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Research and Analysis in Channel Capacity of Quantize
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Student : Yu-Rong Huang Advisor : Tzu-Hsien Sang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

ABSTRACT

In the past few years, MIMO systems were already proven to have many
advantages. The main advantages are spatial multiplexing and spatial diversity. In the
past research, few have considered the problem of discrete signals at the transmitters
and receivers; in this thesis, we study and analyze the capacity of quantized MIMO
systems and consider the case of simple relays.

We propose an algorithm that can calculate Discrete-input and Quantized-output
channel capacity with input power constraint and analyze the optimal input distribution.
Then we run the algorithm to calculate channel capacity of different MIMO scenarios
and explain the simulation results. Proper AGC scheme is also used to get the
maximum information rate. Finally we consider simple relay channels and the

simulated channel capacity is presented.
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Chapter 1
Introduction

1.1 Motivation

Channel capacity, a fundamental concept in information theory, was introduce by
Shannon [1] to specify the asymptotic limit on the maximum rate C at which
information can be reliable conveyed by the channel. Any coding scheme that
superficially appears to operate-at airate-higher.than C will cause enough data to be
lost because of uncorrectable channel errors so that the actual information rate is not
to be greater than C.

In [1], when computing the channel capacity the assumption is made that the
channel inputs and the channel outputs can be treated as continues random variables.
Since the DSP hardware used in digital modems utilizes a finite signal set (channel
input are modulation signals, such as QAM signals), and channel output are quantized
signals, it is clear that the channel inputs and the channel outputs are not Gaussian
random variables and the Shannon bound is not exact. So our research motivation is
to propose an algorithm to modify the Shannon bound in the practical digital channels,

and extend to MIMO channel.



1.2 Literature Review

The problem of obtaining the capacity of a discrete-input (fixed input
constellations) and quantized-output (the output signal is quantized by
quantizer )MIMO Rayleigh flat-fading channel has been preceded by such work as
[1], in which Shannon calculated the capacity of an AWGN channel and showed that
this capacity is achievable by a Gaussian input distribution. Arimoto [2] and Blahut
[3] derived a numerical method for computing the capacity of discrete memoryless
channels, but their algorithm did not support input power constraint. In [4], the
Blahut-Arimoto algorithm is modified to incorporate an average power constraint,
and is used to compute the capacity.‘of discrete-input and continuous-output (output
signals are not quantized) channel, land also the convergence is proved. The channel

model in [4] is shown in Fig. 1.1.

o o 1
k i i
-3 -1 1
&) Q A 6r

Fig. 1.1 Digital input and continued output AWGN channel model [4].

In [5], Bellorado extended the modified Blahut-Arimoto algorithm [4] (which
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calculates the capacity of a discrete-input and continuous-output channel) to
calculate the capacity of a MIMO Rayleigh flat-fading channel, which is also
discrete-input and continuous-output channel. The algorithm becomes very
computationally complex when the number of transmit antennas and signal set size
grow; so the author makes a postulation that the MIMO channel is independent
across antennas and dimensions (real dimension and imaginary dimension). Base on
the postulation, the author proposed a new algorithm which drastically reduces the
computation cost (for example, for 64-QAM constellations and three transmit
antennas, a total of 262143 variables are evaluated in the old algorithm, while only 7
variables in the new algorithm).

In [6], Obianuju Ndili and Tokunbo Ogunfunmi discovered that the Shannon
limit does not exist in modern: communication systems (because of the DSP
hardware used in digital modems.utilizes a-finite signal set), so they proposed the
constrained Blahut-Arimoto algorithm-to-calculate the channel capacity with
discrete-inputs (the input signals has not been modulated) and quantized outputs (the
output signals was quantized by quantizer, which was shown in Fig. 1.2), and
extended their algorithm to calculate the capacity of MIMO channels, but they did

not prove the convergence of their algorithm.

