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Abstract 
An automatic algorithm using complexity information for the floating point to 

fixed point conversion is proposed. The goal of the proposed algorithm is to 

minimize the hardware complexity and reduce the simulation times. The algorithm 

considers both the integer bit width and the fraction bit width. For the integer bit 

width, the algorithm identifies numbers of the integer bit width to prevent the 

overflow. For the fraction bit width, the algorithm uses the lower bound and the 

upper bound to find the results. We apply the proposed algorithm to the OFDM 

system. The results show that the proposed algorithm reduces almost 30% 

simulation time than complexity-and-distortion measure and sequential search 

method.
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研究生：陳彥宇          指導教授：周景揚博士 
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摘要 

我們提出使用複雜度資訊的自動化轉換浮點數到固定點數演算法，演算法

的目標是縮小硬體複雜度並且同時減少模擬時間。我們提出的演算法同時考慮

到了整數以及小數的位元寬度。對整數的位元寬度來說，演算法決定需要多少

位元寬度以避免溢位。對小數位元寬度來說，我們提出的演算法使用上邊界以

及下邊界來得到最後的結果。我們把提出來的演算法應用在正交多頻多工系統

上面。結果顯示提出來的演算法比循序搜尋法以及複雜度誤差度量測法減少大

約 30%的摹擬時間。 
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Chapter 1 

Introduction 

1.1 Technology Trend 

Most digital signal processing system algorithms are first developed in high 

level language (such as MATLAB and C) in floating point representation for high 

precision, but in practical digital hardware implementation, the floating point 

representation is transferred to the fixed point for low power, area and latency.  

The procedure of the bit width determination is traditionally made manually. 

For a complex design, more than 50% of the design time is spent on the floating 

point to fixed point conversion [1]. Because the floating point to fixed point 

conversion is done manually, it is time consuming and error prone. There are many 

approaches developed in several languages for the floating point to fixed point 

conversion [3], [4]. 

Optimizing bit width is a NP-hard problem and has been the focus of 

numerous research contributions [2] in the past decade. Strategies for the floating 

point to fixed point conversion can be roughly categorized into two groups. One 

group is the analytic approach, and the other one is the simulation-base approach. 
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1.2 Analytic Approach 

First strategy is analytic approach. It analyzes the finite bit width effects due to 

the fixed point arithmetic. The technique introduced in [5] exploits advances in 

interval representation methods from affine arithmetic and the power of a 

probabilistic bounding method to dramatically reduce the pessimism of error 

estimation. The MiniBit is presented in [6]. It also uses affine arithmetic and the 

analytical error models for range analysis and utilizes the ASA (adaptive simulated 

annealing) for the precision analysis. The MiniBit+ was proposed in [7]. It 

combines the interval and affine arithmetic for range analysis. Fang et al. employ 

affine arithmetic for modeling range and precision analyses [8]. While the use of 

affine arithmetic to model precision error is demonstrated, the authors do not use it 

to optimize the actual bit width. 

Results of analytic approach are obtained in short time, because analytic 

approach does not have to simulate the system. Although the analytic approach is 

fast, the results of the analytic approach are considered to be more conservative. 

However, the analytic approach is not suitable for large systems because numerous 

loops could make results of signals divergent. 

2 



 

1.3 Simulation-based Approach 

The second strategy is the simulation-based approach. Because results of the 

analytic approach could be too pessimistic to reduce total hardware, the 

simulation-based approach monitors the signals of the system to determine the 

integer bit width and the fraction bit width. Without special care on the large 

number of loops, the simulation-based approach is better than the analytic approach 

in complex systems.  

Some algorithms search optimum bit width without error distortion 

information [9], [10]. Exhaustive search [9] and branch-and-bound procedure [10] 

can find an optimum bit width. However, these algorithms have an unrealistic 

search space as the number of variable increases. C.Y. Wang et al. proposed a 

hybrid word length determination algorithm [14], but the algorithm only utilizes in 

the pipelined FFT processors. Babb et al. have developed the BITWISE compiler 

[11], which determines the precision of all input, intermediate and output signals in 

a synthesized hardware design from a C program description. Execution time, 

however, increases exponentially when the number of signal increases. 
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1.4 Motivation 

As mentioned above, the analytic approach is not suitable for complex systems, 

so we propose a simulation-based approach to determine the bit width of the 

OFDM system. 

