
國立交通大學

電子工程學系電子研究所碩士班

碩士論文

應用於匯流排矩陣系統之仲裁器權重調整演算

法

A Weight Tuning Algorithm for Arbiters in Bus

Matrix Systems

研究生： 陳匡緯

指導教授： 周景揚博士

中華民國九十八年二月

應用於匯流排矩陣系統之仲裁器權重調整演算

法

A Weight Tuning Algorithm for Arbiters in Bus

Matrix Systems
研究生：蔡孟家 Student: Kuang-Wei Chen

指導教授：周景揚博士 Advisor: Dr. Jing-Yang Jou

國立交通大學

電子工程學系電子研究所碩士班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute

of Electronics College of Electrical and Computer Engineering

Institute of Electronics

National Chiao Tung University

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Department of Electronics Engineering

February 2009

HsinChu, Taiwan, Republic of China

中華民國九十八年二月

 i

應用於匯流排矩陣系統之
仲裁器權重調整演算法

研究生：陳 匡 緯 指導教授：周 景 揚 博士

國 立 交 通 大 學

電 子 工 程 學 系 電 子 研 究 所 碩 士 班

摘 要

 在系統單晶片匯流排上，仲裁器是必要的元件。當不同裝置同時要求使用匯流排

時，會有存取衝突發生，而仲裁器是為了解決這些衝突而存在的。過去一些以樂透方

式為基礎的仲裁器演算法是用機率方式去解決這些衝突而且被證明非常的有效。但這

些以樂透方式為基礎的仲裁器演算法需要一個權重調整演算法來幫助他們去同時滿

足不同裝置的即時以及頻寬的需求。在本篇論文中，我們提出了一個新的權重調整演

算法，我們稱作 MC 權重調整演算法。MC 權重調整演算法可以同時考慮到多個匯流排

系統的資訊來調整每個裝置的權重。由實驗數據可以證實，我們提出的 MC 權重調整

演算法可以有效的幫助這些以樂透方式為基礎的仲裁器演算法，用以滿足匯流排矩陣

上不同裝置的頻寬需求。

 ii

 A Weight Tuning Algorithm for Arbiters
in Bus Matrix Systems

Student: Kuang-Wei Chen Advisor: Dr. Jing-Yang Jou

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

Abstract

Arbiters are mandatory components on SoC bus systems to resolve contentions of bus

access requests from different IP cores. Lottery-based arbitration algorithms are

probabilistic and efficient arbitration algorithms. However, lottery-based arbitration

algorithms need a weight tuning mechanism to help them simultaneously meet both the

real-time and bandwidth requirements. In this thesis, we propose a new weight tuning

algorithm, named MC weight tuning algorithm, which considers multiple buses at one time.

The experimental results show that MC weight tuning algorithm helps lottery-based

arbitration algorithms efficiently meet bandwidth requirements of IP cores in bus matrix

systems.

 iii

Acknowledgment
在這我要感謝很多人，在他們的幫助下我得以完這我的論文。首先，最感謝的是

周景揚教授以及黃俊達教授的指導，他們指引我方向，我才得以不在錯誤的方法上鑽

牛角尖。再來很感謝耿維學長、哲華學長、成業學長以及步青學長，他們花很多時間

給我建議以及與我討論，幫助我解決很多瓶頸與問題。孟家、彥宇與彥廷，你們陪我

度過很多煩人的時候。最後感謝是我的家人，有他們的鼓勵及幫助，我才得以完成我

的學業。

 匡緯 2009

 iv

Contents
摘 要 .. i

Abstract.. ii

Acknowledgment..iii

Contents .. iv

List of Figures... vi

List of Tables ..viii

Chapter 1 Introduction... 1

1.1 Introduction ... 1

1.1.1 Shared bus architecture.. 2

1.1.2 Bus matrix architecture.. 3

1.2 The purpose and challenge of arbiter .. 6

1.3 The focus of our work ... 7

1.4 Thesis organization.. 7

Chapter 2 Preliminary.. 8

2.1 Traffic models of masters .. 8

2.2 Lottery-based arbitration algorithms ... 11

2.3 Local-bus weight tuning algorithm ... 13

2.4 Motivation ... 18

2.4.1 Model bus matrix architecture by shared bus architecture 18

 v

2.4.2 Bus matrix architecture with local-bus weight tuning......................... 22

Chapter 3 The proposed Algorithm ... 28

3.1 A weight tuning algorithm with multi-bus consideration................................ 28

3.1.1 Notations.. 30

3.1.2 The details of MC weight tuning algorithm .. 33

Chapter 4 Experimental Results .. 40

4.1 Experiment setup ... 40

4.2 Experiment 1 ... 41

4.3 Experiment 2 ... 46

Chapter 5 Conclusions and Future Work... 50

5.1 Conclusions ... 50

Reference ... 51

 vi

List of Figures
Figure 1 : An example of single shared bus architecture... 2

Figure 2 : A simple representation of Figure 1 .. 3

Figure 3 : An example of bus matrix architecture ... 5

Figure 4 : A simple representation of Figure 3 .. 5

Figure 5 : A probability based model is used to model the behavior of MM 5

Figure 6 : D type master (beat number = 4; interval time = 17).. 9

Figure 7 : D_R type master (beat number = 4; interval time = 17; Rcycle = 10)................ 10

Figure 8 : ND_R type master (beat number = 4; interval time = 17; Rcycle = 10)............. 10

Figure 9 : The Lottery communication architecture .. 11

Figure 10 : An example of Lottery .. 12

Figure 11 : Bandwidth allocation under different tickets assignment ratio......................... 14

Figure 12 : An example of single share bus architecture with four masters........................ 15

Figure 13 : The bandwidth allocation under three different ticket assignments.................. 15

Figure 14 : The simple flow of local-bus weight tuning ... 17

Figure 15 : An example of Bus matrix architecture .. 19

Figure 16 : Independent buses architecture separated from Figure 15................................ 19

Figure 17 : An example of the request limitation of masters .. 22

Figure 18 : An example shows the difference between IB and Figure 17........................... 22

Figure 19 : An example of the bus matrix architecture ... 23

 vii

Figure 20 : An example of a MM with the request ratio equaling to 1:4 25

Figure 21 : An MM misses or meets all bandwidth requirements....................................... 26

Figure 22 : A missed bandwidth requirement on a bus induces all bandwidth missed on

other buses ... 27

Figure 23 : The flow chart of MC weight tuning algorithm.. 30

Figure 24 : The bus matrix system of the example of MC weight tuning........................... 34

Figure 25 : The flow of global-bus weight tuning... 36

Figure 26 : An example of implementation of a bus matrix system on SoC Designer 41

Figure 27 : The bus matrix architecture of experment1 .. 42

Figure 28 : The figure of Table 13... 45

Figure 29 : Bus matrix architecture with two buses .. 47

Figure 30 : Bus matrix architecture with three buses .. 47

Figure 31 : Bus matrix architecture with four buses ... 48

Figure 32 : The figure of Table 14... 49

 viii

List of Tables
Table 1 : The traffic models of Figure 12 .. 15

Table 2 : The traffic model of Figure 15.. 20

Table 3 : The modified traffic model of Figure 16 .. 20

Table 4 : The bandwidth requirement of Figure 15 and Figure 16...................................... 21

Table 5 : The simulation result of Figure 15 and Figure 16 .. 21

Table 6 : The traffic model of Figure 19.. 24

Table 7 : The simulation result of Figure 19 with the local-bus weight tuning................... 24

Table 8 : The traffic model of Figure 24.. 34

Table 9 : The ticket assignment and bandwidth allocation after inner loop terminated 35

Table 10 : Table 9 with more information ... 36

Table 11: The simulation result of example Figure 24 by MC weight tuning algorithm 39

Table 12 : The traffic model of Figure 27.. 43

Table 13 : The number of success case under different weight tuning algorithm 44

Table 14 : The number of success case under different complexity of architectures 48

 1

Chapter 1

Introduction

1.1 Introduction

With the technology scaling and the level of system integration, system-on-chip (SoC)

design is widely adopted in today’s design methodology. It integrates a number of

intellectual property (IP) components, such as processor, memory, DSP, and ASIC, into a

single chip to meet the design specification. Since those components need to communicate

each other for data exchange, the on-chip communication architecture has a significant

impact on the system performance. Many on-chip communication architecture topologies

are proposed to facilitate the data exchange between components in a system. The shared

bus based architecture is very popular in the designs with moderate complexity because of

their topology simplicity and area efficiency. However, in the past couple of years, the

shared bus architecture is no longer capable of handling high bandwidth requirements

 2

which limits the system performance[1, 2]. In order to resolve the bandwidth limitation of

shared bus architecture, the bus matrix architecture is used to provide higher system

parallelism. In the following two sections, we briefly introduce this two on-chip

communication architectures.