—075-05-025 0 025 0.5 075
(1) Li(2) Li(3) L(4) L(5) L(6) L(T)

g (0) i {1) wi(2) w;(3) wi(4) u;(5) wi(6)

Fig. 1.2 An uniform quantizer



In [7], the author pointed out a question, a 64-QAM modulated signal received
over a time-dispersive SISO (one transmit antenna and one receive antenna) channel
with four multi-path components can very well be quantized by a 8 bit ADC
(4*64=256, log, 256 =8), which is sufficiently large for the modem to operate close to
channel capacity. However, the reliance on fine ADC granularity easily becomes
unjustified as soon as MIMO systems come into play. Consider for instance two data
streams (two transmit antenna) of 64-QAM modulated signals received over a
time-dispersive MIMO channel with four multi-path components. Now we need at
least 14 bit (log,(4*64*64) =14) of resolution in order to obtain a fine granular
quantization at each receive antenna. With increasing number of transmit antennas,
the ADC resolution needed for fine granular quantization soon becomes infeasible in
practice. But in their simulation (which is shown:in Fig. 1.3), they showed that even
coarse quantization leads to channel capacities which are surprisingly close to the
ones obtainable with fine-granularity.quantization. Their system model is shown in
Fig. 1.4, where the transmit antennas transmit-digital signal (such as QAM and PAM),
and receive antennas quantized the received signals individually. Their method
calculated the channel capacity by calculating the mutual information between X and
Y (X and Y are vector), and letting the input distribution be uniform, shown in (1.1),

so in their simulation, they did not get the optimal input distribution.

LM
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Fig. 1.3 Simulation of 4X4 MIMO,4-QAM modulation. Result for different

resolution of quantization is shown [7].
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Fig. 1.4 Quantized MIMO system model [7].



According to these literatures, we classify the channel into four types.

® Continuous-input and continuous-output

The channel input is an analog random variable, and the channel output is
also an analog random variable.
® Continuous- input and discrete-output

The channel input is an analog random variable, and the channel output is a
discrete random variable (the output signal is quantized by a quantizer).
® Discrete-input and continuous-output

The channel input is a discrete random variable (the input signal is a
modulation signal), and the channel output is an analog random variable.
® Discrete-input and discrete-output

The channel input is a.discrete random variable (the input signal is a
modulation signal), and the channel output.is also-a discrete random variable (the

output signal is quantized by a quantizer).

In the end of this section, we summarize in Table 1.1 the different channel

models.



Channel model Literature Contribution

Continue input continue | [1] Assume channel input and

output channel output are
Gaussian random
variables, we can obtain
the  Shannon  capacity
bound for an AWGN
channel

Continue input discrete | No No

output

Discrete input continue | [4] [5] Propose an algorithm to

output calculate channel capacity
with input power
constraint, and extend the
algorithm to  calculate
MIMO  Reyleigh  flat
fading channel.

Discrete input discrete | [2] [3] [6] [7] Point out the question

output

about quantized MIMO
system with coarse
quantization, and propose
an algorithm to calculate

the capacity.

Table 1.1 Literature summary




1.3 Purpose Of Research

In the previous section, we see that discrete-input and discrete-output channel
model suits digital communication systems, but there is not an algorithm to calculate
this channel capacity with input power constraint and a convergence proof (in [6], the
authors proposed an algorithm, but they can not prove the convergence of the
algorithm. In our simulations, we found case where their algorithm fails to converge.).

Our purpose of research is to propose an algorithm, which can calculate the
discrete-input and discrete-output channel capacity with input power constraint, and
guarantee the algorithm convergent, and the algorithm is extended to MIMO cases.
We use the algorithm to study thesoptimal input distribution with different input
power constraint. In the end, we hope to:use the algorithm to study simple relay

channel cases.



Chapter 2

An Algorithm for computing the
capacity of Discrete Input and
Discrete Output MIMO channel
with input power constraint

2.1 Quantized MIMO System

Let us consider the quantized MIMO systems in Fig. 2.1, where nT transmit
antennas are connected to nR receive ‘antennas by the channel matrix HeC™™,
which is assumed to be completely known to the transmitter and receiver. Because of
knowing the channel state at the transmitter, we can get the optimal input distribution

which is fitted the input power constraint (ZPi*”Xi”2 =Pav) to approach the

channel capacity. At every transmit antenna, the input signal (X, X,,......., X.r) isthe

modulation signals (such as PAM and QAM), and the received signal is perturbed by

samples (V,,V,,......., v.r) of complex, circularly symmetric, additive, white Gaussian
noise of zero mean and variance of &2/2 in its real and imaginary part, respectively,
yielding total noise power . The receive signal is split up into real-part and
imaginary-part and fed to the input of a bank of quantizers Q,,Q,,....Q,; Which

