/

R 1L ENSIESE R E SIS
¥ e # EHIRSA AT

A RSA Crypto-Core using Scalable Montgomery Multiplication with
DPA and SPA Resistance

ERE Yo
B R L R

o 3 4 L - & L 3

T HE TR ?%¢W~%%Mﬁ£1 (i wp2a FE

A RSA Crypto-Core using Scalable Montgomery Multiplication with
DPA and SPA Resistance

g4 it

Student : Tu-Ching Lin
Ry kAL

Advisor : Hsie-Chia Chang

=H
4

ovy

"
1 A2 B gk

o AL
R

ol
¢ oxyox

AThesis
Submitted to Department of Electronics:Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master

In

Electronics Engineering
November 2008

Hsinchu, Taiwan, Republic of China

PEARAY Lo gL

»

B FHBEFESJRZBLHRPEZ L
¥ ¥ £ eh RSA 2B

54 it fhEgcaR g

B R2E AT 31885 232 AL

3 S

Thm2 P AR 1 - BREVEE GRS T EEK 2 4 RSA B8
B BT R R E BY Ut R GRE(p)fe GEQR™) A kb 1 48%riE B pE Y
AT R o ® Y S B HBERE BORSA 3P B S F UL
¥ 4096 A E R E R o @ % TSMG A8 HM K- imAL T G B 2 H15 » 91
¥ B {ER P 5 365k > & 100MHz il (EpFa ™ » = & £4gE B 5 4096
A RSAEE B £ 75 355ms e gt b F jat e ehp B A i R
FRAKERNTER RO 2o FRSARBIC R S E 2 £
B B o

CF’H'

A RSA Crypto-Core using Scalable Montgomery Multiplication with
DPA and SPA Resistance

student : Yu-Ching Lin Advisors : Hsie-Chia Chang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

ABSTRACT

A scalable hardware :architecture of ‘modular multiplier on RSA
cryptosystem is introduced in this thesis.~The proposed scalable radix-2 multiplier
Is suitable for either GF(p) or GF(2n) and reduces 48% of computation time in
contrast to previous scalable architectures. Based on the scalable multiplier, the
proposed RSA crypto-core can work in any precision less than 4096 bits. After
implemented by TSMC .18 um technology, the gate count is 365k and a RSA
encryption with 4096-bit key length can be completed in 355 ms under 100MHz
operation. Furthermore, we also consider the power attack issues and take
countermeasure to against DPA(differential power analysis) and SPA(simple
power analysis) by blinding the secrect key and balanceing the power

consumption.

g\
[
I .
‘—\"

AR HE B ;}F] o RFELLIH 272 BT g b o g AR
AR - FAGAPFN I A S e A REI R S R £ 2

T or BEHETEL o security BFE(E & 25 STAR)h* i o F15 F &
WA E R EATE R BRR D F A IR Ay BB P AR AR
HoBEHHAE T ARG EE FR RS S > A% STAR)’I&?LTI?TF“’J o £ RAT

“ir
Eet

AfER e AR S s il R R A g RS S W
BEAEE - FA-AI e TR AN FEEF LR PR BBF LS B0 5

Rz £ fr BRRRY DR e L AR R S IR T e R AT

B Az s BB AFAR LA EA T RTBB/LF N HESRTT o2 AR
AR IREE AL -~ XA AT AEY BB - L EE LR BT PSR
e B oo

B RRMRAA AT RRBRUFDFTAZN AT §4EF G dL 54 R RS
2 B X7 AhE ¥ «’é;}xaﬁ;ppi;ragﬁy;ﬁ%,;gj};;giﬁﬂﬁ&%;_2401&:@;&

BHe- B P RBA XL S AT A

A RSA Crypto-Core using Scalable Montgomery
Multiplication with DPA and SPA Resistance

Student: Yu-Ching Lin
Advisof:‘ Dr. Hsige“Chi‘a“ Chang

Department of Eleetronics Engineering

National Chiao Tung University

Abstract

A scalable hardware architecture of modular multiplier on RSA cryptosystem is intro-
duced in this thesis. The proposed scalable radix-2 multiplier is suitable for either GF(p)
or GF(2") and reduces 48% of computation time in contrast to previous scalable archi-
tectures. Based on the scalable multiplier, the proposed RSA crypto-core can work in any
precision less than 4096 bits. After implemented by TSMC .18 pum technology, the gate
count is 365k and a RSA encryptlon withi4096-bit key length can be completed in 355
ms under 100MHz operation. Furthermore IWe a.lso Gon51der the power attack issues and
take countermeasure to against DPA(dlfferentlal powér analysis) and SPA (simple power

analysis) by blinding the secrect lgey aﬁnd;halaﬂp__cemg che power consumption.

Contents

1 introduction

1.1 Background
1.2 Motivationo
1.3 Thesis Organization

2 RSA Cryptosystem and Montgomery Multiplication

2.1 Mathematics Foundation 0oL
2.1.1 Number Theory . . CgMEE
2.1.2 N-residue« - .‘

2.2 RSA Algorithm : o ! J f:', ..:‘.
2.2.1 RSA Rationale =. . * L. .J;
2.2.2 Modular Exponer;tﬂia,nti(‘)‘r'i{ .‘ .. ;

2.3 Montgomery Multiplication Pl L Ll
2.3.1 Reduction Algorithm
2.3.2 Montgomery Multiplication Algorithm

2.4 Power Analysis of Modular Exponentiation
2.4.1 Simple Power Attack (SPA)
2.4.2 Differential Power Attack (DPA)
2.4.3 Countermeasure of RSA Against DPA and SPA

3 Proposed Montgomery Multiplication

3.1 Review of Montgomery Multiplication Algorithms

3.2 Word-based Montgomery Multiplication Algorithm

3.3 Modified Word-based Montgomery Multiplication

Proposed RSA Crypto-Core

4.1 Overall Architecture

4.2 Modular Multiplier Architectures
4.2.1 A Scalable Montgomery Multiplier
4.2.2 Number of Processing Unit and Size of Word
4.2.3 Processing Unit L Lo
4.2.4 Flexible Output and Permutation Function

4.3 Countermeasures Against DPA and SPA

Implementation Results and Comparison
5.1 ASIC Implementation
5.2 FPGA Implementation

Conclusion
Algorithm of Montgomery multiplication over GF'(2")

FPGA Implementation with AMBA

Permutation Function

11

26
26
27
27
30
32
34
35

38
39
39

42

43

45

49

List of Figures

1.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

B.1
B.2
B.3
B.4

Public key system. 1
RSA flow chart. 27
RSA modular exponentiation architecture. 28
Scalable word-based Montgomery Multiplier. 29
Pipelined diagram. 31
Several configurations of n=1024, 2048, and 4096. 33
Architecture of Processing Unit 34
Architecture of Flexible Outpﬂf: W2y, S 35
RSA modular exponentia,tinoﬁ arcliuijtci_ctlure.é'gainst DPA. 36
RSA and other device cqri-nect Eto_AIL.IB via AHB wrapper. 45
Address Mapping. * 1. 46
AHB to RSA wrapper. . . . TTIe 47
AMBA address mapping. 48

11

List of Tables

2.1

4.1
4.2

5.1
5.2
5.3
5.4
5.9
5.6

C.1

Compare of LR and RL algorithms 11
Kernel cycle and computation time. 30
A comparison of computation time 32
Modular exponentiation software performance. 38
The verification results on ASIC. 39
Comparison with other 1024-bits implementations with ASIC design. . . . 40
The verification results on FPGA. e e e 40
Comparison with other 1024~b1ts 1mp1ementat10ns on FPGA. 41
Comparison of 4096-bit 1mplemeﬂtations on FPGA 41

The permutation functio‘r_ljof ﬂégib}em@uutpqt. 50

v

Chapter 1

introduction

1.1 Background

Since public key cryptosystem [1] was published in 1976 by Whitfield Diffie and Martin
Hellman, the use of discrete logarithm problem in public-key cryptosystems has been
recognized. This method of exponential—key exchange which came to be known as Diffie-
Hellman key exchange, was the first. pubhshed practlcal method for establishing a shared
secret-key over an unprotected commumcdtlons channel without using a prior shared

secret. =% P ‘

Encrypt

Figure 1.1: Public key system.

RSA and El-Gamal are two of the popular public-key cyrptosystems widely used nowa-
days. The RSA algorithm based on the high difficulty of factoring large numbers was
published by Rivest, Shamir and Adleman [2] at MIT! in 1978. Further, the El-Gamal
algorithm based on Diffie-Hellman key agreement describes the public-key system and

!Massachusetts Institute of Technology, located in Cambridge, MA, USA. http://web.mit.edu/

digital signature schemes, and it was proposed by Taher ElGamal [3] in 1985.

Figure 1.1 shows a scheme of public key system. In an encryption scheme anyone can
encrypt using the public key, but only the holder of the private key can decrypt. Security
depends on the secrecy of the private key.

The RSA is the most popular and well-defined security primary technique. It is a cryp-
tosystem widely used to ensure data privacy in many fields such as communication. And
also PKCS#1 standard [4] lines out a way of encrypting data using the RSA cryptosys-
tem. Moreover, in digital signature and digital envelope, RSA provides non-repudiation
and confidentiality of communication. Actually, many good security protocols using RSA
cryptosystem are applied in the modern information technology, for example, virtual pri-
vate networks, electronic commerce, and secure Internet access.

RSA cryptosystem is easy to understand and implement. It is based on modular
exponentiation. This modular exponentiation is performed by repeated modular multi-
plications. In general, the modular multiplication has to be performed a certain number of
times depends on the key length to ensure security, but the consequence is that the RSA
operation has to take much more coniiﬁltltatiﬂonéi:éosit for security consideration. In order

to include RSA cryptosystem pra@#iéally in 3H:i.~apy'pr(")t‘ocols for high speed application, it

is desired to devise faster encrypﬁi(')_n antd" ,dééfyptibn ofperations.

