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Abstract

Alternative techniques to cost-intensive or limited-access fabrication methods
with nanometre resolution have been under development for nearly two decades. Two
clear examples are electron beam and nanoimprint lithography technologies. The
main attributes of the electron beam lithography are as following:

1. Itis capable of very high resolution, almost to atomic level.
2. It is a flexible technique that can work with a variety of materials and almost

infinite number of patterns.

Nevertheless, electron beam lithography is a technique with limited throughput,
leading to high costs in device production. The contest of lithography techniques for
reliable fabrication of future integrated nanometer-scaled devices is not yet settled.
Nanoimprint is an emerging lithographic-technology that promises high-throughput
patterning of nanostructures. Based..on..the  mechanical embossing principle,
nanoimprint technique can achieve pattern resolutions beyond the limitations set by

the light diffractions or beam scatterings in other conventional technique.

In this thesis, we focus on the subjects which based on the materials for electron

beam and nanoimprint lithography:

(1)The behaviors of polymer under electron beam irradiation and the

applications

Structural transformation of polymers from linear to crosslinked structure by
using electron beam irradiation has been defined as the zwitter-polymers. The novel
sensitivity curve has been determined for the zwitter-polymer. The irradiation dose in

the center can create a ring pattern due to simultaneous exhibition of the positive tone
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and negative tone of zwitter-polymer. The natural logarithm dependence of ring width
and electron beam dose is linear in two ranges, irrespective of the dot design radius.
The heating effect is identified from 600 pC/cm’. Mathematical modeling for the
prediction of ring width for zwitter-polymer is achieved by considering the electron
scattering and heating effects. The results of experimental measurement and modeling
on ring width show a very good correlation. Furthermore, the polymer may exhibit
either linear and crosslinked behavior depending on dosage of the electron beam
irradiation. The property change from the structural transformation is suitable for
application of positive and negative tone resists in semiconductor field. The contrast
ratio and threshold dose both increase with increasing resist thickness for both the
positive and negative tones, however, the positive tone exhibits better contrast than

the negative tone.

The epoxy material, SU-8; has been successfully fabricated to oblique, concave,
and convex structures by a new electron-beam technology. We study the contrast,
sensitivity, etching, and thermal properties ‘of SU-8§, PMMA, and KrF resists and
evaluate their suitability for the fabrication of these structures. Among these resists,
SU-8 reveals the lowest contrast ratio, highest throughout, and best thermal stability,
and so it becomes the candidate material for patterning the oblique structures. The
technique that we have developed involves five regional exposures of a thick SU-8
resist layer with gradual increase of electron beam dosages. Furthermore, we discuss
the surface morphology, reaction mechanism, and hydrophobicity after subjecting the
SU-8 resist to a series of plasma treatments. The formation of surface nano-nodules
during oxygen plasma treatment explains the surface hydrophobicity. Furthermore,
oxygen plasma treatment increases the surface roughness of SU-8 polymer, while

minimizing the outgassing problem and stabilizing the SU-8 film. We have carefully
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evaluated the effects of the electron beam writing dose and the design of the exposure

area with respect to the inclined angle of the fabricated structure.

Convex, concave, and spiral structures are fabricated successfully by using a
gradient dosing strategy. The interface between two shot sections is smoothed by the
electron scattering effect. The curved profile is fabricated at various curvatures, and
characterized using scanning electron microscopy and a profiler. In addition, a spiral
structure is fabricated that possesses the advantageous feature of having a small chip

area. We discuss a method of characterizing the spiral structure.

(2) The studies of self-assembled monolayer on the silicon oxide surface and

fabrication of microlens

As all imprint techniques-rely. on contact between resist and mold, the wetting
and adhesion characteristics of theipolymer-materials to the substrate are critical
issues. The strength of adhesion between mold surface and resist is characterized by
the amount of energy required to separate the two materials. In this study,
trichloro(3,3,3-trifluoropropyl)silane  (FPTS) and trichloro(1H, 1H, 2H, 2H-
perfluorooctyl)silane (FOTS) are used for self-assembled monolayers (SAM) on mold
(S10,/Si1) as releasing and anti-sticking layers for nanoimprint. Chemical reaction
between the head groups of different fluorinated trichlorosilanes and the surface
hydroxyl groups is investigated by FTIR. The SAM quality depends on immersion
time and silanization temperature investigated through measurement of the
ellipsometer and calculation of the surface energy. It has been demonstrated that less
defect and lower roughness of the resist surface can be achieved by mold with SAMs
of FOTS and FPTS. The mold with FOTS layer processes lower surface energy (8

mJ/m?) and smoother of the resist after imprinting. The surface energy of the SAM on
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mold (Si0,/Si) dictates the results in quality of better resist surface and the pattern

formation.

Mold fabrication for imprinting can be significantly simplified by using
specialized crosslinking polymers for pattern definition on silicon wafer. The
thermosetting polymer pattern can be used on silicon molds for imprint technology
because of two possibilities: (1) the silicon oxide molds with thermosetting polymer
pattern can be obtained by any conventional semiconductor technology; (2)
thermosetting polymers have no obvious T, because of cross-linking structure,
whereas decreases the hardness as the temperature increasing over their T,. In this
work, the SU-8 resist is used as the thermosetting polymer pattern on silicon wafer for
molds. Thermal properties of the thermosetting and thermoplastic polymers are tested
for imprinting pattern and imptinted  fesist:The'. hill-like structure fabricated by
electron beam strategy for thick film is used to increase the adhesion between pattern
and silicon wafer. The resolution-of the.themmoplastic polymer resist pattern imprinted
by thermosetting polymer pattern is investigated by SEM. The shrink factor of the
feature size after separation between thermosetting polymer pattern and thermoplastic
polymer resist is utilized to define the feature size after imprinting. In addition, a
microlens of polydimenthyl siloxane (PDMS) has been fabricated by replication using
the thermoplastic polymer resist after imprinting by the mold with microlens structure

of the thermosetting polymer (SU-8).
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