1.1.1 Shared bus architecture

Shared bus is one of widely used on-chip communication architectures. The

communication is commonly built through the shared media called bus. Shared bus is acted

as a shared channel between components and then components communicates with each

other through the bus [1, 3].

Two categories of components are connected through the shared bus. Master

components initiate data transaction requests (either read or write transactions), and slave

components respond to corresponding requests with proper data transactions. A simple

example of single shared bus architecture is shown in Figure 1. There are three masters,

M0, M1, and M2, and two slaves, S1 and S2. Masters initiate requests and slaves response

the corresponding requests through single shared bus [4-11]. Figure 2 is a simplified graph

of Figure 1.

Figure 1 : An example of single shared bus architecture

 3

M0 M1 M2

Arbiter0

Slaves

Figure 2 : A simple representation of Figure 1

More than one master can initiate requests at the same time on the shared bus system;

however, only one master can be granted to bus access. An arbiter is required to decide

which master can be granted without bus conflicts. Since the arbiter decides which master

is the current bus owner to avoid bus conflicts, the arbiter influences the system

performance significantly. As a result, the arbiter is indeed an important component of

shared bus architecture.

Since the communication channel is shared, the hardware cost for shared bus

architecture is relatively lower than other communication architectures [12, 13]. However,

the shared bus architecture can only support limited bandwidth which is not suitable for the

current high performance systems.

1.1.2 Bus matrix architecture

In order to achieve higher performance and support larger bandwidth requirement for

high performance systems, a different communication architecture, bus matrix architecture,

is proposed [1, 2]. It is a combination of shared bus and point-to-point connection structure

between components to support higher level of parallelism. The parallel buses provide a

better communication backbone to achieve bandwidth requirements of the high

performance systems.

 4

In this architecture, each master connects with each slave system through the separate

bus. Each slave system is a shared bus structure where one or more slaves are connected. A

simple example of bus matrix architecture with two slave systems is shown in Figure 3.

Masters on the left connect with slave systems on the right through the interconnect matrix.

One slave system consists of S0, S1, and S2, and the other slave system consists of S3 and

S4. Figure 4 is a simplified graph of Figure 3.

Since, a master can connect with one or many slave systems in bus matrix architecture,

we classify the masters according to the type of connection. A master which connects with

more than one slave systems is called multi-connection master (MM). Otherwise, a master

which connects with only one slave systems is called single-connection master (SM). A

decoder is required for each MM to determine the data transfer sent to which slave system.

For example, as shown in Figure 3, M0 which connects to two slave systems is an MM and

M1 which connects to only one slave system is an SM.

Since an MM can have different traffic behavior on each slave system, we use a

probability symbol to represent the request rate. As shown in Figure 5, for example, if M0

initiates a request, the request has 40% probabilities to bus 0, and 60% probabilities to bus

1. The “r40%” means that the new initiated request has 40% probabilities to this bus. The

sum of probabilities of each bus is 100%. The request probabilities are called request ratio.

In other words, the request ratio of M0 on bus 0 is 40%, the request ratio of M0 on bus 1 is

60%.

 5

Figure 3 : An example of bus matrix architecture

M1 M2 M0

Arbiter0

Slaves

M3 M4 M5

Arbiter1

Slaves

Figure 4 : A simple representation of Figure 3

M1 M2 M0

Arbiter0

Slaves

M3 M4 M5

Arbiter1

Slaves

r40% r60%

Figure 5 : A probability based model is used to model the behavior of MM

 6

Without loss of generality, a master cannot initiate a new request before the previous

request is not completed. While dealing with the requests of MM, the arbitration strategy

on each slave system should consider the communication behavior of other slave systems

[14, 15]. It becomes more complicated to design the arbiter. In Figure 5, for example, M0

can access both of two slave systems where any pending request of one side would suspend

the request of the other side. Since the traffic behavior of multi-connection masters are

more complicated, the arbiter becomes more difficult to design for bus matrix architecture.

Comparing with shared bus architecture, bus matrix architecture can provide parallel

access paths at one time. As shown in Figure 3 and Figure 4, M0, M1, M2, S0, S1, and S2

can be regarded as a shared bus system called bus 0, M0, M3, M4, M5, S3 and S4 can be

regarded as another shared bus system called bus 1. If M1 and M3 both have pending

requests, the requests of M1 and M3 can be simultaneously granted without bus conflict.

Because of parallel access paths, bus matrix architecture can support larger bandwidth

requirement that higher performance system needs than shared bus architecture.

1.2 The purpose and challenge of arbiter

Arbiters play an important role in on-chip communication architectures. Because of

the resources limitation, one shared resource can be used by only one component at one

time. For example, only one master can be granted to access bus at one time on shared bus

architecture, or one slave system can serve only one master at one time on bus matrix

architecture. There are many contentions between many requests when different masters

initiate its request at the same time. Because of the limitation and contention, we need a

component that can decide which pending request of masters can be granted to use

resources, that is arbiter. When there is contention occur between some pending requests,

 7

the arbiter must decide only one of them can be granted.

Besides, the master often has the real-time requirements and bandwidth requirements.

The arbiter has very important impact on whether those requirements are met or missed

because the arbiter decides granted order of requests. It is a challenge for arbiters to meet

different requirements simultaneously because masters have diverse traffic behavior.

1.3 The focus of our work

With local-bus weight tuning algorithm, lottery-based arbitration algorithms can meet

most bandwidth and real-time requirements simultaneously on single shared bus

architecture [4, 8, 9, 16-24]. But we show that local-bus weight tuning algorithm does not

work well on bus matrix system comparing with single share bus architecture. We propose

an algorithm called MC weight tuning algorithm. MC weight tuning algorithm helps

lottery-based arbitration algorithms meet most bandwidth requirements on bus matrix

architecture.

1.4 Thesis organization

The remainder of this thesis is organized as follows. The lottery-based arbitration

algorithms and an existing weight tuning algorithm proposed in [16] are briefly introduced

in Chapter 2. Chapter 3 presents the detail of the proposed weight tuning algorithm, MC

weight tuning algorithm. Experimental results are reported in Chapter 4. Finally, we

conclude this thesis in Chapter 5.

 8

Chapter 2

Preliminary

We introduce previous works in this chapter. First, we briefly introduce the traffic models.

Then, lottery-based arbitration algorithms and local-bus weight tuning algorithm are

introduced briefly. Finally, we show some motivational examples for our weight tuning

algorithm.

2.1 Traffic models of masters

Four parameters are defined to describe the behaviors of a master. The first parameter

of a request is the beat number. For example, if the beat number of a request is 4, it means

that it is a 4-beat transaction. In other words, the request needs 4 cycles to complete it

works. Second, the time of next request can be initiated is determined as the interval time.

For example, if the interval time is 17, the next request initiates after 17 cycles. Third, the

real-time requirement is represented as Rcycle which is the dead-line of a request. For

 9

example, if the Rcycle is 10, the request must complete in 10 cycles. At last, we classify

three high abstract-level traffic types to emulate the masters behavior [24]. That is D type

master, D_R type master, and ND_R type master. The behavior of three different type

masters is shown in the following.

 D type (D for dependency):

The D type master has no real-time requirement. The time of the D type master

initiating a request depends on the finish time of the previous request. In Figure 6,

the beat number is 4 and the interval time is 17. If a request is initiated at cycle 2

and granted at cycle 5, the request is completed at cycle 9. The next request is

initiated at cycle 26 which is 17 cycles later than the finish time.

Figure 6 : D type master (beat number = 4; interval time = 17)

 D_R type (D for dependency, R for real-time):

The behavior of the D_R type master is the same as the D type master except the

real-time requirement. Requests of the D_R type master has real-time

requirement. In Figure 7, we use the same parameters used in Figure 6 as an

example. Because of the real-time requirement, a new parameter, Rcycle, is

added in Figure 7. Rcycle is 10 cycles in the example. The first request is also

initiated at cycle 2 and the request must be completed before cycle 12 because of

the Rcycle is 10 cycles. It is a real-time violation, if the request is not completed

before cycle 12.

 10

Figure 7 : D_R type master (beat number = 4; interval time = 17; Rcycle = 10)

 ND_R type (ND for non-dependency, R for real-time):

The ND_R type master is another kind of master with the real-time requirement.

