computation complexity is astonishingly small, growing linearly

with the file size K.

The chapter is organized as followed. Firstly, we introduce the main concept on fountain

code. Secondly, we specifically discuss the LT code including encoding process, decoding

process , and code structure regarding to distribution. Finally, we focus on how LT code

applying to network coding to enhance the efficient flow quantity to fulfill our goal.

3.1 Fountain Code

Fountain code is the one kind of rateless code for erasure channel that packets are either

received correctly or lost. Packets passing during the erasure channels gets loss with the

probability, causing the sink receives incomplete data, asking retransmission instruction

for the erasure parts. The retransmission mechanism results inefficiency of the utility of

18

network. The situation becomes worse when multicasting or broadcasting applied in the

system. Thus, the need for the erasure correct code is needed to avoid the retransmission.

The concept of Fountain code is that the source produces considerable quantities encoded

packets, limitless potentially. Comparatively, the sink is respected to receives a slightly

larger quantities compared to the total size of data to recover successfully. The encoding

method is randomly picks of file with size N . Every encoded packet is a randomly linear

summation under modulo 2. If the process continues, it forms a generator matrix of infinite

length. However, sink only receives packets of size N due to the erasure channels. The

received N packets and the K file forms another generator matrix G. Every element Gnk

is set to 1 to represent that source and encoded packets is connected, otherwise represent

no connection. Supposed that we know the matrix G, we can therefore decode the whole

data without retransmission. If N < K, there can be no opportunity to decode successfully

because of the insufficient information. If the number of received packets is exactly K, we

need the K×K matrix is invertible, meaning spanning the same space of the file space. The

key of the performance that N is closer to K depends whether any subspace of K × N be

capable of forming isomorphism space of file space. More detail is introduced in [7].

3.2 LT code

LT code is introduced in [9], and is the first realization of a class of the random linear fountain

codes which is the record-breaking sparse-graph code for erasure channels. It substantially

reduce encoding and decoding complexity.

3.2.1 Encoding

Consider source file s1, s2, s3, . . . , sk of size K, the encoded packet tn is produced as follows:

19

1. Randomly choose the degree dn of the packet from a degree distribution ρ(d); the

appropriate choice of ρ depends on the source file size K, as we will discuss later.

2. Uniformly choose dn distinct input packets, and set tn equal to the bitwise sum of these

dn packets. The equivalent operation can be done by continuously exclusive-or-ing the

packets until dn times.

After the encoding process, source defines a bipartite graph categorized by source in-

formation and encoded symbols. Connection structure between two groups depends on the

degree distribution significantly. Degree dn means the number of distinct source information

connected to an encoded symbol. If the mean degree d̄ is extremely smaller than K, the

graph is spare. We can regard the produced code as an irregular low-density generator-matrix

code.

In order to decode successfully, sinks have to know the the information including con-

nected degree and the members of the connected source information of the received symbols.

There are two method for the source to communicate code information with the sinks. First

is relied on the synchronized clocks. We can use the random number generator which is

seeded by the clock to decode every encoded symbol based on random degree and each

connection members of this symbol. Another is to carry the information with the packets.

However, the overhead is significantly depended on the max degree of distribution and the

size of the index bits to assign identical number of each source information. The cost is tiny

if the size of packet is much longer than these carried information.

3.2.2 Decoding

Decoding process is easily in the erasure channel. All that a decoder need to do is to solve

the equivalent function t = Gs to recover s from t, where s are source information and t

20

are received symbols. Since the channel is erasure, we receive the certainly correct symbols

or get nothing due to lost. The simple method to decode is by message-passing, using the

complete certain symbols to recover those with uncertainly. The decoding procedure are

described as follows.

1. Find a check node tn is degree 1 (only connected with one source packet sk). (If there

exists no such check node, this decoding algorithm stops right now, and fails to decode

all the source packets).

(a) Set sk = tn.

(b) Add sk to all check nodes tn′ that are connected to sk

tn′ := tn′ + sk

for all n′ such that Gn′k = 1.

(c) Remove all the edges connected to the source packet sk.

2. Repeat 1 until all sk are decoded.

A simple example is illustrated in Fig 3.1. There are three source information (S1, S2, S3)and

four encoded check symbols (t1, t2, t3, t4). At the beginning, only t1 is connected merely to

S1. We set S1 = t1 = 1 and cancel the edge between them after the first iteration as showed

in b. Then, we add the S1 to all connected check nodes, deleting the edges between S1 and

its connected group. In second iteration, we find that t4 is only connected to S2, and we can

recover S2 from t4. Similarly, we delete the edge between S2 and t4. Repeat the iteration,

we can finally recover all three source packet successfully.

In our example above, total data can be decoded. However, if we find that there exist

no check nodes with degree one, decoding procedure will stop, meaning that the process

21

crashes. Namely, we need to receive extra symbols to decode the remaining to recover source

information.

S2 S3

1 0 1 1

1

0 1 1

1

1 1 0

1 0

1 1

1 0

1 1

1 0 1

a b c

d e f

S1 S2 S3S1 S2 S3S1

S2 S3S1 S2 S3S1

S2 S3S1

Figure 3.1: LT decoding procedure cited from Fig.4 in [7]

3.2.3 Distribution Design

We have described coding process and decoding process in the case that the operation is based

on a determined distribution ρ(d). In the following, we discuss how to design a distribution

to performs well.

In the decoding process, we discover that decoding procedure fails if there exists no sym-

bol with degree one. If we want decoding continues, there must also exist some symbols with

lower degree that have chance to become a new degree one symbol to let process keep going.

At the same time, if the max degree of distribution is too low, there may exists some source

information that are connected to none of the encoded symbol and therefore causes tremen-

dous loss. Thus, the performance is vitally depended on the designed distribution. In order

22

to fulfil the desired requirements, ideal soliton distribution is derived from mathematical

theory.

Ideal soliton distribution defines ρ(d) as follows:

ρ(d) =

{

1/K for d = 1
1

d(d−1)
for d = 2, 3, . . . , K

(3.1)

The expected value of degree is roughly logeK.

Soliton distribution works poorly in the real transmission. Because when we obey on this

distribution, it gets high probability that there exist no degree one check symbol during the

decoding process. Thus, robust soliton distribution modifies the degree distribution.

Robust soliton distribution defines extra two parameters, c and δ.

c : a constant determined by the designer.

δ : the probability that the decoding fails to decode completely after a certain number K ′

of symbols have been received.

The modified terms are

τ(d) =







s
K

1
d

for d = 1, 2, . . . , (K/S) − 1
s
K

log(S/δ) for d = K/S
0 for d > K/S

(3.2)

S is a constant calculated by

S ≡ c · loge(K/δ)
√

K (3.3)

Add the modified terms to ideal soliton distribution and normalizes, we get the robust

soliton distribution µ(d)

23

µ(d) =
ρ(d) + τ(d)

Z
(3.4)

where

Z =
∑

d

ρ(d) + τ(d) (3.5)

Regarding to the additional distribution τ(d) summed to the ideal solition ρ(d), the max

degree d is extended to K/S. The spike at d = K/S ensures whole source information

connected with higher probability during the encoding process. The max degree required

is proportional to the size of files, with inverse proportion to S calculated by the tuning

parameter c and δ. δ can be viewed as the probability of decoding failure, and if we want

to lower the failure probability, we have the higher corresponding max degree, which fits in

with the straightforward intuition.

If we want to decode the source information completely after receiving the whole symbols

with a probability (1 − δ) at least, then the required number of total received packets is

K ′ = KZ. It is obvious that Z will slightly larger than 1, and equal to 1 for the optimal

solution we look forward.

Robust soliton distribution offer two designed parameters c and δ to design distribution.

The number of each degree depends on c, δ, K essentially. The more representative factor

is Z in equation 3.5, the excess quantity of necessitated symbols. A good distribution can

be tuned to the result that the needed overhead is usually about 5 to 10 percentage. And

the constant c is usually chosen smaller than to 1 to get better performance.

3.3 Summary

Recall the requirements we desired to enhance the throughput of the network utility.

24

• Coding is based on distribution.

• Simple encoding operation.

• Good protection of data.

We can easily discover that LT code can meet these desired requirements. Therefore, we

propose a method to apply LT code for network coding to accomplish our targets. More

detail will be illustrated in the next chapter.

25

Chapter 4

Cooperative Network Coding with LT
Code

We have introduced the network coding theoretically in chapter 2 and the LT code in chapter

3. In this chapter, we will demonstrate the innovative ideas how to gather them to achieve

our targets, high throughput and prominent error protection. The flow chart below shows

the simulation procedure, cutting into several partitions. We will explain the work of each

section according the Fig 4.1.

The chapter is organized as followed. First, we will specify the network and calculate

the max flow quantity, the goal we pursuit, of every sink. Due to the coding, every packet

must carry the extra index of combined information, which causes the fragmentation. After

the initialization, the packets will be encoded, transmitted, received, buffered, and decoded

recursively until the sink decodes the whole information source delivered. Simulation ends if

every node recover the total information. The whole simulation environment is using C++

and the detail will be discussed in every section.

26

Data Fragment

Packet Transmission and

Receiving

Buffering

LT Encoding

LT Decoding

Is data decoded

completely?