S. Roy et al. proposed an algorithm that obtains the uniform bit width first 

[12](it means every variable has the same fraction bit width), and then further 

reduces the bit width from the uniform bit width. It only considers the total bit 

width as the objective cost, but in practical systems the total hardware cost should 

also consider the functional units. 

K. Han et al. proposed the sequential search for the word length optimization, 

but the algorithm only considered the error distortion [17]. Distortion and 

complexity measure are further proposed by K. Han. Both error distortion and 

hardware complexity are concurrently considered. 

The previous two works only increase one bit in each simulation. Here we 

proposed a new algorithm, which combines the features of previous two algorithms, 

to reduce the simulation time and the algorithm in term of the error and hardware 

complexity. 

1.5 Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 introduces the OFDM 

system for our experiment, the difference between the floating point and the fixed 

point, problem formulation and three algorithms which are closely related to 

proposed algorithm. In Chapter 3, proposed algorithm is presented in detail. 

Experimental results are showed in Chapter 4. Finally, the conclusion is made in 

Chapter 5 
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Chapter 2 

Preliminary 

2.1 The OFDM System 

The OFDM system used in the case study is obtained from [13]. Figure 2.1, 

Figure 2.2 and Figure 2.3 depict the OFDM system blocks. Figure 2.1 depicts the 

transmitter architecture part of the system. Figure 2.2 depicts the receiver 

architecture part of the system. Figure 2.3 deeply depicts the channel estimator 

block of the receiver architecture. 

 

Figure 2.1 Transmitter architecture of the OFDM system 
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Figure 2.2 Receiver architecture of the OFDM system 

 

Figure 2.3 Channel estimator of the OFDM system
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2.2 Floating Point and Fixed Point 

There are two ways in numeric representation. One is floating point and the 

other one is fixed point. Floating point representation has wider range and fixed 

point has less complexity in hardware implementation. 

2.2.1 Floating Point 

 

Figure 2.4 Floating point representation 

The floating point representation is showed in Figure 2.4. The bit width of the 

floating point contains one sign bit, exponent bits and mantissa bits. The name 

floating point comes from the fact that the radix point can float. It means that the 

radix point can allocate anywhere relative to the significant digits of the number. 

The first thing to add or subtract two floating points is to represent them with 

the same exponent and shift the mantissa bits. Because the exponent bits have to be 

checked and mantissa bits be shifted, it will be more complicated than fixed point 

representation in practical hardware implementation. 
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In the Case 2.1 below, the second number is shifted right by two digits, and we 

process it with the normal addition.  

 

 

Case 2.1 Two floating point addition 

 

2.2.2 Fixed Point 

 

Figure 2.5 Fixed point representation 

The fixed point representation is showed in Figure 2.5. The radix point 

separates the integer part and fraction part. 

In contrast to floating point representation, the radix point of fixed point 

already fixed. It means that the radix point can not move anymore after the bit 

width determination of the integer part and the fraction part.
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Unlike the addition and subtraction of floating point, the addition and 

subtraction of fixed point just add or subtract the integer part and the fraction part 

individually, and with carry out if necessary. 

 

 

Case 2.2 Two fixed point addition 

 

Two fixed point numbers with the same bits in Case 2.1 is showed in Case 2.2. 

Because the addition in fixed point representation does not compare the exponent 

bits and shift the mantissa bits, it needs less hardware than floating point does.
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2.3 Problem Formulation 

The bit width is a set of N bit widths of a system and is defined to be a bit 

width vector as follow: 

                               1 2{ , , , }NW w w w .=                         (2.1) 

Assume that the objective function f is defined by the sum of every bit width 

implementation hardware cost function c as 

                               
1

( ) ( )
N

k k
k

f W c w
=

=∑                           (2.2) 

The error function p indicates the bit error rate and is constrained as below, 

and Preq is a constant for a required error constraint. 