9



output the quantized signals (Y,,Y,,..... Y,z )- Let us collect the input and output

signals into vector

X=X, X, o Xy ] €M (2.1)

Y=[y,, Yo, eeees Yonr ]T €eQ (2.2)

Where M is a finite set containing all possible modulated transmit vector X,
while Q is a finite set containing all possible quantized receive vectors Y. Let us
write the input-output relationship of the quantized MIMO system as

Y=Quantized (HX+V) (2.3)
The individual quantizer is defined by their input-output relationship as

Quantized(r)=q iff L(q)<r <u.(q) (2.4)
Where q is the output of the quantizers whenits input ranges between a lower limit
l.(q) and an upper limit u.(q); and these limits define the quantization interval for
which the quantizers outputs the value g: Here we use the uniform quantizers in our

simulation.
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Fig. 2.1 Quantized MIMO system model [7].
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2.2 Algorithm

2.2.1 Algorithm Research

Our goal is to find P (-) which maximize the information rate I(X;Y|H). Here
I(X;Y|H) is the mutual information between channel input and channel output
assuming the transmitter and receiver knows the channel matrix H.

The discrete-input and discrete-output channel capacity computation problem is stated
as follows:

Find the pmf (probability mass function) that satisfy the following equation

Pe()=arg max I(X; Y jH) (2.6)

The maximization in (2.6)-is taken under the following set of constraint.

Doy PXD* X * X < P input power constraint (2.7)

Do (X)) =1 2.8)

Finally, we wish to evaluate C (the discrete-input and discrete-output channel

capacity), defined as
C=1(X; Y [H)| P () = P () (2.9)

An algorithm computing the discrete-input and continuous-output channel
capacity has been proposed in [6]. We can regard the discrete-output as a special case
of the continuous-output. With the idea, we propose a discrete-input and discrete-
output version for computing the quantized MIMO channel capacity. We state as
follows.

For a specific channel H

11



Stepl: Initialization
® P, () ischosen as any valid pmf over X=[x, X,

Step2: Expectation

® Forall X, eM,compute

T=E [PX|Y(Xi|Y)
T R(X)

Step3: Maximization

log, (Pyy (X; 1 Y))]

® Forall X, eM,compute

2% +HX{'X;

PX)=5———

z 2Tk XX,
k=1

® \Where A ischosen to satisfy

MT
Z(Pav - X?XI)* 25N E=0
i=1

Repeat step2 and step3until Py (-).converges, and we

In step2, the value T. can be determined from the probability

given H and X, Y~N (HX, o’ I), thus knowing the quantization

....... x-T  (2.10)

(2.11)

(2.12)

(2.13)

can get P, (")

P, (Y |X). When

levels and appropriate

decision regions, the complementary error function can be used to compute

P (Y[X).

In step3, A is chosen to satisfy the specific equation, and we introduce two

methods in next two sections.

12



2.2.2 Interval halving procedure

Interval halving procedure is an efficient method for solving equation f(x) =O0.
The requirements for using this method is that there are two values x, and x, that
satisfy f(x,)f(x,) <0 .Since f(x,) and f(x,) have opposite signs, we know by the

intermediate value theorem that there exists a solution X and that x, <X<x,, and

with only n+1 function evaluations we can find a shorter interval of length

£ =|x —x,|27" that contains X, the procedure was described as follows.

Input: x, x,, f(x), € (tolerance error)

Output: A solution to the equation f(x) =0 that lies in an interval of length <¢

Repeat

Set X, = (X +X,)/2

Iff(x,) f(x)<0Then
Set X,=X,

Else Set x, =X,

End If

Until |x —x,|<2¢

13



2.2.3 Newton-Raphson procedure

Newton’s method is perhaps the best known method for finding the roots of the
real-value function. Newton’s method can often converge quickly, especially if the
iterations begin sufficiently near the desired roots.

Given a function f(x) and its derivative f’(x), we given a first guessx,, and a

better approximation is

=% 219

We continue this process and can get the roots of the equation.

2.2.4 Algorithm Convergence

In this algorithm, we regard- the.discrete-output as the special case of the

continuous-output, so we can see the convergence proof in [6].