Start

Yes

End

No

Figure 4.1: Simulation flow chart

27

4.1 Network Topology Specification

In the simulation, the acyclic network is specifically concerned. The transmission model is in

single source multicast communication and no edges are connected between sinks meaning

that sinks receive the data from either sources or intermediates, or both. The conditions are

listed below.

• Acyclic network.

• Single source multicast.

• No shared content among sinks.

Based on these conditions above, two network topologies exemplified in Fig 2.1 and Fig

2.4 are particularly discussed whose max flow is 2 unit capacities in every sink.

4.2 Data Fragment

We apply LT code for network coding. Thus, every packet includes two parts. One part is

the outcome by series of exclusive-or operations of the original information. The other is the

overhead that records the indices of all original information involved during the encoding

process. It is intuitive that additional overhead will lengthen if the total transmitted data

enlarges, and we will need more number of bits to record the data correspondingly. We can

evaluate by the following formula.

F + D × I = B

The parameters are listed in Table 4.1 .

We explain every parameter below.

28

Table 4.1: Design parameters
M total files
B unit capacity
D max degree of LT code
F fragment information size
I data index

M : The total files to be transmitted. When M enlarges, the number of transmission time

increases.

B : The unit capacity of the edge. We set this by finding out the greatest common divi-

sor(G.C.D) of all edges. The capacity is the multiple of B. In reality, it should be the

last guaranteed bandwidth of network.

D : The max degree of the LT Code, meanwhile, is the largest number allowed to combine

the information.

F : The actual information size of the encoded symbol. If network coding is not executed,

F will be the same with B.

I : The number of bits to assign the number of every fragment for identification. It can

be calculated by I = log2(
M
F

).

We find that the real information carried in a packet shortens due to the overhead of

encoding information. The efficiency drops out after the segmentation, causing extra trans-

mission compared to simple routing. (In existing system, there exists particular headers to

record the information of transmitted packet.) We define some notations as followed.

• Noriginal. Total number of packets a sink should receive in routing method.

• Ncoding. Total number of packets a sink should receive in coding method.

29

• M = Noriginal × B = Ncoding × F .

• Ofrag. Normalized overhead after the fragmentation.

The loss can be calculated by

Ofrag =
Ncoding

Noriginal

Fc

Fa

Fb

B Noriginal =10

Ncoding

(a)

(b)

(c)

1 102 3 4 5 6 7 8 9 Ofrag

12 1.2

13 1.3

20 2

Fd(d) 100 10

Figure 4.2: Basic concept of fragmentation

We describe the basic concept discussed above in Fig 4.2. Assume the unit capacity of the

transmission channel is B, and the number of times needed to delivery is Noriginal, which is

10 without any coding mechanism. Every small block labeled from 1 to 10 is helpful to show

the ratio of every fragment in different examples. Fig 4.2-(a) shows the fragment Fa is 90% of

B and max codeword degree D is 2. The required transmission times is therefore increased

to Ncoding, 12. That is to say, we have two extra transmissions due to the fragmentation, and

the overhead Ofrag is 1.2. Compared (a) and (b), the difference is that the number of bits to

index each fragment in (b) is twice as large as that in (a). The quantity of true information

a packet can carry is from 90% to 80% of B, causing one extra transmission. Considering

30

two examples in (c) and (d), the max degree D increases to 10 and 18, weighting 50% and

90% of a packet. When true information weights lower percentage in a packet, it results in a

huge quantity of transmission times. In examples (c) and (d), Ncoding are increased to 20 and

100 which are much more than Noriginal. That means we must design a outstanding coding

mechanism to make up for additional transmission due to fragmentation. The accurate

calculation is showed below.

Table 4.2: Example of the parameters setup

M D B F (bits) D × I Ofrag

1KB = 8192b 8172 20b 1.0024
512KB 2 4KB = 32768b 32752 16b 1.0005

8KB = 65536b 65522 14b 1.0002

1KB = 8192b 8164 28b 1.0034
5MB 2 4KB = 32768b 32744 24b 1.0007

8KB = 65536b 65514 22b 1.0003

1KB = 8192b 8152 40b 1.0049
384MB 2 4KB = 32768b 32732 36b 1.0011

8KB = 65536b 65502 34b 1.0005

4B = 32b × × ×
384MB 2 16B = 128b 76 52b 1.6842

64B = 512b 462 50b 1.108

30 7592 600b 1.0790
384MB 60 1KB = 8192b 6992 1200b 1.1716

120 5792 2400b 1.4144

Table 4.2 is the illustration of the relation of the designed parameters. We can find that

Ofrag reach 1 closely if the unit bandwidth is not extremely small, meaning the overhead is

slight after fragmentation. However, if the bandwidth is quite small compared to the total

data, it causes vital overhead due to the significantly large quantity of index bits carried on.

If the case happens, such as the × sign in the table (implying that the required number of

index bits is larger than the unit capacity can afford), we recommend the tradition routing

31

method. Another factor, the max degree of the LT code D, also influences overhead. We have

to control the overhead to be adequate or reasonable for fear that even the well performed

LT code can’t compensate for the fragmentation overhead, and consequently lowers utility

of whole network.

The required index bits can be derived from the formula introduced above. It varies due

to different numbers of the transmitted packets. We provide two modes that index bits to

record each fragment is either 16b or 32b. The former permits 216 − 1 transmitted fragments

in total and the later permits 232 − 1. If we consider the case that total file size is 32MB,

unit capacity is 1KB, and max degree is 10, the required index bits is 13b, total overhead is

130b, and the corresponding Ofrag is 1.016. If we apply 16b mode, the required overhead is

160b, and Ofrag is 1.02.

When data are fragmented, we cut the total file into pieces. At the same time, we assign

the number to each slice as the packet ID. Thus, every non-coding packet can be viewed as

a encoded symbol of degree one. Fig 4.3 is the example.

B2

B3

B4

F1

F2

F3

F2F1

F3

1

2

3F2 F3

F4

F6F5

F6 F7

D

B1

B5

F4

F5

F6

4

5

6

7

Without fragment Data fragment

F7

Figure 4.3: Data fragment

32

4.3 LT Encoding

Coding process is completely the same with the operations of the LT code encoding. A slight

different is that since the packets contain the indices of the combined fragments, we need

to reallocate the indices after finishing the encoding process. The detail discussion will be

presented below.

Source node possesses total fragments also called symbols with degree one, and it can

easily encode any symbol with requested degree. Encoding process is described as followed.

1. Randomly choose the degree d of this coding based on distribution.

2. Randomly choose the index of the Ncoding uniformly in d iterations.

3. Do XOR operations of the fragments.

4. Reallocate the indices of the chosen fragments in order.

5. Repeat 3 and 4 until the degree of packet is d.

F1⊕F3⊕F4⊕F7⊕F8⊕F9 0 0 0

D=10

9 8 7 4 3 10

Figure 4.4: Illustration of an encoding symbol

Fig 4.4 is the example of an encoded symbol whose degree is 6. The max degree D is

10, and we set the residual indices to 0 in the unused index positions. In the same time, the

index number we use is started from 1, not 0. The indices sequence is ordered from low to

high during the encoding process.

33

4.4 Packets Transmission / Receiving

Packets are transmitted from nodes to nodes by edges with packet loss rate L. Since we

transmit the data in the erasure channel, meaning that the we either lose the packets or

believe every value we receive, we set the packet loss mechanism to point whether packet

is lost. If mechanism occurs no loss, the packets will be sent to the adjacent nodes by the

edges successfully, otherwise, the adjacent nodes will receive zero packets, representing the

null transmission due to the loss. We create data to be all zeros to represent loss occurrence.

Simulation result will be shown to compare the throughput and the ability of error protection

in every sink with different packet loss.

4.5 Buffering

Buffer are used to store the packets from the incoming edges. It provide the temporary

storage to preserve the data especially useful when the total incoming flow is larger than the

total outgoing flow. The buffering method is obeyed on FIFO, fist in first out mechanism.

In traditional routing, we should choose adequate size of buffer size for fear that the when

bottleneck occurs in some intermediate, there will be considerable packet loss if the buffer is

too small. When we apply LT code on network, the entire packets flooding the network are

encoded symbols. If receiving rate is higher than transmitting rate of a certain node, some

packets are definitely discarded. Entire packets are encoded symbols, obeying the designed

distribution and therefore, even we lose some encoded symbols, causing the difference of

desired distribution a source should conform, the difference will be subtlety tiny. That is

to say, the buffer size will no longer a ignoring problem because of the coding mechanism

and we can use smaller size of buffer to save the hardware cost, achieving well performed

throughput as well.

34

4.6 LT Decoding

Decoding process resembles the LT decoding. A sink receives symbols continuously, mean-

while, activate the decoding procedure. We will receive and decode recursively until whole

data are covered completely. The decoded symbol is one segment of the original data,

therefore, we have to recover the true information by extra de-fragmenting operation. The

procedure is listed below corresponding to a received symbol.

1. Check the symbol degree. If degree is one, step 2 ,else step 4.

2. Check whether this degree one symbol has been decoded before. If so, step 6, else step

3.

3. Defragment the new symbol, labeling it in decoded index list.

4. Check whether there exists the same indices between the symbol and the decoded index

list. If yes, step 5, else, step 6.

5. XOR operation of two matched codewords, erasing the same index of the symbol.

Return to step 1.