                                ( ) reqp W p≤                                (2.3) 

The lower bound bit width set is denoted by LB and the upper bound bit width 

set is denoted by UB. The lower bound and upper bound of each variable are also 

considered as constraint: 

                                        (2.4) _ _ , 1,...,k LB k k UBw w w k≤ ≤ ∀ = N

The complete bit width optimization problem can be stated as: 

            rmin ( ) ,  ( ) ,
N eq

W I
f W subject to p w p LB W UB

∈
≤ ≤ ≤         (2.5)

8 



 

2.4 Previous Works 

S. Roy and P. Banerjee proposed an algorithm to determine the bit width in 

MATLAB [12]. Figure 2.6 shows the complete flow of the algorithm. First, the 

algorithm determines the integer bit width. Second, the algorithm generates the 

fixed point form of MATLAB. Third, the algorithm simulates the floating point 

version and fixed point version to record the error metric. Fourth, the coarse 

optimize will be executed to find a rough solution. Finally, the fine optimize will be 

executed to further minimize the bit width. 

 

Figure 2.6 Complete flow of the algorithm
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The Coarse_Optimize phase of the automatic algorithm follows the 

divide-and-conquer approach to quickly move closer to the optimal set. They vary 

the fraction bit width to get a set of coarse optimized fraction bit width, which are 

all equal. 

The accuracy of the output of an algorithm is less sensitive to some internal 

variables than to others. Hence, starting from the coarse optimal point, they apply 

Fine_Optimize algorithm to the coarse optimized variables. They do not perform 

finer optimization directly from the start because it will take a long time to 

converge. The Fine_Optimize algorithm basically tries to find out the variable 

whose impact on the quantization error is the smallest and to reduce fraction bit 

width in such variables as long as the error is within the EM constraint. Then, it 

tries to find a variable whose impact on the error is largest and increase one fraction 

bit while simultaneously reducing two bits in the variable with the smallest impact 

on the error, thereby reducing one bit overall. It performs such bit reductions 

iteratively until the EM constraint is exceeded. 

The algorithm only reduces the complexity by choosing the total bit-width as 

the objective function. The impact of bit-width on area should depend on the 

functional unit. 
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K. Han et al. proposed sequential search for word length optimization [17]. 

The basic notion of sequential search is that each trial eliminates a portion of the 

region being search. The sequential search method decides where the most 

promising areas are located, and continues in the most favorable region after each 

set of simulations. 

The principles of sequential search in n dimensions can be summarized in the 

following four steps: 

1. Select a set of feasible values for the independent variables, which satisfy 

the desired performance during one-variable simulation. This is a base 

point. 

2. Evaluate the performance at the base point. 

3. Choose the feasible locations at which evaluate the performances and 

compare their performance 

4. If one point is better than others, move to the better point, and repeat the 

search, until the point has been located to within the desired accuracy. 

 

The sequential search only considers the error distortion and does not consider 

the hardware complexity, either. Therefore, K. Han and B.L.Evans further proposed 

the complexity and distortion measure for the bit width determination [16].  
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The complexity-and-distortion measure combines the hardware complexity 

measure with the error distortion measure by a weighted factor. In the objective 

function, both hardware complexity and error distortion are simultaneously 

considered. They normalize the hardware complexity and the error distortion 

function by multiply them with hardware complexity and error distortion weighting 

factors respectively. 

Setting the hardware complexity and error distortion weighted factor from 0 to 

1, the complexity and distortion method searches for an optimum word length with 

tradeoffs between only hardware complexity measure and error distortion measure 

method. 

The complexity-and-distortion measure method can reduce the number of 

iterations for searching the optimum word lengths, because the error distortion 

sensitivity information is utilized. This method can more rapidly find the optimum 

word length that satisfies the required error constraint by using fewer iteration 

compared to the complexity measure method. However the word lengths are not 

guaranteed to be optimal in terms of the hardware complexity. 
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Chapter 3 

Proposed Algorithm 

3.1 Fixed Point Bit Width Determination 

In digital system, there are two numeric representations, floating point and 

fixed point. Floating point representation allocates one sign bit and a fixed number 

of bits to exponent and mantissa. In fixed point representation, the bit width is 

divided for the integer part and the fraction part. When designers develop 

high-level algorithms, floating-point formats are usually used because of its 

accuracy. Floating point representation can present very large range. In hardware, 

the floating point representation needs to normalize the exponents of the operands 

and it costs lots of hardware. Floating point representation is usually transferred to 

fixed point representation to reduce the total hardware cost. 