1.2 Motivation

In recent years, security issues on communications are more and more significant as the
wireless industry explodes. The public key cryptosystem has become an important role.
There are many applications using RSA as authentication for transactions and encryption
or signature for secure messaging. The precision of operands is getting higher for better
security. A major design concern for multiplication units used in cryptography is the large
number of operand bits, 4096 bits in RSA, which causes large fanout of signals, large wire
delays, and complex routing.

In this thesis, an approach provided to compute the modular multiplication in GF'(p),
and word-based method can solve th high fanout problem. Furthermore, the precision of

operand is limited only by the memory. In this thesis, any length less than 4168 bits can

be performed and the architecture is so-called scalable.

Recent researches showed that power consumption may reveal the secret key of public
key cryptosystem. Those attacks works based on the statistic analysis of power tracing.
It’s essentially to do something against the power attack. We also proposed a method on

the RSA cryptocore that resists DPA and SPA.

1.3 Thesis Organization

In this thesis, a scalable RSA cryptosystem is given. The algorithms in this thesis are
over prime field. The Montgomery multiplication algorithm over GF'(2") with radix-2 is
given in the Chapter A since the algorithms of binary field with radix-2 are almost iden-
tical in digital system. . In Chapter 2, the preliminary mathematical background of RSA
is first introduced and then we describe the RSA algorithm. In the end of this section,
the Montgomery multiplication is introduced. In Chapter 3,an algorithm for word-based
Montgomery modular multiplication overnp‘rilﬁne field is proposed. Also a brief introduc-
tion of power attack on modular exﬁibﬁeptiat%éh"‘ 1s given in the end. In Chapter 4.2,
all the proposed scalable RSA cfifptocofdf iahd--ﬁon&jbased multiplier architectures are
described in this chapter. First, :’l’;f:le irn{plﬁenrh'eélnﬂtation-(];)f the proposed word-based Mont-
gomery multiplication algorithm ié‘rpres‘e_nfémn acomparison of several configurations
of word-based Montgomery multipliéétion is d@scﬂ'ﬁéd. The modular multiplication is the
main operation for RSA scheme. The rest of section states the countermeasures of DPA
and SPA. In Chapter 5, it shows the hardware implementation results and comparisons

for ASIC and FPGA. Finally, the conclusion is given in Chapter 6.

Chapter 2

RSA Cryptosystem and
Montgomery Multiplication

2.1 Mathematics Foundation

This chapter describes the basic arithmeti(:"used in RSA cryttosystem over GF'(p). The

most important mathematical tool is number theory, espec1ally the theory of congruences.
|

Modular arithmetic such as modulay multlphcatlon is espe(nally an important part in the

RSA systems, so there are still many approaches to its improvement nowadays.

2.1.1 Number Theory

Congruences
One of the most basic and useful in number theory is modular arithmetic, or congru-
ences. Let a, b, n be integers with n # 0. If @ and b differ by a multiple of n, a is congruent

to b mod n.

a = b(mod n)

It can be rewritten as

a=b+nk

for some integer k.

Primitive Roots

In general, when p is a prime, a primitive root mod p is a number whose powers yield
every nonzero class mod p. There are ¢(p— 1) primitive roots mod p. Let g be a primitive

root for the prime p.
e If 7 is an integer, then ¢g* = 1(mod p) if and only if i = 0(modp — 1).
e If j and k are integers, then ¢/ = g*(mod p) if and only if j = k(mod p — 1).

Fermat’s Theorem
Fermat’s theorem states the follows : If p is prime and a is a positive integer not
divisible by p, then
a’ ' =1 mod p (2.1)

We know that if all of the elements of Z,,, where Z, is the set of integers {0,1,...,p—1},
are multiplied by a, modulo p, the result consists of all of the elements of Z, in some

sequence. Furthermore, a x 0 = 0 mod p. Therefore, the (p — 1) numbers

{a mod p, 2a mod P Lis(p — 1)a mod p}

are just the numbers {0, 1,..., p‘j—lll} iﬁ"gei)r'r‘_lq'b'rdef; Multiplying the numbers in both

J

sets and taking the result modula p yield"‘s_;”* : =

1><2><...><(p—1)5(arr;wdg;")><(2anmoi“Zp)><...><((p—l)amodp)

(p—1!'modp=(p—1)la’ .

We can cancel the (p—1)! term because it is relatively prime to p. This yields Equation
2.1.

Euler’s Totient Function

Before presenting Euler’s theorem, we need to introduce an important quantity in
number theory, referred to as Euler’s totient function and written ¢(n), where ¢(n) is the
number of positive integers less than n and relatively prime to n. It should be clear that
for a prime number p, ¢(p) = p — 1 There are two prime numbers p and ¢, with p # q.
Then, for n = pq,

o(n) = d(pq) = d(p)o(q) = (p — 1)(g — 1). (2.2)

Euler’s Theorem

Euler’s theorem states that for every a and n that are relatively prime:

a®™ =1 mod n (2.3)

Equation 2.3 is true if n is prime, because in that case ¢(n) = (n — 1) and Fermat’s
theorem holds. However, it also holds for any integer n. Recall that ¢(n) is the number
of positive integers less than n that are relatively prime to n. Consider the set of such
integers, labeled as follows:

R = L1, T2y ..., Ty(n)-
Now multiply each element by a modulo n:
S = (ax1 mod n), (axy mod n), ..., (azym)).

The set S is a permutation of R, by the following line of reasoning;:

1. Because a and z; are relatively prime to n, ax; must also be relatively prime to n.

Thus, all the elements of S are infegersdess than n that are relatively prime to n.

2. There are no duplicates in S 1f axzmodn —'@a; mod n, then x; = ; .

Therefore, P ‘ 'a

$(n) o(n)

H ax;(mod n) = H T

i=1 i=1
$(n) $(n)
H ar; = H x;(mod n)
i=1 i=1

#(n) d(n)
a?™ H T = H x;(- mod n)
i=1 i=1
a®™ =1 mod n
An alternative form of the theorem is also useful:

a"?+ = ¢ mod n (2.4)

2.1.2 N-residue

Given an integer 0 < a < n, we define it’s n-residue with respect to r as
a=a-rmodn, (2.5)

which is also called the Montgomery domain mapping.

It is easy to verify that

e r+yismappedtor+y=(x+y)r=ar+yr=2+79,

e 1y is mapped to Ty = (ay)r = (zr)(yr)r—t = zyr—'.

Therefore, the multiplication algorithm of the n-residue z and ¥ is
reduce(7y).

The algorithms for subtraction, negation, equality test, inequality test,multiplication by
an integer, and the greatest common divisor with n are also unchanged.
In order to map an integer x to lt’s n—residué & with respect to r, extra computation
is required. Fortunately,the mapping opefﬂié)n:éan -b'@ done by
T = reduce--(__ac"f/“?)‘é".‘éé‘q"ﬁ%mocﬂi n = xr mod n, (2.6)

where 72 mod n need to be precompdtéd. And the inverse operation for mapping z to x

is simply multiplied by 1.

T =reduce(xr - 1) = 2r - v 'mod n = x mod n, (2.7)

2.2 RSA Algorithm

The RSA scheme is the most widely used to ensure data privacy in many fields and
applied to the digital signature generation and verification, the RSA DS algorithm, an-
nounced in ANST* X9.31 [5]. Tt is a block cipher in which the plaintext and ciphertext are
integers between 0 and n — 1 for some n which is typically between 2°12 and 2499, The

more bits provides the higher security. The scheme of RSA is showed as following:

L American National Standards Institute

Algorithm 2.1. (RSA Algorithm)

Key generation

Select p,q p and q both prime, p # q
Calculate N and ¢(N) N =pq,¢(N) = (p—1)(¢—1)
Select integer £ ged(p(N), E) =1;1 < E < ¢(N)
Calculate D D = E~' mod ¢(N)
Public key KU ={E,N}
Private key KR ={D,N}
Encryption
Plaintext M M <N
Ciphertext C C' = MF mod N
Decryption
Ciphertext C' C <N
Plaintext M M = CP mod N

= MPE mod N N

= M mod N

2.2.1 RSA Rationale b 2

Let p and ¢ be two distinct lzirge ran

]

i primes,” The modulus N is the product of

these two primes: N = pq. Accordihg to equa“t'}oh('Ql.Z), the Euler’s totient function of N
is given by
o(N)=(p-1)(¢—1)

Now, select a number 1 < E < ¢(N) such that
ged(op(N), E) = 1,

and compute D with
D = E 'mod ¢(N). (2.8)
Here, {E, N} is the public key and {D, N} is the private key. The value of D and the

prime numbers p and g are kept secret. Encryption is performed by computing

C = M* mod N, (2.9)

where M is the plaintext such that 0 < M < N. The number C' is the ciphertext from

which the plaintext M can be computed using
M = C” mod N. (2.10)

The correctness of the RSA algorithm follow from Euler’s theorem(Eq.2.3):

Let N and a be positive, relatively prime integers. Then
a®™N) =1 mod N

Since E'D is equal to 1 mod ¢(NN), it meet that ED is equal to 1+ k¢(N) for some integer
k.

CP = (M*)P mod N
= MFP mod N
= M) mod N
= M 5 MP™" mod N

EM X i gmod.].\f""- ,
=l Bl = =
= ' | Y

[Example]

Let p =47 and ¢ = 59, then N = pg = 2773 and ¢(N) = (p — 1)(¢ — 1) = 2668. The
value of F/ must be chosen somewhere between 1 and 2668. Assume E = 17. According
to Eq.(2.8), the value of D is 157. Assume further that the alphabet is represented by
decimal values, i.e. A =01, B = 02, C' = 03, etc. and a blank space is given the value
00.

