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A Weight Tuning Algorithm for Arbiters
In Bus Matrix Systems

Student: Kuang-Wei Chen Advisor: Dr. Jing-Yang Jou

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

Abstract

Arbiters are mandatory components on SoC bus systems to resolve contentions of bus
access requests from different IP cores. Lottery-based arbitration algorithms are
probabilistic and efficient arbitration algorithms. However, lottery-based arbitration
algorithms need a weight tuning mechanism to help them simultaneously meet both the
real-time and bandwidth requirements. In this thesis, we propose a new weight tuning
algorithm, named MC weight tuning algorithm, which considers multiple buses at one time.
The experimental results show that MC weight tuning algorithm helps lottery-based
arbitration algorithms efficiently meet bandwidth requirements of IP cores in bus matrix

systems.
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Chapter 1

Introduction

1.1 Introduction

With the technology scaling and the level of system integration, system-on-chip (SoC)
design is widely adopted in today’s design methodology. It integrates a number of
intellectual property (IP) components, such as processor, memory, DSP, and ASIC, into a
single chip to meet the design specification. Since those components need to communicate
each other for data exchange, the on-chip communication architecture has a significant
impact on the system performance. Many on-chip communication architecture topologies
are proposed to facilitate the data exchange between components in a system. The shared
bus based architecture is very popular in the designs with moderate complexity because of
their topology simplicity and area efficiency. However, in the past couple of years, the

shared bus architecture is no longer capable of handling high bandwidth requirements



which limits the system performance[1, 2]. In order to resolve the bandwidth limitation of
shared bus architecture, the bus matrix architecture is used to provide higher system
parallelism. In the following two sections, we briefly introduce this two on-chip

communication architectures.

1.1.1 Shared bus architecture

Shared bus is one of widely used on-chip communication architectures. The
communication is commonly built through the shared media called bus. Shared bus is acted
as a shared channel between components and then components communicates with each
other through the bus [1, 3].

Two categories of components are connected through the shared bus. Master
components initiate data transaction requests (either read or write transactions), and slave
components respond to corresponding requests with proper data transactions. A simple
example of single shared bus architecture is shown in Figure 1. There are three masters,
MO, M1, and M2, and two slaves, S1 and S2. Masters initiate requests and slaves response
the corresponding requests through single shared bus [4-11]. Figure 2 is a simplified graph

of Figure 1.

04331y

SO S1

Figure 1 : An example of single shared bus architecture



Arbiter0

Slaves

Figure 2 : Asimple representation of Figure 1

More than one master can initiate requests at the same time on the shared bus system;
however, only one master can be granted to bus access. An arbiter is required to decide
which master can be granted without bus conflicts. Since the arbiter decides which master
is the current bus owner to avoid bus conflicts, the arbiter influences the system
performance significantly. As a result, the arbiter is indeed an important component of
shared bus architecture.

Since the communication channel is shared, the hardware cost for shared bus
architecture is relatively lower than other communication architectures [12, 13]. However,
the shared bus architecture can only support limited bandwidth which is not suitable for the

current high performance systems.

1.1.2 Bus matrix architecture

In order to achieve higher performance and support larger bandwidth requirement for
high performance systems, a different communication architecture, bus matrix architecture,
is proposed [1, 2]. It is a combination of shared bus and point-to-point connection structure
between components to support higher level of parallelism. The parallel buses provide a
better communication backbone to achieve bandwidth requirements of the high

performance systems.



In this architecture, each master connects with each slave system through the separate
bus. Each slave system is a shared bus structure where one or more slaves are connected. A
simple example of bus matrix architecture with two slave systems is shown in Figure 3.
Masters on the left connect with slave systems on the right through the interconnect matrix.
One slave system consists of SO, S1, and S2, and the other slave system consists of S3 and
S4. Figure 4 is a simplified graph of Figure 3.

Since, a master can connect with one or many slave systems in bus matrix architecture,
we classify the masters according to the type of connection. A master which connects with
more than one slave systems is called multi-connection master (MM). Otherwise, a master
which connects with only one slave systems is called single-connection master (SM). A
decoder is required for each MM to determine the data transfer sent to which slave system.
For example, as shown in Figure 3, MO which connects to two slave systems is an MM and
M1 which connects to only one slave system is an SM.

Since an MM can have different traffic behavior on each slave system, we use a
probability symbol to represent the request rate. As shown in Figure 5, for example, if MO
initiates a request, the request has 40% probabilities to bus 0, and 60% probabilities to bus
1. The “r40%” means that the new initiated request has 40% probabilities to this bus. The
sum of probabilities of each bus is 100%. The request probabilities are called request ratio.
In other words, the request ratio of MO on bus 0 is 40%, the request ratio of MO on bus 1 is

60%.
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Figure 3 : An example of bus matrix architecture
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Figure 4 : Asimple representation of Figure 3

Slaves Slaves

Figure 5 : A probability based model is used to model the behavior of MM



Without loss of generality, a master cannot initiate a new request before the previous
request is not completed. While dealing with the requests of MM, the arbitration strategy
on each slave system should consider the communication behavior of other slave systems
[14, 15]. It becomes more complicated to design the arbiter. In Figure 5, for example, MO
can access both of two slave systems where any pending request of one side would suspend
the request of the other side. Since the traffic behavior of multi-connection masters are
more complicated, the arbiter becomes more difficult to design for bus matrix architecture.

Comparing with shared bus architecture, bus matrix architecture can provide parallel
access paths at one time. As shown in Figure 3 and Figure 4, MO, M1, M2, SO, S1, and S2
can be regarded as a shared bus system called bus 0, M0, M3, M4, M5, S3 and S4 can be
regarded as another shared bus system called bus 1. If M1 and M3 both have pending
requests, the requests of M1 and M3 can be simultaneously granted without bus conflict.
Because of parallel access paths, bus matrix architecture can support larger bandwidth

requirement that higher performance system needs than shared bus architecture.

1.2 The purpose and challenge of arbiter

Arbiters play an important role in on-chip communication architectures. Because of
the resources limitation, one shared resource can be used by only one component at one
time. For example, only one master can be granted to access bus at one time on shared bus
architecture, or one slave system can serve only one master at one time on bus matrix
architecture. There are many contentions between many requests when different masters
initiate its request at the same time. Because of the limitation and contention, we need a
component that can decide which pending request of masters can be granted to use

resources, that is arbiter. When there is contention occur between some pending requests,



the arbiter must decide only one of them can be granted.

Besides, the master often has the real-time requirements and bandwidth requirements.
The arbiter has very important impact on whether those requirements are met or missed
because the arbiter decides granted order of requests. It is a challenge for arbiters to meet

different requirements simultaneously because masters have diverse traffic behavior.

1.3 The focus of our work

With local-bus weight tuning algorithm, lottery-based arbitration algorithms can meet
most bandwidth and real-time requirements simultaneously on single shared bus
architecture [4, 8, 9, 16-24]. But we show that local-bus weight tuning algorithm does not
work well on bus matrix system comparing with single share bus architecture. We propose
an algorithm called MC weight tuning algorithm. MC weight tuning algorithm helps
lottery-based arbitration algorithms meet most bandwidth requirements on bus matrix

architecture.

1.4 Thesis organization

The remainder of this thesis is organized as follows. The lottery-based arbitration
algorithms and an existing weight tuning algorithm proposed in [16] are briefly introduced
in Chapter 2. Chapter 3 presents the detail of the proposed weight tuning algorithm, MC
weight tuning algorithm. Experimental results are reported in Chapter 4. Finally, we

conclude this thesis in Chapter 5.



