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摘 要 

網路單晶片是為了應付未來極為複雜的系統單晶片的通訊需求所提出的

一種新的設計方式。在這篇論文中，我們提出一個基於基因演算法的任務排程

方法，把應用排程至一個異質性網路單晶片。這個任務排程方法試著去為每一

個任務找到最適合的處理器，使得系統的資料處理率提升至最大。在基因演算

法中，隨著任務數目的增加，排程所需的時間也會跟著增加，而且在資料處理

率的表現也會變差。所以我們提出分割的基因演算法來改良這樣的狀況。實驗

結果顯示，我們提出的演算法可以有效提升基因演算法的效能，而且排程時間

上也有明顯的改良。 
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ABSTRACT 

Network-on-Chip is a new design paradigm to meet the communication 

requirement of future billion-transistor System-on-Chip. In this thesis, we 

propose a genetic algorithm based task scheduling technique to schedule the 

applications to the heterogeneous Network-on-Chip architecture. The task 

scheduling process attempts to arrange the allocation of processor for each task such 

that the system throughput is maximized. In genetic algorithm, with the increasing 

of task number, the scheduling time will increase, and the performance in system 

throughput will become worse. So we propose a partition genetic algorithm to 
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improve this kind of situation. The experimental results show that proposed 

algorithm not only upgrade the performance of genetic algorithm, but also shorten 

the scheduling time obviously. 
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Chapter 1 

Introduction 

1.1 Technology Trend 

With the advance of semiconductor technology, it is possible to integrate 

multi-billion of transistors on a chip. As a result, hundreds of cores (processor, DSP, 

FPGA, and so on) will be integrated on a single chip. However, this will introduce 

several new problems for designers. 

First, the ever-shrinking feature size causes the gate delay scaling down linearly, 

while the wire delay remains constant. Thus, the wire delay will become more critical 

than the gate delay [1]. Although the wire delay can be managed with wire pipelining 

techniques, it is unavoidable for designers to deal with the problem of timing 
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uncertainty. On the other hand, the clock skew can not be neglected and clock 

synchronization becomes another problem. It is almost impossible to synchronize all 

components on a chip with single clock. The globally-asynchronous, locally 

synchronous (GALS) technique may be the most suitable solution [2]. 

Second, the most popular architecture in current System-on-Chip (SoC) design 

is shared-bus based network architecture. Nevertheless, due to the weakness of high 

data transmission contentions between masters, the system performance will be 

reduced and the power consumptions will be raised. Moreover, buses can only handle 

3 to 10 computation elements [3][4][5]. Following the technology trend, 

communication between components becomes the bottleneck of system performance. 

Thus, designers should search for new communication architecture to improve this 

kind of situation. 

Third, it becomes more complex to design a system with lots of computing 

components while considering the limited time to market. The traditional design flow 

is not sufficient to conquer this problem. The design trend is toward system level 

design, and a communication-driven system design methodology should be 

considered. 

1.2 Concept of Network-on-Chip 

A new design methodology called Network-on-Chip (NoC) has been presented 

to improve the on-chip communication, this uses the technique of computer network 
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and parallel computing [6]. Network-on-Chip is the concept of viewing the system as 

a network of cores. In many cases, on-chip network can be designed in regular 

structures, thus, the electrical properties of global wire can be optimized and well 

managed. It's helpful for using aggressive signaling circuits and reducing power 

dissipation [3][7]. As well, the cores can communicate with each other through the 

network. Obviously, the methodology of NoC not only achieves the concept of Global 

Asynchronous Locally Synchronous (GALS) paradigm with ease but also alleviates 

the wire delay problem and other DSM problems. The NoC concept enables designers 

to design and reuse each core designed in one synchronous clock domain, and the 

communications between cores through the network. Hence, components can 

communicate with each other asynchronously [6][8]. 

Compared with the traditional share-bus architecture, NoC provides better 

performance scalability. First, it can provide high bandwidth and reduce power 

consumption effectively through a Peer-to-Peer communication. Second, by 

managing the network channel properly, multiple communications originated by 

multiple cores can be handled at the same time. 

Many proposed network platforms use the regular architecture. As shown in 

Figure 1.1, this is a network platform with a 2D-mesh topology. Every switch is 

connected to its neighboring switches and a processing element. 
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Figure 1.1：NoC with 16 resources 

In such a design fashion, designers can design and verify the processing 

elements independently, this is constructive for building systems. Furthermore, 

designer can develop the network platform in advance and integrate with many 

applications [9]. Thus, we can not only amortize the development cost of network 

platform across many applications but also reduce time to market pressure by reuse 

the NoC platform. 

1.3 Motivation 

With the advance of the technology, while applications become more complex, 

the multi-core or NoC hardware will be required. When hardware design goes to 

multi-cores or NoC, the task scheduling becomes a important issue. Since it evolves 

the resources allocation and task assignment, and this is very important for system 
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performance and hardware utilization.  

An application can be modeled as a task graph with communication and 

computation information. We use a heterogeneous system which includes different 

kind of resources for different tasks. Given a network platform with heterogeneous 

computing resources, the task scheduling problem is defined to decide proper 

allocation of resource to the task, which can in turn optimize the system performance. 

On the other hand, when task graph becomes more complex and task number 

becomes larger, traditional crossover methods can not handle the big task graphs well. 

Thus, we present the partition genetic algorithm method to reduce scheduling time 

and get better performance. It divides the task graph into several partitions by 

considering the execution order and communication amount between tasks.  