The plaintext ,M, is given as:

M = RSA CRYPTOSYSTEM

or represented in decimal as:

M = (m7 mg ms my m3 mg My M)

= (1819 0100 0318 2516 2015 1925 1920 0513)

The plaintext is encrypted block by block,which depends on the size of N, individually.
As an example,the m; block is encrypted by

1819'" mod 2773 = 0818
Performing the same operation on the subsequent blocks generates an
c = 0818 1952 0578 2666 0774 0246 2109 0772.

Decrypting the message requires performing the same exponentiation using the decryption
key D = 157, so
0818"7 mod 2773 = 1819 = m,

The rest of the plaintext can be recovered in this manner.
Note that the modular exponentiation is the most important operation in the RSA

scheme.

2.2.2 Modular Exponentlatmn

In the RSA cryptosystem, the maln Obe&thH for encryption and decryption is the
modular exponentiation. The most dlrecﬁ Way to Cbmpute M¥ mod N is to simply
multiply M for E times. Since aH the operands in RSA are typically large than 512 bits
and it is impractical to store the result of M* & There are alternative ways to make it
efficient: the L-R binary method and the R-L binary method.

Supposed the key F is a n-bit in binary representation as:

E = (€n71, €n—2,...,€2,€1, 60)2,

then
M¥ mod N = M(en-r2" 7 ten2 275 b2 e 2 o) o N,
LR Method
M¥ mod N = ((-- -(M®=* mod N)?--)?- M° mod N)*- M mod N (2.11)

10

As showed in table, the L-R algorithm performs square and multiplication sequentially.
It does mean that both the square and multiply operations can be performed in the same

single hardware multiplier.

RL Method
MP mod N = (- «((M® mod N) - (M?)® mod N)--) - (M*)t mod N (2.12)

In the R-L algorithm, the square and multiply operations are independent, and may be
performed in parallel. Thus, 50% less clock cycles than LR algorithm are required to
complete the exponentiation. However, two physical hardware multipliers are required to

achieve this speed up.

Table 2.1: Compare of LR and RL algorithms

L-R algorithm R-L algorithm
Input : n-bits E=(e" .. :‘,‘-6‘1“, éo)z dInpput : 7 - bits £ = (en=t ... et el),
m - bits M TEA\% n-visw
Output : m - bits Z ~ e e Outp:ut : m-bits Z
. P=MZ—1 A NEzm Fr-Mz-1
2. fori=n—1t%t00 | 2 fori=0ton—1
2.1 if (e, ==1) 2.1 if (e, ==1)
22 Z =7 -P mod N, 22 Z=7-P mod N;
23 Z=27-7Z mod N; 2.3 P=P-P mod N;
3. return Z; 3. return Z;

2.3 Montgomery Multiplication

In 1985, P. L. Montgomery introduced an efficient algorithm for computing R =
ab mod n where a, b and n are k-bit binary numbers. The algorithm is particularly suitable

for implementation on general-purpose computers and embedded microprocessors. The

11

algorithm use divisions by a power of two, which are simply a few right shifts in hardware
implementation, instead of trail divisions by n, which are used in a conventional modular
operation. The basic idea of Montgomery’s method, reduce algorithm, is stated as

following.

2.3.1 Reduction Algorithm

The Montgomery reduction algorithm 2.2 computes the resulting k-bit number R
without performing a division by the modulus n. Via an ingenious representation of
the residue class modulo n, this algorithm replaces division by n operation with division
by a power of 2. This operation can be easily accomplished on a computer since the
numbers are represented in binary form. Assuming the modulus n is a k-bit number, i.e.,
2kt < < 2% let r be 2F. The Montgomery reduction algorithm requires that r and n
be relatively prime, i.e., ged(7, n) = ged(2¥ , n) = 1. This requirement is satisfied if
n is odd. The Montgomery reduction algorithm 2.2 was showed as following.

Since ged(r,n) = 1, there are two numbers ritandn with0 <r~!' <nand0<n' <r,

satisfying R

HALTSS

== .ll .

= e 27 Sl S (2.13)
L | 1

Algorithm 2.2. (reduce(x))
Input : x,rn
Output: a = zr 'mod n
1. ¢ = (z mod r)n’ mod r;
2. a=(x+qn)/r;
3. Ifa>n, thena=a—n;
4

return a;

The reason why the Algorithm 2.2 works is explained as follows.

First,

aert = zrrtr = x(nn' 4+ 1)/r. (2.14)

12

For any integer [,
((zn' +Ir)yn+ z)/r (mod n) = (zn'n+ lrn + x)/r (mod n)

= (zn'n+z)/r (mod n)

Therefore, instead of computing ¢ = zn’, we can compute ¢ = zn’ mod r. Supposed
that 0 < x < rn,the value of a = (z + gn)/r will be less than 2n. Therefore,computing

a mod n can be done by simply subtracting n from a if a > n.

2.3.2 Montgomery Multiplication Algorithm

When the numbers X,Y ,and N are large, we can apply the above Algorithm (2.2) to
compute XY mod N in an efficient way. We want to compute Z = XY 3_; and suppose

that
X=> oY= wZ=> up N=> np"
k=0 k=0 k=0 k=0

The Montgomery multiplication is s,h'c:iivx.red as foﬁdWs:

Algorithm 2.3. (Monthmef,ayi {ierics]\Ifb)
Input : XY ,N an ﬁ_ :
Output: Z = XY 3 "™mod N 4
1. Z=0;
2. fork=0tom—1
2.1 q=(Z+2.Y) (B —no)z'mod 3 ;

22 72 =7Z+uzY +qN;

2.8 7 =7/8;

3. return Z;

In the Algorithm 2.3, we use the notation (oz)gl to denote the inverse of o in Zj.
The reason why the algorithm works is explained as follows. The algorithm computes the
answer Z incrementally. At each iteration, xj, is scanned to determined the operation. The
computation is similar to the reduce Algorithm 2.2. That is, compute Z = Z +xY +qN
and then Z = Z /3. The rationale behind this computation is to find a proper value of ¢

13

so that, at the k-th iteration, the value of Z + xY + ¢V is a multiple of 3. As explained
above, the value of ¢ is

qg=(Z+ ka)N/mod 3,

where N’ is the inverse of N in Zgm. Therefore,
g = (Z+xY)N'mod 3 = (20 + zxy0) (8 — no) 5 mod 3,
In the above equation, we use the fact that
RR'— NN =1 (mod ™)

since ged(N, ™) = 1, where R = ™.
Thus, —NN'mod 3 = 1, which implies that

N'mod 3 = (=N);" = (6 —no)5".

Suppose that 3 = 2* for some positive integer k, and that the value of no = — 1. Then
the value of (3 — no) =1.In thlS ca,se g = (2’0 - a:kyo) mod (3, which is the value of the
last digit of Z + zY. Therefore, we ¢an; qa,ve ’ghe computatlon of the value of ¢ at each
iteration. Supposed that & = 1, the Montgoméry Multlphcatlon algorithm with radix-2

can be rewritten as following algdrlthm 2 4— . h;

Algorithm 2.4. (Montgomery wi"tﬁ .radia:-.Z?l

Input : X = (l‘mfla cee ,flfo)z;Y = (ymfla ce 72/0)2;]\7 = (nmfla cee ,no)z
Output: Z = (Zy_1,---,20)2

1. Z=0;

2. fork=0tom—1
2.1 q=7+xY;
2.2 qo = q mod 2;
2.3 Z =q+ qN;
2.4 7 =7/2;

3. return Z;

14

2.4 Power Analysis of Modular Exponentiation

Cryptographers have traditionally analysed cipher systems by modeling cryptographic
algorithms as ideal mathematical objects. Conventional techniques such as differential [6]
and linear [7] cryptanalysis are very useful for exploring weaknesses in algorithms. But
the physical implementations often result in the leakage of side-channel information.

Attacks have been proposed that use such information as timing measurements [8],
power consumption [9], electromagnetic emissions and faulty hardware. In this section
we examine the weakness of RSA cryptographic algorithms to power analysis attacks.
Specifically, attacks on the modular exponentiation process are described.

Power analysis attacks work by exploiting the differences in power consumption be-
tween when a tamper-resistant device processes a logical zero and when it processes a
logical one. For example, when the secret data on a smartcard is accessed, the power
consumption may be different depending on the Hamming weight of the data. If an at-
tacker knows the Hamming weight of the secret key the attacker could potentially learn
the entire secret key. This type of attdek;swhere the adversary directly uses a power
consumption signal to obtain 1nformat10n Ja]aout the secret key is referred to as a Simple
Power Analysis (SPA) attack and4s descrlbeJd in sectlon 2.4.1. Differential Power Analysis
(DPA) is described in section 2. 4 2 and 1t 1&based on the same underlying principle of
an SPA attack, but uses statistical ana1y51s techques to extract very tiny differences in

power consumption signals.

2.4.1 Simple Power Attack (SPA)

An SPA attack, as described in [9], involves directly observing a system’s power con-
sumption. Suppose that the attackers not only have unlimited access, but also have
detailed knowledge of the software and hardware of the systems. If an attacker can deter-
mine where certain instructions are being executed, it can be relatively simple to extract
useful information.

SPA on a single-key cryptographic algorithm, such as DES, could be used to learn the
Hamming weight of the key bytes. DES uses only a 56-bit key so learning the Hamming

weight information alone makes DES vulnerable to a brute-force attack. In fact, depend-

15

ing on the implementation, there are even stronger SPA attacks. A two-key, public-key
cryptosystem, such as an RSA or elliptic curve cryptosystem, might also be vulnerable to
an SPA attack on the Hamming weight of the individual key bytes, however it is possible
an even stronger attack can be made directly against the square-and-multiply algorithm.

