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Design of An Embedded Compressor/Decompressor

for Mobile Video Applications

Student : Yu-De Wu Advisor : Dr. Chen-Yi1 Lee

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung,University

ABSTRACT

This thesis proposes an embedded compressor/decompressor for mobile video
applications. It uses lossy compression scheme to reduce the amount of data
transferring between chip and external memory. This lossy compression can maintain
acceptable video quality while reduces the required size of external memory, the
bandwidth requirement and the power consumption on memory access.

Proposed algorithm is composed by discrete cosine transform (DCT) with coarse
grain bit-plane zonal coding (CGBPZ). The compression ratio is two. It compresses a
4x4 pixel-array into a 64 bits segment. First, the two dimensions discrete cosine
transform converts 16 pixels into 16 elementary frequency components. Coarse grain

bit-plane zonal coding packets the coefficients and then sends to external memory. A



compensation scheme is also proposed for decoding.

Hardware architecture of the proposed algorithm is able to be embedded into
video decoder and support HD1080@100MHz, 30 frames per second. Since the
compression ratio is fixed at two, the coded segments have fixed size and can be
randomly accessed by motion compensation unit. The gate counts are 30K
synthesized by UMC 90 nm CMOS technology. It costs 72 cycles to encode a MB and
34 cycles to decode a MB. Overall reduction ratio on memory access is 40%.
Comparing with the power consumed of proposed design, the amount of power saving

is large.
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Chapter 1

Introduction

1.1 Motivation

To improve the video coding efficiency, eliminating temporal redundancy
between frames is a useful technique. This technique is widely used in nowadays
video coding standards such as MPEG-1/2/4, H.263 and H.264. But to accomplish
this method when encoding or decoding, at least one previous frame must be stored in
frame memory as reference. However, the accesses between external memory and
decoder chip may consume a lot of,power. The rapid data accesses of motion
compensation dominate the power consumption.of whole system.

For a mobile device, power is always.the critical issue that people do care about.
Although the power consumed on c¢hip canbe reduced by many low power techniques,
data transferring still consumes a lot of power. Therefore, minimization of memory
access operations is a key consideration in hardware design of mobile video devices.

Embedded compression is a technique to reduce the transferring of data and the
size of off-chip frame memory. Since mobile video devices are suffered from limited
battery life and the visual quality criterion is not so strict due to the small display
screen, we hope to reduce the bandwidth requirement while maintain the acceptable
visual quality.

Nowadays, the mobile devices become more and more powerful by their various
functions. Reduce the bandwidth and resource requirement of each hardware

accelerator is definitely an important topic.



1.2Thesis Organization

This thesis is organized as follows. First, the basic introduction of compression
scheme and the reviews of prior works are described in Chapter 2. The proposed lossy
embedded compression algorithm is proposed in Chapter 3. To integrate with
H.264/AVC decoder, there are some constraints needed to be specified and the
proposed algorithm must be modified to fit in those constraints in hardware design.
The modified algorithm and hardware architecture is presented in Chapter 4.
Moreover, the simulation results about proposed algorithm integrated with
H.264/AVC HDTV decoder are also presented in this chapter. The design
implementation, integration and verification are shown in Chapter 5. Chapter 6 shows
the experimental results and performance comparison. Finally, the conclusions and

future work will be given in Chapter 7.



Chapter 2
Previous Works

Basically, compression techniques can be divided into two types: lossless
compression and lossy compression. In this chapter, we will simply introduce the
algorithms that have been proposed before. Also, the bit-plane coding is introduced in
chapter 2.3. Bit-plane coding can be used as lossy or lossless coding. The concept of

bit plane coding is used in our proposed methods.

2.1 Lossless Embedded Compression Schemes

A lot of lossless compression -methods have-been proposed. The benefit of
lossless compression is obviously: it can-maintain the information while cutting down
the data size. To embed a lossless compression mechanism into a video system is
quite acceptable, since it would not cause the drifting effect no matter in encoder
system or in decoder system.

However, behind those advantages mentioned above, it does suffer from the
variable data amount after lossless compression. By mathematical theory, even for
ideal lossless compression, the information of source data still controls the
compression ratio. That means, the more the information of the source data contained,
the longer the coded data is. This unstable factor becomes the fatal wound of lossless
embedded compressions. Embedded compression schemes are born to reduce the data
access times between the external memories and reduce the size of external memory.
However, Variable data amount after lossless compression can not guarantee the
reduction ratio nether on the size of frame memory since the memory must be well

3



prepared for the worst case nor the bandwidth reduction since the compressed data

amount is unknown. A research of lossless compression is shown in [2].

2.2 Lossy Embedded Compression Scheme

Lossy compressions with fixed compression ratio are suitable to reduce the size
of frame memory and the bandwidth since the predictable amount of compressed data
can guarantee the reduction. Therefore, lossy embedded compressions are more
popular in comparing with lossless embedded compressions on solving this bandwidth

reduction problem. [3] — [14] are the previous works of lossy compression.

2.2.1 Transform-Based Lossy Embedded Compression

Transform-based lossy embedded compression. is a popular way to compose
lossy compressions. It converts a signal into-elementary frequency components. With
the characteristic of human visual system, lower frequency component is more
noticeable than higher frequency component. Thus implying quantization and data
collection on each component by their visual priority could be an efficient way to
collect data within limited data budget. The research uses the Hadamard Transform
and quantizes the coefficients by their priority, and then encodes quantized
coefficients by Golomb-Rice Coding is in [3]. Golomb-Rice coding is an efficient
coding method, and it can nearly reach the coding ability of Huffman coding by
selecting the suitable K factor. However in this paper, it pursuit low complexity,
therefore it chose fixed K values according to simulation. It can operate on 100 MHz
and the cycle usages of encoding/decoding a MB are both 33 cycles. It is a work of

high speed.



2.2.2 Delta Pulse Code Modulation Lossy Embedded Compression

Delta Pulse Code Modulation (DPCM) is another popular way to compose the
lossy compression. Since the neighbor data has relatively small difference, the
information of data after DPCM can be efficiently reduced by comparing with the
source data. It does help on reduction of source information.

[4] uses DPCM as base coding method and takes the intra prediction mode from
H.264 video coding standard to find the best direction to perform DPCM. This smart
idea makes this algorithm more adaptive in each video pattern and achieves the
satisfied quality than [3].

However, the satisfied performance of DPCM method costs a lot. DPCM method
needs to collect every difference.into limited budget, but those differences are not
always as small as we wish. To-derive best quantization level and fit every difference
into limited budget, this DPCM-based method-needs several iterations to get the best
performance. This situation causes, this algofithm not to be able to use pipeline
scheme. And to avoid large gate counts, it is more acceptable to deal with subtractions
clock by clock instead of parallel architecture. However it leads to longer coding
cycles and becomes a heavy load of original system on timing issue. In the view point
of system integration, it needs to increase the operation frequency or slow down the

system throughputs to perform this DPCM-based embedded compression scheme.

2.2.3 Other Embedded Lossy Compression

There are still many approaches about lossy compression such as adaptive vector
quantize (VQ)[11], down-sampling based compression algorithm [12] and adaptive
DPCM in [13]. [15] provides two compression schemes and uses a pre-determining

5



mechanism to choose with methods to use. It claims that this mechanism can achieve
better performance by choosing adaptive algorithm to fit the different feature of video
sequence. DWT with SPIHT in [14] is also another transform approach. And the
algorithm used in [14] makes it be able to perform lossy and lossless with the same
architecture.

We can see that lossy embedded compression scheme is truly the mainstream.
However it suffers from the loss of quality and the drift effect. Therefore, how to
organize the lossy coding methods is very important. To cover information as much as

possible within limited budget is the main challenge of lossy compression.

