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量化 MIMO 系統通道容量之研究與分析 

 

研究生：黃俞榮                 指導教授：桑梓賢 教授 

 

國立交通大學 

電子工程學系電子研究所碩士班 

 

摘要 

多重輸入多重輸出(MIMO)系統在過去數年,已被證實擁有許多好處,其中最主

要的好處為增加頻寬效益(spatial multiplexing)和對抗通道衰減(spatial diversity),但

過去對於 MIMO 系統的研究， 甚少考慮接收端量化的問題,在實際的應用上,發射

及接收的信號都是離散訊號。在這篇論文中,我們主要研究接收訊號經過量化

後,MIMO 系統的通道容量，並且考慮簡單的 Relay Channels。 

我們首先提出在傳送訊號有功率限制的情況下，且接收訊號經過量化的通道

容量計算演算法,並且經由分析其最佳輸入信號的機率分布,說明且驗證演算法的

正確性,接著用我們所提出的演算法模擬在不同的 MIMO 架構中所得到的通道容

量且說明其結果,並且在傳送天線數以及調變信號固定的情況下,討論 AGC 使其

可以得到最大的消息量。最後,我們分析簡單的 relay channel 經過量化後的通道容

量。 
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ABSTRACT 
 

In the past few years, MIMO systems were already proven to have many 

advantages. The main advantages are spatial multiplexing and spatial diversity. In the 

past research, few have considered the problem of discrete signals at the transmitters 

and receivers; in this thesis, we study and analyze the capacity of quantized MIMO 

systems and consider the case of simple relays.  

We propose an algorithm that can calculate Discrete-input and Quantized-output 

channel capacity with input power constraint and analyze the optimal input distribution. 

Then we run the algorithm to calculate channel capacity of different MIMO scenarios 

and explain the simulation results. Proper AGC scheme is also used to get the 

maximum information rate. Finally we consider simple relay channels and the 

simulated channel capacity is presented. 
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Chapter 1  
Introduction 

1.1 Motivation 

Channel capacity, a fundamental concept in information theory, was introduce by 

Shannon [1] to specify the asymptotic limit on the maximum rate C at which 

information can be reliable conveyed by the channel. Any coding scheme that 

superficially appears to operate at a rate higher than C will cause enough data to be 

lost because of uncorrectable channel errors so that the actual information rate is not 

to be greater than C. 

 In [1], when computing the channel capacity the assumption is made that the 

channel inputs and the channel outputs can be treated as continues random variables. 

Since the DSP hardware used in digital modems utilizes a finite signal set (channel 

input are modulation signals, such as QAM signals), and channel output are quantized 

signals, it is clear that the channel inputs and the channel outputs are not Gaussian 

random variables and the Shannon bound is not exact. So our research motivation is 

to propose an algorithm to modify the Shannon bound in the practical digital channels, 

and extend to MIMO channel.   
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1.2 Literature Review  

The problem of obtaining the capacity of a discrete-input (fixed input 

constellations) and quantized-output (the output signal is quantized by 

quantizer )MIMO Rayleigh flat-fading channel has been preceded by such work as 

[1], in which Shannon calculated the capacity of an AWGN channel and showed that 

this capacity is achievable by a Gaussian input distribution. Arimoto [2] and Blahut 

[3] derived a numerical method for computing the capacity of discrete memoryless 

channels, but their algorithm did not support input power constraint. In [4], the 

Blahut-Arimoto algorithm is modified to incorporate an average power constraint, 

and is used to compute the capacity of discrete-input and continuous-output (output 

signals are not quantized) channel, and also the convergence is proved. The channel 

model in [4] is shown in Fig. 1.1.  

 

 

 

Fig. 1.1 Digital input and continued output AWGN channel model [4]. 

In [5], Bellorado extended the modified Blahut-Arimoto algorithm [4] (which 
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calculates the capacity of a discrete-input and continuous-output channel) to 

calculate the capacity of a MIMO Rayleigh flat-fading channel, which is also 

discrete-input and continuous-output channel. The algorithm becomes very 

computationally complex when the number of transmit antennas and signal set size 

grow; so the author makes a postulation that the MIMO channel is independent 

across antennas and dimensions (real dimension and imaginary dimension). Base on 

the postulation, the author proposed a new algorithm which drastically reduces the 

computation cost (for example, for 64-QAM constellations and three transmit 

antennas, a total of 262143 variables are evaluated in the old algorithm, while only 7 

variables in the new algorithm). 

