
國立交通大學 

 

電子工程學系電子研究所碩士班 

 

碩士論文 

 

 

應用於匯流排矩陣系統之仲裁器權重調整演算

法 

 

A Weight Tuning Algorithm for Arbiters in Bus 

Matrix Systems 
 

 

 

研究生： 陳匡緯 

指導教授： 周景揚博士 

 

中華民國九十八年二月 



應用於匯流排矩陣系統之仲裁器權重調整演算

法 

A Weight Tuning Algorithm for Arbiters in Bus 

Matrix Systems 
研究生：蔡孟家                  Student: Kuang-Wei Chen 

指導教授：周景揚博士            Advisor: Dr. Jing-Yang Jou 

國立交通大學 

電子工程學系電子研究所碩士班 

碩士論文 

A Thesis  

Submitted to Department of Electronics Engineering & Institute 

of Electronics College of Electrical and Computer Engineering 

Institute of Electronics  

National Chiao Tung University  

in Partial Fulfillment of the Requirements for the Degree of 

Master of Science in Department of Electronics Engineering 

February 2009 

HsinChu, Taiwan, Republic of China 

中華民國九十八年二月 



 i

應用於匯流排矩陣系統之 
仲裁器權重調整演算法 

 

研究生：陳 匡 緯     指導教授：周 景 揚 博士 

 

國 立 交 通 大 學 

電 子 工 程 學 系  電 子 研 究 所 碩 士 班 

 

摘 要 

 在系統單晶片匯流排上，仲裁器是必要的元件。當不同裝置同時要求使用匯流排

時，會有存取衝突發生，而仲裁器是為了解決這些衝突而存在的。過去一些以樂透方

式為基礎的仲裁器演算法是用機率方式去解決這些衝突而且被證明非常的有效。但這

些以樂透方式為基礎的仲裁器演算法需要一個權重調整演算法來幫助他們去同時滿

足不同裝置的即時以及頻寬的需求。在本篇論文中，我們提出了一個新的權重調整演

算法，我們稱作 MC 權重調整演算法。MC 權重調整演算法可以同時考慮到多個匯流排

系統的資訊來調整每個裝置的權重。由實驗數據可以證實，我們提出的 MC 權重調整

演算法可以有效的幫助這些以樂透方式為基礎的仲裁器演算法，用以滿足匯流排矩陣

上不同裝置的頻寬需求。 
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 A Weight Tuning Algorithm for Arbiters 
in Bus Matrix Systems 

 

Student: Kuang-Wei Chen     Advisor: Dr. Jing-Yang Jou 

 

Department of Electronics Engineering 

Institute of Electronics 

National Chiao Tung University 

 

Abstract 

Arbiters are mandatory components on SoC bus systems to resolve contentions of bus 

access requests from different IP cores. Lottery-based arbitration algorithms are 

probabilistic and efficient arbitration algorithms. However, lottery-based arbitration 

algorithms need a weight tuning mechanism to help them simultaneously meet both the 

real-time and bandwidth requirements. In this thesis, we propose a new weight tuning 

algorithm, named MC weight tuning algorithm, which considers multiple buses at one time. 

The experimental results show that MC weight tuning algorithm helps lottery-based 

arbitration algorithms efficiently meet bandwidth requirements of IP cores in bus matrix 

systems. 
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Chapter 1  

Introduction 

1.1 Introduction 

With the technology scaling and the level of system integration, system-on-chip (SoC) 

design is widely adopted in today’s design methodology. It integrates a number of 

intellectual property (IP) components, such as processor, memory, DSP, and ASIC, into a 

single chip to meet the design specification. Since those components need to communicate 

each other for data exchange, the on-chip communication architecture has a significant 

impact on the system performance. Many on-chip communication architecture topologies 

are proposed to facilitate the data exchange between components in a system. The shared 

bus based architecture is very popular in the designs with moderate complexity because of 

their topology simplicity and area efficiency. However, in the past couple of years, the 

shared bus architecture is no longer capable of handling high bandwidth requirements 
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which limits the system performance[1, 2]. In order to resolve the bandwidth limitation of 

shared bus architecture, the bus matrix architecture is used to provide higher system 

parallelism. In the following two sections, we briefly introduce this two on-chip 

communication architectures. 

1.1.1 Shared bus architecture 

Shared bus is one of widely used on-chip communication architectures. The 

communication is commonly built through the shared media called bus. Shared bus is acted 

as a shared channel between components and then components communicates with each 

other through the bus [1, 3].  

Two categories of components are connected through the shared bus. Master 

components initiate data transaction requests (either read or write transactions), and slave 

components respond to corresponding requests with proper data transactions. A simple 

example of single shared bus architecture is shown in Figure 1. There are three masters, 

M0, M1, and M2, and two slaves, S1 and S2. Masters initiate requests and slaves response 

the corresponding requests through single shared bus [4-11]. Figure 2 is a simplified graph 

of Figure 1. 

 

Figure 1 : An example of single shared bus architecture 
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M0 M1 M2

Arbiter0

Slaves
 

Figure 2 : A simple representation of Figure 1 

More than one master can initiate requests at the same time on the shared bus system; 

however, only one master can be granted to bus access. An arbiter is required to decide 

which master can be granted without bus conflicts. Since the arbiter decides which master 

is the current bus owner to avoid bus conflicts, the arbiter influences the system 

performance significantly. As a result, the arbiter is indeed an important component of 

shared bus architecture. 

Since the communication channel is shared, the hardware cost for shared bus 

architecture is relatively lower than other communication architectures [12, 13]. However, 

the shared bus architecture can only support limited bandwidth which is not suitable for the 

current high performance systems. 

1.1.2 Bus matrix architecture 

In order to achieve higher performance and support larger bandwidth requirement for 

high performance systems, a different communication architecture, bus matrix architecture, 

is proposed [1, 2]. It is a combination of shared bus and point-to-point connection structure 

between components to support higher level of parallelism. The parallel buses provide a 

better communication backbone to achieve bandwidth requirements of the high 

performance systems. 
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In this architecture, each master connects with each slave system through the separate 

bus. Each slave system is a shared bus structure where one or more slaves are connected. A 

simple example of bus matrix architecture with two slave systems is shown in Figure 3. 

Masters on the left connect with slave systems on the right through the interconnect matrix. 

One slave system consists of S0, S1, and S2, and the other slave system consists of S3 and 

S4. Figure 4 is a simplified graph of Figure 3. 

Since, a master can connect with one or many slave systems in bus matrix architecture, 

we classify the masters according to the type of connection. A master which connects with 

more than one slave systems is called multi-connection master (MM). Otherwise, a master 

which connects with only one slave systems is called single-connection master (SM). A 

decoder is required for each MM to determine the data transfer sent to which slave system. 

For example, as shown in Figure 3, M0 which connects to two slave systems is an MM and 

M1 which connects to only one slave system is an SM. 

Since an MM can have different traffic behavior on each slave system, we use a 

probability symbol to represent the request rate. As shown in Figure 5, for example, if M0 

initiates a request, the request has 40% probabilities to bus 0, and 60% probabilities to bus 

1. The “r40%” means that the new initiated request has 40% probabilities to this bus. The 

sum of probabilities of each bus is 100%. The request probabilities are called request ratio. 