Chapter 2

Preliminary

We introduce previous works in this chapter. First, we briefly introduce the traffic models.
Then, lottery-based arbitration algorithms and local-bus weight tuning algorithm are
introduced briefly. Finally, we show some motivational examples for our weight tuning

algorithm.

2.1 Traffic models of masters

Four parameters are defined to describe the behaviors of a master. The first parameter
of a request is the beat number. For example, if the beat number of a request is 4, it means
that it is a 4-beat transaction. In other words, the request needs 4 cycles to complete it
works. Second, the time of next request can be initiated is determined as the interval time.
For example, if the interval time is 17, the next request initiates after 17 cycles. Third, the

real-time requirement is represented as Rcycle which is the dead-line of a request. For



example, if the Rcycle is 10, the request must complete in 10 cycles. At last, we classify
three high abstract-level traffic types to emulate the masters behavior [24]. That is D type
master, D_R type master, and ND_R type master. The behavior of three different type
masters is shown in the following.
® D type (D for dependency):
The D type master has no real-time requirement. The time of the D type master
initiating a request depends on the finish time of the previous request. In Figure 6,
the beat number is 4 and the interval time is 17. If a request is initiated at cycle 2
and granted at cycle 5, the request is completed at cycle 9. The next request is

initiated at cycle 26 which is 17 cycles later than the finish time.

request grant finish next request
[ — | \
2 5 9 26 cycle”

<—4-beat burst—>¢————17 interval cycles————

Figure 6 : D type master (beat number = 4; interval time = 17)
® D_Rtype (D for dependency, R for real-time):
The behavior of the D_R type master is the same as the D type master except the
real-time requirement. Requests of the D _R type master has real-time
requirement. In Figure 7, we use the same parameters used in Figure 6 as an
example. Because of the real-time requirement, a new parameter, Rcycle, is
added in Figure 7. Rcycle is 10 cycles in the example. The first request is also
initiated at cycle 2 and the request must be completed before cycle 12 because of
the Rcycle is 10 cycles. It is a real-time violation, if the request is not completed

before cycle 12.



request grant finish next request

F - — | |

26 cycle ©
(—10 real-time cycles—)

Figure 7 : D_R type master (beat number = 4; interval time = 17; Rcycle = 10)
® ND_R type (ND for non-dependency, R for real-time):
The ND_R type master is another kind of master with the real-time requirement.
The behavior of ND_R type master is similar to D_R type master except on one
thing. The time of the ND_R type master initiating a request does not depend on
the finish time of the previous request. Actually, the time of the ND_R type
master initiating a request depends on the initiated time of the previous request.
In other words, the ND_R type masters initiate requests periodically. In Figure 8,
the same parameters are used in Figure 7. Since the interval time is at cycle 17
and the initiated time of the first request is at cycle 2, the second request is
initiated at cycle 19, which directly depends on the initiated time of the first

request.

request grant finish next request
T | | y ;l‘
2 5 9 12 19 cycle
e 1 O real-tiMe CyCle Sy
€ 17 interval cycle >

Figure 8 : ND_R type master (beat number = 4; interval time = 17; Rcycle = 10)

There is a limitation for all masters. If a master had initiated a request, it cannot
initiate a new request when the previous request has not been finished. For example, a state
machine is involved by a master. The master begins next state after previous state is

completed. In other words, all masters are in serial execution.

10



2.2 Lottery-based arbitration algorithms

Lottery-based arbitration algorithms are probabilistic arbitration algorithm [16, 17,
24].1t stochastically grants one of the contending masters according to the ticket assigned
to them, either statically or dynamically. Each master holds a number of tickets for
lottery-based algorithms. When a bus contention occurs, the lottery manager accumulates
tickets of masters. According the tickets assignment, lottery manager probabilistically
choose a master granted to access bus. As shown in Figure 9, there are four masters and
each of them has a number of lottery tickets as the probability of bus granted. First, the
lottery manager accumulates tickets of masters which has pending request. Then the lottery
manager probabilistically chooses a master granted to access the bus from all contending
masters. In other words, the lottery tickets act as the weight and lottery-based arbitration

algorithms are weighted random arbitration algorithm to grant a master while contention.

M) [=AN o - [=A
c o + o + )
© x c ~ c =~
© D © ® © o
o & o N o =
b — //4
M3 M2 N

Jo3euey K10107]

—
‘
- —

SO 5

Figure 9 : The Lottery communication architecture
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Let the set of masters, M,, M,, ..., M, and each of them has t,t,, ..., t tickets

respectively. A set of Boolean variables, r,r,, ..., r,, represents the corresponding
pending request. r, is1if M, has pending requests. Otherwise, . isO.

The first step, the lottery manager accumulates the total tickets of masters which has

pending requests, given by T =ertj. Then the lottery manager generates a random
j=1

number from the range [0,T). The symbol [0,T) means that all integers between 0 to T
i+1

are included except T. If the random number lies in the range [Z rktk,Zrktk], the master

k=1 k=1

M., is granted. In Figure 10, for example, there are four masters, M1, M2, M3, and M4,
and hold 1, 2, 3, and 4 tickets respectively. Three of them have pending requests, M1, M3,

and M4, and the lottery manager accumulates their tickets T :ertj =1+0+3+4=8.
j=1

And it generates a random number, e.g. 5, from the range [0,8). The number lies between

nt+nt,+rt; =4 and rt +rt, +nt, +r,t, =8, and then the bus is granted to M4. The

probability of M, granted to access the bus is shown in Equation2.1.

P(M,) =i _ Gk (2.1)

: T
i

t;=1 N T[0]=M1
1 @rl—l T[1]=M3
T[2]=M3
t,=2 9= T[3]=M3
rand(8)=5—— T[4]=M4

T[5]=M4 G
ts=3 ) T[6]=M4
3 @r3—1 T[71=M4
T[8]=XX
=4 r4=1 T[9]=XX

Figure 10 : An example of Lottery

12



Since tickets act as granted probabilities of each master for lottery-based arbitration
algorithms, ticket assignment is important to system performance. Lottery-based arbitration
algorithms need additional algorithm to assign tickets to each master. The additional
algorithm is called weight tuning algorithm. We introduce a weight tuning algorithm in the

following section.

2.3 Local-bus weight tuning algorithm

The lottery-based arbitration algorithms need a weight tuning algorithm to result
proper ticket assignment for all masters. A weight tuning algorithm can result tickets for
each master. Proper ticket assignment makes masters meet their requirements as many as
possible. By Equation2.1, tickets can decide grated probabilities for each master, and
grated probabilities can obviously affect allocated bandwidth of each master. In other
words, tickets have strong impact on bandwidth allocation for each master. For example, a
shared bus system has three masters (named MO, M1, and M2) with same traffic models.
We simulate with different ticket assignments and respective bandwidth allocation is
shown in Figure 11. The notation “10:1:1” means that MO has tickets ten times larger than
M1; and also ten times larger than M2. In Figure 11, it is easily observed that different
ticket assignments result totally different bandwidth allocations. The weight tuning
algorithm redistributes tickets between masters and result proper ticket assignment for
masters. Masters with proper ticket assignment meet their requirements as many as

possible.