As mentioned above, fixed point representation is composed of the integer part 

and the fraction part. The number of bits assigned to the integer part is called 

integer bit width (IBW), and the number of bits assigned to the fraction part is 

called fraction bit width (FBW). The complete fixed point bit width can be 

represented as: 

 

BW = IBW + FBW. 
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Figure 3.1 Flow of bit width determination 

The total bit width determination procedure is showed in Figure 3.1. First of 

all, the integer bit width is calculated to prevent overflow. Then, the iteration 

procedure is used to minimize the fraction bit width to reduce the total hardware 

cost. 

The integer bit width has to be long enough to prevent overflow. By 

monitoring the signals of the system, the minimum and the maximum value of the 

signals are obtained, and the integer bit width can be also obtained. 

 

Integer bit width = log2 (max (|MAX|, |MIN|)) + 2. 

After assigning the integer bit width, there are three steps to determine the 

fraction bit width. First, the uniform fraction bit width is determined to be the upper 

bound of the algorithm. Second, the individual minimum bit width of every 

variable is calculated to be the lower bound. Finally, the bit width will be fine tuned 

between the upper bound and the lower bound for each variable.
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3.2 Upper Bound Determination 

In order to accelerate the fraction bit width determination procedure, the 

uniform fraction bit width is calculated to be the upper bound. The uniform fraction 

bit width means that every variable has the same fraction bit width. A binary search 

approach is used to quickly obtain the uniform fraction bit width. 

 

Upper-Bound-Determination ( UB, error_ constraint ) 

begin 

1. Set H to highest bit width and set L to lowest bit width, M = ( H + L)/2; 

2. Calculate the BER for all variables having the M fraction bits; 

3. While ( !(( BER < error_constraint ) and (0 ≤ M-L ≤ 1) and (0≤ H-M ≤1) ) ) 

4.       if (BER < error_constraint ) 

5.              replace H by M, M = floor (( H + L)/2 ); 

6.       else    replace L by M, M = floor(( H + L)/2 ); 

7.       Calculate the BER for all variables having the M fraction bits; 

8. for ( j from 1 to N ) 

9.       UB[j] ← M; 

10. return UB; 

end; 
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Figure 3.2 Upper bound of the algorithm 

The uniform fraction bit width determination procedure is showed in Figure 

3.2. The fraction bit width determination procedure will repeat until it meets the 

condition. We obtain a uniform bit width set which is denoted by UB and the upper 

bound of every variable. The upper bound of the jth variable is denoted by wj_UB. 

Because the fraction bit width determination procedure uses binary search approach, 

it will not spend too much time to find the uniform fraction bit width.
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3.3 Lower Bound Determination 

In order to minimize the total hardware cost, it has to determine the minimum 

individual fraction bit width when other variables remain as upper bound. The 

individual minimum fraction bit width will be the lower bound, and the fine tuning 

process will start from the lower bound. 

 

Lower-Bound-Determination ( W, UB, LB, error_constraint )  

begin 

1. for ( i from 1 to N) 

2.    for ( j from 1 to N ) 

3.        if ( j != i )  Set WLB[j] as UB[j]; 

4.    LB[i] ← minimum_bit_width( WLB, error_constraint); 

5. return LB; 

end; 
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Figure 3.3 Lower bound of the algorithm 

The lower bound determination procedure is showed in Figure 3.3. We only 

choose one variable and set the variable to fixed point each time, while other 

variables remain as upper bound. We use the binary search to find the minimum bit 

width of the variable. We determine every variable in order and finally obtain a 

lower bound bit width set, which is denoted by LB. The lower bound of jth variable 

is denoted by wj_LB.  

Because the determination procedure uses the binary search for the minimum 

individual fraction bit width as well, the minimum individual fraction bit width, 

which will be the start point of fine tuning process, is obtained quickly. 
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3.4 Fine Tuning Process 

3.4.1 First Stage 

There are two stages of the fine tuning processes, the first stage will increase 

the fraction bit width to meet the error constraint, and the second stage will reduce 

the fraction bit width to reduce hardware complexity under error constraint. 

In the first stage, after obtaining the lower bound and the upper bound of the 

fraction bit width, there is a bit width set which all variables are set to their lower 

bound, and the bit width set will be the first candidate.  