In other words, the request ratio of M0 on bus 0 is 40%, the request ratio of M0 on bus 1 is 

60%. 
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Figure 3 : An example of bus matrix architecture 

M1 M2 M0

Arbiter0

Slaves

M3 M4 M5

Arbiter1

Slaves
 

Figure 4 : A simple representation of Figure 3 

M1 M2 M0

Arbiter0

Slaves

M3 M4 M5

Arbiter1

Slaves

r40% r60%

 

Figure 5 : A probability based model is used to model the behavior of MM 
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Without loss of generality, a master cannot initiate a new request before the previous 

request is not completed. While dealing with the requests of MM, the arbitration strategy 

on each slave system should consider the communication behavior of other slave systems 

[14, 15]. It becomes more complicated to design the arbiter. In Figure 5, for example, M0 

can access both of two slave systems where any pending request of one side would suspend 

the request of the other side. Since the traffic behavior of multi-connection masters are 

more complicated, the arbiter becomes more difficult to design for bus matrix architecture. 

Comparing with shared bus architecture, bus matrix architecture can provide parallel 

access paths at one time. As shown in Figure 3 and Figure 4, M0, M1, M2, S0, S1, and S2 

can be regarded as a shared bus system called bus 0, M0, M3, M4, M5, S3 and S4 can be 

regarded as another shared bus system called bus 1. If M1 and M3 both have pending 

requests, the requests of M1 and M3 can be simultaneously granted without bus conflict. 

Because of parallel access paths, bus matrix architecture can support larger bandwidth 

requirement that higher performance system needs than shared bus architecture. 

1.2 The purpose and challenge of arbiter 

Arbiters play an important role in on-chip communication architectures. Because of 

the resources limitation, one shared resource can be used by only one component at one 

time. For example, only one master can be granted to access bus at one time on shared bus 

architecture, or one slave system can serve only one master at one time on bus matrix 

architecture. There are many contentions between many requests when different masters 

initiate its request at the same time. Because of the limitation and contention, we need a 

component that can decide which pending request of masters can be granted to use 

resources, that is arbiter. When there is contention occur between some pending requests, 
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the arbiter must decide only one of them can be granted.  

Besides, the master often has the real-time requirements and bandwidth requirements. 

The arbiter has very important impact on whether those requirements are met or missed 

because the arbiter decides granted order of requests. It is a challenge for arbiters to meet 

different requirements simultaneously because masters have diverse traffic behavior. 

1.3 The focus of our work 

With local-bus weight tuning algorithm, lottery-based arbitration algorithms can meet 

most bandwidth and real-time requirements simultaneously on single shared bus 

architecture [4, 8, 9, 16-24]. But we show that local-bus weight tuning algorithm does not 

work well on bus matrix system comparing with single share bus architecture. We propose 

an algorithm called MC weight tuning algorithm. MC weight tuning algorithm helps 

lottery-based arbitration algorithms meet most bandwidth requirements on bus matrix 

architecture. 

1.4 Thesis organization 

The remainder of this thesis is organized as follows. The lottery-based arbitration 

algorithms and an existing weight tuning algorithm proposed in [16] are briefly introduced 

in Chapter 2. Chapter 3 presents the detail of the proposed weight tuning algorithm, MC 

weight tuning algorithm. Experimental results are reported in Chapter 4. Finally, we 

conclude this thesis in Chapter 5. 
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Chapter 2              

Preliminary 

We introduce previous works in this chapter. First, we briefly introduce the traffic models. 

Then, lottery-based arbitration algorithms and local-bus weight tuning algorithm are 

introduced briefly. Finally, we show some motivational examples for our weight tuning 

algorithm. 

2.1 Traffic models of masters 

Four parameters are defined to describe the behaviors of a master. The first parameter 

of a request is the beat number. For example, if the beat number of a request is 4, it means 

that it is a 4-beat transaction. In other words, the request needs 4 cycles to complete it 

works. Second, the time of next request can be initiated is determined as the interval time. 

For example, if the interval time is 17, the next request initiates after 17 cycles. Third, the 

real-time requirement is represented as Rcycle which is the dead-line of a request. For 
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example, if the Rcycle is 10, the request must complete in 10 cycles. At last, we classify 

three high abstract-level traffic types to emulate the masters behavior [24]. That is D type 

master, D_R type master, and ND_R type master. The behavior of three different type 

masters is shown in the following. 

 D type (D for dependency): 

The D type master has no real-time requirement. The time of the D type master 

initiating a request depends on the finish time of the previous request. In Figure 6, 

the beat number is 4 and the interval time is 17. If a request is initiated at cycle 2 

and granted at cycle 5, the request is completed at cycle 9. The next request is 

initiated at cycle 26 which is 17 cycles later than the finish time. 

  

Figure 6 : D type master (beat number = 4; interval time = 17) 

 D_R type (D for dependency, R for real-time):  

The behavior of the D_R type master is the same as the D type master except the 

real-time requirement. Requests of the D_R type master has real-time 

requirement. In Figure 7, we use the same parameters used in Figure 6 as an 

example. Because of the real-time requirement, a new parameter, Rcycle, is 

added in Figure 7. Rcycle is 10 cycles in the example. The first request is also 

initiated at cycle 2 and the request must be completed before cycle 12 because of 

the Rcycle is 10 cycles. It is a real-time violation, if the request is not completed 

before cycle 12. 



 10

  

Figure 7 : D_R type master (beat number = 4; interval time = 17; Rcycle = 10)  

 ND_R type (ND for non-dependency, R for real-time): 

The ND_R type master is another kind of master with the real-time requirement. 

The behavior of ND_R type master is similar to D_R type master except on one 

thing. The time of the ND_R type master initiating a request does not depend on 

the finish time of the previous request. Actually, the time of the ND_R type 

master initiating a request depends on the initiated time of the previous request. 

In other words, the ND_R type masters initiate requests periodically. In Figure 8, 

the same parameters are used in Figure 7. Since the interval time is at cycle 17 

and the initiated time of the first request is at cycle 2, the second request is 

initiated at cycle 19, which directly depends on the initiated time of the first 

request. 

  

Figure 8 : ND_R type master (beat number = 4; interval time = 17; Rcycle = 10) 

There is a limitation for all masters. If a master had initiated a request, it cannot 

initiate a new request when the previous request has not been finished. For example, a state 

machine is involved by a master. The master begins next state after previous state is 

completed. In other words, all masters are in serial execution. 
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2.2 Lottery-based arbitration algorithms 

Lottery-based arbitration algorithms are probabilistic arbitration algorithm [16, 17, 

24].It stochastically grants one of the contending masters according to the ticket assigned 

to them, either statically or dynamically. Each master holds a number of tickets for 

lottery-based algorithms. When a bus contention occurs, the lottery manager accumulates 

tickets of masters. According the tickets assignment, lottery manager probabilistically 

choose a master granted to access bus. As shown in Figure 9, there are four masters and 

each of them has a number of lottery tickets as the probability of bus granted. First, the 

lottery manager accumulates tickets of masters which has pending request. Then the lottery 

manager probabilistically chooses a master granted to access the bus from all contending 

masters. In other words, the lottery tickets act as the weight and lottery-based arbitration 

algorithms are weighted random arbitration algorithm to grant a master while contention.  

 

Figure 9 : The Lottery communication architecture 
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Let the set of masters, 1 2 nM ,  M ,  ...,  M , and each of them has 1 2 nt ,  t ,  ...,  t  tickets 

respectively. A set of Boolean variables, 1 2 nr ,  r ,  ...,  r , represents the corresponding 

pending request. ir  is 1 if iM  has pending requests. Otherwise,  ir  is 0.  