13



oMo OM1 OM2

0%
45% —
40% —
35%
30% |
25% | —
20% | —
15% [ —
10% [ —

5% | —

0%

bandwidth allocation(%o)

1:1:1 2:1:1 4:1:1 6:1:1 8:1:1 10:1:1

tickets ratio

Figure 11 : Bandwidth allocation under different tickets assignment ratio

Finding an efficient weight tuning algorithm is a difficult challenge. Most of
requirements can be met by ticket assignment resulting from an efficient weight tuning
algorithm. In Figure 12 and Table 1, an example shows that why an efficient weight tuning
algorithm is a difficult challenge. There are four masters with their traffic models in Table
1. Lottery algorithm with total 1024 tickets is used in Figure 12. We simulate with three
different tickets assignments, and simulation results are shown in Figure 13. The notation
“252:143:220:409” in Figure 13 means MO has 252 tickets, M1 has 143 tickets, M2 has
220 tickets, and M3 has 409 tickets. Comparing with three different ticket assignments, we
only move the tickets from MO to M2, but allocated bandwidth of all masters are changed.
Bandwidth allocation is totally changed when we redistribute tickets of two masters. When
a weight tuning algorithm redistributes tickets between masters, the bandwidth allocation is

disordered and not easily predictable.

14



Arbiter0

Slaves

Figure 12 : An example of single share bus architecture with four masters

Table 1 : The traffic models of Figure 12

tickets

Type | Beat | Interval
MO D 32 2
M1 D 16 4
M2 D 8 8
M3 D 8 8
Omo OM1 OM2 OM3
60% 549%
c 50%
K}
8 40% 38%
°
i 30%
< 0
5 219% 2096 21% 25% 25% 25%25%
_% 20% 17% 17%
= 12%
< 10%
0%
252:143:220:409 126:143:346:409 63:143:409:409

Figure 13 : The bandwidth allocation under three different ticket assignments
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For single shared bus architecture, an efficient weight tuning algorithm, local-bus
weight tuning algorithm, is proposed in [16]. Local-bus weight tuning algorithm results
proper tickets for each master and masters can meet most of their requirements. The simple
flow of local-bus weight tuning algorithm is shown in Figure 14. At first, the local-bus
weight tuning algorithm analyzes the simulation result according the bandwidth allocation
of each master. If a master gets bandwidth more than its requirement, it is grouped into
Smore. If @ master gets bandwidth less than its requirement, it is grouped into Sis. If a
master gets bandwidth almost equal to its requirement, it is grouped into Sme;. The master
in Smore Who gets the most bandwidth than its requirement is called Mmyost. The master in
Siess Who gets the least bandwidth than its requirements is called Mieast. Each master in Sess
gets insufficient bandwidth because each of them does not have enough tickets. If the
master does not meet its bandwidth requirement, the local-bus weight tuning algorithm
increases its tickets. When tickets of a master are increased, the granted probability is
increased and the master can get more bandwidth than before. The local-bus weight tuning
algorithm redistributes the tickets of masters in Smere and Siess, and tries to meet bandwidth
requirements of each master.

The local-bus weight tuning algorithm is efficient for single shared bus system.
Lottery-basd arbitration algorithms with local-bus weight tuning algorithm in single shared
bus system can meet hard real-time requirements and bandwidth requirements

simultaneously with very high successful probability [24].

16
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Figure 14 : The simple flow of local-bus weight tuning



2.4 Motivation

In our thesis, we choose lottery-based arbitration algorithms as our arbitration
algorithm of bus matrix architecture. With the evolution of process, more and more SoC
systems need bus matrix architecture to deal with the complex communication between
massive components. Since the lottery-based arbitration algorithms meet the hard real-time
and bandwidth requirement simultaneously with high successful probability, using the
lottery-based arbitration algorithms for bus matrix architecture is a good choice.

In this thesis, we find how to result proper ticket assignment for bus matrix
architecture because we choose lottery-based arbitration algorithms as our arbitration
algorithm. Proper ticket assignment of masters is important to lottery-based arbitration
algorithms because it makes masters meet their requirements as many as possible. A weight
tuning algorithm is needed for bus matrix architecture. Local-bus weight tuning algorithm
produces proper ticket assignment for single shared bus architecture. In following, two
methods are introduced that try to achieve our goal, finding proper ticket assignment for

bus matrix architecture.

2.4.1 Model bus matrix architecture by shared bus architecture

Since lottery-based arbitration algorithms often use local-bus weight tuning algorithm
before, we try to the use same weight tuning algorithm for bus matrix architecture. Because
local-bus weight tuning algorithm used to be with single shared bus architecture, bus
matrix architecture is intuitionally separated into many “single shared bus architecture”. In
other words, bus matrix architecture is modeled by shared bus architecture. As shown in

Figure 15 and Figure 16, bus matrix architecture has two buses, but two buses are

18



separated into two “single shared bus architecture” intuitionally. Bus 0 is single shared bus
architecture, and bus 1 is single shared bus architecture, too. The traffic behavior of M0 on
the bus 0 is independent to MO on the bus 1. In other words, two buses are independent to
each other. Therefore, the architecture which separates from bus matrix architecture is

called “independent buses” or “IB” for simplification.

r60% r60%

Arbiter0 Arbiterl

Slaves Slaves

Figure 15 : An example of Bus matrix architecture

¢ Arbiter0 ! ! Arbiterl Y

Slaves Slaves

Figure 16 : Independent buses architecture separated from Figure 15

After independent buses architecture is generated, traffic model of bus matrix
architecture has to be modified for independent buses architecture. In Figure 15, for
example, the request ratio of MO is 40% on the bus 0. It means that MO on the bus 0 holds
about 40% of total traffic amount of MO. In Figure 16, MO on the bus 0 holds 100% of total
traffic amount of M0. To make the behavior of independent buses architecture more similar
to bus matrix architecture, traffic model of bus matrix has to be modified. The traffic model
of Figure 15 is shown in Table 2. We simulate the bus matrix system and record the traffic
behavior at first. Then we try to modify some parameters of Table 2 and simulate with

independent buses architecture. The simulation result of independent buses architecture is
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comparing with bus matrix architecture. We modify the parameters of Table 2 continuously
until the traffic behavior of independent buses architecture is similar to bus matrix
architecture. The modified traffic model of Table 2 is shown in Table 3. In Table 3, the
interval time of each master is increased comparing with Table 2. The modified traffic
model for independent buses architecture is to reflect similar behavior as original.

Table 2 : The traffic model of Figure 15

Bus | Master | Type Beat | Interval
Bus O MO D 12 5
M1 D 12 5
Bus 1 MO D 12 5
M1 D 12 5
M2 DR 24 5
M3 D 24 5

Table 3 : The modified traffic model of Figure 16

Bus | Master | Type Beat | Interval
Bus O MO D 12 50
M1 D 12 29
Bus 1 MO D 12 28
M1 D 12 50
M2 DR 24 5
M3 D 24 5

With independent buses architecture, modified traffic model, and bandwidth
requirements (shown in Table 4, and same bandwidth requirements are used for
independent buses architecture and bus matrix architecture.), local-bus weight tuning can
result a ticket assignment (shown in column3 of Table 5) after simulation. All masters meet
their bandwidth requirements with the ticket assignment for independent buses architecture

(shown in column5 of Table 5). We then check whether the ticket assignment is a proper
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ticket assignment or not for bus matrix architecture. The bandwidth allocation for each
master is shown in column6 of Table 5 after bus matrix architecture is simulated with the
ticket assignment resulted from independent buses architecture. As shown in Table 5, the
ticket assignment resulted from independent buses is not a proper ticket assignment for bus
matrix architecture because some of bandwidth requirements are not met (shown in
column6 of Table 5). In other words, independent buses architecture fails to model
behavior of bus matrix architecture.