First of all, the candidate will be simulated and the bit error rate will be 

recorded. If the bit error rate of the candidate meets the error constraint, it means 

the candidate is the minimum bit width set so the fine tuning process will be 

terminated. If the bit error rate of the candidate does not meet the error constraint, it 

means that the candidate is not long enough to represent the value exactly and the 

candidate has to be increased.  

Second, only the bit width of one variable in the candidate is set to the upper 

bound each time while other variables do not change, and each bit width sets is 

called one combination. Those combinations will be simulated. There will be n 

bit-error-rate and hardware cost first, and all of the combinations will be checked to 

find out if any combination meets the error constraint.  

Third, if there are more than one combinations meet the error constraint, the 

combination which has the smallest △cost will be chosen to be new candidate.  

△cost denotes the difference of the hardware cost between the combination and the 

candidate. The smallest △cost indicates the variable of combination increases the 

smallest hardware cost.
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Finally, if no combination meets the error constraint, the combination which 

has the smallest ratio ( | △cost | / | △BER | ) will be chosen to be the new 

candidate. △ BER denotes the difference of the bit error rate between the 

combination and the candidate. The smallest ratio ( | △cost | / | △BER | ) means 

that the combination increases the smallest hardware cost in the same bit error rate. 

The combination which has the smallest ratio will not be simulated next time, 

because the variable of the combination already be the upper bound and can not 

increase anymore. The procedure will repeat from the second step and simulate the 

combinations until any combination meets the error constraint. The total flow is 

showed in Figure 3.4 below. 

 

Figure 3.4 Flow of the first stage of fine tuning process 
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Figure 3.5 Simulated combinations for first stage of fine tuning process 

W denotes the bit width set of variables. WFS is an empty set. wj represents the 

bit width of jth variable. There are N variables in the system. The bit width set of 

the W and WFS will be the candidate. We simulate |W|, which means the number of 

variable in the set, combinations. Figure 3.5 shows an example of the simulating 

|W| combinations first time. We only set the bit width of one variable in the W to 

the upper bound and other variables remain the same bit width. Every bit width set 

is one combination. After simulating |W| combinations, if there is no combination 

meeting the error constraint, we choose the combination k having the smallest ratio 

( | △cost | / | △BER | ). We set wk to the upper bound and put wk into the WFS, it 

means wk can not increase anymore. We remove wk from W so that it reduces one 

simulation next time. 

If there are more than one combination meeting the error constraint, we 

choose the combination m having the smallest | △cost |. We set wm to the upper 

bound and put wm and the rest variables of W into WFS. WFS denotes the variables 

which already meet the upper bound (from wk and wm) and the variables which 

remain the lower bound (from W). Now, WFS is the bit width set which meets the 

error constraint. 
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3.4.2 Second Stage 

After first stage of the fine tuning process, the candidate already met error 

constraint. The second stage will reduce the fraction bit width under error 

constraint in order to minimize the hardware cost. 

First, the every variable is set to half of sum of the lower bound and the bit 

width of the candidate, each bit width set is one combinations. We simulate the 

combinations. 

Second, if any combination meets the error constraint, the combination which 

has the biggest ratio ( | △cost | / | △BER | ) are chosen. It means that the variable 

of the combination has the biggest hardware cost in the same bit error rate. For the 

combinations which do not meet the error constraint, the lower bounds of these 

combinations are updated to half of sum of the original lower bound and the bit 

width of the variables in the combinations. We repeat the procedure until the lower 

bound could not update anymore. 

Finally, if the bit width set of the candidate is equal to lower bound, it means 

that the bit width could not be further reduced. We terminate the second stage of 

the fine tuning process and obtain the final result.
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Figure 3.6 Flow of the second stage of fine tuning process 

 

The total flow of the second stage of fine tuning process is showed in Figure 

3.6 above. WLB denotes the variables which are equal to lower bound. Because the 

variables in WLB are already equal to lower bound, the bit width of these variables 

can not reduce anymore and we remove these variables from W. Figure 3.7 shows 

the combinations for the second stage of fine tuning process. Like first stage of fine 

tuning process, we only set one variable to half of sum of bit width of variable and 

its lower bound while other variables remain the same. Each bit width set is one 

combination. 
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Figure 3.7 Simulated combinations for second stage of fine tuning process 