2.3 Bit-Plane Coding

Bit-plane zonal coding is a‘well known coding method and widely used in many
compression algorithms. It useés bit-plane as its basic unit to encode a group of
number instead of individual number. It can be combined into a lossy or lossless
compression scheme by adjusting the budget of bit storage. It can fully represent the
group of number with sufficient bit budget. On the other hand, with un-sufficient
budget it may loss some information at lower bits and thus becomes a lossy
compression. The details of bit-plane zonal coding will be shown in the following

sections.

2.3.1 Bit-Plane Truncation Coding (BPT)

Before introducing proposed bit-plane zonal coding, we would like to introduce
the basic concept first. Bit-plane truncation coding is the prototype of bit-plane zonal

coding. It can be shown in Fig. 1 as an example. Fig. 1 is the coefficients after 4x4



DCT. We can simply classify those coefficients into one DC coefficient and 15 AC
coefficients. The idea of bit-plane coding is to collect data in bit-plane (that is, to take
the N-th bit out of each coefficients as a union) rather in individual coefficient.
Sometimes, we want to further analyze a group of numbers and to cut them into
several parts by their importance, separating them into bit-planes is a good idea.
Moreover, for a group of coefficients, the upper bit-planes are zero most of the time.
Therefore to record start plane is the smart way to improve the coding efficiency. For
a group of 4x4, N bits coefficient, about cell function (log, N) bits is needed for
recording start plane, but it can represent 15 zero bits for each skipped bit-plane. After

the bit-plane truncation coding, the coded format is shown in Fig. 2.

Sign bit plane
MSB ACO AC1 AC2 ACOAC1AC2AC3AC4AC5AC6AC7AC8AC9AC10A(:11AC1§C13AC14
o[ 1[o] 1 [o]o]o]o]o o] i]o[o]0[0]
/AC7/AC8/AC9/AC10//

/jQ//ACijCB/fH/é % Msg|ololo]o]olololo]o]o]olololo]o] 4

yh olo[o]o]o]o]o]ololo|o|o|o|o]0

;/j/j/j/// Startplane == o To (o [o|1]ojo|olololololo
olofofof1]ofofolol s -~ f .
° coasnareie [0 To 7 1 To ToTo To oM agnitude bits

® AC coefficient ¥ 1 [0 [0 |o|o|o|o|o|o|1|o]o|ofo]0

° '010100011010100

— o"° olofof1]o]1]o]ololololofo|1]1
////// / Truncated olofofofo[1]ofofo|1]|o]o]ofo|oiy

% // // /& AC CoefBits  LSB

LsB

Fig. 1 Bit-plane truncation: AC coefficients are packed from the start plane. Due to
the limitation of packing budget, coefficient bits of lower digit plane surrounded by

dash line will be truncated.

8 bits 15 bits 4 bits 37 bits

A
\
A
\
A
\
A
\

DC Sign Bits of Start Bit

BPT Coefficient] AC Coef Plane Index

Data Bits for AC Coef.

‘ Header Information
( HI bits)

Fig. 2 Coding format for bit-plane truncation coding (BPT).
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2.3.2 Bit-Plane Zonal Coding (BPZ)

However, BPT has poor performance and image quality must be enhanced by
other approach to reduce energy loss of DCT coefficients. In this section, an improved
coding algorithm named bit-plane zonal coding (BPZ) [18] will be described in detail.
Familiar with BPT, BPZ packets DCT coefficients bit-plane by bit-plane, but the
packing scheme is quite different from BPT. We will show that the packing efficiency
of BTZ is much better than BPT.

The word “zonal” is the idea to encode a bit-plane with its zonal characteristic.
Fig. 3 is a possible outcome of a bit-plane. The coefficients with larger magnitude
tend to be gathered at up-left corner (lower horizontal or vertical frequencies) by DCT.
Also, the bits at down-right corner tend to be zero in the same bit-plane. Furthermore,
the data for individual DCT blocKs often has a bias-for either the horizontal or vertical
direction. Besides, by describing the maximum row and column number of valid data
in this scan zone, named RMAX and CMAX respectively, we have large probability
to represent the information of a bit plane within less than 15 bits. Therefore, a
signal-dependent rectangular scan zone starts from the upper-left corner will perform

a more efficient coding of the coefficients [12].



Max. column in
this bit plane

00 01 1OI 11 Column
col0|1(0]0
1

1{0
0l070 Zone: 01 10 10101 9 bits
ololo

) Origin: 101100000010000 15 bits
Max. row in 01

0
this bit plane ™ 44[ g
0

11

Row

Rmax Cmax

Fig. 3 The concept of bit-plane

Two classes of coefficients namely significant and in-significant coefficients are
defined respectively. In the encoding flow, significant coefficient will have a 1 in any
of the higher coded bit-planes. In the contrary, in-significant coefficient always have
all 0’s on the higher bit-planes.

Sometimes, zone representéd by RMAX/CMAX will be very similar between the
neighboring bit-planes. This feature allows us to usé this data-similarity to develop
more efficient coding mechanism:

The detail coding flow is described as follow: For DCT coefficient blocks, we
can divide the process into DC and AC flows. In DC flow, the DC coefficient is
completely packed for avoiding significant degradation in quality as BPT. In AC flow,
the procedure of this algorithm is shown as Fig. 4. Initially, all AC coefficients are
marked as insignificant. Then, we start from the most significant plane (MSP) to
encode the subsequent bit-planes. The first plane which contains nonzero bit is
defined as start plane, and the nonzero bits in start plane are the newly significant
coefficients. Thus, sign bits are inserted behind each nonzero bit. For the subsequent
bit-plane, there is only one question. If the following bit-plane has a newly significant
bit, a bit “1” is packed first to represent the newly significant bit is founded and then
the RMAX/CMAX must be also updated. The newly significant bits are followed by

9



corresponding sign bits. Those significant bits and in-significant bits are no need to be
followed by sign bits since the sign bits of significant bits are already packed and the
sign bit of in-significant bit are useless so far. Notice that unlike the fully packed sign
bit in BPT, the sign bit packed in BPZ is on demand.

If no newly significant appeared in current bit-plane, a bit “0” is inserted to
represent that the RMAX/CMAX of current bit-plane is the same as previous
bit-plane and only the bits in the position of significant coefficient needed to be
packed. BPZ repeat this procedure until all bit-planes have been packed. For the
category on packing sign bits and the no newly significant bit-plane, we can see the

efficiency of BPZ and that is why BPZ can achieve better performance than BPT.

* No newly significant coefficient found
- Packing significant coefficients only o

- Packing positions and sign bits for
newly significant coefficients

\

next bit plane

Fig. 4 Coding procedure of BPZ algorithm

An example for bit-plane classification is illustrated in Fig. 5. The same as BPT,
the start plane of DCT coefficients is also packed as a part of header information. Sign
bits of a DCT coefficient block are not a part of header information any more. They
are dispersed and accompanied with newly significant coefficients found in certain
bit-planes. Header information is shortened and more AC coefficient packing budget

is reserved. New packing data format is shown in Fig. 6.
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Fig. 6 New packing data format (BPZ) versus BPT
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2.3.3 Modified Bit Plane Zonal Coding

If we take more look to the BPZ algorithm from the example shown in Fig. 4, we
will discover that the original BPZ algorithm can be further improved. For software
application, adding a little complexity can achieve more coding efficiency. A
mechanism within good trade off between complexity and coding efficiency is
proposed in [20].