1.4 Thesis Organization  

The rest in this thesis is organized as follows. Chapter 2 introduces related 

works, our design flow and some basic concepts. Chapter 3 presents our task 

scheduling method. We use genetic algorithm with shape crossover method to reduce 

communication overhead, furthermore, we use partition method to improve the 

crossover procedure, which can lead to better throughput between generations. The 

experimental flow and results are shown and discussed in Chapter 4. Finally, 

conclusions and future works are given in the last chapter. 
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Chapter 2  

Preliminary 

In this chapter, we first introduce several related works in design methodology 

and scheduling. Then we talk about our design flow and NoC platform. The 

architecture and characteristics of our NoC platform is presented here. Finally, we 

introduce the concept of genetic algorithm and why it is suitable to deal with task 

scheduling problem. 
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2.1 Related Works 

2.1.1 Design Methodology 

There are many researches in NoC domain. In [6], it proposes using 

layered-micronetwork design methodology to address future SoC designs. As shown 

in Figure 2.1, every layer is specialized and optimized for target application domain 

in this vertical design flow.  

 

Figure 2.1：Layered-micronetwork design methodology 

In [10], a circuited switched two-dimensional mesh network called SoCBUS is 

proposed. It introduces the concept of packet connected circuit (PCC). By this theory,  

packet is switched through the network and locking the circuit as it goes. PCC is 

similar to circuit switching which has the advantage of bandwidth guarantee and 

deadlock-free. The integrated modeling, simulation and implementation environment 

are proposed In [11]. NoC infrastructure and processors are modeled, and simulation 

is performed to find the optimal network configuration. 
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[12] presents the Xpipes which contains a library of soft macros (switches, network 

interfaces and links), therefore, domain-specific heterogeneous architectures can be 

instantiated and synthesized. Xpipes provides a tool called XpipeCompiler, which can 

automatically instantiates a customized NoC from the library. Precisely, designer uses 

the library from Xpipes to describe the network architecture, and the information on 

the network architecture is specified in an input file for XpipeComplier. This tool can 

generate a SystemC hierarchical description of whole system, and it can be compiled 

and simulated at the cycle-accurate and signal-accurate level. [13] presents an 

algorithm called NMAP. It can map cores onto NOC architecture under bandwidth 

constraints. This can be used for both single-path routing and spilt-traffic routing. In 

[14], the author uses a simple packet switching communication model to reduce 

communication time. He proposes a two-step genetic algorithm to map a 

parameterized task graph onto 2D-mesh NoC architecture, which minimizes the 

overall execution time of the task graph. 

2.1.2 Scheduling 

In [15], we get the basic algorithm and concept about using genetic algorithm to 

deal with multiprocessor scheduling problem. We learn the partition skill to handle 

genetic algorithm in [16]. It provides the method to divide task graph into several 

partitions according to the execution time relation. Then it analyzes the benefit of 

partition genetic algorithm and show the experimental result to prove it. In [17] we 

can get the graphic based crossover method and chromosome representation thought. 
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It considers the communication overhead and data dependency among crossover. 

Since NoC is a communication-driven architecture, we consider the case when 

communication is the bottleneck of system. Thus, crossover with lower 

communication overhead can get great improvement in system performance.   

In [17] it proposes new crossover schemes which take the dependency of tasks 

into consideration to obtain better performance. As shown in Figure 2.2, it uses a 

graphical chromosome which contains the information of task graph and the 

allocations of tasks. For example, the top node of the chromosome indicates that task 

A maps to (0,0), the bottom node indicates that task E maps to (1,1). Thus, this kind 

of representation can include the data dependency information and this is a great 

innovation.    
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Figure 2.2：Graphic-based chromosome representation 

The first proposed crossover scheme in [17] is the sub-graph crossover operator 

which exchanges a sub-graph in a well-coded graph-based representation. The 

exchange process of the sub-graph crossover is illustrated in Figure 2.3. First of all, it 

randomly chooses a task on the task graph. For example, in Figure 2.3(a), the task F 
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which locates at (2,2) is chosen for Parent X and the task F which locates at (3,0) is 

chosen for Parent Y. Next, it selects a number x ranges from 1 to n-1 randomly, where 

n is the total task number of the graph. In this case, the Parent X, as shown in Figure 

2.3(a), has the number x of 5. Finally, a breadth first search (BFS) is performed on 

chosen task until the number of visiting tasks reaches x. As a result, it can obtain the 

sub-graphs in Figure 2.3(a), and it labels the communication amount for the cutting 

edges. For instance, the communication amount between the Task A and the Task C is 

4. Finally, we exchange sub-graphs to generate the offspring X’ and Y’, the result is 

shown in Figure 2.3(b). 
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Figure 2.3：Sub-graph crossover operation 

Although sub-graph crossover considers about the dependency of tasks, it is still 

not good enough. It can be further improved by taking the suitability between the 

parents and the exchanged sub-graph into account. Therefore, the author presents 

another crossover method by considering the communication overhead between 

sub-graph and surrounding tasks. 
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Second, in order to ease the communication cost, it proposes systematic rotation 

and reflection scheme to adjust one shape diagram to increase search space. For 

simple demonstration, in this case, it can rotate and reflect SB to obtain eight 

candidates as shown in Figure 2.4 named as SB1, SB2, SB3, and so on, where SB is 

identical to SB1. These candidates are evaluated by calculating the communication 

cost that they cause. The communication cost is defined as Σci*di, where ci is the 

input or output communication amount of the sub-graph and di is Manhattan distance 

of that communication. After calculating the communication cost for the eight 

candidates, it selects the candidate with the minimum communication cost as the final 

shape result for exchange.   