If exponentiation were performed in software using one of the square-and-multiply
algorithms, there could be a number of potential vulnerabilities. The main problem with

963

both algorithms is that the outcome of the ”‘if statement”’ might be observed in the power
signal. This would directly enable the attacker to learn every bit of the secret exponent.
A simple fix is to always perform a multiply and to only save the result if the exponent
bit is an one. This solution is very costly for performance and still may be vulnerable if

the act of saving the result can be observed in the power signal.

2.4.2 Differential Power Attack (DPA)

A DPA attack is more powerful than an SPA attack because the attacker does not
need to know as many details about how- the algorithm was implemented. The technique
also gains strength by using statlstlcal anaﬂdysw to help recover side-channel information.

The problem with an SPA attack is that the mforma.tlon about the secret key is difficult

to directly observe. The 1nformat10n about the key was often obscured with noise and

modulated by the device’s clock Slgnal DPA caal be used to reduce the noise and also

o 7*demodulate”’ the data. Any power biases at the time corresponding to the guess bit
operation are visible as an obvious spike in the difference signal and much of the noise is
eliminated because averaging reduces the noise variance.

Three attacks of DPA, was described in [10]. Other assumptions used for particular
attacks are stated in the following that describe the specific attack details.

Single-Exponent, Multiple-Data (SEMD) Attack

The SEMD attack assumes that the smartcard is willing to exponentiate an arbitrary
number of random values with two exponents: the secret exponent and a public exponent.
The basic attack is that by comparing the power signal of an exponentiation using a known
exponent to a power signal using an unknown exponent, the adversary can learn where
the two exponents differ, thus learn the secret exponent. In reality, the comparison is

nontrivial because the intermediate data results of the square-and-multiply algorithm

16

cause widely varying changes in the power signals, thereby making direct comparisons
unreliable. The solution to this problem is to use averaging and subtraction.

Multiple-Exponent, Single-Data (MESD) Attack

The MESD attack is more powerful than the SEMD attack. The SEMD attack is a
very simple attack requiring little sophistication on the part of the adversary, but the
resulting DPA bias signal is sometimes difficult to interpret. The Signal-to-Noise Ratio
(SNR) can be improved using the MESD attack. The assumption for the MESD attack
is that the smartcard will exponentiate a constant value using exponents chosen by the
attacker. This value may or may not be known to the attacker.

Zero-Exponent, Multiple-Data (ZEMD) Attack

The ZEMD attack is similar to the MESD attack, but has a different set of assump-
tions. One assumption for the ZEMD attack is that the smartcard will exponentiate many
random messages using the secret exponent. This attack does not require the adversary
know any exponents, hence the zero-exponent nomenclature. Instead, the adversary needs
to be able to predict the intermediate results of the square-and-multiply algorithm using
an off-line simulation. This usually, requ1res that the adversary know the algorithm be-
ing used by the exponentiation ha}"dware'afld jz_he‘ deuluS used for the exponentiation.

There are only a few common appf,noach;esnt‘o‘ "‘i.mple'merliting modular exponentiation algo-

rithms, so it is likely an adversari'r_ﬁca‘ﬁ‘ determine this information. It is also likely that

the adversary can learn the modulus because this information is usually public.

2.4.3 Countermeasure of RSA Against DPA and SPA

Potential countermeasures to the attacks described in this paper include many of the
same techniques described to prevent timing attacks on exponentiation. Kocher’s [8]
suggestion for adapting the techniques used for blinding signatures can also be applied
to prevent power analysis attacks. Prior to exponentiation, the message could be blinded
with a random value, v; and unblinded after exponentiation with v; = (v; ')*mod N. An
efficient way is presented in [8] to calculate and maintain (v;, vy) pairs.

Message blinding would prevent the MESD and ZESD attacks, but since the same
exponent is being used, the SEMD attack would still be effective. To prevent the SEMD

attack, exponent blinding would be necessary. In an RSA cryptosystem, the exponent

17

can be blinded by adding a random multiple of (V) = (p—1)(¢— 1), where and N = pq.

Note that M*™ mod N =1 mod N, the result of exponentiation is unchanged since
M*4MFE mod N = M¥*™N) x MP mod N
= (M?"NE 5 ME mod N
= (1)* x M*¥ mod N

= M* mod N (2.15)

,where k is a random number.

18

Chapter 3

Proposed Montgomery
Multiplication

3.1 Review of Montgomery Multiplication Algorithms

Since the Montgomery multiplica?ion(MM) algorithm was proposed in 1985, various
modular multiplication [11], [12], [18], [14] gfilb] were: modlﬁed based on it. The MM is the
basic operation used in modular exponent‘latlon Whlch is required in the Diffie-Hellman
and RSA public-key cryptosystems Recently, the implementations of Montgomery Mul-
tiplication are focused on the elhptlc cuive Cryptography [16] over the finite fields GF(p)

and GF(2™). Following section shows some ‘of the modified algorithm and gives a brief

comment of each algorithms.

Algorithm 3.1. (Chen’s Modified Montgomery Multiplication)
Input : XY ,N
Output: 7
1. C=XxY = an_122n71 + an_222n72 + ...+ 6121 + 6020
2. 7 =0;
3. fork=0to2n—1
3.1 q= (20 + cx)mod 2 ;
3.2 7 =27+ c,Y +qN;

3.9 7 =27/2;

19

4. return Z;

In Chen’s algorithm, the multiplication, X x Y is computed before the loop and the
loop is the same as reduce algorithm 2.2. For hardware implementation with pipeline,
modular operation can work without waiting the final result of X x Y. This means that
multiplication and modulus can be work in parallel. The disadvantage of Chen’s algorithm
is the number of iteration that is two times than Montgomery’s. However, there is only
one n-bit addition in each iteration in Chen’s, since the computation of ¢ is simply bitwise

XORed.

Algorithm 3.2. (Yang’s Modified Montgomery Multiplication)
Input : XY N
Output: 7
1. C=XxY = CQTL—122n_1 + CQn_222n_2 + ...+ 6121 + 6020
= CU X 2" 4+ CL
2. 7 =0;
3. fork=0ton—1 .
3.1 q= (20 + cx)mod 2 ; H:
92 Z=Z+ci+qN; o e 3
3.9 7 = 7/2;
4. Z=7Z+Cy

d. return Z;

Yang [11] proposed an algorithm in 1998 that was improved to the Chen’s algorithm
by separating C' into upper part Cy and lower part C7, thus the iterations are half of

Chen’s regardless of the final addition. The rationale is explained below.

AXBx2"mod N=Cx2"mod N
= (Cy x2"+CL) x 27" mod N

= (CU + OL X 2—n) mod N

The [15] was implemented based on Yang’s algorithm with pipelined enhancement.

20

3.2 Word-based Montgomery Multiplication Algorithm

Nowadays, a major design concern for multiplication units used in cryptography is
the large number of operand bits, which causes large fanout of signals, large wire delays,
and complex routing. These problems are reduced in systolic architectures [13], [14], at
the cost of extra hardware resources. However, these architectures are usually tailored for
fixed-precision.

Tenca and Koc proposed a scalable word-based architecture [17] based on radix-2
Montgomery Multiplication. Differently from the high-radix algorithms used in software,
[17] avoids the use of costly digit multiplications, this way, it allows the exploration of
several design trade offs to obtain the best performance in a limited chip area, without
limiting the operand precision. Practical limits to the precision are imposed by the control

and memory subsystems.

Algorithm 3.3. (Word-based Montgomery Multiplication Algorithm)
Input : XY N
Output: S
1. Z=0; . =:
2. fori=0ton—1 P 1 7 :
2.1 (Coy 29 = a0 + 20 : '"
2.2 if Z0 =1 then;
i. (Cy,2%) =2+ N°;
1. for 3 =1 toe;
A (Co, Z7)=Cy+ Y7 + 77 ;
B. (Cy, Z7) =Cyp+ N + Z7;
C. 277V = (23,2074);
2.3 else;
. forj=1toe;
A (Cp,Z7)=Co+xYI + 77 ;
B. 237 = (23, 7)7);

3. return Z;

21

Algorithm 3.3 executes a series of operation to generate XYr~'mod N, scanning Y
and N word-by-word and scanning X bit-by-bit. This characteristic enables us to derive
a hardware implementation that is very regular and based on simple operations. Suppose
that n is a multiple of word size w, the n-bit operands are split into e words, where

e = n/w. Word and bit vectors are represented as:

O,Ne 1 Nl,NO),

Ze 1 Zl,ZO),

<N =
I

(
(0, Y, YL YO,
(©,
(

Tp—1,- - $1,I0)

where the word are marked with superscripts and the bits are marked with subscripts.
N, Y, and Z are zero-extend to e + 1 words, thus avoiding overflow. The concatenation
of two vectors A and B is represented as (A,B). The bit position i of the kth word of an
operand A is represented as A¥.

The total carry-out value generated in each-j. loop iteration corresponds to C, + C}
and it is in the range [0,2]. The algorlthm epmputed a new partial sum of Z for each bit,
x;, scanning the words of the present 2 and N. Once Y is completely scanned, next
bit of X, z;,1, is taken and then scan lsrr-epea,ted The arithmetic operations in the j
loop are performed in w bits of pre01s10n The nurnber of loop iterations is adjusted to
accomplish the required precision, without modifications to the inner structure. This is
the main feature of word-based scalable architecture shown in [17].

