
 

國 立 交 通 大 學 
 

電子工程學系 電子研究所碩士班 
 

碩 士 論 文 
 

 

 

 

使用可擴展蒙哥馬利乘法器之抵抗簡單及差動能

量攻擊法的 RSA 密碼核心 
 

A RSA Crypto-Core using Scalable Montgomery Multiplication with 
DPA and SPA Resistance 

 
 
 
 

研究生：林祐進 

指導教授：張錫嘉 教授 

 

 

 
 
 

中 華 民 國 九 十 七 年 十一 月 

 



  

使用可擴展蒙哥馬利乘法器之抵抗簡單及差動能量攻擊法

的 RSA 密碼核心 
A RSA Crypto-Core using Scalable Montgomery Multiplication with 

DPA and SPA Resistance 
 
 
 
 
 

研 究 生：林祐進      Student：Tu-Ching Lin 

指導教授：張錫嘉      Advisor：Hsie-Chia Chang 

 
 
 

國 立 交 通 大 學 
電 子 工 程 學 系  電 子 研 究 所 碩 士 班 

碩 士 論 文 
 
 

A Thesis 

Submitted to Department of Electronics Engineering & Institute of Electronics 

College of Electrical and Computer Engineering 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of Master 

In 

 
Electronics Engineering 

 
November 2008 

 
Hsinchu, Taiwan, Republic of China 

 
 

中華民國九十七年十一月 



  

使用可擴展蒙哥馬利乘法器之抵抗簡單及差動能

量攻擊法的 RSA 密碼核心 

學生：林祐進 

 

指導教授：張錫嘉 

 

 

國立交通大學電子工程學系 電子研究所碩士班 

摘 要       

這篇論文中介紹了一個使用可擴展蒙哥馬利模數乘法器的 RSA 密碼系

統，這個可擴展的乘法器可以用在 GF(p)和 GF(2m)並減少了 48%的運算時間

相較於先前的架構。使用這個可擴展的乘法器的 RSA 密碼核心，最多可以支

援 4096 位元任意長度。使用 TSMC .18 µm 設計流程實現這個架構後，所使

用的邏輯閘數目為 365k，在 100MHz 的操作時脈下，完成金鑰長度為 4096

位元的 RSA 運算總共花費 355ms。此外考慮能量攻擊的防禦，分別使用隱藏

私密金鑰及提出平衡能量消耗的方法，使得 RSA 密碼核心能夠抵抗簡單及差

動能量攻擊。 

 



 
A RSA Crypto-Core using Scalable Montgomery Multiplication with 

DPA and SPA Resistance 
 

 
student：Yu-Ching Lin 

 

Advisors：Hsie-Chia Chang 
 

 

Department of Electronics Engineering & Institute of Electronics 
National Chiao Tung University 

ABSTRACT 

A scalable hardware architecture of modular multiplier on RSA 

cryptosystem is introduced in this thesis. The proposed scalable radix-2 multiplier 

is suitable for either GF(p) or GF(2n) and reduces 48% of computation time in 

contrast to previous scalable architectures. Based on the scalable multiplier, the 

proposed RSA crypto-core can work in any precision less than 4096 bits. After 

implemented by TSMC .18 µm technology, the gate count is 365k and a RSA 

encryption with 4096-bit key length can be completed in 355 ms under 100MHz 

operation. Furthermore, we also consider the power attack issues and take 

countermeasure to against DPA(differential power analysis) and SPA(simple 

power analysis) by blinding the secrect key and balanceing the power 

consumption.



誌 謝         

能夠完成這篇論文，指導教授：張錫嘉博士是功不可沒的，在作研究的路上，當我

倦怠時能夠推我一把，當我徬徨時能夠指引我方向，才能夠順利完成研究所的學業及研

究。也感謝林建青學長，對於 security 團隊(已正名為 STAR)的用心指導，因為學長的細

心規劃及親身領導，讓整個團隊日益茁壯。柏均及人偉，謝謝你們在研究上給我這麼多建

議，透過討論我才知道有甚麼不足及需要改進的地方，未來 STAR 就靠你們了。再來是並

肩作戰的好夥伴大嘴，多虧有你的幫忙，才能讓我這麼有效率的完成論文；多虧有你開車

溫暖接送，一群人一起去吃宵夜，才能撐過與研究論文奮鬥的夜晚。修齊學長也給了很多

的幫助，尤其在口試投影片上的真知灼見，讓我能夠從挫咧蛋變成順利完成口試。張鑫偉

感謝你在碩三的這幾個月先幫我墊房租，讓我不致於挨餓受凍，能夠專心做研究。李永裕，

雖然你講話很靠盃，但是在一成不變的研究生活中，點綴一些歡樂。再次感謝所有實驗室

的同學們。 

    最後要感謝總是在背後默默支持的家人及朋友們，爸媽有你們的支持才能讓我無後顧

之憂的完成研究所的學業；有大學同學及朋友們的鼓勵，我才能堅持到最後一刻。再次感

謝這一路上陪我成長茁壯的所有人。 



A RSA Crypto-Core using Scalable Montgomery

Multiplication with DPA and SPA Resistance

Student: Yu-Ching Lin

Advisor: Dr. Hsie-Chia Chang

Department of Electronics Engineering

National Chiao Tung University



Abstract

A scalable hardware architecture of modular multiplier on RSA cryptosystem is intro-

duced in this thesis. The proposed scalable radix-2 multiplier is suitable for either GF (p)

or GF (2n) and reduces 48% of computation time in contrast to previous scalable archi-

tectures. Based on the scalable multiplier, the proposed RSA crypto-core can work in any

precision less than 4096 bits. After implemented by TSMC .18 µm technology, the gate

count is 365k and a RSA encryption with 4096-bit key length can be completed in 355

ms under 100MHz operation. Furthermore, we also consider the power attack issues and

take countermeasure to against DPA(differential power analysis) and SPA(simple power

analysis) by blinding the secrect key and balanceing the power consumption.



Contents

1 introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 RSA Cryptosystem and Montgomery Multiplication 4

2.1 Mathematics Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 N-residue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 RSA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 RSA Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Modular Exponentiation . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Montgomery Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Reduction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Montgomery Multiplication Algorithm . . . . . . . . . . . . . . . . 13

2.4 Power Analysis of Modular Exponentiation . . . . . . . . . . . . . . . . . 15

2.4.1 Simple Power Attack (SPA) . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Differential Power Attack (DPA) . . . . . . . . . . . . . . . . . . . 16

2.4.3 Countermeasure of RSA Against DPA and SPA . . . . . . . . . . . 17

3 Proposed Montgomery Multiplication 19

3.1 Review of Montgomery Multiplication Algorithms . . . . . . . . . . . . . . 19

3.2 Word-based Montgomery Multiplication Algorithm . . . . . . . . . . . . . 21

3.3 Modified Word-based Montgomery Multiplication . . . . . . . . . . . . . . 23

i



4 Proposed RSA Crypto-Core 26

4.1 Overall Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Modular Multiplier Architectures . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 A Scalable Montgomery Multiplier . . . . . . . . . . . . . . . . . . 27

4.2.2 Number of Processing Unit and Size of Word . . . . . . . . . . . . . 30

4.2.3 Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.4 Flexible Output and Permutation Function . . . . . . . . . . . . . . 34

4.3 Countermeasures Against DPA and SPA . . . . . . . . . . . . . . . . . . . 35

5 Implementation Results and Comparison 38

5.1 ASIC Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 FPGA Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Conclusion 42

A Algorithm of Montgomery multiplication over GF (2n) 43

B FPGA Implementation with AMBA 45

C Permutation Function 49

ii



List of Figures

1.1 Public key system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

4.1 RSA flow chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 RSA modular exponentiation architecture. . . . . . . . . . . . . . . . . . 28

4.3 Scalable word-based Montgomery Multiplier. . . . . . . . . . . . . . . . . . 29

4.4 Pipelined diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Several configurations of n=1024, 2048, and 4096. . . . . . . . . . . . . . . 33

4.6 Architecture of Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . 34

4.7 Architecture of Flexible Output. . . . . . . . . . . . . . . . . . . . . . . . . 35

4.8 RSA modular exponentiation architecture against DPA. . . . . . . . . . . . 36

B.1 RSA and other device connect to AHB via AHB wrapper. . . . . . . . . . 45

B.2 Address Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

B.3 AHB to RSA wrapper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B.4 AMBA address mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iii



List of Tables

2.1 Compare of LR and RL algorithms . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Kernel cycle and computation time. . . . . . . . . . . . . . . . . . . . . . . 30

4.2 A comparison of computation time . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Modular exponentiation software performance. . . . . . . . . . . . . . . . 38

5.2 The verification results on ASIC. . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Comparison with other 1024-bits implementations with ASIC design. . . . 40

5.4 The verification results on FPGA. . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Comparison with other 1024-bits implementations on FPGA. . . . . . . . . 41

5.6 Comparison of 4096-bit implementations on FPGA. . . . . . . . . . . . . . 41

C.1 The permutation function of flexible output. . . . . . . . . . . . . . . . . . 50

iv



Chapter 1

introduction

1.1 Background

Since public key cryptosystem [1] was published in 1976 by Whitfield Diffie and Martin

Hellman, the use of discrete logarithm problem in public-key cryptosystems has been

recognized. This method of exponential-key exchange, which came to be known as Diffie-

Hellman key exchange, was the first published practical method for establishing a shared

secret-key over an unprotected communications channel without using a prior shared

secret.

HELLO OX#@$$^&*! HELLOAlice Bob

OX#@$$^&*!......

Encrypt Decrypt 

��������� 	��
�����

Figure 1.1: Public key system.

RSA and El-Gamal are two of the popular public-key cyrptosystems widely used nowa-

days. The RSA algorithm based on the high difficulty of factoring large numbers was

published by Rivest, Shamir and Adleman [2] at MIT1 in 1978. Further, the El-Gamal

algorithm based on Diffie-Hellman key agreement describes the public-key system and

1Massachusetts Institute of Technology, located in Cambridge, MA, USA. http://web.mit.edu/

1



digital signature schemes, and it was proposed by Taher ElGamal [3] in 1985.

Figure 1.1 shows a scheme of public key system. In an encryption scheme anyone can

encrypt using the public key, but only the holder of the private key can decrypt. Security

depends on the secrecy of the private key.