 

Figure 2.4：Rotation and reflection of SB for the shape crossover operation B
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2.2 Our Design Flow 

Our design flow is shown in Figure 2.5. There are two input information in our 

methodology. First, an application can be partitioned into communicating tasks, and 

the characteristics of tasks and data dependency is modeled as a task graph. Second, 

the NoC platform contains network architecture and heterogeneous computing 

resources (the task graph and NoC platform will be later explicitly explained). The 

task scheduling process determines which task should map to which resource. The 

process not only tries to reduce the communication time by mapping the interacting 

tasks into the same resource (make it an intra-resource communication) under 

memory constraints, but also tries to map tasks onto most appropriate resources to 

improve the computation time of each task. Next, the routing process [18] assigns a 

specific connect path for each communication between tasks. After the routing 

process, we can make a system performance analysis. If the results do not meet our 

requirement, we will iteratively refine our application or NoC platform and execute 

task scheduling and routing until the results satisfy our requirement. 
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Figure 2.5：Design flow 

2.3 Our NoC Platform 

As Figure 2.6, our NoC platform consists of switches and processing elements, 

each switch connects to neighbor switches and a corresponding processing element, 

and all of these components construct the network architecture. Processing elements 

can communicate with each other by passing messages through the switches of the 

network. 
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Figure 2.6：NoC platform 

The architecture of our switch is shown in Figure 2.7. The switch has four ports 

connecting to neighboring switches and one port connecting to local processing 

element. Each port is composed of input and output stage. 

 

Figure 2.7： Switch architecture 
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As shown in Figure 2.8, the interface of switch is composed of input and output 

channel. Each channel includes Address-line, Data-line and Ack-line. The 

Address-line delivers the input or output address of the packet. The Data-line delivers 

data transmitted. And the Ack-line feeds acknowledgement back to source switch or 

processing elements to report the result of transmission. Output channel and input 

channel are complementary to each other. 

 

Figure 2.8： Switch interface 

Our platform has five features: 

(1) circuit switching 

(2) dedicated connection path 

(3) virtual channel flow control 

(4) weighted round-robin scheduling 

(5) pipeline bus 

Feature (1) and (2) provide the bandwidth guarantee and small memory usage of 

network switches. Feature (3) and (4) can prevent deadlock and improve the 

utilization of network. Finally, feature (5) can improve the performance of network. 
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The details of switch and network architecture are explicitly described in [18].  

There are two kinds of processing element in our NoC platform, processor and 

FPGA. This makes the NoC platform a fully programmable platform. It undoubted 

that processor is a programmable processing element. FPGA is a dedicated hardware 

that can be reconfigured when designing. Since our platform is fully programmable, 

we can reduce the development cost by reuse it in many different applications without 

any architectural modification. 

The processor is highly flexible processing element. It can execute tasks with 

nice management. But in most cases, processors cannot provide better performance 

than a dedicated hardware in executing tasks with data dependency. On the other hand, 

dedicated hardware cannot have good flexibility like processors. Hence, our platform 

contains another type of processing element to overcome this issue. An FPGA work 

like a dedicated hardware, but it has the advantage of being reconfigured in design 

period. Consequently, our platform has the ability to execute various tasks efficiently. 

Figure 2.9 shows both the processor and FPGA model. Every processing element 

contains a network interface(NI) to communicate with local switch. The buffer is 

temporary memory which uses for storing the input and output data when 

communicating with other processing elements. As before-mentioned, our platform is 

consisting of two different types of processing elements. FPGA contains a FPGA core, 

and processor contains a processor core and local memory, which can store the 

program and intermediate data in execution. 
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Figure 2.9：Processing element model 

2.3.1 Task Graph 

Applications can partition into many tasks due to the parallelism. Figure 2.10 

shows a task graph example which is a H.263 decoder. A node represents a task and it 

functionality. Take node C as an example, it functionality is IDCT which performs an 

inverse discrete cosine transformation of a frame produced by task B. The edge 

represents a data transmission and it communication amount. For instance, when task 

B has completed, it transmit c2 unit data to task C. An edge also shows the data 

dependency between tasks, a task cannot be executed until it receives the data from 

all its predecessor. For example, task G cannot be executed until it receives c5 unit 

data from task D and c6 unit data from task E, this can insure the correctness of 

program. 
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Figure 2.10：Task graph of H.263 decoder 

In addition to the task graph, there is a processing element database to specify 

the details of tasks when performing on the specific processing elements. As shown 

in Figure 2.11, processing element database contains the executing time of the task 

and the memory usage (program and intermediate data) when executing on a 

processor. If the task is executing on an FPGA, it shows the execution time and the 

capacity usage (logics) of the task. 
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Figure 2.11：Resource requirement of tasks 
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2.3.2 Performance Evaluation 

Since the application is executed consecutively, we take throughput instead of 

execution time as the system performance metric. Take video compressing as an 

example, we may compress the entire movie into a more compact form, like Mpeg4. 

A movie may contain thousands of frames, therefore, when we evaluate the system 

performance of the video compressing ability, we may take frame per second as the 

rating of system performance rather than second per frame. As a result, we take 

throughput as the metric of system performance. More precisely, our system 

performance evaluation is to calculate how many times the application can be 

performed in a period. 

2.4 Genetic Algorithms 

Task scheduling tries to allocate a set of tasks to resources such that the 

performance is optimal. Nevertheless, it is known as NP-complete. Therefore, people 

often use heuristic algorithms to deal with task scheduling problem 

[14][18][19][20][21]. 

In considering about the system performance, there are several important 

aspects. First, since the NoC platform contains heterogeneous computing resources, 

and tasks maybe suited to be executed on some kind of resources, thus, the execution 

time of a task depends on the resource it used. Second, the communication time 
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between tasks highly depends on the communication distance. Therefore, 

communication time can be greatly improved by mapping the communicating tasks 

onto the same resources. However, this may violate the constraints as mention before. 

Moreover, the suitability of tasks and resources are neglected. As the result, the task 

scheduling problem must be solved with considering the trade-off among execution 

time, communication time and constraints. 

Typically, Genetic algorithms are good at finding near-optimal solutions in a 

large search-space. As well, genetic algorithms do not require the knowledge of the 

search-space, they only need a measure of solution, it differ from many traditional 

optimization techniques [14][22][23]. In other words, we do not need to know how to 

arrange these tasks to get the best performance, we only have to define the 

performance of the solution. As a result, Genetic algorithms are quite suitable for the 

task scheduling problems. 