Table 4 : The bandwidth requirement of Figure 15 and Figure 16

Bus | Master | Required bandwidth
Bus O MO 15

M1 22.5
Bus 1 MO 22.5

M1 15

M2 32.5

M3 25

Table 5 : The simulation result of Figure 15 and Figure 16

Bus | Master | Tickets Required Allocated Allocated
bandwidth bandwidth of | bandwidth of

IB bus matrix
Bus O MO 410 15.0 18.0 13.7
M1 614 22.5 27.0 20.9
Bus 1 MO 645 22.5 23.4 21.3
M1 249 15.0 17.1 14.2
M2 17 32.5 33.6 36.5
M3 113 25.0 26.0 27.9

In section 2.1, we have introduced the limitation of masters; if a master had initiated a
request, it cannot initiate a new request when the previous request does not be finished. For

example, MO is an MM in the Figure 17. If MO had initiated a request on bus 1 and the
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request is not completed, MO can not initiate any new request. The traffic behavior on
different bus is not independent to each other on the bus matrix architecture. As shown in
Figure 18, if MO had initiated a request on bus 1, MO can initiate another request on bus 0.
Traffic behavior of bus matrix architecture and independent buses architecture is totally
different. In other words, it is no suitably that using independent buses architecture models

behavior of bus matrix architecture.

Arbiter0 Arbiterl

Slaves Slaves

Figure 17 : An example of the request limitation of masters

¢ Arbiter0 ! ! Arbiterl !

Slaves Slaves

Figure 18 : An example shows the difference between IB and Figure 17

2.4.2 Bus matrix architecture with local-bus weight tuning

In fact, bus matrix architecture can use local-bus weight tuning directly. Local-bus
weight tuning algorithm deals with ticket redistribution on only one bus at one time.
Local-bus weight tuning algorithm takes information of only one bus into consider first,
and then it redistributes tickets of masters on the bus. After it completes ticket
redistribution on previous bus, local-bus weight tuning considers information of another

bus and redistributes tickets of masters on that bus. Local-bus weight tuning algorithm
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redistributes tickets bus by bus. In Figure 19, for example, there are two buses, bus 0 and
bus 1. Bus 0 consists of MO, M1, M2, and M3, and Bus 1 consists of MO, M1, M4, and M5.
Assume Mgt of bus 0 is M1 and Mt Of bus 1 is MO (section2.3). Local-bus weight
tuning algorithm takes information of bus O into consideration at first. According to
information of bus 0, local-bus weight tuning algorithm increases tickets to M1 on the bus
0. After redistributing tickets on the bus 0, then local-bus weight tuning algorithm take
information of bus 1 into consideration. According to information of bus 1, local-bus
weight tuning algorithm increases tickets to MO on the bus 1.

With bus matrix architecture shown in Figure 19 and respective traffic model shown
in Table 6, local-bus weight tuning can result a ticket assignment for bus matrix
architecture after simulation. Resultant ticket assignment and allocated bandwidth of
masters are shown in Table 7. As shown in Table 7, each bus has total 1024 tickets. M1 on
the bus 0 has more than 50% tickets of total tickets of bus 0, but it does not meet its
bandwidth requirement; MO on the bus 1 has more than 50% tickets of total tickets of bus 1,

but it does not meet its bandwidth requirement either.

r60%

Arbiterl

r60%

Arbiter0

Slaves Slaves

Figure 19 : An example of the bus matrix architecture
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Table 6 : The traffic model of Figure 19

Bus | Master | Type Beat | Interval

Bus O MO D 12 5
M1 D 12 5
M2 D 12 5
M3 DR 24 5

Bus 1 MO D 12 5
M1 D 12 5
M4 D 12 5
M5 DR 24 5

Table 7 : The simulation result of Figure 19 with the local-bus weight tuning

Bus | Master | Tickets Required Allocated
bandwidth bandwidth of
bus matrix
Bus O MO 220 15.0 13.8
M1 554 21.0 19.9
M2 198 34.9 37.5
M3 52 19.1 28.8
Bus 1 MO 624 22.5 21.0
M1 156 14.0 13.3
M4 186 33.6 37.3
M5 58 19.9 28.4

In this example, we observe that the bandwidth allocation of a MM on each bus has a
fixed proportion. For example, MO is a MM connecting with bus 0 and bus 1 in Figure 20.
When MO initiates a request, the request has 20% probabilities to bus 0 and 80%
probabilities to bus 1. The request ratio of MO0 is 1:4. Assume the beat number of M0 on
bus 0 is as same as on bus 1. We observe that if MO gets 1% bandwidth on bus 0, MO gets
about 4% bandwidth on bus 1. If MO gets 8% bandwidth on bus 1, MO gets about 2%

bandwidth on bus 0. The ratio of bandwidth allocation on bus 0 to bandwidth allocation on
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bus 1 is 1:4. The bandwidth allocation of an MM is proportional to the request ratio if the
beat numbers of the MM on all connecting buses are the same. In other words, the

bandwidth allocation is related to the request ratio.

Arbiter0 Arbiter1

Slaves Slaves

Figure 20 : An example of a MM with the request ratio equaling to 1:4
The relationship between bandwidth allocation and request ratio implies that if an MM
misses one bandwidth requirement on one bus, the MM misses all bandwidth requirements
on other buses which connect to the MM. As shown in Figure 21, the bandwidth
requirement of MO on bus 0 is 4%, and the bandwidth requirement of MO on bus 0 is 16%.
Assume the beat number of MO on bus 0 is as same as on bus 1, and the request ratio of
MO is 1:4. If MO gets 2% bandwidth on the bus 0 which is 2% less than the bandwidth
requirement, and then MO gets 8% bandwidth on the bus 1 which is 8%less than the
bandwidth requirement. If MO gets 4% bandwidth on the bus 1 which is 12% less than the
bandwidth requirement, and then MO gets 1% bandwidth on the bus 0 which is 3% less
than the bandwidth requirement. Only if MO gets 4% bandwidth on the bus 0 or 16%

bandwidth on the bus 1, MO can meet all bandwidth requirements on different buses.
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Figure 21 : An MM misses or meets all bandwidth requirements

The relationship between bandwidth allocation and request ratio implies another thing.
Figure 22 is as same as Table 7. As shown in Figure 22, MO0 on the bus 0 holds too fewer
tickets and misses it bandwidth requirement. It induce that MO misses its bandwidth
requirement on bus 1. An MM misses its bandwidth requirement on a bus because it does
not hold enough tickets to meet the bandwidth requirement on other buses.

When the local-bus weight tuning algorithm tunes the tickets of masters, it only
considers with the information of one bus at one time and every bus tunes its tickets
individually. If a master misses its bandwidth requirement on a bus, the local-bus weight
tuning algorithm thought that the master needs more tickets and increase its tickets on this
bus. But, an MM may miss its bandwidth requirement on a bus because it does not hold
enough tickets to meet the bandwidth requirement on other buses. If an MM does not hold

enough tickets to meet the bandwidth requirement on one bus, all bandwidth requirements
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of other buses miss. The local bus weight tuning algorithm may not be a suitable weight
tuning algorithm for bus matrix because it does not take the dependence between each bus

into consideration.