6. Finish.

The decoding process can be shortly summarized as searching the same indices among the

decoded index list, XOR operation, and erasing the computed index to decrease the degree

iteratively. Since the property of the LT decoding is vitally dependent on the degree one

symbol, we should check two conditions to start the decoding. First condition is the new

decoded index, and the other is the same degrees between this received symbol and the

list of decoded indices. If the received symbol can not fit in with these two conditions, no

decoding process is started up. In the meantime, after one coding process, there should exist

35

Check received symbol

degree

Check same index

between symbol and

decoded list

Is 1 ?

Start

No

Finish

Is any

same ?

No

Yes

Defragment, labeling

new index

Yes XOR operation, erasing

the same index

Check symbol degree

Check whether symbol

is decoded

Has decoded?

No

Yes

Figure 4.5: Decoding flow chart

no indices the same with any index in decoded list. That is to say, the decoding procedure

stops if there is no valuable information among the un-decoded symbols. The flow chart is

in Fig 4.5.

Decoding flow chart describes the decoding process when receiving one encoded symbol.

Firstly, we need to check the degree of the new arrived symbol. If the degree is not one,

we have to examine the index members of this symbol to see if we can reduce its degree by

exclusive-or-ing the same index in the decoded list. If not, the decoding is finished leafing

36

the symbol which can not be decoded. If we find any symbol with index matched to any

index member of the symbols, we extract its information, reducing the degree and return

the degree check condition. If we discover the degree of received symbol is one, we firstly

examine whether we have decoded this symbol before. If so, it represents this symbol is

helpless for us to get more information and we stops the decoding procedure right away

for fear that we spend much time searching whether there exists same index of this useless

symbol. We should avoid the meaningless check. If this symbol is newly decoded, we have to

search symbols with this new information to reduce the degrees of those un-decoded symbols

to help the procedure go on.

4.7 Degree Distribution Analysis

The discussion above is established on the known well designed degree distribution. In

chapter 3, We have studied how to obtain ideal soliton distribution and the robust soliton

distribution modified by two additional parameter c and δ. Also, we realize the ratio of the

degree one and degree max relevantly influence the decoding performance. If we want to

get distribution by robust soliton distribution, the example below shows the corresponding

procedure to find distribution with following parameters.

Table 4.3: Parameters of illustrated distribution
M 10000KB
B 1KB

Noriginal 10000
I 16b

c 0.2
δ 0.05

F
D

We have cut file into 10000 pieces, and Noriginal is 10000. We have to design the dis-

37

tribution and realize the max degree D can be decided by the K/S, the max degree used

in robust soliton distribution. Assume we choose c = 0.2 and δ = 0.05, we can therefore

calculate out S = 244, K/S = 41, and Z ≃ 1.33. The corresponding distribution of ρ(d) and

τ(d) is showed in Fig 4.6. In Fig 4.6, we find that the modified term τ(d) adds the weighting

mostly in max degree K/S, and in degree one. Weighting of every degree in distribution

is the sum of ρ(d) and τ(d). After the calculation, we get max degree D is 41, and the

fragment size will be 1KB − 41× 16b = 7356b. Ncoding is therefore increased to 11137. Since

LT code concerns the number of actual transmitted symbols, we have to put Ncoding = 10871

to the calculation to get another required max degree and distribution, obtaining another

new fragment size. The process will go on iteratively till the outcome converges. The final

design will be Ncoding = 10917 and D = 43.

If we obey the soliton distribution, we can tune a adequate one in sufficient tries. In

our experience, we find that what we do care is the equivalent throughput in the sink. If

we attempt to elevate the probability of successful decoding and reduce parameter Z with

smaller transmission times, we must pay a high max degree for the coding system. It fatally

decreases our ability to carry true information of one packet. The well designed distribution

is usually hard to compensate for the Ncoding, the actual transmission times.

Now that we concern most is the throughput, we hope to let Ncoding is closer to Noriginal

as possible as we can. The intuitive thought is that the quantity of information carried on

one packet should be larger. Our methodology is to limit the max degree D and we tune the

distribution below our restriction. The goal we want to reach is quite the same, the difference

is the way approach to it. If the degree we set up is too small, it is almost impossible for us

to tune a adequate distribution. Therefore, we have to enlarge out max degree and tune it

again. The process continues till the overall outcome of throughput get enhanced.

In our tries, we change the relative weighting of every degree. The most importance is

38

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Robustl Soliton Distribution

tau

rho

Figure 4.6: Robust Soliton Distribution with two components ρ and τ

to enlarge the distribution of degree one because it is the key to get decoding keep going

by belief propagation. On the other hand, we lower the weighting of degree two because if

we don’t have sufficient degree one codewords, we have more degree two codewords in vain.

The third modification is to lower the weighting the distribution of max degree. The max

degree functions as the trunk of the code structure, seizing the total information. We let

this task distributed to other degrees, and expect that we can alleviate the risk to be unable

to decode because of the too many codewords with max degree. Hence, we get much lower

distribution of max degree and let the weighting transferred to other degrees.

39

Chapter 5

Comparison and Simulation Result

In this chapter, we will show our simulations to verify our proposed method. We take two

kind of network topologies we have introduced in chapter 2. Every network is operated

in multicasting environment. The chapter will be separated to several parts according to

different topics.

Every section contains the comparisons with different methods including traditional rout-

ing, coding method proposed in chapter 2, and proposed LT code applied to network coding.

We simulate in the environment with packet loss rate 0%, 5%, 10%, and 20%. We compare

every throughput of different methodology and calculate the total overhead of the coding

system such as coding operations and decoding operations.

5.1 Throughput

In this section, we focus on the throughput of the network by different transmission mecha-

nisms. We show the results of two different kinds of networks in Fig 5.1. Since the capacity

of all channels is quite the same, we use 1KB as the unit capacity. On the other hand,

LT code performs variously owing to different numbers of transmitted packets, we set up

different size of file M from 4MB, 8MB, 16MB, 32MB, to 62.5MB. Number of bits a

40

W

UT

Y

X

Z

S

(a)

WU T

YX Z

S

(b)

Figure 5.1: (a) Butterfly. (b) One-source three-sinks.

packet index uses is 16b. The max degree we design here is 10 so that the overhead due to

the fragmentation will be substantially tiny. The corresponding Noriginal to each size of files

is 4K, 8K, 16K, 32K and 64K. Buffer size of each intermediate is set to 1K. Parameters

and the relations between Noriginal and Ncoding are summarized as followed in Table 5.1 and

Table 5.2.

Table 5.1: Parameters of simulation
M 4MB, 8MB, 16MB, 32MB, 62.5MB
B 1KB

Noriginal 4K, 8K, 16K, 32K, 62.5K
I 16b

D 10
Buffer size 1K

L (loss rate) 0%, 5%, 10% , 20%

In our simulations, we compare three different methods. The first one is traditional

routing method existed in the current system. The second one is network coding proposed

in [1]. The third one is our proposed LT code applied to network environment. Since we do

care is the utility of network of every sink, that is to say, if we use less cycles to let all sinks

41

Table 5.2: Relations between Noriginal and Ncoding

File Size M 4MB 8MB 16MB 32MB 62.5MB
Noriginal 4K 8K 16K 32K 62.5K
Noriginal 4178 8356 16711 33421 65275
Ofrag 1.02 1.02 1.02 1.02 1.02

receive the data, the system has higher efficient utility. Results are showed in Table 5.3 to

Table 5.6.

Table 5.3 and Table 5.4 show the average required run cycles in Fig 5.1(a) according

to different levels of completeness in different loss rate. As the tables show, run cycles of

routing is close to the required times a source should transmit when edges occur no loss.

And we can also find that in lossless environment, results of the methoed proposed in [1]

outperforms quite a lot compared to routing and proposed LT. It should be no surprise

because this code is a specified design for this particular network so that it can performs

outstandingly. However, when it suffers from different level of packet loss, we observe that

routing mechanism and the specified design perform from bad to worse sharply. It means

that the ability to protect packets from loss is quite insufficient so that we can not recover

the lost packets from what we received, therefore, we require more cycles to transmit data to

sinks. Regarding proposed LT, we find that required cycles to decode data are also increasing

with severe loss. Since proposed LT code offer mechanism against packet loss, we can still

decode a certain part of information when some packets are lost. Run cycles of proposed

LT are significantly smaller than all the others especially when sinks receive 90% and 95%

of entire data. Namely, if you can bear data loss that is from 5% to 10% or so, proposed

LT supply a well constructed coding system to enhance throughput in the erasure channels

that the worst loss rate scale up to 20%.

The result of Fig 5.1(b) is showed in Table 5.5 and Table 5.6. In this network, we get

42

similar outcomes displayed in former example above. Proposed LT can give more vigorous

protection against more serious packet loss compared to other methods. The difference of

run cycles among three methods are much larger than the result above. The reason causes

such vital phenomenon is the structure of the network. We will discuss in detail later.

The tables listed above show the run cycles required to let every sink receive data ac-

cording the different level of completeness. In order to comprehend how close we are to the

theoretical upper bond, we normalizes results to show the equivalent throughput. Fig 5.2

shows the results.