The first step, the lottery manager accumulates the total tickets of masters which has 

pending requests, given by 
1

n

j j
j

T r t
=

=∑ . Then the lottery manager generates a random 

number from the range [ )0,T . The symbol [ )0,T  means that all integers between 0 to T 

are included except T. If the random number lies in the range 
1

1 1

,
i i

k k k k
k k

r t r t
+

= =

⎡ ⎞
⎟⎢⎣ ⎠

∑ ∑ , the master 

1iM +  is granted. In Figure 10, for example, there are four masters, M1, M2, M3, and M4, 

and hold 1, 2, 3, and 4 tickets respectively. Three of them have pending requests, M1, M3, 

and M4, and the lottery manager accumulates their tickets 
1

1 0 3 4 8
n

j j
j

T r t
=

= = + + + =∑ . 

And it generates a random number, e.g. 5, from the range [ )0,8 . The number lies between 

1 1 2 2 3 3 4r t r t r t+ + =  and 1 1 2 2 3 3 4 4 8r t r t r t r t+ + + = , and then the bus is granted to M4. The 

probability of iM  granted to access the bus is shown in Equation2.1. 

1

( ) i i i i
i n

j j
j

r t rtP M
Tr t

=

= =

∑
                       (2.1) 

 

Figure 10 : An example of Lottery 



 13

Since tickets act as granted probabilities of each master for lottery-based arbitration 

algorithms, ticket assignment is important to system performance. Lottery-based arbitration 

algorithms need additional algorithm to assign tickets to each master. The additional 

algorithm is called weight tuning algorithm. We introduce a weight tuning algorithm in the 

following section. 

2.3 Local-bus weight tuning algorithm 

The lottery-based arbitration algorithms need a weight tuning algorithm to result 

proper ticket assignment for all masters. A weight tuning algorithm can result tickets for 

each master. Proper ticket assignment makes masters meet their requirements as many as 

possible. By Equation2.1, tickets can decide grated probabilities for each master, and 

grated probabilities can obviously affect allocated bandwidth of each master. In other 

words, tickets have strong impact on bandwidth allocation for each master. For example, a 

shared bus system has three masters (named M0, M1, and M2) with same traffic models. 

We simulate with different ticket assignments and respective bandwidth allocation is 

shown in Figure 11. The notation “10:1:1” means that M0 has tickets ten times larger than 

M1; and also ten times larger than M2. In Figure 11, it is easily observed that different 

ticket assignments result totally different bandwidth allocations. The weight tuning 

algorithm redistributes tickets between masters and result proper ticket assignment for 

masters. Masters with proper ticket assignment meet their requirements as many as 

possible. 
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Figure 11 : Bandwidth allocation under different tickets assignment ratio 

Finding an efficient weight tuning algorithm is a difficult challenge. Most of 

requirements can be met by ticket assignment resulting from an efficient weight tuning 

algorithm. In Figure 12 and Table 1, an example shows that why an efficient weight tuning 

algorithm is a difficult challenge. There are four masters with their traffic models in Table 

1. Lottery algorithm with total 1024 tickets is used in Figure 12. We simulate with three 

different tickets assignments, and simulation results are shown in Figure 13. The notation 

“252:143:220:409” in Figure 13 means M0 has 252 tickets, M1 has 143 tickets, M2 has 

220 tickets, and M3 has 409 tickets. Comparing with three different ticket assignments, we 

only move the tickets from M0 to M2, but allocated bandwidth of all masters are changed. 

Bandwidth allocation is totally changed when we redistribute tickets of two masters. When 

a weight tuning algorithm redistributes tickets between masters, the bandwidth allocation is 

disordered and not easily predictable. 
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Figure 12 : An example of single share bus architecture with four masters 

 

Table 1 : The traffic models of Figure 12 

 Type Beat Interval

M0 D 32 2 

M1 D 16 4 

M2 D 8 8 

M3 D 8 8 
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Figure 13 : The bandwidth allocation under three different ticket assignments 
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For single shared bus architecture, an efficient weight tuning algorithm, local-bus 

weight tuning algorithm, is proposed in [16]. Local-bus weight tuning algorithm results 

proper tickets for each master and masters can meet most of their requirements. The simple 

flow of local-bus weight tuning algorithm is shown in Figure 14. At first, the local-bus 

weight tuning algorithm analyzes the simulation result according the bandwidth allocation 

of each master. If a master gets bandwidth more than its requirement, it is grouped into 

Smore. If a master gets bandwidth less than its requirement, it is grouped into Sless. If a 

master gets bandwidth almost equal to its requirement, it is grouped into Smet. The master 

in Smore who gets the most bandwidth than its requirement is called Mmost. The master in 

Sless who gets the least bandwidth than its requirements is called Mleast. Each master in Sless 

gets insufficient bandwidth because each of them does not have enough tickets. If the 

master does not meet its bandwidth requirement, the local-bus weight tuning algorithm 

increases its tickets. When tickets of a master are increased, the granted probability is 

increased and the master can get more bandwidth than before. The local-bus weight tuning 

algorithm redistributes the tickets of masters in Smore and Sless, and tries to meet bandwidth 

requirements of each master. 

The local-bus weight tuning algorithm is efficient for single shared bus system. 

Lottery-basd arbitration algorithms with local-bus weight tuning algorithm in single shared 

bus system can meet hard real-time requirements and bandwidth requirements 

simultaneously with very high successful probability [24].  
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Figure 14 : The simple flow of local-bus weight tuning 
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2.4 Motivation 

In our thesis, we choose lottery-based arbitration algorithms as our arbitration 

algorithm of bus matrix architecture. With the evolution of process, more and more SoC 

systems need bus matrix architecture to deal with the complex communication between 

massive components. Since the lottery-based arbitration algorithms meet the hard real-time 

and bandwidth requirement simultaneously with high successful probability, using the 

lottery-based arbitration algorithms for bus matrix architecture is a good choice. 

In this thesis, we find how to result proper ticket assignment for bus matrix 

architecture because we choose lottery-based arbitration algorithms as our arbitration 

algorithm. Proper ticket assignment of masters is important to lottery-based arbitration 

algorithms because it makes masters meet their requirements as many as possible. A weight 

tuning algorithm is needed for bus matrix architecture. Local-bus weight tuning algorithm 

produces proper ticket assignment for single shared bus architecture. In following, two 

methods are introduced that try to achieve our goal, finding proper ticket assignment for 

bus matrix architecture. 

2.4.1 Model bus matrix architecture by shared bus architecture 

Since lottery-based arbitration algorithms often use local-bus weight tuning algorithm 

before, we try to the use same weight tuning algorithm for bus matrix architecture. Because 

local-bus weight tuning algorithm used to be with single shared bus architecture, bus 

matrix architecture is intuitionally separated into many “single shared bus architecture”. In 

other words, bus matrix architecture is modeled by shared bus architecture. As shown in 

Figure 15 and Figure 16, bus matrix architecture has two buses, but two buses are 
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separated into two “single shared bus architecture” intuitionally. Bus 0 is single shared bus 

architecture, and bus 1 is single shared bus architecture, too. The traffic behavior of M0 on 

the bus 0 is independent to M0 on the bus 1. In other words, two buses are independent to 

each other. Therefore, the architecture which separates from bus matrix architecture is 

called “independent buses” or “IB” for simplification. 