The RSA is the most popular and well-defined security primary technique. It is a cryp-

tosystem widely used to ensure data privacy in many fields such as communication. And

also PKCS#1 standard [4] lines out a way of encrypting data using the RSA cryptosys-

tem. Moreover, in digital signature and digital envelope, RSA provides non-repudiation

and confidentiality of communication. Actually, many good security protocols using RSA

cryptosystem are applied in the modern information technology, for example, virtual pri-

vate networks, electronic commerce, and secure Internet access.

RSA cryptosystem is easy to understand and implement. It is based on modular

exponentiation. This modular exponentiation is performed by repeated modular multi-

plications. In general, the modular multiplication has to be performed a certain number of

times depends on the key length to ensure security, but the consequence is that the RSA

operation has to take much more computational cost for security consideration. In order

to include RSA cryptosystem practically in many protocols for high speed application, it

is desired to devise faster encryption and decryption operations.

1.2 Motivation

In recent years, security issues on communications are more and more significant as the

wireless industry explodes. The public key cryptosystem has become an important role.

There are many applications using RSA as authentication for transactions and encryption

or signature for secure messaging. The precision of operands is getting higher for better

security. A major design concern for multiplication units used in cryptography is the large

number of operand bits, 4096 bits in RSA, which causes large fanout of signals, large wire

delays, and complex routing.

In this thesis, an approach provided to compute the modular multiplication in GF (p),

and word-based method can solve th high fanout problem. Furthermore, the precision of

operand is limited only by the memory. In this thesis, any length less than 4168 bits can

2



be performed and the architecture is so-called scalable.

Recent researches showed that power consumption may reveal the secret key of public

key cryptosystem. Those attacks works based on the statistic analysis of power tracing.

It’s essentially to do something against the power attack. We also proposed a method on

the RSA cryptocore that resists DPA and SPA.

1.3 Thesis Organization

In this thesis, a scalable RSA cryptosystem is given. The algorithms in this thesis are

over prime field. The Montgomery multiplication algorithm over GF (2n) with radix-2 is

given in the Chapter A since the algorithms of binary field with radix-2 are almost iden-

tical in digital system. . In Chapter 2, the preliminary mathematical background of RSA

is first introduced and then we describe the RSA algorithm. In the end of this section,

the Montgomery multiplication is introduced. In Chapter 3,an algorithm for word-based

Montgomery modular multiplication over prime field is proposed. Also a brief introduc-

tion of power attack on modular exponentiation is given in the end. In Chapter 4.2,

all the proposed scalable RSA cryptocore and word-based multiplier architectures are

described in this chapter. First, the implementation of the proposed word-based Mont-

gomery multiplication algorithm is presented. Then a comparison of several configurations

of word-based Montgomery multiplication is described. The modular multiplication is the

main operation for RSA scheme. The rest of section states the countermeasures of DPA

and SPA. In Chapter 5, it shows the hardware implementation results and comparisons

for ASIC and FPGA. Finally, the conclusion is given in Chapter 6.

3



Chapter 2

RSA Cryptosystem and

Montgomery Multiplication

2.1 Mathematics Foundation

This chapter describes the basic arithmetic used in RSA cryttosystem over GF (p). The

most important mathematical tool is number theory, especially the theory of congruences.

Modular arithmetic such as modular multiplication is especially an important part in the

RSA systems, so there are still many approaches to its improvement nowadays.

2.1.1 Number Theory

Congruences

One of the most basic and useful in number theory is modular arithmetic, or congru-

ences. Let a, b, n be integers with n 6= 0. If a and b differ by a multiple of n, a is congruent

to b mod n.

a ≡ b(mod n)

It can be rewritten as

a ≡ b + nk

for some integer k.

Primitive Roots

4



In general, when p is a prime, a primitive root mod p is a number whose powers yield

every nonzero class mod p. There are φ(p−1) primitive roots mod p. Let g be a primitive

root for the prime p.

• If i is an integer, then gi ≡ 1(mod p) if and only if i ≡ 0(modp − 1).

• If j and k are integers, then gj ≡ gk(mod p) if and only if j ≡ k(mod p − 1).

Fermat’s Theorem

Fermat’s theorem states the follows : If p is prime and a is a positive integer not

divisible by p, then

ap−1 ≡ 1 mod p (2.1)

We know that if all of the elements of Zp, where Zp is the set of integers {0,1,. . . ,p−1},

are multiplied by a, modulo p, the result consists of all of the elements of Zp in some

sequence. Furthermore, a × 0 ≡ 0 mod p. Therefore, the (p − 1) numbers

{a mod p, 2a mod p, . . . , (p − 1)a mod p}

are just the numbers {0, 1,. . . , p − 1} in some order. Multiplying the numbers in both

sets and taking the result modulo p yields

1 × 2 × . . . × (p − 1) ≡ (a mod p) × (2a mod p) × . . . × ((p − 1)a mod p)

(p − 1)! mod p ≡ (p − 1)!ap−1.

We can cancel the (p−1)! term because it is relatively prime to p. This yields Equation

2.1.

Euler’s Totient Function

Before presenting Euler’s theorem, we need to introduce an important quantity in

number theory, referred to as Euler’s totient function and written φ(n), where φ(n) is the

number of positive integers less than n and relatively prime to n. It should be clear that

for a prime number p, φ(p) = p − 1 There are two prime numbers p and q, with p 6= q.

Then, for n = pq,

φ(n) = φ(pq) = φ(p)φ(q) = (p − 1)(q − 1). (2.2)

Euler’s Theorem

5



Euler’s theorem states that for every a and n that are relatively prime:

aφ(n) ≡ 1 mod n (2.3)

Equation 2.3 is true if n is prime, because in that case φ(n) = (n − 1) and Fermat’s

theorem holds. However, it also holds for any integer n. Recall that φ(n) is the number

of positive integers less than n that are relatively prime to n. Consider the set of such

integers, labeled as follows:

R = x1, x2, . . . , xφ(n).

Now multiply each element by a modulo n:

S = (ax1 mod n), (ax2 mod n), . . . , (axφ(n)).

The set S is a permutation of R, by the following line of reasoning:

1. Because a and xi are relatively prime to n, axi must also be relatively prime to n.

Thus, all the elements of S are integers less than n that are relatively prime to n.

2. There are no duplicates in S. If axi mod n = axj mod n, then xi = xj .

Therefore,

φ(n)
∏

i=1

axi(mod n) =

φ(n)
∏

i=1

xi

φ(n)
∏

i=1

axi ≡

φ(n)
∏

i=1

xi( mod n)

aφ(n)

φ(n)
∏

i=1

xi ≡

φ(n)
∏

i=1

xi( mod n)

aφ(n) ≡ 1 mod n

An alternative form of the theorem is also useful:

akφ(n)+1 ≡ a mod n (2.4)

6



2.1.2 N-residue

Given an integer 0 ≤ a < n, we define it’s n-residue with respect to r as

ā ≡ a · r mod n, (2.5)

which is also called the Montgomery domain mapping.

It is easy to verify that

• x + y is mapped to x + y = (x + y)r = xr + yr = x̄ + ȳ,

• xy is mapped to xy = (xy)r = (xr)(yr)r−1 = x̄ȳr−1.

Therefore, the multiplication algorithm of the n-residue x̄ and ȳ is

reduce(x̄ȳ).

The algorithms for subtraction, negation, equality test, inequality test,multiplication by

an integer, and the greatest common divisor with n are also unchanged.

In order to map an integer x to it’s n-residue x̄ with respect to r, extra computation

is required. Fortunately,the mapping operation can be done by

x̄ = reduce(xr2) = xr2r−1mod n = xr mod n, (2.6)

where r2 mod n need to be precomputed. And the inverse operation for mapping x̄ to x

is simply multiplied by 1.

x̄ = reduce(xr · 1) = xr · r−1mod n = x mod n, (2.7)

2.2 RSA Algorithm

The RSA scheme is the most widely used to ensure data privacy in many fields and

applied to the digital signature generation and verification, the RSA DS algorithm, an-

nounced in ANSI1 X9.31 [5]. It is a block cipher in which the plaintext and ciphertext are

integers between 0 and n − 1 for some n which is typically between 2512 and 24096. The

more bits provides the higher security. The scheme of RSA is showed as following:

1American National Standards Institute

7



Algorithm 2.1. (RSA Algorithm)

Key generation

Select p,q p and q both prime, p 6= q

Calculate N and φ(N) N = pq,φ(N) = (p − 1)(q − 1)

Select integer E gcd(φ(N), E) = 1;1 < E < φ(N)

Calculate D D ≡ E−1 mod φ(N)

Public key KU = {E,N}

Private key KR = {D,N}

Encryption

Plaintext M M < N

Ciphertext C C = ME mod N

Decryption

Ciphertext C C < N

Plaintext M M = CD mod N

= MDE mod N

= M mod N

2.2.1 RSA Rationale

Let p and q be two distinct large random primes. The modulus N is the product of

these two primes: N = pq. According to equation(2.2), the Euler’s totient function of N

is given by

φ(N) = (p − 1)(q − 1)

Now, select a number 1 < E < φ(N) such that

gcd(φ(N), E) = 1,

and compute D with

D ≡ E−1mod φ(N). (2.8)

Here, {E,N} is the public key and {D,N} is the private key. The value of D and the

prime numbers p and q are kept secret. Encryption is performed by computing

C = ME mod N, (2.9)

8



where M is the plaintext such that 0 ≤ M < N . The number C is the ciphertext from

which the plaintext M can be computed using

M = CD mod N. (2.10)

The correctness of the RSA algorithm follow from Euler’s theorem(Eq.2.3):

Let N and a be positive, relatively prime integers. Then

aφ(N) ≡ 1 mod N

Since ED is equal to 1 mod φ(N), it meet that ED is equal to 1+kφ(N) for some integer

k.

CD ≡ (ME)D mod N

≡ MED mod N

≡ M1+kφ(n) mod N

≡ M1 × Mφ(N)k mod N

≡ M × 1 mod N

[Example]

Let p = 47 and q = 59, then N = pq = 2773 and φ(N) = (p − 1)(q − 1) = 2668. The

value of E must be chosen somewhere between 1 and 2668. Assume E = 17. According

to Eq.(2.8), the value of D is 157. Assume further that the alphabet is represented by

decimal values, i.e. A = 01, B = 02, C = 03, etc. and a blank space is given the value

00.