14



Chapter 3
Simulation Result

3.1 Discrete-input and discrete-output MIMO

Rayleigh flat-Fading channels

In this section, we use the algorithm to simulate the discrete-input and
discrete-output MIMO Rayleigh.‘flat-fading channels. Two transmit antennas and
two receive antennas (2X2 MHMQO) are used, and at each transmit antenna, 4-QAM
signal is transmitted, and at each receive-antenna, a 3 bit quantizer is used. One
thousand channels are randomly<generated and the ergodic channel capacity is
calculated through averaging. We show the simulation result in Fig. 3.1 (a).

Fig. 3.1 (a) shows a typical simulation. The capacity is saturates at high SNR

because of the modulation scheme. Two antennas transmit independent signals, so the

maximum capacity of this scheme is 4 bits/channel use (2*log, (4) =4). We show 2X1

and 2X2 MIMO performance in Fig. 3.1 (b).

15
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3.2 The maximum information rate about the
discrete-input and discrete-output MIMO

channel

Quantizing the signal at the receiver causes of the loss of information rate. If we
transmit two independent 4-QAM signals at two antennas, and we can distinguish 16
(4*4=16) different signal vectors (which has two elements, and each element is
4-QAM signal), then the information rate is 4 bits/channel use. If we quantize the
receive signals by quantizers, we may not distinguish the all difference at the receiver
and get the maximum information rate. To.explain this, we show all combination of
two antenna and modulation signal (here-we use a'special 4-QAM signal, which real
part is -1 and 5, and imagery-part is -5 and 1) in Fig 3.2. We generate a channel
randomly, then all the possible transmit"signal vectors pass the channel and are
quantized at the receiver, which wasshown ‘in Fig 3.3. In Fig 3.3, we can only
distinguish 12 different signal vectors at the receiver, so the maximum information
rate is 3.58 bit/channel use (log,(12) =3.58). We run the algorithm, and show the
simulation result in Fig 3.4, in which we see that the channel capacity does not exceed

the maximum value 3.58.

17
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Fig. 3.2 All possible transmit signal vectors in 2X2 quantized MIMO system.
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of a specific channel.
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3.3 Optimal input vector distribution for different

Input power constraint

In this section, we analyze the optimal input vector distribution with different
input power constraint in discrete-input and discrete-output MIMO Raleigh flat fading
channel. In our simulation, in order to observe the relationship between the power
constraint and optimal input distribution, we use a special 4-QAM signal (which is the
same in section 3.1). We analyze the optimal distribution with low power constraint in

3.3.1, and analysis high power constraint in 3.3.2.

3.3.1 Low power constraint

In this section, we analyze the optimalinput vector distributions with low power
constraint. We constrain the average input power 25 and show all possible transmit
vector in Fig 3.5(a), and these transmit vectors pass a special channel is shown in Fig
3.5(b). In Fig 3.5(b), we see that we can only distinguish 4 different vectors (we circle
in different color), so the maximum information rate is 2 bits/channel use
(log,(4)=2). We run the algorithm and show the simulation result in Fig 3.5(c). In
3.5(c), we see that the channel capacity is saturate at 2 bits/channel use. This result
conforms to our anticipation. We show the optimal input vector distribution in high
SNR in Fig 3.5(d). We analyze these distributions as follows.

In Fig 3.5(b), we see that we can only distinguish 4 different signal vectors,

which are (-1.5-4.5j-15-4.5)), (4.5-4.5],45-4.5)), (-1.5+1.5j-1.5+15j), and
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(4.5+1.5j,4.5+1.5j).