Genetic algorithms are search algorithms based on the mechanics of natural 

selection and natural genetics. Genetic algorithms are different from other traditional 

optimization methods in very four fundamental ways [22] : 

(1) Genetic algorithms use a coding of the parameter set instead of parameters 

themselves. 

(2) Genetic algorithms search from a population of search nodes rather than a 

single one. 

(3) Genetic algorithms use objective function, not derivatives or other 
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auxiliary knowledge. 

(4) Genetic algorithms use probabilistic transition rules, not deterministic 

rules. 

In order to employ genetic algorithms to solve our problem, first we need to 

encode the possible solutions of the optimization problems as a set of chromosomes. 

Each chromosome represents a solution to the problem, and a cluster of solutions 

form a population. Next we generate the initial population, the chromosomes in the 

initial population are often generated randomly or heuristically. After that, we have to 

evaluate the fitness value of the chromosomes, this can judge how good the 

chromosome is to the problem, and it is important in the procedure of evolution.   

In evolution process, we optimize the population by using genetic operators: 

selection, crossover and mutation. The genetic algorithms select chromosomes from 

current generation by their fitness value. The higher fitness value the chromosome has, 

the higher probability it will be selected. In crossover and mutation procedures, next 

generation is generated by means of exploring the search-space. Finally, we evaluate 

the fitness value of chromosomes in the next generation, then add them into the 

current generation. In order to keep the size of population, some bad chromosome 

will be discarded. We can pick the better result generation by generation until the 

saturation condition is met, and we can find the solution in the best chromosome 

when genetic algorithms terminate. 
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Chapter 3 

Task Scheduling 

In this chapter, the proposed task scheduling method is presented. Procedures of 

our method will be explained explicitly in following articles. In addition, we will 

discuss the partition work and communication improvement in our algorithm into 

depth. We believe that proposed algorithm can improve the scheduling result and 

shorten scheduling time obviously.  
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3.1 Assumption 

First, we need to define the constraints and make some assumptions. 

There are two ways to implement a task, software(program) or hardware (logic). 

Since local memory of processor and total capacity of the FPGA is limited, we should 

consider these two constraints. Memory constraint of processor restricts the size of 

programs and intermediate data of tasks. The capacity constraint of an FPGA is 

similar to memory constraint. It limits the total logics of tasks which are assigned to 

an FPGA. 

There should be some buffers for performing a task. For instance, in Figure 3.1 

we can see, before task A is executed, it has to wait for 4 units data from task B and 2 

units data from task C. Totally, task A needs 6 units input buffer for these input data. 

Besides, when task A is executing, the generated result needs to be stored in output 

buffer. Therefore, the minimum buffer requirement is 9 units. 

D

CB

A
4 2

3

D

CB

A
4 2

3

 
Figure 3.1：Example of task graph 
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However, this is not sufficient if our buffer has only the summation of input data 

and output data. First, when task A is executing, it receives 4 units data from task B 

and 2 units data form task C and stores them in input buffer. Moreover, the output 

buffer should prepare 3 units data for result of task A, and these requirements fill the 

buffer. Thus, neither task B nor task C can transmit data to task A until this job is 

finished, and this prevent the system from being executed continuously. Second, if 

output buffer of task A is full (task D does not finish receiving data from task A), it 

has to wait until the output buffer is clear, which means that it is idling during this 

period. Hence, in order to overcome this problem, we set our minimum buffer 

requirement to 18 units, which is twice of the minimum buffer requirement. Then the 

task can receive and transmit data whenever task is executed or not. This can greatly 

improve the system performance. 

We don’t need to decide the execution order when more than two tasks are 

allocated to the same FPGA, because tasks are implemented in different parts of 

FPGA, none of them use the same component of the FPGA. But when more than two 

tasks are allocated to the same processor, the situation is different, we have to decide 

the execution order dynamically. It is not fitting to decide the execution order of the 

tasks in advance because of the dynamic behavior of communication. In addition, 

before the task is executed, it has to wait for all its input data. 
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According to above reasons, we choose a dynamic First In First Serve(FIFS) 

strategy to determine the execution order of tasks. It has two advantages. 

(1)Flexibility to conquer the uncertainty of network. (2)Raise the utilization of 

processor by considering about the data availability of tasks [24]. A FIFS strategy is 

implemented as a queue. The task is pushed into the queue when all the input data are 

ready and output buffer size is sufficient. Then processor can execute the tasks 

according to the order.      

3.2 Problem Formulation 

Task scheduling problem can be formulated as follows: 

Given: 

(1)  A task graph G(V,E) with communication and computation information 

(2)  An NoC platform with following characteristics: 

(a) mesh size 

(b) memory size of processor 

(c) capacity size of FPGA 

(d) buffer size of processing element 

(e) communication bandwidth of each channel 
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Goal: 

Use our algorithm to efficiently schedule each task to maximize system 

throughput 

3.3 GA-based Task Scheduling Flow 

The proposed GA-based task scheduling flow is illustrated in Figure 3.2. It 

includes the following procedures. Initial population and evolution composed of 

selection, crossover, mutation, simulation and insertion. First, we generate the initial 

population. Then the evolution process tries to explore the search space until it 

reaches the saturation condition we set. Finally, the best chromosome in the 

population is our solution. 

 26 

  



 

 

Figure 3.2：GA-based task-scheduling flow 

3.4 Initial Population 

We use a meta-random scheme to generate the initial population of chromosome 

and it is divided into two steps: 

(1) We use topological sorting scheme to sort the tasks in the task graph.  

(2) The tasks are mapped onto the NoC platform in this order. 
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In step 2, we must consider 3 conditions: 

(a)  If the task has no precedence, the task is mapped randomly. 