The plaintext ,M , is given as:

M = RSA CRYPTOSYSTEM

or represented in decimal as:

M = (m7 m6 m5 m4 m3 m2 m1 m0)

= (1819 0100 0318 2516 2015 1925 1920 0513)

9



The plaintext is encrypted block by block,which depends on the size of N , individually.

As an example,the m7 block is encrypted by

181917 mod 2773 = 0818

Performing the same operation on the subsequent blocks generates an

c = 0818 1952 0578 2666 0774 0246 2109 0772.

Decrypting the message requires performing the same exponentiation using the decryption

key D = 157, so

0818157 mod 2773 = 1819 = m1

The rest of the plaintext can be recovered in this manner.

Note that the modular exponentiation is the most important operation in the RSA

scheme.

2.2.2 Modular Exponentiation

In the RSA cryptosystem, the main operation for encryption and decryption is the

modular exponentiation. The most direct way to compute ME mod N is to simply

multiply M for E times. Since all the operands in RSA are typically large than 512 bits

and it is impractical to store the result of ME. There are alternative ways to make it

efficient: the L-R binary method and the R-L binary method.

Supposed the key E is a n-bit in binary representation as:

E = (en−1, en−2, ..., e2, e1, e0)2,

then

ME mod N = M (en−1·2n−1+en−2·2n−2+...+e2·22+e1·21+e0) mod N.

LR Method

ME mod N ≡ ((· · ·(M en−1 mod N)2 · ··)2 · M e1 mod N)2 · M e0 mod N (2.11)

10



As showed in table, the L-R algorithm performs square and multiplication sequentially.

It does mean that both the square and multiply operations can be performed in the same

single hardware multiplier.

RL Method

ME mod N ≡ (· · ·((M e0 mod N) · (M2)e1 mod N) · ··) · (M2n−1

)en−1 mod N (2.12)

In the R-L algorithm, the square and multiply operations are independent, and may be

performed in parallel. Thus, 50% less clock cycles than LR algorithm are required to

complete the exponentiation. However, two physical hardware multipliers are required to

achieve this speed up.

Table 2.1: Compare of LR and RL algorithms

L-R algorithm R-L algorithm

Input : n - bits E = (en−1, . . . , e1, e0)2

m - bits M

Output : m - bits Z

1. P = M ,Z = 1

2. for i = n − 1 to 0

2.1 if (ei == 1)

2.2 Z = Z · P mod N ;

2.3 Z = Z · Z mod N ;

3. return Z;

Input : n - bits E = (en−1, . . . , e1, e0)2

m - bits M

Output : m - bits Z

1. P = M ,Z = 1

2. for i = 0 to n − 1

2.1 if (ei == 1)

2.2 Z = Z · P mod N ;

2.3 P = P · P mod N ;

3. return Z;

2.3 Montgomery Multiplication

In 1985, P. L. Montgomery introduced an efficient algorithm for computing R =

ab mod n where a, b and n are k-bit binary numbers. The algorithm is particularly suitable

for implementation on general-purpose computers and embedded microprocessors. The

11



algorithm use divisions by a power of two, which are simply a few right shifts in hardware

implementation, instead of trail divisions by n, which are used in a conventional modular

operation. The basic idea of Montgomery’s method, reduce algorithm, is stated as

following.

2.3.1 Reduction Algorithm

The Montgomery reduction algorithm 2.2 computes the resulting k-bit number R

without performing a division by the modulus n. Via an ingenious representation of

the residue class modulo n, this algorithm replaces division by n operation with division

by a power of 2. This operation can be easily accomplished on a computer since the

numbers are represented in binary form. Assuming the modulus n is a k-bit number, i.e.,

2k−1 < n < 2k, let r be 2k. The Montgomery reduction algorithm requires that r and n

be relatively prime, i.e., gcd( r , n) = gcd( 2k , n ) = 1. This requirement is satisfied if

n is odd. The Montgomery reduction algorithm 2.2 was showed as following.

Since gcd(r, n) = 1, there are two numbers r−1 and n
′

with 0 < r−1 < n and 0 < n
′

< r,

satisfying

rr−1 − nn
′

= 1 (2.13)

Algorithm 2.2. (reduce(x))

Input : x,r,n

Output: a = xr−1mod n

1. q = (x mod r)n
′

mod r;

2. a = (x + qn)/r;

3. If a > n, then a = a − n;

4. return a;

The reason why the Algorithm 2.2 works is explained as follows.

First,

xr−1 = xrr−1/r = x(nn
′

+ 1)/r. (2.14)

12



For any integer l,

((xn
′

+ lr)n + x)/r (mod n) = (xn
′

n + lrn + x)/r (mod n)

= (xn
′

n + x)/r (mod n)

Therefore, instead of computing q = xn
′

, we can compute q = xn
′

mod r. Supposed

that 0 ≤ x < rn,the value of a = (x + qn)/r will be less than 2n. Therefore,computing

a mod n can be done by simply subtracting n from a if a > n.

2.3.2 Montgomery Multiplication Algorithm

When the numbers X,Y ,and N are large, we can apply the above Algorithm (2.2) to

compute XY mod N in an efficient way. We want to compute Z = XY β
−1 and suppose

that

X =
m−1∑

k=0

xkβ
k, Y =

m−1∑

k=0

ykβ
k, Z =

m−1∑

k=0

zkβ
k, N =

m−1∑

k=0

nkβ
k.

The Montgomery multiplication is showed as follows:

Algorithm 2.3. (Montgomery (X,Y ,N))

Input : X,Y ,N

Output: Z = XY β−mmod N

1. Z = 0;

2. for k = 0 to m − 1

2.1 q = (Z + xkY )(β − n0)
−1
β mod β ;

2.2 Z = Z + xkY + qN ;

2.3 Z = Z/β;

3. return Z;

In the Algorithm 2.3, we use the notation (α)−1
β to denote the inverse of α in Zβ.

The reason why the algorithm works is explained as follows. The algorithm computes the

answer Z incrementally. At each iteration, xk is scanned to determined the operation. The

computation is similar to the reduce Algorithm 2.2. That is, compute Z = Z +xkY +qN

and then Z = Z/β. The rationale behind this computation is to find a proper value of q

13



so that, at the k-th iteration, the value of Z + xkY + qN is a multiple of β. As explained

above, the value of q is

q = (Z + xkY )N
′

mod β,

where N
′

is the inverse of N in Zβm . Therefore,

q = (Z + xkY )N
′

mod β = (z0 + xky0)(β − n0)
−1
β mod β,

In the above equation, we use the fact that

RR−1 − NN
′

≡ 1 (mod βm)

since gcd(N, βm) = 1, where R = βm.

Thus, −NN
′

mod β = 1, which implies that

N
′

mod β = (−N)−1
β = (β − n0)

−1
β .

Suppose that β = 2k for some positive integer k, and that the value of n0 = β − 1. Then

the value of (β −n0)
−1
β = 1. In this case, q = (z0 + xky0) mod β, which is the value of the

last digit of Z + xkY . Therefore, we can save the computation of the value of q at each

iteration. Supposed that k = 1, the Montgomery Multiplication algorithm with radix-2

can be rewritten as following algorithm 2.4.

Algorithm 2.4. (Montgomery with radix-2)

Input : X = (xm−1, . . . , x0)2,Y = (ym−1, . . . , y0)2,N = (nm−1, . . . , n0)2

Output: Z = (zm−1, . . . , z0)2

1. Z = 0;

2. for k = 0 to m − 1

2.1 q = Z + xkY ;

2.2 q0 = q mod 2;

2.3 Z = q + q0N ;

2.4 Z = Z/2;

3. return Z;

14



2.4 Power Analysis of Modular Exponentiation

Cryptographers have traditionally analysed cipher systems by modeling cryptographic

algorithms as ideal mathematical objects. Conventional techniques such as differential [6]

and linear [7] cryptanalysis are very useful for exploring weaknesses in algorithms. But

the physical implementations often result in the leakage of side-channel information.

Attacks have been proposed that use such information as timing measurements [8],

power consumption [9], electromagnetic emissions and faulty hardware. In this section

we examine the weakness of RSA cryptographic algorithms to power analysis attacks.

Specifically, attacks on the modular exponentiation process are described.

Power analysis attacks work by exploiting the differences in power consumption be-

tween when a tamper-resistant device processes a logical zero and when it processes a

logical one. For example, when the secret data on a smartcard is accessed, the power

consumption may be different depending on the Hamming weight of the data. If an at-

tacker knows the Hamming weight of the secret key the attacker could potentially learn

the entire secret key. This type of attack, where the adversary directly uses a power

consumption signal to obtain information about the secret key is referred to as a Simple

Power Analysis (SPA) attack and is described in section 2.4.1. Differential Power Analysis

(DPA) is described in section 2.4.2 and it is based on the same underlying principle of

an SPA attack, but uses statistical analysis techniques to extract very tiny differences in

power consumption signals.

2.4.1 Simple Power Attack (SPA)

An SPA attack, as described in [9], involves directly observing a system’s power con-

sumption. Suppose that the attackers not only have unlimited access, but also have

detailed knowledge of the software and hardware of the systems. If an attacker can deter-

mine where certain instructions are being executed, it can be relatively simple to extract

useful information.

SPA on a single-key cryptographic algorithm, such as DES, could be used to learn the

Hamming weight of the key bytes. DES uses only a 56-bit key so learning the Hamming

weight information alone makes DES vulnerable to a brute-force attack. In fact, depend-

15



ing on the implementation, there are even stronger SPA attacks. A two-key, public-key

cryptosystem, such as an RSA or elliptic curve cryptosystem, might also be vulnerable to

an SPA attack on the Hamming weight of the individual key bytes, however it is possible

an even stronger attack can be made directly against the square-and-multiply algorithm.

If exponentiation were performed in software using one of the square-and-multiply

algorithms, there could be a number of potential vulnerabilities. The main problem with

both algorithms is that the outcome of the ”‘if statement”’ might be observed in the power

signal. This would directly enable the attacker to learn every bit of the secret exponent.