The right-shift by 1 bit is done by Z7~! = (ZJ, Z2~" |). Note that the least significant
bit of next word, Zg, must be computed before it can be right-shifted into the most
significant position of Z7~1 on the jth step of the inner loop. This is a critical limitation
of the algorithm.

To implement this algorithm, unrolling the for loop to pipelined architecture is a useful
skill for increment of parallelism. The dependency on the carry bits within j loop restricts
their parallel execution. However, instructions in different ¢ loops may be executed in

parallel.

22

3.3 Modified Word-based Montgomery Multiplication

The fundamental problem with the Tenca-koc architecture is the dependency caused
by waiting to right shift Z] into ZJ ~, before processing Z/~1 at the next iteration. The
work in [18] describes that rather than shift right the partial result Z*, shift left the Y

and N can eliminate the dependency between Z%.

Algorithm 3.4. (Proposed Modified Word-based Montgomery Multiplication)
Input : XY ,N
Output: 7

1. Z=0;
2. fori1=0 to ker—1
2.1 forj=0top—1
.Y =2xY;
ii. N=2x N;
. forkzOtoe—Ffp/uﬂ—l |
A (C,, ZF) = C, + as(zpﬂ)() + Z’“ -
B. iftk == | 1]),qdd £ Sfméd 3
C. (Cy, Z¥) = Oy odd(N*) £ 2P
. Z =S/ZP, 7 ‘

3. return Z;

In this algorithm, ¢ loop and j loop scans the x bit-by-bit and k loop computes a new
partial sum Z word by word for preset bit of X. Set n=ker-p,thus scanning through n
bits of X. The number of iteration in k loop is e + [p/w]| ,where e = n/w is the number
of words. Note that there are additional [p/w] iterations to compute the most significant

word caused by the left-shift of Y and N.

23

Since Y < N < 27", it is easy to verify that

(202°Y + 0ddy2°N) + (212'Y + 0dd2'N) + - - - + (2,_12°71Y + odd,2P"*N)
< 2%V +2°N) 4+ (2'Y + 2'N) + - 4 (2P7Y 4 2P IN)
<(@2-1Y +N)
< (2")(N + N)
<(2)(2-2")
< ort

,where the subscript of odd denotes the the number of loop been executed. Therefore,
extra p bits or [p/w] words are necessary to handle the overflow.

Note that the odd check is different from the [17], always check the least significant
bit of partial sum Z{. Unrolling technique is used again to the j loops, instead of shifting
right partial sum in the k loop, we shift left Y and N for each j loop. The odd check

must be modified to match the original one. It is observed that

jth Z° = (j —)th 20/2 + xj 1Y (PWBMM)

jth 2° = (j = 1)ch°+x] 12Y - (MM),

| - " ‘|

and the jth S in this algorithm 154 ,Shi'ft-lleff:"T"—bitfls}érsion of [17]. And also the odd bit
shift left by 1 bit for each loop. Thereforagriit:" '

Oddo = Z(), Odd1 = Zl, ey Oddj_l = Zj—l-

And the representation in word base is showed as:

L)

(j mod w)’

where j is the number of loop and w denotes the word size.
The rest of section states the evaluation of equality of this algorithm to original algo-

rithm.

24

Original Montgomery Multiplication can be represented as:

XY2 " mod N

xzgY +oddg N
20° 0 4o Y 4oddy N
s+ tan2Y+oddy 2N

4+ xp1Y +odd, 1N

= 2 5 (3.1)
I’OY + OddoN l‘ly + Odle I’n_QY + Oddn_gN .Z'n_lY -+ Oddn_lN
= + - +oe + .
2n 2n—1 22 2
(3.2)
My proposed algorithm PMWBMM is showed as:
k‘erin/p
(x020Y+odd020N)+(1121Y+odd121;\117)+--.+(zp—121’*1Y+oddp_12P*1N)+(mp20y+oddp20N)+m o
_ (3.3)
(on—g(;ddoN 4 xlyz-iz-)o_cile 4ot wp—1Y+213ddp_1N) + pr + Odde . fL'p+1Y + Oddp+1N
- 2P 9P—1
(3.4)
xoY + oddgN 1Y + oddy N Tp_1 +odd, 1N
_*o 0 1 ! RS ! L (3.5)

(21)) . (2p)ker—1 + 2p—1(2p)ker—1 . 2

Since ker=n/p, it is sufficient that equ uals to equation(3.2).

25

Chapter 4

Proposed RSA Crypto-Core

4.1 Overall Architecture

Back to the equation 2.6, equation 2.7, and the modular exponentiation algorithm
mentioned in subsection 2.1.2 and subsection 2.2.2. The mapping operation is necessary
before and after the Montgorery Multiplication. In the thesis, we choose R-L method in
order to increase the parallelism, thus 2 sebsgof -m;ﬂtiplier are required.

Figure 4.2 shows a block diag.ram of tiilla:.i)fapos"ed RSA kernel core. There are four
4096-bit registers,Z, P, N, and: the key“H."“And two 32*64-bit proposed word-based
Montgomery Multipliers are used to execute multlphcatlon and square in parallel.

Figure 4.1 shows a flow chart of the algorlthm The 72 mod N is precomputed as an
input, and stored in the Z-reg in the FETCH STATE. In the same state, we also store
plaintext, M, in P-reg, modulus, N, in N-reg and 64 bits of key, E. In the PRE MM
STATE, the operands must map to their N-residue, multiplying by 2 mod N. Note that,
in the R-L algorithm, Z is initialized to 1, and the mapping is MM(1,7) since Z = r2. The
proposed multiplier supports multiplying by 1. It is helpful for N-residue mapping and
save the hardware cost by sharing the Z-reg to store r%. The next flow is DET STATE,
scanning the key bit-by-bit and multiplying Z by P if the scanned bit is 1. The POST
MM STATE is reached when the key is completely scanned. The ciphertext is valid after

the result of N-residue is transformed back to integer.

26

—‘ FETCH STATE

Z=r2 mod N
P=Plaintext M
N
E

PRE_MM STATE

Z=MM(1,2)
P=MM(r2,P)

DET STATE

Z=MM(Z,P)
P=MM(P,P)

% POST_MM STATE

Z=MM(1,2)

—i OUT STATE

Ciphertext=2

Figuj\re A RSA flow c};art.
4.2 Modular Multip“liéf‘ Architectures

The proposed architecture of the reconfigurable multiplier with DPA resistant is pre-
sented in this chapter. As mentioned in subsection 3.2, the precision of operands is only
limited by the memory size and control subsystems. In this thesis, it is adapted to three
precision, 1024, 2048, and 4096 bits, over the prime fields GF(p). All of the required
materials for mathematical theorems have been mentioned in early chapters. Then all
of these main components used in the scalable multiplier are detailed in the following

subsections.

4.2.1 A Scalable Montgomery Multiplier

Back to the algorithm 3.4 which is mentioned in subsection 3.3. Due to he final sub-

traction may cause the leakage of power attack, it is necessary to remove the conditional

27

N ; z]i' MODE
4096bits 1S (1024/2048/4096)

E
Y 32 bits
r?modN
N
e 0
Mont. Multiplier ei==1 | 7
(mul.) 4096bits T
ei==f

1
Mont. Multiplier 7

1 PM
(square)
d 4096bits

Figure 4.2: RSA o ntiation architecture.

statements from the algorithm. final subtraction can be done by ex-
ercising a few iterations withoute I_

increasing one more word and one Mo

The multiplications by 2 of Y and N are integrated into the word-based operation.

The proposed algorithm is modified as following and easy for hardware mapping.

Algorithm 4.1. (Proposed Modified Word-based Montgomery Multiplication)
Input : XY N
Output: S
1. §=0;
2. fori=0 to ker—1
2.1 forj=0top—1
. fork=1tloe
A (Cay S%) = Ca+ 2(ip1) (Va0 Yuo1) + S
B. odd = S\

j mod w)’

28

C. (Cy, §%) = Cyt 0dd(N}_y9, NyT1) + S*;

1. S = Sn-l—p—l:p;

3. return S;

start_mul

78

/c

X €0 1 0
Sequence
control unit — — X"'__lio
- X3p X3p+1 X3p+2
%op Xop+1 Xope2
g e e e 5]
Al |- % -
(M*. M2 M MO [I
] (Y8, Y2 Y Y°) [I
_ PU, PU, PU; PUp
yeo Improved
Al 0— D pev — —
Mux_|Zs_in /\
0 C
D~
& o
(mode) A
PE_queue.v

out

Figure 4.3: Scalable word-based Montgomery Multiplier.

Figure 4.3 shows a block diagram of the scalable word-based Montgomery Multiplier.
The j loop in proposed algorithm is unrolled and mapped to a pipelined kernel of p w-bit
processing units (PUs). The result of partial sum S is in carry save representation(CSR),
requiring 2w bits, thus reducing the critical path between PUs. PU1 can process the next
bit of X unless the result of PUP is ready or PU1 itself has finished the words.

For higher precision application, PUP may compute the S before PU1 has finished
the additional words. The results must be queued until PU1 is available again. The clock
cycles for one PU to handle one bit of X is called kernel cycle. For large operands, the

queue in CSR consumes significant area, so we convert S to nonredundant form using

29

w-bit CPA. Also the nonredundant S is an output of the multiplication. In the 7 loop
Jker= n/p kernel cycle are required to the entire computation, scanning n bits of X. The

detail relationship between w, p, n, is described in the next section.

4.2.2 Number of Processing Unit and Size of Word

The time to compute n bits depends on the word-size w and number of PUs p. The
kernel cycle is stated in Table 4.1. Figure 4.4 shows a pipelined diagram for providing
better understanding of the computation time. The e in this figure is the total number
of words but not n/p. The PU1 can’t start computation of next bit of X until the PU1

completes e words computation or the last PUP has computed the first valid output word.