We illustrate the throughput of the two networks with parameters that file size is 4MB,

and buffer size of every intermediate is 1K. Numbers labeled form 10 to 100 in x-axis

are completeness percentage of entire data and numbers in y-axis are the corresponding

normalized throughput, meaning the equivalent decoded data per run cycle. We should

note that when we calculate the equivalent throughput, we have to take the overhead due

to the fragmentation into consideration. The required number for the real transmission

enlarges because extra degree components occupy a certain part of every packet. When we

calculate the effective throughput, we have to divide the throughput in the LT code system

by the overhead to get normalized one. Because construct LT codes with a very small scale

of degree, the overhead is therefore tiny, and the normalized throughput gets smaller in a

tiny difference. In Fig 5.2-(a), we observe that the throughput is about 1.3 at most when

during 90% to 95% of data are recovered. It gets 0.3 enhancement compared to store-and-

forward system. The performance drops with the increase of the packet loss without surprise.

Compared to the routing system, we find that the loss in every different level of packet loss

is decreased smoothly, meaning decreased throughput due to packet loss is tolerable. We get

the enhanced performance and degrades obviously only when we have to obtain the entire

data. This is because when LT code get a sufficient data, un-decoded weights a significantly

43

small part of the data. Since the LT code encodes randomly merely based on distribution, we

have no ability to control the system to send the combinations symbols with the un-decoded

data . Another reason is that we use the smaller max degree in the code structure, it causes

that the probability to carry different information what we need in our last decoding run

cycle to obtain 100% data. Therefore, we have to transmit more time to finish the tail data

to accomplish our task.

Results in Fig 5.2-(b) is quite similar to that in Fig 5.2-(a). The throughput gets upgraded

steadily to the max 1.8 or so and also decreases when total data are recovered.

5.2 Buffer Size

Intermediates have adequate buffer to store incoming packets temporarily. The size of the

buffer differs with the different application. In the traditional routing, when the data rate

of the incoming data is higher than the outgoing data, intermediate can not afford for this

congestion and suspend the request or lose some parts of data. If we don’t want to lose

any packet, we have to offer several times scale of total data according to the ratio of the

total incoming rate to total outgoing rate. It is quite impossible and dispensable to fit with

this requirement and we hope to have smaller needed size of buffer to lower the hardware

cost. In our simulation, we find that when we apply LT code for network coding, the size

of buffer affects performance slightly. In Fig 5.3, we show compare the throughput in buffer

network with parameters that file size is 8MB and packet loss is 0%. The buffer size is from

32 to 16K. We observe that the performance is quite similar in such a different buffer size.

Buffer size with 16K is twice as the size of entire data, assuring that the encoded packet

in the node that causes bottleneck can be obtained to delivery to the adjacent edges. The

extremely small buffer size with 16 causes data overwritten in a considerable level. However,

the entire system play a role as LT coding system so that even some encoded symbol drop,

44

the whole packets roughly abide by the LT code. LT code applied for network coding can

lower the hardware cost.

5.3 Coding Overhead Analysis

We apply coding mechanism in the network to gain the benefit in throughput. In the same

time, we have additional process such as encoding and decoding compared to the routing

system. We show these overhead in Table 5.7 and Table 5.8. In these two tables, we find

that the xor operation per codeword in [1] is 1 because they merely combine two packets

in together. Decoding is increasing when the loss rate is higher. The xor operation per

codeword in LT is approximately closer to the expatiation of the degree distribution minus

one because we get degree d in d − 1 xor operations. Xor operations in the decoding is

about 24 to 30 or so. It is also increased due to the loss rate roughly. It varies because we

calculate this when the total data is finished and there exists probability to get completeness

in a extremely large cycle, increasing abnormal decoding operation. The total operation per

codeword are the summation of two showed below.

45

Table 5.3: Average run cycles of file size 4MB, 8MB, 16MB in
butterfly network

4MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%

Pass-and-Forward 1921 2770 3696 3899 4104
0% NC in [1] 1441 1647 1852 1955 2059

Proposed LT ∗2852 ∗2857 2862 2985 6696

Pass-and-Forward 3691 4027 4305 4940 11904
5% NC in [1] 2990 3472 3915 4602 10025

Proposed LT ∗3051 ∗3070 3132 3417 6921

Pass-and-Forward 3716 4286 4841 5945 16152
10% NC in [1] 3228 3680 4493 4990 12558

Proposed LT ∗3421 ∗3424 3458 3586 8248

Pass-and-Forward 3853 4479 6134 8305 22683
20% NC in [1] 3728 4399 5676 7275 20487

Proposed LT ∗4175 ∗4196 4213 4423 11130

8MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%

Pass-and-Forward 3840 5027 6874 7797 8208
0% NC in [1] 2880 3291 3703 3908 4115

Proposed LT ∗5660 ∗5666 5672 6039 13870

Pass-and-Forward 5743 6853 8135 8581 25304
5% NC in [1] 4625 5157 6660 7971 18703

Proposed LT ∗6142 ∗6203 6264 6466 20752

Pass-and-Forward 5965 7254 8527 11381 32196
10% NC in [1] 4907 6278 7742 8506 24569

Proposed LT ∗6889 ∗6908 6926 7236 23584

Pass-and-Forward 7794 8888 12964 15616 42774
20% NC in [1] 7308 8391 11451 13970 41241

Proposed LT ∗8344 ∗8451 8487 8952 27910

16MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%

Pass-and-Forward 7678 10055 13236 15082 16416
0% NC in [1] 5759 6581 7404 7815 8227

Proposed LT ∗11245 ∗11271 11297 11991 45629

Pass-and-Forward 9719 12274 15231 16628 48569
5% NC in [1] 7785 8694 12352 14704 43935

Proposed LT ∗10898 ∗11728 12285 12989 46335

Pass-and-Forward 10732 14258 16542 21469 62036
10% NC in [1] 8352 12338 15396 16785 55055

Proposed LT ∗13667 ∗13699 13730 14681 64070

Pass-and-Forward 13834 16379 24370 30632 103112
20% NC in [1] 12996 15547 20809 25642 83602

Proposed LT ∗16917 ∗16937 16958 17767 64912

1 Number labeled ∗ is the value calculated by interpolation.
46

Table 5.4: Average run cycles of file size 32MB, 62.5MB in butterfly
network

32MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%

Pass-and-Forward 15353 20109 26471 29652 32832
0% NC in [1] 11515 13160 14805 15628 16451

Proposed LT ∗22624 ∗22644 22665 23966 93450

Pass-and-Forward 17816 24464 30013 32539 115502
5% NC in [1] 14172 15982 24160 29450 85504

Proposed LT ∗24711 ∗24804 24556 26291 122334

Pass-and-Forward 21061 27128 33378 44135 134121
10% NC in [1] 16471 22367 29602 33502 107365

Proposed LT ∗27365 ∗27423 27481 28973 138472

Pass-and-Forward 26704 33091 47781 61709 230788
20% NC in [1] 24815 30309 41238 50706 168448

Proposed LT ∗33526 ∗33422 33319 34893 142634

62.5MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%

Pass-and-Forward 29984 34267 38551 40693 42384
0% NC in [1] 22489 25702 28914 30521 32128

Proposed LT ∗44344 ∗44370 44396 46715 183967

Pass-and-Forward 32573 36938 41317 54754 208561
5% NC in [1] 27528 31054 45031 56027 192734

Proposed LT ∗47767 ∗47803 47840 50595 188459

Pass-and-Forward 35231 39696 55741 74609 262800
10% NC in [1] 31289 41682 56760 63385 244616

Proposed LT ∗52658 ∗52722 52787 55651 206357

Pass-and-Forward 40605 56119 80482 107524 432963
20% NC in [1] 47602 58983 81493 100596 366815

Proposed LT ∗64119 ∗64348 64578 68200 247981

1 Number labeled ∗ is the value calculated by interpolation.

47

Table 5.5: Average run cycles of file size 4MB, 8MB, 16MB in
one-source three-sinks network

4MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%

Store-and-Forward 1920 2194 2468 2605 2472
0% NC in [1] 1440 1646 1851 1954 2057

Proposed LT ∗2110 ∗2121 2132 2269 7683

Store-and-Forward 3002 3279 3558 4165 10265
5% NC in [1] 2573 2794 3055 4180 6428

Proposed LT ∗2304 ∗2330 2356 2490 8293

Store-and-Forward 3061 3351 3992 5381 16238
10% NC in [1] 2712 3001 4060 4523 8846

Proposed LT ∗2579 ∗2608 2619 2739 8595

Store-and-Forward 3255 4118 5394 7632 20094
20% NC in [1] 3251 3951 4507 5298 12604

Proposed LT ∗3275 ∗3270 3284 3461 9999

8MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%

Store-and-Forward 3839 4387 4935 5209 5484
0% NC in [1] 2879 3290 3702 3907 4113

Proposed LT ∗4206 ∗4220 4235 4473 12993

Store-and-Forward 4951 5511 6068 7752 16441
5% NC in [1] 4150 4593 5723 7335 14687

Proposed LT ∗4681 ∗4692 4702 4935 17473

Store-and-Forward 5071 5645 7638 9644 25652
10% NC in [1] 4404 5338 7131 8030 19076

Proposed LT ∗5172 ∗5177 5182 5467 18680

Store-and-Forward 5419 8085 10173 13376 36002
20% NC in [1] 5579 7592 8705 10506 29786