A simple fix is to always perform a multiply and to only save the result if the exponent

bit is an one. This solution is very costly for performance and still may be vulnerable if

the act of saving the result can be observed in the power signal.

2.4.2 Differential Power Attack (DPA)

A DPA attack is more powerful than an SPA attack because the attacker does not

need to know as many details about how the algorithm was implemented. The technique

also gains strength by using statistical analysis to help recover side-channel information.

The problem with an SPA attack is that the information about the secret key is difficult

to directly observe. The information about the key was often obscured with noise and

modulated by the device’s clock signal. DPA can be used to reduce the noise and also

to ”‘demodulate”’ the data. Any power biases at the time corresponding to the guess bit

operation are visible as an obvious spike in the difference signal and much of the noise is

eliminated because averaging reduces the noise variance.

Three attacks of DPA, was described in [10]. Other assumptions used for particular

attacks are stated in the following that describe the specific attack details.

Single-Exponent, Multiple-Data (SEMD) Attack

The SEMD attack assumes that the smartcard is willing to exponentiate an arbitrary

number of random values with two exponents: the secret exponent and a public exponent.

The basic attack is that by comparing the power signal of an exponentiation using a known

exponent to a power signal using an unknown exponent, the adversary can learn where

the two exponents differ, thus learn the secret exponent. In reality, the comparison is

nontrivial because the intermediate data results of the square-and-multiply algorithm

16



cause widely varying changes in the power signals, thereby making direct comparisons

unreliable. The solution to this problem is to use averaging and subtraction.

Multiple-Exponent, Single-Data (MESD) Attack

The MESD attack is more powerful than the SEMD attack. The SEMD attack is a

very simple attack requiring little sophistication on the part of the adversary, but the

resulting DPA bias signal is sometimes difficult to interpret. The Signal-to-Noise Ratio

(SNR) can be improved using the MESD attack. The assumption for the MESD attack

is that the smartcard will exponentiate a constant value using exponents chosen by the

attacker. This value may or may not be known to the attacker.

Zero-Exponent, Multiple-Data (ZEMD) Attack

The ZEMD attack is similar to the MESD attack, but has a different set of assump-

tions. One assumption for the ZEMD attack is that the smartcard will exponentiate many

random messages using the secret exponent. This attack does not require the adversary

know any exponents, hence the zero-exponent nomenclature. Instead, the adversary needs

to be able to predict the intermediate results of the square-and-multiply algorithm using

an off-line simulation. This usually requires that the adversary know the algorithm be-

ing used by the exponentiation hardware and the modulus used for the exponentiation.

There are only a few common approaches to implementing modular exponentiation algo-

rithms, so it is likely an adversary can determine this information. It is also likely that

the adversary can learn the modulus because this information is usually public.

2.4.3 Countermeasure of RSA Against DPA and SPA

Potential countermeasures to the attacks described in this paper include many of the

same techniques described to prevent timing attacks on exponentiation. Kocher’s [8]

suggestion for adapting the techniques used for blinding signatures can also be applied

to prevent power analysis attacks. Prior to exponentiation, the message could be blinded

with a random value, vi and unblinded after exponentiation with vf = (v−1
i )emod N . An

efficient way is presented in [8] to calculate and maintain (vi, vf ) pairs.

Message blinding would prevent the MESD and ZESD attacks, but since the same

exponent is being used, the SEMD attack would still be effective. To prevent the SEMD

attack, exponent blinding would be necessary. In an RSA cryptosystem, the exponent

17



can be blinded by adding a random multiple of φ(N) = (p−1)(q−1), where and N = pq.

Note that Mφ(N) mod N ≡ 1 mod N , the result of exponentiation is unchanged since

Mk·φ(n)+E mod N ≡ Mk·φ(N) × ME mod N

≡ (Mφ(N))k × ME mod N

≡ (1)k × ME mod N

≡ ME mod N (2.15)

,where k is a random number.

18



Chapter 3

Proposed Montgomery

Multiplication

3.1 Review of Montgomery Multiplication Algorithms

Since the Montgomery multiplication(MM) algorithm was proposed in 1985, various

modular multiplication [11], [12], [13], [14], [15] were modified based on it. The MM is the

basic operation used in modular exponentiation, which is required in the Diffie-Hellman

and RSA public-key cryptosystems. Recently, the implementations of Montgomery Mul-

tiplication are focused on the elliptic curve cryptography [16] over the finite fields GF (p)

and GF (2m). Following section shows some of the modified algorithm and gives a brief

comment of each algorithms.

Algorithm 3.1. (Chen’s Modified Montgomery Multiplication)

Input : X,Y ,N

Output: Z

1. C = X × Y = c2n−12
2n−1 + c2n−22

2n−2 + . . . + c12
1 + c02

0

2. Z = 0;

3. for k = 0 to 2n − 1

3.1 q = (z0 + ck)mod 2 ;

3.2 Z = Z + ckY + qN ;

3.3 Z = Z/2;

19



4. return Z;

In Chen’s algorithm, the multiplication, X × Y is computed before the loop and the

loop is the same as reduce algorithm 2.2. For hardware implementation with pipeline,

modular operation can work without waiting the final result of X × Y . This means that

multiplication and modulus can be work in parallel. The disadvantage of Chen’s algorithm

is the number of iteration that is two times than Montgomery’s. However, there is only

one n-bit addition in each iteration in Chen’s, since the computation of q is simply bitwise

XORed.

Algorithm 3.2. (Yang’s Modified Montgomery Multiplication)

Input : X,Y ,N

Output: Z

1. C = X × Y = c2n−12
2n−1 + c2n−22

2n−2 + . . . + c12
1 + c02

0

= CU × 2n + CL

2. Z = 0;

3. for k = 0 to n − 1

3.1 q = (z0 + ck)mod 2 ;

3.2 Z = Z + ck + qN ;

3.3 Z = Z/2;

4. Z = Z + CU

5. return Z;

Yang [11] proposed an algorithm in 1998 that was improved to the Chen’s algorithm

by separating C into upper part CU and lower part CL, thus the iterations are half of

Chen’s regardless of the final addition. The rationale is explained below.

A × B × 2−n mod N ≡ C × 2−n mod N

≡ (CU × 2n + CL) × 2−n mod N

≡ (CU + CL × 2−n) mod N

The [15] was implemented based on Yang’s algorithm with pipelined enhancement.

20



3.2 Word-based Montgomery Multiplication Algorithm

Nowadays, a major design concern for multiplication units used in cryptography is

the large number of operand bits, which causes large fanout of signals, large wire delays,

and complex routing. These problems are reduced in systolic architectures [13], [14], at

the cost of extra hardware resources. However, these architectures are usually tailored for

fixed-precision.

Tenca and Koc proposed a scalable word-based architecture [17] based on radix-2

Montgomery Multiplication. Differently from the high-radix algorithms used in software,

[17] avoids the use of costly digit multiplications, this way, it allows the exploration of

several design trade offs to obtain the best performance in a limited chip area, without

limiting the operand precision. Practical limits to the precision are imposed by the control

and memory subsystems.

Algorithm 3.3. (Word-based Montgomery Multiplication Algorithm)

Input : X,Y ,N

Output: S

1. Z = 0;

2. for i = 0 to n − 1

2.1 (Ca, Z
0) = xiY

0 + Z0 ;

2.2 if Z0
0 = 1 then;

i. (Cb, Z
0) = Z0 + N0 ;

ii. for j = 1 to e;

A. (Ca, Z
j) = Ca + xiY

j + Zj ;

B. (Cb, Z
j) = Cb + N j + Zj;

C. Zj−1 = (Zj
0 , Z

j−1
w−1:1);

2.3 else;

i. for j = 1 to e;

A. (Ca, Z
j) = Ca + xiY

j + Zj ;

B. Zj−1 = (Zj
0 , Z

j−1
w−1:1);

3. return Z;

21



Algorithm 3.3 executes a series of operation to generate XY r−1mod N , scanning Y

and N word-by-word and scanning X bit-by-bit. This characteristic enables us to derive

a hardware implementation that is very regular and based on simple operations. Suppose

that n is a multiple of word size w, the n-bit operands are split into e words, where

e = n/w. Word and bit vectors are represented as:

N = (0, N e−1, . . . , N1, N0),

Y = (0, Y e−1, . . . , Y 1, Y 0),

Z = (0, Ze−1, . . . , Z1, Z0),

X = (xn−1, . . . , x1, x0),

where the word are marked with superscripts and the bits are marked with subscripts.

N , Y , and Z are zero-extend to e + 1 words, thus avoiding overflow. The concatenation

of two vectors A and B is represented as (A,B). The bit position i of the kth word of an

operand A is represented as Ak
i .

The total carry-out value generated in each j loop iteration corresponds to Ca + Cb

and it is in the range [0,2]. The algorithm computed a new partial sum of Z for each bit,

xi, scanning the words of the present Z, Y , and N . Once Y is completely scanned, next

bit of X, xi+1, is taken and then scan is repeated. The arithmetic operations in the j

loop are performed in w bits of precision. The number of loop iterations is adjusted to

accomplish the required precision, without modifications to the inner structure. This is

the main feature of word-based scalable architecture shown in [17].

The right-shift by 1 bit is done by Zj−1 = (Zj
0 , Z

j−1
w−1:1). Note that the least significant

bit of next word, Zj
0 , must be computed before it can be right-shifted into the most

significant position of Zj−1 on the jth step of the inner loop. This is a critical limitation

of the algorithm.

To implement this algorithm, unrolling the for loop to pipelined architecture is a useful

skill for increment of parallelism. The dependency on the carry bits within j loop restricts

their parallel execution. However, instructions in different i loops may be executed in

parallel.

22



3.3 Modified Word-based Montgomery Multiplication

The fundamental problem with the Tenca-koc architecture is the dependency caused

by waiting to right shift Zj
0 into Zj−1

w−1 before processing Zj−1 at the next iteration. The

work in [18] describes that rather than shift right the partial result Zk, shift left the Y

and N can eliminate the dependency between Zk.