Table 4.1: Kernel cycle and computation time.

Tenca-Koc This work
The first valid output of 2(p—1)+2=2p (p—1)+ ([p/w] +1)
PUP(eql) ireen =p+ [p/w]
Number of words to be pro- € ¥1 . e+ [p/w]
cessed(eq2) ' :‘"!‘73 :". \ g
computation timélﬁ-. ker(ng"n—‘l—‘ ((e —i— 1)1'— 2) ker(p + [p/w])+(e +
(eqL>cq2) K Sa’ . [p/w] ~ ([p/w] + 1))
computation time kér-‘(e FI) 2(p —1) ker(e+[p/w])+(p—1)
(eql<eq2)

Tenca-Koc [17]
There are 2-cycle latency because of the dependency between S/ and Sj — 1. The casel
corresponds to large number of words, and the word number dominates the kernel cycle.
There are e + 1 clock cycles in the kernel cycle. There ker kernel cycles. Finally, 2(p — 1)
cycles are required for the subsequent PUs to complete the last kernel cycle. The case2
corresponds to a small number of words. Each kernel cycle takes 2p clock cycles before
final PU takes 2 cycles to produces its first valid word. Finally, (e + 1) — 2 cycles are

required to obtain the rest of words at the end of the last kernel cycle.

30

Casel Case2

p=3,e=6 p=3.,e=4
PE1 PE2 PE3 PE1 PE2 PE3
(1 xY° (1 xY°
3|2 XY x,Y0 5|2 XoY! g 25
3 { 3 XoY? X Y1 x,YO 2 J 3 XoY2 X,YO B gc;p’
2|4 el BAL 2 4 EENG 5%
® | 5 i <. EAS ® | 5 A [} e =
6 XY5 X Y4 x,Y3 _6 X, Y3 x,yt [2°
(7 X3Y0 | X, Y5 x,Y4 (7 XYO X,Y2
~ |8 XaYE X, YO [X,Y® = 8 X, Y1 X, Y3
(32) 9 X3Y2 XYl xgY0 (31 2 9 X,Y2 XgYO
% 10 X3Y3 X,Y2 XgY? % 10 x,Y® xgY?!
D 11 xgY* X, Y3 XgY? o 11 XsY2 XgYO
12 X35 X,Y* XxgY3 _ 12 XsY3 XgY?
13 XaY5 XgY4 }»:Ia 13 XgY? }
14 XsY5 e 14 XgY3

Figure, 4.4: Pipelihéd diagram.

Proposed Architecture
The proposed architecture reduce”"the ‘lafce‘ncy,‘jpo‘only“l clock cycle. For casel, there are
e + [p/w] clock cycles in the kernél cycle. (p.=1) cycles are required to complete the
final kernel cycle. The improvement is élightly better or even a little bit worse because
the system is still limited by the time for PU1 to complete. The case2 takes p clock cycles
before final PU takes [p/w]|+1 cycles to produces its first valid word in each kernel cycle.
Finally, e + [p/w]| — ([p/w] + 1) cycle are required to obtain the more significant words
at the end of the last kernel cycle. In this case, the system is limited by the time for PUP
to complete and speed up significantly.

The queue size is also related to the w, n and p. In case2, PU1 starts the next kernel
cycle after PUP computes the valid output immediately so there is no need for any queue.
Casel, the output of PUP must be queued until PU1 completes current kernel cycle. Total
size of queue is (total word - first valid output)xw-bit.

Figure 4.5 shows the computation time for a Montgomery multiplication of precision

n of several wp configurations. The more detail table is showed in Appendix. Observe

31

that, when the operand precision is small, the number of PUs may be small and, when
the precision is high, the number of PUs should be as high as possible. Thus, the final
decision on the actual configuration depends on the precision for which the hardware
will be used the most and the available area. In my proposed architecture, there are 64
PUs and the word size is 32 bits. Table 4.2 shows a comparison of computation time on
this configuration. The optimal configuration of 4096-bit implementation is wp = 4096.
However, the proposed architecture make the trade-off on area limited by FPGA and
throughput.

Table 4.2: A comparison of computation time
w=32 and p=64
Tenca-Koc [17] This work

n=1024 2079 1087
n=2048 4159 2175
n=4096 8382 8351

4.2.3 Processing Unit = - A
- | | g Vli
Figure 4.6 shows the architecture of theprocessing unit. There are 2 w-bit carry save

adders to do the redundant arithm-ét'ii:y

Ss, (ca, S.) = Ss + x; - 2Y + (S, ca)
Ss, (¢b, S.) = Ss + odd - 2N + (S,, cb)

The registers, 1-bit ca and cb, can store the carry and be added to the next word as a
carry-in. Since the carry out is stored by the carry-reg, the S, only uses w — 1 bits. And
the S, is w bits. The registers, N=! and Y !, are here to store the present MSB and to
implement the left-shift by 1. In one PU, the MSB of previous N*~1 in the N~'-reg is

concatenated with the present N* ,
k k-1
(Nw—2107 Nw—l)’

and becomes the input of the next PU.

32

time

(clock cycles)

33500
28500
23500
18500
13500

8500

3500

n=4096

0 200

—0

400 600 800

number of PUs

1000

time

(clock cycles)

9000

n=2048

8000 -

7000

6000
5000

4000 -
3000 -
2000 -

=

100

200 300 400

number of PUs

500

time

(clock cycles)

2500

n=1024

2300

2100
1900

1700
1500

N

1300

1100 -

LR
A
\
\

—[I

:

900

100

200 300 400

number of PUs

500

33

Figure 4.5: Several configurations of n=1024, 2048, and 4096.

Z¢(30 bits)

E N Zs(p1 bits)

Figure 4.6: Architecture of Processing Unit

The odd parity is determined in thie first word, ‘and then stored in the register named
odd. However, the PU cannot usg the valie stored in ‘the odd reg to processing the first
word. Therefore, the odd check is done by odd-rég or directly the odd-wire depends on
whether PU is processing the first“sord: Note that-the odd-check bits are distinct from
PUs.

odd = S L]

7 mod w

4.2.4 Flexible Output and Permutation Function

Preventing final subtraction in Montgomery multiplication is accomplished by enlarg-
ing the bit-size of operands. If the length is a multiple of 64, the output is the sum of
last PUs. Otherwise, it is costly for performance to have output fixed at the last PUs
especially when the length is short. Figure 4.7 shows the architecture of permutation
function which can output at arbitrary PU depending on the performed length. The de-
tails of permutation function is showed in Appendix C. Therefore, the multiplication can
be finished as soon as the overall length is scanned instead of waiting for the operands

passed through 64 PUs.

34

g
S
|
(@)
= z
_><>—A [\S)
N
—_— O |
N |—]
> 2
g
(@
{
Zi ,
~
a
Zia E =
=, =z £
S s 5 —
> =
= -]
=
Zia = L
@]
| | 5 |
- E

o

1

Figure 4.7: " : Arch‘i‘t"e;c't‘ure of F“leX“ible Output.
4.3 Countermeasures Against DPA and SPA

The basic security of RSA is based on th difficulty of factoring the product of two
primes. But recent research discovered that the information of the key can be estimated
by tracing the power consumption. DPA is a powerful tool that allows cryptanalysis to
extract secret keys and compromise the security of smart cards and other cryptographic
devices by analyzing their power consumption. Simple Power Analysis (SPA) is a simpler
form of the attack that does not require statistical analysis.

One work mentioned in [19] is a countermeasure against DPA because the final sub-
traction of output depends on the inputs. And also the output is related to the key. In
the thesis, the proposed architecture of 2 multipliers consumes the same power since that
the 2 multipliers always compute despite of the bit of key. The only difference is that

Z-reg keeps its value when E* is 0, thus cause the weakness of SPA.

35

Since the power dissipation depends on the operation of registers, it is reasonable to
make the operations identical. The proposed countermeasure redesign a register that can
be read/written in the manners of shifting or index-addressing. The way of operation is
controlled by an input random signal, producing by a hardware PRNG! or in software.
Every time one multiplication is completed, the next configuration of the operation of
registers is set randomly. Therefore, the power consumption is always the same. The
proposed RSA cryptocore can resist the SPA attack.

Recall the equation 2.15 in section 2.4.2, Mt = M€ mod n. The DPA coun-
termeasure can be done by randomly generating a integer r and adding r - ¢(N)to the
original key E as a new key. Therefore, the key guessed by the adversary is randomized

thus preventing the ZEMD attack.

N ONN)
MODE/length 4096bits 4096 bits
32 * random(16 bits)
: =
Y Mont. 7
Multiplier . L
X (mul) 4096bits
ABF ¥ Mont
ont.
Multiplier L 401;/61\{)['
X (square) 0 1S

Figure 4.8: RSA modular exponentiation architecture against DPA.

In the proposed design, we set r is 16-bit and the modular multiplication is always

executed n+16+2 times during encryption. This is the overhead of DPA countermeasure.

!Pseudo random number generator.

36

There are some assumptions when ZEMD power attack is mounted on the RSA scheme,
the first z bits,{e*"!,--- e}, are known by the attacker. The attacker can guess the
next bit, e, by analysis of the power trace at the z + 1 iteration. In this work, the key
always varies with the integer r. The power information is useless for the attacker, thus
the design is DPA resistant.

Figure 4.8 shows the modified version of Fig 4.2, which preventing DPA attack. In
contract to the design without DPA countermeasure, an additional 4096-bit is to store
¢(N) and a 16-bit PRNG is to generate the random number r. The original key E is also
fully loaded at the beginning, and the random key is computed word-by-word. Every time
a word of key has been performed, the next word of key E’ is added to the r - ¢(N). The
random number 7 is kept unchanged until a RSA exponentiation is completed. Finally,
there are total 5 4096-bit Flip-flops, X, Y, N, E and ¢(N) respectively, in the proposed

architecture.

