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摘要摘要摘要摘要    

 

本論文提出適合嵌入於行動式視訊裝置上的有失真嵌入式壓縮器/解壓縮器

設計。藉由有失真資料壓縮來減少晶片與外部記憶體間所需要的資料傳輸量，損

失些微的視訊品質，來達到縮小外部記憶體空間需求、減少頻寬使用以及降低能

量消耗等多種目的。 

所提出的演算法是以二維離散餘弦轉換搭配簡約位元平面區域編碼所構

成。在壓縮率為二的前提之下，將一個四乘以四的像素矩陣壓縮為六十四位元的

壓縮封包。首先將四乘以四像素矩陣以二維離散餘弦轉換為十六個不同頻率之係

數分量，再使用簡約位元平面區域編碼將係數予以編碼封存後送到外部記憶體。

解壓縮過程中並提出一個簡單的補償方式來彌補失真壓縮所造成的資料遺失。 

所提出的硬體架構可以嵌入在視訊解碼器上以 100MHz 的操作頻率支援每

秒三十張的高畫質電視規格(HD1080)。由於將壓縮率固定為兩倍，所以壓縮後

的封包大小固定，記憶體地址轉換十分簡單並且可以支援動作補償單元 (Motion 

Compensation)的亂數存取。在 UMC 90 奈米製程技術下，所提出的硬體使用了



 

30k 個邏輯閘數目。壓縮一個巨型區塊(MB)需要 72 個週期，解壓縮一個巨型區

塊(MB)則僅需要 34 個週期。整體系統對於記憶體的存取次數則節省了原本的百

分之四十。相較於所消耗的功率，節省的功率相當的可觀。 
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ABSTRACT 

 

This thesis proposes an embedded compressor/decompressor for mobile video 

applications. It uses lossy compression scheme to reduce the amount of data 

transferring between chip and external memory. This lossy compression can maintain 

acceptable video quality while reduces the required size of external memory, the 

bandwidth requirement and the power consumption on memory access. 

Proposed algorithm is composed by discrete cosine transform (DCT) with coarse 

grain bit-plane zonal coding (CGBPZ). The compression ratio is two. It compresses a 

4x4 pixel-array into a 64 bits segment. First, the two dimensions discrete cosine 

transform converts 16 pixels into 16 elementary frequency components. Coarse grain 

bit-plane zonal coding packets the coefficients and then sends to external memory. A 



 

compensation scheme is also proposed for decoding.  

Hardware architecture of the proposed algorithm is able to be embedded into 

video decoder and support HD1080@100MHz, 30 frames per second. Since the 

compression ratio is fixed at two, the coded segments have fixed size and can be 

randomly accessed by motion compensation unit. The gate counts are 30K 

synthesized by UMC 90 nm CMOS technology. It costs 72 cycles to encode a MB and 

34 cycles to decode a MB. Overall reduction ratio on memory access is 40%. 

Comparing with the power consumed of proposed design, the amount of power saving 

is large.  
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Chapter 1 

Introduction  

1.1 Motivation 

To improve the video coding efficiency, eliminating temporal redundancy 

between frames is a useful technique. This technique is widely used in nowadays 

video coding standards such as MPEG-1/2/4, H.263 and H.264. But to accomplish 

this method when encoding or decoding, at least one previous frame must be stored in 

frame memory as reference. However, the accesses between external memory and 

decoder chip may consume a lot of power. The rapid data accesses of motion 

compensation dominate the power consumption of whole system.  

For a mobile device, power is always the critical issue that people do care about.  

Although the power consumed on chip can be reduced by many low power techniques, 

data transferring still consumes a lot of power. Therefore, minimization of memory 

access operations is a key consideration in hardware design of mobile video devices.  

Embedded compression is a technique to reduce the transferring of data and the 

size of off-chip frame memory. Since mobile video devices are suffered from limited 

battery life and the visual quality criterion is not so strict due to the small display 

screen, we hope to reduce the bandwidth requirement while maintain the acceptable 

visual quality.  

Nowadays, the mobile devices become more and more powerful by their various 

functions. Reduce the bandwidth and resource requirement of each hardware 

accelerator is definitely an important topic. 
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1.2Thesis Organization 

This thesis is organized as follows. First, the basic introduction of compression 

scheme and the reviews of prior works are described in Chapter 2. The proposed lossy 

embedded compression algorithm is proposed in Chapter 3. To integrate with 

H.264/AVC decoder, there are some constraints needed to be specified and the 

proposed algorithm must be modified to fit in those constraints in hardware design. 

The modified algorithm and hardware architecture is presented in Chapter 4. 

Moreover, the simulation results about proposed algorithm integrated with 

H.264/AVC HDTV decoder are also presented in this chapter. The design 

implementation, integration and verification are shown in Chapter 5. Chapter 6 shows 

the experimental results and performance comparison. Finally, the conclusions and 

future work will be given in Chapter 7.  
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Chapter 2 

Previous Works 

 
Basically, compression techniques can be divided into two types: lossless 

compression and lossy compression. In this chapter, we will simply introduce the 

algorithms that have been proposed before. Also, the bit-plane coding is introduced in 

chapter 2.3. Bit-plane coding can be used as lossy or lossless coding. The concept of 

bit plane coding is used in our proposed methods. 

2.1 Lossless Embedded Compression Schemes 

A lot of lossless compression methods have been proposed. The benefit of 

lossless compression is obviously: it can maintain the information while cutting down 

the data size. To embed a lossless compression mechanism into a video system is 

quite acceptable, since it would not cause the drifting effect no matter in encoder 

system or in decoder system.  

However, behind those advantages mentioned above, it does suffer from the 

variable data amount after lossless compression. By mathematical theory, even for 

ideal lossless compression, the information of source data still controls the 

compression ratio. That means, the more the information of the source data contained, 

the longer the coded data is. This unstable factor becomes the fatal wound of lossless 

embedded compressions. Embedded compression schemes are born to reduce the data 

access times between the external memories and reduce the size of external memory. 

However, Variable data amount after lossless compression can not guarantee the 

reduction ratio nether on the size of frame memory since the memory must be well 
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prepared for the worst case nor the bandwidth reduction since the compressed data 

amount is unknown. A research of lossless compression is shown in [2].  

2.2 Lossy Embedded Compression Scheme 

Lossy compressions with fixed compression ratio are suitable to reduce the size 

of frame memory and the bandwidth since the predictable amount of compressed data 

can guarantee the reduction. Therefore, lossy embedded compressions are more 

popular in comparing with lossless embedded compressions on solving this bandwidth 

reduction problem. [3] – [14] are the previous works of lossy compression.  

2.2.1 Transform-Based Lossy Embedded Compression 

Transform-based lossy embedded compression is a popular way to compose 

lossy compressions. It converts a signal into elementary frequency components. With 

the characteristic of human visual system, lower frequency component is more 

noticeable than higher frequency component. Thus implying quantization and data 

collection on each component by their visual priority could be an efficient way to 

collect data within limited data budget. The research uses the Hadamard Transform 

and quantizes the coefficients by their priority, and then encodes quantized 

coefficients by Golomb-Rice Coding is in [3]. Golomb-Rice coding is an efficient 

coding method, and it can nearly reach the coding ability of Huffman coding by 

selecting the suitable K factor. However in this paper, it pursuit low complexity, 

therefore it chose fixed K values according to simulation. It can operate on 100 MHz 

and the cycle usages of encoding/decoding a MB are both 33 cycles. It is a work of 

high speed.   
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2.2.2 Delta Pulse Code Modulation Lossy Embedded Compression 

Delta Pulse Code Modulation (DPCM) is another popular way to compose the 

lossy compression. Since the neighbor data has relatively small difference, the 

information of data after DPCM can be efficiently reduced by comparing with the 

source data. It does help on reduction of source information.  