Algorithm 3.4. (Proposed Modified Word-based Montgomery Multiplication)

Input : X,Y ,N

Output: Z

1. Z = 0;

2. for i = 0 to ker−1

2.1 for j = 0 to p − 1

i. Y = 2 × Y ;

ii. N = 2 × N ;

iii. for k = 0 to e + ⌈p/w⌉ − 1

A. (Ca, Z
k) = Ca + x(ip+j)(Y

k) + Zk ;

B. if(k ==
⌊

j
w

⌋
),odd = S

⌊ j

w⌋
(j mod w);

C. (Cb, Z
k) = Cb+ odd(Nk) + Zk;

iv. Z = S/Zp;

3. return Z;

In this algorithm, i loop and j loop scans the x bit-by-bit and k loop computes a new

partial sum Z word by word for preset bit of X. Set n=ker·p,thus scanning through n

bits of X. The number of iteration in k loop is e + ⌈p/w⌉ ,where e = n/w is the number

of words. Note that there are additional ⌈p/w⌉ iterations to compute the most significant

word caused by the left-shift of Y and N .

23



Since Y < N < 2n, it is easy to verify that

(x02
0Y + odd02

0N) + (x12
1Y + odd12

1N) + · · · + (xp−12
p−1Y + odd12

p−1N)

< (20Y + 20N) + (21Y + 21N) + · · · + (2p−1Y + 2p−1N)

≤ (2p − 1)(Y + N)

< (2p)(N + N)

< (2p)(2 · 2n)

≤ 2p+n,

,where the subscript of odd denotes the the number of loop been executed. Therefore,

extra p bits or ⌈p/w⌉ words are necessary to handle the overflow.

Note that the odd check is different from the [17], always check the least significant

bit of partial sum Z0
0 . Unrolling technique is used again to the j loops, instead of shifting

right partial sum in the k loop, we shift left Y and N for each j loop. The odd check

must be modified to match the original one. It is observed that

jth Z0 = (j − 1)th Z0/2 + xj−1Y (PWBMM)

jth Z0 = (j − 1)th Z0 + xj−12Y (MM),

and the jth S0 in this algorithm is a shift-left-1-bit version of [17]. And also the odd bit

shift left by 1 bit for each loop. Therefore,

odd0 = Z0, odd1 = Z1, . . . , oddj−1 = Zj−1.

And the representation in word base is showed as:

Z
⌊ j

w⌋
(j mod w),

where j is the number of loop and w denotes the word size.

The rest of section states the evaluation of equality of this algorithm to original algo-

rithm.

24



Original Montgomery Multiplication can be represented as:

XY 2−n mod N

≡

x0Y +odd0N
2 +x1Y +odd1N

2
+···+xn−2Y +oddn−2N

2
+ xn−1Y + oddn−1N

2
(3.1)

≡
x0Y + odd0N

2n
+

x1Y + odd1N

2n−1
+ · · · +

xn−2Y + oddn−2N

22
+

xn−1Y + oddn−1N

2
.

(3.2)

My proposed algorithm PMWBMM is showed as:

ker=n/p
︷ ︸︸ ︷
(x020Y +odd020N)+(x121Y +odd121N)+···+(xp−12p−1Y +oddp−12p−1N)

2p +(xp20Y +oddp20N)+···

2p + · · ·

2p
(3.3)

=
(x0Y +odd0N

2p + x1Y +odd1N
2p−1 + · · · + xp−1Y +oddp−1N

2
) + xpY + oddpN

2p
+

xp+1Y + oddp+1N

2P−1
+ · · ·

(3.4)

=
x0Y + odd0N

(2p) · (2p)ker−1
+

x1Y + odd1N

2p−1(2p)ker−1
+ · · · +

xn−1 + oddn−1N

2
. (3.5)

Since ker=n/p, it is sufficient that equation(3.5) equals to equation(3.2).

25



Chapter 4

Proposed RSA Crypto-Core

4.1 Overall Architecture

Back to the equation 2.6, equation 2.7, and the modular exponentiation algorithm

mentioned in subsection 2.1.2 and subsection 2.2.2. The mapping operation is necessary

before and after the Montgorery Multiplication. In the thesis, we choose R-L method in

order to increase the parallelism, thus 2 sets of multiplier are required.

Figure 4.2 shows a block diagram of the proposed RSA kernel core. There are four

4096-bit registers,Z, P , N , and the key E. And two 32*64-bit proposed word-based

Montgomery Multipliers are used to execute multiplication and square in parallel.

Figure 4.1 shows a flow chart of the algorithm. The r2 mod N is precomputed as an

input, and stored in the Z-reg in the FETCH STATE. In the same state, we also store

plaintext, M, in P -reg, modulus, N, in N -reg and 64 bits of key, E. In the PRE MM

STATE, the operands must map to their N-residue, multiplying by r2 mod N . Note that,

in the R-L algorithm, Z is initialized to 1, and the mapping is MM(1,Z) since Z = r2. The

proposed multiplier supports multiplying by 1. It is helpful for N -residue mapping and

save the hardware cost by sharing the Z-reg to store r2. The next flow is DET STATE,

scanning the key bit-by-bit and multiplying Z by P if the scanned bit is 1. The POST

MM STATE is reached when the key is completely scanned. The ciphertext is valid after

the result of N -residue is transformed back to integer.

26



Z=MM(1,Z)
P=MM(r2,P)

Z=MM(Z,P)
P=MM(P,P)

Z=Z
P=MM(P,P)

Z=MM(1,Z)

Z=r2 mod N
P=Plaintext M

N
E

Ciphertext=Z

DET STATE

FETCH STATE

OUT STATE

EXE1 EXE0

POST_MM STATE

PRE_MM STATE

E[i] = 1 E[i] = 0

Figure 4.1: RSA flow chart.

4.2 Modular Multiplier Architectures

The proposed architecture of the reconfigurable multiplier with DPA resistant is pre-

sented in this chapter. As mentioned in subsection 3.2, the precision of operands is only

limited by the memory size and control subsystems. In this thesis, it is adapted to three

precision, 1024, 2048, and 4096 bits, over the prime fields GF (p). All of the required

materials for mathematical theorems have been mentioned in early chapters. Then all

of these main components used in the scalable multiplier are detailed in the following

subsections.

4.2.1 A Scalable Montgomery Multiplier

Back to the algorithm 3.4 which is mentioned in subsection 3.3. Due to he final sub-

traction may cause the leakage of power attack, it is necessary to remove the conditional

27



Mont. Multiplier

(mul.)

Mont. Multiplier

(square)

N

4096bits

P/M

4096bits

Z

4096bits

E

32 bits

MODE

(1024/2048/4096)

32

AMBA(32bits)

ei==0

ei==1

AMBA(32bits)

2 modr N

0

1

0

1

0

1

2

Y

X

Y

X

E

32 bits

N

Z

N

Z

Figure 4.2: RSA modular exponentiation architecture.

statements from the algorithm. Eliminating the final subtraction can be done by ex-

ercising a few iterations without extra cost in hardware [19]. The shortcoming is that

increasing one more word and one more kernel cycle of latency.

The multiplications by 2 of Y and N are integrated into the word-based operation.

The proposed algorithm is modified as following and easy for hardware mapping.

Algorithm 4.1. (Proposed Modified Word-based Montgomery Multiplication)

Input : X,Y ,N

Output: S

1. S = 0;

2. for i = 0 to ker−1

2.1 for j = 0 to p − 1

i. for k = 1 to e

A. (Ca, S
k) = Ca + x(ip+j)(Y

k
w−2:0, Y

k−1
w−1 ) + Sk ;

B. odd = S
⌊ j

w⌋
(j mod w);

28



C. (Cb, S
k) = Cb+ odd(Nk

w−2:0, N
k−1
w−1) + Sk;

ii. S = Sn+p−1:p;

3. return S;

2 1 0( ,..., , , )eY Y Y Y

PU� PUjpx

PU� PU�
3

2

0

...

p

p

p

x

x

x

x

3 1

2 1

1

1

...

p

p

p

x

x

x

x

+

+

+

3 2

2 2

2

2

...

p

p

p

x

x

x

x

+

+

+

2 1 0( ,..., , , )eM M M M

1jpx + 2jpx +

...

...

...

4 1

3 1

2 1

1

...

p

p

p

p

x

x

x

x

−

−

−

−

1jp px + −

Sequence 

control unit

:0eY

:0eN

p 1:0x −

start_mul

out

...

C

P

A

������
ca

Zs

Zc

Mux_Zs_in

0

0

PE_queue.v

������������

01:0eX

�� !"# �$ �%
Figure 4.3: Scalable word-based Montgomery Multiplier.

Figure 4.3 shows a block diagram of the scalable word-based Montgomery Multiplier.

The j loop in proposed algorithm is unrolled and mapped to a pipelined kernel of p w-bit

processing units (PUs). The result of partial sum S is in carry save representation(CSR),

requiring 2w bits, thus reducing the critical path between PUs. PU1 can process the next

bit of X unless the result of PUP is ready or PU1 itself has finished the words.

For higher precision application, PUP may compute the S before PU1 has finished

the additional words. The results must be queued until PU1 is available again. The clock

cycles for one PU to handle one bit of X is called kernel cycle. For large operands, the

queue in CSR consumes significant area, so we convert S to nonredundant form using

29



w-bit CPA. Also the nonredundant S is an output of the multiplication. In the i loop

,ker= n/p kernel cycle are required to the entire computation, scanning n bits of X. The

detail relationship between w, p, n, is described in the next section.

4.2.2 Number of Processing Unit and Size of Word

The time to compute n bits depends on the word-size w and number of PUs p. The

kernel cycle is stated in Table 4.1. Figure 4.4 shows a pipelined diagram for providing

better understanding of the computation time. The e in this figure is the total number

of words but not n/p. The PU1 can’t start computation of next bit of X until the PU1

completes e words computation or the last PUP has computed the first valid output word.

Table 4.1: Kernel cycle and computation time.

Tenca-Koc This work

The first valid output of

PUP (eq1)

2(p − 1) + 2= 2p (p − 1) + (⌈p/w⌉ + 1)

= p + ⌈p/w⌉

Number of words to be pro-

cessed(eq2)

e + 1 e + ⌈p/w⌉

computation time

(eq1>eq2)

ker(2p) + ((e + 1) − 2) ker(p + ⌈p/w⌉)+(e +

⌈p/w⌉ − (⌈p/w⌉ + 1))

computation time

(eq1≤eq2)

ker(e + 1) + 2(p − 1) ker(e+⌈p/w⌉)+(p−1)

Tenca-Koc [17]

There are 2-cycle latency because of the dependency between Sj and Sj − 1. The case1

corresponds to large number of words, and the word number dominates the kernel cycle.