37

Chapter 5

Implementation Results and

Comparison

A word-based RSA scheme in both software and hardware are given in this work. This
chapter shows the hardware implementation results. The software simulation environment
is constructed in C programing languages and the optimization level is O3. The execution
time of software manner over Variqusl‘precisjonsn is‘ll"i‘s,ted below.

Table 5.1: Modular‘exponentiétion soff:Ware performance.

Field - GF (Piga) GF'(Pooss) GF(Pyos)
Time (s) D5 0.49.400 16.26 24.86
Throughput (kb/s) 2.1 0.167 0.164

In this thesis, all of the design in hardware is implemented using RTL (Register-
Transfer-Level) Verilog HDL (hardware description language) and synthesized on both
application-specific integrated circuit (ASIC) and field-programmable gate arrays (FP-
GAs). The technology of ASIC design is using TSMC! 0.18m CMOS process and the
technology of FPGA design is using Xilinx? Virtex-4 xc4vlx160 platform FPGAs. The
RTL synthesizer uses Synopsys® Design Compiler for ASIC and Xilinx ISE for FPGA.

!Taiwan Semiconductor Manufacturing Company Ltd. http://www.tsmc.com/
2Xilinx, Inc. The developer and fabless manufacturer of FPGAs. http: //www.xilinx.com
3Synopsys, Inc. http://www.synopsys.com/

38

5.1 ASIC Implementation

The logic synthesis is performed with RTL synthesizer uses Synopsys Design Compiler
using TSMC 0.18um CMOS standard-cell technologies. The data throughput of RSA is
given by

n(exercised precision)

k(efficient key length) X ¢y (computation time of multiplication)

The clock frequency is set to 100MHz and gatecount is 365k. The detail value is shown
as table 5.2

Table 5.2: The verification results on ASIC.

Design ASIC
Technology TSMC 0.18um

Clock frequency 100MHz

Gate count 365k

Precision . 1024 2048 4096
Computation tlme(ms) 12 7 e, 478 355
Throughput (kb/é,)' ’80 % Wk 11.5

Since there are few 1mplementatlonsL of 4096-bit RS]A table 5.3 shows the comparison
with other 1024-bit RSA 1mplementat10ns with ASIC design. In contrast to proposed
design, the work [20] shows a small area but the throughput is also slow. For the appli-
cation of smart cards, it is suitable to reduce area. In contrast to [20], the throughput
of proposed design is 2 times better for 2048 and 4096, but the area is only double. The
computation time of this work is counted with the worst case, the efficient key length is
the same as modulus, of each precision. The area of [21] is much higher than the others,

232

since it is radix-2°°. But the throughput is also higher than any others.

5.2 FPGA Implementation

Table 5.4 shows the detail value of the proposed design. The clock frequency is set to
102 MHz and the total slices is 26879 include 3 n-bit F/Fs. Table 5.5 shows the comparison
with other 1024-bit RSA implementations on FPGA. Mclvor [22] uses 1024-stages PE to

39

Table 5.3: Comparison with other 1024-bits implementations with ASIC design.

Author Chen [20] Mukaida [21] Proposed

Platform A8um CMOS | .18um CMOS A18um CMOS
Combinational gatecount 37k 755k 146k
Register gatecount 138k 210k 218k
Frequency (Mhz) 370 200 200
Throughput (kb/s) 83 5000 162

16 PEs*w=16 radix-2%2 64 PUs*w=32

Note 21 kb/s for 2048 include 3 n-bit registers
5.4 kb/s for 4096

implement the RSA cryptosystem. The word length of each PE is one bit. Mclvor’s [22]
another approach uses CRT(Chinese Remainder Theorem) to speed up the decryption.
Tang [23] implement the RSA cryptosystem with radix-2'7.

Table 5.4: The verification results on FPGA.

Design W, FPGA
Technology il J;.i T, .“'X.C4V1X16O

Clock frequeney : ‘J‘ :Z'" > 3 1@2 MHz
Slices(include.;_rj‘egispé.r.S')“ —T f34331
Slices(w/o regiéfe?s)-n‘ A+ 26879
Precision © 1024 2048 4096
Throughput(kb/s) 81 40 9

Table 5.6 shows three implementations of the proposed architecture. The number of
F/Fs and LUTSs in Proposed2 contrast to Proposedl is increased due to the extra 2 4096-
bit registers. The F/Fs are almost the same between Proposed2 and Proposed3 since
there are identical number of registers. But there are about increased 9000 LUTs caused

by 3 64-to-1 multiplexers in flexible output.

40

Table 5.5: Comparison with other 1024-bits implementations on FPGA.

Author Chen [20] | Mclvor [22] | Tang [23] Proposed
Platform XC2V8000 | XC2V6000 | XC2V3000 | xc4vlx160
Number of slices(w/o registers) 1673 N.A. 8190 26879
Number of slices(include registers) 6783 26136 14334 26879
Frequency (Mhz) 116.7 97.08 90 102
Throughput(kb/s) 26 376 429 81
Note 16PEs*w=16 radix-2'" | 64PUs*w=32
multiplier 3 4096

Table 5.6: Comparison’of ‘4096—bit implementations on FPGA.

Note Proposedl |"Proposed2 Proposed3
DPA DPA/GF(2")/flexible out
Platform xcdvlx160

Number of F/Fs slices 34331 42651 43281
Number of LUTs 40458 57682 66617
Number of slices 26879 37688 40203
Frequency (Mhz) 102 104 106
Throughput(kb/s) 81 80.6 81.7

Note 3 4096-bit | 5 4096-bit 5 4096-bit

41

Chapter 6

Conclusion

A total solution in hardware and software to the word-based scalable RSA cryptocore
in GF(p) is given in this thesis. In order to deal with various precision, 0 < n < 4168, of
operands, the word-based Montgomery techniques are employed. A Montgomery modular
multiplication algorithm is proposed. The modular exponentiation is the main operation
of RSA that exercising series of modular multlphcatlons The implementation of the
proposed multiplier in this work ShOWS a cqn51derab1e trade-off on area and throughput.
The cost of area is proportioned to w X p,JWhere 10 and p denote the size of word and
number of PUs respectively. For: hlgh speed apphcathon it can be modified to speedup
50% by doubling the PUs with a few alternatlons

According to the 1mplementat10n result, it is Synthesized using .18um CMOS tech-
nology with 365k gates and using Xilinx Virtex-4 xc4vlx160 with 26879 slices in FPGA
design. It takes about 24.86 s to accomplish a 4096-bit RSA operation in software but
takes only 355 ms in hardware. It is 70 times fast in throughput. The throughput of
encryption is limited by the efficient key length of DPA, which is n + 16.

In the Appendix A, Algorithm A.1 shows that the radix-2 Montgomery multiplications
over prime field GF'(p) and binary field GF(2") are almost identical. The proposed design
can be modified to support binary field GF(2") operation by simply eliminating the carry.
Therefore, the unified scalable multiplier can be used in ECC crytposystem.

42

Appendix A

Algorithm of Montgomery

multiplication over GF(2")

The modular multiplication is also an important operation used in ECC cryptosystem.
Since the ECC and RSA are widely used, we attempt to design a cryptographic processor
containing above cryptosyatems. The proposed Montgomery multiplier can be shared by
the en/decryption in RSA and ECC; Not onLy for prlme field GD(p), but also the modular
multiplication is usually performed over b1ﬂary field GF (2") in ECC. The Montgomery
multiplication over binary field is stated in thls Sectlon

Recall the algorithm 2.4 in sectlon 5. 3 2 1t is the Montgomery multiplication over
prime field GF(p) with redix-2. The Montgomery multiplication algorithm for GF'(2") is

given below:

Algorithm A.1. (montgomery multiplication over GF(2") with radiz-2)
Input : a(x),b(x),p(z), and m
Output: c(z)

1. ¢(x) =0;
2. fork=0tom—1

2.1 q(z) = (co(x) + ar(x)bo())py(x);
2.2 qo = q(z) mod x;

2.3 c(x) = (c(x) + ar(z)c(z) + q(x)p(x);
2.4 c(z) =c(z)/x;

3. return c(x);

43

where py(r) = py'(x) mod x. It can be seen that the two algorithms are almost
identical except that addition operation in GF(p) becomes a bit-wise modulo-2 addition
in GF(2"). In proposed algorithm, the extra reduction step at the end is removed, since
it is no necessary for GF'(2"). Although the operands are integers in the form algorithm
and binary polynomials in the latter, the representations of both are identical in digital
systems. The division by x is also identical to division by 2 in digital systems. Therefore,
both field modular multiplication can be implemented on the same hardware with a

Field_sel signal to decide which field is performed.

44

Appendix B

FPGA Implementation with AMBA

In this thesis, since this work is mainly implemented on ASIC design, there is not any
technique used to improve the performance on FPGA. Thus, the implementation results

on FPGA is slightly worse in timing performance, but it is helpful in fast verification and

gives reliable hardware information.

AN

AHB
RSA core - Wrapper

)

AHB

; AHB
Wrapper

s

Figure B.1: RSA and other device connect to AHB via AHB wrapper.

The Advanced Microcontroller Bus Architecture [24] was introduced in 1996 and is

widely used as the on-chip bus for ARM! processors.

AHB that is a single clock-edge protocol. This protocol is today a standard for 32-bit
embedded processors because it is well documented and can be used without royalties.
AMBA is designed for use in System-on-a-chip (SoC) designs. The important aspect of

a SoC is not only which components or blocks it houses, but also how they are intercon-

TARM, Inc. http://www.arm.com/

45

NS

In its 2nd version, ARM introduced

nected. AMBA is a solution for the blocks to interface with each other. Figure 7?7 shows

RSA core and ECC core are interconnected with each other on AHB.