Tickets | Required bandwidth Allocated bandwidth
(%) of multi-bus (%)

BusO | mo ¢ 220 15.0 13.8
M1 )@ 21.0 19.9

M/ 198 34.9 37.5

3 | 52 1911 28.8

Bus1 624 22.5 21.0
Ml\ 156 14.0 13.3

M4 | 186 33.6 37.3

M5 | 58 19.9 28.4

Figure 22 : A missed bandwidth requirement on a bus induces all bandwidth missed on
other buses

According to our observation, the weight tuning algorithm cannot only consider with
the information of only one bus at one time for the bus matrix architecture. For bus matrix
architecture, the weight tuning algorithm has to take more information from different buses
into consideration. We propose a new weight tuning algorithm which is more suitable for

bus matrix architecture.
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Chapter 3

The proposed Algorithm

3.1 Aweight tuning algorithm with multi-bus consideration

When the local-bus weight tuning algorithm redistributes tickets for masters, it take
information of only one bus into consideration at one time. Because of the limitation, we
propose a weight tuning algorithm with multi-bus consideration, called MC weight tuning
briefly. The MC weight tuning takes advantages of the local-bus weight tuning algorithm,
which has precise controllability over the bandwidth allocation for SMs. In addition, the
MC weight tuning algorithm takes information of more than one bus into consideration.
MC weight tuning algorithm can redistributes tickets for MMs on many buses at one time.

The flow chart of MC weight tuning algorithm is shown in Figure 23. As shown in
Figure 23, there are two loops in the MC weight tuning algorithm. The red number in each

block is the block number. The outer loop consists of block2, block8, and block9, and the
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inner loop consists of block 3, block 4, block 5, block 6, and block 7. In outer loop, the
global-bus weight tuning (block 9) can redistribute tickets of MMs on many buses at one
time. The inner loop is the flow of the local-bus weight tuning algorithm, and it can fine
tune the ticket assignment resulting from the outer loop. In block 2, there is a ticket
assignment resulting from the outer loop, and it is changed when it go into inner loop. The
ticket assignment in block 2 is saved in other memory region before it is changed by inner
loop because we want to know the ticket assignment before the step going into inner loop.
The ticket assignment in block 2 is called intermediate ticket assignment.

As shown in Figure 23, we have a given initial ticket assignment (block 1) at first.
Then, the step goes to block 2 to save the ticket assignment before going into inner loop
(the saved ticket assignment is called intermediate ticket assignment). After saving the
intermediate ticket assignment, the step goes to the flow of local-bus weight tuning (inner
loop). In the inner loop, it checks whether the local-bus weight tuning algorithm can meet
all bandwidth requirements of masters or not. If it can, the simulation is terminated (block
5) and result the ticket assignment which can meet all bandwidth requirements. If it cannot
meet all bandwidth requirements, the step goes to block 8 and check there is any SM
missing its bandwidth requirement. Because of the local-bus weight tuning algorithm
providing precise controllability over the bandwidth allocation for SMs, if there is any SM
missing its bandwidth requirement, the simulation is terminated and result current ticket
assignment (block 10). If no SM misses it bandwidth requirement, the step goes to block 9.
In other words, if masters which miss their bandwidth requirements all belong to MM, the
step goes to block 9. Otherwise, the step goes to block 10 and the simulation is terminated.
The ticket assignment saved in block 2 (intermediate ticket assignment) restores at first in

block 9, and then the global-bus weight tuning redistributes the tickets of MMs which miss
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their bandwidth requirements on many buses at same time. The details of global-bus

weight tuning are introduced later. After tuning tickets of MMs which miss their bandwidth

requirements, the step go to block 2 and go on as we described before.

Initial ticket assignment (1)

v

> Intermediate ticket assignment (2)

Global-bus weight
tuning and restore
inter_ti,,-

)

v

ﬁ Simulation (3)

Local-bus
weight .
tuning Meet requirement (4)
()

4

No

T g

No

Exceed iteration bound (6)

Yes

<

es» Finish (5)

Any SM does not meet its
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\
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2

< Report current best solution (10)
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Figure 23 : The flow chart of MC weight tuning algorithm

3.1.1 Notations

We introduce some notations at first in this section before we introduce more detail of

MC weight tuning algorithm. There are two special letters for our notations that are “i” and

“j”. Letter “i” is used to represent the number of a master. For example, i equals to 1 for

M1. Letter “j” is used to represent the number of a bus. For example, j equals to 2 for bus2.
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t; ;- tickets of master i on the bus j. For example, M3 has 257 tickets on bus 1,
t,, = 257

inter _t; ;: tickets of master i on the bus j in the intermediate ticket assignment
(block 2 of Figure 23)

most; : a master which gets the most bandwidth than its bandwidth requirement

on the bus j after inner loop terminated. For example, if M3 on bus 1 gets the
most bandwidth than its bandwidth requirement after inner loop terminated,

most, = M3.

T(most;): on the bus j, we decrease tickets from most; and increase it to the
MMs who miss its bandwidth requirement. T(most;) represents the tickets

decreased from most;. For example, if M3 on bus 1 gets the most bandwidth

than its bandwidth requirement after inner loop terminated, most, = M3. On the

bus 1, we decrease tickets from M3. Assume we decrease 137 tickets from M3

on the bus 1, T(most,)=137.

Dec(most;) : the coefficient helps us to know how much tickets decrease from
most; on the bus j. For example, if M3 on bus 1 gets the most bandwidth than
its bandwidth requirement after inner loop terminated, most, = M3. Assume M3
has 257 tickets on the bus 1 (t,; =257) and the Dec(most,) =53% on the bus 1.

We decrease 257 x53% =137 tickets from M3 on the bus 1, and then

T (most,) =137.
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less; : there can be more than one MM which misses its requirement on the bus j

after inner loop terminated. For example, if there are 2 MMs, M1 and M2, on the

bus 1 misses their bandwidth requirements after inner loop terminated,

less, = {M1,M2} .
T (less;): T, (less,;) represents the tickets increasing to the kn MM of the set
less; . For example, if two MMs, M1 and M2, miss their bandwidth requirements

on bus 1 after inner loop terminated, less, ={M1,M2}. Assume T,(less,) =37

and T,(less;) =100, we increase 37 ticket to M1 on bus 1 and increase 100
tickets to M2 on bus 1.

Inc, (less;) : the coefficient helps us to know how much tickets increase to the ki

MM of the set less; . For example, if M3 on bus 1 gets the most bandwidth than

its bandwidth requirement after inner loop terminated, most, = M3. And if two

MMs, M1 and M2, miss their bandwidth requirement on bus 1 after inner loop
finishing, less, = {M1,M2}. Assume M3 has 257 tickets (t,, =257), M1 has 93
tickets (t,=93), and M2 has 78 tickets (t,, =78) on bus 1. Assume

Dec(most,) =53%, Inc,(less;) =27%, and Inc,(less,)=73% on the bus 1.

First, we decrease 257x53% =137 tickets from M3 on the bus 1 and

T (most,) =137 . Then, we increase
0,
T (most,) x Inc, (less,) =137XL=37 tickets to M1 on the
Inc, (less;) + Inc, (less,) 27%+73%
0,
bus 1 and increase T(most,)x Inc, (less,) :137xl:
Inc (less;) + Inc, (less,) 27%+73%
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tickets to M2 on the bus 1. In other words,

0,
T, (less;) =T (most,) x Inc, (less,) =137 xi - and
Inc, (less;) + Inc, (less,) 27%+73%
0,
T,(less,) =T (most,) x Inc, (less,) :137><i:100 . Finally,
Inc, (less;) + Inc, (less,) 27%+73%

t,, =257-137=80, t,=93+37=130,and t,, =78+100=178.
® request_ prob, ;: this notation represents the request probability of the master i

on the bus j

® required _bw,;: this notation represent the bandwidth requirement of master i

on the bus j.