When we receive the vector (-1.5-4.5j,-1.5-4.5j), the transmit vector may be one
of the three vectors (vectorl (-1-5j,-1-5j), vector2 (-1-5j,-1+j), vector5 (-1+j,-1-5j)).
We summarize the relationship between the output vector and its possible input
vectors in Table 3.1. From this table, we see that we receive the vector
(-1.5+1.5j,-1.5+1.5j) only when vector6 is transmitted, and vector6 has the lowest
power 4(1* +1* +1* +1* = 4), so that we see the probability of vector6 is the most in
Fig 3.5(d). The three vectors (which are vectorl, vector2 and vector5) are transmitted,
then we can receive the vector (-1.5-4.5j,-1.5-4.5j), but the vector2 and vector5 have
the equal power 28, smaller than the power 52 of vectorl, so that we see the
probability of vector2 and vector5 are equal, and bigger than vectorl. We can analysis
the other distribution in Fig 3.5(b).by the same method. Fig 3.6 shows typical optimal

distributions for low power constrain (power from.low to high).
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tx_wec =

Columns 1 through 5

Joono: - -1.0000 .0oo0:  -1.0000 + 1.00001
Jooooi - 5.0000 + 1.00001 -1.0000 - 5.00001

-1.0000 - 5.00001 -1.0000 - 5.00001 -1.0000
-1.0000 - 5.00001 -1.0000 + 1.00001  5.0000

'

Lh
'

N

'
Lh

Columns 6 through 10

-1.0000 + 1.00001 -1.0000 + 1.00001 -1.0000 .0gggr - 5.0000 - 5.00001  5.0000 - 5.00001
-1.0000 + 1.00001  5.0000 - 5.00001  5.0000 + 1.00001 -1.0000 - 5.00001 -1.0000 + 1.00001

+

Columns 11 through 15

5.0000 - 5.00001  5.0000 - 5.00001 5.0000 + 1.00001  5.0000 00001 5.0000 + 1.00001
%.0000 - 5.00001  5.0000 + 1.00001 -1.0000 .oooor - -1.0000 + 1.00001 5.0000 - 5.00001

+

-5

(a)

Column 14

5.0000 + 1.00001
5.0000 + 1.00001

Columns 1 through 5
1

/ffs_an—u_ 450001

-1.5000 - 4.50001

-1.5000 -
5000 -

-1.5000 -

3
-1.5000 + 1.50001

4.5000 - 4.50001
-1.5000 + 1.50001 1

5000 - 4,500

Columns 11 through 15
2

4.5000 - 4.50001 )y 4.5000 -

4.5000 - 4.50001

5000 + 1.50001 )% 4.5000 -
5000 - 4.500 i

ooa - 4.50 5000 + 1,500 noo -

Column 16

T
4.5000 + 1.50001
5000 + 1.50

(b)
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Fig. 3.5 Simulation result for low input power constraint.
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Output vector

Possible input vectors

(-1.5-4.5j,-1.5-4.5))

vectorl(-1-5j,-1-5j),vector2(-1-5j,-1+j),

vectorb(-1+j,-1-5j)

(4.5-1.5j,4.5-1.5))

vector3(-1-5j,5-5j),vector4(-1-5j,5+1j),
vector7(-1+1j,5-5j),vector9(5-5j,-1-5j),
vectorl0(5-5j,-1+1j),vector11(5-5j,5-5)),
vectorl2(5-5j,5+1j),vector13(5+1j,-1-5j),

vectorl5 (5+1j,5-5j).

(-1.5+1.5j,-1.5+1.5j)

vector6(-1+1j,-1+1j)

(4.5+1.5],4.5+1.5))

\ector8(-1+1j,5+1j),vector14(5+1j,-1+1j),

Vectorl6(5+1j,5+1j)

Table 3.1 Output vector and its possible input vectors
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3.3.2 High power constraint

In this section, we constrain the input average power 70 (high input power
constraint), and the other settings are the same with section 3.3.1. We run the
algorithm and show the optimal input vectors distributions in Fig 3.6. When we
transmit one of the three vectors (which are vector8, vectorl4 and vectorl6), we can
receive the vector (4.5+1.5j,4.5+1.5j). The vectorl6 has the most power of the three
vectors, so we see that the probability of vectorl6 is the most. We can analysis the
other distribution in Fig 3.7 by the same method. Fig. 3.8 shows typical optimal

distributions for high power constrain (power from.low to high).
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Fig. 3.7 Optimal input distribution for high power constrain.
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nstrain wer-from low to high).
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3.4 AGC to achieve the channel capacity

In our simulation, we discover that when we fix the antenna and modulation
scheme, the AGC dominate the channel capacity. We show the different AGC in Fig.