The behavior of ND_R type master is similar to D_R type master except on one

thing. The time of the ND_R type master initiating a request does not depend on

the finish time of the previous request. Actually, the time of the ND_R type

master initiating a request depends on the initiated time of the previous request.

In other words, the ND_R type masters initiate requests periodically. In Figure 8,

the same parameters are used in Figure 7. Since the interval time is at cycle 17

and the initiated time of the first request is at cycle 2, the second request is

initiated at cycle 19, which directly depends on the initiated time of the first

request.

Figure 8 : ND_R type master (beat number = 4; interval time = 17; Rcycle = 10)

There is a limitation for all masters. If a master had initiated a request, it cannot

initiate a new request when the previous request has not been finished. For example, a state

machine is involved by a master. The master begins next state after previous state is

completed. In other words, all masters are in serial execution.

 11

2.2 Lottery-based arbitration algorithms

Lottery-based arbitration algorithms are probabilistic arbitration algorithm [16, 17,

24].It stochastically grants one of the contending masters according to the ticket assigned

to them, either statically or dynamically. Each master holds a number of tickets for

lottery-based algorithms. When a bus contention occurs, the lottery manager accumulates

tickets of masters. According the tickets assignment, lottery manager probabilistically

choose a master granted to access bus. As shown in Figure 9, there are four masters and

each of them has a number of lottery tickets as the probability of bus granted. First, the

lottery manager accumulates tickets of masters which has pending request. Then the lottery

manager probabilistically chooses a master granted to access the bus from all contending

masters. In other words, the lottery tickets act as the weight and lottery-based arbitration

algorithms are weighted random arbitration algorithm to grant a master while contention.

Figure 9 : The Lottery communication architecture

 12

Let the set of masters, 1 2 nM , M , ..., M , and each of them has 1 2 nt , t , ..., t tickets

respectively. A set of Boolean variables, 1 2 nr , r , ..., r , represents the corresponding

pending request. ir is 1 if iM has pending requests. Otherwise, ir is 0.

The first step, the lottery manager accumulates the total tickets of masters which has

pending requests, given by
1

n

j j
j

T r t
=

=∑ . Then the lottery manager generates a random

number from the range [)0,T . The symbol [)0,T means that all integers between 0 to T

are included except T. If the random number lies in the range
1

1 1

,
i i

k k k k
k k

r t r t
+

= =

⎡ ⎞
⎟⎢⎣ ⎠

∑ ∑ , the master

1iM + is granted. In Figure 10, for example, there are four masters, M1, M2, M3, and M4,

and hold 1, 2, 3, and 4 tickets respectively. Three of them have pending requests, M1, M3,

and M4, and the lottery manager accumulates their tickets
1

1 0 3 4 8
n

j j
j

T r t
=

= = + + + =∑ .

And it generates a random number, e.g. 5, from the range [)0,8 . The number lies between

1 1 2 2 3 3 4r t r t r t+ + = and 1 1 2 2 3 3 4 4 8r t r t r t r t+ + + = , and then the bus is granted to M4. The

probability of iM granted to access the bus is shown in Equation2.1.

1

() i i i i
i n

j j
j

r t rtP M
Tr t

=

= =

∑
 (2.1)

Figure 10 : An example of Lottery

 13

Since tickets act as granted probabilities of each master for lottery-based arbitration

algorithms, ticket assignment is important to system performance. Lottery-based arbitration

algorithms need additional algorithm to assign tickets to each master. The additional

algorithm is called weight tuning algorithm. We introduce a weight tuning algorithm in the

following section.

2.3 Local-bus weight tuning algorithm

The lottery-based arbitration algorithms need a weight tuning algorithm to result

proper ticket assignment for all masters. A weight tuning algorithm can result tickets for

each master. Proper ticket assignment makes masters meet their requirements as many as

possible. By Equation2.1, tickets can decide grated probabilities for each master, and

grated probabilities can obviously affect allocated bandwidth of each master. In other

words, tickets have strong impact on bandwidth allocation for each master. For example, a

shared bus system has three masters (named M0, M1, and M2) with same traffic models.

We simulate with different ticket assignments and respective bandwidth allocation is

shown in Figure 11. The notation “10:1:1” means that M0 has tickets ten times larger than

M1; and also ten times larger than M2. In Figure 11, it is easily observed that different

ticket assignments result totally different bandwidth allocations. The weight tuning

algorithm redistributes tickets between masters and result proper ticket assignment for

masters. Masters with proper ticket assignment meet their requirements as many as

possible.

 14

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

1:1:1 2:1:1 4:1:1 6:1:1 8:1:1 10:1:1

tickets ratio

ba
nd

w
id

th
 a

llo
ca

tio
n(

%
)

M0 M1 M2

Figure 11 : Bandwidth allocation under different tickets assignment ratio

Finding an efficient weight tuning algorithm is a difficult challenge. Most of

requirements can be met by ticket assignment resulting from an efficient weight tuning

algorithm. In Figure 12 and Table 1, an example shows that why an efficient weight tuning

algorithm is a difficult challenge. There are four masters with their traffic models in Table

1. Lottery algorithm with total 1024 tickets is used in Figure 12. We simulate with three

different tickets assignments, and simulation results are shown in Figure 13. The notation

“252:143:220:409” in Figure 13 means M0 has 252 tickets, M1 has 143 tickets, M2 has

220 tickets, and M3 has 409 tickets. Comparing with three different ticket assignments, we

only move the tickets from M0 to M2, but allocated bandwidth of all masters are changed.

Bandwidth allocation is totally changed when we redistribute tickets of two masters. When

a weight tuning algorithm redistributes tickets between masters, the bandwidth allocation is

disordered and not easily predictable.

 15

Figure 12 : An example of single share bus architecture with four masters

Table 1 : The traffic models of Figure 12

 Type Beat Interval

M0 D 32 2

M1 D 16 4

M2 D 8 8

M3 D 8 8

54%

38%

17%
21%

12%

20%
17%

21%
25% 25% 25%25%

0%

10%

20%

30%

40%

50%

60%

252:143:220:409 126:143:346:409 63:143:409:409

tickets

ba
nd

w
id

th
 a

llo
ca

tio
n

M0 M1 M2 M3

Figure 13 : The bandwidth allocation under three different ticket assignments

 16

For single shared bus architecture, an efficient weight tuning algorithm, local-bus

weight tuning algorithm, is proposed in [16]. Local-bus weight tuning algorithm results

proper tickets for each master and masters can meet most of their requirements. The simple

flow of local-bus weight tuning algorithm is shown in Figure 14. At first, the local-bus

weight tuning algorithm analyzes the simulation result according the bandwidth allocation

of each master. If a master gets bandwidth more than its requirement, it is grouped into

Smore. If a master gets bandwidth less than its requirement, it is grouped into Sless. If a

master gets bandwidth almost equal to its requirement, it is grouped into Smet. The master

in Smore who gets the most bandwidth than its requirement is called Mmost. The master in

Sless who gets the least bandwidth than its requirements is called Mleast. Each master in Sless

gets insufficient bandwidth because each of them does not have enough tickets. If the

master does not meet its bandwidth requirement, the local-bus weight tuning algorithm

increases its tickets. When tickets of a master are increased, the granted probability is

increased and the master can get more bandwidth than before. The local-bus weight tuning

algorithm redistributes the tickets of masters in Smore and Sless, and tries to meet bandwidth

requirements of each master.

The local-bus weight tuning algorithm is efficient for single shared bus system.

Lottery-basd arbitration algorithms with local-bus weight tuning algorithm in single shared

bus system can meet hard real-time requirements and bandwidth requirements

simultaneously with very high successful probability [24].

 17

Figure 14 : The simple flow of local-bus weight tuning

 18

2.4 Motivation

In our thesis, we choose lottery-based arbitration algorithms as our arbitration

algorithm of bus matrix architecture. With the evolution of process, more and more SoC

systems need bus matrix architecture to deal with the complex communication between

massive components. Since the lottery-based arbitration algorithms meet the hard real-time

and bandwidth requirement simultaneously with high successful probability, using the

lottery-based arbitration algorithms for bus matrix architecture is a good choice.

In this thesis, we find how to result proper ticket assignment for bus matrix

architecture because we choose lottery-based arbitration algorithms as our arbitration

algorithm. Proper ticket assignment of masters is important to lottery-based arbitration

algorithms because it makes masters meet their requirements as many as possible. A weight

tuning algorithm is needed for bus matrix architecture. Local-bus weight tuning algorithm

produces proper ticket assignment for single shared bus architecture. In following, two

methods are introduced that try to achieve our goal, finding proper ticket assignment for

bus matrix architecture.