Proposed LT ∗6457 ∗6476 6495 6811 23040

16MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%

Store-and-Forward 7677 8773 9870 10418 10966
0% NC in [1] 5758 6580 7403 7814 8225

Proposed LT ∗8405 ∗8439 8474 8881 25803

Store-and-Forward 8862 9980 11098 14433 45436
5% NC in [1] 7284 8176 10487 13725 29536

Proposed LT ∗9368 ∗9389 9410 9816 28895

Store-and-Forward 9082 10229 14928 19191 65454
10% NC in [1] 7868 9683 14013 15818 36915

Proposed LT ∗10340 ∗10373 10406 11014 31975

Store-and-Forward 10545 14763 20603 27343 101599
20% NC in [1] 10884 13769 16454 20152 64317

Proposed LT ∗12838 ∗12841 12844 13506 39112

1 Number labeled ∗ is the value calculated by interpolation.
48

Table 5.6: Average run cycles of file size 32MB, 62.5MB in one-source
three-sinks network

32MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%

Store-and-Forward 15352 17545 19739 20835 21932
0% NC in [1] 11514 13159 14804 15627 16449

Proposed LT ∗16909 ∗16924 16940 17755 61314

Store-and-Forward 16704 18934 21169 28400 73766
5% NC in [1] 13549 15342 19664 27342 66295

Proposed LT ∗14630 ∗16671 18711 19639 68529

Store-and-Forward 18059 20344 28236 37478 122955
10% NC in [1] 15639 19168 26791 30655 85904

Proposed LT ∗20833 ∗20860 20886 21858 75871

Store-and-Forward 20865 28737 39864 48351 177511
20% NC in [1] 21767 26477 32586 39536 139863

Proposed LT ∗25817 ∗25841 25865 27212 94598

62.5MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%

Store-and-Forward 29984 34267 38551 40693 42834
0% NC in [1] 22488 25701 28913 30520 32126

Proposed LT ∗33088 ∗33107 33126 34858 128781

Store-and-Forward 32573 36938 41317 54754 208561
5% NC in [1] 26445 29949 38746 51962 119185

Proposed LT ∗36277 ∗36389 36501 38532 156108

Store-and-Forward 35231 39696 55741 74609 262800
10% NC in [1] 29491 36567 51571 59501 185834

Proposed LT ∗40502 ∗40541 40580 42515 166623

Store-and-Forward 40605 56119 80482 107524 432963
20% NC in [1] 41650 51688 63119 77028 278323

Proposed LT ∗49976 ∗50009 50043 53043 211449

1 Number labeled ∗ is the value calculated by interpolation.

49

10 20 30 40 50 60 70 80 90 95 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Decoded percentage (%)

T
hr

ou
ph

ou
t

Butterfly Network with file size 4MB , buffer size 1K, LT code with different packet loss

Max

loss rate 0%

loss rate 5%

loss rate 10%

loss rate 20%

(a)

10 20 30 40 50 60 70 80 90 95 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Decoded percentage (%)

T
hr

ou
ph

ou
t

One−source three−sink network with file size 4MB, buffer size 1K, LT code with different packet loss

Max

loss rate 0%

loss rate 5%

loss rate 10%

loss rate 20%

(b)

Figure 5.2: Normalized throughput of two networks

50

10 20 30 40 50 60 70 80 90 95 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Decoded percentage (%)

T
hr

ou
ph

ou
t

Butterfly Network with file size 8M, loss rate 0%, LT code in different buffer size of intermediates

32

256

1K

4K

8K

16K

Figure 5.3: Butterfly network with different buffer size

Table 5.7: XOR operations of coding systems in Fig 5.1(a)
File Size is 4MB File Size is 8MB File Size is 16MB

Items Method Loss Rate Loss Rate Loss Rate
0% 5% 10% 20% 0% 5% 10% 20% 0% 5% 10% 20%

Encoding
Proposed in [1] 1 1 1 1 1 1 1 1 1 1 1 1

LT 2.43 2.42 2.42 2.40 2.40 3.41 2.40 2.42 2.40 2.41 2.40 3.40

Decoding
Proposed in [1] 1 4.09 4.32 5.06 1 3.87 4.32 5.57 1 4.57 4.88 5.35

LT 21.20 21.74 23.83 22.67 25.02 27.94 22.24 21.18 24.05 23.05 28.16 27.92

Total
Proposed in [1] 2 5.09 5.32 6.06 2 4.87 5.32 6.57 2 5.57 5.88 6.35

LT 23.63 24.16 26.25 25.07 27.42 31.35 24.64 23.60 26.45 25.46 31.56 31.32

File Size is 32MB File Size is 62.5MB

Items Method Loss Rate Loss Rate
0% 5% 10% 20% 0% 5% 10% 20%

Encoding
Proposed in [1] 1 1 1 1 1 1 1 1

LT 2.41 2.40 2.39 2.40 2.40 2.40 2.40 2.40

Decoding
Proposed in [1] 1 4.44 4.79 5.44 1 5.19 5.60 6.07

LT 24.42 39.43 30.84 24.65 25.86 25.11 26.12 28.47

Total
Proposed in [1] 2 5.44 5.79 6.44 2 6.19 6.60 7.07

LT 26.83 41.83 33.23 27.05 28.26 27.51 28.52 30.87

1 Each value is the average exclusive-or operations per codeword.

51

Table 5.8: XOR operations of coding systems in Fig 5.1(b)
File Size is 4MB File Size is 8MB File Size is 16MB

Items Method Loss Rate Loss Rate Loss Rate
0% 5% 10% 20% 0% 5% 10% 20% 0% 5% 10% 20%

Encoding
Proposed in [1] 1 1 1 1 1 1 1 1 1 1 1 1

LT 2.40 2.40 2.41 2.41 2.40 2.41 2.40 2.40 2.41 2.40 2.40 2.40

Decoding
Proposed in [1] 1 2.84 3.55 4.18 1 3.20 3.61 5.05 1 3.20 4.34 5.53

LT 25.00 24.04 25.18 27.65 24.96 25.73 26.50 29.35 29.13 26.35 23.81 26.52

Total
Proposed in [1] 2 3.84 4.55 5.18 2 4.20 4.61 6.05 2 4.20 5.34 6.63

LT 27.40 26.44 27.59 30.06 27.36 28.14 28.90 31.75 31.54 28.75 26.21 28.92

File Size is 32MB File Size is 62.5MB

Items Method Loss Rate Loss Rate
0% 5% 10% 20% 0% 5% 10% 20%

Encoding
Proposed in [1] 1 1 1 1 1 1 1 1

LT 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40

Decoding
Proposed in [1] 1 3.20 4.34 5.53 1 3.32 4.18 5.27

LT 24.77 38.97 28.01 26.52 25.59 33.63 33.33 34.67

Total
Proposed in [1] 2 4.20 5.34 30.68 2 4.32 5.18 6.27

LT 27.17 41.37 30.41 33.08 27.99 36.03 36.73 37.07

1 Each value is the average exclusive-or operations per codeword.

52

Chapter 6

Conclusion and Discussion

6.1 Conclusion

In the thesis, we propose LT code applied for network coding in the multicast network. The

proposed method enhances network throughput by 20% to 30% improvement at most when

transmission completeness is in the range from 90% to 95%. LT code can also perform

well against the loss rate form 0% to 20% with compared to the routing system. Our

proposed LT-Network codes alleviate the required buffer size in the intermediates to maintain

good performance such that the buffer size becomes negligible factor regardless the data

size. Finally, the additional coding overhead for encoding and decoding is about 30 XOR

operations per codeword.

6.2 Discussion

In our simulation, we observe what varies significantly in two different networks is the gap of

throughput between the real and the theoretically max flow. In butterfly network, through-

put enhances but falls behind the theoretical max in a large scale. However, the result in

another network is much closer the theoretical bound. The reason causes such fatal difference

is that there exists edge disjoint paths in the transmission network. Edge disjoint paths is

53

W

UT

Y

X

Z

S

Figure 6.1: Edge disjoint paths in butterfly network

defined as that two paths from node u to v have no common internal edge. In the Fig 6.1,

we find that there exist two paths from node T to Y , path TY and path TWXY . The sink

Y get packets from these two path. Because we allow intermediates pass and forward, node

T send two copies what it receives to both edges in the starting of two paths. When sink Y

receives a packet from T , after a certain cycle runs, it will get the same packets from XY

which originate from the node T . Although it will get some partial of additional information

from the path UWXY , it still can not avoid receiving the repeated packets what it has

obtained. The same condition is displayed in the node Z because of the edge disjoint paths

UZ and UWXZ. The utility of network is therefore degraded due to this phenomenon.

Regarding to another network, we observe there exists no edge disjoint paths in the

network. Therefore, efficiency of the LT code can gain high enhancement approach to the

theoretical max flow. Since throughput degradation is due to the repeated codewords, we

propose a combined LT-Network to let node W do exclusive-or operations of two codewords

it receives. By doing this, every receiver has opportunity to get additional information from

54

the re-combined codewords instead of the completely same codeword it has received. Re-

combined codewords bear more useful information to help each node get higher probability to

process decoding procedure, therefore, to decode successfully. When we apply LT-Network

code we should notice that we design the LT code with the max degree D. If the combination

of two codewords in node W results a codeword with degree larger than the max degree, we

drop this combination to pass the codewords in the buffer. The result is showed below.