  

Figure 15 : An example of Bus matrix architecture  

 

Figure 16 : Independent buses architecture separated from Figure 15 

After independent buses architecture is generated, traffic model of bus matrix 

architecture has to be modified for independent buses architecture. In Figure 15, for 

example, the request ratio of M0 is 40% on the bus 0. It means that M0 on the bus 0 holds 

about 40% of total traffic amount of M0. In Figure 16, M0 on the bus 0 holds 100% of total 

traffic amount of M0. To make the behavior of independent buses architecture more similar 

to bus matrix architecture, traffic model of bus matrix has to be modified. The traffic model 

of Figure 15 is shown in Table 2. We simulate the bus matrix system and record the traffic 

behavior at first. Then we try to modify some parameters of Table 2 and simulate with 

independent buses architecture. The simulation result of independent buses architecture is 
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comparing with bus matrix architecture. We modify the parameters of Table 2 continuously 

until the traffic behavior of independent buses architecture is similar to bus matrix 

architecture. The modified traffic model of Table 2 is shown in Table 3. In Table 3, the 

interval time of each master is increased comparing with Table 2. The modified traffic 

model for independent buses architecture is to reflect similar behavior as original. 

Table 2 : The traffic model of Figure 15 

Bus Master Type Beat Interval
M0 D 12 5 Bus 0 
M1 D 12 5 

M0 D 12 5 
M1 D 12 5 
M2 D_R 24 5 

Bus 1 

M3 D 24 5 
Table 3 : The modified traffic model of Figure 16  

Bus Master Type Beat Interval
M0 D 12 50 Bus 0 
M1 D 12 29 

M0 D 12 28 
M1 D 12 50 
M2 D_R 24 5 

Bus 1 

M3 D 24 5 

 

With independent buses architecture, modified traffic model, and bandwidth 

requirements (shown in Table 4, and same bandwidth requirements are used for 

independent buses architecture and bus matrix architecture.), local-bus weight tuning can 

result a ticket assignment (shown in column3 of Table 5) after simulation. All masters meet 

their bandwidth requirements with the ticket assignment for independent buses architecture 

(shown in column5 of Table 5). We then check whether the ticket assignment is a proper 
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ticket assignment or not for bus matrix architecture. The bandwidth allocation for each 

master is shown in column6 of Table 5 after bus matrix architecture is simulated with the 

ticket assignment resulted from independent buses architecture. As shown in Table 5, the 

ticket assignment resulted from independent buses is not a proper ticket assignment for bus 

matrix architecture because some of bandwidth requirements are not met (shown in 

column6 of Table 5). In other words, independent buses architecture fails to model 

behavior of bus matrix architecture. 

Table 4 : The bandwidth requirement of Figure 15 and Figure 16 

Bus Master Required bandwidth 
M0 15 Bus 0 
M1 22.5 

M0 22.5 
M1 15 
M2 32.5 

Bus 1 

M3 25 

 

Table 5 : The simulation result of Figure 15 and Figure 16  

Bus Master Tickets Required 
bandwidth 

Allocated 
bandwidth of 

IB 

Allocated 
bandwidth of 
bus matrix 

M0 410 15.0 18.0 13.7 Bus 0 
M1 614 22.5 27.0 20.9 

M0 645 22.5 23.4 21.3 
M1 249 15.0 17.1 14.2 
M2 17 32.5 33.6 36.5 

Bus 1 

M3 113 25.0 26.0 27.9 

In section 2.1, we have introduced the limitation of masters; if a master had initiated a 

request, it cannot initiate a new request when the previous request does not be finished. For 

example, M0 is an MM in the Figure 17. If M0 had initiated a request on bus 1 and the 
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request is not completed, M0 can not initiate any new request. The traffic behavior on 

different bus is not independent to each other on the bus matrix architecture. As shown in 

Figure 18, if M0 had initiated a request on bus 1, M0 can initiate another request on bus 0. 

Traffic behavior of bus matrix architecture and independent buses architecture is totally 

different. In other words, it is no suitably that using independent buses architecture models 

behavior of bus matrix architecture. 

 

Figure 17 : An example of the request limitation of masters 

 
Figure 18 : An example shows the difference between IB and Figure 17 

2.4.2 Bus matrix architecture with local-bus weight tuning  

In fact, bus matrix architecture can use local-bus weight tuning directly. Local-bus 

weight tuning algorithm deals with ticket redistribution on only one bus at one time. 

Local-bus weight tuning algorithm takes information of only one bus into consider first, 

and then it redistributes tickets of masters on the bus. After it completes ticket 

redistribution on previous bus, local-bus weight tuning considers information of another 

bus and redistributes tickets of masters on that bus. Local-bus weight tuning algorithm 
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redistributes tickets bus by bus. In Figure 19, for example, there are two buses, bus 0 and 

bus 1. Bus 0 consists of M0, M1, M2, and M3, and Bus 1 consists of M0, M1, M4, and M5. 

Assume Mleast of bus 0 is M1 and Mleast of bus 1 is M0 (section2.3). Local-bus weight 

tuning algorithm takes information of bus 0 into consideration at first. According to 

information of bus 0, local-bus weight tuning algorithm increases tickets to M1 on the bus 

0. After redistributing tickets on the bus 0, then local-bus weight tuning algorithm take 

information of bus 1 into consideration. According to information of bus 1, local-bus 

weight tuning algorithm increases tickets to M0 on the bus 1. 

With bus matrix architecture shown in Figure 19 and respective traffic model shown 

in Table 6, local-bus weight tuning can result a ticket assignment for bus matrix 

architecture after simulation. Resultant ticket assignment and allocated bandwidth of 

masters are shown in Table 7. As shown in Table 7, each bus has total 1024 tickets. M1 on 

the bus 0 has more than 50% tickets of total tickets of bus 0, but it does not meet its 

bandwidth requirement; M0 on the bus 1 has more than 50% tickets of total tickets of bus 1, 

but it does not meet its bandwidth requirement either. 

M0

Arbiter0

Slaves

Arbiter1

Slaves

r40%

r60%

M1

r40%

r60%

M4 M5M2M3

 
Figure 19 : An example of the bus matrix architecture 
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Table 6 : The traffic model of Figure 19 

Bus Master Type Beat Interval
M0 D 12 5 
M1 D 12 5 
M2 D 12 5 

Bus 0 

M3 D_R 24 5 

M0 D 12 5 
M1 D 12 5 
M4 D 12 5 

Bus 1 

M5 D_R 24 5 

 

Table 7 : The simulation result of Figure 19 with the local-bus weight tuning 

Bus Master Tickets Required 
bandwidth 

Allocated 
bandwidth of 
bus matrix 

M0 220 15.0 13.8 
M1 554 21.0 19.9 
M2 198 34.9 37.5 

Bus 0

M3 52 19.1 28.8 

M0 624 22.5 21.0 
M1 156 14.0 13.3 
M4 186 33.6 37.3 

Bus 1

M5 58 19.9 28.4 

In this example, we observe that the bandwidth allocation of a MM on each bus has a 

fixed proportion. For example, M0 is a MM connecting with bus 0 and bus 1 in Figure 20. 

When M0 initiates a request, the request has 20% probabilities to bus 0 and 80% 

probabilities to bus 1. The request ratio of M0 is 1:4. Assume the beat number of M0 on 

bus 0 is as same as on bus 1. We observe that if M0 gets 1% bandwidth on bus 0, M0 gets 

about 4% bandwidth on bus 1. If M0 gets 8% bandwidth on bus 1, M0 gets about 2% 

bandwidth on bus 0. The ratio of bandwidth allocation on bus 0 to bandwidth allocation on 
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bus 1 is 1:4. The bandwidth allocation of an MM is proportional to the request ratio if the 

beat numbers of the MM on all connecting buses are the same. In other words, the 

bandwidth allocation is related to the request ratio. 