2.4.1 Model bus matrix architecture by shared bus architecture

Since lottery-based arbitration algorithms often use local-bus weight tuning algorithm

before, we try to the use same weight tuning algorithm for bus matrix architecture. Because

local-bus weight tuning algorithm used to be with single shared bus architecture, bus

matrix architecture is intuitionally separated into many “single shared bus architecture”. In

other words, bus matrix architecture is modeled by shared bus architecture. As shown in

Figure 15 and Figure 16, bus matrix architecture has two buses, but two buses are

 19

separated into two “single shared bus architecture” intuitionally. Bus 0 is single shared bus

architecture, and bus 1 is single shared bus architecture, too. The traffic behavior of M0 on

the bus 0 is independent to M0 on the bus 1. In other words, two buses are independent to

each other. Therefore, the architecture which separates from bus matrix architecture is

called “independent buses” or “IB” for simplification.

Figure 15 : An example of Bus matrix architecture

Figure 16 : Independent buses architecture separated from Figure 15

After independent buses architecture is generated, traffic model of bus matrix

architecture has to be modified for independent buses architecture. In Figure 15, for

example, the request ratio of M0 is 40% on the bus 0. It means that M0 on the bus 0 holds

about 40% of total traffic amount of M0. In Figure 16, M0 on the bus 0 holds 100% of total

traffic amount of M0. To make the behavior of independent buses architecture more similar

to bus matrix architecture, traffic model of bus matrix has to be modified. The traffic model

of Figure 15 is shown in Table 2. We simulate the bus matrix system and record the traffic

behavior at first. Then we try to modify some parameters of Table 2 and simulate with

independent buses architecture. The simulation result of independent buses architecture is

 20

comparing with bus matrix architecture. We modify the parameters of Table 2 continuously

until the traffic behavior of independent buses architecture is similar to bus matrix

architecture. The modified traffic model of Table 2 is shown in Table 3. In Table 3, the

interval time of each master is increased comparing with Table 2. The modified traffic

model for independent buses architecture is to reflect similar behavior as original.

Table 2 : The traffic model of Figure 15

Bus Master Type Beat Interval
M0 D 12 5 Bus 0
M1 D 12 5

M0 D 12 5
M1 D 12 5
M2 D_R 24 5

Bus 1

M3 D 24 5
Table 3 : The modified traffic model of Figure 16

Bus Master Type Beat Interval
M0 D 12 50 Bus 0
M1 D 12 29

M0 D 12 28
M1 D 12 50
M2 D_R 24 5

Bus 1

M3 D 24 5

With independent buses architecture, modified traffic model, and bandwidth

requirements (shown in Table 4, and same bandwidth requirements are used for

independent buses architecture and bus matrix architecture.), local-bus weight tuning can

result a ticket assignment (shown in column3 of Table 5) after simulation. All masters meet

their bandwidth requirements with the ticket assignment for independent buses architecture

(shown in column5 of Table 5). We then check whether the ticket assignment is a proper

 21

ticket assignment or not for bus matrix architecture. The bandwidth allocation for each

master is shown in column6 of Table 5 after bus matrix architecture is simulated with the

ticket assignment resulted from independent buses architecture. As shown in Table 5, the

ticket assignment resulted from independent buses is not a proper ticket assignment for bus

matrix architecture because some of bandwidth requirements are not met (shown in

column6 of Table 5). In other words, independent buses architecture fails to model

behavior of bus matrix architecture.

Table 4 : The bandwidth requirement of Figure 15 and Figure 16

Bus Master Required bandwidth
M0 15 Bus 0
M1 22.5

M0 22.5
M1 15
M2 32.5

Bus 1

M3 25

Table 5 : The simulation result of Figure 15 and Figure 16

Bus Master Tickets Required
bandwidth

Allocated
bandwidth of

IB

Allocated
bandwidth of
bus matrix

M0 410 15.0 18.0 13.7 Bus 0
M1 614 22.5 27.0 20.9

M0 645 22.5 23.4 21.3
M1 249 15.0 17.1 14.2
M2 17 32.5 33.6 36.5

Bus 1

M3 113 25.0 26.0 27.9

In section 2.1, we have introduced the limitation of masters; if a master had initiated a

request, it cannot initiate a new request when the previous request does not be finished. For

example, M0 is an MM in the Figure 17. If M0 had initiated a request on bus 1 and the

 22

request is not completed, M0 can not initiate any new request. The traffic behavior on

different bus is not independent to each other on the bus matrix architecture. As shown in

Figure 18, if M0 had initiated a request on bus 1, M0 can initiate another request on bus 0.

Traffic behavior of bus matrix architecture and independent buses architecture is totally

different. In other words, it is no suitably that using independent buses architecture models

behavior of bus matrix architecture.

Figure 17 : An example of the request limitation of masters

Figure 18 : An example shows the difference between IB and Figure 17

2.4.2 Bus matrix architecture with local-bus weight tuning

In fact, bus matrix architecture can use local-bus weight tuning directly. Local-bus

weight tuning algorithm deals with ticket redistribution on only one bus at one time.

Local-bus weight tuning algorithm takes information of only one bus into consider first,

and then it redistributes tickets of masters on the bus. After it completes ticket

redistribution on previous bus, local-bus weight tuning considers information of another

bus and redistributes tickets of masters on that bus. Local-bus weight tuning algorithm

 23

redistributes tickets bus by bus. In Figure 19, for example, there are two buses, bus 0 and

bus 1. Bus 0 consists of M0, M1, M2, and M3, and Bus 1 consists of M0, M1, M4, and M5.

Assume Mleast of bus 0 is M1 and Mleast of bus 1 is M0 (section2.3). Local-bus weight

tuning algorithm takes information of bus 0 into consideration at first. According to

information of bus 0, local-bus weight tuning algorithm increases tickets to M1 on the bus

0. After redistributing tickets on the bus 0, then local-bus weight tuning algorithm take

information of bus 1 into consideration. According to information of bus 1, local-bus

weight tuning algorithm increases tickets to M0 on the bus 1.

With bus matrix architecture shown in Figure 19 and respective traffic model shown

in Table 6, local-bus weight tuning can result a ticket assignment for bus matrix

architecture after simulation. Resultant ticket assignment and allocated bandwidth of

masters are shown in Table 7. As shown in Table 7, each bus has total 1024 tickets. M1 on

the bus 0 has more than 50% tickets of total tickets of bus 0, but it does not meet its

bandwidth requirement; M0 on the bus 1 has more than 50% tickets of total tickets of bus 1,

but it does not meet its bandwidth requirement either.

M0

Arbiter0

Slaves

Arbiter1

Slaves

r40%

r60%

M1

r40%

r60%

M4 M5M2M3

Figure 19 : An example of the bus matrix architecture

 24

Table 6 : The traffic model of Figure 19

Bus Master Type Beat Interval
M0 D 12 5
M1 D 12 5
M2 D 12 5

Bus 0

M3 D_R 24 5

M0 D 12 5
M1 D 12 5
M4 D 12 5

Bus 1

M5 D_R 24 5

Table 7 : The simulation result of Figure 19 with the local-bus weight tuning

Bus Master Tickets Required
bandwidth

Allocated
bandwidth of
bus matrix

M0 220 15.0 13.8
M1 554 21.0 19.9
M2 198 34.9 37.5

Bus 0

M3 52 19.1 28.8

M0 624 22.5 21.0
M1 156 14.0 13.3
M4 186 33.6 37.3

Bus 1

M5 58 19.9 28.4

In this example, we observe that the bandwidth allocation of a MM on each bus has a

fixed proportion. For example, M0 is a MM connecting with bus 0 and bus 1 in Figure 20.

When M0 initiates a request, the request has 20% probabilities to bus 0 and 80%

probabilities to bus 1. The request ratio of M0 is 1:4. Assume the beat number of M0 on

bus 0 is as same as on bus 1. We observe that if M0 gets 1% bandwidth on bus 0, M0 gets

about 4% bandwidth on bus 1. If M0 gets 8% bandwidth on bus 1, M0 gets about 2%

bandwidth on bus 0. The ratio of bandwidth allocation on bus 0 to bandwidth allocation on

 25

bus 1 is 1:4. The bandwidth allocation of an MM is proportional to the request ratio if the

beat numbers of the MM on all connecting buses are the same. In other words, the

bandwidth allocation is related to the request ratio.