There are e + 1 clock cycles in the kernel cycle. There ker kernel cycles. Finally, 2(p− 1)

cycles are required for the subsequent PUs to complete the last kernel cycle. The case2

corresponds to a small number of words. Each kernel cycle takes 2p clock cycles before

final PU takes 2 cycles to produces its first valid word. Finally, (e + 1) − 2 cycles are

required to obtain the rest of words at the end of the last kernel cycle.

30



Case1

p = 3 , e = 6

PE1 PE2 PE3

1 x0Y0

2 x0Y1 x1Y0

3 x0Y2 x1Y1 x2Y0

4 x0Y3 x1Y2 x2Y1

5 x0Y4 x1Y3 x2Y2

6 x0Y5 x1Y4 x2Y3

7 x3Y0 x1Y5 x2Y4

8 x3Y1 x4Y0 x2Y5

9 x3Y2 x4Y1 x5Y0

10 x3Y3 x4Y2 x5Y1

11 x3Y4 x4Y3 x5Y2

12 x3Y5 x4Y4 x5Y3

13 x4Y5 x5Y4

14 x5Y5

Case2  

p = 3 , e = 4

PE1 PE2 PE3

1 x0Y0

2 x0Y1

3 x0Y2 x1Y0

4 x0Y3 x1Y1

5 x1Y2 x2Y0

6 x1Y3 x2Y1

7 x4Y0 x2Y2

8 x4Y1 x2Y3

9 x4Y2 x5Y0

10 x4Y3 x5Y1

11 x5Y2 x6Y0

12 x5Y3 x6Y1

13 x6Y2

14 x6Y3

(P
-1

)

K
ern

e
l cycle 

2
*(p

-1
)

La
ten

cy o
f th

e 
first va

lid
 ou

tp
ut

K
ern

e
l cycle

e’

K
ern

e
l cycle 

K
ern

e
l cycle 

Figure 4.4: Pipelined diagram.

Proposed Architecture

The proposed architecture reduce the latency to only 1 clock cycle. For case1, there are

e + ⌈p/w⌉ clock cycles in the kernel cycle. (p − 1) cycles are required to complete the

final kernel cycle. The improvement is slightly better or even a little bit worse because

the system is still limited by the time for PU1 to complete. The case2 takes p clock cycles

before final PU takes ⌈p/w⌉+1 cycles to produces its first valid word in each kernel cycle.

Finally, e + ⌈p/w⌉ − (⌈p/w⌉ + 1) cycle are required to obtain the more significant words

at the end of the last kernel cycle. In this case, the system is limited by the time for PUP

to complete and speed up significantly.

The queue size is also related to the w, n and p. In case2, PU1 starts the next kernel

cycle after PUP computes the valid output immediately so there is no need for any queue.

Case1, the output of PUP must be queued until PU1 completes current kernel cycle. Total

size of queue is (total word - first valid output)×w-bit.

Figure 4.5 shows the computation time for a Montgomery multiplication of precision

n of several wp configurations. The more detail table is showed in Appendix. Observe

31



that, when the operand precision is small, the number of PUs may be small and, when

the precision is high, the number of PUs should be as high as possible. Thus, the final

decision on the actual configuration depends on the precision for which the hardware

will be used the most and the available area. In my proposed architecture, there are 64

PUs and the word size is 32 bits. Table 4.2 shows a comparison of computation time on

this configuration. The optimal configuration of 4096-bit implementation is wp = 4096.

However, the proposed architecture make the trade-off on area limited by FPGA and

throughput.

Table 4.2: A comparison of computation time

w=32 and p=64

Tenca-Koc [17] This work

n=1024 2079 1087

n=2048 4159 2175

n=4096 8382 8351

4.2.3 Processing Unit

Figure 4.6 shows the architecture of the processing unit. There are 2 w-bit carry save

adders to do the redundant arithmetic.

Ss, (ca, Sc) = Ss + xi · 2Y + (Sc, ca)

Ss, (cb, Sc) = Ss + odd · 2N + (Sc, cb)

The registers, 1-bit ca and cb, can store the carry and be added to the next word as a

carry-in. Since the carry out is stored by the carry-reg, the Sc only uses w − 1 bits. And

the Ss is w bits. The registers, N−1 and Y −1, are here to store the present MSB and to

implement the left-shift by 1. In one PU, the MSB of previous Nk−1
w−1 in the N−1-reg is

concatenated with the present Nk
w−2:0

(Nk
w−2:0, N

k−1
w−1),

and becomes the input of the next PU.

32



&''((''()''(*''(+''(&'',('',)'',*''
' ('' ,'' )'' -'' *''./0123 45 678

n=1024 9:;9:(<9:),9:<-

,''')'''-'''*'''<'''+''';'''&'''
' ('' ,'' )'' -'' *''./0123 45 678

n=2048 9:;9:(<9:),9:<-

)*'';*''()*''(;*'',)*'',;*''))*''
' ,'' -'' <'' ;'' ('''./0123 45 678

n=4096 9:;9:(<9:),9:<-
time
(clock cycles)

time
(clock cycles)

time
(clock cycles)

Figure 4.5: Several configurations of n=1024, 2048, and 4096.

33



FA31 FA30 FA1 FA0

FA31 FA30 FA1 FA0

Zc(30 bits)

Zs(31 bits)

FA31 FA30 FA1 FA0

FA31 FA30 FA1 FA0

C=
C>

C>
C=

N

Y?@
N?@

Y

odd

N?@
Y?@

odd_wire

Figure 4.6: Architecture of Processing Unit

The odd parity is determined in the first word, and then stored in the register named

odd. However, the PU cannot use the value stored in the odd reg to processing the first

word. Therefore, the odd check is done by odd-reg or directly the odd-wire depends on

whether PU is processing the first word. Note that the odd-check bits are distinct from

PUs.

odd = S
⌊ j

w⌋
j mod w

4.2.4 Flexible Output and Permutation Function

Preventing final subtraction in Montgomery multiplication is accomplished by enlarg-

ing the bit-size of operands. If the length is a multiple of 64, the output is the sum of

last PUs. Otherwise, it is costly for performance to have output fixed at the last PUs

especially when the length is short. Figure 4.7 shows the architecture of permutation

function which can output at arbitrary PU depending on the performed length. The de-

tails of permutation function is showed in Appendix C. Therefore, the multiplication can

be finished as soon as the overall length is scanned instead of waiting for the operands

passed through 64 PUs.

34



6
4
 to

 1

M
U

X

6
4
 to

 1

M
U

X

P
U

1
P
U

2
P

U
6
4

P
erm

u
tatio

n
 F

u
n
ctio

n

ZA
ZABC
ZABD 6

4
 to

 1

M
U

X

C

P

A

cE
M

u
l_

o
u
t

Z
s

Z
c

Figure 4.7: Architecture of Flexible Output.

4.3 Countermeasures Against DPA and SPA

The basic security of RSA is based on th difficulty of factoring the product of two

primes. But recent research discovered that the information of the key can be estimated

by tracing the power consumption. DPA is a powerful tool that allows cryptanalysis to

extract secret keys and compromise the security of smart cards and other cryptographic

devices by analyzing their power consumption. Simple Power Analysis (SPA) is a simpler

form of the attack that does not require statistical analysis.

One work mentioned in [19] is a countermeasure against DPA because the final sub-

traction of output depends on the inputs. And also the output is related to the key. In

the thesis, the proposed architecture of 2 multipliers consumes the same power since that

the 2 multipliers always compute despite of the bit of key. The only difference is that

Z-reg keeps its value when Ei is 0, thus cause the weakness of SPA.

35



Since the power dissipation depends on the operation of registers, it is reasonable to

make the operations identical. The proposed countermeasure redesign a register that can

be read/written in the manners of shifting or index-addressing. The way of operation is

controlled by an input random signal, producing by a hardware PRNG1 or in software.

Every time one multiplication is completed, the next configuration of the operation of

registers is set randomly. Therefore, the power consumption is always the same. The

proposed RSA cryptocore can resist the SPA attack.

Recall the equation 2.15 in section 2.4.2, M e+r·φ(n) ≡ M e mod n. The DPA coun-

termeasure can be done by randomly generating a integer r and adding r · φ(N)to the

original key E as a new key. Therefore, the key guessed by the adversary is randomized

thus preventing the ZEMD attack.

Mont. 

Multiplier

(mul.)

Mont. 

Multiplier

(square)

N

4096bits

P/M

4096bits

Z

4096bits

MODE/length

32

AMBA(32bits)

ei==0

ei==1

AMBA(32bits)

2 modr N

0

1

0

1

0

1

2

Y

X

Y

X

E

4096 bits

Φ(N)

4096 bits

add
* random(16 bits)

Figure 4.8: RSA modular exponentiation architecture against DPA.

In the proposed design, we set r is 16-bit and the modular multiplication is always

executed n+16+2 times during encryption. This is the overhead of DPA countermeasure.

1Pseudo random number generator.

36



There are some assumptions when ZEMD power attack is mounted on the RSA scheme,

the first z bits,{ez−1, · · · , e0}, are known by the attacker. The attacker can guess the

next bit, ez, by analysis of the power trace at the z + 1 iteration. In this work, the key

always varies with the integer r. The power information is useless for the attacker, thus

the design is DPA resistant.

Figure 4.8 shows the modified version of Fig 4.2,which preventing DPA attack. In

contract to the design without DPA countermeasure, an additional 4096-bit is to store

φ(N) and a 16-bit PRNG is to generate the random number r. The original key E is also

fully loaded at the beginning, and the random key is computed word-by-word. Every time

a word of key has been performed, the next word of key Ei is added to the r · φ(N). The

random number r is kept unchanged until a RSA exponentiation is completed. Finally,

there are total 5 4096-bit Flip-flops, X, Y, N, E and φ(N) respectively, in the proposed

architecture.

37



Chapter 5

Implementation Results and

Comparison

A word-based RSA scheme in both software and hardware are given in this work. This

chapter shows the hardware implementation results. The software simulation environment

is constructed in C programing languages and the optimization level is O3. The execution

time of software manner over various precisions is listed below.