® allocated _bw, ; : this notation represent the bandwidth allocation of master i on

the bus j.

3.1.2 The details of MC weight tuning algorithm

In this section, we illustrate the MC weight tuning algorithm with an example and
introduce details of global-bus weight tuning. As shown in Figure 24, there are 2 MMs, MO
and M1, and 4 SMs, M2, M3, M4, and M5 in the bus matrix system. And the traffic model
is shown in Table 8. There are In the “Beat” column of Table 8, there are two kinds of
beat numbers. For example, if MO on the bus 0 initiates a request, the beat number is equal
to 16 with 50% probabilities and is equal to 8 with 50% probabilities. In the “Interval”
column of Table 8, there are five kinds of interval time. For example, if a request of MO on
the bus 0 is completed, the interval time is equal to 3 with 10% probabilities, 4 with 20%
probabilities, 5 with 40% probabilities, 6 with 20% probabilities and 7 with 10%

probabilities. The bandwidth requirements are shown in the “Required bandwidth” column.
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Figure 24 : The bus matrix system of the example of MC weight tuning

Table 8 : The traffic model of Figure 24

Bus | Master | Type Beat Interval Required
bandwidth (%6)
50%/50% | 10% | 20% | 40% | 20% | 10%

Bus O MO D |16 /8 3 4 5 6 7 15.0
M1 D 16 /8 3 4 5 6 7 21.0
M2 DR |16 /8 3 4 5 6 7 34.9
M3 D 32 /16 3 4 5 6 7 19.1

Bus 1 MO D 16 /8 3 4 5 6 7 22.5
M1 D 16 /8 3 4 5 6 7 14.0
M4 DR |16 /8 3 4 5 6 7 33.6
M5 D 32 /16 3 4 5 6 7 19.9

The initial ticket assignment is shown in the third column of Table 9 (block 1). Then

the ticket assignment is saved as intermediate ticket assignment (block 2). For example, we

set inter _t,, to 167 (the intermediate tickets of MO on the bus 0 is 167), inter _t , to

223 (the intermediate tickets of M1 on the bus 0 is 167), etc.

After saving the ticket assignment to intermediate ticket assignment, the inner loop
start and try to meet all bandwidth requirements of masters (block 3, block 4, block 5,
block 6, and block 7). When the inner loop terminated, the resultant ticket assignment and
bandwidth allocation of each master are shown in the “Tuned tickets” column and the
“Allocated bandwidth of bus matrix” column respectively in Table 9. As shown in Table 9,

MO and M1 miss their bandwidth requirements on the bus 0 and bus 1. There is no SM
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misses its requirement (block 8). The global-bus weight tuning restores the intermediate
ticket assignment first, and then increase tickets to MMs which miss their bandwidth
requirements (block 9).

Table 9 : The ticket assignment and bandwidth allocation after inner loop terminated

Bus | Master Initial Tuned Required Allocated
tickets tickets bandwidth bandwidth of
(%) bus matrix
Bus O MO 167 220 15.0 13.8
M1 257 554 21.0 19.9
M2 387 198 34.9 37.5
M3 213 52 19.1 28.8
Bus 1 MO 274 624 22.5 21.0
M1 156 156 14.0 13.3
M4 373 186 33.6 37.3
M5 221 58 19.9 28.4

The detailed flow of global-bus weight tuning is shown in Figure 25. As shown in

Figure 25, the global-bus weight tuning has three steps. First, we restore intermediate ticket

assignment and find the most;on each bus. Second, tickets are decreased from the

most;on each bus. Finally, we increase tickets to MMs which miss their bandwidth

requirements.
In Table 10, the “More or less than requirement” column is used to find the most;on

each bus. The “Bandwidth difference” column in Table 10 shows that the difference

between allocated bandwidth and required bandwidth of each master. As shown in Table 10,
M3 gets the most bandwidth than its requirement on bus 0, so most, = M3. And M5 gets

the most bandwidth than its requirement on bus 1, so most, = M5.
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Figure 25 : The flow of global-bus weight tuning

Table 10 : Table 9 with more information

Bus | Master Request Intermediate Required Allocated Bandwidth
probability tickets bandwidth | bandwidth difference
(%) (%)
Bus 0 MO r40% 167 15.0 13.8 -7.9
M1 r60% 257 21.0 19.9 -5.0
M2 r100% 387 34.9 37.5 7.4
M3 r100% 213 19.1 28.8 50.4
Bus 1 MO r40% 274 22.5 21.0 - 6.7
M1 r60% 156 14.0 13.3 -4.4
M4 r100% 373 33.6 37.3 11.0
M5 r100% 221 19.9 28.4 42.7

Tickets are decreased from most; at second step of global-bus weight tuning. The
decreasing coefficient is calculated first (finding Dec(most;)). Then we can know how
many tickets are decreased from most; (finding T(most;)) . Finally, we decrease

T(most;) from inert_t, ;. The following equations show above processes.

36



(allocated _bw; ; —required _bw;, ;) request_ prob, ,

Dec(most;) = 3.1

(most;) required _bw, | B (1)
T(most;) =inert _t; ;«Dec(most;) (3.2)
inert _t, ; =inert_t, ;, —T(most,) (3.3)

The coefficient “B” is used to avoid the algorithm never stop. When the algorithm
goes through the global-bus weight tuning, “B” is increased and Dec(most;) becomes
smaller as “B” increased. When Dec(most;) equal to zero, the simulation is terminated.

In Table 10, for example, M3 gets the most bandwidth than its requirement on the bus

0 and M5 gets the most bandwidth than its requirement on the bus 1. most, = M3 and

most, =M> - On bus 0, by the
Equation3.1
Dec(most, ) = (allocated _bw; , —required _bw, ) request_ prob,, _£0.4%x 100% By
° required _bw, B ' :
0,
the Equation3.2, T(most,) =inert _t, ;eDec(most,) = 213x50.4% x 100% —~107. On bus 1,
by the
Equation3.1
Dec(most,) = (allocated _bw;, —required _bw;,) request _ prob;, 12 7% 100% By
' required _bw, B ' :
0,
the Equation3.2, T(most,) = inert _t,,+Dec(most,) = 221x 42.7% x 100% _,,

At final step of global-bus weight tuning, tickets are increased to MMs which miss

their bandwidth requirements after we decreased tickets from most; on each bus. The

increasing coefficient is calculated first (finding Inc, (less;)). And then the Equation3.5
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shows how to increase tickets to MMs of less;. The following equations show above

processes.
required _bw . —allocated _bw. .
Inc, (less;) = (reg - —Pw,;) L (3.4)
required _bw; ; request _ prob, ,
) . Inc, (less;)
inter _t, , =inter _t, ; + T (most;) (3,5)

> Inc(less;)

In Table 10, for example, less,={MO,M1} on the bus 0. We decreased

0
T(mOSt0)=213><50.4%><100A)=107 tickets from M3 on bus 0. By the Equation3.4,
required _bw, , —allocated _bw,
Incl(lesso):( a =22 — W) L 7.9%x—~ and
required _bw, , request _ pro,, 40%
required _bw, , —allocated _bw
Incz(lesso):( i =& =W, - =5%x There
required _bw, , request _ prob, , 60%
7.9%
Inc, (less,) F, 40%

are T(most,)e =75 tickets are increased to

i S N WANE iy
Inc, (less,) + Inc, (less,) 19% 5%
40% 60%

intermediate  tickets of MO on the bus O ( inter_t,, ). There are

5%

Inc, (less,) 107« 60%
Inc, (less,) + Inc, (less,) 7'9%+ 5%
40% 60%

T (most,) =32 tickets are increased to

intermediate tickets of M1 on the bus O (inter _t, ).