Figure 20 : An example of a MM with the request ratio equaling to 1:4

The relationship between bandwidth allocation and request ratio implies that if an MM

misses one bandwidth requirement on one bus, the MM misses all bandwidth requirements

on other buses which connect to the MM. As shown in Figure 21, the bandwidth

requirement of M0 on bus 0 is 4%, and the bandwidth requirement of M0 on bus 0 is 16%.

Assume the beat number of M0 on bus 0 is as same as on bus 1, and the request ratio of

M0 is 1:4. If M0 gets 2% bandwidth on the bus 0 which is 2% less than the bandwidth

requirement, and then M0 gets 8% bandwidth on the bus 1 which is 8%less than the

bandwidth requirement. If M0 gets 4% bandwidth on the bus 1 which is 12% less than the

bandwidth requirement, and then M0 gets 1% bandwidth on the bus 0 which is 3% less

than the bandwidth requirement. Only if M0 gets 4% bandwidth on the bus 0 or 16%

bandwidth on the bus 1, M0 can meet all bandwidth requirements on different buses.

 26

M0

Arbiter0

Slaves

Arbiter1

Slaves

r20% r80%

16

43

1

2

2

8

8

12

4

Requirement is 4

Requirement is 16

Figure 21 : An MM misses or meets all bandwidth requirements

The relationship between bandwidth allocation and request ratio implies another thing.

Figure 22 is as same as Table 7. As shown in Figure 22, M0 on the bus 0 holds too fewer

tickets and misses it bandwidth requirement. It induce that M0 misses its bandwidth

requirement on bus 1. An MM misses its bandwidth requirement on a bus because it does

not hold enough tickets to meet the bandwidth requirement on other buses.

When the local-bus weight tuning algorithm tunes the tickets of masters, it only

considers with the information of one bus at one time and every bus tunes its tickets

individually. If a master misses its bandwidth requirement on a bus, the local-bus weight

tuning algorithm thought that the master needs more tickets and increase its tickets on this

bus. But, an MM may miss its bandwidth requirement on a bus because it does not hold

enough tickets to meet the bandwidth requirement on other buses. If an MM does not hold

enough tickets to meet the bandwidth requirement on one bus, all bandwidth requirements

 27

of other buses miss. The local bus weight tuning algorithm may not be a suitable weight

tuning algorithm for bus matrix because it does not take the dependence between each bus

into consideration.

Tickets Required bandwidth
(%)

Allocated bandwidth
of multi-bus (%)

M0 220 15.0 13.8

M1 554 21.0 19.9

M2 198 34.9 37.5

M3 52 19.1 28.8

M0 624 22.5 21.0

M1 156 14.0 13.3

M4 186 33.6 37.3

M5 58 19.9 28.4

Bus0

Bus1

Figure 22 : A missed bandwidth requirement on a bus induces all bandwidth missed on
other buses

According to our observation, the weight tuning algorithm cannot only consider with

the information of only one bus at one time for the bus matrix architecture. For bus matrix

architecture, the weight tuning algorithm has to take more information from different buses

into consideration. We propose a new weight tuning algorithm which is more suitable for

bus matrix architecture.

 28

Chapter 3

The proposed Algorithm

3.1 A weight tuning algorithm with multi-bus consideration

When the local-bus weight tuning algorithm redistributes tickets for masters, it take

information of only one bus into consideration at one time. Because of the limitation, we

propose a weight tuning algorithm with multi-bus consideration, called MC weight tuning

briefly. The MC weight tuning takes advantages of the local-bus weight tuning algorithm,

which has precise controllability over the bandwidth allocation for SMs. In addition, the

MC weight tuning algorithm takes information of more than one bus into consideration.

MC weight tuning algorithm can redistributes tickets for MMs on many buses at one time.

The flow chart of MC weight tuning algorithm is shown in Figure 23. As shown in

Figure 23, there are two loops in the MC weight tuning algorithm. The red number in each

block is the block number. The outer loop consists of block2, block8, and block9, and the

 29

inner loop consists of block 3, block 4, block 5, block 6, and block 7. In outer loop, the

global-bus weight tuning (block 9) can redistribute tickets of MMs on many buses at one

time. The inner loop is the flow of the local-bus weight tuning algorithm, and it can fine

tune the ticket assignment resulting from the outer loop. In block 2, there is a ticket

assignment resulting from the outer loop, and it is changed when it go into inner loop. The

ticket assignment in block 2 is saved in other memory region before it is changed by inner

loop because we want to know the ticket assignment before the step going into inner loop.

The ticket assignment in block 2 is called intermediate ticket assignment.

As shown in Figure 23, we have a given initial ticket assignment (block 1) at first.

Then, the step goes to block 2 to save the ticket assignment before going into inner loop

(the saved ticket assignment is called intermediate ticket assignment). After saving the

intermediate ticket assignment, the step goes to the flow of local-bus weight tuning (inner

loop). In the inner loop, it checks whether the local-bus weight tuning algorithm can meet

all bandwidth requirements of masters or not. If it can, the simulation is terminated (block

5) and result the ticket assignment which can meet all bandwidth requirements. If it cannot

meet all bandwidth requirements, the step goes to block 8 and check there is any SM

missing its bandwidth requirement. Because of the local-bus weight tuning algorithm

providing precise controllability over the bandwidth allocation for SMs, if there is any SM

missing its bandwidth requirement, the simulation is terminated and result current ticket

assignment (block 10). If no SM misses it bandwidth requirement, the step goes to block 9.

In other words, if masters which miss their bandwidth requirements all belong to MM, the

step goes to block 9. Otherwise, the step goes to block 10 and the simulation is terminated.

The ticket assignment saved in block 2 (intermediate ticket assignment) restores at first in

block 9, and then the global-bus weight tuning redistributes the tickets of MMs which miss

 30

their bandwidth requirements on many buses at same time. The details of global-bus

weight tuning are introduced later. After tuning tickets of MMs which miss their bandwidth

requirements, the step go to block 2 and go on as we described before.

Figure 23 : The flow chart of MC weight tuning algorithm

3.1.1 Notations

We introduce some notations at first in this section before we introduce more detail of

MC weight tuning algorithm. There are two special letters for our notations that are “i” and

“j”. Letter “i” is used to represent the number of a master. For example, i equals to 1 for

M1. Letter “j” is used to represent the number of a bus. For example, j equals to 2 for bus2.

 31

 ,i jt : tickets of master i on the bus j. For example, M3 has 257 tickets on bus 1,

3,1 257t =

 ,_ i jinter t : tickets of master i on the bus j in the intermediate ticket assignment

(block 2 of Figure 23)

 jmost : a master which gets the most bandwidth than its bandwidth requirement

on the bus j after inner loop terminated. For example, if M3 on bus 1 gets the

most bandwidth than its bandwidth requirement after inner loop terminated,

1 M3most = .

 ()jT most : on the bus j, we decrease tickets from jmost and increase it to the

MMs who miss its bandwidth requirement. ()jT most represents the tickets

decreased from jmost . For example, if M3 on bus 1 gets the most bandwidth

than its bandwidth requirement after inner loop terminated, 1 M3most = . On the

bus 1, we decrease tickets from M3. Assume we decrease 137 tickets from M3

on the bus 1, 1() 137T most = .

 ()jDec most : the coefficient helps us to know how much tickets decrease from

jmost on the bus j. For example, if M3 on bus 1 gets the most bandwidth than

its bandwidth requirement after inner loop terminated, 1 M3most = . Assume M3

has 257 tickets on the bus 1 (3,1 257t =) and the 1() 53%Dec most = on the bus 1.

We decrease 257 53% 137× = tickets from M3 on the bus 1, and then

1() 137T most = .

 32

 jless : there can be more than one MM which misses its requirement on the bus j

after inner loop terminated. For example, if there are 2 MMs, M1 and M2, on the

bus 1 misses their bandwidth requirements after inner loop terminated,

{ }1 M1, M2less = .

 ()k jT less : ,()k i jT less represents the tickets increasing to the kth MM of the set

jless . For example, if two MMs, M1 and M2, miss their bandwidth requirements

on bus 1 after inner loop terminated, { }1 M1, M2less = . Assume 1 1() 37T less =

and 2 1() 100T less = , we increase 37 ticket to M1 on bus 1 and increase 100

tickets to M2 on bus 1.