In [6], Obianuju Ndili and Tokunbo Ogunfunmi discovered that the Shannon 

limit does not exist in modern communication systems (because of the DSP 

hardware used in digital modems utilizes a finite signal set), so they proposed the 

constrained Blahut-Arimoto algorithm to calculate the channel capacity with 

discrete-inputs (the input signals has not been modulated) and quantized outputs (the 

output signals was quantized by quantizer, which was shown in Fig. 1.2), and 

extended their algorithm to calculate the capacity of MIMO channels, but they did 

not prove the convergence of their algorithm.   

    

 

Fig. 1.2 An uniform quantizer  
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In [7], the author pointed out a question, a 64-QAM modulated signal received 

over a time-dispersive SISO (one transmit antenna and one receive antenna) channel 

with four multi-path components can very well be quantized by a 8 bit ADC 

(4*64=256, 2log 256 =8), which is sufficiently large for the modem to operate close to 

channel capacity. However, the reliance on fine ADC granularity easily becomes 

unjustified as soon as MIMO systems come into play. Consider for instance two data 

streams (two transmit antenna) of 64-QAM modulated signals received over a 

time-dispersive MIMO channel with four multi-path components. Now we need at 

least 14 bit ( 2log (4*64*64) 14= ) of resolution in order to obtain a fine granular 

quantization at each receive antenna. With increasing number of transmit antennas, 

the ADC resolution needed for fine granular quantization soon becomes infeasible in 

practice. But in their simulation (which is shown in Fig. 1.3), they showed that even 

coarse quantization leads to channel capacities which are surprisingly close to the 

ones obtainable with fine-granularity quantization. Their system model is shown in 

Fig. 1.4, where the transmit antennas transmit digital signal (such as QAM and PAM), 

and receive antennas quantized the received signals individually. Their method 

calculated the channel capacity by calculating the mutual information between X and 

Y (X and Y are vector), and letting the input distribution be uniform, shown in (1.1), 

so in their simulation, they did not get the optimal input distribution. 

 

1

1 1
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[ | ] * ln [ | ]
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∑∑            (1.1) 
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Fig. 1.3  Simulation of 4X4 MIMO,4-QAM modulation. Result for different 

resolution of quantization is shown [7]. 

 

 

Fig. 1.4 Quantized MIMO system model [7]. 
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According to these literatures, we classify the channel into four types. 

 Continuous-input and continuous-output 

The channel input is an analog random variable, and the channel output is 

also an analog random variable. 

 Continuous- input and discrete-output 

The channel input is an analog random variable, and the channel output is a 

discrete random variable (the output signal is quantized by a quantizer). 

 Discrete-input and continuous-output 

   The channel input is a discrete random variable (the input signal is a 

modulation signal), and the channel output is an analog random variable. 

 Discrete-input and discrete-output 

   The channel input is a discrete random variable (the input signal is a 

modulation signal), and the channel output is also a discrete random variable (the 

output signal is quantized by a quantizer). 

 

In the end of this section, we summarize in Table 1.1 the different channel 

models. 
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Channel model Literature Contribution 

Continue input continue 

output  

[1] Assume channel input and 

channel output are 

Gaussian random 

variables, we can obtain 

the Shannon capacity 

bound for an AWGN 

channel 

Continue input discrete 

output  

No No 

Discrete input continue 

output  

[4] [5]  Propose an algorithm to 

calculate channel capacity 

with input power 

constraint, and extend the 

algorithm to calculate 

MIMO Reyleigh flat 

fading channel. 

Discrete input discrete 

output  

[2] [3] [6] [7] Point out the question 

about quantized MIMO 

system with coarse 

quantization, and propose 

an algorithm to calculate 

the capacity.  

Table 1.1  Literature summary 
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1.3 Purpose Of Research 

In the previous section, we see that discrete-input and discrete-output channel 

model suits digital communication systems, but there is not an algorithm to calculate 

this channel capacity with input power constraint and a convergence proof (in [6], the 

authors proposed an algorithm, but they can not prove the convergence of the 

algorithm. In our simulations, we found case where their algorithm fails to converge.).  