0 | OFO1_0000
OFO01_0001
OF01_0002
OFO01_0003
1 | OF01_0004
0F01_0005
OFO01_0006
OFO01_0007

Figure B.2: Address Mapping.

Figure B.3 shows the integration of the proposed RSA core and the AHB wrapper
that meets the AMBA protocol. The memory addresses are mapping to different devices
on the bus. The Figure B.2 denotes that there is a 2-bit offset for 32-bit bus transfer since

the memory is byte-addressed.

46

AHB2RSA.v
(wrapper)

F Reg En l—FAddrRegEn|

RSA_exponentiation

1: HCLK
(kernel)

. HRESETn
, HSELRSA
1

, HREADYIn
1

. HTRANS
, HWRITE
1

, HWDATA
&)

, HADDR
%

, HRESP
2

, HREADYOut
1
HRDATA

Next_e_en

o
Cipher_text E 1S}
<o

Hild

Out_valid 2

Figure B.3: AHB to RSA wrapper.

A7

<« r<]»

]C1

«—R([——>

s

<]»

«|»

MODE

start

L —am

Next_E

_

Plaintext/
Ciphertext

Out_valid

Figure B.4: AMBA address mapping.

48

Appendix C

Permutation Function

Table C.1 shows how the flexible output works. Recall that the input of Z; in Figure
4.7 is the sum of different partial sum from PUs. The modulus length n is a 12-bit number
which represent the number of bit being performed and n" = (n — 1) mod64. The output
of n’ is the sum of (n' + 1)th PU.

49

Table C.1: The permutation function of flexible output.

— — — — — — — —— —— o/ o/ o

— o/ — o —— o o

—_— — — — — — — — — D — [a] ™ <+ O Nej D~ [e 0] (@] @) — N o <t LO Nej I~ 0 (@] (@]
— a (e <t L0 Ne) I~ o] @) — — — — — — — — — — [a\ [a\| [a\| (o] a (o] (&N} [a\l a a o
I T e T e T T T T B
o~ I AR A B S~ TN~ IO AL IS B B~ IO~ O~ IO I B~ I L I N O SO C I C R O C IO C A O LA QLIS
N A A A Y N N
| | | | | | | | | | |
had -~ -~ - had ad had -~ had -~ - had -~ ad -~ had - - - had ad - ad had ad - hd -~ -~ ad had
N N N N N N N NN NNNNNNNNNDNDNNDNNDNDNNN N N N N
- —_—_— . . o o o oo oo oo o o o o o o o o o o o o o
2 = - A R O H &N M < d O I~ 0 OO 4 & Mm% o0 © I~ 0 O O
Sl /A »m w0 -0 o = e A A 2 A Y N N A A D 9,
] = = - = = = = = = = = = e T L = - = = = = - = = = - = = - = =
SN N N N N N N N N N NN N N@NCNGN N NN XNNNNNNNNNNNN
Elm o o m Hm o m Mmoo m T F s G s S LTS 0 0 0 0 10 10 0 10 10 10 O O O ©
TIh% =)
. o T N m el e S T AT n e =~ 0 o o ¥
— a o <t 0w © b~ oo o - — — — e o — — a [\l a (o} a [} a [a\| a a (el
B T e e e e T e T e e T e el B — I i N B
T T T T T OTOTOTOTOTOYT Y W™ YT Y OYOYTOTOYTOTOYTOTOT 9
-~ -~ - -~ -~ -~ - -~ had had had had ad d = had n-‘ had had - = -~ had R -~ ad had had had had ad -
N N N N N NN N N NN NN NKXRIRN NN NNNNNNNNNNNDN
—,e— — — — — — oo o o o oo o o o o o o o o oo o o o o
B =T B RN~ LR = U b SO DA =2 DU e P DY D, PO, O e e P e P PR\ PR RO IR R IR IO\ BN IR IR BN
el N N A A A N A A Y N)
+ | | | | | I | | | | I | | | |
u -~ - - - had - +~ el had - - ad - ad +~ -~ -~ -~ had had -~ - ad had -~ el had - -~ - - -
SIN N N N N N N NN N N N NN NN NNNXNNNXNDNDNNNNNNNDN
~ =) — [a] o < o] NeJ r~ @] D (@) — [\ ™ <t LO e D~ 0] D) —
Sl o ~ &N MM <t o O I~ 0 O —=H —H o= oH H H H = O+ O+ NN AN NN NN m oo

Bibliography

[1]

W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions
on Information Theory, vol. IT-22, no. 6, pp. 644-654, 1976.

R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120-126, 1978.

T. E. Gamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” in Proceedings of CRYPTO 84 on Advances in cryptology. New York,
NY, USA: Springer-Verlag New Yor,k, Inc._, 1985, pp- 10-18.

PKCS#1: RSA Cryptogmphy, RSA Lﬂa;boratorles Std. 800-57, 2002.

Digital Signatures Using Reverszblq Publzc Key C‘ryptogmphy for the Financial Ser-
vices Industry - RSA digital SZgnature techmque ANSI Std. X9.31, 1998.

E. Biham and A. Shamir, “leferentlal cryptanalyas of des-like crytptosystems,”
Journal of Cryptography, vol. 4, no. 1, pp. 3-72, 1991.

7

M. Matsui, “Linear cryptanalysis method for des cipher,” in Proceedings of Advances

in Cryptology-Eurocrypt 93. Springer-Verlag, 1994, pp. 386-397.

P. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems,” in Proceedings of Advances in Cryptology-CRYPTO °96. Springer-Verlag,
1996, pp. 104-113.

P. Kocher, J. Jaffe, and B. Jun, “Introduction to differential power analysis and

7

related attacks,” in http://www.cryptography.com/dpa/technical, 1998.

o1

[10]

[11]

[12]

[16]

[17]

[18]

T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Power analysis attacks of mod-
ular exponentiation in smartcards,” in Proceedings of Workshop on Cryptographic

Hardware and Embedded Systems. Springer-Verlag, August 1999, pp. 144-157.

C. C. Yang, T. S. Chang, and C. W. Jen, “A new rsa cryptosystem hardware design
based on montgomerys algorithm,” in IEFEE Trans. on Circuits and Systems - II:
Analog and Digital Signal Processing, vol. 45. New York, USA: IEEE Computer
Society, July 1998, pp. 908-913.

A. Daly and W. Marnane, “Efficient architectures for implementing Montgomery
modular multiplication and RSA modular exponentiation on reconfigurable logic,”
in FPGA 02: Proceedings of the 2002 ACM/SIGDA tenth international symposium
on Field-programmable gate arrays. New York, USA: ACM Press, 2002, pp. 40—49.

T. Blum and C. Paar, “Montgomery modular exponentiation on reconfsaigurable

hardware,” in Proc. 14th IEEE Symp. Computer Arithmetic, 1999, pp. 70-77.

C. D. Walter, “Systolic modulay multlphcatlon IEEE Transactions on Computers,
vol. 42, no. 3, pp. 376378, Mar 1993, ! T %

C.-H. Wang, C.-T. H. Chih—Pi—n Su @QM@ C~W. Wu, “A word-based rsa crypto-
processor with enhanced pipe]i-heI;Vé"f.fo"rfr;;ﬁce,“’f’.rin IEEFE Asia-Pacific Conference on
Advanced System Integrated C’M‘cmts N"eW-York, USA: IEEE Computer Society,
2004, pp. 218-221.

L. A. Tawalbeh, A. F. Tenca, S. Park, and C. K. Kog, “Use of elliptic curves in cryp-

7

tography,” in Thirty-Fighth Asilomar Conference on Signals, Systems, and Comput-

ers, vol. 1, November 2004, pp. 483-487.

A. F. Tenca and Cetin Kaya Kog, “A scalable architecture for modular multiplication
based on montgomery’s algorithm,” IEFEE Transactions on Computers, vol. 52, no. 9,

pp. 1215-1221, September 2003.

D. Harris, R. Krishnamurthy, M. Anders, S. Mathew, and S. Hsu, “An improved
unified scalable radix-2 montgomery multiplier,” in ARITH’05: Proceedings of the

92

[19]

[20]

[21]

[22]

[24]

17th IEEE Symposium on Computer Arithmetic. New York, USA: IEEE Computer
Society, 2005, pp. 172-178.

C. D. Walter, “Precise bounds for montgomery modular multiplication and some
potentially insecure rsa moduli,” in Topics in Cryptology-CT-RSA 2002, B. Preneel
(editor), Lecture Notes in Computer Science, vol. 2271. San Jose, CA, USA: Springer
Berlin / Heidelberg, 2002, pp. 30-39.

Y .-L. Chen, “Design and implementation of reconfigurable rsa cryptosystems,” Mas-

ter’s thesis, National Chiao Tung University, 2006.

K. Mukaida, M. Takenaka, N. Torii, and S. Masui, “Design of high-speed and area-
efficient montgomery modular multiplier for rsa algorithm,” in IEEE Symp. VLSI
Circuits, 2004, pp. 320-323.

C. Mclvor, M. McLoone, and J. V. McCanny, “Modified montgomery modular mul-
tiplication and rsa exponentiation techmques in IEE Proceedings Computers and

Digital Techniques, vol. 151, 2004 pp 402 408

S. H. Tang, K. S. Tsui, , and P H W Leoﬂé; “Modular exponentiation using parallel
multipliers,” in meceedmgs Of th@ 2003 IEE'E }ntematwnal Conference on Field
Programmable Technology (FPT) 2003 pp 52T59

AMBA™ Specification Rev 2.0, ARM Ltd. Std., 1999.

23