We find that the required run cycles get further decreased if we apply LT-Network Codes

in this network. However, this LT-Network Codes is designed for this specified network. In

our simulation, we give a startup for LT-Network codes in erasure channel to exemplify the

improvement and good ability to protect data. The further research can focus on how to get

a well combined LT-Network in generic situation.

55

Table 6.1: Average run cycles with LT-network codes of file
size from 4MB to 62.5MB in butterfly network

4MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%

0%
LT ∗2852 ∗2857 2862 2985 6696

LT-Network Code ∗2670 ∗2671 2672 2673 11953

10%
LT ∗3051 ∗3070 3132 3417 6921

LT-Network Code ∗2912 ∗2929 2945 2961 10681

20%
LT ∗3421 ∗3424 3458 3586 8248

LT-Network Code ∗3257 ∗3273 3290 3353 11514

30%
LT ∗4175 ∗4196 4213 4423 11130

LT-Network Code ∗4235 ∗4265 4296 4326 12812

8MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%

0%
LT ∗5660 ∗5666 5672 6039 13870

LT-Network Code ∗5269 ∗5279 ∗5289 5300 34565

5%
LT ∗6142 ∗6203 6264 6466 20752

LT-Network Code ∗5770 ∗5781 5792 5848 24726

10%
LT ∗6889 ∗6908 6926 7236 23584

LT-Network Code ∗6500 ∗6503 ∗6506 6512 25962

20%
LT ∗8344 ∗8451 8487 8952 27910

LT-Network Code ∗8276 ∗8297 8319 8341 28631

16MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%

0%
LT ∗11245 ∗11271 11297 11991 45629

LT-Network Code ∗10380 ∗10432 ∗10484 10536 41372

5%
LT ∗10898 ∗11728 12285 12989 46335

LT-Network Code ∗11826 ∗11853 ∗11881 11908 50941

10%
LT ∗13667 ∗13699 13730 14681 64070

LT-Network Code ∗13059 ∗13076 ∗13093 13110 63194

20%
LT ∗16917 ∗16937 16958 17767 64912

LT-Network Code ∗16550 ∗16580 ∗16611 16642 70597

32MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%

0%
LT ∗22624 ∗22644 22665 23966 93450

LT-Network Code ∗20735 ∗20807 ∗20879 20951 98520

5%
LT ∗24711 ∗24804 24556 26291 122334

LT-Network Code ∗23319 ∗23373 ∗23427 23482 78833

10%
LT ∗27365 ∗27423 27481 28973 138472

LT-Network Code ∗25905 ∗25973 ∗26040 26108 153647

20%
LT ∗33526 ∗33422 33319 34893 142634

LT-Network Code ∗32970 ∗33034 ∗33090 33146 101303

62.5MB Percentage of Decoded Data
Loss Rate Method 70% 80% 90% 95% 100%

0%
LT ∗44344 ∗44370 44396 46715 183967

LT-Network Code ∗41122 ∗41129 ∗41135 41141 254453

5%
LT ∗47767 ∗47803 47840 50595 188459

LT-Network Code ∗45268 ∗45436 ∗45604 45772 217532

10%
LT ∗52658 ∗52722 52787 55651 206357

LT-Network Code ∗51307 ∗51333 ∗51359 51385 197169

20%
LT ∗64119 ∗64348 64578 68200 247981

LT-Network Code ∗64562 ∗64611 ∗64569 64708 268342

1 Number labeled ∗ is the value calculated by interpolation.

56

Appendix A

Several Ideas to Transmit Packets
Efficiently

We have discussed the repeated codewords phenomenon in some edges disjoint paths started

from some node and ended at sinks in the network. It fatally decreases the throughput

because that sinks get some packets received before at certain ratio, carrying no beneficial

information for decoding. In this chapter, we describe some thoughts that we attempt to

resolve this troublesome problems. Unfortunately, there is no any breakthrough for this

topic.

A.1 Drawback Discovery and Node Analysis

Network with edge disjoint paths ended at sink node will causes harmful influence on through-

put regarding coding mechanism. In the previous discussion, we find that even we apply

LT code on network to let the whole system paly as a coding mechanism, if we does not let

intermediates participate in encoding process, and merely pass-and-forward as traditional

routing does, the efficiency will be restricted by the network topology. The way to avoid this

limitation is to let intermediates encode as the source does during transmission.

Before we start, we should check whether every intermediate need coding. If not all the

57

intermediates are necessary, we can save the extra coding overhead such as computations

and time. At this subchapter, we will clarify the necessity of coding for any intermediate.

Considering the butterfly network in Fig A.1, we observe there exist two edge disjoint paths

W

UT

Y

X

Z

S

Figure A.1: Butterfly network

from node T to sink Y , path TY and path TWXY . Node T has one unit capacity of all

incoming edges, and two unit capacity of all outgoing edges. Number of received packets

can not keep up with that needed for transmission. In this situation, we have to copy what

we receive to delivery for separate edges, causing sink Y receive a certain part of repeated

packets. On the other hand, if one intermediate have more packets than what it transmits,

there is no need for coding because of the sufficient information even it cause edge disjoint

paths.

The conditions we judge whether a intermediate needs coding are based on relations

between total incoming packets and outgoing edges and if it causes edge disjoint paths.

However, it is tiresome to find edge disjoint paths and indicate such nodes. This task is

NP-hard so that we have to modify the methods to decide coding or not.

58

We conclude the necessity for coding in intermediates as followed.

• A intermediate needs coding if total capacity of incoming edges is larger than that of

outgoing edges.

Based on this condition, we find intermediates require coding are node T , U , and X. Node

W can do simply pass and forward contracted to original method. We can also observe that

node X have to do coding even if it causes no edge disjoint paths. By this constraint, every

node can decide coding or passing regardless to the whole network.

A.2 Intermediates Coding

A.2.1 Thought

Since we can decide every work a node should follow, we discuss how to do coding on inter-

mediates. Remember that we apply LT code in transmission system, the entire environment

can be viewed as a LT coding structure. If we let intermediates code, we should follow the

LT distribution as well. So before we start transmission, we should send information of LT

distribution to them.

Intermediates get information from the incoming edges and can not obtain entire data as

a source does. Coding can be merely depends on what we store in the buffer. So, we start

coding mechanism after receiving some packets. Encoding procedure is the same with that

in the source.

A.2.2 Phenomenon

The result is not as we expected. We check degree of every packet received in sinks and find

that the distribution differs seriously compared what we design in the lossless circumstance.

59

That is because intermediates code according to desired distribution and we have to encode

the packets by the picked degree chosen according to distribution. We set a high stop criteria

until the degree is what we need in this encoding cycle. If we can’t produce the codeword

with desired degree, we randomly choose a packet in the buffer to transmit. Since the degree

of packets in the buffer is biased, we can not encode freely causing a quite large difference

between true distribution and designed distribution and the result performs poorly.

A.2.3 Note

Let intermediate encode as possible as it can in a finite stop criteria causes considerable

computations and disturbs the degree distribution.

A.3 Codeword Cache

A.3.1 Thought

We encounter significant disorder of degree distribution due to the coding in intermediates.

Therefore, our task is to avoid the intermediate being probably not to encode the desired

degree in a high opportunity.

At every encoding, we choose a degree randomly ddesired based on distribution. If we

can’t make it, procedure will continues till the the desired one shows up. During this long

encoding loop, there exists a codeword that its degree is not what we need. The quantity

of these codewords will increase if we can’t produce codeword with degree dcoding matched

to ddesired. If we save these codewords in the buffer, we obtain packets with various degrees

except ddesired. When the next encoding cycle runs, we can firstly search in the buffer to find

whether any packet in buffer with the degree matched to this new degree ddesired.

We store codewords during coding loop and we search the buffer firstly in the next

60

encoding cycle. The recommended way to allocate the packets in the buffer is cut buffer into

separate parts according the degree distribution. Therefore, we can save searching time to

find the degree.

Table A.1: Buffer allocation

Degree 1 2 3 4 ... 18 19 20
Distribution 5 4 1 1 1 1 1 5

Ratio 0.3 0.5 0.2
Buffer store 0 to 14 15 to 38 38 to 47

Table A.1 is a illustration. Max degree is 20, and every value in distribution row is

the weight of particular degree. Ratio shows the percentage of total degree in three region.

Buffer size is 48 and we cut the buffer into three parts according to the percentage of the

degrees in each region. We find that degrees one to three contain 30% of the distribution,

therefore we cut 30% of buffer labeled from 0 to 14 to store those degrees. When we want

to store a new created codeword in the buffer, we need to check the degree to put it in the

relative position. The method that deal with the data is still FIFO mechanism, meaning

that if this region is filled with the codewords, we overwrite it from the first position. The

received data is stored by the higher priority. By doing so, packets in the buffer are updated

to obtain the newly incoming information received in the buffer. Fig A.2 demonstrate the

encoding flow chart.

Note that when we search the degree of packets, we choose the first one whose degree

is equal to ddesired. Since we use FIFO in each sub buffer, we can lower the opportunity to

send the same packet we have transmitted before. In the meantime, we create another table

attached to every packets in the buffer to label whether this codeword is transmitted before.