The starting point is to use the limit budget in more efficient way. Carefully
looking at the coding type of bit-plane zonal coding (BPZ), we can find that there is
an annoying format to deal with the occurrences of newly significant coefficient
because of the longest header information. Every time we found a newly significant
bit, we need to packet 4 bits foryRMAX/CMAX. and one bit to distinguish coding
format. However, the four bits-of RMAX/CMAX 1s not really necessary since the
RMAX/CMAX may be the samel with-the_ previous bit-plane. Therefore, [20]
proposes a new coding format to deal-with this situation. The new coding format is
adopted when “newly significant bit is found, but the RMAX/CMAX of current
bit-plane is the same with the previous bit-plane” and overall coding types shown in
Table 1. The drawback is that we need one more bit to distinguish from original type
B with new proposed type C. However the advantage is saving four bits comparing
with original coding format. Fig. 7 shows the coding flow of modified bit-plane zonal
coding proposed in [20].

Table 1 Coding types of bit-plane proposed in [20]

Type Newly Sig. Coef. Rmax/Cmax Flag Bits for Bits for Flag(s) and
Found Changed Rmax/Cmax Rmax/Cmax
A Yes Yes None 4 4
B No No 00 None 2
C Yes No 01 None 2
D Yes Yes 1 4 5
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Fig. 7 Coding procedure of MBPZ algorithm

An example of the modified bit-plane zonal coding (MBPZ) proposed in [20] is
given in Fig. 8. The bit streams in the bottom of figure are coded by original BPZ and
modified BPZ (MBPZ) respectively. Through this.compare we can clearly figure out
the benefit brought by MBPZ: There is 'a small technique here. When packing a
bit-plane of AC coefficients, we usé zigzag-scan order to collect bits. Since human
visual system is more sensitive on low frequency signal elements, when we are
running out of packing budget, zigzag scan order can store the relative important

signal and bring us better visual quality within the same packing budget.
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Fig. 8 An.example,for MBPZ coding

Using MBPZ to encode AC coefficients-within limited budget, quality loss is
inevitable. To slightly compensateé+for. the truncated data bits, [20] also propose a
method to raise the quality. First, if the value of this coefficient is large or equal than 4,
scan the decoded AC coefficients from LSB to find the first non-zero bit, and then
paste a “1” to its lower-two digit. If the value of this coefficient is less than 4, nothing
will be changed on it. Finally, recover the coefficients by the corresponding sign bits

(do two’s compliment or not). The compensation procedure is illustrated as Fig. 9.
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Fig. 9 Compensation for a bit-truncated AC coefficient.

2.4 Summary

From the introduction and “discussion-above, we classify the existing algorithm
into two basic types and briefly introduce the pros. And cons. We can find that lossy
compression is the popular way to implement embedded compressor by the advantage
on fixed compression ratio and fixed amount of coded data. However, good
performance usually comes with time consuming while low complexity usually brings
worse quality. The former kind of methods derives better performance but the large
buffer may be required, and longer processing cycles will enlarge the loading of the
system and the barrier to embed this extra function into system. Although to slow
down the system or to increase the operation frequency can fix this problem, but the
former methods will decrease the coding throughput and the later methods will
increase the power consumption. Each drawback is not what we want. Some lossy

compression schemes are low complexity and high speed and easy to be embedded
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into a decoder system as far as hardware is concerned, but at the same time, those
schemes often suffer from unsatisfied quality.

For the real time, low power HDTV H.264/AVC decoder, low latency is the basic
requirement. Not to increase the loading of original system is also another target.
Therefore, our design challenge on embedded compressor is to find the optimal trade

off between low latency, low complexity and high performance.
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Chapter 3
Proposed Embedded Compression
Algorithm

3.1 Overview

Researches about data compression have been developed for a long time. Those
developed algorithms show us that enhancing the complexity can reach better
performance. However, the problem is to find a suitable compression category to
combine with H.264 system but not to affect the performance of overall system. The
discussions in chapter 2 have shown us that the threshold of embedding an extra
function may arise with higher complexXity coding-scheme. In this chapter, further
discussion will be presented.

In practice, block-based schemes are the most convenient schemes because they
match the block-oriented structure of the incoming bit-stream in H.264 system and
allow on-the-fly process. However, another problem exists: the overhead. The
overhead can be defined as the ratio between the number of pixels that are actually
accessed during the motion compensation of a block and the number of pixels that are
really useful in the reference block. In original system, the ratio is 1 since every
accessed pixel is on demand. After embedding block-based algorithm adopted, this
ratio will always superior to 1 because of the nature of block-based embedded
compression algorithm. Fig. 10 shows the concept between block-based and
pixel-based. The left of Fig. 10 is pixel-based, represents the data without EC. The
right of Fig. 10 is block-based since the characteristic of EC. Fig. 11 is an example to
show how overhead occurs.
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According to the standard of H.264, a 16x16 macro block can be divided into
8x8, 8x16 or 16x8 blocks during the process of motion compensation (MC). Further
more, an 8x8 block can then be sub-divided into 8x4, 4x8 or 4x4 sub blocks. If the
compensated block is not aligned with the coded block grid, the overhead will be
occurred like depicted in Fig. 11. Four coded blocks have to be loaded and decoded to
get the required pixels. If the EC scheme is 8x8 block-based and the compensated
block is 4x4 block, we need to load and decode 256 pixels to derive 16 useful pixels.
The overhead in this case is 16. Because of the overhead problem, the relation
between the compression ratio of EC and the gain in memory transfer is not direct.

There is a statistic material about the phenomenon of overhead provided by [15].

Fig. 12 shows the relation between overhead and encoding bit-rate simulating with
18



Stefan sequence. Three kinds of EC block-grid are presented. Since H.264 encoder
allows macroblock (MB) partitioning and larger motion vectors at high rate (which
also means the small quantization step and better quality) and favors the null vectors

with 16x16 partition at low rate, the overhead increases while the bit rate increases.
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Fig. 12 The correlation between bit-rate and overhead (Stefan sequence)
simulated with 4x4, 8x8 and 16x16 block grid

Table 2 [15] is the summary of the statistical analysis simulated with six
sequences. In this table, we can see that the relatively still sequences (News, Weather)
generate smaller overhead since the motion vector is often equal to zero while the fast
motion sequence such as Stefan generates more overhead. Finally, an important
conclusion is that the smaller block-grid gets the better of larger block-grids and

derives the smallest overhead.
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Table 2 Overhead with EC block grid for each sequence

Sequence 4x4 block grid 8x8 block grid 16x16 block grid
Foreman 1.31 1.77 3.69
Flower 1.30 1.74 3.77
News 1.14 1.51 2.78
Silent 1.17 1.50 3.22
Stefan 1.51 2.44 6.95
Weather 1.17 1.49 3.18
All 1.27 1.73 3.93

3.2 Algorithm of Embedded Compressor

We adopt transform-based and 4x4 block-grid as our coding algorithm. First
reason is the smallest overhead according to the statistical result that we presented in
previous section. Actually it is a trade off between coding efficiency and overhead.
We know that as far as the transform algerithm is.concerned, the bigger the block-grid,
the better coding efficiency it“can achieve. Since we want to increase the coding
efficiency with less overhead, the 4x4 block-grid'is our best choice.

The basic concept of proposed algorithm is the combination of DCT with
bit-plane zonal coding. DCT is a well known technique so we just simply introduce it.
The two proposed bit-plane zonal coding are the main characters. Fine grain bit-plane
zonal coding (FGBPZ) is quite efficiency and is suitable to be used in software
application. Coarse grain bit-plane zonal coding is relatively simple and is suitable for
hardware implementation. Fig. 13 is the coding flow of proposed
DCT-FGBPZ/CGBPZ algorithm. This is a one way open-loop coding scheme and no
iteration is needed. The discrete cosine transform (DCT) is divided into two one
dimension DCT. The coefficients of DCT are packed by fine grain bit-plane zonal
coding (FGBPZ) or coarse grain bit-plane zonal coding (CGBPZ) we proposed. The

detail of each part will be introduced in the following sections.
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Fig. 13 The flow chart of proposed DCT-FGBPZ/CGBPZ embedded compression

3.2.1 Discrete Cosine Transform

Discrete cosine transforms (DCT) is a powerful technique for converting a signal
into elementary frequency components. It is widely used in image compression and
JPEG is the well-known example.