 

Figure 20 : An example of a MM with the request ratio equaling to 1:4 

The relationship between bandwidth allocation and request ratio implies that if an MM 

misses one bandwidth requirement on one bus, the MM misses all bandwidth requirements 

on other buses which connect to the MM. As shown in Figure 21, the bandwidth 

requirement of M0 on bus 0 is 4%, and the bandwidth requirement of M0 on bus 0 is 16%. 

Assume the beat number of M0 on bus 0 is as same as on bus 1, and the request ratio of 

M0 is 1:4. If M0 gets 2% bandwidth on the bus 0 which is 2% less than the bandwidth 

requirement, and then M0 gets 8% bandwidth on the bus 1 which is 8%less than the 

bandwidth requirement. If M0 gets 4% bandwidth on the bus 1 which is 12% less than the 

bandwidth requirement, and then M0 gets 1% bandwidth on the bus 0 which is 3% less 

than the bandwidth requirement. Only if M0 gets 4% bandwidth on the bus 0 or 16% 

bandwidth on the bus 1, M0 can meet all bandwidth requirements on different buses. 
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Figure 21 : An MM misses or meets all bandwidth requirements 

The relationship between bandwidth allocation and request ratio implies another thing. 

Figure 22 is as same as Table 7. As shown in Figure 22, M0 on the bus 0 holds too fewer 

tickets and misses it bandwidth requirement. It induce that M0 misses its bandwidth 

requirement on bus 1. An MM misses its bandwidth requirement on a bus because it does 

not hold enough tickets to meet the bandwidth requirement on other buses.  

When the local-bus weight tuning algorithm tunes the tickets of masters, it only 

considers with the information of one bus at one time and every bus tunes its tickets 

individually. If a master misses its bandwidth requirement on a bus, the local-bus weight 

tuning algorithm thought that the master needs more tickets and increase its tickets on this 

bus. But, an MM may miss its bandwidth requirement on a bus because it does not hold 

enough tickets to meet the bandwidth requirement on other buses. If an MM does not hold 

enough tickets to meet the bandwidth requirement on one bus, all bandwidth requirements 
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of other buses miss. The local bus weight tuning algorithm may not be a suitable weight 

tuning algorithm for bus matrix because it does not take the dependence between each bus 

into consideration. 

Tickets Required bandwidth 
(%)

Allocated bandwidth 
of multi-bus (%)

M0 220 15.0 13.8

M1 554 21.0 19.9

M2 198 34.9 37.5

M3 52 19.1 28.8

M0 624 22.5 21.0

M1 156 14.0 13.3

M4 186 33.6 37.3

M5 58 19.9 28.4

Bus0

Bus1

 

Figure 22 : A missed bandwidth requirement on a bus induces all bandwidth missed on 
other buses 

According to our observation, the weight tuning algorithm cannot only consider with 

the information of only one bus at one time for the bus matrix architecture. For bus matrix 

architecture, the weight tuning algorithm has to take more information from different buses 

into consideration. We propose a new weight tuning algorithm which is more suitable for 

bus matrix architecture. 
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Chapter 3                                              

The proposed Algorithm 

3.1 A weight tuning algorithm with multi-bus consideration  

When the local-bus weight tuning algorithm redistributes tickets for masters, it take 

information of only one bus into consideration at one time. Because of the limitation, we 

propose a weight tuning algorithm with multi-bus consideration, called MC weight tuning 

briefly. The MC weight tuning takes advantages of the local-bus weight tuning algorithm, 

which has precise controllability over the bandwidth allocation for SMs. In addition, the 

MC weight tuning algorithm takes information of more than one bus into consideration. 

MC weight tuning algorithm can redistributes tickets for MMs on many buses at one time. 

The flow chart of MC weight tuning algorithm is shown in Figure 23. As shown in 

Figure 23, there are two loops in the MC weight tuning algorithm. The red number in each 

block is the block number. The outer loop consists of block2, block8, and block9, and the 
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inner loop consists of block 3, block 4, block 5, block 6, and block 7. In outer loop, the 

global-bus weight tuning (block 9) can redistribute tickets of MMs on many buses at one 

time. The inner loop is the flow of the local-bus weight tuning algorithm, and it can fine 

tune the ticket assignment resulting from the outer loop. In block 2, there is a ticket 

assignment resulting from the outer loop, and it is changed when it go into inner loop. The 

ticket assignment in block 2 is saved in other memory region before it is changed by inner 

loop because we want to know the ticket assignment before the step going into inner loop. 

The ticket assignment in block 2 is called intermediate ticket assignment. 

As shown in Figure 23, we have a given initial ticket assignment (block 1) at first. 

Then, the step goes to block 2 to save the ticket assignment before going into inner loop 

(the saved ticket assignment is called intermediate ticket assignment). After saving the 

intermediate ticket assignment, the step goes to the flow of local-bus weight tuning (inner 

loop). In the inner loop, it checks whether the local-bus weight tuning algorithm can meet 

all bandwidth requirements of masters or not. If it can, the simulation is terminated (block 

5) and result the ticket assignment which can meet all bandwidth requirements. If it cannot 

meet all bandwidth requirements, the step goes to block 8 and check there is any SM 

missing its bandwidth requirement. Because of the local-bus weight tuning algorithm 

providing precise controllability over the bandwidth allocation for SMs, if there is any SM 

missing its bandwidth requirement, the simulation is terminated and result current ticket 

assignment (block 10). If no SM misses it bandwidth requirement, the step goes to block 9. 

In other words, if masters which miss their bandwidth requirements all belong to MM, the 

step goes to block 9. Otherwise, the step goes to block 10 and the simulation is terminated. 

The ticket assignment saved in block 2 (intermediate ticket assignment) restores at first in 

block 9, and then the global-bus weight tuning redistributes the tickets of MMs which miss 
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their bandwidth requirements on many buses at same time. The details of global-bus 

weight tuning are introduced later. After tuning tickets of MMs which miss their bandwidth 

requirements, the step go to block 2 and go on as we described before. 

 

Figure 23 : The flow chart of MC weight tuning algorithm 

3.1.1 Notations 

We introduce some notations at first in this section before we introduce more detail of 

MC weight tuning algorithm. There are two special letters for our notations that are “i” and 

“j”. Letter “i” is used to represent the number of a master. For example, i equals to 1 for 

M1. Letter “j” is used to represent the number of a bus. For example, j equals to 2 for bus2. 
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 ,i jt : tickets of master i on the bus j. For example, M3 has 257 tickets on bus 1, 

3,1 257t =  

 ,_ i jinter t : tickets of master i on the bus j in the intermediate ticket assignment 

(block 2 of Figure 23) 

 jmost : a master which gets the most bandwidth than its bandwidth requirement 

on the bus j after inner loop terminated. For example, if M3 on bus 1 gets the 

most bandwidth than its bandwidth requirement after inner loop terminated, 

1 M3most = . 

 ( )jT most : on the bus j, we decrease tickets from jmost  and increase it to the 

MMs who miss its bandwidth requirement. ( )jT most  represents the tickets 

decreased from jmost . For example, if M3 on bus 1 gets the most bandwidth 

than its bandwidth requirement after inner loop terminated, 1 M3most = . On the 

bus 1, we decrease tickets from M3. Assume we decrease 137 tickets from M3 

on the bus 1, 1( ) 137T most = . 

 ( )jDec most : the coefficient helps us to know how much tickets decrease from 

jmost  on the bus j. For example, if M3 on bus 1 gets the most bandwidth than 

its bandwidth requirement after inner loop terminated, 1 M3most = . Assume M3 

has 257 tickets on the bus 1 ( 3,1 257t = ) and the 1( ) 53%Dec most =  on the bus 1. 