[4] uses DPCM as base coding method and takes the intra prediction mode from 

H.264 video coding standard to find the best direction to perform DPCM. This smart 

idea makes this algorithm more adaptive in each video pattern and achieves the 

satisfied quality than [3]. 

However, the satisfied performance of DPCM method costs a lot. DPCM method 

needs to collect every difference into limited budget, but those differences are not 

always as small as we wish. To derive best quantization level and fit every difference 

into limited budget, this DPCM-based method needs several iterations to get the best 

performance. This situation causes this algorithm not to be able to use pipeline 

scheme. And to avoid large gate counts, it is more acceptable to deal with subtractions 

clock by clock instead of parallel architecture. However it leads to longer coding 

cycles and becomes a heavy load of original system on timing issue. In the view point 

of system integration, it needs to increase the operation frequency or slow down the 

system throughputs to perform this DPCM-based embedded compression scheme. 

2.2.3 Other Embedded Lossy Compression 

There are still many approaches about lossy compression such as adaptive vector 

quantize (VQ)[11], down-sampling based compression algorithm [12] and adaptive 

DPCM in [13]. [15] provides two compression schemes and uses a pre-determining 
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mechanism to choose with methods to use. It claims that this mechanism can achieve 

better performance by choosing adaptive algorithm to fit the different feature of video 

sequence. DWT with SPIHT in [14] is also another transform approach. And the 

algorithm used in [14] makes it be able to perform lossy and lossless with the same 

architecture.   

We can see that lossy embedded compression scheme is truly the mainstream. 

However it suffers from the loss of quality and the drift effect. Therefore, how to 

organize the lossy coding methods is very important. To cover information as much as 

possible within limited budget is the main challenge of lossy compression. 

2.3 Bit-Plane Coding 

Bit-plane zonal coding is a well known coding method and widely used in many 

compression algorithms. It uses bit-plane as its basic unit to encode a group of 

number instead of individual number. It can be combined into a lossy or lossless 

compression scheme by adjusting the budget of bit storage. It can fully represent the 

group of number with sufficient bit budget. On the other hand, with un-sufficient 

budget it may loss some information at lower bits and thus becomes a lossy 

compression. The details of bit-plane zonal coding will be shown in the following 

sections. 

2.3.1 Bit-Plane Truncation Coding (BPT) 

Before introducing proposed bit-plane zonal coding, we would like to introduce 

the basic concept first. Bit-plane truncation coding is the prototype of bit-plane zonal 

coding. It can be shown in Fig. 1 as an example. Fig. 1 is the coefficients after 4x4 
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DCT. We can simply classify those coefficients into one DC coefficient and 15 AC 

coefficients. The idea of bit-plane coding is to collect data in bit-plane (that is, to take 

the N-th bit out of each coefficients as a union) rather in individual coefficient. 

Sometimes, we want to further analyze a group of numbers and to cut them into 

several parts by their importance, separating them into bit-planes is a good idea. 

Moreover, for a group of coefficients, the upper bit-planes are zero most of the time. 

Therefore to record start plane is the smart way to improve the coding efficiency. For 

a group of 4x4, N bits coefficient, about cell function (log2 N) bits is needed for 

recording start plane, but it can represent 15 zero bits for each skipped bit-plane. After 

the bit-plane truncation coding, the coded format is shown in Fig. 2. 

 

 

Fig. 1 Bit-plane truncation: AC coefficients are packed from the start plane. Due to 

the limitation of packing budget, coefficient bits of lower digit plane surrounded by 

dash line will be truncated. 

 

 

Fig. 2 Coding format for bit-plane truncation coding (BPT). 
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2.3.2 Bit-Plane Zonal Coding (BPZ) 

However, BPT has poor performance and image quality must be enhanced by 

other approach to reduce energy loss of DCT coefficients. In this section, an improved 

coding algorithm named bit-plane zonal coding (BPZ) [18] will be described in detail. 

Familiar with BPT, BPZ packets DCT coefficients bit-plane by bit-plane, but the 

packing scheme is quite different from BPT. We will show that the packing efficiency 

of BTZ is much better than BPT. 

The word “zonal” is the idea to encode a bit-plane with its zonal characteristic. 

Fig. 3 is a possible outcome of a bit-plane. The coefficients with larger magnitude 

tend to be gathered at up-left corner (lower horizontal or vertical frequencies) by DCT. 

Also, the bits at down-right corner tend to be zero in the same bit-plane. Furthermore, 

the data for individual DCT blocks often has a bias for either the horizontal or vertical 

direction. Besides, by describing the maximum row and column number of valid data 

in this scan zone, named RMAX and CMAX respectively, we have large probability 

to represent the information of a bit plane within less than 15 bits. Therefore, a 

signal-dependent rectangular scan zone starts from the upper-left corner will perform 

a more efficient coding of the coefficients [12]. 
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Fig. 3 The concept of bit-plane 

 

Two classes of coefficients namely significant and in-significant coefficients are 

defined respectively. In the encoding flow, significant coefficient will have a 1 in any 

of the higher coded bit-planes. In the contrary, in-significant coefficient always have 

all 0’s on the higher bit-planes.  

Sometimes, zone represented by RMAX/CMAX will be very similar between the 

neighboring bit-planes. This feature allows us to use this data-similarity to develop 

more efficient coding mechanism. 

The detail coding flow is described as follow: For DCT coefficient blocks, we 

can divide the process into DC and AC flows. In DC flow, the DC coefficient is 

completely packed for avoiding significant degradation in quality as BPT. In AC flow, 

the procedure of this algorithm is shown as Fig. 4. Initially, all AC coefficients are 

marked as insignificant. Then, we start from the most significant plane (MSP) to 

encode the subsequent bit-planes. The first plane which contains nonzero bit is 

defined as start plane, and the nonzero bits in start plane are the newly significant 

coefficients. Thus, sign bits are inserted behind each nonzero bit. For the subsequent 

bit-plane, there is only one question. If the following bit-plane has a newly significant 

bit, a bit “1” is packed first to represent the newly significant bit is founded and then 

the RMAX/CMAX must be also updated. The newly significant bits are followed by 
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corresponding sign bits. Those significant bits and in-significant bits are no need to be 

followed by sign bits since the sign bits of significant bits are already packed and the 

sign bit of in-significant bit are useless so far. Notice that unlike the fully packed sign 

bit in BPT, the sign bit packed in BPZ is on demand.  

If no newly significant appeared in current bit-plane, a bit “0” is inserted to 

represent that the RMAX/CMAX of current bit-plane is the same as previous 

bit-plane and only the bits in the position of significant coefficient needed to be 

packed. BPZ repeat this procedure until all bit-planes have been packed. For the 

category on packing sign bits and the no newly significant bit-plane, we can see the 

efficiency of BPZ and that is why BPZ can achieve better performance than BPT.  

 

 

Fig. 4 Coding procedure of BPZ algorithm 

 

An example for bit-plane classification is illustrated in Fig. 5. The same as BPT, 

the start plane of DCT coefficients is also packed as a part of header information. Sign 

bits of a DCT coefficient block are not a part of header information any more. They 

are dispersed and accompanied with newly significant coefficients found in certain 

bit-planes. Header information is shortened and more AC coefficient packing budget 

is reserved. New packing data format is shown in Fig. 6. 
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Fig. 5 An example of BPZ coding 

 

 

 

Fig. 6 New packing data format (BPZ) versus BPT 
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2.3.3 Modified Bit Plane Zonal Coding 

If we take more look to the BPZ algorithm from the example shown in Fig. 4, we 

will discover that the original BPZ algorithm can be further improved. For software 

application, adding a little complexity can achieve more coding efficiency. A 

mechanism within good trade off between complexity and coding efficiency is 

proposed in [20].  