For human visual system, haman eyes are..more sensitive on low frequency
component of a picture and less sensitive' on+high frequency component. Therefore,
the quality loss in high frequency cotnponent.isrelatively unnoticeable. The DCT can
generate the relatively important low frequeney.component on up left corner, and the
most high frequency in down right corner. Thus the DCT combines with bit-plane
zonal coding with original point at up left corner can efficiently collect the
information.

But the biggest disadvantage of DCT is its complexity on hardware design. Here
we make our coding unit in 4x4 block grid, the complexity of 4 point DCT is minor
and still can take the advantage of the transform. The complexity of different size of
DCT can be evaluated in Table 3. Two designs are shown in Table 3. A design is
reference from [16] and B design is reference from [17]. B design is focus on
reducing multiplications by increasing additions. We can see that in both designs, the
complexity of 4 points DCT is much simpler than 8 points and 16 points. 4 points

DCT can be considered as most economical type of DCT. Notice that N = 2™,
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Table 3 The complexity of N-point DCT

Number of Multiplications Number of Additions
m N
A B A B
2 4 2 4 6 9
3 8 16 12 26 29
4 16 116 80 194 209

3.2.2 Proposed Fine Grain Bit Plane Zonal Coding (FGBPZ)

Base on the modified bit-plane zonal coding proposed in [20], the coding
efficient is quite good. But we are notysatisfied yet. To further improve the coding
efficiency, we introduce a pre-detenmined variable:length coding here with a small

code book.
3.2.2.1 VLC Codebook

Before further change the MBPZ in [20], we make simulation here to evaluation
the occurrences of each MBPZ types and Fig. 14 is the simulation result. The naming
of each type A, B, C and D is referred from [20] (see Fig. 7). We can see that the
appearance probability of type B and type C are relatively small although they have
better coding efficiency. Type D is the dominate type but the bits recording header
information are 5 bits including one bit for distinguishing between types and 4 bits for
RMAX/CMAX. Therefore, we want to improve the efficiency by adding a small

variable length code (VLC) codebook on type D.
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Fig. 14 the occurrence probability of each types in MBPZ

According to the modified bit-plane zonal coding proposed in [20], the
RMAX/CMAX of each bit-plane is,aééumulated bit-plane by bit-plane and is always
large or equal to the RMAX/CMAX of pre;vic;us piéne. Recall that type D is applied
when RMAX/CMAX is changed. Therefore, when itype D is applied, the possible
outcomes of the RMAX/CMA)& 1n neit bivt—V}:)vlaI‘le‘»are limited: they must larger than
the RMAX/CMAX of previous plane.

For example, if RMAX/CMAX of current plane is 2/2 and next plane is coded by
type D, the possible outcomes of next plane RMAX/CMAX must be 3/2, 2/3 or 3/3.
Notice that 2/2 is also possible to be the RMAX/CMAX of next bit-plane, but type D
only deals with the situation that RMAX/CMAX is different from previous bit-plane.
Those 3 possible outcomes can be fully presented by 1~2 bits instead of original 4 bits.
The description above explains the chance of reducing the codeword length in type D.
Fig. 15 shows the coding flow of FGBPZ with VLC codebook. This method can save

up to four bits when type D is applied.
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Fig. 15 Coding flow of FGBPZ with VLC codebook. Recall that type A, B, C and D
is referred from [20].

We generate those codes by Huffman coding methods and the probabilities of
next possible RMAX/CMAX (Pouresict RMAX/EMAX: [next RMAX/CMAX]) are derived
from simulation on over 3000 frames. The ‘code words in this codebook are fixed.

To cover all possible CMAX/R/MAX of next bit-plane according to current
plane, the needed codebook entry-and their related RMAX/CMAX is shown in Table
4. The number of possible outcomes of next RMAX/CMAX is shown in (1). For a
4x4 bit-plane, the row/column are mark as 0, 1, 2, 3. When type D is applied, at least
one of row or column is changed. Therefore, this equation is to calculate the outcomes
which are large than or equal to current RMAX/CMAX and then minus one outcome

that RMAX and CMAX are both equal to current bit-plane.

Next possible outcomes =

(L
(4—Current _RMAX )X (4 — Current _CMAX)—1
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Table 4 The needed codebook entries and their related RMAX/CMAX

Current The number of next Possible Huffman Code length
RMAX/CMAX RMAX/CMAX outcomes (bits)

(0,1) 11 (4*3-1) 3-4
(1,0) 11 (3*4-1) 3~4
(1,1) 8 (3%3-1) 2-4
(2,0) 7 (2%4-1) 2-4
(0,2) 7 (4%2-1) 2~4
(2,1) 5(2%3-1) 2-3
(1,2) 5(3%2-1) 2-3
(2,2) 3(2%2-1) 1~2
(3,0) 3(1%4-1) 1~2
(0,3) 3(4%1-1) 1~2
(31) 2(1%3-1) 1
(1L, 3) 2 (3*%1-1) 1
(3,2) 1 0
(2,3) 1 0

Summary 67 0~4

But there are still rooms for. codebook-improvement. Consider the following
two cases: case 1), current RMAX/CMAX is 2/3; next RMAX/CMAX is 3/4. Case 2),
current RMAX/CMAX is 3/2; next RMAX/CMAX is 4/3. With the original codebook,
the codebook index for case 1 is {(2, 3), (3,4)} and case 2 is {(3, 2), (4, 3)}. Actually,
the mainly different of case 1 and case 2 is the direction of row and column. Both
cases are similar even on the probability distribution of each possible “next
RMAX/CMAX”. If we switch the row to the column, we can find that those two cases
are undergoing the same changes. According to this idea, we introduce our symmetric
VLC codebook. By eliminating the bias of Row and Column in codebook, the
symmetric cases can share the same codeword. We can reduce the 67 entries
codebook into 40 entries by this idea.

Actually, this idea does not reduce the number of comparisons. But it reduces the
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codebook size by 42%. The timing wasted on codebook searching is also reduced.
And then we will show how to use our symmetric VLC codebook. We represent
current RMAX/CMAX as Cm_cur, Rm_cur, previous RMAX/CMAX as Cm_pre,

Rm_pre. The action of table look up can be described as follow:

If (Cm_pre=Rm_ pre)
Codeword at index {(Cm _ pre ,Rm _ pre) (Cm_cur ,Rm _cur)} is applied.

Else
Codeword at index {( Rm _ pre,Cm _ pre) (Rm _cur ,Cm _cur)} is applied.

Therefore, 40 codeword is enough.

And then we want to explain the decoding procedure of symmetric VLC
codebook. After start plane is decodéd, the RMAX/CMAX of start plane is known
and can be used as reference. Decoding |procedure for the subsequent bit-planes can

be illustrated in (2).

If (Cm_ pre>=Rm_ pre)
Codeword in block {(Cm _ pre, Rm _ pre)} is searched;

And the result is in {( Cm _cur ,Rm _cur)} order.

Else (2)

Codeword in block {( Rm_ pre,Cm _ pre)} is searched;

And the result is in {( Rm _cur ,Cm _cur)} order.