We decrease 257 53% 137× =  tickets from M3 on the bus 1, and then 

1( ) 137T most = . 
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 jless : there can be more than one MM which misses its requirement on the bus j 

after inner loop terminated. For example, if there are 2 MMs, M1 and M2, on the 

bus 1 misses their bandwidth requirements after inner loop terminated, 

{ }1 M1, M2less = .  

 ( )k jT less : ,( )k i jT less  represents the tickets increasing to the kth MM of the set 

jless . For example, if two MMs, M1 and M2, miss their bandwidth requirements 

on bus 1 after inner loop terminated, { }1 M1, M2less = . Assume 1 1( ) 37T less =  

and 2 1( ) 100T less = , we increase 37 ticket to M1 on bus 1 and increase 100 

tickets to M2 on bus 1. 

 ( )k jInc less : the coefficient helps us to know how much tickets increase to the kth 

MM of the set jless . For example, if M3 on bus 1 gets the most bandwidth than 

its bandwidth requirement after inner loop terminated, 1 M3most = . And if two 

MMs, M1 and M2, miss their bandwidth requirement on bus 1 after inner loop 

finishing, { }1 M1, M2less = . Assume M3 has 257 tickets ( 3,1 257t = ), M1 has 93 

tickets ( 1,1 93t = ), and M2 has 78 tickets ( 2,1 78t = ) on bus 1. Assume 

1( ) 53%Dec most = , 1 1( ) 27%Inc less = , and 2 1( ) 73%Inc less =  on the bus 1. 

First, we decrease 257 53% 137× =  tickets from M3 on the bus 1 and 

1( ) 137T most = . Then, we increase 

1 1
1

1 1 2 1

( ) 27%( ) 137 37
( ) ( ) 27% 73%

Inc lessT most
Inc less Inc less

× = × =
+ +

 tickets to M1 on the 

bus 1 and increase 1 1
1

1 1 2 1

( ) 73%( ) 137 100
( ) ( ) 27% 73%

Inc lessT most
Inc less Inc less

× = × =
+ +
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tickets to M2 on the bus 1. In other words, 

1 1
1 1 1

1 1 2 1

( ) 27%( ) ( ) 137 37
( ) ( ) 27% 73%

Inc lessT less T most
Inc less Inc less

= × = × =
+ +

 and 

2 1
2 1 1

1 1 2 1

( ) 73%( ) ( ) 137 100
( ) ( ) 27% 73%

Inc lessT less T most
Inc less Inc less

= × = × =
+ +

. Finally, 

3,1 257 137 80t = − = , 1,1 93 37 130t = + = , and 2,1 78 100 178t = + = . 

 ,_ i jrequest prob : this notation represents the request probability of the master i 

on the bus j 

 ,_ i jrequired bw : this notation represent the bandwidth requirement of master i 

on the bus j. 

 ,_ i jallocated bw : this notation represent the bandwidth allocation of master i on 

the bus j. 

3.1.2 The details of MC weight tuning algorithm 

In this section, we illustrate the MC weight tuning algorithm with an example and 

introduce details of global-bus weight tuning. As shown in Figure 24, there are 2 MMs, M0 

and M1, and 4 SMs, M2, M3, M4, and M5 in the bus matrix system. And the traffic model 

is shown in Table 8. There are  In the “Beat” column of Table 8, there are two kinds of 

beat numbers. For example, if M0 on the bus 0 initiates a request, the beat number is equal 

to 16 with 50% probabilities and is equal to 8 with 50% probabilities. In the “Interval” 

column of Table 8, there are five kinds of interval time. For example, if a request of M0 on 

the bus 0 is completed, the interval time is equal to 3 with 10% probabilities, 4 with 20% 

probabilities, 5 with 40% probabilities, 6 with 20% probabilities and 7 with 10% 

probabilities. The bandwidth requirements are shown in the “Required bandwidth” column. 
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Figure 24 : The bus matrix system of the example of MC weight tuning 

Table 8 : The traffic model of Figure 24 

Bus Master Type Beat Interval Required 

bandwidth (%)

  50%/50% 10% 20% 40% 20% 10%  

M0 D 16  /8 3 4 5 6 7 15.0 

M1 D 16  /8 3 4 5 6 7 21.0 

M2 D_R 16  /8 3 4 5 6 7 34.9 

 

Bus 0 

M3 D 32  /16 3 4 5 6 7 19.1 

M0 D 16  /8 3 4 5 6 7 22.5 

M1 D 16  /8 3 4 5 6 7 14.0 

M4 D_R 16  /8 3 4 5 6 7 33.6 

Bus 1 

M5 D 32  /16 3 4 5 6 7 19.9 

The initial ticket assignment is shown in the third column of Table 9 (block 1). Then 

the ticket assignment is saved as intermediate ticket assignment (block 2). For example, we 

set 0,0_inter t  to 167 (the intermediate tickets of M0 on the bus 0 is 167), 1,0_inter t  to 

223 (the intermediate tickets of M1 on the bus 0 is 167), etc.  

After saving the ticket assignment to intermediate ticket assignment, the inner loop 

start and try to meet all bandwidth requirements of masters (block 3, block 4, block 5, 

block 6, and block 7). When the inner loop terminated, the resultant ticket assignment and 

bandwidth allocation of each master are shown in the “Tuned tickets” column and the 

“Allocated bandwidth of bus matrix” column respectively in Table 9. As shown in Table 9, 

M0 and M1 miss their bandwidth requirements on the bus 0 and bus 1. There is no SM 
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misses its requirement (block 8). The global-bus weight tuning restores the intermediate 

ticket assignment first, and then increase tickets to MMs which miss their bandwidth 

requirements (block 9). 

Table 9 : The ticket assignment and bandwidth allocation after inner loop terminated 

Bus Master Initial 
tickets 

Tuned 
tickets 

Required 
bandwidth 

(%) 

Allocated 
bandwidth of 
bus matrix 

M0 167 220 15.0 13.8 
M1 257 554 21.0 19.9 
M2 387 198 34.9 37.5 

Bus 0 

M3 213 52 19.1 28.8 

M0 274 624 22.5 21.0 
M1 156 156 14.0 13.3 
M4 373 186 33.6 37.3 

Bus 1 

M5 221 58 19.9 28.4 

The detailed flow of global-bus weight tuning is shown in Figure 25. As shown in 

Figure 25, the global-bus weight tuning has three steps. First, we restore intermediate ticket 

assignment and find the jmost on each bus. Second, tickets are decreased from the 

jmost on each bus. Finally, we increase tickets to MMs which miss their bandwidth 

requirements. 