 ()k jInc less : the coefficient helps us to know how much tickets increase to the kth

MM of the set jless . For example, if M3 on bus 1 gets the most bandwidth than

its bandwidth requirement after inner loop terminated, 1 M3most = . And if two

MMs, M1 and M2, miss their bandwidth requirement on bus 1 after inner loop

finishing, { }1 M1, M2less = . Assume M3 has 257 tickets (3,1 257t =), M1 has 93

tickets (1,1 93t =), and M2 has 78 tickets (2,1 78t =) on bus 1. Assume

1() 53%Dec most = , 1 1() 27%Inc less = , and 2 1() 73%Inc less = on the bus 1.

First, we decrease 257 53% 137× = tickets from M3 on the bus 1 and

1() 137T most = . Then, we increase

1 1
1

1 1 2 1

() 27%() 137 37
() () 27% 73%

Inc lessT most
Inc less Inc less

× = × =
+ +

 tickets to M1 on the

bus 1 and increase 1 1
1

1 1 2 1

() 73%() 137 100
() () 27% 73%

Inc lessT most
Inc less Inc less

× = × =
+ +

 33

tickets to M2 on the bus 1. In other words,

1 1
1 1 1

1 1 2 1

() 27%() () 137 37
() () 27% 73%

Inc lessT less T most
Inc less Inc less

= × = × =
+ +

 and

2 1
2 1 1

1 1 2 1

() 73%() () 137 100
() () 27% 73%

Inc lessT less T most
Inc less Inc less

= × = × =
+ +

. Finally,

3,1 257 137 80t = − = , 1,1 93 37 130t = + = , and 2,1 78 100 178t = + = .

 ,_ i jrequest prob : this notation represents the request probability of the master i

on the bus j

 ,_ i jrequired bw : this notation represent the bandwidth requirement of master i

on the bus j.

 ,_ i jallocated bw : this notation represent the bandwidth allocation of master i on

the bus j.

3.1.2 The details of MC weight tuning algorithm

In this section, we illustrate the MC weight tuning algorithm with an example and

introduce details of global-bus weight tuning. As shown in Figure 24, there are 2 MMs, M0

and M1, and 4 SMs, M2, M3, M4, and M5 in the bus matrix system. And the traffic model

is shown in Table 8. There are In the “Beat” column of Table 8, there are two kinds of

beat numbers. For example, if M0 on the bus 0 initiates a request, the beat number is equal

to 16 with 50% probabilities and is equal to 8 with 50% probabilities. In the “Interval”

column of Table 8, there are five kinds of interval time. For example, if a request of M0 on

the bus 0 is completed, the interval time is equal to 3 with 10% probabilities, 4 with 20%

probabilities, 5 with 40% probabilities, 6 with 20% probabilities and 7 with 10%

probabilities. The bandwidth requirements are shown in the “Required bandwidth” column.

 34

M0

Arbiter0

Slaves

Arbiter1

Slaves

r40%

r60%

M1

r40%

r60%

M4 M5M2M3

Figure 24 : The bus matrix system of the example of MC weight tuning

Table 8 : The traffic model of Figure 24

Bus Master Type Beat Interval Required

bandwidth (%)

 50%/50% 10% 20% 40% 20% 10%

M0 D 16 /8 3 4 5 6 7 15.0

M1 D 16 /8 3 4 5 6 7 21.0

M2 D_R 16 /8 3 4 5 6 7 34.9

Bus 0

M3 D 32 /16 3 4 5 6 7 19.1

M0 D 16 /8 3 4 5 6 7 22.5

M1 D 16 /8 3 4 5 6 7 14.0

M4 D_R 16 /8 3 4 5 6 7 33.6

Bus 1

M5 D 32 /16 3 4 5 6 7 19.9

The initial ticket assignment is shown in the third column of Table 9 (block 1). Then

the ticket assignment is saved as intermediate ticket assignment (block 2). For example, we

set 0,0_inter t to 167 (the intermediate tickets of M0 on the bus 0 is 167), 1,0_inter t to

223 (the intermediate tickets of M1 on the bus 0 is 167), etc.

After saving the ticket assignment to intermediate ticket assignment, the inner loop

start and try to meet all bandwidth requirements of masters (block 3, block 4, block 5,

block 6, and block 7). When the inner loop terminated, the resultant ticket assignment and

bandwidth allocation of each master are shown in the “Tuned tickets” column and the

“Allocated bandwidth of bus matrix” column respectively in Table 9. As shown in Table 9,

M0 and M1 miss their bandwidth requirements on the bus 0 and bus 1. There is no SM

 35

misses its requirement (block 8). The global-bus weight tuning restores the intermediate

ticket assignment first, and then increase tickets to MMs which miss their bandwidth

requirements (block 9).

Table 9 : The ticket assignment and bandwidth allocation after inner loop terminated

Bus Master Initial
tickets

Tuned
tickets

Required
bandwidth

(%)

Allocated
bandwidth of
bus matrix

M0 167 220 15.0 13.8
M1 257 554 21.0 19.9
M2 387 198 34.9 37.5

Bus 0

M3 213 52 19.1 28.8

M0 274 624 22.5 21.0
M1 156 156 14.0 13.3
M4 373 186 33.6 37.3

Bus 1

M5 221 58 19.9 28.4

The detailed flow of global-bus weight tuning is shown in Figure 25. As shown in

Figure 25, the global-bus weight tuning has three steps. First, we restore intermediate ticket

assignment and find the jmost on each bus. Second, tickets are decreased from the

jmost on each bus. Finally, we increase tickets to MMs which miss their bandwidth

requirements.

In Table 10, the “More or less than requirement” column is used to find the jmost on

each bus. The “Bandwidth difference” column in Table 10 shows that the difference

between allocated bandwidth and required bandwidth of each master. As shown in Table 10,

M3 gets the most bandwidth than its requirement on bus 0, so 0 M3most = . And M5 gets

the most bandwidth than its requirement on bus 1, so 1 M5most = .

 36

jmost

Figure 25 : The flow of global-bus weight tuning

Table 10 : Table 9 with more information

Bus Master Request

probability

Intermediate

tickets

Required

bandwidth

(%)

Allocated

bandwidth

Bandwidth

difference

(%)

M0 r40% 167 15.0 13.8 - 7.9

M1 r60% 257 21.0 19.9 - 5.0

M2 r100% 387 34.9 37.5 7.4

Bus 0

M3 r100% 213 19.1 28.8 50.4

M0 r40% 274 22.5 21.0 - 6.7

M1 r60% 156 14.0 13.3 - 4.4

M4 r100% 373 33.6 37.3 11.0

Bus 1

M5 r100% 221 19.9 28.4 42.7

Tickets are decreased from jmost at second step of global-bus weight tuning. The

decreasing coefficient is calculated first (finding ()jDec most). Then we can know how

many tickets are decreased from jmost (finding ()jT most) . Finally, we decrease

()jT most from ,_ i jinert t . The following equations show above processes.

 37

, , ,

,

(_ _) _
()

_
i j i j i j

j
i j

allocated bw required bw request prob
Dec most

required bw B
−

= i (3.1)

,() _ ()j i j jT most inert t Dec most= i (3.2)

, ,_ _ ()i j i j jinert t inert t T most= − (3.3)

The coefficient “B” is used to avoid the algorithm never stop. When the algorithm

goes through the global-bus weight tuning, “B” is increased and ()jDec most becomes

smaller as “B” increased. When ()jDec most equal to zero, the simulation is terminated.

In Table 10, for example, M3 gets the most bandwidth than its requirement on the bus

0 and M5 gets the most bandwidth than its requirement on the bus 1. 0 M3most = and

1 M5most = . On bus 0, by the

Equation3.1

3,0 3,0 3,0
0

3,0

100%5
(_ _) _

() .4
_

0 %
allocated bw required bw request prob

Dec most
required b Bw B

×
−

= =i . By

the Equation3.2, 0 3,0 0
100%213 50.4% 1(07) _ ()T most inert t Dec mo

B
st ×= × == i . On bus 1,

by the

Equation3.1

5,1 5,1 5,1
1

5,1

100%4
(_ _) _

() .7
_

2 %
allocated bw required bw request prob

Dec most
required b Bw B

×
−

= =i . By

the Equation3.2, 1 5,1 1
100%221 42.7% 9() _) 4(T most inert t Dec mos

B
t × ×= == i .

At final step of global-bus weight tuning, tickets are increased to MMs which miss

their bandwidth requirements after we decreased tickets from jmost on each bus. The

increasing coefficient is calculated first (finding ()k jInc less). And then the Equation3.5

 38

shows how to increase tickets to MMs of jless . The following equations show above

processes.