These switch actions between RMAX and CMAX in encoding procedure need
not to be recorded since they can be derived from the decoding procedure. The final
VLC codebook is shown in Table 5 and is formed by eliminating the symmetric entry
in Table 4. The coding example for FGBPZ is shown in Fig. 16. Table 6 is our detail

codebook with code words.
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Table 5 The final 40 entries VLC codebook

Current The number of next Possible Huffman Code length
RMAX/CMAX RMAX/CMAX outcomes (bits)
(1,0) 11 (3*4-1) 3~4
(1,1) 8 (3%3-1) 2-4
(2,0) 7 (2%4-1) 2-4
(2,1) 5(2%3-1) 2-3
(2,2) 3(2%2-1) 1~2
(3,0) 3(1%4-1) 1~2
(3,1) 2 (1%3-1) 1
(3,2) 1 0
Summary 40 0~4
NI pccoer  Can L
o[ 1] 1 LD 1] o 0 !
1) 1 0] O 1l oo 1| |
10 11 0 Rmax~ 1| 0] 0] 0 2
11 O O] O ol of o 3| 4 ,

Packing AC coef bits
in Zig- Zag Scan order

start plane

MBPZ : 1010_100111111000

Type code : Ool

=2
O «—----
=
a—

for MBPZ
Cmax max Cmax
y y y
1] 0| O 11 0] O 1] 0] O
0l 0] O] O 0ol 1] 0 0ol 1] 0O
Rmax— 1] 0| O] O Rmax —» 0l 0] O 0]l 0] O
01 0] O 0l 0] O Rmax—{ O] 1] 0] O
MBPZ : 00_1100 011111001000 1_1110_11110010001000
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Fig. 16 A coding example for FGBPZ
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Table 6 The overall codeword in VLC codebook

Current Next Code length
Codeword ]
RMAX/CMAX RMAX/CMAX (bits)
1,1 000 3
2,0 001 3
2,1 010 3
3,0 011 3
2,2 100 3
1,2 1010 4
(1,0) G, 1) 1011 4
3,2 1100 4
3,3 1101 4
2,3 1110 4
1,3 1111 4
2,2) 00 2
2, 100 3
1,2) 101 3
(L1) 353 110 3
(3,2) 111 3
2,3) 010 3
3,1 0110 4
1,3) 0111 4
2,1 00 2
3,0 01 2
3,1 100 3
(2,0) 2,2 101 3
3,2) 110 3
3,3 1110 4
2,3 1111 4
3,2) 01 2
2,2 00 2
(2,1) 3,3 10 2
3,1 110 3
2,3 111 3
(2.2) 2,3) 00 2
(3,2) 01 2
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A3,3) 1
3, 1) 0 1
(3,0) A3,2) 10 2
A3,3) 11 2
(3.1) 3,2 0 1
3,3 1 1

3.2.2.2 Data Packing

Since our compression ratio is fixed at two, the budget of coded data is 64 bits.
After DCT and bit-plane zonal coding, we need to packet coded data into 64 bits
segment before sending to external memory. First we reserve for the DC coefficient
because of its importance in transform. Second, we use 4 bits to packet the start plane.
The rest of budget, that is to say, 52 bits;/is‘used for storing AC coefficients. With the
help of the fine grain bit-plane zZonal- coding,”  AC coefficient are divided into
bit-planes and presented by the.coding format in Fig.-15 Coding flow of FGBPZ with
VLC codebook. Recall that type A; B,”C and D is referred from [20].. The procedure

is keep packing bit-plane by bit-plane until the end of bit-planes or running out of bit

budget.
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When running out of budget, unpacked-information will be loss. Recall that the
newly significant coefficient must be followed by its sign bit. If newly significant bit
is packed while its sign bit is cut, this coefficient will be wrong after decoded. We
make a mechanism to avoid this situation and show in Fig. 17. If next packing bit is
newly significant bit and the rest of the budget is less than two bits, we will abort
packing this newly significant bit.

The final encoding flow chart is shown in Fig. 18. Each bold line in Fig. 18

represents a check point checking whether if we run out of the budget.
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3.3 Coarse Grain Bit-Plane Zonal Coding (CGBPZ)

FGBPZ introduced in section 3.2.2 is simple and efficiency. This algorithm
encodes the coefficients on “bit” level. But its encoding procedure may cost more
than 30 cycles and decoding procedure may cost more than 10 cycles under our
estimation. So FGBPZ is more suitable embedded into software or hardware/software
co-design system. To implement the algorithm as hardware accelerator, the algorithm
must be further modified into simpler version.

By the discussion in chapter 6.1, we will see the critical problems of embedding
a compressor into system. Taking all these problems into consideration, we propose
coarse grain bit-plane zonal coding (CGBPZ)::CGBPZ is a trade off between short
cycles, ability of parallelism and*quality. The details will be presented in this section.

Fig. 19 is the coding formats of CGBPZ. All magnitude bit-planes of AC
coefficients are coded in uniform.format. Eor each bit-plane, we record the
RMAX/CMAX (4 bits), and then pack the bits which are enclosed by RMAX and
CMAX. 4 bits are used to record RMAX/CMAX of each plane. The dependencies

between bit-planes are not used in CGBPZ.

Packing the bits enclosed by
— () Rmax| cmax| RMAX/CMAX

Next bit plane
Fig. 19 CGBPZ coding format for the magnitude of AC coefficients

In CGBPZ, we introduced the concept of sign bit-plane. Sign bit-plane can be
considered as union of sign bits for each coefficient. We only packet those used sign

bits. Because we have only 64 bits budget for each 4x4 unit, the situation of unable to
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pack all the information may be happened frequently. Since not every coefficient can
be packed, packing whole sign bit-plane may become a waste. So we take the
maximum value of RMAX and CMAX from packed bit-plane (from start plane to end
plane) and packing sign bit-plane by those two boundaries. Under this method we will
waste least bits to pack unused sign bits. The RMAX/CMAX of sign bit-plane needs
not to be packed when encoding, because they can be derived from those coded

bit-plane. Fig. 20 illustrates the idea of how we derive the RMAX/CMAX of sign

bit-plane.
Pln 1: Start plane Pln 2 Pin 3: End plane
RMAX/CMAX:4/1 RMAX/CMAX:3/2 RMAX/CMAX:2/3
A 4
Sign-bit-pln
RMAX/CMAX:4/3

Fig. 20 The concept of how to derive the RMAX/CMAX of sign bit-plane from
coded bit plane.

Finally, in CGBPZ, the end plane needs to be estimated and packed to fulfill the
decoding procedure. Fig. 21 shows the simple concept of end plane decision. From
MSB plane to LSB plane, the calculator estimates the total bits usage accumulated
from most significant plane (MSP) to current plane. If total bits usage is more than 64

bits when accumulates to Nth bit-plane, (N+1)th bit-plane is the end plane.
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MSB plane

Plane count -1
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RMAX/CMAX
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NEXT plane bit usages
till next plane

budget? NO

Current plane is
end plane

Fig. 21 End plane decision

The overall encoding flow can be 'shown in Fig. 22. Finally, there is one small
skill. According to the description above, the bits usage accumulated to end plane is
less than bit budget. Therefore, there are few bits unused. To well use those bit
budgets, we keep putting the information into those unused budgets within the

RMAX/CMAX of sign bit-plane.
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Fig. 22 Overall encoding flow of CGBPZ
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3.4 Decoding Process and the Compensation

Roughly, the decoding process' can ‘be'sthinking as the inverse process of
encoding. We take the coded data segments and.divide them into DC coefficient and
AC coefficients.