In Table 10, the “More or less than requirement” column is used to find the jmost on 

each bus. The “Bandwidth difference” column in Table 10 shows that the difference 

between allocated bandwidth and required bandwidth of each master. As shown in Table 10, 

M3 gets the most bandwidth than its requirement on bus 0, so 0 M3most = . And M5 gets 

the most bandwidth than its requirement on bus 1, so 1 M5most = . 
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Figure 25 : The flow of global-bus weight tuning 

Table 10 : Table 9 with more information 

Bus Master Request 

probability 

Intermediate 

tickets 

Required 

bandwidth 

(%) 

Allocated 

bandwidth  

Bandwidth 

difference 

(%) 

M0 r40% 167 15.0 13.8 - 7.9 

M1 r60% 257 21.0 19.9 - 5.0 

M2 r100% 387 34.9 37.5 7.4 

Bus 0 

M3 r100% 213 19.1 28.8 50.4 

M0 r40% 274 22.5 21.0 - 6.7 

M1 r60% 156 14.0 13.3 - 4.4 

M4 r100% 373 33.6 37.3 11.0 

Bus 1 

M5 r100% 221 19.9 28.4 42.7 

Tickets are decreased from jmost  at second step of global-bus weight tuning. The 

decreasing coefficient is calculated first (finding ( )jDec most ). Then we can know how 

many tickets are decreased from jmost  (finding ( )jT most ) . Finally, we decrease 

( )jT most  from ,_ i jinert t . The following equations show above processes. 
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, , ,

,

( _ _ ) _
( )

_
i j i j i j

j
i j

allocated bw required bw request prob
Dec most

required bw B
−

= i               (3.1) 

,( ) _ ( )j i j jT most inert t Dec most= i                                          (3.2) 

, ,_ _ ( )i j i j jinert t inert t T most= −                                           (3.3) 

The coefficient “B” is used to avoid the algorithm never stop. When the algorithm 

goes through the global-bus weight tuning, “B” is increased and ( )jDec most  becomes 

smaller as “B” increased. When ( )jDec most  equal to zero, the simulation is terminated.  

In Table 10, for example, M3 gets the most bandwidth than its requirement on the bus 

0 and M5 gets the most bandwidth than its requirement on the bus 1. 0 M3most =  and 

1 M5most = . On bus 0, by the 

Equation3.1

3,0 3,0 3,0
0

3,0

100%5
( _ _ ) _

( ) .4
_

0 %
allocated bw required bw request prob

Dec most
required b Bw B

×
−

= =i . By 

the Equation3.2, 0 3,0 0
100%213 50.4% 1( 07) _ ( )T most inert t Dec mo

B
st ×= × == i . On bus 1, 

by the 

Equation3.1

5,1 5,1 5,1
1

5,1

100%4
( _ _ ) _

( ) .7
_

2 %
allocated bw required bw request prob

Dec most
required b Bw B

×
−

= =i . By 

the Equation3.2, 1 5,1 1
100%221 42.7% 9( ) _ ) 4(T most inert t Dec mos

B
t × ×= == i . 

At final step of global-bus weight tuning, tickets are increased to MMs which miss 

their bandwidth requirements after we decreased tickets from jmost  on each bus. The 

increasing coefficient is calculated first (finding ( )k jInc less ). And then the Equation3.5 
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shows how to increase tickets to MMs of jless . The following equations show above 

processes. 

, ,

, ,

( _ _ ) 1( )
_ _

i j i j
k j

i j i j

required bw allocated bw
Inc less

required bw request prob
−

= i               (3.4) 

, ,

( )
_ _ ( )

( )
k j

i j i j j
k j

k

Inc less
inter t inter t T most

Inc less
= +

∑
i                               (3,5) 

In Table 10, for example, { }0 M0, M1less = on the bus 0. We decreased 

0
100%213 50.4( ) % 107T most

B
= × × =  tickets from M3 on bus 0. By the Equation3.4, 

0,0 0,0
1 0

0,0 0,0

( _ _ ) 1 1( ) 7.9%
_ _ 40%

required bw allocated bw
Inc less

required bw request pro
−

= = ×i and

1,0 1,0
2 0

1,0 1,0

( _ _ ) 1 1( ) 5%
_ _ 60%

required bw allocated bw
Inc less

required bw request prob
−

= = ×i .  There 

are 1 0
0

1 0 2 0

7.9%
( ) 40%( ) 757.9% 5%( ) ( )

4

10

%

7

0% 60

Inc lessT most
Inc less Inc less

= × =
+ +

i  tickets are increased to 

intermediate tickets of M0 on the bus 0 ( 0,0_inter t ). There are 

2 0
0

1 0 2 0

5%
( ) 60%( ) 327.9% 5%( ) ( )

40% 60%

107Inc lessT most
Inc less Inc less

= × =
+ +

i  tickets are increased to 

intermediate tickets of M1 on the bus 0 ( 1,0_inter t ). 

On bus 1, { }1 M0, M1less = , We decrease 1
100%221 42.7% 94( )T mos

B
t × × ==  

tickets from 1most . By the Equation3.4, 

0,1 0,1
1 1

0,1 0,1

( _ _ ) 1 1( ) 6.7%
_ _ 60%

required bw allocated bw
Inc less

required bw request prob
−

= = ×i and
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1,1 1,1
1 1

1,1 1,1

( _ _ ) 1 1( ) 4.4%
_ _ 40%

required bw allocated bw
Inc less

required bw request prob
−

= = ×i . There 

are 1 1
1

1 1 2 1

6.7%
( ) 60%( ) 476.7% 4.4%( ) ( )

60% 40%

94Inc lessT most
Inc less Inc less

= × =
+ +

i  tickets are increased to 

intermediate tickets of M0 on the bus 1 ( 0,1_inter t ). There are 

2 1
1

1 1 2 1

6.7%
( ) 60%( ) 476.7% 4.4%( ) ( )
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After global-bus weight tuning finishes (block 9), the step goes to block 2 and repeats 

the flow. When the simulation is terminated, it results a proper ticket assignment to masters. 

In Table 11, the “Final tickets” column shows the proper ticket assignment resulted by MC 

weight tuning algorithm and it meets all bandwidth requirements of masters. As the result, 

the MC weight tuning is more suitable for the bus matrix architecture. 

Table 11: The simulation result of example Figure 24 by MC weight tuning algorithm 

Bus Master Initial 
tickets 

Final 
tickets 

Required 
bandwidth 

Allocated 
bandwidth  

M0 167 409 15.0 14.8 
M1 257 386 21.0 22.0 
M2 387 193 34.9 38.4 

Bus 0 

M3 213 12 19.1 24.8 
M0 274 411 22.5 22.2 
M1 156 390 14.0 14.3 
M4 373 186 33.6 37.9 

Bus 1 

M5 221 13 19.9 25.5 
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Chapter 4             

Experimental Results 

4.1 Experiment setup 

We use the SoC Designer which is developed by ARM to implement our experiments 

[25]. As shown in Figure 26, there are 2N masters and slaves. Every arbiter with slaves can 

be regarded as a bus system. Each master can be connected to one or more than one bus 

systems. Every master has a decoder to transport the request to its destination bus. After a 

master initiates a request, it puts the request into the respective channel and waits for the 

response from the corresponding slave. The arbiter selects only one pending request to be 

granted. The lottery-based arbitration algorithms are used in our experiments. The arbiter 

forwards the granted request to the corresponding slave and slave responds to the request. 

After the slave responds, the arbiter puts the response into channel and the master picks up 

the corresponding response up and completes the transaction.  
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Figure 26 : An example of implementation of a bus matrix system on SoC Designer 

4.2 Experiment 1 

In experiment 1, we compare the performance with different weight tuning algorithms, 

local-bus weight tuning algorithm and MC weight tuning algorithm.  As shown in Figure 

27, there are 4 MMs, M0, M1, M2, and M3, and each bus has 2 SMs (M4, M5, M6, M7, 

M8, M9, M10, and M11) in the experiment 1. The traffic model on each bus is shown in 

Table 12. The traffic models of a MM can be different on different buses. For example, M3 
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is D_R type on the bus 0, but M3 is D type on the bus 1. The beat number of M3 is 8 or 4 

on the bus 0, but the beat number of M3 is 16 or 8 on the bus 1. Lottery-based arbitration 

algorithms are used in experiment 1. The local-bus weight tuning algorithm works on bus 

matrix architecture and independent buses architecture which is introduced in section 2.4.1. 