0
On bus 1, less,={MO,M1} , We decrease T(mosti):221><42.7%x100/0:94
tickets from most, . By the Equation3.4,
required _bw,, —allocated _bw,
Incl(lessl)=( a ——c —OWo,) 1 =6.7%x and
required _bw,, request _ proby, 60%
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(required _bw,, —allocated _bw, ,) 1

Inc, (less,) = : =4.4%x There
required _bw,, request _ prob,, 40%
6.7%
Inc, (less,) 60% , .
are T(mos 1 =04x——22 ___ —A7 tickets are increased to
(most,) Inc, (less,) + Inc, (less,) 6.7% 4.4%

60% 40%

intermediate  tickets of MO on the bus 1 ( inter_t,, ). There are

6.7%
Inc, (less,) 60% ) _
T (mos 2 1 =04x——2Y0 ___ _ A7 tickets are increased to
(most,) Inc, (less,) + Inc, (less,) 6.7% 4.4%

60% 40%

intermediate tickets of M1 on the bus 1 (inter _t,,).

After global-bus weight tuning finishes (block 9), the step goes to block 2 and repeats
the flow. When the simulation is terminated, it results a proper ticket assignment to masters.
In Table 11, the “Final tickets” column shows the proper ticket assignment resulted by MC
weight tuning algorithm and it meets all bandwidth requirements of masters. As the result,
the MC weight tuning is more suitable for the bus matrix architecture.

Table 11: The simulation result of example Figure 24 by MC weight tuning algorithm

Bus Master | Initial Final Required Allocated
tickets tickets bandwidth bandwidth
Bus 0 MO 167 409 15.0 14.8
M1 257 386 21.0 22.0
M2 387 193 34.9 38.4
M3 213 12 19.1 24.8
Bus 1 MO 274 411 22.5 22.2
M1 156 390 14.0 14.3
M4 373 186 33.6 37.9
M5 221 13 19.9 25.5
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Chapter 4

Experimental Results

4.1 Experiment setup

We use the SoC Designer which is developed by ARM to implement our experiments
[25]. As shown in Figure 26, there are 2N masters and slaves. Every arbiter with slaves can
be regarded as a bus system. Each master can be connected to one or more than one bus
systems. Every master has a decoder to transport the request to its destination bus. After a
master initiates a request, it puts the request into the respective channel and waits for the
response from the corresponding slave. The arbiter selects only one pending request to be
granted. The lottery-based arbitration algorithms are used in our experiments. The arbiter
forwards the granted request to the corresponding slave and slave responds to the request.
After the slave responds, the arbiter puts the response into channel and the master picks up

the corresponding response up and completes the transaction.
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Figure 26 : An example of implementation of a bus matrix system on SoC Designer

4.2 Experiment 1

In experiment 1, we compare the performance with different weight tuning algorithms,
local-bus weight tuning algorithm and MC weight tuning algorithm.  As shown in Figure
27, there are 4 MMs, M0, M1, M2, and M3, and each bus has 2 SMs (M4, M5, M6, M7,
M8, M9, M10, and M11) in the experiment 1. The traffic model on each bus is shown in

Table 12. The traffic models of a MM can be different on different buses. For example, M3
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is D_R type on the bus 0, but M3 is D type on the bus 1. The beat number of M3 is 8 or 4
on the bus 0, but the beat number of M3 is 16 or 8 on the bus 1. Lottery-based arbitration
algorithms are used in experiment 1. The local-bus weight tuning algorithm works on bus
matrix architecture and independent buses architecture which is introduced in section 2.4.1.

The MC weight tuning algorithm works on bus matrix architecture.

r20%
r109%
@ r ‘ i 0/0 ‘J”””
Abiter]> @ iR @ CHERD

Figure 27 : The bus matrix architecture of expermentl
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Table 12 : The traffic model of Figure 27

Bus | Master | Type Beat Interval
50%/50% | 10% | 20% | 40% | 20% | 10%
MO D |32 /16 3 4 5 6

\l

ML | D |16 /8 3 | 4|5 | 6 |7
BusO | M2 | D |16 /8 3| 4|5 | 6 |7
M3 |DR|[8 /4 5 | 6 | 7 | 8 | 9
M4 |DR|[16 /8 3 | 4|5 |6 |7
M5 | D |32 /16 3 | 4|5 |6 |7
MO | D [16 /8 3 | 4| 5 | 6 |7
ML | D [32 /16 3 | 4|5 | 6 |7
ausy M2 |DR|8 /4 5 | 6 | 7 | 8 | 9
M3 | D [16 /8 3 | 4|5 | 6 |7
M6 | DR |16 /8 3 | 4|5 | 6 |7
M7 | D [32 /16 3 | 4|5 | 6 |7
MO | D [16 /8 3 | 4|5 | 6 |7
ML |DR|[8 /4 5 | 6 | 7 | 8 | 9
auso M2 | D |16 /8 3| 4|5 |6 |7
M3 | D |32 /16 3 | 4|5 |6 |7
M8 | DR |16 /8 3 | 4|5 | 6 |7
MO | D [32 /16 3 | 4| 5 | 6 |7
MO |DR|[8 /4 5 | 6 | 7 | 8 | 9
ML | D [16 /8 3 | 4|5 | 6 |7
sus3 M2 | D |32 /16 3| 4|5 |6 |7
M3 | D [16 /8 3 | 4|5 | 6 |7
M10 |D R |16 /8 3 | 4| 5 | 6 |7

M11 D |32 /16

w
N
()]
»
~

We compare the ticket assignments generated by different weight tuning algorithms. If
the resultant ticket assignment can make masters meet all real-time requirements and all
bandwidth requirements simultaneously, it is a successful case. Otherwise, if one
requirement is missed, it is a fail case. The difficulty to meet both real-time and bandwidth

requirements depends on the bus workload in terms of the percentage of bus bandwidth
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utilization [16, 24]. We randomly generate pattern for different bus workloads and
compare the results. As shown in Table 13, the first column gives the bus workloads
varying from 60% to 95%. For example, the “60%~65%" means the workload of each bus
IS between 60% and 65%. For each set of bus workload, 100 random patterns of different
required bandwidth combinations are generated. The “IB & Local” means it simulates on
the independent buses architecture with local-bus weight tuning algorithm (introduced in
section 2.4.1). The “BM & Local” means it simulates on the bus matrix architecture with
local-bus weight tuning algorithm (introduced in section 2.4.2). The “BM & MC” means it
simulates on the bus matrix architecture with MC weight tuning algorithm. We accumulate
the numbers of success case of three and show them in Table 13.

Table 13 : The number of success case under different weight tuning algorithm

Workload (%) IB & Local BM & Local BM & MC
60%—~65% 38 90 100
65%~70% 35 86 100
70%~75% 34 80 90
75%~80% 5 53 88
80%—~85% 0 38 85
85%—~90% 0 0 83
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Figure 28 : The figure of Table 13

The independent buses architecture cannot model correctly the behavior of the bus
matrix architecture. It has fewer successful cases under different workload. The local-bus
weight tuning algorithm using on bus matrix architecture directly can result proper ticket
assignment with high successful probabilities below 75% bus workload. Because the
local-bus weight tuning algorithm considers information of only one bus at one time, the
numbers of successful cases decrease very quickly above 75% bus workload. The MC
weight tuning algorithm has 88 successful cases when bus workload is between 75% and
80%. Even bus workload is between 85% and 90% which is extremely high traffic load,
the MC weight tuning still has more than 80 successful cases. The MC weight tuning
algorithm can result proper ticket assignment for lottery-based arbitration algorithm under

different bus workloads with very high successful rates.
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In this experiment, we have the following summaries. The independent buses
architecture cannot well model he behavior of the bus matrix architecture. The local-bus
weight tuning may work well on the bus matrix architecture when the bus workload is less
than 75%. However, the MC weight tuning has better results even if the bus workload is

between 85% and 90%.