(b)  If the task has only one precedence, the task is mapped according to the 

allocation of its precedence. 

(c)  If the task has more than one precedence, the task is mapped according to the 

allocation of its precedence and the communication amount between the task 

and its precedence. 

We take Figure 3.3 as an example to demonstrate initial population, and the 

mapping steps of initial population are illustrated in Figure 3.5. First, a topological 

sort is performed on the task graph, and the topological order is given by A, B, C, and 

D. Next, task A is randomly mapped to the NoC platform. Then, task B and task C are 

mapped according to the allocation of task A. Comparing to task D, task B and task C 

have a higher probability of being mapped onto the allocations close to task A. Finally, 

task D is mapped according to the allocations of task B and task C. As we can see, 

edge B→D and edge C→D have different communication amounts. Thus, the 

probability should be higher for the allocations that are nearer to task B than those 

nearer to task C. By above descriptions, we can summarize the initial population 

process as listed in Figure 3.4, where the ticket in the pseudo code [22] means the 

probability.  
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Figure 3.3：Example of task graph 

 

 

1. topological sort
2. according to the topological sort order, place the tasks.

2.1 random place the root since it has no parent
2.2 foreach task T in topological sort order

{ find free allocations (free resources) for T
for each free allocation X
{ //calculate the ticket of X

ticket = 0
for each parent P of the task
{ //the nearer of the distance between 

                                                                       //the tasks, the higher of the ticket points

                                                                       //the more of the communication amount, 
                                                                       //the higher of the ticket points

ticket += [(row_max+col_max-1)-manh_distance(X, P)] * Commu_amount(T,P)
}

}
place the task T according to the location of its parent(s) using roulette wheel method [32]

}  
[22]

Figure 3.4：Pseudo code of the initial population process 
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Figure 3.5：Detailed demonstration of an initial solution 
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There are two reasons for us to use a meta-random scheme to generate 

chromosomes. First, a pure random scheme may cause a very poor performance. 

Second, the diversity of the chromosomes in the initial population should be kept as 

high as possible, this can in turn the genetic algorithms to have a higher probability of 

exploring a larger search-space. As a result, a meta-random scheme is used to 

generate the chromosomes. 

3.5 Selection 

Because of the principle of eugenics, an individual chromosome with a higher 

fitness value has a higher probability to produce another generation. Hence, pairs of 

parents from the population were selected using the roulette wheel method. Each 

chromosome in the population has a roulette wheel slot which is proportional to its 

fitness value. Then we can select the chromosome by spinning the roulette wheel. As 

illustrate in Figure 3.6, Chromosome A has the largest fitness value, so it occupies the 

largest space in the roulette wheel. The selected chromosomes will mate in the next 

stage by spinning the roulette wheel many times. 
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Figure 3.6：Roulette wheel method 
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3.6 Crossover 

3.6.1 Proposed Crossover Method 

The genetic algorithms use crossover to find the local optimal point. In nature, 

offspring inherit their features from their parents. For instance, if parents are tall, they 

often have tall children. So as in the genetic algorithms, the generated chromosomes 

inherit their features from their parents. Nowadays, we have many new applications 

with high complexity, follow the trend, the task graph will become more complex, 

and task number will become larger. In this situation, scheduling time will become 

longer, and we need more time to find a better solution for system performance. 

Hence, this is a good issue for us to research.  

If we examine traditional crossover algorithms carefully, we can find that these 

algorithms just randomly select a part of chromosome to exchange. When task graph 

becomes larger, some parts of tasks in the graph are always being neglected for 

crossover selection. However, they may have great opportunities for throughput 

improvement. That is, such crossover algorithm can not handle a large task graph well. 

This situation will become worse when task number become larger. As a result, we 

must use some new crossover algorithm to overcome this weakness.   

Our modified crossover flow is shown in Figure 3.7. First, we divide the task 

graph into several partitions by the execution order in the system, and then adjust the 

boundary according to the communication amount. Next, we select sub-graphs in 
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every partition and find the best shape which has the minimum communication 

overhead with surroundings [17]. In order to further control the communication 

overhead, we use a value to filter the crossover in every partition. If the 

communication overhead is larger than this value, we will not do the crossover. After 

that, we go to next partition and repeat the procedure.  

 

Figure 3.7：Proposed crossover flow 
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3.6.2 Partition 

In [16], it presents a partition genetic algorithm. We use the partition method in 

this article to divide the task graph into several partitions, and do the crossover in 

each partition. This article introduces the concept of blevel, which represents the 

execution order of the system. Partition method can make the crossover more balance 

in the task graph and get better result of scheduling. However, this crossover method 

doesn’t consider about the data dependency. It just uses the traditional chromosome to 

do crossover, and this will cause a bad simulation result. Therefore, we use the 

graphic-based chromosome [17] to solve this problem and do some further 

improvement to get our own crossover algorithm. 

As shown in Figure 3.8, we use the value of blevel to divide the original 

chromosome into three partitions. Since the task number becomes smaller, crossover 

method can run more balance in the partitions.    
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Figure 3.8：Partition with Blevel 

When we get a task graph, first we analyze it and get the information we need. 

Next, we have to decide how many partitions are suitable for the original task graph. 

Number of partitions influences the result of crossover. If the partition number is too 

small, then we won’t get great improvement in scheduling result. On the other hand, 

if the number of partitions is too big, then there will be heavy communication 

overhead and bring in worse result. Moreover, the partition number is related to 

scheduling time of each generation. Too many partitions will bring in longer 

scheduling time. Thus, the number of partitions is very important. In our algorithm, 

we divide the task graph by 30 tasks a partition. For example, if we have 200 tasks, 

then we will have 7 partitions in this task graph. We think this is a suitable partition 
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size for our algorithm since it can run our crossover method well and handle the 

communication overhead. 

After deciding the partition, we adjust the partition boundary for task graph. 