The starting point is to use the limit budget in more efficient way. Carefully 

looking at the coding type of bit-plane zonal coding (BPZ), we can find that there is 

an annoying format to deal with the occurrences of newly significant coefficient 

because of the longest header information. Every time we found a newly significant 

bit, we need to packet 4 bits for RMAX/CMAX and one bit to distinguish coding 

format. However, the four bits of RMAX/CMAX is not really necessary since the 

RMAX/CMAX may be the same with the previous bit-plane. Therefore, [20] 

proposes a new coding format to deal with this situation. The new coding format is 

adopted when “newly significant bit is found, but the RMAX/CMAX of current 

bit-plane is the same with the previous bit-plane” and overall coding types shown in 

Table 1. The drawback is that we need one more bit to distinguish from original type 

B with new proposed type C. However the advantage is saving four bits comparing 

with original coding format. Fig. 7 shows the coding flow of modified bit-plane zonal 

coding proposed in [20]. 

Table 1 Coding types of bit-plane proposed in [20] 

Bits for

Rmax/Cmax

A Yes Yes None 4 4

B No No 00 None 2

C Yes No 01 None 2

D Yes Yes 1 4 5

Rmax/Cmax

Changed

Bits for Flag(s) and

Rmax/Cmax
Type Flag

Newly Sig. Coef.

Found
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Fig. 7 Coding procedure of MBPZ algorithm 

 

An example of the modified bit-plane zonal coding (MBPZ) proposed in [20] is 

given in Fig. 8. The bit streams in the bottom of figure are coded by original BPZ and 

modified BPZ (MBPZ) respectively. Through this compare we can clearly figure out 

the benefit brought by MBPZ. There is a small technique here. When packing a 

bit-plane of AC coefficients, we use zigzag scan order to collect bits. Since human 

visual system is more sensitive on low frequency signal elements, when we are 

running out of packing budget, zigzag scan order can store the relative important 

signal and bring us better visual quality within the same packing budget. 
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Fig. 8 An example for MBPZ coding 

 

Using MBPZ to encode AC coefficients within limited budget, quality loss is 

inevitable. To slightly compensate for the truncated data bits, [20] also propose a 

method to raise the quality. First, if the value of this coefficient is large or equal than 4, 

scan the decoded AC coefficients from LSB to find the first non-zero bit, and then 

paste a “1” to its lower-two digit. If the value of this coefficient is less than 4, nothing 

will be changed on it. Finally, recover the coefficients by the corresponding sign bits 

(do two’s compliment or not). The compensation procedure is illustrated as Fig. 9. 
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Fig. 9 Compensation for a bit-truncated AC coefficient. 

2.4 Summary 

From the introduction and discussion above, we classify the existing algorithm 

into two basic types and briefly introduce the pros. And cons. We can find that lossy 

compression is the popular way to implement embedded compressor by the advantage 

on fixed compression ratio and fixed amount of coded data. However, good 

performance usually comes with time consuming while low complexity usually brings 

worse quality. The former kind of methods derives better performance but the large 

buffer may be required, and longer processing cycles will enlarge the loading of the 

system and the barrier to embed this extra function into system. Although to slow 

down the system or to increase the operation frequency can fix this problem, but the 

former methods will decrease the coding throughput and the later methods will 

increase the power consumption. Each drawback is not what we want. Some lossy 

compression schemes are low complexity and high speed and easy to be embedded 
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into a decoder system as far as hardware is concerned, but at the same time, those 

schemes often suffer from unsatisfied quality.  

For the real time, low power HDTV H.264/AVC decoder, low latency is the basic 

requirement. Not to increase the loading of original system is also another target. 

Therefore, our design challenge on embedded compressor is to find the optimal trade 

off between low latency, low complexity and high performance.  
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Chapter 3 

Proposed Embedded Compression 

Algorithm 

3.1 Overview 

Researches about data compression have been developed for a long time. Those 

developed algorithms show us that enhancing the complexity can reach better 

performance. However, the problem is to find a suitable compression category to 

combine with H.264 system but not to affect the performance of overall system. The 

discussions in chapter 2 have shown us that the threshold of embedding an extra 

function may arise with higher complexity coding scheme. In this chapter, further 

discussion will be presented. 

In practice, block-based schemes are the most convenient schemes because they 

match the block-oriented structure of the incoming bit-stream in H.264 system and 

allow on-the-fly process. However, another problem exists: the overhead. The 

overhead can be defined as the ratio between the number of pixels that are actually 

accessed during the motion compensation of a block and the number of pixels that are 

really useful in the reference block. In original system, the ratio is 1 since every 

accessed pixel is on demand. After embedding block-based algorithm adopted, this 

ratio will always superior to 1 because of the nature of block-based embedded 

compression algorithm. Fig. 10 shows the concept between block-based and 

pixel-based. The left of Fig. 10 is pixel-based, represents the data without EC. The 

right of Fig. 10 is block-based since the characteristic of EC. Fig. 11 is an example to 

show how overhead occurs. 
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Fig. 10 Pixel-based (left) versus block-based (right) 

 

 
Fig. 11 An example of overhead problem 

 

According to the standard of H.264, a 16x16 macro block can be divided into 

8x8, 8x16 or 16x8 blocks during the process of motion compensation (MC). Further 

more, an 8x8 block can then be sub-divided into 8x4, 4x8 or 4x4 sub blocks. If the 

compensated block is not aligned with the coded block grid, the overhead will be 

occurred like depicted in Fig. 11. Four coded blocks have to be loaded and decoded to 

get the required pixels. If the EC scheme is 8x8 block-based and the compensated 

block is 4x4 block, we need to load and decode 256 pixels to derive 16 useful pixels. 

The overhead in this case is 16. Because of the overhead problem, the relation 

between the compression ratio of EC and the gain in memory transfer is not direct.  

There is a statistic material about the phenomenon of overhead provided by [15]. 

Fig. 12 shows the relation between overhead and encoding bit-rate simulating with 
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Stefan sequence. Three kinds of EC block-grid are presented. Since H.264 encoder 

allows macroblock (MB) partitioning and larger motion vectors at high rate (which 

also means the small quantization step and better quality) and favors the null vectors 

with 16x16 partition at low rate, the overhead increases while the bit rate increases.  

 

 

Fig. 12 The correlation between bit-rate and overhead (Stefan sequence)  

simulated with 4x4, 8x8 and 16x16 block grid 

 

Table 2 [15] is the summary of the statistical analysis simulated with six 

sequences. In this table, we can see that the relatively still sequences (News, Weather) 

generate smaller overhead since the motion vector is often equal to zero while the fast 

motion sequence such as Stefan generates more overhead. Finally, an important 

conclusion is that the smaller block-grid gets the better of larger block-grids and 

derives the smallest overhead. 
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Table 2 Overhead with EC block grid for each sequence 

Sequence 4x4 block grid 8x8 block grid 16x16 block grid 

Foreman 1.31 1.77 3.69 

Flower 1.30 1.74 3.77 

News 1.14 1.51 2.78 

Silent 1.17 1.50 3.22 

Stefan 1.51 2.44 6.95 

Weather 1.17 1.49 3.18 

All 1.27 1.73 3.93  

3.2 Algorithm of Embedded Compressor 

We adopt transform-based and 4x4 block-grid as our coding algorithm. First 

reason is the smallest overhead according to the statistical result that we presented in 

previous section. Actually it is a trade off between coding efficiency and overhead. 

We know that as far as the transform algorithm is concerned, the bigger the block-grid, 

the better coding efficiency it can achieve. Since we want to increase the coding 

efficiency with less overhead, the 4x4 block-grid is our best choice.  

 The basic concept of proposed algorithm is the combination of DCT with 

bit-plane zonal coding. DCT is a well known technique so we just simply introduce it. 