If this packet has been transmitted, we labels it so that if the same degree is required in the

next time, this packet will be skipped. At the same time, when we can not encode what

require, we still have to choose one packet to deliver. In this condition, we will uniformly

61

Give the desired

degree ddesired

Search same

degree in buffer

Is Any?
Encoding & check

degree dcoding

Start

Equal

ddesired ?

Finish

Store in buffer&

check iteration

Stop

Criteria?

Y

Y

YN

N

N

Randomly select

one packet

Update

transmitted label

Figure A.2: Encoding flow chart of encode and store mechanism

select one packet in the buffer and label it as identification. We illustrate labeling in Fig A.3.

Assume that node 1 has three outgoing edges and the selected ddesired is 2 for each edge

with capacity 1. That means we have to send three codewords with degree 2 during the

coding in node 1. B trs flag is used for labeling and 1 represents the transmitted packet.

Table in the left side shows the information of buffer before coding. Number from 0 to 47

means the position of buffer. The second column is the labeling identification. The third

column shows degree of every codeword in the buffer. Considering the coding procedure in

the node 1, we need to transmit three packets. In the first cycle, drequired is 2 and we search

the degree finding that there exists one packet with degree 2 in position 1 is not transmitted.

We choose this packet to transmit through edge to node 2, labeling it 1. In the next cycle,

drequired is 2 again. Since packet in position 1 is labeled transmitted, we have to look for

62

0 0
1

111

3
2 5

1 0

2

... ...

47 0

1

2

2

...

20Desired degree = 2

0 0

1 1

2

... ...

47 0

1

2

2

...

20

0 1

Figure A.3: Illustration of labeling operation

the next one and we find that packet in position 2 fits in with the conditions, selecting and

labeling it. In the final cycle, the drequired is still 2 and we can not find any packet after the

searching so that we have to do coding to produce the codeword we desire.

A.3.2 Phenomenon

By this modification, we observe that the exclusive-or operations is decreased dramatically.

When we does not store the new encoded codewords, the number xor operations times is up

to the stop bound we setup closely. It shows how tough to encode one codeword in limited

information. After our modification, the average xor times to encode one codeword is down

less than 10 with a constrain that stop criteria equals 5. Stop criteria means that if we can’t

encode the desired codeword in 5 cycles, we quit encoding procedure and randomly chose

one packet from the whole buffer.

This modification does not work. Distribution we get in the sink gets a slightly improved

but its improvement is insufficient to resolve the problems to enhance the throughput. We

analyze the distribution and we see that we get considerable packets with degree from D to

D−2 where D is the max degree and extraordinarily less packets with degree 1 and 2. Since

we use belief propagation that number of packets with degree 1 is the vital key to decode

63

the whole information. We slightly balance the overall distribution but the most valuable

part is still biased.

Besides, we find a fatal condition that we obtain a large quantity of the same codewords

after our modification. There are two kind of steps to create repeated codewords during the

coding procedure.

1. Same operation.

• Choose a set that cause equivalent combination.

• This condition occurs apparently when the buffer is spare of packets.

2. Inverse operation.

• The operation procedure is equivalent to the inverse operation of any past oper-

ations.

We describe them separatively.

Fig A.4 explains the same operation. The left table is a tail part of packet recorded the

relation how packets combine and we call these information degree list. Number labeled from

0 to 9 is the buffer index. Recall that we store packets based on its degree. The relation

between them is in Table A.2

Table A.2: Buffer cut of example

Degree 1 2 3 4 ... 6 7 8
Buffer store 0 to 1 2 to 7 8 to 9

We demonstrate equivalent combinations after two xor operations in a encoding cycle.

Assume ddesired for this cycle is 3 and we firstly initialize the elements to 0 in degree list. In

the first run, we get 0 and 4 to do computation and we get a new codeword with degree 5.

64

Desired degree is 3

1

2 1

9 5 2

7 6 5 3

15 12 11 9 8 5 2

0

1

2

3

4

5

6

7

8

9

Run 0 : select 0 and 4

0 0 0 0 0 0 0 0

Degree List of the Buffer

After the Reset

Store in the No.6

6 0 5

0 0 0 7 6 5 3 1

Run 1 : select 4 and 0

0 0 0 7 6 5 3 1

Store in the No.7

7 6 5 3 1

7 6 5 3 1

7 0 5

Initialize

Figure A.4: Same operation while coding

Since 5 is not our desired degree, we store it in the buffer index 6 and continues encoding

till codeword degree is larger than max degree or we get required one. Suppose that packet

in the buffer index 6 is not overwritten by others and this coding run ends due to degree

explosion. We reset the degree to 0, starting another run. Unfortunate, we choose buffer

indices 4 and 0 that the outcome is quite the same with we encode in the last run. We store

it in another empty buffer indexed 7. Obviously, there are two same packets in the buffer.

We shows another case in Fig A.5.

The basic assumption is the same with the case in Fig A.4. The only difference is the

chosen sets of two coding run. In the first run, we still choose no.0 and no.4 to compute and

the result is stored in no.6. In the next run, if the chosen indices are no.0 and no.6, we find

65

Desired degree is 3

1

2 1

9 5 2

7 6 5 3

15 12 11 9 8 5 2

0

1

2

3

4

5

6

8

9

Run 0 : select 0 and 4

0 0 0 0 0 0 0 0

Degree List of the Buffer

After the Reset

Store in the No.6

6 0 5

0 0 0 7 6 5 3 1

Run 1 : select 0 and 6

Store in the No.2

7 6 5 3 1

2 0 4

7

0 0 0 0 7 6 5 3

7 6 5 3

Initialize

Figure A.5: Inverse operation while coding

that the outcome is the same with that in no.4, a codeword we have already obtained. In

such a case, we contain the same packets again.

These two kinds of operations cause serious result. It is probably that the combina-

tions of codewords in the buffer are occupied by some particular codewords. If one repeated

codeword is stored in the buffer, the opportunity that this codeword is picked up when we

uniformly choose one for encoding is much higher than others. If the outcome of the opera-

tions involving these repeated codewords result in more repeated codewords unfortunately,

packets in the whole buffer will obtain a certain specified information, causing tragedy. We

illustrate in Fig A.6.

Fig A.6(a) show the degree of each packets in the buffer. We observe that there exists

66

Desired degree is 3

1

2 1

9 5 2

7 6 5 3

15 12 11 9 8 5 2

0

1

2

3

4

5

6

8

9

Run 0 : select 2 and 4

Degree List of the Buffer

0 0 0 0 0 0 0 0

Run 1 : select 3 and 7

Store in the No.1 (Damage)

7 6 5 3 1

7

7 6 5 3

7 6 5 3

7 6 5 3 1

0 0 0 0 0 0 0 1

Run 2 : select 1 and 7

Store in the No.5 (Damage)

0 0 0 0 7 6 5 3

Do not store (Null operation)

(a)

1

1

7 6 5 3

15 12 11 9 8 5 2

0

1

2

3

4

5

6

8

9

Degree List of the Buffer

7 6 5 3 1

7

7 6 5 3

7 6 5 3

7 6 5 3 1

7 6 5 3

(b)

Figure A.6: (a) Step I. (b) Step II.

two kinds repeated degree combinations stored in no.2 to no.4, and no.6 to no.7. If we

have three coding runs marking in the right. The first causes the null operation because

the outcome is zero due to the two packets with the same degree list. It costs our coding

time for this useless operation. In run 2, since packet from no.2 no.4 is the same, we have

higher probability to select this codeword since it weights a ratio of 3/9 of total buffer. The

outcome after operation in run 1 should be stored in the first region of buffer. If the FIFO

mechanism in this region points it to store in no.1, we will overwrite the existed codeword.

The condition after in run 2 resembles that in run 1. After the two runs, we find that the

variety of the degree list is significant reduced, meaning the information loss. Now that

number of the degree category is decreasing from 6 down to 4. The ability to encode a

codeword with different degree list degrades vitally. Namely, we will encode more same

packets. Once a certain number of repeated are stored in the buffer, the higher probability

we choose them during coding, causing more same packets in the buffer due to two kinds of

operation described above. The situation goes from bad to worse quickly, hence, we call this

avalanche damage.

67

A.3.3 Note

Labeling the transmitted packet in the buffer can not avoid avalanche damage, causing

repeated codewords as well.

A.4 Repeated Codeword Table

A.4.1 Thought

The repeated codewords can not be solved if we just control in the buffer because the same

codewords may appear again even we label it in the buffer. In order to eliminate this

drawback, we retain that in every transmission.

What bothers fatally the same codewords lowering the utility. We have to assure every

packet sent into network possesses different degree components. Thus, we create a look up

table to record what we have transmitted and we have to check the codeword degree list

in every transmission. That is, we set up a guard to manage every packet outgoing to the

network.

At the same tine, LT code places importance on the distribution and it does not care

much about whether the codeword of a particular degree is encoded early or late as long

as the distribution a sink receives the same with what design. This property gives us a

opportunity to lower the xor operation times, speeding up the encoding. Fig A.8 illustrate

the modified encoding flow chart.

Compared to Fig A.2, we add three blocks including Check dcoding in distribution table,

Update distribution table, and Update repeated LUT.

Distribution table is used to record the difference between the desired degree distribution

and real coded one. We explain the functionality in Fig A.7.