Our purpose of research is to propose an algorithm, which can calculate the 

discrete-input and discrete-output channel capacity with input power constraint, and 

guarantee the algorithm convergent, and the algorithm is extended to MIMO cases. 

We use the algorithm to study the optimal input distribution with different input 

power constraint. In the end, we hope to use the algorithm to study simple relay 

channel cases. 
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Chapter 2  
An Algorithm for computing the 
capacity of Discrete Input and 
Discrete Output MIMO channel 
with input power constraint 

2.1 Quantized MIMO System 

Let us consider the quantized MIMO systems in Fig. 2.1, where nT transmit 

antennas are connected to nR receive antennas by the channel matrix H *nT nRC∈ , 

which is assumed to be completely known to the transmitter and receiver. Because of 

knowing the channel state at the transmitter, we can get the optimal input distribution 

which is fitted the input power constraint ( 2*
i

Pi i Pav=∑ X ) to approach the 

channel capacity. At every transmit antenna, the input signal 1 2( , ,......., )nTx x x  is the 

modulation signals (such as PAM and QAM), and the received signal is perturbed by 

samples 1 2( , ,......., )nRv v v  of complex, circularly symmetric, additive, white Gaussian 

noise of zero mean and variance of 2
vσ /2 in its real and imaginary part, respectively, 

yielding total noise power 2
vσ . The receive signal is split up into real-part and 

imaginary-part and fed to the input of a bank of quantizers 1 2 2, ,..... nRQ Q Q  which 
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output the quantized signals ( 1 2 2, ,....., nRy y y ). Let us collect the input and output 

signals into vector 

X= 1 2,[ , ....... ]T
nTx x x M∈                                         (2.1) 

Y= 1 2, 2[ , ....... ]T
nRy y y Q∈                                         (2.2) 

Where M  is a finite set containing all possible modulated transmit vector X, 

while Q  is a finite set containing all possible quantized receive vectors Y. Let us 

write the input-output relationship of the quantized MIMO system as 

Y=Quantized (HX+V)                                          (2.3) 

The individual quantizer is defined by their input-output relationship as 

   Quantized( ir ) =q  iff   ( ) ( )i i il q r u q< ≤                             (2.4) 

Where q is the output of the quantizers when its input ranges between a lower limit 

( )il q  and an upper limit ( )iu q , and these limits define the quantization interval for 

which the quantizers outputs the value q. Here we use the uniform quantizers in our 

simulation. 

 

 

Fig. 2.1 Quantized MIMO system model [7]. 
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2.2 Algorithm 

2.2.1 Algorithm Research 

Our goal is to find ( )P ⋅X  which maximize the information rate I(X;Y|H). Here 

I(X;Y|H) is the mutual information between channel input and channel output 

assuming the transmitter and receiver knows the channel matrix H.  

The discrete-input and discrete-output channel capacity computation problem is stated 

as follows: 

    Find the pmf (probability mass function) that satisfy the following equation 

        *

P ( )
( ) arg  max  I( )P

⋅
⋅ =

X
X X;Y | H                                  (2.6) 

    The maximization in (2.6) is taken under the following set of constraint. 

        ( *
i

H
avM

P P
∈

≤∑ X i i iX
X )* X X  input power constraint             (2.7) 

        ( ) 1
i M

P
∈

=∑ X iX
X                                          (2.8) 

    Finally, we wish to evaluate C (the discrete-input and discrete-output channel 

capacity), defined as 

       C = I(X; Y |H)| *( ) ( )P P⋅ = ⋅X X                                   (2.9) 

An algorithm computing the discrete-input and continuous-output channel 

capacity has been proposed in [6]. We can regard the discrete-output as a special case 

of the continuous-output. With the idea, we propose a discrete-input and discrete- 

output version for computing the quantized MIMO channel capacity. We state as 

follows. 

For a specific channel H  
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Step1: Initialization  

 ( )P ⋅X  is chosen as any valid pmf over X= 1 2,[ , ....... ]T
nTx x x     (2.10) 

Step2: Expectation 

 For all iX M∈ , compute 

   2

( )
[ log ( ( ))]

( )i

P
T E P

P
= X|Y i

Y X|Y i
X i

X | Y
X | Y

X
                    (2.11) 

Step3: Maximization 

 For all iX M∈ , compute 

  
∑

H
i i i

H
k k k

T +λX X

x i M
T +λX X

k=1

2P (X ) =
2

                                   (2.12) 

 Where λ  is chosen to satisfy  

   ∑
T

H
i i

M
T +λX XH

av i i
i=1

(P - X X )* 2 =0                             (2.13) 

         Repeat step2 and step3 until ( )P ⋅X converges, and we can get *( )P ⋅X . 