The two proposed bit-plane zonal coding are the main characters. Fine grain bit-plane 

zonal coding (FGBPZ) is quite efficiency and is suitable to be used in software 

application. Coarse grain bit-plane zonal coding is relatively simple and is suitable for 

hardware implementation. Fig. 13 is the coding flow of proposed 

DCT-FGBPZ/CGBPZ algorithm. This is a one way open-loop coding scheme and no 

iteration is needed. The discrete cosine transform (DCT) is divided into two one 

dimension DCT. The coefficients of DCT are packed by fine grain bit-plane zonal 

coding (FGBPZ) or coarse grain bit-plane zonal coding (CGBPZ) we proposed. The 

detail of each part will be introduced in the following sections. 
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Fig. 13 The flow chart of proposed DCT-FGBPZ/CGBPZ embedded compression 

3.2.1 Discrete Cosine Transform 

Discrete cosine transforms (DCT) is a powerful technique for converting a signal 

into elementary frequency components. It is widely used in image compression and 

JPEG is the well-known example.  

For human visual system, human eyes are more sensitive on low frequency 

component of a picture and less sensitive on high frequency component. Therefore, 

the quality loss in high frequency component is relatively unnoticeable. The DCT can 

generate the relatively important low frequency component on up left corner, and the 

most high frequency in down right corner. Thus the DCT combines with bit-plane 

zonal coding with original point at up left corner can efficiently collect the 

information.  

But the biggest disadvantage of DCT is its complexity on hardware design. Here 

we make our coding unit in 4x4 block grid, the complexity of 4 point DCT is minor 

and still can take the advantage of the transform. The complexity of different size of 

DCT can be evaluated in Table 3. Two designs are shown in Table 3. A design is 

reference from [16] and B design is reference from [17]. B design is focus on 

reducing multiplications by increasing additions. We can see that in both designs, the 

complexity of 4 points DCT is much simpler than 8 points and 16 points. 4 points 

DCT can be considered as most economical type of DCT. Notice that N = 2
m

. 
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Table 3 The complexity of N-point DCT 

Number of Multiplications Number of Additions 
m N 

A B A B 

2 4 2 4 6 9 

3 8 16 12 26 29 

4 16 116 80 194 209 
 

3.2.2 Proposed Fine Grain Bit Plane Zonal Coding (FGBPZ) 

Base on the modified bit-plane zonal coding proposed in [20], the coding 

efficient is quite good. But we are not satisfied yet. To further improve the coding 

efficiency, we introduce a pre-determined variable length coding here with a small 

code book.  

3.2.2.1 VLC Codebook 

Before further change the MBPZ in [20], we make simulation here to evaluation 

the occurrences of each MBPZ types and Fig. 14 is the simulation result. The naming 

of each type A, B, C and D is referred from [20] (see Fig. 7). We can see that the 

appearance probability of type B and type C are relatively small although they have 

better coding efficiency. Type D is the dominate type but the bits recording header 

information are 5 bits including one bit for distinguishing between types and 4 bits for 

RMAX/CMAX. Therefore, we want to improve the efficiency by adding a small 

variable length code (VLC) codebook on type D.  
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Probability of each types in MBPZProbability of each types in MBPZProbability of each types in MBPZProbability of each types in MBPZ

Type B

16%

Type C

11%

 Type D

73%

Type B

Type C

 Type D

 

Fig. 14 the occurrence probability of each types in MBPZ 

 

According to the modified bit-plane zonal coding proposed in [20], the 

RMAX/CMAX of each bit-plane is accumulated bit-plane by bit-plane and is always 

large or equal to the RMAX/CMAX of previous plane. Recall that type D is applied 

when RMAX/CMAX is changed. Therefore, when type D is applied, the possible 

outcomes of the RMAX/CMAX in next bit-plane are limited: they must larger than 

the RMAX/CMAX of previous plane.  

For example, if RMAX/CMAX of current plane is 2/2 and next plane is coded by 

type D, the possible outcomes of next plane RMAX/CMAX must be 3/2, 2/3 or 3/3. 

Notice that 2/2 is also possible to be the RMAX/CMAX of next bit-plane, but type D 

only deals with the situation that RMAX/CMAX is different from previous bit-plane. 

Those 3 possible outcomes can be fully presented by 1~2 bits instead of original 4 bits. 

The description above explains the chance of reducing the codeword length in type D. 

Fig. 15 shows the coding flow of FGBPZ with VLC codebook. This method can save 

up to four bits when type D is applied.  
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Fig. 15 Coding flow of FGBPZ with VLC codebook. Recall that type A, B, C and D 

is referred from [20]. 

 

We generate those codes by Huffman coding methods and the probabilities of 

next possible RMAX/CMAX (Pcurrent RMAX/CMAX [next RMAX/CMAX]) are derived 

from simulation on over 3000 frames. The code words in this codebook are fixed.  

To cover all possible CMAX/R/MAX of next bit-plane according to current 

plane, the needed codebook entry and their related RMAX/CMAX is shown in Table 

4. The number of possible outcomes of next RMAX/CMAX is shown in (1). For a 

4x4 bit-plane, the row/column are mark as 0, 1, 2, 3. When type D is applied, at least 

one of row or column is changed. Therefore, this equation is to calculate the outcomes 

which are large than or equal to current RMAX/CMAX and then minus one outcome 

that RMAX and CMAX are both equal to current bit-plane. 

 

Next possible outcomes = 

1)_4()_4( −−×− CMAXCurrentRMAXCurrent  
(1) 
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Table 4 The needed codebook entries and their related RMAX/CMAX 

Current 

RMAX/CMAX 

The number of next Possible 

RMAX/CMAX outcomes 

Huffman Code length 

(bits) 

( 0, 1 ) 11 ( 4*3-1 ) 3~4 

( 1, 0 ) 11 ( 3*4-1 ) 3~4 

 ( 1, 1 ) 8 ( 3*3-1 ) 2~4 

( 2, 0 ) 7 ( 2*4-1 ) 2~4 

( 0, 2 ) 7 ( 4*2-1 ) 2~4 

( 2, 1 ) 5 ( 2*3-1 ) 2~3 

( 1, 2 ) 5 ( 3*2-1 ) 2~3 

( 2, 2 ) 3 ( 2*2-1 ) 1~2 

( 3, 0 ) 3 ( 1*4-1 ) 1~2 

( 0, 3 ) 3 ( 4*1-1 ) 1~2 

( 3, 1 ) 2 ( 1*3-1 ) 1 

( 1, 3 ) 2 ( 3*1-1 ) 1 

( 3, 2 ) 1 0 

( 2, 3 ) 1 0 

Summary 67 0~4 
 

 

 But there are still rooms for codebook improvement. Consider the following 

two cases: case 1), current RMAX/CMAX is 2/3; next RMAX/CMAX is 3/4. Case 2), 

current RMAX/CMAX is 3/2; next RMAX/CMAX is 4/3. With the original codebook, 

the codebook index for case 1 is {(2, 3), (3, 4)} and case 2 is {(3, 2), (4, 3)}. Actually, 

the mainly different of case 1 and case 2 is the direction of row and column. Both 

cases are similar even on the probability distribution of each possible “next 

RMAX/CMAX”. If we switch the row to the column, we can find that those two cases 

are undergoing the same changes. According to this idea, we introduce our symmetric 

VLC codebook. By eliminating the bias of Row and Column in codebook, the 

symmetric cases can share the same codeword. We can reduce the 67 entries 

codebook into 40 entries by this idea. 

Actually, this idea does not reduce the number of comparisons. But it reduces the 
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codebook size by 42%. The timing wasted on codebook searching is also reduced.  

And then we will show how to use our symmetric VLC codebook. We represent 

current RMAX/CMAX as Cm_cur, Rm_cur, previous RMAX/CMAX as Cm_pre, 

Rm_pre. The action of table look up can be described as follow: 

 

If ( preRmpreCm __ ≥ ) 

 Codeword at index {( preCm _ , preRm _ ) ( curCm _ , curRm _ )} is applied. 

Else 

Codeword at index {( preRm _ , preCm _ ) ( curRm _ , curCm _ )} is applied. 

 

Therefore, 40 codeword is enough. 