Table 5.1: Modular exponentiation software performance.

Field GF (P1024) GF (P2048) GF (P4096)

Time (s) 0.49 16.26 24.86

Throughput (kb/s) 2.1 0.167 0.164

In this thesis, all of the design in hardware is implemented using RTL (Register-

Transfer-Level) Verilog HDL (hardware description language) and synthesized on both

application-specific integrated circuit (ASIC) and field-programmable gate arrays (FP-

GAs). The technology of ASIC design is using TSMC1 0.18µm CMOS process and the

technology of FPGA design is using Xilinx2 Virtex-4 xc4vlx160 platform FPGAs. The

RTL synthesizer uses Synopsys3 Design Compiler for ASIC and Xilinx ISE for FPGA.

1Taiwan Semiconductor Manufacturing Company Ltd. http://www.tsmc.com/
2Xilinx, Inc. The developer and fabless manufacturer of FPGAs. http://www.xilinx.com
3Synopsys, Inc. http://www.synopsys.com/

38



5.1 ASIC Implementation

The logic synthesis is performed with RTL synthesizer uses Synopsys Design Compiler

using TSMC 0.18µm CMOS standard-cell technologies. The data throughput of RSA is

given by

n(exercised precision)

k(efficient key length) × tMM(computation time of multiplication)
.

The clock frequency is set to 100MHz and gatecount is 365k. The detail value is shown

as table 5.2

Table 5.2: The verification results on ASIC.

Design ASIC

Technology TSMC 0.18µm

Clock frequency 100MHz

Gate count 365k

Precision 1024 2048 4096

Computation time (ms) 12.7 47.8 355

Throughput (kb/s) 80 43 11.5

Since there are few implementations of 4096-bit RSA, table 5.3 shows the comparison

with other 1024-bit RSA implementations with ASIC design. In contrast to proposed

design, the work [20] shows a small area but the throughput is also slow. For the appli-

cation of smart cards, it is suitable to reduce area. In contrast to [20], the throughput

of proposed design is 2 times better for 2048 and 4096, but the area is only double. The

computation time of this work is counted with the worst case, the efficient key length is

the same as modulus, of each precision. The area of [21] is much higher than the others,

since it is radix-232. But the throughput is also higher than any others.

5.2 FPGA Implementation

Table 5.4 shows the detail value of the proposed design. The clock frequency is set to

102 MHz and the total slices is 26879 include 3 n-bit F/Fs. Table 5.5 shows the comparison

with other 1024-bit RSA implementations on FPGA. McIvor [22] uses 1024-stages PE to

39



Table 5.3: Comparison with other 1024-bits implementations with ASIC design.

Author Chen [20] Mukaida [21] Proposed

Platform .18µm CMOS .18µm CMOS .18µm CMOS

Combinational gatecount 37k 755k 146k

Register gatecount 138k 210k 218k

Frequency (Mhz) 370 200 200

Throughput (kb/s) 83 5000 162

Note

16 PEs*w=16 radix-232 64 PUs*w=32
21 kb/s for 2048 include 3 n-bit registers
5.4 kb/s for 4096

implement the RSA cryptosystem. The word length of each PE is one bit. McIvor’s [22]

another approach uses CRT(Chinese Remainder Theorem) to speed up the decryption.

Tang [23] implement the RSA cryptosystem with radix-217.

Table 5.4: The verification results on FPGA.

Design FPGA

Technology xc4vlx160

Clock frequency 102 MHz

Slices(include registers) 34331

Slices(w/o registers) 26879

Precision 1024 2048 4096

Throughput(kb/s) 81 40 9

Table 5.6 shows three implementations of the proposed architecture. The number of

F/Fs and LUTs in Proposed2 contrast to Proposed1 is increased due to the extra 2 4096-

bit registers. The F/Fs are almost the same between Proposed2 and Proposed3 since

there are identical number of registers. But there are about increased 9000 LUTs caused

by 3 64-to-1 multiplexers in flexible output.

40



Table 5.5: Comparison with other 1024-bits implementations on FPGA.

Author Chen [20] McIvor [22] Tang [23] Proposed

Platform XC2V8000 XC2V6000 XC2V3000 xc4vlx160

Number of slices(w/o registers) 1673 N.A. 8190 26879

Number of slices(include registers) 6783 26136 14334 26879

Frequency (Mhz) 116.7 97.08 90 102

Throughput(kb/s) 26 376 429 81

Note 16PEs*w=16 radix-217 64PUs*w=32
multiplier 3 4096

Table 5.6: Comparison of 4096-bit implementations on FPGA.

Note Proposed1 Proposed2 Proposed3

DPA DPA/GF (2n)/flexible out

Platform xc4vlx160

Number of F/Fs slices 34331 42651 43281

Number of LUTs 40458 57682 66617

Number of slices 26879 37688 40203

Frequency (Mhz) 102 104 106

Throughput(kb/s) 81 80.6 81.7

Note 3 4096-bit 5 4096-bit 5 4096-bit

41



Chapter 6

Conclusion

A total solution in hardware and software to the word-based scalable RSA cryptocore

in GF (p) is given in this thesis. In order to deal with various precision, 0 < n ≤ 4168, of

operands, the word-based Montgomery techniques are employed. A Montgomery modular

multiplication algorithm is proposed. The modular exponentiation is the main operation

of RSA that exercising series of modular multiplications. The implementation of the

proposed multiplier in this work shows a considerable trade-off on area and throughput.

The cost of area is proportioned to w × p, where w and p denote the size of word and

number of PUs respectively. For high speed application, it can be modified to speedup

50% by doubling the PUs with a few alternations.

According to the implementation result, it is synthesized using .18µm CMOS tech-

nology with 365k gates and using Xilinx Virtex-4 xc4vlx160 with 26879 slices in FPGA

design. It takes about 24.86 s to accomplish a 4096-bit RSA operation in software but

takes only 355 ms in hardware. It is 70 times fast in throughput. The throughput of

encryption is limited by the efficient key length of DPA, which is n + 16.

In the Appendix A, Algorithm A.1 shows that the radix-2 Montgomery multiplications

over prime field GF (p) and binary field GF (2n) are almost identical. The proposed design

can be modified to support binary field GF (2n) operation by simply eliminating the carry.

Therefore, the unified scalable multiplier can be used in ECC crytposystem.

42



Appendix A

Algorithm of Montgomery

multiplication over GF (2n)

The modular multiplication is also an important operation used in ECC cryptosystem.

Since the ECC and RSA are widely used, we attempt to design a cryptographic processor

containing above cryptosyatems. The proposed Montgomery multiplier can be shared by

the en/decryption in RSA and ECC. Not only for prime field GD(p), but also the modular

multiplication is usually performed over binary field GF (2n) in ECC. The Montgomery

multiplication over binary field is stated in this section.

Recall the algorithm 2.4 in section 2.3.2, it is the Montgomery multiplication over

prime field GF (p) with redix-2. The Montgomery multiplication algorithm for GF (2n) is

given below:

Algorithm A.1. (montgomery multiplication over GF (2n) with radix-2)

Input : a(x), b(x), p(x), and m

Output: c(x)

1. c(x) = 0;

2. for k = 0 to m − 1

2.1 q(x) = (c0(x) + ak(x)b0(x))p
′

0(x);

2.2 q0 = q(x) mod x;

2.3 c(x) = (c(x) + ak(x)c(x) + q(x)p(x);

2.4 c(x) = c(x)/x;

3. return c(x);

43



where p
′

0(x) = p−1
0 (x) mod x. It can be seen that the two algorithms are almost

identical except that addition operation in GF (p) becomes a bit-wise modulo-2 addition

in GF (2n). In proposed algorithm, the extra reduction step at the end is removed, since

it is no necessary for GF (2n). Although the operands are integers in the form algorithm

and binary polynomials in the latter, the representations of both are identical in digital

systems. The division by x is also identical to division by 2 in digital systems. Therefore,

both field modular multiplication can be implemented on the same hardware with a

Field sel signal to decide which field is performed.

44



Appendix B

FPGA Implementation with AMBA

In this thesis, since this work is mainly implemented on ASIC design, there is not any

technique used to improve the performance on FPGA. Thus, the implementation results

on FPGA is slightly worse in timing performance, but it is helpful in fast verification and

gives reliable hardware information.

A
H

B

RSA core

ECC core

AHB

Wrapper

AHB

Wrapper

Figure B.1: RSA and other device connect to AHB via AHB wrapper.

The Advanced Microcontroller Bus Architecture [24] was introduced in 1996 and is

widely used as the on-chip bus for ARM1 processors. In its 2nd version, ARM introduced

AHB that is a single clock-edge protocol. This protocol is today a standard for 32-bit

embedded processors because it is well documented and can be used without royalties.

AMBA is designed for use in System-on-a-chip (SoC) designs. The important aspect of

a SoC is not only which components or blocks it houses, but also how they are intercon-

1ARM, Inc. http://www.arm.com/

45



nected. AMBA is a solution for the blocks to interface with each other. Figure ?? shows

RSA core and ECC core are interconnected with each other on AHB.

0F01_0001

0F01_0007

0F01_0000

0F01_0006

0F01_0005

0F01_0002

0F01_0004

0F01_0003

0

1

Figure B.2: Address Mapping.

Figure B.3 shows the integration of the proposed RSA core and the AHB wrapper

that meets the AMBA protocol. The memory addresses are mapping to different devices

on the bus. The Figure B.2 denotes that there is a 2-bit offset for 32-bit bus transfer since

the memory is byte-addressed.

46



AHB2RSA.v 

(wrapper)

RSA_exponentiation.v 

(kernel)

FGHIFJKLKMNFLKHJLOFJKOPQRNFMJOSLFTJRMKFTPOMOFOPPJFJKLUFJKOPQVWXFJPOMO

YYYYZY[Z[ZZY[Z

d
e
c
o
d
e
r

3
 to

 2

 M
U

X

S\]X^\^\NG_`a\b^X\]XVWX^cde_f

OffbJ\gKNJ\g^KN
validRN^bh

VWX^_Nf\]iXdbXRN^jkf\RN^\lRN^\mRN^NRN^j
FOPPJFTPOMOFTJRMKFMJOSLFJKOPQRNFLKHJLO

Figure B.3: AHB to RSA wrapper.