 

In step2, the value iT  can be determined from the probability Y|XP (Y | X) . When 

given H and X, Y~N (HX, 2
vσ I), thus knowing the quantization levels and appropriate 

decision regions, the complementary error function can be used to compute 

Y|XP (Y | X) . 

In step3, λ  is chosen to satisfy the specific equation, and we introduce two 

methods in next two sections. 
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2.2.2 Interval halving procedure  

Interval halving procedure is an efficient method for solving equation f(x) =0. 

The requirements for using this method is that there are two values 1x  and 2x  that 

satisfy f( 1x )f( 2x ) <0 .Since f( 1x ) and f( 2x ) have opposite signs, we know by the 

intermediate value theorem that there exists a solution x%  and that 1 2x x x≤ ≤% , and 

with only n+1 function evaluations we can find a shorter interval of length 

1 2 2 nx xε −= −  that contains x% , the procedure was described as follows. 

 

Input: 1x , 2x , f(x),ε (tolerance error)  

Output: A solution to the equation f(x) =0 that lies in an interval of length <ε  

  

Repeat  

Set 3x = ( 1x + 2x )/2  

If f ( 3x ) f ( 1x ) <0 Then 

Set 2x = 3x  

Else Set 1x = 3x   

End If 

Until 1 2x x− <2ε   
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2.2.3 Newton-Raphson procedure 

Newton’s method is perhaps the best known method for finding the roots of the 

real-value function. Newton’s method can often converge quickly, especially if the 

iterations begin sufficiently near the desired roots. 

Given a function f(x) and its derivative f’(x), we given a first guess 0x , and a 

better approximation is  

0
1 0

0

( )
'( )

f xx x
f x

= −                                               (2.14) 

 We continue this process and can get the roots of the equation. 

  

2.2.4 Algorithm Convergence 

In this algorithm, we regard the discrete-output as the special case of the 

continuous-output, so we can see the convergence proof in [6].  
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Chapter 3  
Simulation Result  

3.1 Discrete-input and discrete-output MIMO 

Rayleigh flat-Fading channels 

In this section, we use the algorithm to simulate the discrete-input and 

discrete-output MIMO Rayleigh flat-fading channels. Two transmit antennas and 

two receive antennas (2X2 MIMO) are used, and at each transmit antenna, 4-QAM 

signal is transmitted, and at each receive antenna, a 3 bit quantizer is used. One 

thousand channels are randomly generated and the ergodic channel capacity is 

calculated through averaging. We show the simulation result in Fig. 3.1 (a).  

Fig. 3.1 (a) shows a typical simulation. The capacity is saturates at high SNR 

because of the modulation scheme. Two antennas transmit independent signals, so the 

maximum capacity of this scheme is 4 bits/channel use (2* 2log (4) =4). We show 2X1 

and 2X2 MIMO performance in Fig. 3.1 (b). 
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Fig. 3.1 (a) 2X2 MIMO, 4-QAM Modulation, 3 bit Quantizer 

 

Fig. 3.1  (b) 2X1 and 2X2 MIMO, 4-QAM Modulation, 3 bit 

Quantizer 
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3.2 The maximum information rate about the 

discrete-input and discrete-output MIMO 

channel  

Quantizing the signal at the receiver causes of the loss of information rate. If we 

transmit two independent 4-QAM signals at two antennas, and we can distinguish 16 

(4*4=16) different signal vectors (which has two elements, and each element is 

4-QAM signal), then the information rate is 4 bits/channel use. If we quantize the 

receive signals by quantizers, we may not distinguish the all difference at the receiver 

and get the maximum information rate. To explain this, we show all combination of 

two antenna and modulation signal (here we use a special 4-QAM signal, which real 

part is -1 and 5, and imagery part is -5 and 1) in Fig 3.2. We generate a channel 

randomly, then all the possible transmit signal vectors pass the channel and are 

quantized at the receiver, which was shown in Fig 3.3. In Fig 3.3, we can only 

distinguish 12 different signal vectors at the receiver, so the maximum information 

rate is 3.58 bit/channel use ( 2log (12) 3.58= ). We run the algorithm, and show the 

simulation result in Fig 3.4, in which we see that the channel capacity does not exceed 

the maximum value 3.58. 
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Fig. 3.2 All possible transmit signal vectors in 2X2 quantized MIMO system. 