And then we want to explain the decoding procedure of symmetric VLC 

codebook. After start plane is decoded, the RMAX/CMAX of start plane is known 

and can be used as reference. Decoding procedure for the subsequent bit-planes can 

be illustrated in (2). 

 

If ( preRmpreCm __ ≥ ) 

Codeword in block {( preCm _ , preRm _ )} is searched; 

And the result is in {( curCm _ , curRm _ )} order. 

Else 

Codeword in block {( preRm _ , preCm _ )} is searched; 

        And the result is in {( curRm _ , curCm _ )} order. 

(2) 

         

These switch actions between RMAX and CMAX in encoding procedure need 

not to be recorded since they can be derived from the decoding procedure. The final 

VLC codebook is shown in Table 5 and is formed by eliminating the symmetric entry 

in Table 4. The coding example for FGBPZ is shown in Fig. 16. Table 6 is our detail 

codebook with code words. 
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Table 5 The final 40 entries VLC codebook 

Current 

RMAX/CMAX 

The number of next Possible 

RMAX/CMAX outcomes 

Huffman Code length 

(bits) 

( 1, 0 ) 11 ( 3*4-1 ) 3~4 

( 1, 1 ) 8 ( 3*3-1 ) 2~4 

( 2, 0 ) 7 ( 2*4-1 ) 2~4 

( 2, 1 ) 5 ( 2*3-1 ) 2~3 

( 2, 2 ) 3 ( 2*2-1 ) 1~2 

( 3, 0 ) 3 ( 1*4-1 ) 1~2 

( 3, 1 ) 2 ( 1*3-1 ) 1 

( 3, 2 ) 1 0 

Summary 40 0~4 
 

 

 

Fig. 16 A coding example for FGBPZ 
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Table 6 The overall codeword in VLC codebook 

Current 

RMAX/CMAX 

Next 

RMAX/CMAX 
Codeword  

Code length  

(bits) 

(1, 1) 000 3 

(2, 0) 001 3 

(2, 1) 010 3 

(3, 0) 011 3 

(2, 2) 100 3 

(1, 2) 1010 4 

(3, 1) 1011 4 

(3, 2) 1100 4 

(3, 3) 1101 4 

(2, 3) 1110 4 

( 1, 0 ) 

(1, 3) 1111 4 

(2, 2) 00 2 

(2, 1) 100 3 

(1, 2) 101 3 

(3, 3) 110 3 

(3, 2) 111 3 

(2, 3) 010 3 

(3, 1) 0110 4 

( 1, 1 ) 

(1, 3) 0111 4 

(2, 1) 00 2 

(3, 0) 01 2 

(3, 1) 100 3 

(2, 2) 101 3 

(3, 2) 110 3 

(3, 3) 1110 4 

( 2, 0 ) 

(2, 3) 1111 4 

(3, 2) 01 2 

(2, 2) 00 2 

(3, 3) 10 2 

(3, 1) 110 3 

( 2, 1 ) 

(2, 3) 111 3 

(2, 3) 00 2 
( 2, 2 ) 

(3, 2) 01 2 
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 (3, 3) 1 1 

(3, 1) 0 1 

(3, 2) 10 2 ( 3, 0 ) 

(3, 3) 11 2 

(3, 2) 0 1 
( 3, 1 ) 

(3, 3) 1 1  

 

3.2.2.2 Data Packing 

Since our compression ratio is fixed at two, the budget of coded data is 64 bits. 

After DCT and bit-plane zonal coding, we need to packet coded data into 64 bits 

segment before sending to external memory. First we reserve for the DC coefficient 

because of its importance in transform. Second, we use 4 bits to packet the start plane. 

The rest of budget, that is to say, 52 bits, is used for storing AC coefficients. With the 

help of the fine grain bit-plane zonal coding, AC coefficient are divided into 

bit-planes and presented by the coding format in Fig. 15 Coding flow of FGBPZ with 

VLC codebook. Recall that type A, B, C and D is referred from [20].. The procedure 

is keep packing bit-plane by bit-plane until the end of bit-planes or running out of bit 

budget.  
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Fig. 17 Protecting mechanism for unknown sign bit 

 

When running out of budget, unpacked information will be loss. Recall that the 

newly significant coefficient must be followed by its sign bit. If newly significant bit 

is packed while its sign bit is cut, this coefficient will be wrong after decoded. We 

make a mechanism to avoid this situation and show in Fig. 17. If next packing bit is 

newly significant bit and the rest of the budget is less than two bits, we will abort 

packing this newly significant bit.  

The final encoding flow chart is shown in Fig. 18. Each bold line in Fig. 18 

represents a check point checking whether if we run out of the budget.  
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Fig. 18 Final encoding flow chart 
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3.3 Coarse Grain Bit-Plane Zonal Coding (CGBPZ)  

FGBPZ introduced in section 3.2.2 is simple and efficiency. This algorithm 

encodes the coefficients on “bit” level. But its encoding procedure may cost more 

than 30 cycles and decoding procedure may cost more than 10 cycles under our 

estimation. So FGBPZ is more suitable embedded into software or hardware/software 

co-design system. To implement the algorithm as hardware accelerator, the algorithm 

must be further modified into simpler version.  

By the discussion in chapter 6.1, we will see the critical problems of embedding 

a compressor into system. Taking all these problems into consideration, we propose 

coarse grain bit-plane zonal coding (CGBPZ). CGBPZ is a trade off between short 

cycles, ability of parallelism and quality. The details will be presented in this section.  

Fig. 19 is the coding formats of CGBPZ. All magnitude bit-planes of AC 

coefficients are coded in uniform format. For each bit-plane, we record the 

RMAX/CMAX (4 bits), and then pack the bits which are enclosed by RMAX and 

CMAX. 4 bits are used to record RMAX/CMAX of each plane. The dependencies 

between bit-planes are not used in CGBPZ.   

 

 
Fig. 19 CGBPZ coding format for the magnitude of AC coefficients 

 

In CGBPZ, we introduced the concept of sign bit-plane. Sign bit-plane can be 

considered as union of sign bits for each coefficient. We only packet those used sign 

bits. Because we have only 64 bits budget for each 4x4 unit, the situation of unable to 
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pack all the information may be happened frequently. Since not every coefficient can 

be packed, packing whole sign bit-plane may become a waste. So we take the 

maximum value of RMAX and CMAX from packed bit-plane (from start plane to end 

plane) and packing sign bit-plane by those two boundaries. Under this method we will 

waste least bits to pack unused sign bits. The RMAX/CMAX of sign bit-plane needs 

not to be packed when encoding, because they can be derived from those coded 

bit-plane. Fig. 20 illustrates the idea of how we derive the RMAX/CMAX of sign 

bit-plane. 

 

Fig. 20 The concept of how to derive the RMAX/CMAX of sign bit-plane from 

coded bit plane. 

 

Finally, in CGBPZ, the end plane needs to be estimated and packed to fulfill the 

decoding procedure. Fig. 21 shows the simple concept of end plane decision. From 

MSB plane to LSB plane, the calculator estimates the total bits usage accumulated 

from most significant plane (MSP) to current plane. If total bits usage is more than 64 

bits when accumulates to Nth bit-plane, (N+1)th bit-plane is the end plane.   
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Fig. 21 End plane decision 

 

The overall encoding flow can be shown in Fig. 22. Finally, there is one small 

skill. According to the description above, the bits usage accumulated to end plane is 

less than bit budget. Therefore, there are few bits unused. To well use those bit 

budgets, we keep putting the information into those unused budgets within the 

RMAX/CMAX of sign bit-plane.  
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Fig. 22 Overall encoding flow of CGBPZ 

3.4 Decoding Process and the Compensation 

Roughly, the decoding process can be thinking as the inverse process of 

encoding. We take the coded data segments and divide them into DC coefficient and 

AC coefficients.  