Since the algorithm we proposed is a lossy ¢ompression and the lower bit-planes
of AC coefficients are often truncated due to limited budget, we apply a simple
compensation here. The basic concept is shown in Fig. 23. The compensation is
applied when the coefficient is nonzero and the end plane is larger than least bit-plane.
This compensation technique can be considered as adding a median number of lost
bit-plane. It leads to a satisfied quality improvement. Notice that this compensation is

slightly different with [20] and has better quality improvement.
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Fig. 23 Proposed compensation technique

3.5 Embedded Result on Software Simulation

Before all the discussion, we want to define:the formula of PSNR calculation
first. All the PSNR values in this section are the PSNR between compressed
sequences versus the original sequence. The reason why we choose original sequence

as reference is to establish an absolute quality level. The equation of PSNR is given in

(3):
PSNR =10xlog S 3)
X P - s _P , 2
R X C o ;( origin (I" C) compressed (}" C))

3.5.1 FGBPZ versus CGBPZ

In this section, we focus on comparing the coding efficiency between fine grain
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bit-plane zonal coding (FGBPZ) and coarse bit-plane zonal coding (CGBPZ). We
want to show the result of trade off between FGBPZ and CGBPZ. Fig. 24 shows the
embedded result on Foreman sequences with group of picture (GOP) 20. We can see
the PSNR value decades along the P frame number. This is because each P frame is
formed by referring the blocks in previous frame. Since every reference frames are
compressed by our lossy EC algorithm, the errors will be propagated and accumulated
through P frames. This phenomenon is also called drift effects. Fig. 25 shows the drift
effect but the experimented sequence is Mobile Calendar. Mobile Calendar is famous
by its complex components and fast motion. Those features make Mobile sequence
difficult to be compressed and the loss on quality may larger than slow motion

sequences.

foreman_QP28_IP=1/19

28 | ——ori_dec
—=—embedded_fine
embedded_coarse

20 o I |
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

frame #

Fig. 24 Dirift effects on Forman_QP28_GOP20
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Fig. 25 Dirift effects on Mobile_QP28_GOP20
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Fig. 26 PSNR loss considering different QP and different GOP (Foreman)
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Fig. 27 PSNR loss tesults different QP and different GOP (Mobile)

Fig. 26 and Fig. 27 show the results of PSNR loss considering different QP and
different GOP. We can see that the PSNR loss increases with the increasing GOP
while tail off at higher QP values.

According to our simulation results over sequences Akiyo, Foreman, Mobile,
Stefan, GOP 10, 20, 30, and QP 20, 24, 28, 32, the average difference in quality
between using CGBPZ and FGBPZ is 1.5 dB. This number shows that CGBPZ is a
good trade off between complexity and quality. 1.5dB PSNR drop enables the fast

encoding procedure form over 30 cycles (FGBPZ) into 2 cycles (CGBPZ).

3.5.2 CGBPZ versus MHT

In this section, we focus on the performance between coarse bit-plane zonal
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coding (CGBPZ) and modified Hadamard transform (MHT). CGBPZ is what we use
as hardware implementation and system integration. Considering the requirement of
high speed processing, we compare CGBPZ with MHT work. Fig. 28 shows the
embedded result on Foreman with group of picture (GOP) as 20. The proposed DCT
with CGBPZ has better performance and can efficiently slow down the speed of
decade compared with MHT work. Fig. 29 also shows the drift effect but the

experimented sequence is Mobile Calendar.

foreman_QP28_IP=1/19 —e—ori_dec
—8— MHT_embedded

40 —+—CGBPZ_embedded

20 S S I E— S S I E— YT — N N S S I E— S S I E—
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frame #

Fig. 28 Drift effects on Foreman_QP28_GOP20
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Fig. 31 PSNR loss results different:QP and different GOP (Mobile)

Fig. 30 and Fig. 31 show the results of PSNR drop considering different QP and
different GOP. According to out simulation-results-over sequences Akiyo, Foreman,
Mobile, Stefan, GOP 10, 20, 30 and QP:20, 24, 28, 32, the average quality difference
between DCT plus CGBPZ and MHT is 7.12 dB. This number shows the coding

efficiency of proposed algorithm is much better than MHT.
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Chapter 4

Proposed Embedded
Compressor/Decompressor

Architecture

In section 4.1 and 4.2, we will introduce our hardware design of proposed

embedded compressor and decompressor respectively. The architectures are designed

to fit the specification in chapter 6.1.

4.1 Architecture of Encoder Design

Overall block diagram of embedded compressor is shown in Fig. 32.

Bit plane buffer

Input 4x4 1-D 1-D

Plane contents

Pixels | DCT DCT

!

h 4

RMAX/CMAXs R
RMAX/ICMAX 7] .
calculator i Content adaptive
ripple connecter
End plane —End plane—»
decision
DC coef. Start plane
8 bits l End plane—
—
8to6
MUX
Y l h 4 h 4 h 4
DC Coef Start plane& = CMAX/RMAXs Useful Plane contents
‘| End plane for coded planes | sign bits for coded planes

- 8bits p-a—6 bits —»-«-CMAX/RMAXs—»-«<=15bits »-4— Plane Contents —»

Fig. 32 Overall block diagram of embedded compressor
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4.1.1 The Architecture of Two Dimensions Discrete Cosine

Transform

The hardware design of DCT is referred from Lee’s architecture [16]. This
architecture can maintain the same performance with original DCT while reduced the
number of multiplications to about half of those required by the existing efficient
algorithms. This design allows us to take the advantage of DCT while not suffering
from its hardware complexity. Notice that in Table 3, [16] uses more multiplications
than [17] when applying 4 points DCT. However, the two inputs of multiplications in
[16] are formed by one constant and one variable number while the inputs of
multiplications in [17] are formed by .two variable numbers. According to our
experience, the synthesis area of multiplications which has one constant input is about
1/3 comparing to the synthesis ‘area of multiplications which has two variable
numbers. Therefore, design [16]-we referred-still gets the better of design [17] when

applying 4 points DCT.

4.1.2 The Architecture of Coarse Grain Bit-Plane Zonal Encoding

and Data Packing

There 1s a combinational block dealing with coefficients to derive the
RMAX/CMAX and plane content of each plane. To serialize the plane information in
one cycle, we propose the content adaptive ripple connector to solve the problem. The
basic concept is shown in Fig. 33. The 10 lines at left represent the 9 plane contents
pulsing 1 sign bit-plane content. Each connecter represents a shifted-outcome

generator and a 16 to 1 MUX controlled by 4 bits RMAX/CMAX. It is shown in Fig.
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34. By the ripple behavior, the wire at the end of the flow is the connected result.
Notice that we embed this embedded compressor into our 100MHz decoder, thus one

cycle is enough to finish our ripple processing.
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Fig. 34 The architecture of a single connecter in Fig. 33

4.1.3 The Architecture of End Plane Calculation

In CGBPZ, we separate the AC coefficients into sign bit-plane and magnitude
45



bit-planes. The end plane is important since it dominates the data packing process. We
propose the architecture in Fig. 35. We unfold whole loop shown in Fig. 21. This
architecture may increase the gate count but enable us to finish end plane decision in

one cycle. It can be considered as a 6 bits ripple-adder plus a comparator.

Bit count for
—8— si ;
Bit . Bit count for> Y591 bits ’W’—» End plane
1L couts mag. bits | L. 8 JYYYYVYVYY N
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Adder S—p v 5
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--------- Total bit count accumulated-from MSB.plane

Adder |

Bit counts for pln_0 —»

Fig. 35 The architecture of end plane calculation

4.1.4 Overall Encoder Design

Fig. 36 shows the pipeline architecture of compressor design. Since compressor
has more time to handle the encoding process, we use three stages here and each stage
has 4 cycles. Since the deblocking filter output 4 pixels per cycle and the 2 stages, 8
cycles are used for calculating a 4x4 DCT, one 1-D, 4 points DCT functional block for
each pipeline stage is enough.