Subsequently, we simulate |W| combinations. If there is more than one 

combination meeting the error constraint, we choose the combination k having 

largest ratio ( | △cost | / | △BER | ) and set wk to (wk + wk_LB) / 2. The variables in 

the combinations which meet the error constraint but have smaller ratio than 

combination k remain the same bit width in WFS. If combinations do not meet the 

error constraint, we set the lower bound of the changed variable in the 

combinations to half of sum of bit width of variable and its lower bound. We will 

check if there is variable equal to its lower bound. If it is, we remove the variable 

from |W| and put it into WLB. 

Finally we will check if W is an empty set. If the W is an empty set, it means 

that W can not reduce anymore and we terminate the process. Otherwise, we repeat 

the procedure until the W is equal to lower bound.
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Figure 3.8 Example of the first step of fine tuning first stage 

The first stage of fine tuning process is showed in Figure 3.8. The figure 

indicates that there is no combination which meets the error constraint. Since there 

is no combination meeting the error constraint, the combination which has the 

smaller ratio ( | △cost | / | △BER | ) will be picked to be the new candidate. The 

procedure repeats because the bit error rate of new candidate does not meet the 

error constraint. 
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Figure 3.9 Example of the second step of fine tuning first stage 

 

The combination meets the error constraint in the first stage of the fine tuning 

process showing in Figure 3.9. After first choice of the combination, there are only 

two combination and the combinations are individually simulated. In these two 

combinations, only the first combination meets the error constraint. Even if the 

second combination has the smaller ratio ( | △cost | / | △BER | ), it does not meet 

the error constraint, so the first combination is chosen to be the new candidate and 

go to the second stage of fine tuning process. 
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Figure 3.10 Example of the first step of fine tuning second stege 

 

The second stage of fine tuning process is showed in Figure 3.10. Lower 

bounds of three variables are 3, 4 and 2, so the bit width of first variable in the first 

combination is  

(3 + 6) / 2 = 4.5 

The bit width of first variable in the first combination is 4 because the bit 

width has to be integer and the final goal is to minimize the hardware cost. The bit 

width of the variables in the first combination is 4, 6 and 2. The bit width in the 

second combination can be obtained in the same way. Because the third 

combination already meets the lower bound, we do not simulate this combination.
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The first combination is chosen to be the new candidate and the process 

repeats because it is the only combination which meets the error constrain. The 

second combination does not the error constraint so the lower bound of the second 

variable is updated to 5. 

 

Figure 3.11 Example of the second sep of fine tuning second stage 

The end of the fine tuning process is showed in Figure 3.11. The bit width in 

the combinations is calculated in the same way. For two combinations, these 

combinations are simulated and both of they do not meet the error constraint. 

The combinations do not meet the error constraint, and then we update the 

lower bound. Since the new lower bound is equal to the candidate, it means bit 

width can not reduce anymore, so we terminate the procedure. Final result is {4, 6, 

2}.
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Chapter 4 

Experimental Results 

4.1 Experimental Information 

We use the OFDM system model which is provided in [15] and the systemC 

data type is used for our fixed point data format [18]. The main blocks in the 

receiver for finite bit width determination are the Fast Fourier transform (FFT), 

channel estimator and fine signal detection. For the bit width variables, we choose 

the most significant effect on the hardware complexity and bit error rate. Figure 4.1 

shows the receiver architecture of OFDM system. Figure 4.2 shows fine signal 

detection function block. Figure 4.3 shows the channel estimator function block. 

 

Figure 4.1 Receiver of the OFDM system 
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Figure 4.2 Fine signal detection of receiver 

 

Figure 4.3 Channel estimator of the receiver 

Either N-point FFT or IFFT needs 2
N log N
2

 multiplications, where N is the 

number of point. According to Figure 4.2, the pilot signal cancellation unit and the 

combiner unit need 8N multiplications for every two OFDM symbols. In Figure 4.3, 

the data interference cancellation unit and the pilot matching unit also need 8N 

multiplications for every two symbols. Furthermore, the coarse signal detection unit 

requires the same number of multiplications as the fine signal detection functional 

block, i.e. 8N multiplications per two OFDM symbols. The complexity is showed 

in the Table 4.1 and we assume that the complexity increases linearly as bit width 

increase to simplify demonstration. 