, ,

, ,

(_ _) 1()
_ _

i j i j
k j

i j i j

required bw allocated bw
Inc less

required bw request prob
−

= i (3.4)

, ,

()
_ _ ()

()
k j

i j i j j
k j

k

Inc less
inter t inter t T most

Inc less
= +

∑
i (3,5)

In Table 10, for example, { }0 M0, M1less = on the bus 0. We decreased

0
100%213 50.4() % 107T most

B
= × × = tickets from M3 on bus 0. By the Equation3.4,

0,0 0,0
1 0

0,0 0,0

(_ _) 1 1() 7.9%
_ _ 40%

required bw allocated bw
Inc less

required bw request pro
−

= = ×i and

1,0 1,0
2 0

1,0 1,0

(_ _) 1 1() 5%
_ _ 60%

required bw allocated bw
Inc less

required bw request prob
−

= = ×i . There

are 1 0
0

1 0 2 0

7.9%
() 40%() 757.9% 5%() ()

4

10

%

7

0% 60

Inc lessT most
Inc less Inc less

= × =
+ +

i tickets are increased to

intermediate tickets of M0 on the bus 0 (0,0_inter t). There are

2 0
0

1 0 2 0

5%
() 60%() 327.9% 5%() ()

40% 60%

107Inc lessT most
Inc less Inc less

= × =
+ +

i tickets are increased to

intermediate tickets of M1 on the bus 0 (1,0_inter t).

On bus 1, { }1 M0, M1less = , We decrease 1
100%221 42.7% 94()T mos

B
t × × ==

tickets from 1most . By the Equation3.4,

0,1 0,1
1 1

0,1 0,1

(_ _) 1 1() 6.7%
_ _ 60%

required bw allocated bw
Inc less

required bw request prob
−

= = ×i and

 39

1,1 1,1
1 1

1,1 1,1

(_ _) 1 1() 4.4%
_ _ 40%

required bw allocated bw
Inc less

required bw request prob
−

= = ×i . There

are 1 1
1

1 1 2 1

6.7%
() 60%() 476.7% 4.4%() ()

60% 40%

94Inc lessT most
Inc less Inc less

= × =
+ +

i tickets are increased to

intermediate tickets of M0 on the bus 1 (0,1_inter t). There are

2 1
1

1 1 2 1

6.7%
() 60%() 476.7% 4.4%() ()

60% 40%

94Inc lessT most
Inc less Inc less

= × =
+ +

i tickets are increased to

intermediate tickets of M1 on the bus 1 (1,1_inter t).

After global-bus weight tuning finishes (block 9), the step goes to block 2 and repeats

the flow. When the simulation is terminated, it results a proper ticket assignment to masters.

In Table 11, the “Final tickets” column shows the proper ticket assignment resulted by MC

weight tuning algorithm and it meets all bandwidth requirements of masters. As the result,

the MC weight tuning is more suitable for the bus matrix architecture.

Table 11: The simulation result of example Figure 24 by MC weight tuning algorithm

Bus Master Initial
tickets

Final
tickets

Required
bandwidth

Allocated
bandwidth

M0 167 409 15.0 14.8
M1 257 386 21.0 22.0
M2 387 193 34.9 38.4

Bus 0

M3 213 12 19.1 24.8
M0 274 411 22.5 22.2
M1 156 390 14.0 14.3
M4 373 186 33.6 37.9

Bus 1

M5 221 13 19.9 25.5

 40

Chapter 4

Experimental Results

4.1 Experiment setup

We use the SoC Designer which is developed by ARM to implement our experiments

[25]. As shown in Figure 26, there are 2N masters and slaves. Every arbiter with slaves can

be regarded as a bus system. Each master can be connected to one or more than one bus

systems. Every master has a decoder to transport the request to its destination bus. After a

master initiates a request, it puts the request into the respective channel and waits for the

response from the corresponding slave. The arbiter selects only one pending request to be

granted. The lottery-based arbitration algorithms are used in our experiments. The arbiter

forwards the granted request to the corresponding slave and slave responds to the request.

After the slave responds, the arbiter puts the response into channel and the master picks up

the corresponding response up and completes the transaction.

 41

Arbiter1 Slaves

channel

channel

channel

...

...

M11

D
ecoder

Request
Rsponse

M12

D
ecoder

M1N

D
ecoder

Arbiter2 Slaves

channel

channel

channel

...

...

M21

D
ecoder

M22

D
ecoder

M2N

D
ecoder

Figure 26 : An example of implementation of a bus matrix system on SoC Designer

4.2 Experiment 1

In experiment 1, we compare the performance with different weight tuning algorithms,

local-bus weight tuning algorithm and MC weight tuning algorithm. As shown in Figure

27, there are 4 MMs, M0, M1, M2, and M3, and each bus has 2 SMs (M4, M5, M6, M7,

M8, M9, M10, and M11) in the experiment 1. The traffic model on each bus is shown in

Table 12. The traffic models of a MM can be different on different buses. For example, M3

 42

is D_R type on the bus 0, but M3 is D type on the bus 1. The beat number of M3 is 8 or 4

on the bus 0, but the beat number of M3 is 16 or 8 on the bus 1. Lottery-based arbitration

algorithms are used in experiment 1. The local-bus weight tuning algorithm works on bus

matrix architecture and independent buses architecture which is introduced in section 2.4.1.

The MC weight tuning algorithm works on bus matrix architecture.

Figure 27 : The bus matrix architecture of experment1

 43

Table 12 : The traffic model of Figure 27

Bus Master Type Beat Interval
 50%/50% 10% 20% 40% 20% 10%

M0 D 32 /16 3 4 5 6 7
M1 D 16 /8 3 4 5 6 7
M2 D 16 /8 3 4 5 6 7
M3 D_R 8 /4 5 6 7 8 9
M4 D_R 16 /8 3 4 5 6 7

Bus 0

M5 D 32 /16 3 4 5 6 7

M0 D 16 /8 3 4 5 6 7
M1 D 32 /16 3 4 5 6 7
M2 D_R 8 /4 5 6 7 8 9
M3 D 16 /8 3 4 5 6 7
M6 D_R 16 /8 3 4 5 6 7

Bus 1

M7 D 32 /16 3 4 5 6 7

M0 D 16 /8 3 4 5 6 7
M1 D_R 8 /4 5 6 7 8 9
M2 D 16 /8 3 4 5 6 7
M3 D 32 /16 3 4 5 6 7
M8 D_R 16 /8 3 4 5 6 7

Bus 2

M9 D 32 /16 3 4 5 6 7
M0 D_R 8 /4 5 6 7 8 9
M1 D 16 /8 3 4 5 6 7
M2 D 32 /16 3 4 5 6 7
M3 D 16 /8 3 4 5 6 7
M10 D_R 16 /8 3 4 5 6 7

Bus 3

M11 D 32 /16 3 4 5 6 7

We compare the ticket assignments generated by different weight tuning algorithms. If

the resultant ticket assignment can make masters meet all real-time requirements and all

bandwidth requirements simultaneously, it is a successful case. Otherwise, if one

requirement is missed, it is a fail case. The difficulty to meet both real-time and bandwidth

requirements depends on the bus workload in terms of the percentage of bus bandwidth

 44

utilization [16, 24]. We randomly generate pattern for different bus workloads and

compare the results. As shown in Table 13, the first column gives the bus workloads

varying from 60% to 95%. For example, the “60%~65%” means the workload of each bus

is between 60% and 65%. For each set of bus workload, 100 random patterns of different

required bandwidth combinations are generated. The “IB & Local” means it simulates on

the independent buses architecture with local-bus weight tuning algorithm (introduced in

section 2.4.1). The “BM & Local” means it simulates on the bus matrix architecture with

local-bus weight tuning algorithm (introduced in section 2.4.2). The “BM & MC” means it

simulates on the bus matrix architecture with MC weight tuning algorithm. We accumulate

the numbers of success case of three and show them in Table 13.