Since the algorithm we proposed is a lossy compression and the lower bit-planes 

of AC coefficients are often truncated due to limited budget, we apply a simple 

compensation here. The basic concept is shown in Fig. 23. The compensation is 

applied when the coefficient is nonzero and the end plane is larger than least bit-plane. 

This compensation technique can be considered as adding a median number of lost 

bit-plane. It leads to a satisfied quality improvement. Notice that this compensation is 

slightly different with [20] and has better quality improvement.  
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Fig. 23 Proposed compensation technique 

 

3.5 Embedded Result on Software Simulation 

Before all the discussion, we want to define the formula of PSNR calculation 

first. All the PSNR values in this section are the PSNR between compressed 

sequences versus the original sequence. The reason why we choose original sequence 

as reference is to establish an absolute quality level. The equation of PSNR is given in 

(3): 
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3.5.1 FGBPZ versus CGBPZ 

In this section, we focus on comparing the coding efficiency between fine grain 
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bit-plane zonal coding (FGBPZ) and coarse bit-plane zonal coding (CGBPZ). We 

want to show the result of trade off between FGBPZ and CGBPZ. Fig. 24 shows the 

embedded result on Foreman sequences with group of picture (GOP) 20. We can see 

the PSNR value decades along the P frame number. This is because each P frame is 

formed by referring the blocks in previous frame. Since every reference frames are 

compressed by our lossy EC algorithm, the errors will be propagated and accumulated 

through P frames. This phenomenon is also called drift effects. Fig. 25 shows the drift 

effect but the experimented sequence is Mobile Calendar. Mobile Calendar is famous 

by its complex components and fast motion. Those features make Mobile sequence 

difficult to be compressed and the loss on quality may larger than slow motion 

sequences. 
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Fig. 24 Drift effects on Forman_QP28_GOP20 
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Fig. 25 Drift effects on Mobile_QP28_GOP20 
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Fig. 26 PSNR loss considering different QP and different GOP (Foreman) 
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Fig. 27 PSNR loss results different QP and different GOP (Mobile) 

 

Fig. 26 and Fig. 27 show the results of PSNR loss considering different QP and 

different GOP. We can see that the PSNR loss increases with the increasing GOP 

while tail off at higher QP values.  

According to our simulation results over sequences Akiyo, Foreman, Mobile, 

Stefan, GOP 10, 20, 30, and QP 20, 24, 28, 32, the average difference in quality 

between using CGBPZ and FGBPZ is 1.5 dB. This number shows that CGBPZ is a 

good trade off between complexity and quality. 1.5dB PSNR drop enables the fast 

encoding procedure form over 30 cycles (FGBPZ) into 2 cycles (CGBPZ).  

3.5.2 CGBPZ versus MHT 

In this section, we focus on the performance between coarse bit-plane zonal 
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coding (CGBPZ) and modified Hadamard transform (MHT). CGBPZ is what we use 

as hardware implementation and system integration. Considering the requirement of 

high speed processing, we compare CGBPZ with MHT work. Fig. 28 shows the 

embedded result on Foreman with group of picture (GOP) as 20. The proposed DCT 

with CGBPZ has better performance and can efficiently slow down the speed of 

decade compared with MHT work. Fig. 29 also shows the drift effect but the 

experimented sequence is Mobile Calendar.  
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Fig. 28 Drift effects on Foreman_QP28_GOP20 
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Fig. 29 Drift effects on Mobile_QP28_GOP20 
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Fig. 30 PSNR loss results different QP and different GOP (Foreman) 
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Fig. 31 PSNR loss results different QP and different GOP (Mobile) 

 

Fig. 30 and Fig. 31 show the results of PSNR drop considering different QP and 

different GOP. According to our simulation results over sequences Akiyo, Foreman, 

Mobile, Stefan, GOP 10, 20, 30 and QP 20, 24, 28, 32, the average quality difference 

between DCT plus CGBPZ and MHT is 7.12 dB. This number shows the coding 

efficiency of proposed algorithm is much better than MHT. 
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Chapter 4 

Proposed Embedded 

Compressor/Decompressor 

Architecture 

 

In section 4.1 and 4.2, we will introduce our hardware design of proposed 

embedded compressor and decompressor respectively. The architectures are designed 

to fit the specification in chapter 6.1.  

  

4.1 Architecture of Encoder Design 

Overall block diagram of embedded compressor is shown in Fig. 32. 

 

 

Fig. 32 Overall block diagram of embedded compressor 
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4.1.1 The Architecture of Two Dimensions Discrete Cosine 

Transform 

The hardware design of DCT is referred from Lee’s architecture [16]. This 

architecture can maintain the same performance with original DCT while reduced the 

number of multiplications to about half of those required by the existing efficient 

algorithms. This design allows us to take the advantage of DCT while not suffering 

from its hardware complexity. Notice that in Table 3, [16] uses more multiplications 

than [17] when applying 4 points DCT. However, the two inputs of multiplications in 

[16] are formed by one constant and one variable number while the inputs of 

multiplications in [17] are formed by two variable numbers. According to our 

experience, the synthesis area of multiplications which has one constant input is about 

1/3 comparing to the synthesis area of multiplications which has two variable 

numbers. Therefore, design [16] we referred still gets the better of design [17] when 

applying 4 points DCT.  

4.1.2 The Architecture of Coarse Grain Bit-Plane Zonal Encoding 

and Data Packing 

There is a combinational block dealing with coefficients to derive the 

RMAX/CMAX and plane content of each plane. To serialize the plane information in 

one cycle, we propose the content adaptive ripple connector to solve the problem. The 

basic concept is shown in Fig. 33. The 10 lines at left represent the 9 plane contents 

pulsing 1 sign bit-plane content. Each connecter represents a shifted-outcome 

generator and a 16 to 1 MUX controlled by 4 bits RMAX/CMAX. It is shown in Fig. 
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34. By the ripple behavior, the wire at the end of the flow is the connected result. 

Notice that we embed this embedded compressor into our 100MHz decoder, thus one 

cycle is enough to finish our ripple processing.  

 

 
Fig. 33 Content adaptive ripple connecter 

 

 

Fig. 34 The architecture of a single connecter in Fig. 33 

4.1.3 The Architecture of End Plane Calculation 

In CGBPZ, we separate the AC coefficients into sign bit-plane and magnitude 
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bit-planes. The end plane is important since it dominates the data packing process. We 

propose the architecture in Fig. 35. We unfold whole loop shown in Fig. 21. This 

architecture may increase the gate count but enable us to finish end plane decision in 

one cycle. It can be considered as a 6 bits ripple-adder plus a comparator.  

 

 
Fig. 35 The architecture of end plane calculation 

 

4.1.4 Overall Encoder Design 

Fig. 36 shows the pipeline architecture of compressor design. Since compressor 

has more time to handle the encoding process, we use three stages here and each stage 

has 4 cycles. Since the deblocking filter output 4 pixels per cycle and the 2 stages, 8 

cycles are used for calculating a 4x4 DCT, one 1-D, 4 points DCT functional block for 

each pipeline stage is enough.  

Under this design, a MB needs 72 cycles to encode. First 4x4 block takes 12 

cycles and rest of 15 blocks take 4 cycles.  
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Fig. 36 Overall encoder design 

 

4.2 Architecture of Decoder Design  

Overall block diagram of embedded decompressor is shown in Fig. 37. 

 

 

Fig. 37 Overall block diagram of embedded decompressor 
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4.2.1 Architecture of Data Unpacking, Bit-Plane Zonal Decoding and 

Compensation 

Data unpacking can be considered as a reverse process of encoding. The mainly 

different is that the information is ready and less calculation is needed at decoder, so 

the decoder just needs to put the data back into correct positions. Therefore, decoder 

leads to smaller gate count comparing to encoder.  

According to the coding format, the DC coefficient, start plane and end plane are 

fixed at the beginning of the coded segment and are easy to decode. With the help of 

start plane and end plane, we can split the union of RMAX/CMAX by a simple MUX. 