Under this design, a MB needs 72 cycles to encode. First 4x4 block takes 12

cycles and rest of 15 blocks take 4 cycles.
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Fig. 36 Overall encoder design

4.2 Architecture of Decoder Design

<44 cycles—

Overall block diagram of embedded decompressor is shown in Fig. 37.
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4.2.1 Architecture of Data Unpacking, Bit-Plane Zonal Decoding and

Compensation

Data unpacking can be considered as a reverse process of encoding. The mainly
different is that the information is ready and less calculation is needed at decoder, so
the decoder just needs to put the data back into correct positions. Therefore, decoder
leads to smaller gate count comparing to encoder.

According to the coding format, the DC coefficient, start plane and end plane are
fixed at the beginning of the coded segment and are easy to decode. With the help of
start plane and end plane, we can split the union of RMAX/CMAX by a simple MUX.
Again, we use adaptive ripple architecture.. With the help of RMAX/CMAX of each
bit-plane, the content adaptive.ripple,dis=connector can be applied and the AC
coefficients can be pieced together:

After coefficients reconstructed,compensation is applied. There is a MUX
controlled by the end plane flag. If Nth'plane‘is the end plane, the (N-1)th plane will

be filled with 1 if the magnitude of the position is not zero.

4.2.2 Architecture of Two Dimensions Discrete Cosine Transform

The hardware design of two dimensions DCT in decoder is the same as in
encoder. Notice that the DCT unit deals with 4 pixels per time. In decoder design the

timing is very critical, therefore four sets of 1-D, 4 points DCT units are needed.

4.2.3 Overall Decoder Design

Fig. 38 shows the pipeline stage of decompressor. To fast provide data for motion
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compensation unit,

the decompressor must

support higher throughput. The

decompressor is divided into two stages and each stage needs 2 cycles. A 4x4 block

needs 4 cycles to be decoded. Decoding a MB just needs 34 cycles.
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Fig. 38 Overall decoder design
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Chapter 5

Design Implementation and Verification

5.1 Design Implementation

In this thesis, we proposed a flexible algorithm which achieves good coding
efficiency and is suitable to integrate with any video decoder. The proposed
architecture is synthesized with UMC 90-nm CMOS standard-cell library. The
operation frequency is 100 MHz. The gate counts of proposed algorithm for
compressor/decompressor are 15.8K/14.2K respectively.

Embedded encoder is divided inte 3 pipeline stages and each stage cost 4 cycles.
Although the pipeline stage of encoder can be shorten to 2 cycles, but considering that
the de-blocking filter needs 4 cycles to completely output a 4x4 pixel block. To
integrate with the original system with out any extra buffer, four cycles per stage is a
better choice. At the same time, longer cycle per stage can reduce the number of 1-D,
4-points DCT functional blocks and can decrease the area.

Embedded decompressor is divided into 2 pipeline stages and each stage costs 2
cycles. The minimum pipeline stage design is one cycle per stage, 3 stages total (2 for
2-D DCT, one for CGBPZ decoder). But this minimum design requires 64 bits bus
bandwidth. Therefore 2 stages, 2 cycles each is the fast design in system with 32 bits
bus bandwidth.

A summary of hardware design is given at Table 7.
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Table 7 Summary of hardware design

Proposed EC
Function part Compressor Decompressor
Synthesis process UMC 90nm
Operate Frequency CIF@SMHz
HD1080@100MHz
Latency/MB 72 cycles 34 cycles
Gate Counts 15.8K 14.2K
Power 2.78mW 1.66mW

5.2 Design Verification

The flow of design verification is shown 1in. Fig. 39. The verification can be
considered as two parts. One -is ‘software and the -other is hardware. Patterns are
generated by software and apphied as the input of hardware. At the same time, the
software calculates the correct answer andrcompares the result with hardware’s result.
And then, the result is stored in memory. Again the coded data is accessed by software

decompressor and hardware decompressor. The decoded data is checked to confirm

the result is met on software and hardware.
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Chapter 6

System Integration and Experimental
Results

In section 6.1, we will first introduce the specification of SI2 low power H.264
decoder. The problems occurred during integration will also be discussed. The detail

analysis will be given in section 6.2.

6.1 System Analysis

The overall system block diagram-1s shown'in'Fig. 40. Our H.264 decoder works
at 100 MHz, performing HD1080 at 30frames/per second. The embedded compressor
compresses the data from deblocking filter. 4x4 blocks will become 64 bits segments
and then stored into off-chip memory. The embedded decompressor decompresses
coded segments from external memory and sends to motion compensation unit (MC).

The system bus bandwidth is as 32 bits and the external memory is 32 bits per entry.
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Fig. 40 The overall system block diagram

6.1.1 Interface

The embedded compressor can be considered as an interface between the chip
and the external memory. Fig. 41 is the system interface design for embedded codec.

The output speed of deblocking filter is 4 pixels per clock, thus the best
processing clocks for each pipeline stage of embedded compressor must less or equal
to 4 cycles to avoid the traffic jam at the input of embedded compressor. Another
interface issue occurs at the input of motion compensation (MC). The data provider of
MC switch form external memory to the proposed embedded decompressor. The input
bandwidth of MC in original system is 4 pixels per cycle, so the basic requirement is
that the embedded decompressor must output at least 4 pixels per cycle.

Finally, an address converter will be needed. Since the compression ratio is fixed

at two, the address converter is easy to implement.
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Fig. 41 System interface design for embedded codec.

6.1.2 Overhead Problem

As we introduced in chap’3:l,~embedded compressor suffered from overhead
problem and the overhead ratio directly ilinks to the coding unit. However, the
overhead problem in our system is different with chap 3.1 since our system is 1x4
pixels array-based not pixel based. The access behavior of motion compensation
with/without embedded compressor can be analyzed as follows. Here we simply
analysis two cases: best case and worst case.

If the requested 4x4 blocks are perfectly aligned with the coded 4x4 blocks, only
2 cycles are needed to fetch the 4x4 block while the original system needs 4 cycles to

fetch. This situation is illustrated in Fig. 42

55



Required data
Ori_data_fetch : 1x4

~

MV(4,4)

EC_data_fetch : 4x4

Target_of _MC : 4x4

Fig. 42 Best case on data fetching

The worse situation is the sub pixel case. For motion vector (X, y), both x and y
are not integers. Therefore a 4x4 block needs a 9x9 pixels block to finish the motion
compensation. 18 cycles is needed for embedded compressor while original system
needs 27 cycles. Fig. 43 shows the analysis above. Full case analysis will be given in
section 6.2.1. In chapter 6.2, we'can see that H.264 decoder with an embedded
compressor does reduce the access.times and.can efficiently reduce the access power

consumption.

Required data
Ori_data_fetch : 1x4

EC data_fetch : 4x4

MV(%2, 7 )
.1 Target_of MC : 4x4

Fig. 43 Worse case: sub pixel case

6.1.3 Processing Cycles Problem

The third part of system analysis is the problem of processing cycle. The
existence of this problem is due to the tight processing cycles of our low power H.264

56



decoder. Our H.264 decoder works at 100 MHz, performing the HD1080i@30fps. By
a simple division, we can find that it is only 25 cycles for motion compensation to
deal with a 4x4 block. Therefore we need a short-cycle design to turn down the
loading on cycles of the embedded compressor. Detail analysis will be given in

section 6.2.2.

6.2 System Integration

6.2.1 Access Reduction

Recall our motivation, we try to scarify some quality while achieve power
reduction. In following section we will introduce how we reduced the access.

The correlated accesses of ‘EC can be separated into two parts. One is the write
accesses from deblocking filter;which writing data to’' external SDRAM. Another part
is the read accesses from motiofi compensation’' (MC) unit. First part is easy to be
analyzed because the write accesses are formed by writing frames into SDRAM. The
access times after adding EC (4x4 pixel-unit and CR=2.0) are always half of the
original system (1x4 pixel array).