Since we want to reduce the communication between different partitions, we adjust 

the boundary to make the communication amount between different partitions 

become lower. When we do the crossover, we only pick tasks which are in the same 

partition. However, this crossover damages the allocation in initial population and 

cause heavy communication overhead between different partitions. As a result, if we 

can control the communication overhead between different partitions, this will 

improve the crossover result. 

As a result, our strategy is shown in Figure 3.9. Task A has 4 units 

communication with next partition and 5 units inner communication, so we keep task 

A in the origin partition. Task B has 5 units communication with next partition and 6 

units inner communication, so we keep it, too. Finally, Task C has 10 units 

communication with next partition and 7 units inner communication, therefore, we 

move it to the next partition. This procedure can reduce the communication between 

different partitions from 10 to 7.     
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Figure 3.9：Adjust boundary 

3.6.3 Conditional Crossover 

NoC architecture is communication-driven system. If we can do some 

improvement by considering communication overhead in each crossover, then we can 

get great improvement in the throughput of every generation. Thus, we can calculate 

the communication overhead of each crossover, and determine a value to judge 

whether to do the crossover or not. As Figure 3.10, we calculate the communication 

overhead of three sub-graphs as 35,25 and 32, and we use value 30 to filter each 

crossover, so we do the second crossover and cancel others. 

This value can decide by experience and the parameters of the system. To sum 

up, our strategy is we choose a sub-graph and find the best shape, than we calculate 
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the communication overhead to decide if we do the crossover or not. Because of the 

partition, we do more than one crossover in each generation, so we can use this value 

to filter crossover and get better result. 

 

Figure 3.10：Conditional crossover 

3.6.4 Task Range 

We use the partition technique to handle task graphs with different task sizes. We 

choose three sizes in our experiments, they are 200, 300 and 400 tasks in each task 

graph. We think that mesh size of NoC architecture influences the system 

performance. Every task range has a suitable mesh size, if we use a small mesh size to 

run a big task graph, then the system bottleneck may fall on the NoC architecture. 

However, our focus is on the task scheduling algorithm, so we choose these 3 task 
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sizes and use the same mesh size 7*7(as Figure 3.11) for NoC architecture. If the 

complexity of a system is closer to the limitation an NoC architecture can provide, 

our scheduling algorithm can only achieve little improvement on the system 

throughput. 

Processor

FPGA

Processor

FPGA

 
Figure 3.11：Resource location 

3.6.5 Two-Step Crossover 

In the procedure of genetic algorithm, partition algorithm can get great 

improvement at the start of evolution. However, when chromosome is improved to 

certain degree, it becomes harder to get a better result by every crossover. In order to 

overcome this problem, we have to find a suitable crossover strategy in the later 

generation. Every crossover method has it own throughput curve and characteristic. If 

we can use other crossover method in the later generation to get better improvement 

through the whole evolution procedure of genetic algorithm, that will be a great 

solution to the scheduling problem.  
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In our algorithm, we change the crossover frequency from once in every 

partition to once in whole task graph. The consideration is like Simulated Annealing 

algorithm, when chromosome improves to certain degree, we change the crossover 

strategy to gradually approach better performance. Hence, we switch the crossover 

method at the 200th generation, since it is the threshold point of improvement in our 

algorithm. After that, the improvement of our algorithm becomes worse. As a result, 

we use a two-step crossover method to get better improvement through the evolution 

procedure.  

3.7 Mutation 

We use the operator mutation to prevent the genetic algorithms from just finding 

a local optimal point. It may have the opportunity to reach or approach the global 

optimal by randomly changing the feature of the chromosome. The proposed 

mutation scheme is shown in Figure 3.12. It first selects a task randomly, then the 

selected task has a probability to move to a random allocation. This probability is 

decided by user according to their experience. 
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2. Randomly move to 
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Figure 3.12：Mutation operation 
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3.8 Simulation and Insertion 

After crossover and mutating, it is necessary to evaluate the fitness value of 

each newly generated chromosome. Due to the dynamic situation (e.g. the execution 

order of the tasks in a processor) during the consecutive execution of the application 

on the proposed platform, a discrete event simulation is used to obtain the throughput 

of every newly generated chromosome. 

Before simulation, the buffer length assignment of each task is conducted. The 

Input and the output buffers of PEs are assigned equally to each port of task. For 

example, in Figure 3.13, there are two tasks assigned to PE, T1 and T3 respectively. 

In order to perform the discrete-event simulation with the FIFS manner, several 

buffers are assigned to the input and output ports of the tasks. 

buffer T1 T3Buffer

NI

T1 T3

buffer T1 T3Buffer

NI

T1 T3

 
Figure 3.13：Buffer length assignment 

On the other hand, the XY routing is used to route the communication paths to 

estimate communication effect and by assuming that contention will always occur. 
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After calculating the fitness value of every new chromosome, we insert these 

chromosomes into current population. We have to remove some chromosomes 

because of the fixed population size. As Figure 3.14, after inserting new 

chromosomes to current population, we sort the population in decreasing order with 

fitness value. According to selection of natures, chromosomes with low fitness value 

are discarded, and this can keep a fixed-size population. 

 
Figure 3.14：Insertion 

3.9 Termination 

During the evolution process, our genetic algorithms will be terminated when 

fitness value of the best chromosome is saturated or the generation number reaches a 

pre-defined number. 
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Chapter 4 

Experimental Results 

In this chapter, first we introduce our experimental environment and settings. 

Next, we provide the comparison between our crossover algorithm and others through 

the experimental results. It turns out that the proposed algorithm has better 

performance than others. 
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4.1 Experimental Environment and Flow 

Our experimental flow is shown in Figure 4.1. First, we use TGFF [25] to 

generate random cases, where TGFF is a user-controllable, general-purpose, 

pseudorandom task graph generator. Next, the generated task graphs are scheduled by 

our task scheduling program. Finally, we can analyze the experimental results. 