68

1 2 3 4 5 … 16

Desired degree = 5 ; Real degree = 3

17 18 19 20

0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 … 16 17 18 19 20

0 0 +1 0 -1 0 0 0 0 0 0

Figure A.7: Distribution table

The top table in the figure is the initiation with max degree 20. If the desired degree of

one encoding run is 5 and that of the real transmission is 3. We will update the table by

adding 1 to degree 3 and subtracting 1 to degree 5. Thus, the positive number represents

the extra quantity that we transmit at this degree compared to the desired one. Similarly,

negative number represents lack and 0 represents even. The previous method to treat the

packet that dcoding is not equal to ddesired is merely to store it. If we are short of this kind

of packet that we should have transmitted before, we have to compensate for that in some

transmission somehow to modify the distribution. So, when we encode a degree that is not

match to ddesired, we should check the table to see if we should transmit this codeword to

resupply. If we find number of dcoding in the distribution table, we can therefore transmit it

and update it by adding one in dcoding and subtracting one in ddesired. Although the desired

degree is discarded after this transmission, there still have chance to compensate for it in

another coding procedure. By doing this, we can save the operation time and balance the

distribution as well.

On the other hand, if we can not create the codeword and find that there is no loss in

the distribution table, we still have to choose a packet in the buffer. In this situation, we

also have to update table.

69

Give the desired

degree ddesired

Search same

degree in buffer

Is Any?
Encoding & check

repeated LUT

Start

Equal

ddesired ?

Finish

Store in buffer&

check iteration

Stop

Criteria?

Y

Y

Y

N

N

N

Randomly select

one packet

Update

transmitted label

Update repeated

LUT

Check dcoding in

distribution table

Smaller

than 0 ?

Update

distribution table

N

Y

Repeated ?

Y

N

Figure A.8: Modified encoding flow chart adding repeated LUT and distribution table

The repeated look up table is used to record every degree list we have transmitted up to

now. As long as we decide the packet we want to transmit at this coding cycle, we have to

record it. Another condition is that we have to check repeated LUT when a new codeword is

created. If we find this codeword is in LUT, we will discard it and encode again. According

to this additional restriction, we can avoid any repeated codeword in the buffer.

Because we have no idea when will the transmission ends, we have to use a dynamical

storage to record repeated codeword. Besides, in order not to waste lots of time in checking

repeated LUT, we arrange the degree lists in the LUT in the order based on degree. And

70

we will record the boundary of each degree to indicate the start point and end point for

checking.

A.4.2 Phenomenon

After this modification, we find that the result still doesn’t get improved. We find that the

distribution of every sink get tiny difference proving that the distribution performs well and

the codewords are not repeated. Why the result don’t get enhanced?

We look back to the concept of the relation between original data and encoded codewords.

Since the coding can be viewed as the linear mapping between two space. However, we hope

that the dimension of codeword space should be as large as the original data that we can

recover them by some computation. However, when we coding only in the source, we find

that the packets we create get pretty high opportunity to span a space as original data.

Of course, the efficiency get max if your encoded space is identical to the original space,

meaning the encoded codewords are linearly independent. When we apply coding in the

intermediates, we can simply encode based on the received symbols. The scale of space we

can span will enlarge with the more received packets in the buffer. However, the buffer size

is limited and we may do coding times to times in a coding cycle, causing the packets in the

buffer resemble to each other. Even we can encode non-repeated codewords, the packets we

send are too similar that we can not offer enough information for sinks to recover data.

A.4.3 Note

Coding in the intermediates cause that the whole packets are with higher dependence and

can not offer enough information for sinks.

71

A.5 Constraints Alteration on Intermediates

During the discussion above, we do coding in the intermediates that the total incoming

capacity is larger than total outgoing capacity. We discover that we can not span out

larger space to enhance the throughput. Now that we want to carry more information, we

change the condition to do coding in the intermediates where the bottlenecks occurs. At the

meantime, we try another case that we let every intermediate do coding in the whole system

during transmission. The corresponding results are showed below.

10 20 30 40 50 60 70 80 90 95 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Decoded percentage (%)

T
hr

ou
ph

ou
t (

 c
od

ew
or

ds
 /

ru
n

)

LT Code with different coding mechanisms @ Butterfly Network, file size 4MB, buffer size 1K, Loss rate 0%

Max

LT+XOR

LT+FIFO

LT in Bottleneck

LT except Bottleneck

LT in every Intermediates

Figure A.9: LT-network code with different coding mechanisms

We show four kinds of coding mechanisms in Fig A.9. Every method we propose here

is that if the intermediates need coding, they will obey the LT degree distribution we de-

sign. The first FIFO+LT is the method let node W do sample XOR operations between two

received codeword symbols, and we can see that the equivalent throughput is the best com-

72

pared to other mechanisms. Only FIFO mechanism let intermediates do pass-and-forward

as routing does. Coding in the bottleneck is that we do coding only in the node W where

there are two incoming edges but only one outgoing edge. Coding except bottleneck let in-

termediates do coding except the node W. The final mechanism let every intermediate do LT

encoding during the process. We find that if we do coding except node W in order to avoid

the repeated codewords delivery due to the edge disjoint paths, the throughput doesn’t get

enhanced but lower. The result seems get slightly improved in the case that we do coding in

the node W when the completeness of every sink is in the range from 0% to 80%. However,

it drops down eventually and can not upgrade the throughout approach to the theoretical

maximum. In the last method, we let every intermediate do coding. We find that the result

get much worse than we expected. The reason we conjecture is that the encoding process

in the intermediates causes the code structure mixed up so that what the sink receive will

become some pieces of the shorten and split code structure. The connection of the codewords

weakens so that even the received codewords in the sinks differ a tiny minority, the damaged

LT code can not achieve high throughput.

A.6 Summary

We have tried hard to resolve the repeated codewords problems to hope we can give a generic

solution to enhance throughput and work in vain. The described method above are offered

as the experience. We point out the problems to degrade the throughput while applying LT

code of whole network in our experiments. We give some direction for further study on this

issue. Any discussion and command is welcome.

73

Bibliography

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, Network information flow, IEEE Trans.

Inf. Theory, vol. 46, no. 4, pp. 1204-1216, Jul. 2000.

[2] R. W. Yeung, S.-Y. R. Li, N. Cai, Z. Zhang, Theory of Network Coding .

[3] T. Ho, R. Koetter, M. Médard, D. R. Karger and M. Effros, ”The Benefits of Coding

over Routing in a Randomized Setting, ” IEEE International Symposium on Information

Theory, 2003.

[4] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, ”A

Random Linear Network Coding Approach to Multicast, ”IEEE Transactions on Infor-

mation Theory, vol. 52, no.10, pp.4413-4430, 2006.

[5] D. B. West, Introduction To Graphy Theroy, -2nd ed, pp. 176-180, N.J.:Prentice-Hall,

2001.

[6] T. H. Cormen, C. E. Leisersin, R. L. Rivest, and C. Stein, Introduction to Algorithm

-2nd ed, pp.651-691, NcGraw-Hill, 2001.

[7] D. J. C. MacKay, ”Fountain codes”,IEEE Proc.-Commun, vol.152, no.6 , pp.1062-168,

Dec 2005.

[8] A. Shokrollahi, ”Raptor Codes,” IEEE Transactions on Information Theory, vol.52,

no.6 pp. 2551-2567, Jun. 2006.

74

[9] M. Luby and ”LT Codes,” Proc. 43th IEEE Symposium on Foundations of Computer

Science, pp.271-282, Nov. 2002.

[10] R. Koetter and M. Médard, ”An Algebraic Approach to Network Coding,” IEEE/ACM

Transactions on Networking, vol. 11, no. 5, pp.782-7952, Oct. 2003.

[11] S.-Y. R. Li, R. W. Yeung, and N. Cai, ”Linear Network coding,” IEEE Transactions

on Information Theory, vol. 49, no. 2, pp. 371-381, Feb. 2003.

[12] C. Fragouli and E. Soljanin, ”A connetcion Between Network Coding and Convolutional

Codes,” IEEE Transactions on Information Theory, vol. 2 pp. 661-666, Jun. 2004.

[13] C. Fragouli and E. Soljanin, ”Information Flow Decomposition for Network Coding,”

IEEE Communications Society, vol. 52, no. 3, pp. 829-828, March. 2006.

[14] C. Fragouli, E. Soljanin, and A. Shokrollahi, ”Network Coding as a coloring Problem,”

Proc. Conf. Information Sciences and Systems, Mar. 2004.

[15] H. Wang and C.-C. J. Kuo, ”Robust video multicast with joint network coding and

AL-FEC,” Proc. IEEE International symp. Circuits and Systems, May. 2008.

[16] H. Zhu, C. Zhang and J. Lu, ”Designing of Fountain Codes with Short Code-Length,”

Proc. 3rd International Workshop. Signal Design and Its Applications in Communica-

tions, pp. 65-68, Spet. 2007.

[17] M. Langberg, A.Sprintson and J. Bruck, ”Network Coding: A Computational Perspec-

tive,” 40th Information Sciences and Systems Conference, March. 2006.

[18] Z. Li, B. Li, D. Jiang and L. C. Lau, ”On achieving optimal throughput with network

coding,” Proc. IEEE Joint Conf. IEEE Computer and Communications Societies, vol.

3, pp. 2184-2194, Mar.2005.

75

	封面
	中英文摘要
	誌謝
	組合 1.pdf
	9511659.pdf