The read accesses requested from MC are much more complicate. Motion
compensation unit requests data based on motion vector (MV). For further discussion,
the value of x and y in motion vector (X, y) can be classified into 3 types: align, not
align and sub pixel case.

1) Align: the value is a quadruple. It can fit with the 4x4 coded block
grid.

2) Not align: the value is not a quadruple but an integer. Needed 4 pixels
may span two 4x4 block grids.
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3) Sub pixel case: the value is not an integer but accurate to 2 or . It

needs 9 pixels to be interpolated into 4 pixels.

In section 6.1.2, we already explain several cases of the access behavior between

system with and without EC. Here we give the analysis of overall cases in Table 8.

Notice that in all cases the access times with EC are always less than or equal to the

access times of original system.

Table 8 Overall cases of read access requested by MC with/without EC

Access times . Probability
Case of MV Access for | Access times
o for system with of Each case
(x,y) Original system| Reduced?
EC (%)
(align, align) 4 2 yes 33
(align, not align) 4 4 equal 0.4
(align, sub) 9 6 yes 5.1
(not align, align) 8 4 yes 4.5
(not align, not align) 8 8 equal 04
(not align, sub) 18 12 yes 54
(sub, align) 12 6 yes 23.5
(sub, not align) 12 12 equal 1.81
(sub, sub) 27 18 yes 25.8

The probabilities of each case are derived by simulation over 4 sequences (Akiyo,

Foreman, Stefan, Mobile Calendar), 300 frames each. These sequences are formed by

GOP 30.

According to the probabilities, the average reduction achieved on read accesses

is 40% of original accesses.

6.2.2 Processing Cycles Problem
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In section 6.1.3, we had described the problem of processing cycles. In this
section, we will show the feasibility of CGBPZ to integrate with our system.

Based on not to change our original system, we have two constrains here. First,
the original system specification is HD1080@100MHz, 30 frames per cycles. This
means the available cycles for each 4x4 block unit are 25 cycles. We hope to finish
MC with proposed EC in 25 cycles. Second, we hope that after embedding EC, we
won’t change the data input mechanism of MC (sending data into MC continually).

The solution we used to solve constrain 2 is to add a new state into original states
and to insert buffer between embedded decompressor and MC. The signal “MC read
data enable” 1s putting off till the buffer has enough data to continually feed into MC.

However, this new state cost times. Now the required cycles of “MC data read
states” is equal to the original process cycles of MC plus the new state “EC decode”
like in (4). The full cases discussions of “EC~decode” cycles plus original “MC data

read” cycles are in Table 9.

process _time(MC _with _ EC) = delay(EC _decode) + process _ time(Original _ MC)
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Table 9 Full cases of “EC decode” cycles plus original “MC data read” cycles

Num of Delay Processing Total Probability
Case of MV ]
Ref. for time for | MC cycles |of Each case
&3 block | EC decode | Ori. MC | for EC (%)
(align, align) 1 4 4 8 33
(align, not align) 2 5 4 9 0.4
(align, sub) 3 5 9 14 5.1
(not align, align) 2 5 8 13 4.5
(not align, not align) 4 7 8 15 0.4
(not align, sub) 6 7 18 25 5.4
(sub, align) 3 6 12 18 23.5
(sub, not align) 6 9 12 21 1.81
(sub, sub) 9 9 27 36 25.8

We can see that the new processing cycles in: Table 9 of all case MC+EC are
much less than 25 cycles except the (sub, sub) case and (not align, sub) case. By using
the probabilities, we can calculate the.average cycles used for MC+EC. The average
cycles are 19.3 cycles. That means, although' the (sub, sub) case uses more than 25
cycles, it is still fit the system timing constraint since there are available cycles from

other modes. So, embedding proposed codec into original system is feasible.

6.2.3 Access Reduction Ratio

The access ratio of system with EC vs. original system is defined as (5):

Mem_read_EC + Mem_write_ EC
Mem_read_Ori. + Mem_write_Ori.

Access ratio =

)

According to our simulation, the ratio of read accesses with/without EC is 0.625,

60



and the ratio of write accesses with/without EC is fixed at 0.5. Also, we obtain the
average access ratio of read/write in original system is about 3.51. The overall access

ratio (with/without EC) can be calculated below (6):

0.625x (Mem_read_Ori.) + 0.5* (Mem_write_Ori.)
Mem_read_Ori. + Mem_write_Oril.

_0.625x(3.51)+0.5x (1)
3.51+1

Overall access ratio =

(6)

=0.596

Therefore, the average reduction ratio on memory access is:

AVG reduction ratio=1-—overall access ratio

=1-0.596 =40.4%

6.2.4 Simulation Result on SDRAM Power Reduction

We choose the system-power calculator [21] as external memory power model
and the parameter setting is according to [22]. We simulated the memory using on
CIF@50MHz and HD1080@100MHz. The results are shown in Fig. 44 and Fig. 45.
Each figure includes the core power of H.264 decoder, SDRAM background power
and SDRAM access power (R/W) operated on different frequencies. The power
saving on performing CIF is 7.6mW while the power saving on performing HD1080
1s 154.8mW. It does make sense since the average available cycles for a 4x4 block on
both video formats are the same and the access ratio on R/W is slightly different due
to different test sequence. Therefore it is reasonable that the power reduction is almost

directly proportional to the frame size.
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Chapter 7

Conclusion and Future Work

7.1 Conclusions

In this thesis, we proposed a flexible algorithm which has good coding efficiency
and is suitable to integrate with any video decoder. With the help of this
recompression engine, we can reduce the bandwidth requirement and the external
frame memory and reduce the data access times to achieve the goal of power saving.
The fixed compression ratio makes this: extra function easily be integrated with a
system by adding a simple address’ contreller: The proposed architecture is
synthesized with 90-nm CMOS standard-cell library.- The operation frequency is 100
MHz. The gate counts of proposéd:algorithm for compressor/decompressor are
15.8K/14.2K respectively. The proposed architecture costs 30K gate counts and deals
with a 4x4 block unit while previous MHT work costs 20K gate counts in dealing
with a 1x8 pixels array. The proposed algorithm not only gains 7.12dB in the quality
but also achieves an area-efficient hardware implementation. The peak power

consumption of proposed embedded codec @ 100MHz is 4.445mW.

7.2 Future Work

Future works are formed by three parts. First is about the coding efficiency. From
proposed FGBPZ to CGBPZ, we made a trade off between the encoding/decoding

cycles and the visual quality. CGBPZ achieves fast coding speed and acceptable
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visual quality. However, error propagation delivered through 29 P frames is still
noticeable by human eyes. To embed a compressor/decompressor in video decoder,
the only way to get better visual quality is to reduce the quality loss of each referred
frame. Therefore, refine coding scheme to reduce quality loss is very importance.

Second part is to develop adaptive compensation modes according to different
characteristics of video sequences. The compensation method we proposed is based
on universal behaviors of our testing data base. Proposed compensation method
reaches minimum average PSNR loss over our data base. But we also found other
kinds of methods have better performance on compensating certain video sequences
while having poor performance on the others. That is why we wish to develop
adaptive compensation modes. To compensate sequences according to their
characteristics can optimal the individual visual.quality and is also a direction of
quality improvement. Since the-pewer consumption-of our embedded codec is much
less than the power we reducedion—-acecess reduction, to increase reasonable
complexity to get better performance is.a goodidea and is worth us to try.

The final part is about the memory power model. The memory power model we
use is to estimate the memory power consumption according to the average behavior
of data access ratio [21]. For a detail analysis, there are some factors needed to be
specified such as page mode design and burst length. The burst length determines the
efficiency of memory data read accesses and page mode determinates the hit rate.
Power consumption on memory is related to those factors. If we can build a power
model taking those factors into account, we can analyze our memory power

consumption in a more accurate way.
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