Again, we use adaptive ripple architecture. With the help of RMAX/CMAX of each 

bit-plane, the content adaptive ripple dis-connector can be applied and the AC 

coefficients can be pieced together.  

After coefficients reconstructed, compensation is applied. There is a MUX 

controlled by the end plane flag. If Nth plane is the end plane, the (N-1)th plane will 

be filled with 1 if the magnitude of the position is not zero.  

4.2.2 Architecture of Two Dimensions Discrete Cosine Transform 

The hardware design of two dimensions DCT in decoder is the same as in 

encoder. Notice that the DCT unit deals with 4 pixels per time. In decoder design the 

timing is very critical, therefore four sets of 1-D, 4 points DCT units are needed.  

4.2.3 Overall Decoder Design 

Fig. 38 shows the pipeline stage of decompressor. To fast provide data for motion 
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compensation unit, the decompressor must support higher throughput. The 

decompressor is divided into two stages and each stage needs 2 cycles. A 4x4 block 

needs 4 cycles to be decoded. Decoding a MB just needs 34 cycles.  

 

 

Fig. 38 Overall decoder design 
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Chapter 5 

Design Implementation and Verification  

 

5.1 Design Implementation  

In this thesis, we proposed a flexible algorithm which achieves good coding 

efficiency and is suitable to integrate with any video decoder. The proposed 

architecture is synthesized with UMC 90-nm CMOS standard-cell library. The 

operation frequency is 100 MHz. The gate counts of proposed algorithm for 

compressor/decompressor are 15.8K/14.2K respectively.  

Embedded encoder is divided into 3 pipeline stages and each stage cost 4 cycles. 

Although the pipeline stage of encoder can be shorten to 2 cycles, but considering that 

the de-blocking filter needs 4 cycles to completely output a 4x4 pixel block. To 

integrate with the original system with out any extra buffer, four cycles per stage is a 

better choice. At the same time, longer cycle per stage can reduce the number of 1-D, 

4-points DCT functional blocks and can decrease the area.  

Embedded decompressor is divided into 2 pipeline stages and each stage costs 2 

cycles. The minimum pipeline stage design is one cycle per stage, 3 stages total (2 for 

2-D DCT, one for CGBPZ decoder). But this minimum design requires 64 bits bus 

bandwidth. Therefore 2 stages, 2 cycles each is the fast design in system with 32 bits 

bus bandwidth.  

A summary of hardware design is given at Table 7. 
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Table 7 Summary of hardware design 

 Proposed EC 

Function part Compressor Decompressor 

Synthesis process UMC 90nm 

Operate Frequency 
CIF@5MHz 

HD1080@100MHz 

Latency/MB 72 cycles 34 cycles 

Gate Counts 15.8K 14.2K 

Power 2.78mW 1.66mW 
 

 

5.2 Design Verification  

The flow of design verification is shown in Fig. 39. The verification can be 

considered as two parts. One is software and the other is hardware. Patterns are 

generated by software and applied as the input of hardware. At the same time, the 

software calculates the correct answer and compares the result with hardware’s result. 

And then, the result is stored in memory. Again the coded data is accessed by software 

decompressor and hardware decompressor. The decoded data is checked to confirm 

the result is met on software and hardware.  
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Fig. 39 The flow of design verification  
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Chapter 6 

System Integration and Experimental 

Results  

 

In section 6.1, we will first introduce the specification of SI2 low power H.264 

decoder. The problems occurred during integration will also be discussed. The detail 

analysis will be given in section 6.2. 

 

6.1 System Analysis 

The overall system block diagram is shown in Fig. 40. Our H.264 decoder works 

at 100 MHz, performing HD1080 at 30frames/per second. The embedded compressor 

compresses the data from deblocking filter. 4x4 blocks will become 64 bits segments 

and then stored into off-chip memory. The embedded decompressor decompresses 

coded segments from external memory and sends to motion compensation unit (MC). 

The system bus bandwidth is as 32 bits and the external memory is 32 bits per entry.  
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Fig. 40 The overall system block diagram 

6.1.1 Interface 

The embedded compressor can be considered as an interface between the chip 

and the external memory. Fig. 41 is the system interface design for embedded codec.  

The output speed of deblocking filter is 4 pixels per clock, thus the best 

processing clocks for each pipeline stage of embedded compressor must less or equal 

to 4 cycles to avoid the traffic jam at the input of embedded compressor. Another 

interface issue occurs at the input of motion compensation (MC). The data provider of 

MC switch form external memory to the proposed embedded decompressor. The input 

bandwidth of MC in original system is 4 pixels per cycle, so the basic requirement is 

that the embedded decompressor must output at least 4 pixels per cycle.  

Finally, an address converter will be needed. Since the compression ratio is fixed 

at two, the address converter is easy to implement.  
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Fig. 41 System interface design for embedded codec. 

6.1.2 Overhead Problem  

As we introduced in chap 3.1, embedded compressor suffered from overhead 

problem and the overhead ratio directly links to the coding unit. However, the 

overhead problem in our system is different with chap 3.1 since our system is 1x4 

pixels array-based not pixel based. The access behavior of motion compensation 

with/without embedded compressor can be analyzed as follows. Here we simply 

analysis two cases: best case and worst case.  

If the requested 4x4 blocks are perfectly aligned with the coded 4x4 blocks, only 

2 cycles are needed to fetch the 4x4 block while the original system needs 4 cycles to 

fetch. This situation is illustrated in Fig. 42 
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Fig. 42 Best case on data fetching 

 

The worse situation is the sub pixel case. For motion vector (x, y), both x and y 

are not integers. Therefore a 4x4 block needs a 9x9 pixels block to finish the motion 

compensation. 18 cycles is needed for embedded compressor while original system 

needs 27 cycles. Fig. 43 shows the analysis above. Full case analysis will be given in 

section 6.2.1. In chapter 6.2, we can see that H.264 decoder with an embedded 

compressor does reduce the access times and can efficiently reduce the access power 

consumption.  

 

 

Fig. 43 Worse case: sub pixel case 

6.1.3 Processing Cycles Problem 

The third part of system analysis is the problem of processing cycle. The 

existence of this problem is due to the tight processing cycles of our low power H.264 
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decoder. Our H.264 decoder works at 100 MHz, performing the HD1080i@30fps. By 

a simple division, we can find that it is only 25 cycles for motion compensation to 

deal with a 4x4 block. Therefore we need a short-cycle design to turn down the 

loading on cycles of the embedded compressor. Detail analysis will be given in 

section 6.2.2. 

6.2 System Integration 

6.2.1 Access Reduction 

Recall our motivation, we try to scarify some quality while achieve power 

reduction. In following section we will introduce how we reduced the access.  

The correlated accesses of EC can be separated into two parts. One is the write 

accesses from deblocking filter which writing data to external SDRAM. Another part 

is the read accesses from motion compensation (MC) unit. First part is easy to be 

analyzed because the write accesses are formed by writing frames into SDRAM. The 

access times after adding EC (4x4 pixel-unit and CR=2.0) are always half of the 

original system (1x4 pixel array).  

The read accesses requested from MC are much more complicate. Motion 

compensation unit requests data based on motion vector (MV). For further discussion, 

the value of x and y in motion vector (x, y) can be classified into 3 types: align, not 

align and sub pixel case.  

1) Align: the value is a quadruple. It can fit with the 4x4 coded block 

grid. 

2) Not align: the value is not a quadruple but an integer. Needed 4 pixels 

may span two 4x4 block grids.  
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3) Sub pixel case: the value is not an integer but accurate to ½ or ¼. It 

needs 9 pixels to be interpolated into 4 pixels.  

 

In section 6.1.2, we already explain several cases of the access behavior between 

system with and without EC. Here we give the analysis of overall cases in Table 8. 