4.3 Experiment 2

In experiment 2, we compare the performance of MC weight tuning algorithm
working on different complexity of bus matrix architecture. As shown in Figure 29, Figure
30, and Figure 31, they all are bus matrix architectures with the different complexities of
architectures. There are two buses in Figure 29, three buses in Figure 30, and four buses in
Figure 31.

Those three architectures are simulated with lottery-based arbitration algorithms and
MC weight tuning algorithm. If the resultant ticket assignment can make masters meet all
real-time requirements and all bandwidth requirements simultaneously, it is a successful
case. Otherwise, if one requirement is missed, it is a fail case. We randomly generate
pattern for different bus workloads and compare the results. As shown in Table 14, the first
column gives the bus workloads varying from 60% to 95%. For each set of bus workload,
100 random patterns of different required bandwidth combinations are generated. The
“2-bus” means the architecture shown in Figure 29 is used. The *“3-bus” means the
architecture shown in Figure 30 is used. The “4-bus” means the architecture shown in
Figure 31 is used. We accumulate the numbers of successful cases of these three and show

the results in Table 14.
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Figure 30 : Bus matrix architecture with three buses

47



r20%

Figure 31 : Bus matrix architecture with four buses

Slaves

Table 14 : The number of success case under different complexity of architectures

2-bus 3-bus 4-bus
60%—~65% 100 100 100
65%~70% 100 100 100
70%~75% 100 100 90
75%~80% 98 97 88
80%~85% 98 93 85
85%—~90% 92 90 83
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As shown in Figure 32, the “2-bus” (shown in Figure 29) has the best performance
and it is the simplest architecture of those three. The performance of “3-bus” (shown in
Figure 30) is very close to that of “2-bus”. Although the performance of “4-bus” (shown in
Figure 31) is the worst of the three, the difference of results between “2-bus” and “4-bus”

is small. The MC weight tuning algorithm working on different architecture complexity

Figure 32 : The figure of Table 14

results proper ticket assignment with very high successful rates.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

A new weight tuning algorithm, MC weight tuning algorithm, is proposed in this
thesis. It can mostly provide proper ticket assignment to lottery-based arbitration
algorithms to meet real-time and bandwidth requirements simultaneously. The MC weight
tuning algorithm also shows that the weight tuning algorithm cannot consider information
of only one bus at one time. The weight tuning algorithm has to consider information of
multiple buses. The experimental results show that the MC weight tuning algorithm
working on the bus matrix architecture is better than the local-bus weight tuning algorithm
working on the bus matrix architecture. Hence, the MC weight tuning is a better choice for
lottery-base arbitration algorithms working on the bus matrix architecture.

As the demands of on-chip communication grow, more modern communication
architectures will be proposed in the near future. If lottery-based arbitration algorithms are
continually used, an efficient weight tuning algorithm is still needed as well. In the future,
we intend to find a weight tuning algorithm which can be used for different communication

architectures, even for different weighted or probabilistic arbitration algorithms.

50



Reference

[1]

[2]

3]

[4]
[5]
[6]

[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]

[15]
[16]

[17]

S. Pasricha and N. Dutt, "On-Chip Communication Architectures: System on Chip
Interconnect,” Morgan Kaufmann, 2008.

S. Pasricha, N. Dutt, and M. Ben-Romdhane, "Constraint-Driven Bus Matrix
Synthesis for MPSoC," in Asia and South Pacific Design Automation Conference,
2006, pp. 30-35.

P. Sujan, G. Manfred, and M. Max, "Performance Aware On-Chip Communication
Synthesis and Optimization for Shared Multi-Bus Based Architecture,” in
Symposium on Integrated Circuits and Systems Design, 2005, pp. 230-235.
"Peripheral Interconnect Bus Architecture,” http://www.omimo.be.

"Virtual Socket Interface Alliance," http://www.vsi.org.

"IBM Microelectronics CoreConnect Bus Architecture,”
http://www.chips.ibm.com/products/coreconnect.

"AMBA 2.0 Specification," http://www.arm.com/armtech/AMBA.

"Sonics Integration Architecture,” http://www.sonicsinc.com.

"Open Core Protocol Specification — v1.0," http://www.sonics.com, 1999.

J. L. Hennessy and D. A. Patterson, "Computer Architecture: A Quantitative
Approach,” Morgan Kaufmann Publishers, 2002.

J. L. Hennessy and D. A. Patterson, "Computer Organization and Design: The
Hardware/Software Interface,” Morgan Kaufmann Publishers, 2004.

H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L.Todd, "Surviving the
SoC Revolution," Kluwer Academic Publishers, 19909.

J. Liang, S. Swaminathan, and R. Tessier, "ASOC: A Scalable, Single-Chip
Communications Architecture,” in International Conference on Parallel
Architectures and Compilation Techniques, 2000, pp. 37-46.

"ARM AMBA 3.0 Specification," http://www.arm.com.

"Multi Layer AHB Specification," http://www.arm.com.

C.-H. Chen, G.-W. Lee, J.-D. Huang, and J.-Y. Jou, "A Real-Time and Bandwidth
Guaranteed Arbitration Algorithm for SoC Bus Communication,"” in Asia and South
Pacific Design Automation Conference, 2006, pp. 600-605.

K. Lahiri, A. Raghunathan, and G. Lakshminarayana, "The LOTTERYBUS
On-Chip Communication Architecture," IEEE Transactions on Very Large Scale

51



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Integration (VLSI) Systems, vol. 14, pp. 596-608, 2006.

K. Lahiri, A. Raghunathan, G. Lakshminarayana, and S. Dey, "Design of
High-Performance System-on-Chips using Communication Architecture Tuners,"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 23, pp. 620-636, 2004.

J. Lehoczky, L. Sha, and Y. Ding, "The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior,” IEEE Real Time Systems
Symposium, pp. 201-209, 1989.

C. Liu and J. Layland, "Scheduling Algorithms for Multiprogramming in a Hard
Real-time Environment,” Journal of the ACM, pp. 46-61, 1973.

L. Sha and J. B. Goodenough, "Real-Time Scheduling Theory and Ada,” IEEE
Computer, vol. 23, pp. 53-62, 1990.

C. A. Waldspurger and W. E. Weih, "Lottery Scheduling: Flexible
Proportional-Share Resource Management,” Proceeding of the First Symposium on
Operating Systems Design and Implementation, pp. 1-11, 1994.

Y. Zhang, "Architecture and Performance Comparison of A Statistic-Based Lottery
Arbiter for Shared Bus on Chip," in Asia and South Pacific Design Automation
Conference, 2004, pp. 1313-1316.

B.-C. Lin, G-W. Leeg, J.-D. Huang, and J.-Y. Jou, "A Precise Bandwidth Control
Acrbitration Algorithm for Hard Real-Time SoC Buses," in Asia and South Pacific
Design Automation Conference, 2007, pp. 165-170.

"SoC Designer Developer Guide," www.arm.com.

52



	thesis封面.pdf
	thesis_final