Task GraphTGFF AnalysisTask
Scheduling

Task GraphTGFF AnalysisTask
Scheduling

 

Figure 4.1：Experimental flow 

We use TGFF to generate many task graphs for our experiments. As shown in 

Figure 4.2, the bottom-left is a netlist, “TASK” represents a task and the following 

statements are the task name and task type. For instance, task “t0_0” is a “TYPE 2” 

task, and we can find the corresponding information in the computation table in the 

top-right of Figure 4.2. “uP” and “fpga” represents the computation time in processor 

and FPGA respectively. “memory” and “capacity” are the memory and capacity usage 

of processor and FPGA. “ARC” represents a data transmission form the former to the 

later, and the communication table (top-left of Figure 4.2) indicates the 

corresponding communication amount.  
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@computation 0 {
#----------------------------------------------------------------
# type       uP memory      fpga capacity

0    55.7067    163.892    151.128    178.518
1    64.9349    152.398    159.265    175.757
2    75.4444    160.801    166.259    193.153
3    52.5038    157.158    152.051    153.982
4    66.1995    175.019    170.291    192.132
5    56.5161    151.905    154.492    159.021

.

.
}

@communication 0 {
#-----------------------------------------
# type    amount

0     155.707
1     151.676
2     158.991
3     153.979
4     194.139
5     160.684

.

.
}

@TASK_GRAPH 0 {
PERIOD 1659

TASK t0_0 TYPE 2 
TASK t0_1 TYPE 73 
TASK t0_2 TYPE 14 
TASK t0_3 TYPE 51 

ARC a0_0 FROM t0_0  TO  t0_1 TYPE 35
ARC a0_1 FROM t0_0  TO  t0_2 TYPE 11
ARC a0_2 FROM t0_1  TO  t0_3 TYPE 30
ARC a0_3 FROM t0_2  TO  t0_3 TYPE 47

}

t0_3
51

t0_2
73

t0_1
14

t0_0
2

30 47

35 11
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1    64.9349    152.398    159.265    175.757
2    75.4444    160.801    166.259    193.153
3    52.5038    157.158    152.051    153.982
4    66.1995    175.019    170.291    192.132
5    56.5161    151.905    154.492    159.021

.

.
}

@communication 0 {
#-----------------------------------------
# type    amount

0     155.707
1     151.676
2     158.991
3     153.979
4     194.139
5     160.684

.

.
}

@TASK_GRAPH 0 {
PERIOD 1659
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Figure 4.2：TGFF output file 

In this experiment, we compare the traditional crossover schemes and our 

crossover schemes. The parameters of GAs are shown in Table 4.1. 

Table 4.1：The parameters of GAs 

1000Max generation

400Population

20%Mutation rate

40%Cross rate

1000Max generation

400Population

20%Mutation rate

40%Cross rate
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Cross rate means that 40% of population is going to mate. Mutation rate means 

that every new generated chromosome has the probability of 20% to perform 

mutation. And the whole population is set to 400 chromosomes. Algorithm will 

terminate until the performance of the best chromosome is saturated or when it reach 

max generation. 

We generate 20 random task graphs in each experiment, and we use three task 

ranges as 200, 300 and 400 tasks in each task graph. The computation time of each 

task is set to 150 ~ 200 time unit on FPGA and 50 ~ 67 time unit on processor. When 

there is two or more than two tasks map onto a processor, the processor needs to 

schedule the tasks. Therefore, we set the computation time of each task on processor 

1/3 times of that on FPGA such that the computation time of each task on processor 

or FPGA is more balanced. The communication amount is 150 ~ 200 unit data, and 

the maximum fanin/out of each task is 6. The memory and capacity usage of each 

task is set to 150 ~ 200. 

The memory of processor and capacity of FPGA are set to 1,800. The 

communication time is the communication amount divided by channel bandwidth 

without any contention. We set the channel bandwidth to 1 ~ 4 (unit data/ unit time), 

such that the ratio of computation time to communication time (no contention) is 1 ~ 

4. When the ratio is low (e.g., 1), the system is communication intensive, when the 

ratio is high (e.g., 4), the system is computation intensive. We use this ratio to define 

the environment of below experiment. 
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4.2 Analysis 

1. 2-step VS. 1-step 

We compare three crossover schemes here. The curve “Shape” is the crossover 

scheme as presented in [17]. Curve “Shape + Partition” means using partition cross 

through the evolution process and curve “2-step” is our crossover scheme. As we can 

see in  

Figure 4.3, if we change the crossover method in the 200th generation, we can get 

better performance in the later generation. In this case, we can get 4.6% throughput 

improvement in 1,000th generation, and the throughput of 2-step method is always 

better than the shape method. 

Table 4.2：2-step method (Task 300/Ratio 2) 

 2-step Shape + Partition Shape 

Generation 100 200 600 1000 100 200 600 1000 100 200 600 1000

Throughput 479 536 645 697 479 536 616 666 435 489 615 674 
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Figure 4.3：Improvement of 2-step method (Task 300/Ratio 2) 

2. Partition Method 

As shown in Figure 4.4, three curves show the throughput in 100th, 200th and 

1,000th generation. Since we use partition cross with control of communication 

overhead, we can get a raising trend when partition number increases. But partition 

number influences the run time of system, so we pick a proper value of partition by 

the improvement curve. Take Figure 4.4 as an example, when partition number is 

more than 6, the throughput improvement curve becomes flat. 
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Table 4.3：Partition (Task 200/Ratio 2) 

Partition 1 2 3 4 5 

Throughput at 100gen 621 663.1 671.8 671.4 682.6 

Throughput at 200gen 679.3 740.7 749.7 746.1 749.4 

Throughput at 1000gen 783.1 845 852.8 857.5 840 

Partition 6 7 8 9 10 

Throughput at 100gen 685 679.6 694 691.7 700.8 

Throughput at 200gen 755.8 760.3 767.6 767.8 766 

Throughput at 1000gen 863.9 873.4 884.2 871.6 890.3 
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Partition number

Throughput
1000 gen
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Figure 4.4：Partition (Task 200/Ratio 2) 
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3. Comparison under Different Throughput Demand  

We compare three crossover schemes under 3 task ranges including two-point 

crossover, shape crossover [17] and our crossover method. The advantages of our 

algorithm are proved here. Because of great improvement of throughput in the 

beginning of evolution, we can save a lot of time compared with other crossover 

schemes under different throughput demands. Especially in terms of tasks of 300 and 

400, the saving time is significant. 