Fig. 3.3 Quantized signal vectors at the receiver. 
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Fig. 3.4 Simulation result of a specific channel. 
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3.3 Optimal input vector distribution for different 

input power constraint  

In this section, we analyze the optimal input vector distribution with different 

input power constraint in discrete-input and discrete-output MIMO Raleigh flat fading 

channel. In our simulation, in order to observe the relationship between the power 

constraint and optimal input distribution, we use a special 4-QAM signal (which is the 

same in section 3.1). We analyze the optimal distribution with low power constraint in 

3.3.1, and analysis high power constraint in 3.3.2.  

3.3.1 Low power constraint 

 

In this section, we analyze the optimal input vector distributions with low power 

constraint. We constrain the average input power 25 and show all possible transmit 

vector in Fig 3.5(a), and these transmit vectors pass a special channel is shown in Fig 

3.5(b). In Fig 3.5(b), we see that we can only distinguish 4 different vectors (we circle 

in different color), so the maximum information rate is 2 bits/channel use 

( 2log (4) 2= ). We run the algorithm and show the simulation result in Fig 3.5(c). In 

3.5(c), we see that the channel capacity is saturate at 2 bits/channel use. This result 

conforms to our anticipation. We show the optimal input vector distribution in high 

SNR in Fig 3.5(d). We analyze these distributions as follows. 

In Fig 3.5(b), we see that we can only distinguish 4 different signal vectors, 

which are (-1.5-4.5j,-1.5-4.5j), (4.5-4.5j,4.5-4.5j), (-1.5+1.5j,-1.5+1.5j), and 
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(4.5+1.5j,4.5+1.5j). 

When we receive the vector (-1.5-4.5j,-1.5-4.5j), the transmit vector may be one 

of the three vectors (vector1 (-1-5j,-1-5j), vector2 (-1-5j,-1+j), vector5 (-1+j,-1-5j)). 

We summarize the relationship between the output vector and its possible input 

vectors in Table 3.1. From this table, we see that we receive the vector 

(-1.5+1.5j,-1.5+1.5j) only when vector6 is transmitted, and vector6 has the lowest 

power 4( 2 2 2 21 1 1 1 4+ + + = ), so that we see the probability of vector6 is the most in 

Fig 3.5(d). The three vectors (which are vector1, vector2 and vector5) are transmitted, 

then we can receive the vector (-1.5-4.5j,-1.5-4.5j), but the vector2 and vector5 have 

the equal power 28, smaller than the power 52 of vector1, so that we see the 

probability of vector2 and vector5 are equal, and bigger than vector1. We can analysis 

the other distribution in Fig 3.5(b) by the same method. Fig 3.6 shows typical optimal 

distributions for low power constrain (power from low to high). 

 

 

 



 

22 
 

 

(a) 

 

 (b) 
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(c) 

  

(d) 

Fig. 3.5 Simulation result for low input power constraint.  
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Fig. 3.6 Low power constrain (power from low to high) 
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Output vector Possible input vectors 

(-1.5-4.5j,-1.5-4.5j) vector1(-1-5j,-1-5j),vector2(-1-5j,-1+j), 

vector5(-1+j,-1-5j) 

(4.5-1.5j,4.5-1.5j) vector3(-1-5j,5-5j),vector4(-1-5j,5+1j), 

vector7(-1+1j,5-5j),vector9(5-5j,-1-5j), 

vector10(5-5j,-1+1j),vector11(5-5j,5-5j), 

vector12(5-5j,5+1j),vector13(5+1j,-1-5j), 

vector15 (5+1j,5-5j). 