Table 13 : The number of success case under different weight tuning algorithm

Workload (%) IB & Local BM & Local BM & MC

60%~65% 38 90 100

65%~70% 35 86 100

70%~75% 34 80 90

75%~80% 5 53 88

80%~85% 0 38 85

85%~90% 0 0 83

 45

38 35 34

5
0 0

90
86

80

53

38

0

100 100

90 88 85 83

0

10

20

30

40

50

60

70

80

90

100

IB & Local BM & Local BM & MC

IB & Local 38 35 34 5 0 0

BM & Local 90 86 80 53 38 0

BM & MC 100 100 90 88 85 83

60%~65% 65%~70% 70%~75% 75%~80% 80%~85% 85%~90%

Figure 28 : The figure of Table 13

The independent buses architecture cannot model correctly the behavior of the bus

matrix architecture. It has fewer successful cases under different workload. The local-bus

weight tuning algorithm using on bus matrix architecture directly can result proper ticket

assignment with high successful probabilities below 75% bus workload. Because the

local-bus weight tuning algorithm considers information of only one bus at one time, the

numbers of successful cases decrease very quickly above 75% bus workload. The MC

weight tuning algorithm has 88 successful cases when bus workload is between 75% and

80%. Even bus workload is between 85% and 90% which is extremely high traffic load,

the MC weight tuning still has more than 80 successful cases. The MC weight tuning

algorithm can result proper ticket assignment for lottery-based arbitration algorithm under

different bus workloads with very high successful rates.

 46

In this experiment, we have the following summaries. The independent buses

architecture cannot well model he behavior of the bus matrix architecture. The local-bus

weight tuning may work well on the bus matrix architecture when the bus workload is less

than 75%. However, the MC weight tuning has better results even if the bus workload is

between 85% and 90%.

4.3 Experiment 2

In experiment 2, we compare the performance of MC weight tuning algorithm

working on different complexity of bus matrix architecture. As shown in Figure 29, Figure

30, and Figure 31, they all are bus matrix architectures with the different complexities of

architectures. There are two buses in Figure 29, three buses in Figure 30, and four buses in

Figure 31.

Those three architectures are simulated with lottery-based arbitration algorithms and

MC weight tuning algorithm. If the resultant ticket assignment can make masters meet all

real-time requirements and all bandwidth requirements simultaneously, it is a successful

case. Otherwise, if one requirement is missed, it is a fail case. We randomly generate

pattern for different bus workloads and compare the results. As shown in Table 14, the first

column gives the bus workloads varying from 60% to 95%. For each set of bus workload,

100 random patterns of different required bandwidth combinations are generated. The

“2-bus” means the architecture shown in Figure 29 is used. The “3-bus” means the

architecture shown in Figure 30 is used. The “4-bus” means the architecture shown in

Figure 31 is used. We accumulate the numbers of successful cases of these three and show

the results in Table 14.

 47

Figure 29 : Bus matrix architecture with two buses

Figure 30 : Bus matrix architecture with three buses

 48

Figure 31 : Bus matrix architecture with four buses

Table 14 : The number of success case under different complexity of architectures

 2-bus 3-bus 4-bus

60%~65% 100 100 100

65%~70% 100 100 100

70%~75% 100 100 90

75%~80% 98 97 88

80%~85% 98 93 85

85%~90% 92 90 83

 49

0

10

20

30

40

50

60

70

80

90

100

2-bus 3-bus 4-bus

2-bus 100 100 100 98 98 92

3-bus 100 100 100 97 93 90

4-bus 100 100 90 88 85 83

60%~65% 65%~70% 70%~75% 75%~80% 80%~85% 85%~90%

Figure 32 : The figure of Table 14

As shown in Figure 32, the “2-bus” (shown in Figure 29) has the best performance

and it is the simplest architecture of those three. The performance of “3-bus” (shown in

Figure 30) is very close to that of “2-bus”. Although the performance of “4-bus” (shown in

Figure 31) is the worst of the three, the difference of results between “2-bus” and “4-bus”

is small. The MC weight tuning algorithm working on different architecture complexity

results proper ticket assignment with very high successful rates.

 50

Chapter 5

Conclusions and Future Work

5.1 Conclusions

A new weight tuning algorithm, MC weight tuning algorithm, is proposed in this

thesis. It can mostly provide proper ticket assignment to lottery-based arbitration

algorithms to meet real-time and bandwidth requirements simultaneously. The MC weight

tuning algorithm also shows that the weight tuning algorithm cannot consider information

of only one bus at one time. The weight tuning algorithm has to consider information of

multiple buses. The experimental results show that the MC weight tuning algorithm

working on the bus matrix architecture is better than the local-bus weight tuning algorithm

working on the bus matrix architecture. Hence, the MC weight tuning is a better choice for

lottery-base arbitration algorithms working on the bus matrix architecture.

As the demands of on-chip communication grow, more modern communication

architectures will be proposed in the near future. If lottery-based arbitration algorithms are

continually used, an efficient weight tuning algorithm is still needed as well. In the future,

we intend to find a weight tuning algorithm which can be used for different communication

architectures, even for different weighted or probabilistic arbitration algorithms.

 51

Reference
[1] S. Pasricha and N. Dutt, "On-Chip Communication Architectures: System on Chip

Interconnect," Morgan Kaufmann, 2008.
[2] S. Pasricha, N. Dutt, and M. Ben-Romdhane, "Constraint-Driven Bus Matrix

Synthesis for MPSoC," in Asia and South Pacific Design Automation Conference,
2006, pp. 30-35.

[3] P. Sujan, G. Manfred, and M. Max, "Performance Aware On-Chip Communication
Synthesis and Optimization for Shared Multi-Bus Based Architecture," in
Symposium on Integrated Circuits and Systems Design, 2005, pp. 230-235.

[4] "Peripheral Interconnect Bus Architecture," http://www.omimo.be.
[5] "Virtual Socket Interface Alliance," http://www.vsi.org.
[6] "IBM Microelectronics CoreConnect Bus Architecture,"

http://www.chips.ibm.com/products/coreconnect.
[7] "AMBA 2.0 Specification," http://www.arm.com/armtech/AMBA.
[8] "Sonics Integration Architecture," http://www.sonicsinc.com.
[9] "Open Core Protocol Specification – v1.0," http://www.sonics.com, 1999.
[10] J. L. Hennessy and D. A. Patterson, "Computer Architecture: A Quantitative

Approach," Morgan Kaufmann Publishers, 2002.
[11] J. L. Hennessy and D. A. Patterson, "Computer Organization and Design: The

Hardware/Software Interface," Morgan Kaufmann Publishers, 2004.
[12] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L.Todd, "Surviving the

SoC Revolution," Kluwer Academic Publishers, 1999.
[13] J. Liang, S. Swaminathan, and R. Tessier, "ASOC: A Scalable, Single-Chip

Communications Architecture," in International Conference on Parallel
Architectures and Compilation Techniques, 2000, pp. 37-46.

[14] "ARM AMBA 3.0 Specification," http://www.arm.com.
[15] "Multi Layer AHB Specification," http://www.arm.com.
[16] C.-H. Chen, G.-W. Lee, J.-D. Huang, and J.-Y. Jou, "A Real-Time and Bandwidth

Guaranteed Arbitration Algorithm for SoC Bus Communication," in Asia and South
Pacific Design Automation Conference, 2006, pp. 600-605.

[17] K. Lahiri, A. Raghunathan, and G. Lakshminarayana, "The LOTTERYBUS
On-Chip Communication Architecture," IEEE Transactions on Very Large Scale

 52

Integration (VLSI) Systems, vol. 14, pp. 596-608, 2006.
[18] K. Lahiri, A. Raghunathan, G. Lakshminarayana, and S. Dey, "Design of

High-Performance System-on-Chips using Communication Architecture Tuners,"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 23, pp. 620-636, 2004.

[19] J. Lehoczky, L. Sha, and Y. Ding, "The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior," IEEE Real Time Systems
Symposium, pp. 201-209, 1989.

[20] C. Liu and J. Layland, "Scheduling Algorithms for Multiprogramming in a Hard
Real-time Environment," Journal of the ACM, pp. 46-61, 1973.

[21] L. Sha and J. B. Goodenough, "Real-Time Scheduling Theory and Ada," IEEE
Computer, vol. 23, pp. 53-62, 1990.

[22] C. A. Waldspurger and W. E. Weih, "Lottery Scheduling: Flexible
Proportional-Share Resource Management," Proceeding of the First Symposium on
Operating Systems Design and Implementation, pp. 1-11, 1994.

[23] Y. Zhang, "Architecture and Performance Comparison of A Statistic-Based Lottery
Arbiter for Shared Bus on Chip," in Asia and South Pacific Design Automation
Conference, 2004, pp. 1313-1316.

[24] B.-C. Lin, G.-W. Lee, J.-D. Huang, and J.-Y. Jou, "A Precise Bandwidth Control
Arbitration Algorithm for Hard Real-Time SoC Buses," in Asia and South Pacific
Design Automation Conference, 2007, pp. 165-170.

[25] "SoC Designer Developer Guide," www.arm.com.

	thesis封面.pdf
	thesis_final