Table 4.4：Comparison under different throughput demand (Task 200/Ratio 1) 

 Task200 

Throughput 250 350 450 

2 point 29 243 837 

Shape 13 233 631 

2-step 16 146 533 
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Figure 4.5：Throughput curves in 200 tasks (Ratio 1) 

Table 4.5：Comparison under different throughput demand (Task 300/Ratio 1) 

 Task300 

Throughput 200 250 300 

2 point 105 364 868 

Shape 88 259 672 

2-step 34 157 447 
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Figure 4.6：Throughput curves in 300 tasks (Ratio 1) 

Table 4.6：Comparison under different throughput demand (Task 400/Ratio 1) 

 Task400 

Throughput 160 200 240 

PP 12 150 713 

Shape 5 161 469 

PGA 4 51 278 
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Figure 4.7：Throughput curves in 400 tasks (Ratio 1) 

4. Throughput Comparison  

In this section, we compare four crossover methods including random, two-point 

crossover, shape crossover [17] and our method. We normalize the throughput to 

random method. As we can see, we can get around 10% improvements in 100th 

generation in all cases. If we can get great improvement in the start of evolution, then 

we can save a lot of time to obtain a desired throughput. 

In most cases, our algorithm can attain higher throughput in the whole evolution 

process, especially for the case of task number above 300, where 5% improvement 

can be attained at 1,000th generation. 
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Figure 4.8：Improvement of 4 crossover schemes (Task 200/Ratio 1) 

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

100 200 400 600 800 900 1000

Generation

Throughput

2-step

Shape

2 point

Random

10%

 

Figure 4.9：Improvement of 4 crossover schemes (Task 200/Ratio 2) 
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Figure 4.10：Improvement of 4 crossover schemes (Task 200/Ratio 3) 
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Figure 4.11：Improvement of 4 crossover schemes (Task 200/Ratio 4) 
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There are 4 cases of task graphs containing 170~230 tasks under 4 ratios of 

computation time to communication time. Our algorithm can obtain 8%~10% 

improvement in 100th generation, but in the later generation, the difference is 

decreased. 
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Figure 4.12：Improvement of 4 crossover schemes (Task 300/Ratio 1) 
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Figure 4.13：Improvement of 4 crossover schemes (Task 300/Ratio 2) 
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Figure 4.14：Improvement of 4 crossover schemes (Task 300/Ratio 3) 
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Figure 4.15：Improvement of 4 crossover schemes (Task 300/Ratio 4) 

There are 4 cases of task graphs containing 270~330 tasks under 4 ratios of 

computation time to communication time. Our algorithm can obtain 12% 

improvement in 100th generation, and we can still have above 4% improvement in 

1000th generation.  
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Figure 4.16：Improvement of 4 crossover schemes (Task 400/Ratio 1) 
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Figure 4.17：Improvement of 4 crossover schemes (Task 400/Ratio 2) 
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Figure 4.18：Improvement of 4 crossover schemes (Task 400/Ratio 3) 
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Figure 4.19：Improvement of 4 crossover schemes (Task 400/Ratio 4) 

There are 4 cases of task graphs containing 370~430 tasks under 4 ratios of 

computation time to communication time. Our algorithm can attain above 12% 

improvement in 100th generation, and we can still have above 5% improvement in 

1000th generation. 
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5. Mutation Rate VS. Throughput 
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Figure 4.20：Mutation rate VS. Throughput (Task 300/Ratio 2) 

In our algorithm, suitable mutation rate can raise throughput performance. 

However, we think that crossover method dominates the throughput performance of 

genetic algorithm. Thus, we focus on the improvement of crossover method.  
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Chapter 5 

Conclusions and future work 

5.1 Conclusions 

Our method can obtain great improvement in scheduling process. We can use the 

result according to our requirement. For instance, if we want to get a throughput in a 

short period, our method can attain around 10% improvement in 100th generation. If 

our requirement is met around here, we can save a lot of scheduling time. On the 

other hand, if we want a higher throughput, our method can also provide better 

throughput in the later generation. Especially for the case of task number above 300, 

our method can still obtain 5% improvement at the 1000th generation. 
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Traditional method can not handle the task graph well, and this kind of situation 

will become worse when task graph become larger. So we combine the partition 

scheme and graphic-base crossover to improve the partition method by finding 

suitable partition size and adjust boundary. Experimental result shows that the 

improvement in throughput is obvious and we can save a lot of scheduling time. 

When applications become more complex, we think that our scheduling method can 

handle well and get great system performance.  

5.2 Future work 

Partition method for task graph is important for partition genetic algorithms, 

especially in the complex applications. If we can find better partition method to 

handle the task graph, we believe that we can speed up the scheduling program and 

obtain better performance in system throughput. In order to get better partition 

algorithm, we can further consider about the partition size, communication amount, 

and task topology. 

We can find different improvement curves in different crossover methods. For 

example, our method can obtain great improvement at the start of evolution, but in 

later generation, there is still space for further improvement. In other traditional 

method, they have their own curves and trend. If we can do some detail analysis 

about all the crossover methods, maybe we can find a better crossover method by 

combining their advantage.  
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