Notice that in all cases the access times with EC are always less than or equal to the 

access times of original system.  

 

Table 8 Overall cases of read access requested by MC with/without EC 

Case of MV 

(x, y) 

Access for 

Original system 

Access times 

for system with 

EC 

Access times 

Reduced? 

Probability 

of Each case 

(%) 

(align, align) 4 2 yes 33 

(align, not align) 4 4 equal 0.4 

(align, sub) 9 6 yes 5.1 

(not align, align) 8 4 yes 4.5 

(not align, not align) 8 8 equal 0.4 

(not align, sub) 18 12 yes 5.4 

(sub, align) 12 6 yes 23.5 

(sub, not align) 12 12 equal 1.81 

(sub, sub) 27 18 yes 25.8 
 

 

The probabilities of each case are derived by simulation over 4 sequences (Akiyo, 

Foreman, Stefan, Mobile Calendar), 300 frames each. These sequences are formed by 

GOP 30.  

According to the probabilities, the average reduction achieved on read accesses 

is 40% of original accesses. 

6.2.2 Processing Cycles Problem 
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In section 6.1.3, we had described the problem of processing cycles. In this 

section, we will show the feasibility of CGBPZ to integrate with our system.  

Based on not to change our original system, we have two constrains here. First, 

the original system specification is HD1080@100MHz, 30 frames per cycles. This 

means the available cycles for each 4x4 block unit are 25 cycles. We hope to finish 

MC with proposed EC in 25 cycles. Second, we hope that after embedding EC, we 

won’t change the data input mechanism of MC (sending data into MC continually).  

The solution we used to solve constrain 2 is to add a new state into original states 

and to insert buffer between embedded decompressor and MC. The signal “MC read 

data enable” is putting off till the buffer has enough data to continually feed into MC.  

However, this new state cost times. Now the required cycles of “MC data read 

states” is equal to the original process cycles of MC plus the new state “EC decode” 

like in (4). The full cases discussions of “EC decode” cycles plus original “MC data 

read” cycles are in Table 9. 

 

)_(_)_()__(_ MCOriginaltimeprocessdecodeECdelayECwithMCtimeprocess +=  (4) 
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Table 9 Full cases of “EC decode” cycles plus original “MC data read” cycles 

Case of MV 

(x, y) 

Num of 

Ref. 

block 

Delay  

for  

EC decode 

Processing 

time for  

Ori. MC 

Total  

MC cycles 

for EC 

Probability 

of Each case 

(%) 

(align, align) 1 4 4 8 33 

(align, not align) 2 5 4 9 0.4 

(align, sub) 3 5 9 14 5.1 

(not align, align) 2 5 8 13 4.5 

(not align, not align) 4 7 8 15 0.4 

(not align, sub) 6 7 18 25 5.4 

(sub, align) 3 6 12 18 23.5 

(sub, not align) 6 9 12 21 1.81 

(sub, sub) 9 9 27 36 25.8 
 

 

We can see that the new processing cycles in Table 9 of all case MC+EC are 

much less than 25 cycles except the (sub, sub) case and (not align, sub) case. By using 

the probabilities, we can calculate the average cycles used for MC+EC. The average 

cycles are 19.3 cycles. That means, although the (sub, sub) case uses more than 25 

cycles, it is still fit the system timing constraint since there are available cycles from 

other modes. So, embedding proposed codec into original system is feasible. 

 

6.2.3 Access Reduction Ratio 

The access ratio of system with EC vs. original system is defined as (5): 

_Ori. Mem_write _Ori.  Mem_read

_EC Mem_writeCMem_read_E
ratio Access

+

+
=  (5) 

 

According to our simulation, the ratio of read accesses with/without EC is 0.625, 
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and the ratio of write accesses with/without EC is fixed at 0.5. Also, we obtain the 

average access ratio of read/write in original system is about 3.51. The overall access 

ratio (with/without EC) can be calculated below (6): 

 

_Ori. Mem_write _Ori.  Mem_read

_Ori.)(Mem_write*0.5 Ori.)(Mem_read_x  0.625
ratio  access Overall

+

+
=

 

0.596 
1  3.51  

(1)x  0.5 (3.51)x  0.625
=

+

+
=  

(6) 

 

Therefore, the average reduction ratio on memory access is: 

ratioaccessoverallratioreductionAVG −= 1                      

%4.40596.01 =−=  

 

6.2.4 Simulation Result on SDRAM Power Reduction 

We choose the system-power calculator [21] as external memory power model 

and the parameter setting is according to [22]. We simulated the memory using on 

CIF@50MHz and HD1080@100MHz. The results are shown in Fig. 44 and Fig. 45. 

Each figure includes the core power of H.264 decoder, SDRAM background power 

and SDRAM access power (R/W) operated on different frequencies. The power 

saving on performing CIF is 7.6mW while the power saving on performing HD1080 

is 154.8mW. It does make sense since the average available cycles for a 4x4 block on 

both video formats are the same and the access ratio on R/W is slightly different due 

to different test sequence. Therefore it is reasonable that the power reduction is almost 

directly proportional to the frame size. 

 



 

62 

Power distribution @ CIF , 5MHz
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Fig. 44 Power analysis on CIF @ 5.3MHz 

 

Power distribution @ HD1080 , 100MHz
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Fig. 45 Power analysis on HD1080 @ 100MHz 
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Chapter 7 

Conclusion and Future Work 

 

7.1 Conclusions 

In this thesis, we proposed a flexible algorithm which has good coding efficiency 

and is suitable to integrate with any video decoder. With the help of this 

recompression engine, we can reduce the bandwidth requirement and the external 

frame memory and reduce the data access times to achieve the goal of power saving. 

The fixed compression ratio makes this extra function easily be integrated with a 

system by adding a simple address controller. The proposed architecture is 

synthesized with 90-nm CMOS standard-cell library. The operation frequency is 100 

MHz. The gate counts of proposed algorithm for compressor/decompressor are 

15.8K/14.2K respectively. The proposed architecture costs 30K gate counts and deals 

with a 4x4 block unit while previous MHT work costs 20K gate counts in dealing 

with a 1x8 pixels array. The proposed algorithm not only gains 7.12dB in the quality 

but also achieves an area-efficient hardware implementation. The peak power 

consumption of proposed embedded codec @ 100MHz is 4.445mW.  

 

7.2 Future Work 

Future works are formed by three parts. First is about the coding efficiency. From 

proposed FGBPZ to CGBPZ, we made a trade off between the encoding/decoding 

cycles and the visual quality. CGBPZ achieves fast coding speed and acceptable 
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visual quality. However, error propagation delivered through 29 P frames is still 

noticeable by human eyes. To embed a compressor/decompressor in video decoder, 

the only way to get better visual quality is to reduce the quality loss of each referred 

frame. Therefore, refine coding scheme to reduce quality loss is very importance. 

     Second part is to develop adaptive compensation modes according to different 

characteristics of video sequences. The compensation method we proposed is based 

on universal behaviors of our testing data base. Proposed compensation method 

reaches minimum average PSNR loss over our data base. But we also found other 

kinds of methods have better performance on compensating certain video sequences 

while having poor performance on the others. That is why we wish to develop 

adaptive compensation modes. To compensate sequences according to their 

characteristics can optimal the individual visual quality and is also a direction of 

quality improvement. Since the power consumption of our embedded codec is much 

less than the power we reduced on access reduction, to increase reasonable 

complexity to get better performance is a good idea and is worth us to try.  

    The final part is about the memory power model. The memory power model we 

use is to estimate the memory power consumption according to the average behavior 

of data access ratio [21]. For a detail analysis, there are some factors needed to be 

specified such as page mode design and burst length. The burst length determines the 

efficiency of memory data read accesses and page mode determinates the hit rate. 

Power consumption on memory is related to those factors. If we can build a power 

model taking those factors into account, we can analyze our memory power 

consumption in a more accurate way. 
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