The MC weight tuning algorithm works on bus matrix architecture. 

 

Figure 27 : The bus matrix architecture of experment1 
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Table 12 : The traffic model of Figure 27 

Bus Master Type Beat Interval 
  50%/50% 10% 20% 40% 20% 10% 

M0 D 32  /16 3 4 5 6 7 
M1 D 16  /8 3 4 5 6 7 
M2 D 16  /8 3 4 5 6 7 
M3 D_R 8   /4 5 6 7 8 9 
M4 D_R 16  /8 3 4 5 6 7 

Bus 0 

M5 D 32  /16 3 4 5 6 7 

M0 D 16  /8 3 4 5 6 7 
M1 D 32  /16 3 4 5 6 7 
M2 D_R 8   /4 5 6 7 8 9 
M3 D 16  /8 3 4 5 6 7 
M6 D_R 16  /8 3 4 5 6 7 

Bus 1 

M7 D 32  /16 3 4 5 6 7 

M0 D 16  /8 3 4 5 6 7 
M1 D_R 8   /4 5 6 7 8 9 
M2 D 16  /8 3 4 5 6 7 
M3 D 32  /16 3 4 5 6 7 
M8 D_R 16  /8 3 4 5 6 7 

Bus 2 

M9 D 32  /16 3 4 5 6 7 
M0 D_R 8   /4 5 6 7 8 9 
M1 D 16  /8 3 4 5 6 7 
M2 D 32  /16 3 4 5 6 7 
M3 D 16  /8 3 4 5 6 7 
M10 D_R 16  /8 3 4 5 6 7 

Bus 3 

M11 D 32  /16 3 4 5 6 7 

We compare the ticket assignments generated by different weight tuning algorithms. If 

the resultant ticket assignment can make masters meet all real-time requirements and all 

bandwidth requirements simultaneously, it is a successful case. Otherwise, if one 

requirement is missed, it is a fail case. The difficulty to meet both real-time and bandwidth 

requirements depends on the bus workload in terms of the percentage of bus bandwidth 
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utilization [16, 24]. We randomly generate pattern for different bus workloads and 

compare the results. As shown in Table 13, the first column gives the bus workloads 

varying from 60% to 95%. For example, the “60%~65%” means the workload of each bus 

is between 60% and 65%. For each set of bus workload, 100 random patterns of different 

required bandwidth combinations are generated. The “IB & Local” means it simulates on 

the independent buses architecture with local-bus weight tuning algorithm (introduced in 

section 2.4.1). The “BM & Local” means it simulates on the bus matrix architecture with 

local-bus weight tuning algorithm (introduced in section 2.4.2). The “BM & MC” means it 

simulates on the bus matrix architecture with MC weight tuning algorithm. We accumulate 

the numbers of success case of three and show them in Table 13. 

Table 13 : The number of success case under different weight tuning algorithm 

Workload (%) IB  & Local BM & Local BM & MC 

60%~65% 38 90 100 

65%~70% 35 86 100 

70%~75% 34 80 90 

75%~80% 5 53 88 

80%~85% 0 38 85 

85%~90% 0 0 83 
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Figure 28 : The figure of Table 13 

The independent buses architecture cannot model correctly the behavior of the bus 

matrix architecture. It has fewer successful cases under different workload. The local-bus 

weight tuning algorithm using on bus matrix architecture directly can result proper ticket 

assignment with high successful probabilities below 75% bus workload. Because the 

local-bus weight tuning algorithm considers information of only one bus at one time, the 

numbers of successful cases decrease very quickly above 75% bus workload. The MC 

weight tuning algorithm has 88 successful cases when bus workload is between 75% and 

80%. Even bus workload is between 85% and 90% which is extremely high traffic load, 

the MC weight tuning still has more than 80 successful cases. The MC weight tuning 

algorithm can result proper ticket assignment for lottery-based arbitration algorithm under 

different bus workloads with very high successful rates. 
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In this experiment, we have the following summaries. The independent buses 

architecture cannot well model he behavior of the bus matrix architecture. The local-bus 

weight tuning may work well on the bus matrix architecture when the bus workload is less 

than 75%. However, the MC weight tuning has better results even if the bus workload is 

between 85% and 90%. 

4.3 Experiment 2 

In experiment 2, we compare the performance of MC weight tuning algorithm 

working on different complexity of bus matrix architecture. As shown in Figure 29, Figure 

30, and Figure 31, they all are bus matrix architectures with the different complexities of 

architectures. There are two buses in Figure 29, three buses in Figure 30, and four buses in 

Figure 31.  

Those three architectures are simulated with lottery-based arbitration algorithms and 

MC weight tuning algorithm. If the resultant ticket assignment can make masters meet all 

real-time requirements and all bandwidth requirements simultaneously, it is a successful 

case. Otherwise, if one requirement is missed, it is a fail case. We randomly generate 

pattern for different bus workloads and compare the results. As shown in Table 14, the first 

column gives the bus workloads varying from 60% to 95%. For each set of bus workload, 

100 random patterns of different required bandwidth combinations are generated. The 

“2-bus” means the architecture shown in Figure 29 is used. The “3-bus” means the 

architecture shown in Figure 30 is used. The “4-bus” means the architecture shown in 

Figure 31 is used. We accumulate the numbers of successful cases of these three and show 

the results in Table 14. 
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Figure 29 : Bus matrix architecture with two buses 

 

Figure 30 : Bus matrix architecture with three buses 
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Figure 31 : Bus matrix architecture with four buses 

Table 14 : The number of success case under different complexity of architectures 

 2-bus 3-bus 4-bus 

60%~65% 100 100 100 

65%~70% 100 100 100 

70%~75% 100 100 90 

75%~80% 98 97 88 

80%~85% 98 93 85 

85%~90% 92 90 83 
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Figure 32 : The figure of Table 14 

As shown in Figure 32, the “2-bus” (shown in Figure 29) has the best performance 

and it is the simplest architecture of those three. The performance of “3-bus” (shown in 

Figure 30) is very close to that of “2-bus”. Although the performance of “4-bus” (shown in 

Figure 31) is the worst of the three, the difference of results between “2-bus” and “4-bus” 

is small. The MC weight tuning algorithm working on different architecture complexity 

results proper ticket assignment with very high successful rates. 
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Chapter 5               

Conclusions and Future Work 

5.1 Conclusions 

A new weight tuning algorithm, MC weight tuning algorithm, is proposed in this 

thesis. It can mostly provide proper ticket assignment to lottery-based arbitration 

algorithms to meet real-time and bandwidth requirements simultaneously. The MC weight 

tuning algorithm also shows that the weight tuning algorithm cannot consider information 

of only one bus at one time. The weight tuning algorithm has to consider information of 

multiple buses. The experimental results show that the MC weight tuning algorithm 

working on the bus matrix architecture is better than the local-bus weight tuning algorithm 

working on the bus matrix architecture. Hence, the MC weight tuning is a better choice for 

lottery-base arbitration algorithms working on the bus matrix architecture. 

As the demands of on-chip communication grow, more modern communication 

architectures will be proposed in the near future. If lottery-based arbitration algorithms are 

continually used, an efficient weight tuning algorithm is still needed as well. In the future, 

we intend to find a weight tuning algorithm which can be used for different communication 

architectures, even for different weighted or probabilistic arbitration algorithms. 
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