47



N

M

Plaintext/  

Ciphertext

E

1
2
8

1
2
8

2

1
2
8

Out_valid

1

start

1

MODE1

Next_E

1

Figure B.4: AMBA address mapping.

48



Appendix C

Permutation Function

Table C.1 shows how the flexible output works. Recall that the input of Zt in Figure

4.7 is the sum of different partial sum from PUs. The modulus length n is a 12-bit number

which represent the number of bit being performed and n
′

= (n− 1) mod64. The output

of n
′

is the sum of (n
′

+ 1)th PU.

49



Table C.1: The permutation function of flexible output.

n
′

output n
′

output

0 Zt−1[0] , Zt−2[31 : 1] 32 Zt[0] ,Zt−1[31 : 1]

1 Zt−1[1 : 0] , Zt−2[31 : 2] 33 Zt[1 : 0] ,Zt−1[31 : 2]

2 Zt−1[2 : 0] , Zt−2[31 : 3] 34 Zt[2 : 0] ,Zt−1[31 : 3]

3 Zt−1[3 : 0] , Zt−2[31 : 4] 35 Zt[3 : 0] ,Zt−1[31 : 4]

4 Zt−1[4 : 0] , Zt−2[31 : 5] 36 Zt[4 : 0] ,Zt−1[31 : 5]

5 Zt−1[5 : 0] , Zt−2[31 : 6] 37 Zt[5 : 0] ,Zt−1[31 : 6]

6 Zt−1[6 : 0] , Zt−2[31 : 7] 38 Zt[6 : 0] ,Zt−1[31 : 7]

7 Zt−1[7 : 0] , Zt−2[31 : 8] 39 Zt[7 : 0] ,Zt−1[31 : 8]

8 Zt−1[8 : 0] , Zt−2[31 : 9] 40 Zt[8 : 0] ,Zt−1[31 : 9]

9 Zt−1[9 : 0] , Zt−2[31 : 10] 41 Zt[9 : 0] ,Zt−1[31 : 10]

10 Zt−1[10 : 0] , Zt−2[31 : 11] 42 Zt[10 : 0] ,Zt−1[31 : 11]

11 Zt−1[11 : 0] , Zt−2[31 : 12] 43 Zt[11 : 0] ,Zt−1[31 : 12]

12 Zt−1[12 : 0] , Zt−2[31 : 13] 44 Zt[12 : 0] ,Zt−1[31 : 13]

13 Zt−1[13 : 0] , Zt−2[31 : 14] 45 Zt[13 : 0] ,Zt−1[31 : 14]

14 Zt−1[14 : 0] , Zt−2[31 : 15] 46 Zt[14 : 0] ,Zt−1[31 : 15]

15 Zt−1[15 : 0] , Zt−2[31 : 16] 47 Zt[15 : 0] ,Zt−1[31 : 16]

16 Zt−1[16 : 0] , Zt−2[31 : 17] 48 Zt[16 : 0] ,Zt−1[31 : 17]

17 Zt−1[17 : 0] , Zt−2[31 : 18] 49 Zt[17 : 0] ,Zt−1[31 : 18]

18 Zt−1[18 : 0] , Zt−2[31 : 19] 50 Zt[18 : 0] ,Zt−1[31 : 19]

19 Zt−1[19 : 0] , Zt−2[31 : 20] 51 Zt[19 : 0] ,Zt−1[31 : 20]

20 Zt−1[20 : 0] , Zt−2[31 : 21] 52 Zt[20 : 0] ,Zt−1[31 : 21]

21 Zt−1[21 : 0] , Zt−2[31 : 22] 53 Zt[21 : 0] ,Zt−1[31 : 22]

22 Zt−1[22 : 0] , Zt−2[31 : 23] 54 Zt[22 : 0] ,Zt−1[31 : 23]

23 Zt−1[23 : 0] , Zt−2[31 : 24] 55 Zt[23 : 0] ,Zt−1[31 : 24]

24 Zt−1[24 : 0] , Zt−2[31 : 25] 56 Zt[24 : 0] ,Zt−1[31 : 25]

25 Zt−1[25 : 0] , Zt−2[31 : 26] 57 Zt[25 : 0] ,Zt−1[31 : 26]

26 Zt−1[26 : 0] , Zt−2[31 : 27] 58 Zt[26 : 0] ,Zt−1[31 : 27]

27 Zt−1[27 : 0] , Zt−2[31 : 28] 59 Zt[27 : 0] ,Zt−1[31 : 28]

28 Zt−1[28 : 0] , Zt−2[31 : 29] 60 Zt[28 : 0] ,Zt−1[31 : 29]

29 Zt−1[29 : 0] , Zt−2[31 : 30] 61 Zt[29 : 0] ,Zt−1[31 : 30]

30 Zt−1[30 : 0] , Zt−2[31] 62 Zt[30 : 0] ,Zt−1[31]

31 Zt−1[31 : 0] 63 Zt[31 : 0]

50



Bibliography

[1] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions

on Information Theory, vol. IT-22, no. 6, pp. 644–654, 1976.

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, 1978.

[3] T. E. Gamal, “A public key cryptosystem and a signature scheme based on discrete

logarithms,” in Proceedings of CRYPTO 84 on Advances in cryptology. New York,

NY, USA: Springer-Verlag New York, Inc., 1985, pp. 10–18.

[4] PKCS#1: RSA Cryptography, RSA Laboratories Std. 800-57, 2002.

[5] Digital Signatures Using Reversible Public Key Cryptography for the Financial Ser-

vices Industry - RSA digital signature technique, ANSI Std. X9.31, 1998.

[6] E. Biham and A. Shamir, “Differential cryptanalysis of des-like crytptosystems,”

Journal of Cryptography, vol. 4, no. 1, pp. 3–72, 1991.

[7] M. Matsui, “Linear cryptanalysis method for des cipher,” in Proceedings of Advances

in Cryptology-Eurocrypt ’93. Springer-Verlag, 1994, pp. 386–397.

[8] P. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss, and other

systems,” in Proceedings of Advances in Cryptology-CRYPTO ’96. Springer-Verlag,

1996, pp. 104–113.

[9] P. Kocher, J. Jaffe, and B. Jun, “Introduction to differential power analysis and

related attacks,” in http://www.cryptography.com/dpa/technical, 1998.

51



[10] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Power analysis attacks of mod-

ular exponentiation in smartcards,” in Proceedings of Workshop on Cryptographic

Hardware and Embedded Systems. Springer-Verlag, August 1999, pp. 144–157.

[11] C. C. Yang, T. S. Chang, and C. W. Jen, “A new rsa cryptosystem hardware design

based on montgomerys algorithm,” in IEEE Trans. on Circuits and Systems - II:

Analog and Digital Signal Processing, vol. 45. New York, USA: IEEE Computer

Society, July 1998, pp. 908–913.

[12] A. Daly and W. Marnane, “Efficient architectures for implementing Montgomery

modular multiplication and RSA modular exponentiation on reconfigurable logic,”

in FPGA ’02: Proceedings of the 2002 ACM/SIGDA tenth international symposium

on Field-programmable gate arrays. New York, USA: ACM Press, 2002, pp. 40–49.

[13] T. Blum and C. Paar, “Montgomery modular exponentiation on reconfsaigurable

hardware,” in Proc. 14th IEEE Symp. Computer Arithmetic, 1999, pp. 70–77.

[14] C. D. Walter, “Systolic modular multiplication,” IEEE Transactions on Computers,

vol. 42, no. 3, pp. 376–378, Mar 1993.

[15] C.-H. Wang, C.-T. H. Chih-Pin Su and, and C.-W. Wu, “A word-based rsa crypto-

processor with enhanced pipeline performance,” in IEEE Asia-Pacific Conference on

Advanced System Integrated Circuits. New York, USA: IEEE Computer Society,

2004, pp. 218–221.

[16] L. A. Tawalbeh, A. F. Tenca, S. Park, and C. K. Koç, “Use of elliptic curves in cryp-

tography,” in Thirty-Eighth Asilomar Conference on Signals, Systems, and Comput-

ers, vol. 1, November 2004, pp. 483–487.

[17] A. F. Tenca and Çetin Kaya Koç, “A scalable architecture for modular multiplication

based on montgomery’s algorithm,” IEEE Transactions on Computers, vol. 52, no. 9,

pp. 1215–1221, September 2003.

[18] D. Harris, R. Krishnamurthy, M. Anders, S. Mathew, and S. Hsu, “An improved

unified scalable radix-2 montgomery multiplier,” in ARITH’05: Proceedings of the

52



17th IEEE Symposium on Computer Arithmetic. New York, USA: IEEE Computer

Society, 2005, pp. 172–178.

[19] C. D. Walter, “Precise bounds for montgomery modular multiplication and some

potentially insecure rsa moduli,” in Topics in Cryptology-CT-RSA 2002, B. Preneel

(editor), Lecture Notes in Computer Science, vol. 2271. San Jose, CA, USA: Springer

Berlin / Heidelberg, 2002, pp. 30–39.

[20] Y.-L. Chen, “Design and implementation of reconfigurable rsa cryptosystems,” Mas-

ter’s thesis, National Chiao Tung University, 2006.

[21] K. Mukaida, M. Takenaka, N. Torii, and S. Masui, “Design of high-speed and area-

efficient montgomery modular multiplier for rsa algorithm,” in IEEE Symp. VLSI

Circuits, 2004, pp. 320–323.

[22] C. McIvor, M. McLoone, and J. V. McCanny, “Modified montgomery modular mul-

tiplication and rsa exponentiation techniques,” in IEE Proceedings Computers and

Digital Techniques, vol. 151, 2004, pp. 402–408.

[23] S. H. Tang, K. S. Tsui, , and P. H. W. Leong, “Modular exponentiation using parallel

multipliers,” in Proceedings of the 2003 IEEE International Conference on Field

Programmable Technology (FPT), 2003, pp. 52–59.

[24] AMBATM Specification Rev 2.0, ARM Ltd. Std., 1999.

53



作者簡介 

姓名：林祐進 

出生：彰化縣 

 

學歷：台中市忠明國小、台中市向上國中、國立台中第一高級中學 

      91.9 ~ 95.6 國立交通大學電子工程學系 

      95.9 ~ 97.11 國立交通大學電子研究所系統組 