Table 4.1 Complexity of the receiver 

Variables w0 w1 w2 w3 w4 w5 

Hardware Complexity(multiplication) 1024 2048 1024 1024 1024 1024 
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4.2 Experimental Results 

In this section, we demonstrate three cases of the proposed algorithm for the 

OFDM system with error constraint of 0.0007, 0.001 and 0.001 and show how the 

proposed algorithm works. 

 

Table 4.2 Upper bound and lower bound of the all variables 
Variables Upper Bound Lower Bound

w0 15 5

w1 19 8

w2 19 8

w3 14 6

w4 12 12

w5 14 6

The upper bound and the lower bound of the simulation with error constraint 

of 0.01 and SNR of 18 are showed in Table 4.2. We start the algorithm from the 

lower bound with {5, 8, 8, 6, 12, 6}. This candidate does not meet the error 

constraint, and then we start the fine tuning process. 

The first stage of fine tuning process makes the candidate meet the error 

constraint in few simulation times. We set the w0, w3 and w5 to the upper bound 

and the candidate meets the error constraint. Then, we start the second stage of fine 

tuning process to reduce the total hardware complexity. After the 20th simulation, 

we update the lower bound and the candidate is already equal to the lower bound, 

so we terminate the fine tuning process and obtain the final results. The simulation 

result is showed in Table 4.3 below. 
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Table 4.3 Result of the proposed algorithm 
Variables Bit Width 

w0 6

w1 8

w2 8

w3 8

w4 12

w5 9

Table 4.4 Upper bound and lower bound of all variables 
Variables Upper Bound Lower Bound

w0 16 8

w1 20 8

w2 20 8

w3 15 7

w4 13 13

w5 15 8

The upper bound and the lower bound of the simulation with error constraint 

of 0.001 and SNR of 18 are showed in Table 4.4. We start the algorithm from lower 

bound with {8, 8, 8, 7, 13, 8}. This candidate does not meet the error constraint, 

and then we start fine tuning process. 

The first stage of fine tuning process makes the candidate meet the error 

constraint in few simulation times. We set the w0, w3 and w5 to the upper bound 

and the candidate meets the error constraint. Then, we start the second stage of fine 

tuning process to reduce the total hardware complexity. After the 17th simulation, 

we update lower bound and the candidate is already equal to the lower bound, so 

we terminate the fine tuning process and obtain the final results. The simulation 

result is showed in Table 4.5 below.
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Table 4.5 Simulation result of the proposed algorithm 
Variables Bit Width 

w0 9

w1 8

w2 8

w3 12

w4 13

w5 12

Table 4.6 Upper bound and lower bound of the all variables 
Variables Upper Bound Lower Bound

w0 17 9

w1 21 8

w2 21 8

w3 16 8

w4 14 14

w5 16 9

The upper bound and the lower bound of the simulation with error constraint 

of 0.0007 and SNR of 18 are showed in Table 4.6. We start the algorithm from the 

lower bound with {9, 8, 8, 8, 14, 9}. This candidate does not meet the error 

constraint, and then we start the fine tuning process. 

The first stage of fine tuning process makes the candidate meet the error 

constraint in few simulation times. We set the w0, w2, w3 and w5 to the upper 

bound and the candidate meets the error constraint. Then, we start the second stage 

of fine tuning process to reduce the total hardware complexity. After the 29th 

simulation, we update the lower bound and the candidate is already equal to the 

lower bound, so we terminate the fine tuning process and obtain the final results. 

The simulation result is showed in Table 4.7 below. 
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Table 4.7 Result of the proposed algorithm 
Variables Bit Width 

w0 10

w1 8

w2 9

w3 12

w4 14

w5 12

4.3 Comparison Results  

In this section, we compare the simulation results with the algorithm proposed 

by S. Roy et al. [12], sequential search proposed by K. Han et al. [17] and the 

distortion and complexity measured by K. Han et al. [16] .  

First, we compare the simulation results between proposed algorithm and the 

Roy’s algorithm. The comparison results of simulation times are showed in Table 

4.8 below. The comparison results of hardware complexity are showed in Table 4.9 

below. 