3.9 and we can tune the AGC until achieve the maximum information rate.
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(a) From -6 to 6
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Chapter 4
Simple Relay Case

4.1 Introduction

Now, we want to use our algorithm to study cooperative communication and we
only consider simple cases. We start with the elementary relay channel model as
shown in Fig. 4.1, in which a single’relay R assists the communication between the

source S and the destination D. There is no direct:link between the source and the

destination.
Pt I/_\I P
O, ®) C

Fig. 4.1 Elementary Relay Channel

Let the transmit power at the source and the relay be p and p, respectively.
At both the relay and the destination, the receive symbol is corrupted by additive
white Gaussian noise of unit power. Relay R observes r, a noisy version of transmitted

symbol x. Based on the observation r, the relay transmits a symbol f(r) which is

received at the destination along with its noise n,. The relay function f satisfies the
average power constrain (E[|f (r)['1= P,).

r=x+n (4.1)

y=1(r) +n, (4.2)
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4.2 Basic Memoryless Forwarding Strategies

In this section, we introduce two basic memoryless forwarding strategies. We

introduce demodulate forward in 4.2.1 and amplify forward in 4.2.2.

4.2.1 Demodulate And Forward

In DF protocol, demodulation of the received symbol at the relay is followed by

modulation, the relay function for DF can be expressed as
for (1) = /Pesign(r) (4.3)

where sign(r) outputs the sign.of r. Due to'the'.demodulation process, the relay

transmitted symbol does not pravide any soft information to the destination.

4.2.2 Amplify And Forward

An AF relay simply forwards the received signal r after satisfying its power constraint.

The relay function for AF can be written as

fae(r)= @/ PP—T-lr (4.4)

Evidently, with AF, the relay tries to provide soft information to the destination. A

disadvantage with this technique is that significant power is expended at the relay

when |r| is high.
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4.3 Simulation Results

In this section, we consider simple relay case and Rayleigh flat-fading channel,
and then run our algorithm. We set the total power (source and relay) S, and noise
power N (SNR=S/N). Fig. 4.2 shows in Rayleigh flat-fading channel, more parallel
relay get the better performance. Fig 4.3 shows one relay and no relay, the
performance is similar, and two parallel relay is better. We compare two kind of
different relay strategies we describe in section 4.2, and show the simulation results in
Fig. 4.4, in which, we can see that DF get better performance in high SNR, because in
high SNR relay demodulate received signals more correct. In Fig. 4.5, we show one
relay and different received antenna-simulation:results, we can see that two received
antennas get better performance: In relay:systems, we can trade off number of relays,
and quantization levels, and number of antennas. We show different relays and
quantization levels in Fig. 4.6, inswhich we see that increase one antenna, get better
performance than increase one-bit quantization. To achieve a specific performance,
we can combination different relays, antennas and quantization levels. We show

different combination achieve similar performance in Fig. 4.7.
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Fig. 4.3 Different Parallel Relay And No relay
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Fig. 4.5 Different Received Antenna
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Fig. 4.7 Similar Performance With Different Combination

35



Bibliography

[1]
[2]

[3]

[4]

[5]

[6]

[7]

C. Shannon, “A mathematical theory of communication”, Bell Syst. 1984.

S. Arimoto, “An algorithm for computing the capacity of arbitrary discrete
memoryless channels”, 1972.

R. E. Blahut , “Computation of channel capacity and rate distortion functions”,
1972.

N. Varnica, X. Ma, and A. Kavcic, "Capacity of power constrained memoryless
AWGN channels with fixed input constellations”,November 2001.

J. Bellorado, S. Ghassemzadeh, and A. Kavcic,” Approaching the capacity of the
MIMO Rayleigh flat-fading channel with QAM constellation, independent
across antennas and dimensions”.

Obianuju Ndili and Tokunbo Ogunfunmi, “Achieving Maximum possible Speed
on Constrained Block Transmission System”.

Josef A.Nossek and Michel T.lvrlac, "Capacity and Coding for Quantized
MIMO Systems”,2006.

36



About the Author

x

: ¥ £ % Yu-Rong Huang

G

My

- 1983.11. 21

1990. 9 ~ 1996. 6 Bzt o R
1996. 9 ~ 1999; 6 FianfrpEe g
1999. 9 ~ 20026 e S S A

2002. 9 ~ 2006. 6 AR E TR 5L

37