(-1.5+1.5j,-1.5+1.5j) vector6(-1+1j,-1+1j) 

(4.5+1.5j,4.5+1.5j) Vector8(-1+1j,5+1j),vector14(5+1j,-1+1j),

Vector16(5+1j,5+1j) 

Table 3.1  Output vector and its possible input vectors 
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3.3.2 High power constraint 

 

In this section, we constrain the input average power 70 (high input power 

constraint), and the other settings are the same with section 3.3.1. We run the 

algorithm and show the optimal input vectors distributions in Fig 3.6. When we 

transmit one of the three vectors (which are vector8, vector14 and vector16), we can 

receive the vector (4.5+1.5j,4.5+1.5j). The vector16 has the most power of the three 

vectors, so we see that the probability of vector16 is the most. We can analysis the 

other distribution in Fig 3.7 by the same method. Fig. 3.8 shows typical optimal 

distributions for high power constrain (power from low to high). 

 

 

Fig. 3.7 Optimal input distribution for high power constrain. 
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Fig. 3.8 High power constrain (power from low to high). 
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3.4  AGC to achieve the channel capacity  

    In our simulation, we discover that when we fix the antenna and modulation 

scheme, the AGC dominate the channel capacity. We show the different AGC in Fig. 

3.9 and we can tune the AGC until achieve the maximum information rate. 

 

 

     

(a) From -6 to 6 
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(b) From -3 to 3 

Fig. 3.9 Different AGC 
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Chapter 4  
Simple Relay Case  

4.1 Introduction 

Now, we want to use our algorithm to study cooperative communication and we 

only consider simple cases. We start with the elementary relay channel model as 

shown in Fig. 4.1, in which a single relay R assists the communication between the 

source S and the destination D. There is no direct link between the source and the 

destination. 

 

Fig. 4.1 Elementary Relay Channel 

    Let the transmit power at the source and the relay be p  and Rp  respectively. 

At both the relay and the destination, the receive symbol is corrupted by additive 

white Gaussian noise of unit power. Relay R observes r, a noisy version of transmitted 

symbol x. Based on the observation r, the relay transmits a symbol f(r) which is 

received at the destination along with its noise 2n . The relay function f satisfies the 

average power constrain ( 2[ ( ) ] RE f r P= ). 

             r = x + 1n                                            (4.1) 

             y= f(r) + 2n                                          (4.2) 
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4.2 Basic Memoryless Forwarding Strategies  

 In this section, we introduce two basic memoryless forwarding strategies. We 

introduce demodulate forward in 4.2.1 and amplify forward in 4.2.2.  

4.2.1 Demodulate And Forward 

In DF protocol, demodulation of the received symbol at the relay is followed by 

modulation, the relay function for DF can be expressed as  

( ) ( )DF Rf r P sign r=                                            (4.3) 

where sign(r) outputs the sign of r. Due to the demodulation process, the relay 

transmitted symbol does not provide any soft information to the destination. 

4.2.2 Amplify And Forward 

An AF relay simply forwards the received signal r after satisfying its power constraint. 

The relay function for AF can be written as  

( )
1

R
AF

Pf r r
P

=
+

                                               (4.4) 

Evidently, with AF, the relay tries to provide soft information to the destination. A 

disadvantage with this technique is that significant power is expended at the relay 

when r  is high. 
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4.3 Simulation Results  

     In this section, we consider simple relay case and Rayleigh flat-fading channel, 

and then run our algorithm. We set the total power (source and relay) S, and noise 

power N (SNR=S/N). Fig. 4.2 shows in Rayleigh flat-fading channel, more parallel 

relay get the better performance. Fig 4.3 shows one relay and no relay, the 

performance is similar, and two parallel relay is better. We compare two kind of 

different relay strategies we describe in section 4.2, and show the simulation results in 

Fig. 4.4, in which, we can see that DF get better performance in high SNR, because in 

high SNR relay demodulate received signals more correct. In Fig. 4.5, we show one 

relay and different received antenna simulation results, we can see that two received 

antennas get better performance. In relay systems, we can trade off number of relays, 

and quantization levels, and number of antennas. We show different relays and 

quantization levels in Fig. 4.6, in which we see that increase one antenna, get better 

performance than increase one-bit quantization. To achieve a specific performance, 

we can combination different relays, antennas and quantization levels. We show 

different combination achieve similar performance in Fig. 4.7. 
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Fig. 4.2 Different Parallel Relay 

 

Fig. 4.3 Different Parallel Relay And No relay 
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Fig. 4.4 Different Relay Strategies 

 

Fig. 4.5 Different Received Antenna 
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Fig. 4.6 Different Combination 

 

Fig. 4.7 Similar Performance With Different Combination
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