Table 4.8 Simulation times of two algorithms 
Algorithms Roy's Algorithm Proposed Algorithm 

BER = 0.01 203(100%) 20(9.6%) 

BER = 0.001 196(100%) 17(8.7%) 

BER = 0.0007 189(100%) 29(15.3%) 

Average 196(100%) 22(11.2%) 

Table 4.9 Hardware complexity of two algorithms 
Algorithms Roy's Algorithm Proposed Algorithm 

BER = 0.01 65536(100%) 60416(92.2%) 

BER = 0.001 71680(100%) 71680(100%) 

BER = 0.0007 84992(100%) 74752(88%) 

Average 74069(100%) 68949(93.1%) 
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Because we search the bit width between the upper bound, which is the start 

point of the algorithm proposed by S. Roy et al., and the lower bound. The 

proposed algorithm is almost ten times faster than Roy’s algorithm. Our algorithm 

also considers the hardware complexity as objective function, the hardware 

complexity results is better or equal to the algorithm S. Roy et al. proposed. 

Second, we compare the simulation results between proposed algorithm, the 

sequential search in term of the complexity and distortion measurement (CDM). 

The comparison results of simulation times are showed in Table 4.10. The 

comparison results of hardware complexity are showed in Table 4.11. 

Table 4.10 Simulation times of three algorithms 
Algorithms Sequential Search CDM Proposed Algorithm 

BER = 0.01 30(100%) 30(100%) 20(66.7%) 

BER = 0.001 30(100%) 30(100%) 17(56.7%) 

BER = 0.0007 30(100%) 30(100%) 29(96.7%) 

Average 30(100%) 30(100%) 22(73.3%) 

Table 4.11 Hardware complexity of two algorithms 
Algorithms Sequential Search CDM Proposed Algorithm 

BER = 0.01 59392(100%) 59392(100%) 60416(101.7%) 

BER = 0.001 66560(100%) 66560(100%) 71680(107.7%) 

BER = 0.0007 70656(100%) 70656(100%) 74752(105.8%) 

Average 65536(100%) 65536(100%) 68949(105.2%) 

It shows that the proposed algorithm reduces more almost 30% simulation 

times than CDM and sequential search averagely in Table 4.10. Because the 

proposed algorithm only set three variables to the upper bound (w0, w3 and w5) in 

BER = 0.01 and 0.001, the simulation time of the proposed algorithm could be 

fewer than CDM and sequential search. 
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Because he proposed algorithm set four variables to the upper bound (w0, w2, 

w3 and w5) in BER = 0.0007, it will take more simulation times to reduce the 

hardware complexity. 

It shows that the hardware complexity of the proposed algorithm is 5% more 

than CDM and sequential search averagely in Table 4.11. Because the proposed 

algorithm only set three variables to the upper bound in BER = 0.01 and 0.001 and 

four variables to the upper bound in BER = 0.0007, the bit widths of these variables 

have to be longer to meet the error constraint.
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Figure 4.4 Comparison result of BER = 0.01 
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Figure 4.5 Comparison result of BER = 0.001 
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Figure 4.6 Comparison result of BER = 0.0001 

The total comparison results are showed in Figure 4.4, Figure 4.5 and Figure 

4.6. If the simulation result of the algorithm locates closer to the origin of the 

coordinates, it means the algorithm has fewer simulation times or less hardware 

complexity. 

The comparison results of BER = 0.01, 0.001 and 0.0007 are showed in Figure 

4.4, Figure 4.5 and Figure 4.6. The results of proposed algorithm are closer to the 

origin than other algorithms in the simulation times. It means proposed algorithm 

can obtain the result without increasing too much hardware complexity.
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Chapter 5 

Conclusion and Future Work  
In this work, we proposed an algorithm that uses the lower bound and the 

upper bound to find the optimized bit width for the OFDM system. Proposed 

algorithm can reduce the simulation times than sequential search and CDM.  

According to the simulation results, proposed algorithm can reduce almost 

30% simulation times than CDM and sequential search. The proposed algorithm is 

almost ten times faster than the one proposed by S. Roy et al.  

We only consider the variables of the OFDM system for the case study. We 

will conduct experiments on other systems in the future.
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